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Abstract

Multicores are now ubiquitous, but most programmers still write sequential code.
Speculative parallelization is an enticing approach to parallelize code while retaining
the ease and simplicity of sequential programming, making parallelism pervasive.
However, prior speculative parallelizing compilers and architectures achieved limited
speedups due to high costs of recovering from misspeculation, limited support for
őne-grain parallelism, and hardware scalability bottlenecks.

We present SCC, a parallelizing compiler for sequential C/C++ programs. SCC
targets the recent Swarm architecture, which exposes a ŕexible execution model,
enables őne-grain speculative parallelism, supports locality and composition, and
scales efficiently. SCC introduces novel compiler techniques to exploit Swarm’s
features and parallelize a broader range of applications than prior work. SCC performs
whole-program őne-grain parallelization, breaking applications into many small tasks
of tens of instructions each, and decouples the spawning of speculative tasks to enable
cheap selective aborts. SCC exploits parallelism across function calls, loops, and loop
nests; performs new transformations to expose more speculative parallelism enabled
by Swarm’s execution model; and exploits locality across őne-grain tasks. As a result,
SCC speeds up seven SPEC CPU2006 benchmarks by gmean 6.7× and by up to 29×
on 36 cores, over optimized serial code.

Thesis Supervisor: Daniel Sanchez
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Multicore processors are now dominant in computer systems, and the number of cores

available on general-purpose systems continues to grow. However, most programmers

still write sequential code by default. Concurrent programming remains a specialized

skill due to its difficulty, and is subject to many pitfalls such as deadlocks, data races,

and non-determinism. To address this situation, systems should exploit the implicit

parallelism available in sequential programs by automatically parallelizing them to

run across many cores.

Unfortunately, current compilers struggle to extract signiőcant parallelism from

most sequential programs [4]. Although some programs feature regular code regions

that are easy to parallelize, many sequential programs are irregular, featuring data-

dependent control ŕow and dynamically determined data ŕow (e.g., due to pointer

aliasing). This stymies compile-time parallelization, as the compiler cannot statically

determine which work is independent and thus can run in parallel.

Parallelizing entire irregular programs requires exploiting speculative parallelism,

which combines compile-time and run-time techniques. With speculative paralleliza-

tion, the compiler divides code into tasks that are likely to be independent. At

run-time, the system tries to run these likely-independent tasks in parallel, detecting

dependences among them on the ŕy. Dependences cause some tasks to be aborted

and re-executed to preserve sequential semantics.

Speculative execution is onerous in software, and its overheads often negate the

beneőts of extra parallelism [22,23]. Therefore, speculative parallelization is best done
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with hardware support for speculative execution. This creates a tight dependence

between compiler and hardware architecture: the features that the architecture exposes

shape the compiler’s design and limit the types of parallelism it can exploit.

Prior compilers and architectures for speculative parallelization, also known as

thread-level speculation (TLS) systems, have achieved limited speedups on real-world

applications [14,17,21,25,46,47,50,52,57,65]. This is because prior TLS architectures

suffer from several issues: (i) resolving dependences by aborting all later tasks en

masse, making aborts very expensive; (ii) restrictive execution models that prevent

spawning tasks in arbitrary order, limiting the kinds of parallel patterns that can be

expressed; (iii) lack of support for locality-aware execution, which hurts efficiency

and limits scalability; and (iv) serial task spawn and commit mechanisms, whose

overheads prevent exploiting őne-grain parallelism. These issues limit TLS compilers

and constrain the parallelism that they can uncover.

Recent work has proposed the Swarm architecture for speculative parallelization [26,

27,28,55]. Swarm builds on prior TLS and hardware transactional memory (HTM)

systems, and addresses the above issues (Chapter 2): Swarm (i) selectively aborts

tasks when resolving dependences, (ii) has an expressive execution model based on

timestamped tasks that allows conveying more parallel constructs to hardware; (iii)

includes mechanisms to exploit locality [26] and nested parallelism [55]; and (iv)

performs ordered speculation in a distributed, scalable way, with overheads low enough

to scale őne-grain tasks of tens of instructions to hundreds of cores. However, using

these features effectively required extensive manual program transformations. Prior

work has not studied whether exploiting Swarm features can be automated by a

parallelizing compiler, or whether Swarm can offer improved performance without

signiőcant changes to programming practices.

1.1 Contributions

This thesis presents SCC, the Swarm C/C++ Compiler. SCC leverages Swarm’s

execution model to parallelize more control- and data-ŕow patterns than prior TLS

compilers, exploits nesting to reduce the whole program to őne-grain tasks of a few

tens to hundreds of instructions, exploits locality, and spawns tasks far in advance.
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As a result, SCC breaks complete applications into hundreds to thousands of task

types, and scales several full applications to tens of cores. SCC introduces four key

contributions over prior TLS compilers:

∙ Whole-program fine-grain parallelization: SCC breaks the entire program into

őne-grain tasks that exploit Swarm’s cheap, selective aborts (Section 3.1). SCC

transforms function calls to avoid using a call stack and to minimize the data

communicated among tasks (Section 3.2). Most task spawns require passing only

a few values through registers, instead of a full thread context as in TLS systems.

SCC leverages hardware support for nesting for composition: functions and

translation units are compiled independently, yet őne-grain tasks from functions

at different call depths all run in parallel.

∙ Unrestricted out-of-order task spawn: SCC tags every task with a timestamp

to record program order. This enables aggressive code transformations that

are free to spawn tasks far in advance and in any order. SCC exploits this by

spawning many child tasks from a single parent task, exposing greater parallelism

(Section 3.3).

∙ Progressive loop expansion is a novel loop transformation that speculatively

spawns many loop iterations in parallel, rapidly őlling the system with tasks

from irregular loops, e.g., those with unknown termination conditions. This

transformation exploits unrestricted out-of-order spawn to achieve a highly

parallel tree of tasks, with an asymptotically shorter critical path than prior

work (Section 3.4).

∙ Locality-aware speculative execution: SCC inserts code to compute the cache

line addresses a task will access before the task is spawned, and communicates

these spatial hints to hardware. This lets hardware run tasks that access the

same data at the same chip tile to exploit locality (Section 3.5).

We implement SCC within the LLVM compiler framework. SCC transforms

the entire program one function at a time, not relying on link-time optimization or

interprocedural analysis. Thus, SCC compilation times stay proportional to code size.

We evaluate SCC with SPECCPU2006 C/C++ programs (Chapter 4). Some

benchmarks automatically parallelize well in their original forms, scaling by up to

29× on 36 cores, and up to 69× on 100 cores. Others require minimal source code
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modiőcations. These modiőcations are simple and retain the sequential semantics

of the program, allowing programmers to unlock parallelism without changing how

they reason about program behavior. Overall, SCC achieves gmean 6.7× speedup on

36 cores over the original serial code compiled with -O3. These gains apply both to

in-order cores and to out-of-order cores that aggressively exploit ILP.

These results show that, by leveraging hardware support, SCC can effectively

parallelize of a wide range of code patterns, sidestepping the limitations and complexity

of previous compilers. SCC also opens up further avenues on automatic and compiler-

aided parallelization.
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Chapter 2

Background and Motivation

Almost all programmers őrst learn to write sequential programs, in which the behavior

of the program is speciőed by code statements that, conceptually, run one at a time,

in a program-speciőed total order. This program order makes sequential programs

easier to write and easier to understand. A sequential program maps naturally to

serial execution on a single processor core.

However, most computer systems today have multicore processors. To utilize

multiple cores, a program must be parallelized. The goal of parallelization is to reduce

the amount of time a program takes to run, or to enable a program to perform more

computation in the same amount of time, by dividing the computational work of an

program into tasks that execute simultaneously on multiple cores.

Parallel executions must run the tasks that make up a program in an order

consistent with the dependences among tasks. Two tasks have a data dependence if

one task produces a data value that is needed as an input to the other. Two tasks have

a control dependence if one task’s computation determines whether or not the other

task should execute at all. In order to execute programs in parallel while maintaining

the ease of sequential programming, a system must identify independent tasks that

can be run in parallel.
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2.1 Related work

We will now review prior work that has sought to parallelize sequential programs,

categorized by the approaches they used to identify independent tasks.

2.1.1 Non-speculative parallelizing compilers

Non-speculative parallelizing compilers divide sequential code into tasks that are

guaranteed to be independent and can thus run in parallel. The key limitation of

non-speculative compilers is that ensuring that two tasks are independent is often

impossible at compile time. Polyhedral compilers [6, 18] can parallelize loops that

operate on regular data structures, such as arrays or matrices. But many programs are

irregular : they include data-dependent control ŕow, or they operate on pointer-based

structures, such as trees or graphs, for which static analyses are ineffective. In addition,

many programs span multiple translation units and libraries, so compilers have limited

visibility into invoked code, impeding non-speculative parallelization.

For irregular programs, non-speculative parallelization techniques have focused

on exploiting fine-grain pipeline parallelism in inner loops. DSWP [37, 44, 45] pins

loop iteration fragments across cores to localize loop-carried dependences, and relies

on hardware support for őne-grain inter-core communication. HELIX [9] implements

efficient inter-thread communication in software, which suffices for some programs, and

HELIX-RC [8] relies on hardware support to decouple value communication among

threads to accelerate a broader set of benchmarks. Unlike SCC, these techniques

cannot compose parallelism across nested loops or function calls. Moreover, they resort

to conservative serial execution of any code outside of the loops they can parallelize.

2.1.2 Speculative parallelizing compilers

Some compilers leverage data-dependence speculation to parallelize a broader range

of programs. They divide sequential code into tasks that are likely to be independent,

and attempt to run these tasks in parallel, gambling that data dependences will be rare.

Data dependences are detected at runtime, and the system checks if the execution

yielded results consistent with the discovered data dependences. If not, the tasks are

14



in conflict, so some tasks are aborted (i.e., their effects are rolled back, restoring a

previous version of the system state) and may be re-executed.

Though speculative execution can be done in software, the overheads of conŕict

detection, version management, and thread synchronization often overwhelm the

beneőts of parallelism [22]. As a result, software-only speculative parallelizing compilers

are practical only in limited cases [36].

Instead, much prior work advocates for hardware support for speculation. Specula-

tive execution is much more efficient in hardware because it reuses already-existing

mechanisms (caches for version management and cache coherence for conŕict detec-

tion). However, hardware support introduces a tight dependence between architecture

and compiler.

2.1.3 Thread-level speculation (TLS)

TLS architectures provide hardware support for speculative parallelization of se-

quential programs [14, 17, 21, 46, 47, 50, 53, 65]. Unfortunately, TLS architectures

suffer from several issues: (i) unselective aborts, making speculation expensive; (ii)

restrictive execution models that only allows spawning the current task’s immediate

successor, limiting the parallel patterns that can be expressed; (iii) lack of support

for locality-aware execution; and (iv) implementations based on centralized structures

or serialized commits that scale poorly beyond a few cores, with overheads too high

to exploit őne-grain parallelism. These issues limit TLS compilers and constrain the

parallelism that they can uncover. Swarm addresses these issues, enabling SCC’s novel

techniques.

Renau et al.’s out-of-order spawn TLS [47] relaxed the requirement that task

spawns must be serial, allowing speculative tasks to spawn children independently.

This enables exploiting certain kinds of nested parallelism [34]. However, out-of-

order spawn TLS is still restrictive, and does not achieve the beneőts of selective

aborts. Out-of-order spawn TLS also did not allow interleaving task timestamps in the

manner SCC uses for progressive expansion. It also had a serial commit bottleneck,

which it addressed by adaptively merging tasks if there are more tasks to run than

cores. Thus, the system speculates at the coarsest granularity that őlls the machine,

building large task footprints that are prone to expensive aborts. By contrast, Swarm’s
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distributed queues manage many more speculative tasks than cores without merging

tasks, enabling cheap selective aborts.

TLS compilers [5, 12, 13, 30, 38, 42, 56, 58, 63] are limited by the architectures they

target. Like SCC, TLS systems as early as Multiscalar considered function calls and

loop iterations as potential task boundaries [58]. However, without sufficient hardware

support for őne-grain tasks, previous compilers focused on selectively parallelizing

coarser tasks. POSH [34] also considered function calls and loop iterations, but focused

on proőling to choose when not to use them as task boundaries, preferring to form

sufficiently coarse tasks to amortize task overheads. The signiőcant cost of unselective

aborts also motivated techniques to reduce speculation. Du et al. developed models

to statically estimate the likelihood of data dependences, to avoid spawning tasks that

could frequently abort [13]. Zhai et al. developed compiler techniques to synchronize

frequent data dependences instead of speculating on them [64]. By contrast, SCC

speculates aggressively, leveraging Swarm’s support for őne-grain tasks, selective

aborts, and spatial hints to make speculation proőtable even when there are frequent

accesses to contentious data.

Most TLS compilers were evaluated with SPECCPU2000, where they showed

modest speedups. SCC achieves better speedups even on SPEC CPU2006 benchmarks,

which are harder to parallelize [31, 38] (Chapter 4).

2.1.4 Speculative pipeline parallelism

Finally, prior work has also extended the DSWP-style loop pipelining techniques de-

scribed above to parallelize loop iterations with unknown dependences. These systems

include Speculative DSWP [57], DSWP+ [25], SMTX [43], and HTMX [15]. These

systems pipeline a single loop across cores, speculating on unlikely data dependences

and synchronizing on known ones. As we will shortly see, SCC is capable of achieving

the beneőts of these systems through őne-grain task decomposition together with

spatial hints to isolate dependences. Moreover, SCC transforms the whole program

and composes parallelism across loop nests and functions calls, whereas loop pipelining

techniques can only parallelize a single loop level at a time.
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Parallelized task structure 4 cores 36 cores 100 cores

TLS-style chain (Figure 2-1a) 4.0× 5.3× 4.9×
+ Decoupled spawn (Section 2.2.1) 3.5× 7.4× 7.7×
+ Nested őne-grain tasks (Section 2.2.2) 2.9× 8.2× 9.8×
+ Balanced spawner trees (Section 2.2.3) 3.6× 19.3× 31.3×

Table 2.1: Speedup of mis relative to original serial code.

1 for (int v = 0; v < numVertices; v++) {

2 if (state[v] == UNVISITED) {

3 state[v] = INCLUDED;

4 int* neighbors = getNeighbors(v);

5 int numNeighbors = getNumNeighbors(v);

6 for (int nbr = 0; nbr < numNeighbors; nbr++)

7 state[neighbors[nbr]] = EXCLUDED;

8 }

9 }

Listing 2.1: Sequential mis algorithm.

2.2 SCC motivation

We now illustrate the limitations of prior speculative parallelization approaches through

a simple example, and progressively introduce key SCC features to overcome these

limitations. Throughout these examples, we show that SCC’s features require hardware

support, and introduce Swarm, which provides sufficient support for these features.

Consider the maximal independent set algorithm (mis). Given a graph, mis őnds

a set of nodes S such that no two nodes in S are adjacent, and each node not in

S is adjacent to some node in S. Table 2.1 compares the performance of several

parallelized mis variants on an R-MAT [11] graph with 1M nodes and 95M edges.

Speedups are relative to a tuned serial baseline taken from PBBS [49]. (See Section 4.1

for methodology.) SCC extracts plentiful parallelism and keeps scaling to 100 cores by

using spawn decoupling and fine-grain tasks to make aborts cheap, and spawner trees

to keep many cores busy, as we will see next.

2.2.1 Decoupled spawn enables selective aborts

Listing 2.1 shows the mis algorithm. Each outer loop iteration, highlighted in blue,

checks a vertex’s state and includes it in the set if it hasn’t already been excluded.
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(b) With decoupled spawn, D aborts without aborting other tasks.

Figure 2-1: Execution timelines showing task structures for speculatively parallelizing
mis, with each outer loop iteration constituting a task. A store in task C conŕicts
with a load of the same address in task D, resulting in aborts.

When a vertex is included in the set, the inner loop permanently excludes all the

vertex’s neighbors. The inner loop iterations, highlighted in orange, perform indirect

stores, writing to addresses that are not known until runtime.

Since mis’s data dependences cannot be determined statically, we consider paral-

lelizing mis’s outer loop using speculative parallelization. Prior TLS compilers would

do so as depicted in Figure 2-1a: each task begins by spawning the next in the chain,

and then runs the body of one outer loop iteration and, if executed, an entire inner

loop. To preserve sequential semantics, the system tracks the set of memory addresses

accessed by each task, and detects conŕicting (i.e., out-of-program-order) accesses
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among tasks. For example, in Figure 2-1a, task C writes to an address that was

previously read by task D. This is an order violation or conflict. D must be aborted

and re-executed so that it is correctly ordered after C. Any later-ordered task that

received incorrect data from D must also abort. To accomplish this, all prior TLS

systems conservatively abort all later loop iterations en masse [17,21,47,50,52]. These

expensive mass aborts limit parallelism by delaying the ultimate execution of all later

tasks. The TLS approach does not scale beyond 5.3×.

To address this problem, SCC leverages Swarm’s mechanisms for selective aborts,

wherein an aborting task would trigger additional aborts only for dependent tasks [27].

However, even with selective aborts, children are dependent on their parent, so they

must abort if their parent aborts. For a task to abort independently of later tasks, it

must avoid spawning children. To this end, SCC generates a tree of tasks rather than

a simple chain. One of the simplest ways SCC can do this is as shown in Figure 2-1b:

there is a chain of white spawner tasks, each of which spawns the next spawner in the

chain, then spawns a worker task that executes the body of the loop. Now, workers

such as D are decoupled from spawning, so D can abort without affecting later tasks.

A secondary beneőt of decoupled spawn is that spawners can run on different

cores than workers to exploit pipeline parallelism, similar to speculative DSWP [57].

Overall, decoupled spawn achieves a speedup of 7.7×.

2.2.2 Fine-grain tasks make aborts cheap

So far we have considered only parallelizing the outer loop in mis. But this leads to

large tasks with long inner loops that are prone to conŕicts and aborts. SCC can

address this by parallelizing the inner loop too. Each inner loop iteration is tiny, so

SCC divides the inner loop into tasks that each execute eight iterations. When a

conŕict arises, as shown in Figure 2-2b, it only requires aborting and re-executing a

short task, a cheap operation. This improves the speedup to 9.8×.

In some situations, using őne-grain tasks to access contentious data has a secondary

beneőt: if each task accesses few addresses, SCC can map tasks to tiles in a locality-

aware way, keeping contentious values in private caches rather than ping-ponging

them across the chip (Section 3.5).
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Splitting mis’s inner loop iterations into parallel tasks enables resolving conŕicts
without aborting the entire outer loop iteration.

These őne-grain tasks require signiőcant hardware support: The average task size

is 89 cycles, so to keep 100 cores busy, the system must spawn, dispatch, and commit

about one task per cycle. Prior hardware systems cannot achieve this throughput [27],

so prior compilers use coarse tasks and limit aborts by selectively applying speculative

parallelization in limited ways to loops or program segments where dependencies

that would cause aborts are rare [8, 15,34,43,61]. Instead, Swarm provides sufficient

hardware to support őne-grain tasks with cheap aborts, enabling practical whole-

program parallelization.

In addition, őne-grain tasks require new strategies in software: spawning a task by

recording and sending a full thread context would add far too much overhead. SCC’s

efficient task closures drastically reduce each task’s context (Section 3.6).

2.2.3 Balanced trees make fine-grain tasks scale

Spawning work quickly enough to keep many cores busy still requires new strategies

for transforming application code. The serial chain of spawners in Figure 2-1b limits

performance because only one core is spawning tasks at a time. SCC exposes greater

parallelism through loop expansion, a transformation that creates balanced trees of

spawners. For mis, SCC creates spawner trees for both inner and outer loop iterations,

as depicted by the trees of white spawners in Figure 2-3. When a loop starts executing,
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Figure 2-3: Balanced task trees improve parallelism.

g(0)

f()
g(1)

g(42)

g(43)

h(0,0)

h(0,1)
h(0,2)

h(1,0)

…

void f() { g(0);  g(1);  g(42);  g(43); }

void g(int i) { for (int j = 0; j < 3; j++) h(i,j); }

Figure 2-4: SCC exploits composition to parallelize across arbitrary calls and
translation units.

spawner trees rapidly expand to distribute the load of both spawners and workers

across the system. SCC thus runs mis 31.3× faster than the serial version.

Though mis loops are easy to transform into balanced trees, many loops have

unknown bounds or exit conditions. SCC’s progressive loop expansion achieves similar

parallelism on these more complex loops (Section 3.4).

2.2.4 Nested parallelism enables composition

Unfortunately, programs do not spend all their time in long-running loops. Consider

the code in Figure 2-4, which shows composition of function calls and loops as

commonly arises in real-world programs. Function f calls function g 4 times, and

each invocation of g runs function h 3 times. To exploit parallelism, SCC creates the

task structure shown in Figure 2-4.1 SCC compounds the parallelism within f and g,

spawning 3× 4 = 12 calls to h in parallel. This tree of tasks enables selective aborts

of the h tasks. If h is large, it can be further divided into small tasks.

1 Since SCC knows the loop in g is short, it does not use spawner tasks. h is directly spawned
from worker tasks running g as shown in Figure 2-4.
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Achieving this approach requires two key ingredients. First, it requires a way to

compose parallelism across translation units : functions f, g, and h may be in different

őles, making it infeasible to have global view of control ŕow. Second, it requires

a ŕexible, composable ordering mechanism that allows spawning all these tasks in

parallel while preserving their order semantics.

This parallel nesting is not supported by most prior systems for speculative paral-

lelization. The closest prior work is Renau et al.’s TLS with out-of-order spawn [47].

This prior system could exploit some forms of nested parallelism, but without the

hardware support needed for low-overhead őne-grain tasks, it instead merged tasks

into coarser-grain units, missing the opportunity to exploit őne-grain parallelism. Fur-

thermore, it places restrictions on spawn order that would make SCC transformations

such as progressive expansion impossible. By contrast, Swarm provides sufficient

support for SCC to implement this nested parallelism strategy.

2.3 Swarm architecture

SCC targets the Swarm architecture [27,28]. Speciőcally, it uses the Fractal version of

Swarm [55], which supports nested parallelism and incorporates spatial hints [26] for

locality-aware execution. We őrst explain Swarm’s execution model, then highlight

the key microarchitectural features SCC must exploit to achieve good performance.

2.3.1 Swarm execution model

A Swarm program consists of a set of timestamped tasks. Any task can spawn children

tasks, tagging them with a timestamp greater than or equal to its own. Swarm

guarantees that tasks appear to run in timestamp order; same-timestamp tasks run

atomically (i.e., they do not interleave). Swarm provides precise exceptions [29] so

tasks can run unrestricted code (e.g., system calls).

Fractal extends Swarm by placing tasks in a hierarchy of nested domains. Within

a domain, tasks are ordered with timestamps as before. Additionally, each task may

create a single subdomain and spawn children into that subdomain. Fractal guarantees

atomicity among domains: all tasks in a domain along with its creator appear as a

single atomic unit.
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Domains make composition easy, as they allow separately parallelized code regions

to use separate domains with independent timestamp schemes. Tasks from multiple

domains run in parallel. For example, in mis, each outer loop iteration can create

a subdomain in which the inner loop will run. This way, each outer loop iteration

appears as an atomic unit ordered by its timestamp in the outer domain.

2.3.2 Swarm microarchitecture

Swarm introduces modest changes to a tiled multicore, shown in Figure 2-5. Each

tile has a group of cores. The cores in a tile share an L2 cache, and each tile has a

slice of a fully shared L3 cache. Each tile is augmented with a task unit that queues,

dispatches, and commits tasks.

To scale, Swarm uses fully distributed mechanisms. Local task units queue and

dispatch tasks to cores autonomously. When a core spawns a task, it communicates

only with its local task unit, which buffers newly created tasks. Tiles balance load

by sending tasks to each other using point-to-point communication, without any

centralized scheduler. Thus, cores can spawn many tasks in parallel, and do not need

to stall on memory accesses or for cross-chip communication latency when spawning

tasks.

To prevent order from limiting throughput, Swarm speculates thousands of tasks

ahead of the earliest active task. To this end, Swarm has large hardware queues, e.g.,

it can buffer up to 256 tasks waiting to execute per tile (64 per core) and up to 64

tasks waiting to commit per tile (16 per core). Swarm uses these queues to achieve

high commit throughputs efficiently: tiles periodically communicate to őnd the earliest

unőnished task in the system, then commit all earlier tasks. This commit protocol

amortizes communication among many tasks. It is the only global operation in the

system, but it is a reduction, so overheads scale logarithmically with the number of

tiles and are negligible at this scale [27].

Swarm uses eager (undo-log-based) version management and eager (coherence-

protocol-based) conŕict detection with Bloom őlters, similar to LogTM-SE [62]. Swarm

extends these techniques to implement selective aborts. Finally, Swarm leverages

spatial hints [26] to perform locality-aware execution. A hint is an integer optionally

given when a task is spawned. Software should give the same hint to tasks likely to
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Figure 2-5: 36-core/9-tile Swarm processor conőguration.

access the same mutable data (Section 3.5). Swarm runs same-hint tasks in the same

tile to exploit locality.

These techniques allow Swarm to execute work aggressively out-of-order, with

speculation windows of thousands of tasks, i.e., hundreds of thousands of instructions.

This makes it advantageous for programs to spawn work early. We thus design SCC

to spawn work aggressively, and carefully manage live data values to ensure cores do

not need to access shared memory frequently in order to spawn or run tasks.
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Chapter 3

The Swarm C/C++ Compiler

3.1 SCC overview

Unlike prior work [8, 15, 34, 43, 61], SCC does not use proőle-guided heuristics to limit

parallelization. SCC parallelizes the entire program, exposing őne-grain parallelism

starting from the őrst instruction of main. To do this, SCC őrst splits code into tasks

at őne granularity and tags tasks with timestamps to record program order. After

this, SCC is free to aggressively transform the code to spawn tasks in any order to

improve parallelism, as Swarm hardware will guarantee apparent program-ordered

execution.

Figure 3-1 gives an overview of SCC’s main components. SCC adds transformation

passes to the LLVM/Clang compiler toolchain. All of SCC’s passes are intraprocedural,

that is, a compiler performs them on one function at a time, without relying on

expensive interprocedural analyses. Thus, SCC compilation times stay small and

proportional to code size. SCC’s passes run towards the end of the LLVM middle-end,

after target-independent optimizations, so SCC does not impede the performance of

standard compiler optimizations. SCC parallelizes this sequential IR in four phases:

1. Reducing memory dependences in sequential code: To improve parallelism

and enable efficient function spawns, SCC őrst optimizes the allocations of local

variables and avoids using a shared call stack (Section 3.2). These optimizations

include privatizing local variables scoped within loops, and transforming all function

calls whose continuations use the function’s return value into continuation-passing
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Figure 3-1: Structure of SCC. SCC is implemented by adding a series of passes to
LLVM’s middle-end. Transformations newly implemented for SCC are highlighted in
orange.

style (CPS): functions are passed a continuation that encapsulates the computation

that should run when the return value is known [2]. CPS eliminates the need to store

stack frames and return addresses. Instead, data needed by the caller’s continuation

is placed in a register- or heap-allocated closure.

These transformations are safe for general, sequential code. In the common case,

they reduce the state associated with each task (to a few register values rather than a

full thread context) and avoid false-sharing conŕicts that would arise from a shared

stack.

2. Fine-grain task delineation: SCC spawns potentially parallelizable tasks at the

őnest granularity, including converting all loops and loop nests into tasks, with one

task per iteration (Section 3.3.1). SCC tags these tasks with timestamps to reŕect

their original program order (Section 3.3.2).

3. Task refinement: SCC spawns tasks out of order to improve parallelism (Sec-

tion 3.3.3). It transforms loop control and body tasks to improve performance

(Section 3.4). SCC also adds spatial hints to exploit locality (Section 3.5).

4. Task lowering: Finally, SCC lowers (i.e., translates) the timestamp-tagged tasks

to ordinary LLVM IR. This requires producing a separate function and closure for

each task. SCC optimizes closures to reduce overheads (Section 3.6). After this, the

LLVM backend generates executable code.

Prior to lowering, SCC extends LLVM’s intermediate representation (IR) to repre-

sent parallel tasks within a function’s control-ŕow graph (CFG). This representation is

similar to Tapir [48], which was used to optimize conventional multithreaded code. By

incorporating parallelism in the IR, SCC can perform parallelizing transformations as
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simple, modular compiler passes, and leverage the sophisticated analysis machinery of

LLVM to perform optimizations across tasks (e.g., induction-variable elimination in a

parallelized loop (Section 3.4)). This approach provides high-quality code generation.

As shown in Figure 3-1, SCC runs conventional LLVM optimizations between these

passes to simplify and optimize the IR. For example, they remove dead code that may

have arisen because of loop transformations.

3.2 Eliminating the shared call stack

Before dividing code into parallel tasks, SCC őrst performs several transformations

that reduce conŕicts and enable reduced task overheads. Speciőcally, SCC avoids the

use of a globally shared function call stack, which would become a point of contention

for őne-grain parallel tasks. When tasks run, they have thread-private stacks they can

use for register spills, but these thread-private stacks are not used for values shared

among tasks or to implement function calls. To accomplish this, we need to perform

two transformations to the code: bundling variables to the heap if they must be shared

among tasks through memory, and transforming the code into continuation-passing

style.

3.2.1 Variable bundling

Bundling variables to the heap is rare: it is not used for local values that could be

promoted to registers, or spilled to thread-private stacks when registers are full. It

happens only for variables the program takes pointers or references to. SCC bundles

all such variables together within a single function and allocates them as a single heap

chunk.

Cactus stacks as used in fork-join parallel languages like Cilk [16] are the closest

technique to SCC’s bundling. However, bundling gives SCC two important beneőts

over cactus stacks. First, it is selective: whereas each Cilk task takes a (heap-allocated)

cactus stack frame, in SCC most functions do not incur any heap-allocation overheads.

Second, by placing shared mutable data in the heap, bundling separates this mutable

data from private local values that will be allocated on thread-private stacks. This

avoids spurious conŕicts due to our cache-line-based conŕict detection.
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3.2.2 Continuation-passing style conversion

Continuation-passing style (CPS) conversion avoids using the stack as a record of

function call frames and eliminates the notion of a function returning to its caller.

This means there’s no need to allocate memory on each function call to save stack

frame pointers or return addresses. Instead, it enables SCC to use a new task and

function calling convention which allows us to spawn some tasks and functions with

zero memory accesses, passing values purely through registers (Section 3.6). This

optimization is crucial to keep overheads low with SCC’s very őne-grain tasks.

CPS conversion is a general and well-studied transformation in programming

languages [40,54], and is used in compilers for functional languages [2,3,51]. Although

some explicitly parallel programming models have used CPS conversion [19,32], we

are the őrst to use this transformation in a system for speculative parallelization.

CPS conversion modiőes each function so that it can accept a continuation, and

also modiőes every callsite to pass a continuation if needed. Speciőcally, each function

takes an extra argument, which is a pointer to a continuation’s closure. The closure is

an object allocated on the heap. Its őrst őeld is a function pointer to the continuation,

and subsequent őelds are values captured by the caller that the continuation uses

when it runs. At the end of its execution, instead of returning, the function calls the

continuation and passes the return value of the function, if it had one.

3.2.3 Privatization

When bundling variables to the heap, SCC detects variables scoped within the body

of a loop and privatizes them so that a separate space is allocated for each iteration

of the loop. This avoids false sharing conŕicts between loop iterations. We őnd

that moving the declarations of variables only used within a loop body to enable

this transformation is easy (Section 4.1.2), and it is also a good practice in modern

programming.

After the transformations of privatization, bundling, and CPS conversion, the

sequential code is ready for parallelization. Many sources of false dependences have

been removed and functions calls no longer use a shared call stack, making it easier to

spawn many tasks in parallel without memory allocation in the common case.
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3.3 Whole-program fine-grain parallelization

Now that the code has been transformed to be more amenable to parallelization,

SCC must record the program order speciőed by the sequential code among tasks

within functions and loops. It uses Fractal to compose parallelism across function

calls and loop nests while preserving sequential semantics. This then allows SCC

spawn tasks aggressively and out of order to expose parallelism. We now explain the

code transformations SCC performs one function at a time to accomplish composable

őne-grain parallelization across an entire program.

3.3.1 Task delineation

SCC divides code into tasks by turning each loop iteration, each function call, and

each function call’s continuation into a separate task. Like prior work, we őnd that

this approach naturally limits tasks sizes to be fairly small [58]. These heuristics suffice

for compiling most code. However, some tasks remain that are coarser than needed.

To exploit more parallelism, we offer the programmer annotations to split tasks more

őnely (Section 3.7). SCC further transforms loop tasks to improve parallelism, as

Section 3.4 will discuss.

3.3.2 Task ordering

SCC orders tasks with a combination of timestamps and Fractal domains. This process

starts with the control flow graph (CFG) of a single function, a directed graph whose

nodes are basic blocks. If the function has any internal tasks, SCC creates a domain

for the function’s tasks, and orders the tasks within each domain using timestamps.

To do this, őrst, SCC collapses strongly connected components (due to, for example,

loop backedges) into a single node, so that the remaining CFG becomes acyclic.

SCC then topologically sorts the nodes of the acyclic CFG, and assigns timestamps

to tasks in topological order, treating each collapsed node as a single task. Thus, it is

guaranteed that these timestamps reŕect program order.

SCC then creates a Fractal subdomain for each collapsed node in the acyclic CFG.

SCC gives all tasks within that node timestamps that reŕect program order. To do
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this, SCC may recursively repeat the timestamp assignment algorithm, topologically

sorting sub-CFGs within each collapsed node.

3.3.3 Task spawn decoupling

After dividing the sequential code into tasks, SCC determines, for each function call

or loop task T , whether T spawns next following task U , or whether T and U should

be spawned in parallel by a common parent task. The latter option will decouple the

tasks so they can be aborted selectively (Section 2.2.1). Therefore, SCC follows a

heuristic that favors decoupling: T spawns U as a descendant only if task T produces

live-out register values that need to be directly passed to later task U . Otherwise,

tasks T and U are spawned as decoupled sibling tasks.

For example, the continuation of a function callsite is only passed to the continuation

to be spawned later if the continuation needs the callee’s return value. Otherwise,

the caller spawns the function call and continuation in parallel. Similarly, if a loop

continuation depends directly on a local value produced by a loop, the last iteration

of the loop spawns the continuation. Otherwise, loops are spawned in parallel with

their continuations.

3.4 Efficient loop expansion

SCC adopts a multifaceted strategy to parallelize loops. Central to this strategy is the

use of spawners as described in Section 2.2: small tasks that do little work and are

thus unlikely to abort, which are responsible for spawning workers that execute the

bodies of loops. SCC introduces three compiler transformation strategies to expand

loops to generate spawners: balanced-tree expansion, progressive expansion, and chain

expansion. Progressive expansion is the most critical for őne-grain parallelization of

programs with irregular control ŕow. We explain these strategies next. SCC also

coarsens loop tasks to reduce overheads, which we discuss brieŕy at the end of this

section.

30



3.4.1 Balanced tree expansion

In cases like mis (Section 2.2.3), where the number of iterations is known at the start

of the loop, building balanced spawner trees is easy: each spawner is responsible for a

consecutive range of iterations, which it divides evenly across children spawners. When

a spawner has a small-enough range (e.g., 8 worker tasks in our implementation), it

spawns worker tasks for each iteration. Spawner trees grow exponentially and quickly

őll the machine with work, as shown in Figure 2-3. To avoid choking the machine

with tasks, each spawner is timestamped with the start of its range, which prioritizes

workers and spawners properly and expands the loop gracefully.

3.4.2 Progressive loop expansion

Progressive expansion generates exponentially growing trees of spawners even on loops

with irregular control flow, without knowing how many iterations to run. It does so by

creating a tree of speculative spawner tasks.

Figure 3-2 shows progressive expansion in action on a loop with an unknown

termination condition. Spawner tasks are shown in gray and loop iteration tasks are

shown in blue. The number within each spawner task denotes its timestamp. Each

spawner task spawns both multiple loop iteration tasks and multiple spawner tasks

for later iterations.

To handle unknown termination conditions, progressive expansion transforms each

loop iteration to set a new done ŕag indicating that the loop is őnished if it discovers

that it should be the last iteration. This is shown in the lower left inset of Figure 3-2.

Loop iteration and spawner tasks start by reading this ŕag and exit without doing

anything if the loop has already őnished. Thus, the growing tree of spawner tasks

terminates shortly after any iteration discovers the loop is őnished.

For simplicity, Figure 3-2 shows spawners that each spawn two loop iterations

directly, then spawn two child spawners with doubling stride. SCC initiates loop

execution by spawning the initial spawner task, spawner(0, 2), which will lead to

the eventual spawning of all loop iterations. In our evaluation, each spawner spawns

four loop iterations and four spawners.
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for (i = 0; ; i++)

if (foo(i)) break;

void iter(Timestamp i) {

if (!done)

if (foo(i)) done = 1;

}

0

iter(0)

iter(1)

Source code:

4

iter(4)

iter(5)

2

iter(2)

iter(3)

6

iter(6)

iter(7)
10

iter(10)

iter(11)
8

iter(8)

iter(9)
12

iter(12)

iter(13)

void spawner(Timestamp i, int stride) {

if (!done) {

swarm_spawn(iter, i);

swarm_spawn(iter, i + 1);

swarm_spawn(spawner, i + stride, 2*stride);

swarm_spawn(spawner, i + 2*stride, 2*stride);

}

}

Figure 3-2: The progressive expansion task structure for parallelizing loops.

Progressive expansion is performing a form of control speculation, optimistically

creating more spawners and loop iteration tasks than may be needed. By generating

the done ŕag and treating it as an ordinary memory-resident variable, progressive

expansion reuses Swarm’s existing mechanisms for scalable conŕict detection. Each

task that reads the variable brings a shared copy into an L1 cache. When the ŕag is

őnally written upon loop termination, cache invalidations trigger conŕict checks and

abort any tasks that misspeculatively ran past the end of the loop.

Progressive expansion relies on Swarm’s ability to spawn tasks out of program

order, using explicit timestamps. For example, in Figure 3-2, the spawner children of

spawners 2 and 4 are interleaved (with timestamps 6 and 10, and 8 and 12). This is

not possible in TLS systems, where spawned threads must be immediate successors of

their parent. In general, to achieve a logarithmic critical-path length, at each level of

the spawner tree, the number of iterations in each spawner’s subtree must decrease by

a constant factor. In order to do this without knowing how many iterations there will
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do_body(0x6823)

do_body(0xeac4)
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1 do_body(0xface)

do_body(0xf000)
Node* ptr = start;

while (ptr) {

ptr = ptr->next();

do_body(ptr);

}

Source code:

Figure 3-3: The general chained loop task structure.

ultimately be, child spawners must be given interleaved iterations.

By generating spawner trees, progressive expansion and balanced tree expansion

stand in contrast to prior TLS compilers, which spawn iterations of any loop serially.

3.4.3 Chain expansion

SCC’s spawner trees depend on the ability to eliminate loop-carried dependences, i.e.,

a value produced in each iteration and strictly needed in the next. We őnd the vast

majority of hot inner loops lack such dependences or can be rewritten to remove them

(e.g., by using induction-variable elimination [1, Sec. 9.1.8] 1). For the remaining

loops, SCC performs chain expansion, forming spawner chains that exploit pipeline

parallelism across iterations as in prior TLS compilers.

Figure 3-3 shows chain expansion in action on a loop that traverses a linked list,

with a loop-carried dependence on ptr. Chain expansion divides each loop iteration

into two parts: the slice that computes the loop-carried dependence, shown in orange

in Figure 3-3, and the slice that either consumes or is independent from the loop-carried

dependence, shown in blue. SCC then produces a tight chain of orange tasks that

compute the loop-carried dependence quickly to minimize the critical path. Each of

these tasks also spawns a blue task. Blue tasks are off the critical path and overlap,

obtaining some parallelism. Each blue task can be long, and often contains function

calls or inner loops that SCC breaks into tasks, exploiting nested parallelism across

iterations.
1 We find that recent versions of LLVM have sufficiently advanced infrastructure for identifying

and rewriting induction variables that, unlike prior work [34], we did not find a need to perform
software value prediction to eliminate dependencies on induction variables.
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3.4.4 Loop task coarsening

To reduce overheads, SCC identiőes inner loops that do little work per iteration, and

coarsens the tasks associated with the loop so each task executes several loop iterations.

When coarsening, SCC uses LLVM’s loop analyses to detect strided accesses to place

iterations that share a cache line in the same task (e.g., with 64-byte cache lines and

accesses that stride 48 bytes per iteration, SCC coarsens by a factor of 4 and generates

prolog and epilog code so that each task covers its own 3 cache lines). This avoids

false sharing across tasks, which could cause spurious conŕicts.

3.5 Locality-aware speculation

Because SCC breaks programs into őne-grain tasks, some tasks access only one or

a few locations in memory. This allows implementing simple heuristics to generate

spatial hints, so that Swarm can ensure tasks that touch the same contentious data

all run on the same chip tile.

SCC generates spatial hints in the following steps. First, it analyzes stores to

identify potentially contentious variables, e.g., variables that appear to be modiőed

repeatedly across the iterations of a loop, or which have been annotated as such

by the programmer (Section 3.7). Then, SCC identiőes tasks that write to a single

contentious memory location as candidates to be given spatial hints. Finally, SCC

checks if it can safely hoist the address computation for the memory access into the

parent task. If the address computation is successfully hoisted, then SCC uses the

cache line address (computed by right-shifting the address) as the hint.

SCC uses simple heuristics to őlter what variables it may consider contentious.

It ignores termination variables, e.g., as generated by progressive expansion (Sec-

tion 3.4.2). If LLVM’s analyses can determine that all potentially contentious stores

in a task write to őelds within a single memory object, SCC uses the object’s base

pointer.
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3.6 Task lowering

Task lowering constructs an explicit closure for each task. If a task’s live-in values

őt into the registers that hardware task descriptors can hold (őve 64-bit values in

addition to the function pointer and timestamp in our implementation), the entire

closure is passed through registers when the parent spawns the task, avoiding any

accesses to shared memory. Because SCC produces őne-grain tasks, this is usually

the case for leaf tasks, which make up the majority of tasks in SCC programs. If task

live-ins do not őt in registers, the parent task allocates the extra live-ins on the heap,

and passes a pointer so the child task can read the values from memory.

SCC performs two optimizations to reduce closure sizes:

1. Live-in sinking őnds task live-ins that can be cheaply recomputed from other

available values (e.g., multiple addresses computed by adding constant offsets to

the same pointer) and sinks the computation into the task.

2. Loop closure sharing checks whether tasks in a loop would need to allocate

closures on the heap. If so, it allocates a partial closure that holds all loop-

invariant live-ins. All loop iterations read from this single location, achieving

good L1 hit rates and greatly reducing allocation overheads.

Together with SCC’s techniques to avoid using memory to communicate arguments

or return values when spawning functions (Section 3.2), these optimizations make

heap-allocated closures rare in most programs.

3.7 Program annotations

SCC introduces simple code annotations that can be used to encourage the compiler to

split tasks into őner granularity. None of these annotations affect program semantics.

We add these annotations sparingly, after proőling to őnd the code that access

the most frequently updated mutable data structures, which will create contention.

Future versions of SCC could use proőling to offer suggestions for where to place task

annotations [59], or add őne-grain task boundaries automatically based on identifying

contentious data.

A common pattern is for a stretch of straight-line code, e.g., within the body of

a loop, to őrst read uncontentious, infrequently changing data, then perform some
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computation, and őnally perform an update of some mutable data. If the mutable

data is frequently updated, this contention can cause wasteful aborts if the entire

block of straight-line code aborts, forcing the uncontentious reads and computation to

re-execute. To make aborts less frequent and cheaper, the programmer may suggest

additional task boundaries to make tasks more őne-grain. This allows the latter part

of the code that accesses contentious data to potentially better exploit spatial locality

through spatial hints (Section 3.5), and to abort cheaply, without aborting a larger

code block.

These annotations improve performance, but do not change program semantics : the

program retains its sequential, deterministic behavior regardless of where annotations

are added.

3.8 Putting it all together

Listing 3.1 shows one of the two hottest loops in astar, a SPEC CPU2006 benchmark

that őnds paths in a 2D grid. This loop illustrates how progressive expansion, hint

generation, and program annotations work together.

Because the loop’s code is highly repetitive, Listing 3.1 omits duplicated code

blocks (highlighted in green). Each loop iteration visits a node identiőed by index.

For each of the node’s eight neighbors in the 2D grid, identiőed by index1, the code

checks whether the neighbor should be added to a queue bound2p to be visited later.

On average, about one of the eight neighbors is enqueued to bound2p per iteration.

We insert task boundary annotations surrounding each of the eight repeated

neighbor-checking blocks, exploiting parallelism among these blocks. Most neighbor-

checking tasks will not decide to enqueue the neighbor, so they are read-only and

parallelizable.

However, to avoid frequent, expensive aborts, we must deal with contentious

access to the queue. We further split the enqueue in line 7 into its own task. SCC

executes tasks as shown in Figure 3-4: each iteration starts with a single task, in blue,

which spawns the eight neighbor-checking tasks, in green. When a neighbor must

be enqueued, a child task is spawned to perform the neighbor enqueue (line 7), in

orange.
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1 int bound2l = 0;

2 for (i = 0; i < bound1l; i++) {

3 index = bound1p[i];

4 index1 = index-yoffset -1; // NW neighbor

// 1st of 8 identical code blocks:

5 if (waymap[index1].fillnum != fillnum

6 && maparp[index1] == 0) {

7 bound2p[bound2l++] = n;

8 waymap[index1].fillnum = fillnum;

9 waymap[index1].num = step;

10 if (index1 == endindex) {

11 flend = true;

12 return bound2l;

13 }

14 } // End of 1st identical code block.

15 index1 = index-yoffset; // N neighbor

// 2nd of 8 identical code blocks appears here.

26 index1 = index-yoffset+1; // NE neighbor

// 3rd of 8 identical code blocks appears here.

37 index1 = index -1; // W neighbor

// 4th of 8 identical code blocks appears here.

48 index1 = index+1; // E neighbor

// 5th of 8 identical code blocks appears here.

59 index1 = index+yoffset -1; // SW neighbor

// 6th of 8 identical code blocks appears here.

70 index1 = index+yoffset; // S neighbor

// 7th of 8 identical code blocks appears here.

81 index1 = index+yoffset+1; // SE neighbor

// 8th of 8 identical code blocks appears here.

92 }

Listing 3.1: Code taken from Way_.cpp in astar, compressed and with repeated
code blocks omitted

Task splitting lets SCC generate effective spatial hints (Section 3.5). All neighbor-

enqueue tasks use a spatial hint based on the address of bound2l, localizing them to

execute on a single tile. Swarm will abort and re-execute these tasks as necessary to

preserve sequential semantics, as shown in Figure 3-4. Splitting off neighbor enqueues

and delegating them to one location keeps accesses to the queue local and cheap.

Finally, to keep many cores busy, SCC must parallelize across loop iterations.

Progressive expansion is needed to allow for spawning iterations of this loop in ad-

vance: reaching a particular end-of-map cell identiőed by endindex can cause the
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Figure 3-4: Execution timeline of astar with task colors matching Listing 3.1.
Numbers indicate loop iterations, and tasks associated with one of the eight neighbors
are indicated with the cardinal direction of the neighbor. Arrows indicate spawns of
neighbor-enqueue tasks.

loop to terminate on any iteration. However, reaching endindex happens very rarely,

and it is proőtable to speculatively spawn many loop iterations in parallel.
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Chapter 4

Evaluation

4.1 Experimental methodology

4.1.1 Simulated hardware

We use a cycle-level simulator based on Pin [35, 39] to model Swarm systems with

parameters in Table 4.1. Unless otherwise noted, experiments use in-order cores.

Swarm parameters match those of prior work [26,27,28]. We use detailed core, cache,

network, and main memory models, and simulate all task and speculation overheads

(e.g., task traffic, running misspeculating tasks until they abort, simulating conŕict

check and rollback delays and traffic, etc.). We keep per-core cache sizes and queue

capacities constant across system sizes.

4.1.2 Benchmarks

We use SPECCPU2006 C/C++ benchmarks to evaluate SCC. These benchmarks

comprise real-world applications [24] that are hard to auto-parallelize: initial attempts

to apply TLS showed upper-bound speedups below 1% [31]. Packirisamy et al. applied

state-of-the-art TLS techniques to SPECCPU2006 programs, showing moderate

speedups (1.6× at 4 cores, 1.91× at 8 cores) [38]. We use seven of the 19 benchmarks,

listed in Table 4.2. From the remaining benchmarks, two (gcc, sjeng) are not yet

correctly compiled by SCC, and the remainder use features that SCC cannot yet

parallelize, so SCC falls back on executing them in long, serial tasks, obtaining
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Cores

36 cores in 9 tiles (4 cores/tile), 2 GHz, x86-64 ISA;
single-issue in-order scoreboarded (stall-on-use) [26];
or Haswell-like 4-wide OoO superscalar [20]

L1 caches 16 KB, per-core, split D/I, 8-way, 2-cycle latency

L2 caches 256 KB, per-tile, 8-way, inclusive, 7-cycle latency

L3 cache
9 MB, shared, static NUCA [33] (1MB bank/tile),
16-way, inclusive, 9-cycle bank latency

Coherence MESI, 64 B lines, in-cache directories

NoC
3×3 mesh, 128-bit links, X-Y routing,
1 cycle/hop when going straight, 2 cycles on turns (like Tile64 [60])

Main mem 4 controllers at chip edges, 120-cycle latency

Queues
64 task queue entries/core (2304 total),
16 commit queue entries/core (576 total)

Conflicts

2 Kbit 8-way Bloom filters, H3 hash functions [10]
Tile checks take 5 cycles (Bloom filters)
+ 1 cycle per timestamp compared in the commit queue

Fractal time
128-bit virtual times, tiles send updates to
virtual time arbiter every 200 cycles

Spills Spill 15 tasks when task queue is 85% full

Table 4.1: Conőguration of the 36-core system.

Benchmark Lines of code Modified lines 1-core cycles per task

429.mcf 1574 None 635
433.milc 9575 +17, -10 372
456.hmmer 20680 +13, -9 266

462.libquantum 2605 None 610
470.lbm 904 +1, -1 2649

473.astar 4285 +32, -141 31
482.sphinx3 13128 +3, -2 146

Table 4.2: SPEC CPU2006 benchmarks used in the evaluation. Lines of code exclude
comments and whitespace.

no speedup. These include C++ exception-handling library code (used by C++

benchmarks), function pointers stored in application data structures (gobmk and

h264ref), and sigsetjmp/siglongjmp (perlbench). We expect to add support for

these features in future work.

We compare the SCC-compiled version of each benchmark with the original

serial version, compiled with -O3 on unmodiőed LLVM/Clang 5.0 (SCC is based on
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LLVM/Clang 5.0). We have veriőed that SCC-compiled benchmarks deterministically

produce the same result as the serial version.

We evaluate all benchmarks with the ref (largest) inputs. Since SPEC CPU2006

benchmarks run for a very long time, we evaluate a sample period of their execution cor-

responding to 2 billion dynamic instructions of the serial version after fast-forwarding

10 billion instructions to skip initialization. This sample interval suffices to cover a

long, representative period of steady-state execution. None of the benchmarks spend

the sample period on a single hot loop: all enter and exit from loops and execute

different code many times, allowing us to evaluate SCC’s performance across program

phases.

To ensure we compare the same region of execution regardless of compiler trans-

formations, we instrument the entry point of certain functions with heartbeats, and

count the heartbeats in our simulator. We őnd the heartbeat counts closest to 10 and

12 billion instructions in the original serial version, and simulate that interval.

We modify the source code of some of the benchmarks to help the compiler uncover

more parallelism. Table 4.2 reports the lines changed, a small fraction of the program’s

lines of code in all cases. In hmmer, astar, and sphinx3, these modiőcations are SCC

annotations to break up tasks as explained in Section 3.7. We also manually perform

loop őssion in hmmer to allow SCC to better divide different striding memory accesses

into parallel tasks that access separate cache lines (Section 3.4.4). We’ll analyze the

impact of these manual task-splitting code modiőcations later. lbm and milc use

simple modiőcations to avoid false sharing. In milc, we move the declarations of

variables into loops, scoping the variables more tightly, when they are used to hold

short-lived values within each loop iteration. This enables SCC’s privatization to

avoid false sharing conŕicts (Section 3.2.3).

4.2 Results

4.2.1 SCC performance

Figure 4-1a reports the performance of SCC normalized to original serial code running

on a 1-core system (higher is better). On 4 cores, SCC scales all benchmarks well,
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Figure 4-1: Comparison of (a) performance and (b) execution time of SCC on 1-, 4-,
and 36-core systems, normalized to the Original serial code on a 1-core system.

achieving gmean 2.4× speedup over the original serial code. SCC achieves linear

speedups to 36 cores on libquantum and lbm, 28× and 29×, respectively. SCC

achieves gmean speedup of 6.7× at 36 cores compared to the original serial code.

Figure 4-1b provides further insight into these results. Each bar shows the execution

time (lower is better) of SCC at 1, 4, and 36 cores, relative to the execution time of

the original serial version. The 1-core SCC bars show that SCC introduces modest

overheads of up to 26% for őve of the benchmarks. Overall, 1-core SCC is gmean 31%

slower than the serial versions due to higher overheads in astar and hmmer. These

overheads are reasonable when considering that SCC divides these programs into very

őne-grain tasks, tens to few hundred cycles long, as shown in Table 4.2. In return,

short tasks make aborts cheap and confer large speedups: SCC is 2.8× faster at 4

cores, and 8.8× faster at 36 cores, than it is at 1 core.
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Figure 4-1b also shows a breakdown of how cycles are spent. In SCC, cores execute

(i) tasks that later commit or (ii) later abort, and spend cycles (iii) stalled on a full

commit queue, (iv) idle because there are no tasks available to run, or (v) in other

overheads.

Figure 4-1b shows that, on all benchmarks at 4 cores, cores spent most of their

time executing useful work that will commit. Because hmmer, mcf, and sphinx3 do

not scale beyond 4 cores, their execution time changes little from 4 to 36 cores, with

the additional cores mainly running more speculative tasks that abort. The other four

benchmarks scale to 36 cores, with aborts making up a minority of execution time.

Furthermore, little time is spent idle. This demonstrates that, when a benchmark

has sufficient parallelism, SCC spawns useful tasks sufficiently ahead of time so that

task scheduling is done off the critical path by task units, keeping cores busy actually

executing tasks rather than waiting on tasks to arrive.

4.2.2 Benchmark analysis

Several benchmarks reveal interesting behaviors and show the need for speculative

parallelization.

lbm and libquantum have plentiful parallelism in their inner loops, but compilers

cannot statically parallelize all of them, as prior work notes [38]. SCC scales these

0 20 40 60 80 100

Cores

0

20

40

60

80

100

P
e

rf
o

rm
a

n
c
e

lbm

libqntm

Figure 4-2: SCC’s speedup over serial code up to 100 cores.

43



benchmarks by spawning loop iterations with highly parallel spawner trees. Figure 4-2

shows that linear scaling continues beyond 36 cores: SCC achieves 69× speedup for

both libquantum and lbm on 100 cores.

SCC also őnds signiőcant parallelism in milc, by privatizing variables scoped within

loops (Section 3.2.3) and composing parallelism across loops containing function calls.

As a result, SCC scales milc to 12× at 36 cores.

astar is parallelized as discussed in Section 3.8, yielding 5.7× speedup on 36 cores.

To our knowledge, SCC is the őrst compiler to obtain any meaningful speedup over

the serial version of astar. hmmer and sphinx3 also use task-splitting annotations

to reduce the impact of contentious data. SCC thus őnds some parallelism in hmmer

and sphinx3, achieving 1.6× and 1.9× speedups on 4 cores over the serial code,

respectively.

Finally, SCC also őnds parallelism in mcf. We add no annotations to the source

code. A majority of time in mcf is spent in pointer-chasing loops, which SCC pipelines

using chain expansion (Section 3.4.3). This automatically achieves 2.0× speedup on 4

cores with no programmer effort. Prior work had investigated an earlier version of

mcf from SPECCPU2000 and found that manually selecting good task boundaries

in multiple hot code regions can achieve less than 3× overall speedup [7,41]. These

approaches are complementary, and future work could combine them to yield greater

speedups.

4.2.3 Sensitivity studies

We study the effects of two transformations, loop expansion and spatial hint generation,

which are key to the performance of some benchmarks that scale beyond 4 cores.

Analysis of loop expansion: To show the importance of SCC’s balanced spawner

trees, Figure 4-3a compares the execution time of SCC and SCC variants without

progressive expansion for loops with unknown bounds (-U) or with spawner trees

disabled for all loops (-B). Loops for which spawner trees are disabled use chain

expansion instead. These results show that spawner trees always help and are often

crucial for performance. astar’s execution time increases by 66% at 36 cores without

progressive expansion. Meanwhile, although we saw spawner trees allowed libquantum

and lbm to scale linearly to 100 cores, Figure 4-3b shows libquantum and lbm scale
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Figure 4-3: Normalized execution time for SCC when disabling different features:
(a,b) disabling spawner trees for unbounded loops (-U) or all loops (-B), and (c)
disabling spatial hint generation (-H). (d) Execution time increases when removing
task-splitting annotations (-A).

much worse without spawner trees, and their performance at 100 cores drops by 3.4×

and 2.8×, respectively.

Analysis of locality-aware execution: Figure 4-3c shows the effect of disabling

spatial hint generation, which causes tasks that formerly used a spatial hint to be

sent to a random tile. Locality-aware execution is critical to scale astar. We expect

locality-aware execution to be more beneőcial as the system scales, as shown in prior

work [26].

Analysis of task-splitting annotations: Figure 4-3d shows the performance impact

of disabling code modiőcations that encourage the compiler to split tasks at őner

granualrity (Section 3.7) for the three benchmarks that use them: astar, hmmer, and

sphinx3. All three become overwhelmed with expensive aborts with code modiőcations

removed, highlighting the importance of identifying accesses to contentious data

structures and splitting them into őne-grain tasks. As shown by Table 4.2, minimal

code modiőcations are required in each case.

Comparison with out-of-order cores: We őnd that SCC is complementary to

superscalar out-of-order cores. Figure 4-4 shows the performance of our benchmarks

on out-of-order (OoO) cores, on a common scale with Figure 4-1a. We replaced our

in-order core model with a Haswell-like 4-wide superscalar OoO core. For fairness,

we keep cores clocked at 2GHz. The OoO core achieves gmean 2.4× speedup on the

original serial code. On top of this, SCC delivers a gmean 2.1× speedup on 4 OoO

cores, and gmean 5.9× on 36 OoO cores, which is a 14× speedup over the in-order
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core baseline. This shows that design of SCC is orthogonal to the design of individual

cores. Each core exploits ILP within the tasks SCC distributes to it, and SCC exploits

ordered parallelism over far larger regions than OoO cores.
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Chapter 5

Conclusion

We have presented SCC, a compiler that extracts őne-grain parallelism from sequential

C/C++ programs. SCC exploits hardware features of the Swarm architecture with

novel compiler transformations. It extracts őne-grain tasks to maximize parallelism,

spawns tasks far in advance and out of order to keep cores busy, performs locality-aware

execution, and optimizes tasks to reduce overheads, all while maintaining strictly

deterministic and sequential semantics.

We use SCC to parallelize seven SPECCPU2006 benchmarks, which are repre-

sentative of real-world applications that are challenging to parallelize. We obtain a

speedup of gmean 6.7× and up to 29× on 36 cores, and can scale even further, up

to 69× on 100 cores. This demonstrates that speculative parallelization is proőtable

at larger scales and on a broader range of programs than shown in prior work. SCC

also demonstrates that, with sufficient hardware support, it is possible to bring the

performance beneőts of parallelism to sequential programs. Future general-purpose

processors that offer this hardware support will enable average programmers familiar

with sequential programming to beneőt from the increasing number of cores in their

machines.

5.1 Future work

SCC raises interesting opportunities for future work. SCC’s performance relies crucially

on identifying accesses to contentious locations in memory and isolating them into
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őne-grain tasks. In some benchmarks, we had to manually modify or annotate code

to enable SCC to do this. These code modiőcations all retained strictly sequential

semantics, so they could be performed by a programmer without needing to reason

about a more complex parallel execution model. Nonetheless, it is appealing to

consider future work that would fully automate the identiőcation of contentious data

and select good task structures without manual intervention. Possible approaches

include using a proőling pass during compilation, using heuristics or machine learning

to identify code patterns associated with contentious data accesses, or techniques

to dynamically change the task structure of the code at runtime based on observed

behavior.

SCC also paves the road to further research on software and hardware techniques

to improve the performance of őne-grain speculative tasks. The Swarm architecture

has so far used conventional general-purpose core designs, but it is appealing to adapt

the core to optimize for the performance of such őne-grain tasks, and to further reduce

task overheads. One approach to do this would be to more tightly integrate task spawn

and dispatch mechanisms into the core pipeline, to allow overlapping the execution of

multiple tasks. On the software side, further work can be done in reducing overheads

by optimizing how closures are allocated in the heap. SCC’s loop closure sharing

amortizes the overhead of heap allocations across the iterations of a loop, but SCC

would beneőt from from a more holistic approach to analyzing the communication of

values across tasks and amortizing their allocation overheads.

Another direction for research would be to explore what new primitives should be

offered to programmers to enable programming patterns whose behavior can still be

understood sequentially, but yield more efficient parallelized code. SCC’s scalability is

limited by contention in data structures and algorithms chosen by the programmer.

Research into new programming languages, or high-level programming frameworks and

libraries, could make it as easy for programmers to write code using data structures

and algorithms amenable to scaling to tens or hundreds of cores with SCC’s techniques

and Swarm hardware support.

Finally, while so far SCC has focused on parallelizing single programs, further

consideration needs to be given to building more complete systems, including system

software and scheduling techniques to support speculatively parallelized multiprogram
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workloads. If some or all of the programs running on a Swarm machine are parallelized

at őne granularity, that presents new opportunities for system software working with

hardware scheduling mechanisms to dynamically direct tasks to different cores at

the time scale of microseconds, potentially better balancing the goals of throughput,

fairness, and quality of service.

49



50



Bibliography

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, & Tools, 2nd ed., 2006.

[2] A. W. Appel, Compiling with Continuations. Cambridge university press, 1992.

[3] A. W. Appel and D. B. MacQueen, łStandard ML of New Jersey,ž in Proc.
of the 3rd Intl. Symp. on Programming Language Implementation and Logic
Programming, 1991.

[4] Arvind, D. August, K. Pingali, D. Chiou, R. Sendag, and J. Y. Joshua, łProgram-
ming multicores: Do applications programmers need to write explicitly parallel
programs?ž IEEE Micro, no. 3, 2010.

[5] A. Bhowmik and M. Franklin, łA general compiler framework for speculative
multithreading,ž in Proc. SPAA, 2002.

[6] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, łA practical
automatic polyhedral program optimization system,ž in Proc. PLDI, 2008.

[7] M. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. August, łRevisiting
the sequential programming model for multi-core,ž in Proc. MICRO-40, 2007.

[8] S. Campanoni, K. Brownell, S. Kanev, T. M. Jones, G.-Y. Wei, and D. Brooks,
łHELIX-RC: An architecture-compiler co-design for automatic parallelization of
irregular programs,ž in Proc. ISCA-41, 2014.

[9] S. Campanoni, T. Jones, G. Holloway, V. J. Reddi, G.-Y. Wei, and D. Brooks,
łHELIX: automatic parallelization of irregular programs for chip multiprocessing,ž
in Proc. CGO, 2012.

[10] J. L. Carter and M. Wegman, łUniversal classes of hash functions (extended
abstract),ž in Proc. STOC-9, 1977.

[11] D. Chakrabarti, Y. Zhan, and C. Faloutsos, łR-MAT: A recursive model for graph
mining,ž in Proc. SDM, 2004.

[12] P. Chen, M. Hung, Y. Hwang, R. D. Ju, and J. K. Lee, łCompiler support for
speculative multithreading architecture with probabilistic points-to analysis,ž in
Proc. PPoPP, 2003.

51



[13] Z.-H. Du, C.-C. Lim, X.-F. Li, C. Yang, Q. Zhao, and T.-F. Ngai, łA cost-driven
compilation framework for speculative parallelization of sequential programs,ž in
Proc. PLDI, 2004.

[14] A. Estebanez, D. R. Llanos, and A. Gonzalez-Escribano, łA survey on thread-level
speculation techniques,ž ACM CSUR, vol. 49, no. 2, 2016.

[15] J. Fix, N. P. Nagendra, S. Apostolakis, H. Zhang, S. Qiu, and D. I. August,
łHardware multithreaded transactions,ž in Proc. ASPLOS-XXIII, 2018.

[16] M. Frigo, C. E. Leiserson, and K. H. Randall, łThe implementation of the Cilk-5
multithreaded language,ž in Proc. PLDI, 1998.

[17] M. J. Garzarán, M. Prvulovic, J. M. Llabería, V. Viñals, L. Rauchwerger, and
J. Torrellas, łTradeoffs in buffering speculative memory state for thread-level
speculation in multiprocessors,ž in Proc. HPCA-9, 2003.

[18] T. Grosser, A. Größlinger, and C. Lengauer, łPolly - performing polyhedral
optimizations on a low-level intermediate representation,ž Parallel Processing
Letters, vol. 22, no. 4, 2012.

[19] M. Halbherr, Y. Zhou, and C. F. Joerg, łMIMD-style parallel programming based
on continuation-passing threads,ž in Proc. of the 2nd Intl. Workshop on Massive
Parallelism, 1994.

[20] P. Hammarlund, A. J. Martinez, A. A. Bajwa, D. L. Hill, E. Hallnor, H. Jiang,
M. Dixon, M. Derr, M. Hunsaker, R. Kumar, R. B. Osborne, R. Rajwar, R. Singhal,
R. D’Sa, R. Chappell, S. Kaushik, S. Chennupaty, S. Jourdan, S. Gunther,
T. Piazza, and T. Burton, łHaswell: The fourth-generation intel core processor,ž
IEEE Micro, vol. 34, no. 2, 2014.

[21] L. Hammond, M. Willey, and K. Olukotun, łData speculation support for a chip
multiprocessor,ž in Proc. ASPLOS-VIII, 1998.

[22] M. A. Hassaan, M. Burtscher, and K. Pingali, łOrdered vs. unordered: A compar-
ison of parallelism and work-efficiency in irregular algorithms,ž in Proc. PPoPP,
2011.

[23] M. A. Hassaan, D. Nguyen, and K. Pingali, łKinetic Dependence Graphs,ž in
Proc. ASPLOS-XX, 2015.

[24] J. L. Henning, łSPEC CPU2006 benchmark descriptions,ž ACM SIGARCH
Computer Architecture News, vol. 34, no. 4, 2006.

[25] J. Huang, A. Raman, T. B. Jablin, Y. Zhang, T.-H. Hung, and D. I. August,
łDecoupled software pipelining creates parallelization opportunities,ž in Proc.
CGO, 2010.

52



[26] M. C. Jeffrey, S. Subramanian, M. Abeydeera, J. Emer, and D. Sanchez, łData-
centric execution of speculative parallel programs,ž in Proc. MICRO-49, 2016.

[27] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez, łA scalable
architecture for ordered parallelism,ž in Proc. MICRO-48, 2015.

[28] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez, łUnlocking
ordered parallelism with the Swarm architecture,ž IEEE Micro, vol. 36, no. 3,
2016.

[29] M. C. Jeffrey, V. A. Ying, S. Subramanian, H. R. Lee, J. Emer, and D. Sanchez,
łHarmonizing speculative and non-speculative execution in architectures for or-
dered parallelism,ž in Proc. MICRO-51, 2019.

[30] T. A. Johnson, R. Eigenmann, and T. N. Vijaykumar, łMin-cut program decom-
position for thread-level speculation,ž in Proc. PLDI, 2004.

[31] A. Kejariwal, X. Tian, M. Girkar, W. Li, S. Kozhukhov, U. Banerjee, A. Nicolau,
A. V. Veidenbaum, and C. D. Polychronopoulos, łTight analysis of the perfor-
mance potential of thread speculation using SPEC CPU2006,ž in Proc. PPoPP,
2007.

[32] G. Kerneis and J. Chroboczek, łContinuation-passing C: compiling threads to
events through continuations,ž Higher-Order and Symbolic Computation, vol. 24,
no. 3, 2011.

[33] C. Kim, D. Burger, and S. W. Keckler, łAn adaptive, non-uniform cache structure
for wire-delay dominated on-chip caches,ž in Proc. ASPLOS-X, 2002.

[34] W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, and J. Torrellas, łPOSH:
a TLS compiler that exploits program structure,ž in Proc. PPoPP, 2006.

[35] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, łPin: Building customized program analysis tools with
dynamic instrumentation,ž in Proc. PLDI, 2005.

[36] J. M. Martinez Caamaño, A. Sukumaran-Rajam, A. Baloian, M. Selva, and
P. Clauss, łAPOLLO: Automatic speculative POLyhedral Loop Optimizer,ž in
Proc. of the 7th International Workshop on Polyhedral Compilation Techniques,
2017.

[37] G. Ottoni, R. Rangan, A. Stoler, and D. I. August, łAutomatic thread extraction
with decoupled software pipelining,ž in Proc. MICRO-38, 2005.

[38] V. Packirisamy, A. Zhai, W.-C. Hsu, P. C. Yew, and T. F. Ngai, łExploring
speculative parallelism in SPEC2006,ž in Proc. ISPASS, 2009.

[39] H. Pan, K. Asanović, R. Cohn, and C.-K. Luk, łControlling program execution
through binary instrumentation,ž SIGARCH Comput. Archit. News, vol. 33, no. 5,
2005.

53



[40] G. D. Plotkin, łCall-by-name, call-by-value and the λ-calculus,ž Theoretical
Computer Science, vol. 1, 1975.

[41] M. K. Prabhu and K. Olukotun, łExposing speculative thread parallelism in
SPEC2000,ž in Proc. PPoPP, 2005.

[42] C. G. Quiñones, C. Madriles, J. Sánchez, P. Marcuello, A. González, and D. M.
Tullsen, łMitosis compiler: An infrastructure for speculative threading based on
pre-computation slices,ž in Proc. PLDI, 2005.

[43] A. Raman, H. Kim, T. R. Mason, T. B. Jablin, and D. I. August, łSpeculative
parallelization using software multi-threaded transactions,ž in Proc. ASPLOS-XV,
2010.

[44] R. Rangan, N. Vachharajani, G. Ottoni, and D. I. August, łPerformance scalability
of decoupled software pipelining,ž ACM TACO, vol. 5, no. 2, 2008.

[45] R. Rangan, N. Vachharajani, M. Vachharajani, and D. I. August, łDecoupled
software pipelining with the synchronization array,ž in Proc. PACT-13, 2004.

[46] J. Renau, K. Strauss, L. Ceze, W. Liu, S. Sarangi, J. Tuck, and J. Torrellas,
łThread-level speculation on a CMP can be energy efficient,ž in Proc. ICS’05,
2005.

[47] J. Renau, J. Tuck, W. Liu, L. Ceze, K. Strauss, and J. Torrellas, łTasking
with out-of-order spawn in TLS chip multiprocessors: Microarchitecture and
compilation,ž in Proc. ICS’05, 2005.

[48] T. B. Schardl, W. S. Moses, and C. E. Leiserson, łTapir: Embedding fork-join
parallelism into LLVM’s intermediate representation,ž in Proc. PPoPP, 2017.

[49] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola, H. V. Simhadri,
and K. Tangwongsan, łBrief announcement: The problem based benchmark suite,ž
in Proc. SPAA, 2012.

[50] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar, łMultiscalar processors,ž in Proc.
ISCA-22, 1995.

[51] G. L. Steele Jr, łRABBIT: A compiler for SCHEME,ž Massachusetts Institute of
Technology, Tech. Rep. AITR-474, 1978.

[52] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry, łA scalable approach to
thread-level speculation,ž in Proc. ISCA-27, 2000.

[53] J. G. Steffan and T. C. Mowry, łThe potential for using thread-level data specu-
lation to facilitate automatic parallelization,ž in Proc. HPCA-4, 1998.

[54] C. Strachey and C. P. Wadsworth, łContinuations: A mathematical semantics
for handling full jumps,ž Oxford University Computing Laboratory, Tech. Rep.
PRG-11, 1974.

54



[55] S. Subramanian, M. C. Jeffrey, M. Abeydeera, H. R. Lee, V. A. Ying, J. Emer,
and D. Sanchez, łFractal: An execution model for őne-grain nested speculative
parallelism,ž in Proc. ISCA-44, 2017.

[56] J.-Y. Tsai, Z. Jiang, and P.-C. Yew, łCompiler techniques for the superthreaded
architectures,ž Intl. Journal of Parallel Programming, vol. 27, no. 1, 1999.

[57] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni, and D. I.
August, łSpeculative decoupled software pipelining,ž in Proc. PACT-16, 2007.

[58] T. Vijaykumar and G. S. Sohi, łTask selection for a multiscalar processor,ž in
Proc. MICRO-31, 1998.

[59] C. von Praun, L. Ceze, and C. Caşcaval, łImplicit parallelism with ordered
transactions,ž in Proc. PPoPP, 2007.

[60] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina,
C.-C. Miao, J. F. Brown III, and A. Agarwal, łOn-chip interconnection architecture
of the Tile Processor,ž IEEE Micro, vol. 27, no. 5, 2007.

[61] J. Whaley and C. Kozyrakis, łHeuristics for proőle-driven method-level speculative
parallelization,ž in Proc. 2005 Intl. Conf. on Parallel Processing, 2005.

[62] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill, M. M. Swift,
and D. A. Wood, łLogTM-SE: Decoupling hardware transactional memory from
caches,ž in Proc. HPCA-13, 2007.

[63] A. Zhai, C. B. Colohan, J. G. Steffan, and T. C. Mowry, łCompiler optimization
of scalar value communication between speculative threads,ž in Proc. ASPLOS-X,
2002.

[64] A. Zhai, C. B. Colohan, J. G. Steffan, and T. C. Mowry, łCompiler optimization
of memory-resident value communication between speculative threads,ž in Proc.
CGO, 2004.

[65] Y. Zhang, L. Rauchwerger, and J. Torrellas, łHardware for speculative run-time
parallelization in distributed shared-memory multiprocessors,ž in Proc. HPCA-4,
1998.

55


	Introduction
	Contributions

	Background and Motivation
	Related work
	Non-speculative parallelizing compilers
	Speculative parallelizing compilers
	Thread-level speculation (TLS)
	Speculative pipeline parallelism

	SCC motivation
	Decoupled spawn enables selective aborts
	Fine-grain tasks make aborts cheap
	Balanced trees make fine-grain tasks scale
	Nested parallelism enables composition

	Swarm architecture
	Swarm execution model
	Swarm microarchitecture


	The Swarm C/C++ Compiler
	SCC overview
	Eliminating the shared call stack
	Variable bundling
	Continuation-passing style conversion
	Privatization

	Whole-program fine-grain parallelization
	Task delineation
	Task ordering
	Task spawn decoupling

	Efficient loop expansion
	Balanced tree expansion
	Progressive loop expansion
	Chain expansion
	Loop task coarsening

	Locality-aware speculation
	Task lowering
	Program annotations
	Putting it all together

	Evaluation
	Experimental methodology
	Simulated hardware
	Benchmarks

	Results
	SCC performance
	Benchmark analysis
	Sensitivity studies


	Conclusion
	Future work


