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Abstract

Silicon photonics, where photons instead of electrons are manipulated, shows promise
for higher data rates, lower energy communication and information processing, biomed-
ical sensing, and novel optically based applications such as wavefront engineering and
beam steering of light. However, silicon photonics does not yet have mature process,
device, and circuit variation models for the existing IC and photonic process steps;
this lack presents a key challenge for design in this emerging industry.

This thesis addresses analysis of the process variation impact of particle defects.
Such particle defects can arise in photolithography, deposition, etch, and other pro-
cesses, and can perturb the intended function of photonic devices and circuits. The
adjoint method previously used in optimization is modified and implemented to fa-
cilitate the simulation of the impact of defects in silicon photonic devices. More
specifically, we demonstrate the methodology to build both component-level and
circuit-level models based on the adjoint method. For the component-level mod-
els, we show how S-parameters of the device components are impacted by different
types of particle defects. For the circuit-level models, we show the impact on circuit
output spectrum and performance features based on component-level models, and
perform critical area extraction for yield estimation. The model and result will be
used to help generate layout design rules, predicting, and optimizing yield of complex
silicon photonic devices and circuits for tomorrow's silicon photonics designers.

Thesis Supervisor: Duane S. Boning
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

The semiconductor industry continues to improve on past integrated circuit (IC)

designs, even after decades of development and growth. While efforts are made to

build denser and more complex IC chips, packages, and systems, the demand for

faster interconnects and larger data transmission bandwidth prompts the new and

emerging field of silicon-based photonics. By replacing the electrical wires with optical

links which transmit signals through light, silicon photonics allows vastly higher data

bandwidth and thus large-scale data transport, due to the fundamental differences in

physics between electrons and photons [2]. Indeed, a microprocessor that uses optical

waveguides to communicate information around the chip has been prototyped [3].

This device demonstrates the feasibility and advantages of using the same silicon

fabrication process for both electronic based digital circuits and photonic based optical

functions.

Silicon photonics has also shown great potential in the field of sensing. For ex-

ample, an on-chip digital Fourier transform (dFT) spectroscopic system has been

fabricated recently based on silicon photonics [1, 4], which achieves high spectral res-

olution in a relatively small design by making use of Mach-Zehnder interferometers

and thermal-optical switches (Figure 1-1).

Such designs, however, may suffer from process variations aring during manufac-

turing. It is necessary to model such variations and analyze their impact on per-

formance in order to increase the product yield and efficiency of fabricated silicon

wafers, and indeed, such techniques for modeling manufacturing process variations

17
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Figure 1-1: (a) Block diagram and (b) schematic layout of the dFT spectrometer
design from [1].

have been developed for ICs [51, including creating physical models and predictive

tools based on empirical data collected from wafer and process fabrication. However,

silicon photonics does not yet have mature variation models for the existing IC and

photonics process steps and device components; this lack presents a key challenge for

design in this emerging industry.

Several research efforts have been focusing on building process and device varia-

tion models, both in simulation and experiment, for silicon photonics. For example,

the impact of line-edge-roughness, which arises on the sidewall of the structure in

the photolithography and etch process, has been studied on waveguides [6, 7], Bragg-

gratings [8], and y-splitters [9]. There are also research efforts focusing on mathemat-

ical methods for developing these models, including the polynomial chaos expansion

(PCE) method for uncertainty quantification [10, 11, 12], and the response surface

model (RSM) for compact modeling [13, 14]. There is still great academic interest in

exploring the impact of process variations, and thus develop design tools that account

for those different types of variations.

18



1.1 Motivation

As one part of the goal of developing process variation models for silicon photonics,

this thesis focuses on the impact of defects in silicon photonics that can arise in

photolithography, deposition, etch, and other processes. The model and results will

be used to help generate layout design rules and critical area extraction methods, and

predicting and optimizing yield of complex silicon photonic devices and circuits for

tomorrow's silicon photonics designers, just as IC designers do today.

Although doing direct finite-difference time-domain (FDTD) simulation by adding

a defect particle somewhere near the device structure seems simple and easy to imple-

ment, it often requires an extremely fine mesh grid in FDTD as the particle becomes

smaller, and requires a great number of simulations to sample and cover all the pos-

sible particle locations when the device becomes complicated. Instead, here we apply

the adjoint method, which has been widely used recently in photonics inverse de-

sign [15, 16, 17], to both increase accuracy and accelerate simulation speed. In this

thesis, the method will be applied on device components first, and later the simulated

model will be used for photonic circuit simulation to produce a circuit-level model.

Then critical area extraction will be performed for yield estimation.

1.2 Thesis Structure

Chapter 2 provides necessary background information that will be used throughout

the thesis. The widely-used adjoint method is then adapted for the purpose of particle

defect modeling in Chapter 3. Chapter 4 applies the method at the device component

level, and shows implementation examples on straight waveguide, y-splitter, and di-

rectional coupler devices. Chapter 5 solves problems around wavelength dependence

and frequency sampling. Chapter 6 applies the methodology at the photonic cir-

cuit level, explaining how to go from variation in component S-parameters to system

output features. We also discuss yield modeling using results from circuit analysis.

Chapter 7 provides conclusions and possible future research directions.

19
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Chapter 2

Background

In this chapter, some necessary background information is presented. We start with an

overview of the effects of defect study in silicon photonic circuits. Then we present the

concept of S-parameters and the adjoint method in computational electromagnetics.

2.1 Silicon Photonics Process

There are different types of potential defects in silicon photonic circuits. Each defect

type might have many causes, including foreign material, bubbles, pinholes in photo

resists, and crystalline dislocations.

Yield management and analysis for ICs has been developed and implemented by

taking defect sensitivities into account [18, 19]. The defect size distributions have been

observed, with the conclusion that the probability distribution function is inversely

proportional to the cube (or empirically, some other power p) of the defect size. The

concept of critical area, where the center of a defect must fall to cause a circuit failure,

has been introduced. Yield modeling for IC circuits has been further built upon the

spatial distribution and the size distribution of defects [20].

Although there are few studies about the defect yield modeling for silicon photon-

ics, considering the great similarities between the CMOS process and silicon photon-

ics fabrication processes, we propose that the concept and methodology used in yield

modeling for IC circuits can be transplanted to the silicon photonics area. In partic-

ular, we focus on two types of particle defects in this thesis: one is the pillar-shaped

21
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(b)

waveguide
Cladding

BOX . d

Figure 2-1: Demonstration of a silicon pillar defect in proximity to a straight silicon

waveguide: (a) Top view; (b) Side view.

particle introduced during the photo-lithography process, the other is the ball-shaped

particle introduced by foreign metal.

In the thesis, we always set the z-axis to be perpendicular to the circuit plan, and

the location of the particle only depends on x and y while its z-position is fixed. For

example, the pillar-shaped particle has the same height and same z-position as the

silicon waveguide (Figure 2-1, Figure 2-2); the ball-shaped particle lies on the surface

of the buried oxide (BOX) (Figure 2-3). The demonstrations and results in this thesis

all are based on a silicon waveguide with width 500 nm and height 220 nm, though

the methods can be applied to other geometries.

2.2 S-Parameters

Scattering parameters (S-parameters) are commonly used to describe the behaviour

of a linear time-invariant network. Traditionally, this concept is used to describe the

response of electrical devices, but they can be used to describe optical devices as well.

22
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Figure 2-2: Demonstration of a silicon dioxide pillar
(within) a straight silicon waveguide: (a) Top view; (b)

(a)
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Side view.
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Figure 2-3: Demonstration of
waveguide: (a) Top view; (b)

a metal sphere defect in proximity to a straight silicon

Side view.
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For example, a two-optical-port device can be described as a matrix [2]:

b( S1 1 S1 2  a1  S a, (2.1)

b2 S21 S22 a 2 J a2)

where a, describes the light incident on port 1, b, describes the reflected light at port

1, and b2 describes the transmitted light at port 2. The S-parameters are generally

complex, including an amplitude response and a phase response.

2.2.1 Mode Expansion

The S-parameters can be extracted from FDTD simulations, but a mode expansion

is necessary to separate the waveguide modes of interest from the simulation field.

Fortunately, in non-absorbing waveguides, the waveguide modes are power orthogo-

-nal, which gives the mode expansion coefficients for an arbitrary electric field E and

magnetic field H, and modal fields Em and Hm, both on the surface &Q [21]:

a = 1 dS.ExH* + dS.E* xH , (2.2)

b dS.ExH* - dS -E*x H , (2.3)

N = - jdS - Em x H*, (2.4)
2 a

where a is the forward mode coefficient, b is the backward mode coefficient, and

N, corresponding to the power of the mode, is real for non-absorbing materials. S-

parameters can be calculated from an S-parameter matrix sweep simulation combined

with these mode expansion coefficients. For example, S1 2 can be evaluated by a

simulation where the source mode (see detail as in Section 2.2.2) is injected from port

1 and the monitor is at port 2:

= amonitor Nmonitor
S12- asourceVNsource (2.5)

and appropriate a or b coefficient will be used for amonitor and asource depending on

the direction of the mode.

24



It is straightforward to notice that N only depends on the port and does not change

through different simulations. Similarly, since the source mode is injected from every

port exactly once in an S-parameter sweep (e.g., S12 , S13, ... are evaluated from the

same simulation in which the source mode is injected from port 1), the corresponding

asource only depends on the port as well. Thus, we denote Ni, si as N coefficient,

amonitor at port i and a2j, Ei as amonitor at port j; and electrical field from simulation

where source mode is injected from port i, respectively in the rest of the thesis. Using

this notation, (2.5) can be rewritten in general as

S = aiN N. (2.6)

2.2.2 Equivalent Source Theory

Another question around S-parameters simulations is how these source modes are

generated. In Maxwell's equations, sources are represented in either dipole form (i.e.,

polarization P and magnetization M) or current form (i.e., electric current density

J and magnetic current density K), which are connected through the continuity

equation:
OP am

J -iwP, K = tto = -iwtpoM, (2.7)at at

where w = 27rf is the angular frequency. So the question is: what is the dipole source

(P, M) or current source (J, K) that generates fields (Es = sEm, HS = sHmn) in

some region Q?

Equivalent source theory implies that for a source-free field (Es, HS) in region

Q and no field outside , the corresponding current source is the surface current on

&Q [22]:

Js - (n x Hs) 6(DQ), (2.8)

KS = (n x Es) 6(OQ),

or equivalently in dipole form using (2.7),

i
Ps = - (n x Hs) 6(&Q),

(2.9)
Ms = (n x Es) (aQ),

W/1 0

25



where n is the normal unit vector of the surface OQ, and 6(OQ) is the Dirac delta

distribution that equals zero everywhere except for the surface 9Q and has the in-

tegral f O(x)J(OQ) d x = fQ #(x) dS for any continuous test function #(x). This

provides reference and understanding of how the source mode is generated in FDTD

simulations.

2.3 Adjoint Method

The adjoint method (or adjoint state method) is a numerical method for efficiently

computing the gradient of a function in a numerical optimization problem or for sen-

sitivity analysis [23]. It has several different forms in different fields of application,

but one can find a general derivation from the form of differential-algebraic equations

in [24]. Specifically, the matrix form used for linear system analysis is easy to demon-

strate [25]. Suppose we want to find the derivative of the output y(p) of a linear

system with variation parameters p:

A(p)x(p) b, y(p) = cTx(p). (2.10)

Then it is easy to find that

dy(p) - cT A(p)- 1 dA(p) (2.11)
dp dp

Thus the derivative at certain point po can be computed using two system solves:

A(po)x(po) = b and A(po)Tv = c, and

dy = _VT dA x(pO), (2.12)
dp PO dp PO

which can be very efficient if the number of variation parameters is much greater than

the number of outputs.
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2.3.1 Adjoint Method in Electromagnetics

Maxwell's equations is an example of linear system analysis, where x(p) is electro-

magnetic field (E(x), H(x)), A(p) is related to permittivity E(x), and b is the source

dipole (P(x), M(x)) or source current (J(x), K(x)). The output (real-valued) merit

function

F(E, H) =
x

f(E(x), H(x)) d'x (2.13)

is nonlinear in general, but can always be linearized around nominal point:

WF = 2Re [f (= Le E(x) -SE(x) + OH (x)aH~x

Thus c is (Of/OE(x), Of/OH(x)) in this form. We almost have a glimpse of the

final formula for the adjoint method in electromagnetics by this analysis; indeed, it

is possible to obtain the formula from (2.12). But here we take a different approach

that gives us more physical insight into the problem, which was first proposed and

implemented for optimization in [15].

Firstly, the effect of an infinitesimal perturbation of permittivity e(x') in region

7P is equivalent to introducing a dipole source

Pind(X) )E(x') (2.15)

in the same region, for a first-order approximation. Thus the perturbation (6E(x), 6H(x))

from P(x') is

6E(x) =j G xEP XI) pind (x') d3 x' =

6H(x) = GHP(X; XI) pind (x') d'x' =

I G EP (x; x')6E(x)E(x') d3XI,

10GHP (X; x') 6E(x') E(x') d 3X

(2.16)

Notice that plugging (2.16) into (2.14) produces terms that look like Pi(x) -

GEP(X; X')P 2 (x') and M1(x) - GP(x; X')P 2 (x'), thus we can swap the order of the
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inner product using reciprocity of Maxwell's equations:

Pi(x) - GEPx;X)P 2(x') = P2(x') -GEP(x; x)Pi(x),

poMi(x) - GHP(x; X)P 2 (x') = -P 2 (x') - GEM(x; x)MI(x).

Taking (2.16) and (2.17) into (2.14) and properly rearranging the order of integral,

we get

F = 2 Re j6(x')E(x') - EA (x') d'x' (2.18)

where

EA(xI) = GEP (x'; x) (x) - GE(X; X) a(X) d3x (2.19)

is the eletric field from adjoint simulation for the same structure with dipole sources

(P, M) = (af/&E, -(1/to)Of/&H) in the region x. Since the adjoint field EA only

depends on the merit function but not the variation of permittivity, one single ad-

joint simulation is enough to compute any possible infinitesimal permittivity varia-

tion. Moreover, the adjoint simulation is based on the original struture without any

perturbation, thus it does not require a fine mesh grid for high accuracy, as the direct

method does.
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Chapter 3

Adjoint Method on Particle

Defects

In this chapter, we discuss how to apply the adjoint method on the particle defect

problem. In particular, we focus on the impact of small particle defects on the S-

parameters of photonic device components. To begin, we adapt the adjoint method

for S-parameters in Section 3.1. Next, we discuss why particle defect is a special

type of permittivity perturbation and needs special care in Section 3.2. Section 3.3

discusses and summarizes the effectiveness of the method that we develop.

3.1 Adjoint Method for S-Parameters

Although an implementation of the adjoint method wrapped around Lumerical FDTD

has been proposed in [15], the figure of merit (FoM) was presumed to be real (for the

purpose of optimization design), while the S-parameters we are modeling are complex.

Despite the fact that it is feasible to model the amplitude response and the phase

response separately, a more concise solution is to derive the adjoint method in the

same path as [15] for S-parameters exclusively.

Since any S-parameter is proportional to either a in (2.3) or b in (2.4), here we

demonstrate the adjoint method applied on the a coefficient, and the same results

can be easily derived for b and thus S. In general, a complex merit function F(E, H)

has much more complicated forms of derivatives form than that in (2.14). However,
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for a holomorphic function f(E, H) where af/&E* = af/&H* = 0, the result is

straightforward as

F j (x) - SE(x) + a(x) -JH(x) d x. (3.1)
fXI E aHI

The differences between (2.14) and (3.1) are just the factor of 2 and the real part

operator. Thus the result from the adjoint method is similar as well,

5F j 6E(x')E(x') -EA(x') d3x', (3.2)

with the same adjoint field as in (2.19).

Fortunately this is the case for the a coefficient, thus it is easy to obtain the

adjoint dipole sources:

1P(x) =(n x H* ) 6(aQ),
4N (3.3)

M(x) = - 1 (n x E* )(aQ).

Compared with (2.9), this is actually the equivalent current sources of the mode

source
iW iW

HS =mH*, ES= E*, (3.4)4N m4N

which is exactly the backward-propagating mode with amplitude iW/4N.

It is unnecessary to specify the amplitude of the mode source in FDTD simulation;

instead, the mode source is generated with an arbitrary amplitude s, which later can

be obtained from the mode expansion monitor. In such scenario, we can write the

variation in a as

6a = 4sN f E(x')E(x') -EA (x') d3x', (3.5)

where the adjoint field EA comes from a backward mode with amplitude s.

Now we try to expand the case for S-parameters. If (3.5) is used in the calculation

of aij for Sij, then the forward field E is Ei from simulation for Sij, and the adjoint

field EA is Ej from simulation for Sji. This suggests that the adjoint simulation of

one S-parameter simulation is just the reciprocal S-parameter simulation. Therefore,
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an S-parameter matrix sweep is able to cover all of the S-parameter simulations with

their adjoint simulation, and no additional simulation is needed for adjoint analysis.

From (2.6), we have

si = f
As ss V N_Nj IV

k (x') E (x') -Ej (x') d3x', (3.6)

or written in the form of transmission T = IS1 2 and phase # = arg(S),

w a*.f
6T= - IN j3J

21si 12Nj sj
6E(x') E (x') -Ej (x') d3x', (3.7)

(3.8)
_ i1

6o4i = WRe 1 36(x')Ej(x')- E(x') d3x'.
4Nj asjs V)

3.2 Polarizability

While it may not be intuitive, the dipole approximation in (2.15) does not hold for

finite permittivity variation. The reason is the discontinuous interface introduced by

particle.

We consider a simple example first: a dielectric sphere (permittivity E 1) in vacuum

&o with uniform electric field E. While the relationship (2.15) still holds for overall

total field:

pind = (El - Eo)Et ot, (3.9)

the polarization charge on the surface of sphere will induce an extra electric field

inside the sphere and thus change the total field:

(3.10)

Combining (3.9) and (3.10), we have

(3.11)

When Ei -+ 6o, -y = 30/(61 + 2eo) reaches 1, and thus (3.11) goes back to (2.15).

In general, pind can be not parallel to E, and can even be non-uniform. But for the

case where the particle is small, what matters most is not the polarization pind but
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the dipole moment

pind =J Pid(x') d3x'. (3.12)

The relationship between the dipole moment of a particle and the electric field is

known as: [26]

p ind = aE, (3.13)

where the polarizability a, inspired by (3.11), can be expressed as

a = yVAE,

where V is the volume of the particle, the factor -y can be scalar or tensor,

depends on the shape of the particle, as well as the permittivity of the particle

its environment E, but it always symmetric and satisfies

lim Y = 1.
AE-+0

(3.14)

and -y

E and

(3.15)

We list a few analytic examples of -y as a function of EP, e for different shapes in

Table 3.1. In general, we always have -y < 1 when E, > E, and y > 1 when E, < E.

This means that a silicon particle in the oxide cladding is less significant than an

oxide hole of same volume in the silicon waveguide, even under the same amplitude

of electric field - we will see validated examples in the next chapter.

Table 3.1: Analytic examples of -y as a function of eP, E for different shapes.

Shape Sphere Cylinder Cylinder

(tall approximation) (flat approximation)

32 (2e/(E + E) 2E/(Ep+ ) 1 1EP2e e + 2E ) EI1

Under the small particle approximation, (3.2) can be written for a particle intro-

duced at xp:

AF = (VAZe)yE(xp) -EA(xP), (3.16)
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and when the FoM is S-parameters,

Asi= 4 NNExN)- Es(x). (3.17)
4As isj VNiNj

3.3 Limitations

Before we jump into the implementation of the adjoint method on different photonic

devices, we want to make a summary of all the approximations in the method we have

made so far, and their possible implications in terms of potential errors in real-life

implementations. This will serve as explanation for part of the validation result in

next chapter.

The dipole approximation used in (2.15) and (3.13) is a commonly used first-order

approximation in electromagnetics, which ignores higher order effects, e.g., magnetic

dipole, quadrupole, etc. Such higher order effects can be significant for large pertur-

bation - this is less important in the particle defect problem since large-sized particle

rarely occurs. But they can also be significant when the first order effect is zero,

which means that if AF calculated from the adjoint method is 0, the real variation

AF is likely to be non-zero (although it is small in most cases) because of the higher

order effects.

Specifically for particle defects, the approximation used in (3.13) and (3.16) also

assumes that the electric field around the particle is uniform, which suggests that

the size of particle should be much smaller than the length scale of change of the

electric field. However, some particle defects do not satisfy such criteria, e.g., the

silicon pillar defect from photo-lithography has same height as the waveguide, which

is comparable to the length scale of change of the electric field in that direction. It is

also hard to determine an exact location (xp in (3.16)) for the particle in such case,

so we will try to average the field over the region within the particle Op:

-yE(xp) - E^(xp) ~ J -yE(x) - EA (x) d3 x. (3.18)

The averaging approach potentially introduces higher order error, but it could be

small when the field is varying slowly. Such assumption can be even more problematic
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for metal particles, since the field tends to gather near the surface of conductive

material at high frequency, which is known as the skin effect. Thus the size of particle

needs to be even smaller for proper dipole approximation. Even when these criteria

are satisfied, the factor -y usually has some deviation from its theoretical value.

When the particle defect intersects with the material interface (e.g., the waveguide

sidewall in most cases), either the actual shape of the particle changes, which makes

it difficult to evaluate the shape-dependent factor -/, or the electric field is discontin-

uous, which breaks the uniformity assumption. We simply neglect these transition

areas in our application, as they are extremely small for small particles, and we can

approximate the behavior through interpolation if needed.

In general, a nonlinear merit function can introduce extra error in the linearization

process in (2.14) or (3.1); but S-parameters happen to be linear functions, adn are

thus free from these potential error. In the next chapter, we consider examples where

the change in S-parameters is large compared to its original value, but the adjoint

method still gives accurate enough results. However, since the transmission and phase

are non-linear functions of S-parameters, the adjoint method in these forms introduces

extra error and can be inaccurate when the nominal Sij is close to zero.
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Chapter 4

Implementation on Photonic

Device Components

In this chapter, we will show the implementation of the adjoint method developed in

Chapter 3 on several different photonic device components: a straight waveguide in

Section 4.1, a y-splitter in Section 4.2, and a directional coupler in Section 4.3. We

will explain the simulation setup in each section, and validate the adjoint method

by comparing to results from direct simulation. For complicated components like

the y-splitter and directional coupler, a point-to-point validation is infeasible, so

we will only consider a number of signature locations for direct simulation. The

operation wavelength is 1550 nm for these examples; some figures show results for a

spectrum ranging from 1500 to 1600 nm; we will discuss these additional wavelengths

in Chapter 5.

4.1 Straight Waveguide

We set the straight waveguide to propagate light along the x axis, and put port 1 at

x = 0 and port 2 at x = L. From the propagating theory, S1 2 = exp (inekL) and

E1 (x, y, z) = s1Em(y, z)einekx, E2 (x, y, z) = s 2E* (y, z)einek(L-x) (4.1)
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where ne is the effective index of the waveguide mode, and k = 27r/A is the angular

wavenumber in vacuum. Using (3.17), we have

iwVAe
AS, = 4 yEm(y, zp) Em(yp, z)e2

inkxp, (4.2)
4N

iwVAE
AS12 = 4 7Em(yp, zp) E*((y), z)einekL

We define transmission T = T12, reflection R = T11 , and phase shift # = #12; then

AT = Im A-yEm(yp, zp) - E*(yp, zp), (4.4)
2N

wV
A0 = Re AyEm(yp, zp) - E* (yp, zp), (4.5)

4N
w2 y 2

AR = 16N2 jAeyEm(yp, zp) -Em(yp, z,)I2 . (4.6)

Before making any assumption about the type of particle defect, there are several

things we can observe from these expressions. Firstly, x, does not appear in any of

these variations. Since z, is a fixed number for a certain type of particle with certain

size, it suggests that there is only one degree of freedom in this problem, which is

the distance d from the center of the particle to the center line of the waveguide (as

shown in Figure 2-1, Figure 2-2, and Figure 2-3). This is consistent with our intuition.

Secondly, AR oc V21AI2 is a second order effect that is always very small compared

to AT and A0. Moreover, all we need from the simulation is the mode profile Em

and its power N, which can be obtained from an eigenmode solver rather than FDTD

simulator. Finally, for the fundamental TE mode of a silicon waveguide specifically,

Emz is small and negligible, and EmE*y is always a pure imaginary number1 , thus

-yEm(yp, zp) - E* (yp, zp) = YxxEmx(yp, zP)1 2 + _yyyEmy (yp, z)12. (4.7)

Therefore, only two diagonal elements of the tensor -y contribute to the variation in

transmission and phase shift.2

'These statements are not necessarily true for complicated devices. In the Lumerical MODE and
FDTD solver, Emy and Emz is always set to be real-valued, and thus Emy is pure imaginary.

2This also suggests a possible approach to evaluate -y from simulation by rotating the particle.
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4.1.1 Silicon Pillar and Silicon Dioxide Hole

For a non-absorbing particle, AR can be too small to detect in simulation; thus, here

we mainly focus on the transmission and phase shift induced by the defect. Since AE

and -y are real for non-absorbing materials, and also using (4.7),

AT = 0, (4.8)

wVAe
A# = 4N (yxx Emx(yp, z) I2 + -yyyIEmy (yp, zp) 2 (4.9)

For a cylinder-shaped pillar, -yx = yyy = y,3 thus

A - wVyA IEm(yp, z,) 1, (4.10)
4N

where -y = 2Eclad/(Eclad + Esi) = 0.3 for a silicon cylinder pillar in oxide cladding,

and y = 2esi/(eclad + Esi) = 1.7 for an oxide cylinder hole in the silicon waveguide.

(4.8) does not mean there is no transmission loss in a straight waveguide, but its first

order effect is zero. On the other hand, from conservation of energy, we must have

AT + AR < 0, which gives AT < 0. Therefore, it would be more appropriate if we

write it as

AT = O(IVAE1 2 ). (4.11)

As mentioned in Section 3.3, the height of the pillar h = 220 nm is too large to

determine the value of z,, thus we average over the z-axis:

A WVyAE h Em(yp, z)12 dz. (4.12)
4Nh 0

We test the adjoint method on both a small particle (r = 20 nm) and a large

particle (r = 40 nm). For the oxide hole, the phase shift predicted by adjoint method

shows good consistency with direct simulation (Figure 4-1), and even for the large

particle, the error is still in a reasonable range. On the other hand, the same method

does not work so well for the silicon pillar (Figure 4-2) since the electric field is varying

too much near the interface, which happens to be the position with maximum impact.

3 A cylinder is not the only shape that satisfies this requirement; a square pillar, an octagon pillar,

etc. also have -y, = yy = -y, although the value of -y is different.
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Figure 4-1: The impact of a silicon dioxide hole pillar defect of r = 20 nm (blue) and
r = 40 nm (red) on phase shift of a straight waveguide, as a function of distance d,
evaluated from direct simulation (circle) and adjoint method (solid line).

However, since the impact of the silicon pillar defect is much smaller than the impact

of the dioxide hole of the same size, the absolute error from the adjoint method for

the silicon pillar defect is still acceptable.

We also show the transmission impact from direct simulation in Figure 4-3 and

Figure 4-4. These are the higher order effects that are ignored in the adjoint method,

and here we see they are indeed negligible.

4.1.2 Metal Sphere

For a sphere-shaped particle, -y is a scalar. Thus

wV
AT = E(y, z) 2 Im yde, (4.13)

2N
wV

A#= Em(Yp, z,)|2 Re yde, (4.14)4N
w2 V 2

AR = 16N 2 IEm(yp,zp) Em(yp, z)I 2 2 . (4.15)
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Figure 4-2: The impact of a silicon pillar defect of r = 20 nm (blue) and r = 40 nm

(red) on phase shift of a straight waveguide, as a function of distance d, evaluated
from direct simulation (circle) and adjoint method (solid line).
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Figure 4-3: The impact of a silicon dioxide hole pillar defect of r = 20 nm (blue) and
r = 40 nm (red) on transmission of a straight waveguide, as a function of distance d,
evaluated from direct simulation.
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Figure 4-4: The impact of a silicon pillar defect of r = 20 nm (blue) and r = 40 nm

(red) on transmission of a straight waveguide, as a function of distance d, evaluated
from direct simulation.

where -y = 3c/(cp + 2c). We test four different metal materials that are commonly

used in integrated circuit fabrication: Aluminium, Copper, Tungsten, and Titanium.

As with the pillar defect, we test both small particle (r = 20 nm) and large particle

(r = 40 nm) cases.

We begin our analysis with the small particle. The adjoint method captures the

impact on phase shift (Figure 4-7) relatively well, but for highly conductive materials

like Aluminium and Copper, it seems to underestimate the transmission impact (Fig-

ure 4-5). This can be understood as error in the polarization factor -y; thus we can

try to make a correction to match the result from direct simulation. For the impact

on back reflection (Figure 4-9), the adjoint method and direct simulation show sim-

ilar trends but different values; however, we cannot guarantee the accuracy of direct

simulation since the value is too small.

However, the adjoint method does not produce reasonable results for the large

particle case. There is a trend in direct simulation that obviously cannot be matched

by simple correction on -y, e.g., the impact of Tungsten defect on phase shift (Figure 4-

8). And comparing with the results for the small particle, we see many values that
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Figure 4-5: The impact of a metal sphere defect of r = 20 nm on transmission of a
straight waveguide, as a function of distance d, evaluated from direct simulation (cir-

cle) and adjoint method (solid line). Four different materials are tested: Aluminum
(blue), Copper (red), Tungsten (yellow), and Titanium (purple).
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Figure 4-6: The impact of a metal sphere defect of r = 40 nm on transmission of a

straight waveguide, as a function of distance d, evaluated from direct simulation (cir-

cle) and adjoint method (solid line). Four different materials are tested: Aluminum

(blue), Copper (red), Tungsten (yellow), and Titanium (purple).
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Figure 4-7: The impact of a metal sphere defect of r = 20 nm on phase shift of a
straight waveguide, as a function of distance d, evaluated from direct simulation (cir-
cle) and adjoint method (solid line). Four different materials are tested: Aluminum
(blue), Copper (red), Tungsten (yellow), and Titanium (purple).
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Figure 4-8: The impact of a metal sphere defect of r = 40 nm on phase shift of a
straight waveguide, as a function of distance d, evaluated from direct simulation (cir-
cle) and adjoint method (solid line). Four different materials are tested: Aluminum
(blue), Copper (red), Tungsten (yellow), and Titanium (purple).
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Figure 4-9: The impact of a metal sphere defect of r = 20 nm on back reflection of a
straight waveguide, as a function of distance d, evaluated from direct simulation (cir-
cle) and adjoint method (solid line). Four different materials are tested: Aluminum
(blue), Copper (red), Tungsten (yellow), and Titanium (purple).
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Figure 4-10: The impact of a metal sphere defect of r = 40 nm on back reflection of a
straight waveguide, as a function of distance d, evaluated from direct simulation (cir-
cle) and adjoint method (solid line). Four different materials are tested: Aluminum
(blue), Copper (red), Tungsten (yellow), and Titanium (purple).
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break the law of the adjoint method where the impact is always proportional to the

volume of the particle.

So far we see that for small particles, silicon dioxide hole pillar defects have the

most impact on a straight waveguide, which happens to be the most accurate to

predict from the adjoint method. For large particles, metal sphere defects can have

stronger impact, but out of the appropriate range of the adjoint method. In the

following sections and chapters, we thus only show examples of silicon dioxide hole

pillar defects with r = 20 nm; the same methodology can be used for other types of

defects, but we expect it to have either weaker impact (for small particles) or lower

accuracy (for large particles).

4.2 Y-Splitter

In this section, we choose to model the impact of particle defects on the power-

optimized Y-splitter in [27]. We label the input port as port 1, and the output ports

as port 2 and 3. Based on the symmetry of the nominal design, we have

E3x(x, y, z) = -E2x(x, - y, z)

E3y (x, y, z) = E2y (x, -y,z) (4.16)

E3z(x, y,z) = -E 2z(x, -y, z)

and S13 = S 1 2, S33 = S22. Therefore, a complete S-parameter sweep need only

include simulation from port 1 and port 2, and the results for port 3 can be obtained

by flipping the field of port 2. However, the particle defect analysis cannot skip port

3, as the introduced particle breaks the symmetry.

We will do a complete S-parameter analysis, but in this section we only focus

on a few of them: the upper branch transmission T12 , phase shift #12, and its self-

reflection R2 = T22. The setup in FDTD is just the normal S-parameter sweep setup

plus the field monitor (Figure 4-11); the port elements are used for both S-parameter

calculation and necessary mode expansion coefficients for the adjoint method. In

order to reduce memory cost, the field monitor is set to record only electric field and

only at the wavelength of interest A = 1550 nm.
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Figure 4-11: The implementation of the adjoint method on y-splitter in Lumerical
FDTD simulation. The yellow box in the middle is the added field monitor. If the

output of interests are only T12 , 412 and R 2 , the port element at port 3 is optional,
while it is still required in complete S-parameters analysis.

We show the impact of a silicon dioxide hole pillar defect of r = 20 nm in Figure 4-

12, Figure 4-14, and Figure 4-16. As we would expect, the particle in the upper

branch contributes mostly to A# 12 and less to AT12 , which is similar to the case

of straight waveguide. The particle in the cavity introduces asymmetry and thus

impacts transmission distribution. Finally, the lower branch has little contribution

to all three outputs of interest in the upper branch.

We choose the point at the cavity taper where the adjoint analysis shows max-

imum transmission impact in Figure 4-12 to do a direct simulation validation. We

intentionally show the zero-impact axis in the comparison plot (Figure 4-13, Fig-

ure 4-15, and Figure 4-17) to get a better sense of relative error. Overall, the adjoint

method shows excellent consistency with direct simulation; even for the back reflec-

tion of upper branch, where the impact has the same magnitude as the nominal value,

the prediction from the adjoint method is still highly accurate.

4.3 Directional Coupler

We next consider a directional coupler (Figure 4-18) with coupling length L, = 4.5 Pm

and gap width w 9 = 200 nm which we will use to build a ring resonator in Chapter 6.
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Figure 4-12: The mapping of the impact of a silicon dioxide hole pillar defect of
r = 20 nm on the upper branch transmission T12 of the y-splitter structure, as a
function of the spatial location of the defect. Zoom-in around the cavity.
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Figure 4-13: The impact of a silicon dioxide hole pillar defect of r = 20 nm at selected
location on the upper branch transmission T12 of the y-splitter structure, evaluated
from adjoint method (blue) and direct simulation (red).
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Figure 4-14: The mapping of the impact of a silicon dioxide hole pillar defect of

r = 20 nm on the upper branch phase shift # 12 of the y-splitter structure, as a

function of the spatial location of the defect. Zoom-in around the cavity.
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Figure 4-15: The impact of a silicon dioxide hole pillar defect of r = 20 nm at selected

location on the upper branch phase shift #12 of the y-splitter structure, evaluated from

adjoint method (blue) and direct simulation (red).
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Figure 4-16: The mapping of the impact of a silicon dioxide hole pillar defect of
r = 20 nm on the upper branch back reflection R2 of the y-splitter structure, as a
function of the spatial location of the defect. Zoom-in around the cavity.
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Figure 4-17: The impact of a silicon dioxide hole pillar defect of r = 20 nm at selected
location on the upper branch back reflection R2 of the y-splitter structure, evaluated
from adjoint method (blue) and direct simulation (red).
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Figure 4-18: The implementation of the adjoint method on directional coupler in
Lumerical FDTD simulation. Only port elements at port 2 and port 4 are required
for analysis of self-coupling coefficient. The field monitor is set to only record around
the gap to reduce memory cost.

We focus on the through-port transmission, also known as the self-coupling coefficient

t = IS 2 4 1 in this thesis. Similar to the y-splitter case, here we have symmetry in x-axis:

E4x(x, y, z) = -E 2x(-x, y, z)

E4,(x, y, z) = E2 (-x, y, z) (4.17)

E4,,:(X, Y, Z) =E2z(-X, Y, Z)

Therefore, we only need one simulation to obtain both S24 and AS 24.

We show the impact of a silicon dioxide hole pillar defect of r = 20 nm in Figure 4-

19. The impact is much smaller compared to the y-splitter case in Section 4.2; it is

most likely that the most sensitive area is in the gap, where the hole defect does not

exist. However, a pillar defect or metal defect in the gap has relatively modest impact

(Figure 4-20), for the reasons we discussed in Section 4.1.
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Figure 4-19: The mapping of the impact of a
r = 20 nm on the self-coupling coefficient t =
function of the spatial location of the defect.
box in Figure 4-18).
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Figure 4-20: The mapping of the impact of a silicon pillar defect of r = 20 nm on the
self-coupling coefficient t = IS241 of the directional coupler, as a function of the spatial
location of the defect. Zoom-in around the gap (the yellow box in Figure 4-18).
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Chapter 5

Wavelength Dependence

Before moving on to photonic circuit-level variation, we want to have a discussion

about the implementation of the adjoint method over a range of wavelengths. This

is necessary for evaluation of photonic devices and circuits, since most of the prop-

erties, e.g., free spectral range (FSR) and quality factor of a resonator, do not rely

only on the performance at a single operating wavelength. The spectral behavior

of photonic circuits can be quite complicated, and generally hundreds of frequency

points are needed for frequency response interpolation, which requires excessively

large amounts of memory if the adjoint method is used separately at all of these

wavelengths. However, it is possible to break the circuit down into smaller compo-

nents where each component has a simpler frequency response behavior, and thus

fewer frequency points are needed for interpolation. As shown in Chapter 4, we in-

terpolate the amplitude and argument of ASj separately. This will introduce phase

wrapping problem for sparse frequency sampling, which will be discussed next in Sec-

tion 5.1 and Section 5.2. Then we focus on how to further reduce the memory cost

of the adjoint method in Section 5.3.

5.1 Group Delay

We start from a straight waveguide. For the electric field E1 in (4.1), we have its

phase at a certain point (x, y, z)

# 1(w) = arg (E1 (x, y, z)) = nekx + po(w), (5.1)
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where 0o(w) = arg (s1Em(y, z)). Later we will see that our interest is actually in the

normalized field E1/si, and arg (Em(y, z)) does not depend on wavelength, thus we

focus on

A =1(w) = 01(w) - #o(w) = nekx = . (5.2)
C

This phase shift A0 1 is a function of frequency w, not only because of the explicit w

in the equation, but also because ne depends on wavelength. Linear approximation

gives

A01 (w) ~ A01(wo) + rg (Wo)(W - wo), (5.3)

where the group delay1

rg(W) = (5.4)
dw

is also the transit time required for a narrow-band signal at W to travel the distance

x. Note that

-g (P) = (ne + w- -n = - -, (5.5)
dw c c

where ng is the group effective index, which has the value ng = 4.18 at wavelength

of 1550 nm for our straight waveguide with width 500 nm and height 220 nm. Thus

the slope of A# 1 (w) is easy to estimate without any simulation. For convenience, we

use A instead of w in the spectral analysis, and

dA5 1 _ dw 2lrrngX
dA - Tg(A)- = - 2  (5.6)dA dA A2

The above analysis is only accurate for straight waveguides, but it serves as a

good estimation for all waveguide-like components, e.g., bends, splitters, and even

couplers, by replacing x with the minimal propagation length 1 from the source to

the observation point. For S-parameters Sij, we have

rij= -d #i ~ - , (5.7)
dw c

where lij is the propagation length from port i to port j. And for the perturbation

1The definition of group delay here has a difference of a negative sign compared to the one used
in signal processing, which is because we choose the time-varying complex sinusoid to be e-t in
electromagnetics.
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of S-parameters by particle defect in (3.17), 2

dw nTAi, = -arg( ASii) ~ -2 (li + is), (5.8)

where 1i is the minimal propagation length from port i to the location of the particle

defect.

5.2 Phase Unwrapping

The periodic property of the phase causes multivalue in function arg(-):

arg(z) = {Arg(z) + 27rn I n E Z}, (5.9)

where Arg(z) E (-7r, 7T] is its principle value. Despite the arbitrariness in arg(.), the

phase relationship over the spectrum should be fixed, which means that

O(w) = arg(S(w)) = {q(w) + 27rn | n C Z}. (5.10)

The choice of 4(w) is not unique, but none of them satisfies O(w) = Arg(S(w)): the

range of q(w) can be much larger than 27r, but Arg(-) always wrap it inside the small

region (-7r, 7r]. To obtain the appropriate 4(w), we need to unwrap Arg(S(w)).

The most common approach to unwrap is to make use of the fact that O(w) is

continuous and assume the frequency sampling is dense so that the phase difference

between consecutive frequencies is always smaller than 7r. Algorithm 1 shows how

this approach works.

Algorithm 1 Unwrap array #1:N
for i = 2 to N do

p <- round((i - #i_1)/27)
#i <- 0i - 2irp

end for

To guarantee the algorithm to work properly, we need

1N#t = g arWgS < , (5.11)
2Note that arg(ASij) 7 Aarg(Sij ) = Aoij.

53



which gives the restriction on frequency sampling,

7r
JJWJ < -, (5.12)

79

or expressed in terms of wavelength,

16A I < . (5.13)

For calculation of Sij, this means

A2AI < . (5.14)
2nglij

For the y-splitter in Section 4.2, max lij ~ 25 pm, which gives 16AI approximately

equal to 10 nm. This is easy to achieve in FDTD simulation, where typically 6A <

1 nm. However, for the same structure, max (li + l1) > max li, thus the requirement

is even stricter for 6Sij, which makes it impossible to cover a spectral range of 100 nm

in just a few sample points.

However, we can make use of the group delay in the unwrap process if we have an

estimation of it. As shown in Algorithm 2, for every frequency point, we can estimate

its phase 0' based on the previous frequency point and the estimated group delay ig;

then we can unwrap the current frequency point based on this estimation instead of

the phase at previous frequency points.

Algorithm 2 Unwrap array #1:N with W:N based on estimated group delay fg
for i = 2 to N do

# - Oi-I + (wi - woi-i_)
p <- round((i - 0')/27r)

i +- #i - 21rp
end for

For this improved algorithm, the limit of frequency sampling depends on how good

the estimate fg is:

I ($g - T)W I < 7r, (5.15)

thus

16wl < T 16A < A , (5.16)
|r g - Tg|' 2cl -g - Tg I
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or if we fix the number of frequency points, this is the requirement on the error of

estimation:
|_ -grg| A2  |_ 5Amine = I< = (5.17)

Tg 2gc|65AI |6A|

where 16 AImin = A2/2Tgc is actually the maximum value we can achieve for normal

unwrap method (5.13); we denote it with the minimum because we can always have

0 < e < 1, thus 16AI ;> 6JAlmin. We still use the y-splitter example where I6AImin

10 nm: if we choose only three sample points, thus 6A = 50 nm, then the maximum

error tolerance is about 20%; if we choose five sample points and 6A = 25 nm, then

the maximum error tolerance is above 40%, which is easy to achieve.

5.3 Memory Reduction

So far in this chapter, we have sought to reduce frequency sample points in order

to reduce the memory cost from the adjoint method. In this section, we consider

another approach to reduce memory cost at each wavelength.

Most of the memory cost in the adjoint method arises from recording the electrical

field profile, especially when the structure is large. However, the electrical field far

outside the structure is almost zero, thus it is unnecessary to record these spaces.

In FDTD simulations, the box-shaped field monitor can include substantial regions

of such "useless" space. Using many small boxes instead of a large box to cover the

structure can thus reduce memory size; we show an example of the implementation on

y-splitter in Figure 5-1, which reduces about half of the original memory cost. From

(3.17) we know that the impact of a particle defect in the adjoint method is localized;

therefore, such splitting does not introduce any computational difficulty since each

small box can be processed independently.

For pillar particles, the memory cost is extremely high because of the use of 3D

monitors. For thickness of 220 nm and the highest mesh accuracy setting, there are

19 points in the z direction to record, which means the memory cost is about 20 times

higher than that for 2D monitors. In practice, such memory cost is so large that the

simulation can be heavily slowed down or fail to complete.
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Figure 5-1: Demonstration of using a combination of small field monitors in the

y-splitter example.

From the former discussion, data at different z is used in the averaging process:

(5.18)

In the sense of finite difference, this is actually a summation under the trapezoidal

rule in our numerical computation:

1j'f(z) dz
17

fo + 2 E h
j=1

+ f18 . (5.19)

Here we use notation f(z) = yE(xp, yp, z) -EA(xp, yp, z) and fj = f(jAz), and assume

that the sample points are evenly distributed in the z axis. If we try to down sample

in the z axis, the accuracy of the trapezoidal rule will drop; but using higher order

integral rules, we can minimize the error. For example, if we choose to down sample

by 3 and use Simpson's rule, then

h f(z) dz ~ -(fo + 4f3+ 2f, + 4f + 2f12-4f15 f1s) (5.20)

Noting the symmetry in z axis for a slab waveguide, fj = fishj, it can be further
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I f(z) dz~ -I(fo +4f3+ 2f. + 2f9),
h 9

which only needs four points in the z direction.

further reduces about 80% of the memory cost.

Such down-sampling scheme thus
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written as

(5.21)
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Chapter 6

Circuit Level Variation Analysis

and Yield Modeling

In this chapter, we show an application of the adjoint method at the photonic cir-

cuit level, and how to use the result for yield modeling. Most photonic circuits can

be split into small pieces of device components, which can be represented by their

S-parameters. Thus the circuit-level simulation is accomplished by connecting com-

ponent S-parameters; in other words, the output of the circuit is a function of the

component S-parameters. Such function can be explicit, or implicit through IN-

TERCONNECT simulation and even curve-fitting. Here we show an adjoint-based

variation analysis methodology for two small-size "circuits": a Y-Mach-Zehnder in-

terferometer (Y-MZI) and a ring resonator. These are often treated as device com-

ponents in photonic circuit design, but can be broken down to smaller components;

this enables us to use the same methodology asin larger photonic circuits in order to

demonstrate the concept. We use the Y-MZI as an implicit example in Section 6.1,

and the ring resonator as an explicit example in Section 6.2. The application to yield

modeling is then shown in Section 6.3.

6.1 Y-MZI: Implicit Example

In this section we work with a simple balanced Y-MZI, where we connect two y-

splitters shown in Section 4.2 back to back. We use the superscript to differentiate
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Figure 6-1: The transmission of a nominal Y-MZI (blue) and its curve-fitting result

(dashed).

the two components, e.g., we use S(1) to represent S-parameters of the left y-splitter,

and S(2) for the right y-splitter. As shown in Figure 6-1, the output transmission

of the Y-MZI consist of a "smooth" curve that is similar to the transmission of y-

splitter S12 + S13, and a "ripple" component which is the result of the back-reflection,

S22, S33 , S23 . Our goal is to estimate the impact of particle defects on the average

transmission power of the "smooth" component and the average amplitude of the

"ripple" component, both over the wavelength range from 1500 to 1600 nm.

6.1.1 Adjoint Method for INTERCONNECT

We start by focusing on a single wavelength. We have already derived how to cal-

culate ASM1 )(A) and AS(2) (A) in the last two chapters, and now we seek to find the

output transmission AT(A). However, the relationship between T, S(1) and S(2) is

implicit where T(A) is solved by INTERCONNECT simulation - which happens to

be another linear system. Although applying direct simulation (i.e., do INTERCON-

NECT simulation for every possible particle location) might be feasible given that

INTERCONNECT simulation is typically fast, it will be much more convenient if the

adjoint method is applied on this level as well.

We first consider what equations the INTERCONNECT simulation is solving. For
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the k-th component with n ports, from the definition of S-parameters (2.1),

b(k) = S(k)a(k) (6.1)

(k) (k) k( I
where ak) [a,.. . I an()I and b(k) - [b ... b I . Combining all the compo-

nents together, we define the grand input and output vector

a 1, b 1,

(a(N) b(N)

and the grand block-diagonal S-parameters matrix

S()

S =

(6.2)

(6.3)

Then from (6.1) we simply have

b = Sa. (6.4)

The connection between ports is equivalent to assigning output signal to input. For

example, if we connect port i of the k-th component to port j of the l-th component,

then a 1) = b k) and a k) = 0). We can write this relationship as

a = Pb + f (6.5)

where P is the connection matrix, and f is the source vector determining the input

port of the circuit. From our example, we see that P is symmetric: pT = P. S is also

symmetric because of the reciprocity of S-parameters. Combining (6.4) and (6.5), we

have

I -P a f
-S I )(b 0) (6.6)
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The output y is linear combination of b, thus

T

y = cT b ( ( (6.7)
c b

Applying adjoint method, we see that

T

bA 0 0 a T
AyA 0 ( =aA(AS)a (6.8)

where
I -S bA 0(69

0 I(6.9)

or by switching rows and columns,

(I r) (z) (6.10)
-S I bA 0)

is exactly the same system but the source switched to the output. (6.8) can be written

as a summation over components:

N
Ay = Ea ()T (AS(k)) a(k). (6.11)

k=1

If there is only one particle defect in the whole circuit, only the AS term of the

component with the defect is not zero; thus the calculation is independent for every

component. For example, if we are only interested in the particle defect at the left

part of the Y-MZI, then

Ay = a )T (AS(')) a(') (6.12)

which does not have S(2 ) explicitly. The other components only contribute in the

calculation (simulation) of a and aA, which needs to be done only once for all the

components.

We test the method by putting the silicon dioxide hole at the same location as in

Section 4.2 on the left y-splitter, and compare the result AT = AjyJ 2 from adjoint
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Figure 6-2: Comparison of the transmission of a nominal Y-MZI (blue) and the Y-MZI
with defect, evaluated from adjoint method (red) and direct simulation (yellow).

method and direct simulation. We use the same ASM in both methods to avoid

error introduced from the FDTD-level adjoint method. Shown in Figure 6-2, the

performance of the adjoint method approximates but does not closely match the

direct simulation in this example, most likely because the balanced Y-MZI almost

reaches its maximum transmission, thus the first order effect is already weak and the

higher order terms become significant. The large variation in back-reflection we saw

in Chapter 4.2 may also contribute to higher order effects.

6.1.2 Curve Fitting

We are sometimes more interested in the impact on some physical features based on

the frequency spectrum (for example, free spectral range and Q factor in resonators)

than in the response at every frequency point itself. A common approach to extract

these features is through curve fitting. For example, we fit the Y-MZI spectrum with

4 3 3

f(A;3) = ZaiPi(A) + bjP(1) sin ciPi(A) (6.13)
i=o i= i=I
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where \ = (A - 1550 nm)/50 nm is the normalized wavelength, and P is the i-th

order Legendre polynomial. Then ao represents the average transmission power of

the "smooth" component, and bo represents the average amplitude of the "ripple"

component.

We use the non-linear least-square fitting, which chooses 3 = (a, b, c) that mini-

mizes sum of squared error:

/* = arg min If(Aj; 3) - T(A) 12 . (6.14)

By linearizing f(A; /) near 0*, we get

AO3* = (JT J)-lAT (6.15)

where vector AT = [AT(Al),... , AT(AK)] T , and J is the Jacobian matrix:

Ji= .f(A; (6.16)

Notice that the linearization process further introduces error in the estimation,

so in the worst case this may only serve as a rough approximation. The estimated

impact on average transmission power ao and average ripple amplitude bo is shown in

Figure 6-3 and Figure 6-4.

6.2 Ring Resonator: Explicit Example

The process is much easier if the physical feature is known as an explicit function of

component S-parameters. For example, the extinction ratio S and finesse F of a ring

resonator are functions of self-coupling coefficient t and loss per cycle a: [28]

[(a + t)(1 -at) - (6 17)
(a-t)(1+d)1 '

7r 2at
cos - = (6.18)

F 1+a 2 t2

The loss per cycle a is introduced mostly from waveguide propagation loss and
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Figure 6-3: The mapping of the impact of a silicon dioxide hole pillar defect of

r = 20 nm on the average transmission power ao of the Y-MZI, as a function of the

spatial location of the defect. Zoom-in around the cavity of the left y-splitter.
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Figure 6-4: The mapping of the impact of a silicon dioxide hole pillar defect of

r = 20 nm on the average ripple amplitude bo of the Y-MZI, as a function of the

spatial location of the defect. Zoom-in around the cavity of the left y-splitter.
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Figure 6-5: The mapping of the impact of a silicon dioxide hole pillar defect of
r = 20 nm on the finesse of ring resonator F at A = 1550 nm, as a function of the
spatial location of the defect. Zoom-in around the gap.

scatter loss, and we assume that the hole defect does not significant impact a. We

also assume that a is very close to 1; so approximately

7r 2t
cos - = (6.19)

_T 1 +t2'

From the impact on self-coupling coefficient At in Section 4.3, it is straight-forward

to calculate the impact on finesse AF, as shown in Figure 6-5. Since At is small, the

impact on finesse is also negligible.

6.3 Yield Modeling

There are typically metrics based on the important features of the output response

used to evaluate the performance of the circuit; based on these, a threshold can be set

to determine if the circuit is functional or not. For the particle defect, such threshold

will enable us to extract the critical area AO in which the defect occurring will cause

failure of the system.

As an example, we want to control the amplitude of the "ripple" in the Y-MZI
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Figure 6-6: The critical area AO of the Y-MZI for particle radius r = 20 nm, as a
function of threshold F, where we treat Abo > F as failure.

transmission spectrum, i.e., we treat Abo > F as failure. The critical area AO is thus

a function of particle radius r and threshold F. We plot the case of r = ro = 20 nm

in Figure 6-6. Since the impact is always proportional to the volume of the particle

in the adjoint method approximation, we have

Ao(r, F) = Ao ro -F (6.20)
'V

where V oc r2 for pillar defect and V oc r' for sphere defect. This shows that cases

of other particle radius can be obtained by stretching the plot in Figure 6-6, without

redoing the calculation.

After the critical area extraction, the defect yield can be modeled based on defect

density Do and critical area Ao: [18, 19]

Y = f (Ao, Do), (6.21)

where the function f depends on the defect distribution in the model. For example,

the simplest Possion model gives

Y = e-AODO (6.22)

67



68



Chapter 7

Conclusions and Future Work

In conclusion, we adapt and implement the adjoint method for application to particle

defect modeling in photonic devices and circuits, which provides relatively accurate

impact prediction with modest computational cost. We demonstrate the methodology

by modeling the impact on small device components as well as the impact on photonic

circuits composed of smaller components. We also demonstrate application to model

the yield impact of particle defects on the circuit. We find that the impact of different

types of particle defects differ because of their shapes and material properties, and

different components and different circuits can suffer very different degree of impact

from the same particle defect.

The adjoint method based on S-parameters proposed in Section 3.1 can be used

for not only particle defects, but many other kinds of variation in silicon photonics,

such as line-edge-roughness. Although sometimes direct simulation is feasible for

some variations, it only requires additional memory cost to add an adjoint analysis

on top of direct simulation in order to gain first-order derivative information about

the impact.

In Section 5.2 we present a condition on frequency sampling in order to correctly

unwrap the phase results, and propose a method that enables phase unwrapping for

even fewer frequency sample points. Both the condition and the new unwrapping

method are useful for the wavelength-dependent design simulation in silicon photon-

ics.

We also identify cases where the adjoint method is not perfect and causes large
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error. The silicon pillar defect is hard to model by the adjoint method because the

maximal impact happens to be at a condition where the dipole approximation breaks

down. The relatively large metal defect is also troublesome because of the skin effect.

Even when the defect is appropriate for analysis using the adjoint method, the output

feature might have small first order derivatives, in which case higher order effects

cannot be neglected. Fortunately, except for the limitation for large particles, large

error only occurs when the actual impact is already small; thus the adjoint method

is still a good approach to estimate the impact of small particle defects.

Future work could focus on more complicated yield modeling and design rule

checking. In Section 6.3 we briefly discuss the yield loss caused by defects of a

specific type with specific size, but in real situation we would want to bring all of

the different defect types and different defect sizes together for yield modeling. The

corresponding design rule checking needs further development for silicon photonics,

as it is not so clear how the impact of defects changes with the design. However, as

we find in Chapter 4 where the directional coupler is much more robust to particle

defects than the y-splitters, there might be some simple rules taht can help to reduce

the impact of particle defects.

As for the adjoint method, exploit its potential in analysis of other kinds of vari-

ation, and to consider how it might facilitate efficient analysis in the entire variation

field.
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