Efficient Techniques for Inductance Extraction of Complex
3-D Geometries
by
Mattan Kamon

B.S. Engineering Science, Pennsylvania State University (1991)
M.A. Mathematics, Pennsylvania State University (1991)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 1994
(© Massachusetts Institute of Technology 1994. All rights reserved.

Author.................. LRV SR K et e rosesareassasasssasasacrasereannsnsanans
Department of Electrical Engineering and Computer Science
January 28, 1994

Certified by p e Tt hae e, J *b K . Wh ..
acob K. ite

Associate Professor, Department of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by G R R Y e i P R
Frederic R. Morgenthaler

Chairmin, Departmel]ti)l Committee on Graduate Students

MASSACHUSETTS INSHFUTE
CFTECMMGLOGY

APR 06 1994

LIBRARIES

1
ARCHIVES

Efficient Techniques for Inductance Extraction of Complex 3-D

Geometries
by

Mattan Kamon

Submitted to the Department of Electrical Engineering and Computer Science
on January 28, 1994, in partial fulfiliment of the
requirements for the degree of
Master of Science

Abstract

This thesis describes the efficient computation of frequency dependent inductances and re-
sistances for complex three-dimensional geometries of conductors. A mesh analysis equation
formulation technique combined with a multipole-accelerated Generalized Minimal Resid-
ual (GMRES) matrix solution algorithm is used to compute the inductance and resistance
matrices in nearly order n time and memory where n is the number of volume-filaments.
Previous approaches have required order n® time and order n? memory. Results from exam-
ples are given to demonstrate that this multipole-accelerated algorithm can reduce required
computation time and memory by more thap an order of magnitude for realistic integrated
circuit packaging problems.

Thesis Supervisor: Jacob K. White
Title: Associate Professor, Department of Electrical Engineering and Computer Science

Acknowledgments

First and foremost, I'd like to thank my research advisor, Jacob White, for his guidance and
enthusiasm. He is always patient and willing to spend the time to hear any of my questions
or ideas.

I would also like to thank officemate Joel Phillips for many very specific and useful
discussions and also as someone at whom I can just throw ideas.

Much of the research group cannot go without thanks. For instance, Songmin Kim for
his discussions on integral formulations, Keith Nabors for multipole questions, and Ignacio
McQuirk for his practical examples. Then there are our many “systems” people who have
been willing to do such things as replace an operating system on a moment’s notice to help
me meet a deadline.

This work was supported by the Defense Advanced Research Projects Agency con-
tract N00014-91-J-1698, the National Science Foundation contract (MIP-8858764 A02), a
National Science Foundation fellowship, and grants from I.B.M. and Digital Equipment

Corporation.

Contents

1 Introduction

2 Background Formulation

2.1 Integral Equation
2.1.1 Discretization
2.1.2 Nodal Analysis Formulation

3 The Mesh-Based Approach

3.1 Mesh Analysis
3.2 Using an iterativesolver
3.3 Nodal versus Mesh Analysis

4 The Multipole Approach
4.1 The Electrostatic Analogy
4.2 The Hierarchical Multipole Algorithm

5 Accelerating Iteration Convergence

51 LocallInversion
5.2 Sparsified Preconditioners
5.3 Positive definite sparsificationsof L
5.3.1 The High Frequency Limit
5.3.2 The General Case

5.3.3 Performance of Sparsified-L Preconditioners
68 Algorithm Results

7 Conclusions

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

15

i7
18
20
23

25
25
27
27

34
34
35

38

40

41

41

46
48

51

58

A FastHenry Implementation 59

B FastHenry User’s Manual 63
B.1 How to Prepare Input Files 66
B.1.1 A Simple Example o0 66
B.1.2 Input File Syntax i 68

B.2 Running FastHenry oo 73
B.2.1 Command Line Options 73
B.22 Example Run e 75
B.2.3 Processing the Qutput 76
B.2.4 Other Examples 7

B.3 Compiling FastHenry 77
B.3.1 Compilation Procedure, 78
B.3.2 Producing this Guide, 78

List of Figures

2-3
2-4

3-1

3-3

3-4

4-1
4-2

5-1

Two conductors, each with an input and output terminal.
Single pin of a pin-connect divided into 5 sections, each of which is a bundle

of 35 fillaments. e

Discretization of a Ground Plane. Segments are drawn one-third actual width.

One conductor, (a) as piecewise-straight sections, (b) discretized into fila-

ments, (¢) modelled as a circuit. o 0000

One conductor, (a) as piecewise-straight sections, (b) discretized into fila-
ments, (¢) modelled as a circuit. 0oL
Eigenvalue spectrum of M LM* for a coarse discretization of the printed cir-
cuit boardexample L. L L L e e
Eigenvalue spectrum of S, the sparse tableau formulation, for a coarse dis-
cretization of the printed circuit board example
Convergence history of (A), the Sparse Tableau Formulation, and (B), the
Mesh Formulation for a coarse discretization of the printed circuit board
example. L L e e e e e e e e e e e e
Convergence history for the Sparse Tableau Formulation using L~! as a pre-

conditioner e

The evaluation point potentials are approximated with a multipole expansion.

The evaluztion point potentials are approximated with a local expansion.

The steps leading to the third row of the preconditioner P (“X” denotes a
non-zero element). Note that for illustration, P; is drawn as a block along

the diagomal.

18

20
21

21

26

29

30

31

33

36
37

5-3

5-4

5-5

5-9

5-10

6-1

6-2

6-3

6-4
6-5

Two ground plane meshes due to external sources. One source is connected
between points A and B and the other between C and D.
Convergence of GMRES applied to PCB example with no preconditioning
(A), sparsity-based preconditioning (B), local-inversion preconditioning (C),
and sparsified-L preconditioning using the diagonal of L (D).
Convergence of GMRES applied to PCB example with threshold precondi-
tioning for € = 107! (A), and diagonal-of-L preconditioning (B)
Eigenvalues for the positive definite diagonal-of- L preconditioned system and
the indefinite threshold preconditioned system fore =0.1.
Convergence of GMRES using the sparsified-L preconditioner on printed cir-
cuit board package at various frequencies, ...
Half of a cerquad package. Thirty-five pins shown.
A portion of a printed circuit board directly underneath a PGA package. Two
resistive reference planes sandwiching 255 copper lines. Only the outline of
the planesisdrawn.
Convergence of GMRES applied to the cerquad example with cube-block pre-
conditioning (A), section-block preconditioning (B), diagonal-of-L precondi-
tioning (C), and local inversion precondtioning (D).
Convergence of GMRES applied to the PCB example with cube-block pre-
conditioning (A), and diagonal-of-L preconditioning (B), and local-inversion

preconditioning (C).

Two Traces over a Solid Ground Plane. The return path for the traces is
through the plane. Traces are widened for illustration.
Two Traces over a Divided Ground Plane. The return path for the traces is
through the plane. The divided portions are connected together toward the
edges as showr. Traces are widened for illustration..
Current Distribution in Solid Ground Plane at DC and high frequency . . .
Current Distribution in Divided Ground Plane at DC and high frequency

Mutual Inductance Between Traces i .

10

40

43

43

44

48

49

49

50

50

52

52
53
54
54

6-6

6-7

B-1
B-2

Comparison of the CPU time to compute the reduced inductance matrix for
two traces over a solid plane using direct factorization, GMRES, and GMRES
with with multipole acceleration.
Comparison of the memory required using explicit matrix-vector products
and using the multipole algorithm.
Comparison of the CPU time to compute the reduced inductance matrix for
the PCB package using dircct factorization, GMRES, and GMRES with with

multipole acceleration. oo oo

Example Segment for Sample Input File
Segment discretized into 35 filaments 00

Discretization of a Ground Plane. Segments are one-third actual width.

11

55

56

12

List of Tables

6.1 Comparison of the accuracy of the computed inductance matrix entries be-
tween direct factorization, GMRES with explicit matrix-vector products, and
the multipole-accelerated GMRES algorithm. 52
6.2 Execution times and iteration counts for diagonal-of-L and cube-block pre-
conditioning of the printed circuit board example. Times are in CPU seconds

for the DEC AXP3000/500. . . « o o v ot et e e e e 57

13

14

Chapter 1

Introduction

A wide range of integrated circuit and packaging design problems require accurate estimates
of the coupling inductances of complicated three-dimensional structures. The frequencies
of interest generally require magnetoquasistatic analysis, and the most commonly used
approach is to apply finite-difference or finite-element techniques to a differential problem
formulation. However, finite-element techniques require that the entire 3-D volume be
discretized, and for complex structures, the generation of such a volume discretization
can become cumbersome and require prohibitive execution time. Instead, volume-element
methods can be applied to solving integral formulations of the problem in which case only
the interior of the conductors need be discretized. Unfortunately, volume-element methods
generate dense matrix problems which, if solved directly, grow in computational cost like
n3 and in memory like n2, where n is the number of elements into which the problem is
discretized.

This thesis describes a method for magnetoquasistatic analysis of complicated three-
dimensional packages and interconnect. The method uses a standard volume-element dis-
cretization of an integral formulation from magnetoquasistatic analysis also known as the
Partial Element Equivalent Circuit (PEEC) method {16]. In this work, however, the dis-
cretized equations are reformulated using a circuit analysis technique known as mesh anal-
ysis. The mesh formulation leads to a dense system of equations which is solved iteratively
using a rapidly converging Krylov-subspace method known as Generalized Minimal Resid-
ual (GMRES). Finally, since the system of equations is dense, the matrix-vector product

required at each iteration of GMRES is expensive and to reduce its cost, a multipole-

15

accelerated algorithm is used. The combination of these techniques yields a packaging
analysis program, named FastHenry, whose computational complexity and memory re-
quirements grow linearly with the number of volume-elements required to discretize the
conductors.

The next chapter gives background details about computing inductances using the PEEC
method. It begins with the integral formulation derived from Maxwell’s equations under
the magnetoquasistatic assumption and continues with a description of the discretization
of conductor volumes. The final section takes these ideas and discusses the use of nodal
analysis which has been used in the past to give a system of equations which must be solved
to extract the desired inductance parameters. Chapter 3 discusses the mesh formulation
and its advantages over nodal analysis for solution by iterative methods. Chapter 4 de-
scribes the multipole-acceleration of the matrix vector products needed at each iteration of
GMRES. A significant portion of this thesis has been the development of preconditioners
to accelerate GMRES convergence as discussed in Chapter 5. Chapter 6 demonstrates the
use of FastHenry and gives accuracy and efficiency results for a number of examples and
conclusions are given in Chapter 7. Appendix A gives a brief description of the implemen-
tation in FastHenry and Appendix B is the User’s Manual distributed with the FastHenry

code.

16

Chapter 2

Background Formulation

Inductance extraction is the process of computing the complex frequency-dependent impedance
matrix of a multiterminal system, such as an electrical package, under the magnetoqua-
sistatic approximation [9]. For a problem of k terminal pairs, let Z,(w) € CF¥k denote this

impedance matrix at frequency w. Then,
Z(w)(w) = Vy(w), (2.1)

where I,,V, € C™ are vectors of the terminal current and voltage phasors, respectively {3].
Note that column i of of Z, can be computed by setting entry i of I, to one, the rest to
zero, and then computing the resulting voltage vector V,. The it* column of Z, is then
given by V.

For illustration, consider a geometry consisting of two input-output terminal pairs as

shown in Fig. 2-1. For this problem,

Zr(w) = Ry(w) + jwLly(w) = Bulw)+]:WLll(w) Fral) +]iwL12(w) (2.2)
Roy(w) + jwLa(w) Raz(w) + jwLaa(w)

where R, is referred to as the resistance matrix, and L, the inductance matrix. Also, L1
and Lo, are the self-inductances of the conductors, and L1, = Lo is the mutual inductance.

As described above, column one of Z, can be computed by computing the voltages Va
and Vi, resulting from setting I, =1and I,, = 0. Note that instead, Y; = Z7! could be
computed in a similar manner by setting V, and computing I,. The rest of this chapter
describes the integral formulation and standard discretization used to compute the resultant

voltages, V,, required to compute Z,, or currents, I, to compute Y.

17

Figure 2-1: Two conductors, each with an input and output terminal.

2.1 Integral Equation

Several integral equation-based approaches have been used to derive the Z, associated
with a given package or interconnect structure [15, 1]. These integral formulations are
derived by assuming sinusoidal steady-state, and then applying the magnetoquasistatic
assumption that the displacement current, ewE, is negligible everywhere. Given this, begin

with Maxwell’s Equations in sinusoidal steady state,

VXE = —jwuH (2.3)
VxH = jweE+J (2.4)
V-(eE) = p (2.5)
V.-(uH) = 0 (2.6)

where w is the angular frequency. In addition, within the conductors, by Ohm’s law,
J=0cF (2.7)

where o is the conductivity. As stated above, the frequencies of interest will be considered
small enough such that the displacement current, jweFE, can be neglected in (2.4). This

assumption is clearly justified within the conductors where the conductivity is large. Under

18

this quasistatic assumption, the divergence of (2.4) gives current conservation,
V.J=0. (2.8)
Note that for this work, we wish to allow for ideal current sources, and thus (2.8) becomes
V- J = I(r). (2.9)

From this point, we wish to eliminate the field quantities, E and H , in favor of the
current density, J , and applied voltages. From Gauss’ Law of magnetic flux, (2.6), the

magnetic flux can be written as

pH=VxA (2.10)

where A is the vector potential. Applying this to (2.3),
VX (E + jwA) =0. (2.11)
This implies that there exists a scalar function, ®, such that
—-Vdé =F+jwA (2.12)

where ® will be called the scalar potential. We require one final relation to relate the vector

potential, A to the current density, J. By use of (2.10) and by choosing the Coulomb gauge,

V-A=0. (2.13)
Equation (2.4) then becomes
-~ V2A=pJ (2.14)
and thus ,
A(r) = ﬁ /V , “;Jg%,"dv’ (2.15)

where V' is the volume of all conductors.
Substituting (2.15) and (2.7), into (2.12) yields the following integral equation:

J j J(r'
(7) L (r

I —_— —
ol B e LR L IO} (2.16)

Using equation (2.16) plus current conservation, (2.9), the conductor current density,

J , and scalar potential, ®, can be computed [1].

19

Current Flow

5 filaments

-— .

7 filaments

Figure 2-2: Single pin of a pin-connect divided into 5 sections, each of which is a bundle of
35 filaments.

2.1.1 Discretization

Given the magnetoquasistatic assumption, the current within a long thin conductor can be
assumed to flow parallel to its surface, as there is no charge accumulation on the surface.
Thus, for long thin structures such as pins of a package or connector, the conductor can
be divided into filaments of rectangular cross-section inside which the current is assuined
to flow along the length of the filament. In order to properly capture skin and r -oximity
effects in these long, thin conductors, the cross section of the conductor can be divided into
a bundle of parallel filaments as shown in Fig. 2-2. It is also possible to use the filament
approach for planar strucicures, such as ground planes, where the current distribution is
two-dimensional. In such cases, a grid of filaments can be used, as in Fig. 2-3. Once the
conductors are discretized into filaments, the interconnection of the current filaments can
be represented with a planar graph, where the n nodes in the graph are associated with
connection points between filaments, and the b branches in the graph represent the filaments
into which each conductor segment is discretized. An example graph, or circuit, for a single
conductor example is shown in Fig. 2-4.

If the current density inside each filament is assumed to be constant, then the approxi-
mation to the unknown current distribution can then be written as

J(r)~ zb: Luwi(r)k (2.17)

=1

20

(b)

—D—— Filament branch

Node

-
O Source branch

(©

Figure 2-4: One conductor, (a) as piecewise-straight sections, (b) discretized into filaments,
(c) modelled as a circuit.

21

where I; is the current inside filament ¢, I; is a unit vector along the length of the filament
and w;(r) is the weighting function which has a value of zero outside filament i, and 1/a;
inside, where a; is the cross sectional area. By defining the inner product of two vector

functions, a and b, by
(a,b) = / a-bdv (2.18)
v

and following the method of moments [8], a system of b equations can be generated by taking
the inner product of each of the weighting functions with the vector integral equation, (2.16).

This gives

l; . b I - ,] v
(cf_ai) L +]wj§1 (47ra,a1 / ./' | — 'r’||dV v)ii= ./ (24— 2p)d4 (219)

where [; is the length of filament ¢, a; is the cross section, ®4 and ®p are the potentials
on the filament end faces, and V; and Vj’ are the volumes of filaments ¢ and j, respectively.
Note that the right hand side of (2.19) results from integrating V® along the length of the
filament, and is effectively the average potential on face A minus the average on face B.

In matrix form, (2.19) becomes
(R+jwL), =&, — ¥p (2.20)
where I, € C? is the vector of b filament currents,
Ri=— (2.21)

is the b x b diagonal matrix of filament dc resistances,

;- J ' .
i ——dV'd 2.22
J 47.”1107 /' A, I,', _ ,,,/|| V V ()

is the b x b dense, symmetric positive definite matrix of partial inductances, and 4 and
&g are the averages of the potentials over the cross sections of the filament faces. Equation

(2.20) can also be written as
zZI, =V, (2.23)

where Z = R + jwL € C**® is called the branch impedance matrix and V, = &4 — ®p is
the vector of branch voltages.
Note that one can view, for instance, filament 7 as a resistor with resistance R;; in series

with an inductor with self-inductance L;; and mutual inductance L;; with filament j. The

22

circuit obtained from the graph described above is known as the Partial Element Equivalent
Circuit [19, 15].

It is worth noting that in the example discretization shown in Fig. 2-4b and c, the
ends of adjacent bundles of filaments are effectively shorted together at each node. This
approximation is acceptable when the conductor is long and thin and thus the transverse
current is negligible. When the conductor is not long and thin, it may be more appropriate
to join the bundles together with a small grid of short filaments or even by a full 3-D
discretization of filaments in the same manner that the ground plane in Fig. 2-3 is a 2-D

discretization.

2.1.2 Nodal Analysis Formulation

Current conservation, (2.9), must be enforced at each of # nodes where filaments connect.

This can be written as

Al =1, (2.24)

where A € R"*b is the branch incidence matrix and I, is the mostly zero vector of source
currents at the node locations. Each row in A corresponds to a filament connection node,
and each column to a filament current. Column 7 in A has two nonzero entries: —1 in the
row corresponding to the node from which filament i’s current leaves, and +1 in the row
corresponding to the node into which filament i’s current enters.

Since V2@ = 0, the branch voltages, V3, can be derived from a set of node voltages,

denoted ®,,, as in

Atd, = V. (2.25)

Combining (2.23), (2.24), and (2.25) yields
AZ7AYS, = I,. (2.26)

Notice that column ¢ of Z, can now be computed by appropriately setting the source
currents, I,, that correspond to js,‘ equal to one (unit current through conductor :), and
then solving (2.26) to compute the node voltages, ®,,. The difference of appropriate node
voltages gives the entries of V,, the vector of voltages across each of the conductors.

In most programs, the dense matrix problem in (2.26) is solved with some form of

Gaussian elimination or «irect factorization. These programs avoid forming Z~! explicitly

23

by reformulating (2.26) into the sparse tableau form [17],

Z At Iy 0
= . (2.27)

A 0 ¢, I
Using direct factorization to solve (2.27) implies that the calculation grows at least as b3,
where again b is the number of current filaments into which the system of conductors is
discretized. For complicated packaging structures, b can exceed ten thousand, and solving
(2.27) with direct factorization will take days, even using a high performance scientific

workstation.

24

Chapter 3

The Mesh-Based Approach

The obvious approach to trying to reduce the cost of solving (2.27) is to apply iterative
methods. However, such methods converge slowly because (2.27) contains equations of two
different types. Another approach is to reformulate the equations using mesh analysis, and
then apply an iterative method.

This chapter first describes the reformulation using mesh analysis and then discusses
the use of a Krylov-subspace iterative method known as GMRES (Generalized Minimal
Residual). Finally, the eigenspectra for the systems generated in (2.27) are compared to
those generated from mesh analysis as insight into the effectiveness of GMRES for solving

both system.

3.1 Mesh Analysis

In mesh analysis [3], a mesh is any loop of branches in the graph which does not enclose
any other branches. Also, the currents flowing around any mesh in the network are the
unknowns, rather than node voltages. Mesh analysis is easiest to describe if it is assumed
that sources generate explicit branches in the graph representing the discretized problem.
Kirchoff’s voltage law, which implies that the sum of branch voltages around each mesh in

the network must be zero, is represented by
MV, =V, (3.1)

where V}, is the vector of voltages across each branch except for the source branches, V; is

the mostly zero vector of source branch voltages, and M € R™*? is the mesh matrix, where

25

(a)

Voo = Vo (D

=V,

Figure 3-1: One conductor, (a) as piecewise-straight sections, (b) discretized into filaments,
(¢) modelled as a circuit.

m = b’ — n+ 1 is the number of meshes and &’ is the number of filaments branches plus the
number of source branches.
The relationship between branch currents and branch voltages given in (2.23) still holds,

and the mesh currents, that is, the currents around each mesh loop, satisfy
M'I, = I, (3.2)

where I, € C™ is the vector of mesh currents. Note that each of the entries in the terminal
current vector, I, from (2.1), will be identically equal to some entry in I,. And similarly,
each of the entries in the terminal voltage vector, V,, will correspond to some entry in V.
Fig. 3-1 illustrates the definitions of the above quantities for a single conductor example.

Combining (3.2) with (3.1) and (2.23) yields
MZM'I, =V, (3.3)

The matrix MZM? is easily constructed directly [3]. To compute the ** column of
the reduced admittance matrix, Y, = Z1, solve (3.3) with a V, whose only nonzero entry

corresponds to f{m and then extract the entries of I, associated with the source branches.

26

Algorithm 3.2.1 (GMRES Algorithm for Az = b).

guess z°
for k=0,1,... until converged {
Compute the error, rf =b— Az*
Find z**! to minimize rkt!
based on x' and »', i =0,...,k

3.2 Using an iterative solver

The standard approach to solving the complex linear system in (3.3) is Gaussian elimination,
but the cost is m® operations. For this reason, inductance extraction of packages requiring
more than a few thousand filaments is considered computationally intractable. To improve
the situation, consider using a conjugate-residual style iterative method like GMRES [18].
Such methods have the general form given in Algorithm 3.2.1.

Note that the GMRES algorithm can be directly applied to solving (3.3) because the
matrix M Z M? is easily constructed explicitly. This is not the case for the nodal formulation,
(2.26), as either the Z matrix must first be inverted or the sparse tableau form in (2.27)
must be used. The sparse tableau form is disadvantageous because it is a much larger
system of equations and it is difficult to solve iteratively as described in the next section.

When applying the GMRES algorithm to solving (3.3), the cost of each iteration of the
GMRES algorithm is at least order m? operations. This follows from the fact that evaluating
r* implies computing a matrix-vector product, where in this case the matrix is MZM* and
is dense. Note also that forming M ZM? explicitly requires order m? storage. As will be
discussed in Chapter 4, multipole acceleration can be used to reduce the matrix-vector

product cost and the required storage requirements to order b.

3.3 Nodal versus Mesh Analysis

The rate of convergence of GMRES for solving Az = b can be related to the eigenspectrum
of the matrix A. From this fact, the convergence properties of nodal analysis versus mesh
analysis can be compared by observing the eigenspectra of the matrices produced by each
of these formulations.

It is known that at the it iteration, the GMRES algorithm produces a residual r* =

27

b — Az’ which satisfies

oo (0
lI7*ll2 = min [Ip*(A)r7li2 (3:4)

where P; is the set of all i** degree polynomials, p, such that p(0) = 1 and || - ||; is the
Euclidean norm [18]. If A is diagonalizable then

A=VAV™] (3.5)

where A is a diagonal matrix whose entries, Aj, Az,.. ., are the eigenvalues of A and V is

the matrix whose columns are the eigenvectors of A. From substitution into (3.4),

T < oV min [p(A)] (36)
< n(V)gg,gnylp(Ae)l (3.7)

where
K(V) = VI [V = 22503 (35)

is the condition number of the matrix V' and Ap.z(V) and Apin(V) are the maximum and
minimum eigenvalues of V, respectively.

Note that x(V) = 1 if A is normal, i.e. AA¥ = AHA where A¥ is the conjugate-
transpose of A. Thus from (3.7), we see that for normal A, the error at iteration ¢ of
GMRES is dependent on how well an i** degree polynomial can fit the eigenvalues of A.

From this, consider some insights for matrices with real eigenvalues:

e If the eigenvalues are spread over a large interval, convergence will be slow, while

clustered eigenvalues lead to faster convergence.

e Due to the constraint that p(0) = 1, matrices with eigenspectra which have both
negative and positive clusters of eigenvalues will converge slower than those with

eigenvalues on only one side of the origin.
e Also because p(0) = 1, eigenvalues close to the origin slow convergence.

Consider now the spectra resulting from the nodal formulation, (2.27), and the mesh
formulation, (3.3), for the printed circuit board example described later in Fig. 5-8. The

printed circuit board is two thin metal sheets sandwiching 255 small copper lines.

28

100 —

Number Density

94 12 10 8 -6
onlo(A)

Figure 3-2: Eigenvalue spectrum of M LM for a coarse discretization of the printed circuit
board example

For inductance extraction problems, the high frequency (w — oo) limit gives the worst
case convergence so consider a coarse discretization of this structure yielding a 751x 751
M LM matrix with a condition number x & 10°. Clearly, M LM* is always positive definite
since L is positive definite and is normal since L is symmetric. Also, from the spectrum of
M LM?! shown in Fig. 3-2, one can see that, while most of the eigenvalues are in the interval
[10710,10~7], the remaining isolated eigenvalues are located toward the origin in the interval
[1013,10719]. Such small eigenvalues are not easily cancelled with the polynomial produced
by the Krylov-subspace methods, so they will significantly slow convergence.

The high frequency limit for (2.27) can be written as

'L at
S = (3.9)
A 0

where S is now a real symmetric matrix. The eigenspectrum, A(S), is shown in Fig. 3-3.
While there are fewer eigenvalues close to zero, a large portion of eigenvalues are negative.
Note that for S, since each entry in L ~ 10~°, the values of L were scaled by 5x 108 for the
spectrum in Fig. 3-3 and the GMRES comparison of Fig. 3-4 described below.

Both MLM?! and S have an eigenstructure which does not yield fast convergence with
GMRES as shown in Fig. 3-4. In this case, the mesh formulation, M LM*, has no advan-
tage over the nodal formulation, S. Significant improvement is possible, however, through

preconditioning which involves solving an equivalent system with a more favorable eigen-

29

Negative Eigenvalues Positive Eigenvalues

100 100———
80} - 80;

60| Z 60}

Q e

£ 40 5 40
20¢ 20¢
% 1 0o -1 o3 o 1 2

logm(—/\) Ioglo(/\)

Figure 3-3: Eigenvalue spectrum of S, the sparse tableau formulation, for a coarse dis-
cretization of the printed circuit board example

30

-5 i I I

0 50 100 150 200 250 300 350 400 450 500
Number of iterations

Figure 3-4: Convergence history of (A), the Sparse Tableau Formulation, and (B), the Mesh
Formulation for a coarse discretization of the printed circuit board example.

structure. Preconditioning M LM?" is discnssed in Chapter 5 and the rest of this section
discusses the difficulties in preconditioning the § matrix.

In general, the GMRES iterative method applied to solving Cz = b can be significantly
accelerated by preconditioning if there is an easily computed good approximation to the
inverse of C. We denote the approximation to C~! by P, in which case preconditioning the

GMRES algorithm is equivalent to using GMRES to solve
CPy=5b (3.10)

for the unknown vector y. The solution is then computed with z = Py. Clearly, if P is
precisely C~1, then (3.10) is trivial to solve, but then P will be very expensive to compute.

Preconditioning the S matrix is very difficult since it contains equations of two different
types: those resulting from V; = ZI;,, and those from current conservation, Al = I,. While
it is possible to approximate the inverse of Z, it is difficult to account for the effect of the
A matrix. In some sense, the A matrix and its position in (2.27) are in fact responsible for
the many negative eigenvalues. As the following theorems show, for the ideal case of L = I,
where I is the identity, S has exactly n negative eigenvalues, where n is the number of rows

of A. Note that L = I corresponds to the low frequency limit of a system of conductors

31

discretized into identical filaments.

B
Theorem 3.3.1. Let C = and assume AB is nonsingular and diagonalizable,

A 0
where I is the bxb identity matrix, B € R%*", 4 € R"* and n < b.

Then b—n eigenvalues of C are one, and the other 2n eigenvalues of C satisfy A(A—1) = X’

where) is an eigenvalue of AB.

Proof. If AB is diagonalizable, for each eigenvector of AB with eigenvalue)/, there exist
two eigenvectors of C' with associated eigenvalues satisfying A(A—1) = A’. To show this, let
z2 be an eigenvector of AB and let A be such that A(A—1) = M. Then, ABz; = A(A—1)z,.
Since AB is nonsingular, A # 1, and letting z; = Bzy/(A — 1) gives

Izy + Bz, = Az
: 2 ! (3.11)
A:L‘l = /\:L‘g
and thus A € A(C) with eigenvector z* = [z} z}]. 2n eigenvalue-eigenvector pairs are thus
given by A = (1 £v1+4 4X)/2 and z* = [(Bz3)!/(A— 1) zi]
Next, suppose A € A(C), but A # 1 with eigenvector &' = [z} 2] where z is different

from the previous 2n eigenvectors. Since Bz, = (A — 1)z; we get
ABzy = AM(A = 1)z,. (3.12)

This is impossible since then z; must be an eigenvector of AB and z an eigenvector of one

of the previous 2n eigenvalues. o

Theorem 3.3.2. The matrix S with Z = I has n negative eigenvalues and b positive

eigenvalues.

Proof. Since AA! is positive definite, Thm 3.3.1 gives that the n negative eigenvalues

are given by

A= (1-VItan)/2. (3.13)

where A’ € A(AA?). Similarly, another n are positive, and the remaining b — n are equal to

one. 0
Even if Z~! could be computed exactly, preconditioning using only Z~! as in

L' 0
P= (3.14)
0 I

32

(1] 50 100 150 200 250 300 350
Number of Iterations

Figure 3-5: Convergence history for the Sparse Tableau Formulation using L~ as a pre-
conditioner

for the high frequency limit, does not improve the performance of GMRES in part due to
the fact that there are still n negative eigenvalues. This can be shown by a similar argument

as in Theorem 3.3.2 with
I A
SP = . (3.15)
AL™! 0
Note that AL~ 1A! is positive definite since L is positive definite.

In addition, SP is no longer normal, and for the printed circuit board example above,
k(V) =~ 10% where V is the eigenvector matrix of SP. The matrix, in fact, does not
show much improvement in convergence rate over the unpreconditioned system as shown in
Fig. 3-5.

The M ZM* matrix does not suffer from the above difficulties because it has equations of
one type, and for the high frequency case, M LM® is positive definite. For this reason, this
thesis focuses on using the Mesh Formulation for inductance extraction. In Chapter 5, var-

ious techniques are explored for preconditioning M LM to significantly accelerate GMRES

convergence.

33

Chapter 4

The Multipole Approach

As discussed in Section 3.2, the dominant cost of each iteration of GMRES results from
computing the matrix-vector product, (M ZM?*)IX where I’ is the approximated solution
at the kt* iteration. This operation requires order m? operations and order m? storage
to store the M ZM* matrix. It is possible to approximately compute M ZM*I% in order
b operations using a hierarchical multipole algorithm for electrostatic analysis [6]. Such
algorithms also avoid explicitly forming M ZM?!, and so reduce the memory required to
order . This chapter describes how a multipole algorithm can be used for inductance

extraction under the mesh formulation.

4.1 The Electrostatic Analogy

To show how a multipole algorithm can be applied to computing M ZM*I%, consider ex-

panding the matrix-vector product by separating Z into its real and imaginary parts,
MZM'IE = MRM'IE + juM LMk (4.1)

The MRM'IX term can be computed in order m operations because R is the diagonal
matrix derived from the filament resistances, and M is the sparse mesh matrix with order
m nonzerc elements. Forming M LM!IF, is more expensive, requiring order mn? operations
as L is dense. From (2.19) and (2.22) it is clear that entry ¢ of the portion of the product,
LMIk, or equivalently LIy, is

b
. .l 7
(LI); = 2 : (e / ’ "r e dV) (4.2)

34

In terms of the vector potential,

1
(Eh)i= o /V A(r) - Lav. (4.3)
Equation 4.3 is verified since substituting (2.17) in (2.15) gives
b
| lj I) I
A(r) = — / —dV"' | =, 44
(r) 4"r,-§(v;llr—f’ll a; “9

The above decomposition shows that LI, can be evaluated by integrating the vector
potential, A, over each filament [12]. Also, from (4.4), each component of the vector
potential can be considered a scalar electrostatic potential generated by a collection of
charges. That is, for p € {1,2,3}, the p** component of A(r), denoted ¥p(r) € C, is a

scalar potential given by
b

1 .
hp(r) = ﬁ,ﬂ (/v, ! Tr(%)%mdvl) i—; (4.5)
and therefore (I;/a;) (Ij)p con be interpreted as a charge density due to filament j.

The electrostatic analogy implies that LI, can be computed by combining the results of
evaluating the elecirostatic potential along b filaments due to b filament charges for three
separate sets of filament charges. It is the evaluation of these electrostatic potentials which
can be accelerated with the hierarchical multipole algorithm [6]. That is, the electrostatic
potential due to b charges can be evaluated at b points in order b operations using the

hierarchical multipole algorithm. Therefore, by using the multipole algorithm three times,

LI, can be computed in order b operations.

4.2 The Hierarchical Multipole Algorithm

A complete description of the fast multipole algorithm is quite lengthy, and can be found
in [6], or in the context of 3-D capacitance extraction, in [13, 14]. To see roughly what the
algorithm exploits to achieve its efficiency consider the two configurations given in Figs. 4-1
and 4-2, depicted in 2-D for simplicity. In either figure, the obvious approach to determining
the electrostatic potential at the n; evaluation points from the ny point-charges involves
ny * ny operations: at each of the n; evaluation points one simply sums the contribution to
the potential from n charges.

An accurate approximation for the potentials for the case of Fig. 4-1 can be computed

in far fewer operations using multipole ezpansions, which exploit the fact that r >> R

35

[]
n, evaluation points
L]

Figure 4-1: The evaluation point potentials are approximated with a multipole expansion.

(defined in Fig. 4-1). That is, the details of the distribution of the charges in the inner
circle of radius R in Fig. 4-1 do not strongly affect the potentials at the evaluation points
outside the outer circle of radius 7.

It is also possible to compute an accurate approximation for the potentials at the eval-
uation points in the inner circle of Fig. 4-2 in far fewer than n; * n, operations using local
ezpansions, which again exploit the fact that r >> R (as in Fig. 4-2). In this second case,
what can be ignored are the details of the evaluation point distribution.

This brief description of the hierarchical multipole algorithm is only intended to make
clear that the algorithm’s efficiency stems from coalescing charges and evaluation points
using multipole and local expansions. A few points about the algorithm’s application to
computing LI should be considered however. When filaments are very near each other,
that is, R = r, a multipole expansion representation would lead to excessive error, so the
interaction is evaluated directly using (2.22). Direct evaluations are also used for small
groups of distant filaments when the computation required to build the multipole and
local expansions exceeds the direct evaluation cost, thus makiug the algorithm adaptive.
Therefore, when the hierarchical multipole algorithm is used to compute LI}, the evaluation
is typically a combination of three sets of multipole and local expansion evaluations for the
three components of the vector potential, along with a single set of nearby-filament direct

evaluations.

36

n, charge points

Figure 4-2: The evaluation point potentials are approximated with a local expansion.

37

Chapter 5

Accelerating Iteration

Convergence

In Section 3.3 it was observed that the GMRES iterative method converged slowly when
applied to (3.3). In general, however, the GMRES iterative method applied to solving
(3.3) can be significantly accelerated by preconditioning if there is an easily computed gocd
approximation to the inverse of MZM*. We denote the approximation to (M ZM?)~! by
P, in which case preconditioning the GMRES algorithm is equivalent to using GMRES to
solve

(MZM")Pz =V, (5.1)

for the unknown vector z. The mesh currents are then computed with I,, = Pz. Clearly, if
P is precisely (MZM?*)™!, then (5.1) is trivial to solve, but then P will be very expensive
to compute. This chapter describes the efforts of this work to develop preconditioners for

MZM:.

5.1 Local Inversion

An easily computed good approximation to (M ZM*)~! can be constructed by noting that
the most tightly coupled meshes are ones which are physically close. To exploit this obser-
vation, for each mesh i, the submatrix of M ZM* corresponding to all meshes near mesh i is
inverted directly. Then, the row of the inverted submatrix associated with mesh ¢ becomes

the i** row of P. This is illustrated in Fig. 5-1, where the submatrix is drawn as a block

38

&

[x x| x x x x x [x x]

xI'x x x|x x x X X X

X[x x x|[x x x invert[x X X /

X[x X X [X XX X X X X X X

X X X X X X X lx X X X X X

X X X X X X X X X X

| X x x x x x xJ P! i X xj
MZM! P

Figure 5-1: The steps leading to the third row of the preconditioner P (“x” denotes a
non-zero element). Note that for illustration, P; is drawn as a block along the diagonal.

along the diagonal for illustration. We refer to this preconditioner as a “local-inversion”
preconditioner, because it is formed by inverting physically localized problems.

This preconditioner works well for pin-connect and other similar structures for which
most of the meshes are small and thus what is ‘local’ is obvious. The fact that most of
the meshes are small can be observed from from Fig. 3-1 by noticing that most of the
meshes, such as those associated with I,,3, Ime, and I, are small and consist of only two
physically close filaments. Comparatively, there are relatively few large meshes, such as
I110, each which result from the presence of an external source and include many filaments.
The many filaments which are included in each external source mesh span much of the
physical problem domain and therefore much of the problem can be physically close to
these large meshes. For this reason, the large meshes associated with sources cannot be
included in the preconditioner, otherwise excessively large subproblems would be inverted
directly. Since there are relatively few of these large meshes in a pin-connect structure
and they are physically separate (only one per pin), not including the large meshes when
forming the preconditioner does not significantly slow convergence.

For large ground-plane problems, with possibly hundreds of external sources, the perfor-
mance of local-inversion is severely degraded. As for pin-connects, many of the meshes are
small; in this case, most meshes include four filaments (See Fig. 2-3). Each external source,
however, requires the formation of a large mesh traversing the ground plane between its two
contact points as shown in Fig. 5-2. If there are hundreds of these meshes, in which case
many of them will be physically close or even possibly partially overlapping, local-inversion

becomes ineffective since it cannot include large meshes.

39

{+ 1y

i

.

-

| S S
-

b ;
b 4
e | R
: i if: i
Yo H§ [

i
-

-

1

i

i
.

L .v___“,“__m(.".& ')_ I

Figure 5-2: Two ground plane meshes due to external sources. One source is connected
between points A and B and the other between C and D.

5.2 Sparsified Preconditioners

Other approaches to preconditioning which might help accouut for large mesh interactions
involve somehow approximately factoring M ZM? or directly factoring an approximation to

M ZM?*. The idea is then to first compute a sparse factorization
P'=LU (5.2)

and then at each iteration, Pz will be computed by solving LUy = z with forward and
backward substitution.

Approximately factoring M ZM? using an approach like incomplete LU factorization is
ineffective however, because the diagonals of M ZM? are not necessarily greater than the
sum of the off-diagonals and therefore ignored terms can become more significant. Another
approach is to “sparsify” M ZM?, possibly based on the sparsity pattern of M RM?, and
then directly factor the “sparsified” matrix to construct a preconditioner.

Fig. 5-3 shows the results of applying the local-inversion preconditioner, the sparsity-
based preconditioner, plus an example of the sparsified-L class of preconditioners to be
discussed in the next section. The M ZM? matrix is 751 x 751 and corresponds to the
printed-circuit board example of Fig. 5-8 in the high frequency limit, that is, as w — oo.

The high frequency case is chosen because it has been found to demonstrate the worst case

40

convergence for the sparsified preconditioners, as discussed in the next section. A point
wo‘rth noting here is that for these sparsified preconditioners in the low frequency limit,
w — 0, we have that P~', MZM! — MRM?" and therefore (M ZM')P — I. The local-
inversion preconditioner shows approximately the same convergence behavior at low and
high frequency.

From Fig. 5-3 it is apparent that local-inversion and sparsity-based preconditioning only
slightly accelerated convergence over no preconditioning. Note that this example includes

approximately 300 large meshes.

5.3 Positive definite sparsifications of L

To develop a better preconditioner, instead of sparsifying M ZM* as described above, con-
sider sparsifying the partial inductance matrix, L, and then generating the preconditioner
by directly factoring the sparse result, P! = M(R + jwL,)M*, where L, is the sparsified
partial inductance matrix. We call this class of preconditioners “sparsified-L.” Note that for
the low frequency limit, the whole problem would be factored exactly since R is diagonal.
This section shows that this type of preconditioner is effective for a large class of problems
and that L, must be chosen symmetric positive definite for this type of preconditioner to
be effective.

To motivate the discussion of this section, consider the following two choices for L,:
the sparsest approach to choosing L; would be to take the diagonal of L, or consider
sparsifying L based on the magnitude of the elements by zeroing all terms except those
that satisfy L?j > €|LiiLjj|, for some e. Fig. 5-4 compares this threshold sparsification to
preconditioning choosing L, as the diagonal of L. Clearly, choosing L, to be the diagonal
of L produced the better preconditioner, yet many more terms were included in L; for the

threshold sparsification.

5.3.1 The High Frequency Limit

As w — 00, the preconditioned matrix reduces to (M LM*)(ML,M*)~!. In what follows, it
will be shown that L, should be chosen to be symmetric positive definite for this sparsified-L

class of preconditioners to be effective.

41

Lemma 5.3.1. The product of real symmetric positive definite matrices has positive

eigenvalues.

Proof. Let A and B be real symmetric positive definite matrices, then A=1/2 and B-1/2

exist and are also symmetric positive definite. AB has the same eigenvalues as
D= A—l/2ABAl/2 — A1/2BA1/2 - (Bl/2Al/2)t(BI/2A1/2) = CtC.) (53)

Then, for any vector z, z!Dz = (Cz){(Cz) = yly > 0, where y = Cz. Therefore, D has

positive eigenvalues. 0

Theorem 5.3.2. If Ly is symmetric positive definite, then the preconditioned system,

(MLM")(ML;M')"! has positive eigenvalues.

Proof. For any z, let y = M'z. Then z'(MLM"%")z = y'Ly > 0 since L is positive
definite. Following a similar argument for M L;M* and using Lemma 5.3.1, the theorem is

proved. 0

Consider again the example of L; as the threshold sparsification of L, that is, form
L, by zeroing all terms except those that satisfy L?j > €|L;;Ljj|, for some €. In this
case, L; is not necessarily positive definite. Fig. 5-4 compared this preconditioner for
€ = 0.1 to the preconditioner formed by taking Ls to be only the diagonal of L, which is
obviously positive definite. Clearly, using the threshold sparsification preconditioner results
in slower convergence than using the diagonal-of-L preconditioner. This can be explained
by examining the spectra of the preconditioned matrices in Fig. 5-5. For both cases, the
eigenvalues seem similarly clustered, except the threshold preconditioned matrix has a large
cluster of negative eigenvalues while the diagonal-of-L preconditioned matrix is positive
definite.

Theorem 5.3.2 leads to the result that the condition number of preconditioned system
in the high frequency limit is bounded independent of the mesh matrix, M.

Theorem 5.3.3. If L, is positive definite, then

K[(MLMY)(ML,M)™ '] < &(LL;Y)

where, for a matrix with positive eigenvalues A, the condition number x(A) is defined as
K(A) = Amax(A)/ Amin(A) and Anax(A4) , Amin(A) are the maximum and minimum eigenval-

ues, respectively.

42

0 50 100 150 200 250
Number of iterations

Figure 5-3: Convergence of GMRES applied to PCB example with no preconditioning (A),
sparsity-based preconditioning (B), local-inversion preconditioning (C), and sparsified-L
preconditioning using the diagonal of L (D)

Norm of the Residual

0 20 40 60 8G 100 120
Number of Iterations

Figure 5-4: Convergence of GMRES applied to PCB example with threshold preconditioning
for e = 107! (A), and diagonal-of-L preconditioning (B)

43

Diagonal of L

100
Z
‘@
8
a
_‘E 50t !
E L
)
Z,
0
-4 -2 logio()) o 2
Negative Eigenvalues for € = 0.1 Positive Eigenvalues for € = 0.1
10 100
2 Z
a A
g 5 g 50
g £
= =
4 z
| I |
0
03 2 1 0 -1 -4 -2 0 2
logio(—A) logio(A)

Figure 5-5: Eigenvalues for the positive definite diagonal-of-L preconditioned system and
the indefinite threshold preconditioned system for ¢ = 0.1.

44

Proof. For the matrix A = M LM? with preconditioner P~! = M L,M?", and with the
maximum eigenvalue Apmax(AP), there is some y such that APy = Ayaxy. Then for z = Py,
the generalized eigenvalue problem M LM t2 = AmaxM Ls Mz is satisfied. Therefore,

*MLMz

Amax(AP) = ST M

and so there is also a vector u = Mz such that

Amax(AP) = 222
and so
Amax(AP) < max gﬁ%
By a similar argument,
Ania(AP) > min 2L

and thus
K[MLMYML,M*)™ ' < w(LL;")

The above two theorems lead to the conclusion that one should focus on choosing positive
definite L, matrices. As described above, the sparsest approach would be to take the
diagonal of L. Another approach is to divide physical space into disjoint regions and then
toinclude in L, only the principal submatrices of L corresponding to the groups of filaments
contained inside each region. Thus, a filament will be included in exactly one region and by
appropriately numbering the branches, L, can be written as a block diagonal matrix. An
immediate approach is for each region, or block, to consist of the set of parallel filaments in
a single section of conductor. Each block will then be no larger than the number of filaments
in a section. For the simple one conductor example shown in Fig. 3-1, L, would consist of
three 4 x 4 blocks. Another choice is to uniformly divide space into cubes and have each
block consists of filaments within a cube. This cube-block method is easy to implement
since the cube information is needed for implementation of the multipole algorithm. Note
also that the cube-block preconditioner is denser than the section-block or diagonal-of-L
preconditioners.

Theorem 5.3.4. L, for the cube-block and section-block preconditioners is positive def-

inite.

45

Proof. The set of eigenvalues of a block diagonal matrix is the union of the sets of
eigenvalues from each block. Since L is symmetric positive definite, so are all of its principal
submatrices (See, for instance [11], p. 397). Given the block diagonals of L, are principal

submatrices of L, the theorem is proved.]

5.3.2 The General Case

Under certain conditions the bound on GMRES convergence in the limit as w — oo holds
for all w.

Theorem 5.3.5. Given a problem discretized with filaments of the same size, and assum-
ing that the GMRES algorithm uses the diagonal-L preconditioner, the residual at iteration
k, ¥ = b — Z,(w)z*, where Z,(w) is the preconditioned Z,, = MZM?, satisfies

Il o [VE= 1]" | (54)

L] VE+1

where & = s(LL;') = k(L), independent of frequency. The following observation and
short lemma will be used to prove Theorem 5.3.5.

Observation 5.3.6. If all filaments are the same size, the matrices R and L are constant
along the main diagonal. The preconditioner P constructed from the main diagonal of L is
P! = (r + jwl)M M?, where 7 and ! are the diagonal elements of R and L respectively.

Lemma 5.3.7. Given Z,, = M(rI 4 jwL)M!, and P~ = M(r + iwl)M?, the precondi-
tioned matrix

Zm = P%Z,,P% (5.5)

is of the form

Zm = C[T + joI) (5.6)
where T' = T is real-symmetric and C,0,9 € R.

Proof. As M M is symmetric positive definite, P may be factored as P = P%P%, with

- = i j_w_l(MMt)-%. (5.7)

Also since M M is symmetric positive definite, the preconditioner can be applied so that

Y.

P

the preconditioned system is given by Eq. 5.5 (See, for instance [5]). Combining Eq. 5.7
with Eq. 5.5,

46

1 1| -1 t ty-1 Jw
P}z, Pt = [ij+(MM) EMLMY (M MY z] 2 (5.8)
or
1 L w 01
P2Z,.P? = —-—————me’ [joI +T] (5.9)
with 6 = tan™! 5, 0 = —r/w and
T = (MMY~ S MIM'{(MMY)~7, (5.10)

M LM?! is positive definite since L is, and therefore T is symmetric positive definite. O
We are now ready to prove Theorem 5.3.5.

Proof. From Lemma 5.3.7, Zm is of the form T + joI, T symmetric positive definite.

Therefore, using Theorem 4 in [4], the computed iterates z* satisfy

|1 — Az*|| 2 2

< = .
6= 420 < BF¥ 1/RF = ’F (5.11)
with R = c¢(w) + y/c(w)? — 1, and where
vV Amax(T)? + 02 + \/Amin(T)? + 02
= . 12
C(W) Amax(T) - Am.m(T) (5)
Since
— Amax(T) + Amin(T) _ K(T) +1
(W) < e = e T) — doin(T) ~ R(T) =1 (5.13)
Then
VE(T)+1 \/K(Li +1
R < ceo -1= 5.14
oo + /5 e -1 Ve -1 (5.14)
which combined with Eq. 5.11 proves the theorem. 0

Remark. The preconditioned matrix Z,, is normal and its eigenvalues lie on a line in the
complex plane. To show this let C = 7;3-:‘:’:37 Zm is normal since Zp, ZH = C*(T?*+0%I) =
ZmHZm. The eigenvalues A(Z,,) = Ce’®(jo + A(T)) clearly lie on a line, as the A(T') are

real.

As a demonstration with non-uniform filaments, consider the printed circuit board ex-
ample described below, between the low and high frequency limits. The required number
of GMRES iterations monotonically and asymptotically increase toward the high frequency
limit (See Fig. 5-6).

47

10";- 1
10%F 1 = Infinity .
-3
= 107°F 3
8
é 10"r k
2
5 10°F f=1kHz 1
E |
4 -8
10 1
107} .
10%F | 1=10Hz 1
10” 1 1 i) A S il 1 (] 1
0 5 10 15 20 25 30 35 40 45 50

Number of Iterations

Figure 5-6: Convergence of GMRES using the sparsified-L preconditioner on printed circuit
board package at various frequencies

5.3.3 Performance of Sparsified-L Preconditioners

To compare the relative merits of the diagonal-of-L, cube-block, and section-block precon-
ditioners, consider the two industrial examples in Figs. 5-7 and 5-8. Fig. 5-7 is thirty-five
pins of a 68-pin cerquad package and Fig. 5-8 is a portion of a printed circuit board (PCB)
that would be placed underneath a Pin-Grid-Array package. The PCB example consists of
two resistive reference planes sandwiching 255 copper lines. Each plane in the PCB has 53
external contacts not shown in the figure. For this experiment, the cerquad package was
discretized into 3488 filaments which corresponds to 3305 meshes and each reference plane
in the PCB was discretized into a 60 x 60 grid of meshes giving a total 7501 meshes in-
cluding the copper lines. The GMRES error in the solution at high frequency as a function
of iteration is plotted in Fig. 5-9 for the cerquad example, and in Fig. 5-10 for the PCB
example. Note that the section-block and diagonal-of-L preconditioners are identical for the
PCB example since there is only one filament per conductor section. As the figures clearly
show, the block diagonal preconditioners are an improvement over the diagonal-of-L and
local-inversion preconditioners. It is worth noting that for the cerquad package example,
the number of non-zero elements in the factored cube-block preconditioner is 43 times that

for the diagonal-of-L preconditioner, possibly prohibiting its use for larger problems. Also,

48

Figure 5-8: A portion of a printed circuit board directly underneath a PGA package. Two
resistive reference planes sandwiching 255 copper lines. Only the outline of the planes is
drawn.

for the pin-connect example, unlike the PCB example, local-inversion preconditioning did
better than diagonal-of-L. This behavior can be expected since there are only 35 large

meshes which must be excluded from the local-inversion preconditioner.

49

Norm of the Residual

30
Number of Iterations

Figure 5-9: Convergence of GMRES applied to the cerquad example with cube-block pre-
conditioning (A), section-block preconditioning (B), diagonal-of-L preconditioning (C), and
local inversion precondtioning (D).

Norm of the Residual

0 20 40 60 80 100 120 140 160 180 200
Number of lterations

Figure 5-10: Convergence of GMRES applied to the PCB example with cube-block precon-
ditioning (A), and diagonal-of-L preconditioning (B), and local-inversion preconditioning

(C).

50

Chapter 6

Algorithm Results

In this section we demonstrate the accuracy, utility, and computational efficiency of the
multipole-accelerated version of FastHenry. For an accuracy comparison, we consider the
portion of a 68-pin package, shown previously in Fig. 5-7. Each pin consists of eight to
ten conductor sections. We discretized each section into 2 x 2 filaments. This generated a
problem with 1368 branches for which M ZM?® is a 1061 x 1061 dense matrix. Note, using
only four filaments per section is hardly sufficient to model the skin effect, though with the
coarse discretization, the problem is small enough to make possible an accuracy comparison
between direct factorization, GMRES, and multipole-accelerated GMRES.

For the example package, the mutual inductance between pins 1 and 2 (labeled clockwise
from the right) is much larger than the mutual inductance between pins 1 and 18 which
are perpendicular to each other except for their vertical secticns. To show that the approx-
imations used by the hierarchical multipole algorithm are sufficiently well-controlled that
small coupling inductances are computed accurately, consider the results in Table 6.1. The
mutual inductance between pins 1 and 18 is more than two orders of magnitude smaller
than the mutual inductance between pins 1 and 2, yet the solution computed using the
multipole-accelerated algorithm is still within one percent of the solution computed using.
direct factorization.

As an example of the utility of frequency dependent inductance extraction possible with
FastHer.ry, consider the two cases of computing the mutual inductance between a pair of PC
board traces over a resistive ground plane, as shown in Fig. 6-1, and the same pair of traces

over a divided ground plane, as in Fig. 6-2. The traces have their return paths through the

pin pair direct gmres multipole
1to2 5.31870e+00 5.31867e+00 5.31403e+00
1to18 3.68292e-02 3.68223e-02 3.71027e-02

Table 6.1: Comparison of the accuracy of the computed inductance matrix entries be-
tween direct factorization, GMRES with explicit matrix-vector products, and the multipole-
accelerated GMRES algorithm.

Figure 6-1: Two Traces over a Solid Ground Plane. The return path for the traces is
through the plane. Traces are widened for illustration.

ground plane. For the divided plane case, the two portions are electrically connected witk
short resistive ‘tethers’ toward the outer edges as shown. The traces are 8 mils wide, 1 mil
thick, 8 mils above the 1 mil thick ground plane, and their center tc center distance is 32
mils.

If a current source is connected to one of the traces, current will flow down the trace

and return through the plane. For the solid plane case, the current in the plane with a DC

Figure 6-2: Two Traces over a Divided Ground Plane. The return path for the traces is
through the plane. The divided portions are connected together toward the edges as shown.
Traces are widened for illustration.

52

T T T T
~~~~~~~~~~~~
4 s e e e e e e me e~
\ //,- el e Y
—— e et e oma  —a _.—-~.—.7T-/
b . [ T \ B
\ \\\ ~~~~~~~~ P ]
,,,,,,,,,,,,,
______________
A 1 1 1

Figure 6-3: Current Distribution in Solid Ground Plane at DC and high frequency

source produces a current distribution pattern which spreads to fill the width of the plane.
Similarly in the divided plane case, the current spreads throughout most of the plane, but
narrows as it crosses the tethers. The situation at a high frequency is quite different. For
the solid plane, the ground plane return current is concentrated directly underneath the
trace, but for the divided plane the current leaves the path underneath the trace to cross
the tethers (See Figs. 6-3 and 6-4).

This difference has a marked effect on the mutual inductance between the traces as the
frequency rises. For the solid plane, as the frequency rises, the current gathers underneath
the trace and the mutual inductance drops by two orders of magnitude, however for the
divided plane, little decrease is observed with frequency (See Fig. 6-5).

To demonstrate the computational efficiency of FastHenry, we successively refined a
coarse discretization of the ground plane of the example shown in Fig. 6-1. As the dis-
cretization of the plane is refined, the size of the problem will grow quickly, making the
memory and CPU time advantage of the multipole-accelerated, preconditioned GMRES
algorithm apparent (see Figs. 6-6 and 6-7). As the graphs clearly indicate, the cost of

direct factorization grows like m3, the cost of explicit GMRES grows as m?, but the cost

53



Q
o0

J—— . r e s o i et -
. P e e~~~ .
f P \ NS N N s
T P 4 W~ o~
. \' - ., N o~ — ;o
~ N —Fe e~ . . — — . -
L , ~ — — -~ PR LN 4
' j\ NN O~ NN PR A A ' .
NN N Vd P A SR
R N e T >\ il
e~ e - — . - - e .
1 1 ~ i 1

100 MHz

T T

Figure 6-4: Current Distribution in Divided Ground Plane at DC and high frequency

2

10 T T T T
T. 1
T10 f--mmmm oo
@ -
- S S N SN
c
]
R
210} 3
©
2
S 1 -- Divided Plane

10 ¢ :

- Solid Plane
-2
10 - : : :
2 4 6 8
10 1 10
Erequency ZIgz)

Figure 6-5: Mutual Inductance Between Traces

54



10°%  x Muttipole-GMRES Preconditioned 1
GMRES Preconditioned
10°F o Direct Factorization o

+

10° 10° 10*
Number of Meshes

Figure 6-6: Comparison of the CPU time to compute the reduced inductance matrix for
two traces over a solid plane using direct factorization, GMRES, and GMRES with with
multipole acceleration.

of multipole-accelerated GMRES grows only linearly with m. In addition, the memory
requirement for multipole-accelerated GMRES algorithm grows linearly with m, but grows
like m? for either explicit GMRES or direct factorization. In particular, for a 12,802 mesh
problem, the multipole accelerated algorithm is more than two orders of magnitude faster
than direct factorization, and uses an order of magnitude less time and memory than ex-
plicit GMRES. Note that the dotted lines in Figs. 6-6 and 6-7 indicate extrapolated values
due to excessive memory requirements.

A significantly more complex problem and one that uses the sparsified-L preconditioner
is the high frequency analysis of a portion of a PCB described previously and shown in
Fig. 5-8. To properly model the current flow in the two reference planes surrounding the
copper lines, the planes must be finely discretized. Here again, as the discretization is
refined, the cost of direct factorization grows like m3, the cost of explicit GMRES grows as
m?2, but the cost of multipole-accelerated GMRES grows only linearly with m as shown in
Fig. 6-8. For this PCB example, the associated impedance matrix is 18x18, while the pair
of traces over plane example has only a 2x2 impedance matrix. Thus, nine times as many
GMRES solutions are required to compute the PCB example’s impedance matrix. Even
so, for a 10,000 mesh problem, the multipole-accelerated GMRES algorithm is still over an

order of magnitude faster in computation time.

55



10", .

K+

10°F  x Multipole o
- o Direct Product o
-] -
By
B
‘5
g
@
g0’ | 4
£
Q
=

10°

10° . .

10° 10° 10* 10°

Number of Meshes

Figure 6-7: Comparison of the memory required using explicit matrix-vector products and
using the multipole algorithm.

From Table 6.2 it can be observed that the time to compute the preconditioners is negli-
gible compared to the total execution time, although for larger problems, the time required
to compute the cube-block preconditioner may become significant. Also, the required num-
ber of iterations for either of the preconditioners does not grow rapidly with problem size.
Finaily, our analyses based on examining the spectra alone can be empirically jusiiied by
noting that for the discretizations shown in Table 6.2, (V') < 20, where V is the matrix of

eigenvectors of the preconditioned system.

56



Precond. Size of Precond. Total Total number | Average # of

type MZM! factor time | execution time | of iterations | iters. per solve
diagonal-L | 751x751 0.26 450.46 729 41
cube-block [ 751x751 6.07 254.35 374 21
diagonal-L | 1099x1099 0.81 1042.57 760 42
cube-block | 1099x1099 11.86 755.12 518 29
diagonal-L | 2101x2101 3.43 1901.58 760 42
cube-block | 2101x2101 44.91 1381.15 502 28
diagonal-L | 4351x4351 15.87 5522.79 842 47
cube-block | 4351x4351 174.13 4609.96 641 36
diagonal-L | 7501x7501 46.24 8894.92 883 49
cube-block | 7501x7501 452.11 7309.18 635 35

Table 6.2: Execution times and iteration counts for diagonal-of-L and cube-block precon-
ditioning of the printed circuit board example. Times are in CPU seconds for the DEC
AXP3000/500.

CPU Seconds (DEC AXP3000/500)
o.

x Multipole-GMRES Preconditioned

+ GMRES Preconditioned

o Direct Factorization

1w’ 10
Number of Meshes

Figure 6-8: Comparison of the CPU time to compute the reduced inductance matrix for
the PCB package using direct factorization, GMRES, and GMRES with witk multipole
acceleration.

57



Chapter 7

Conclusions

In this thesis, it is shown that 3-D inductance extraction can be substantially accelerated
using the hierarchical multipole algorithm. The multipole-accelerated inductance extraction
program, FastHenry, was shown to be more than two orders of magnitude faster than direct
factorization when used to extract the inductance matrix for realistic packaging examples.
In addition, the multipole-accelerated algorithm uses an order of magnitude less time and
memory than the explicit GMRES algorithm. Finally, the sparsified preconditioner insures

rapid convergence even for very irregular problems, making FastHenry a robust program.

58



Appendix A

FastHenry Implementation

The following is a pseudo-code description of the implementation of FastHenry as a com-
puter program. The aim is to aid in putting together the ideas of this thesis in order to
understand the partially commented FastHenry C code which is available via anonymous
ftp from rle-vlsi.mit.edu.

The variable sys used below refers to a structure which contains pointers to many of
the structures and matrices needed by most functions. seg-1ist the a list of all segments,

fil-list is the list of all filaments.

main(argc, argv)

{

/* read the geometry specified in the input file. See Appendix B */
readGecm(sys) ;

/* divide each section, or segment, into filaments based on nhinc, nwinc. See Chapter 2 */
for each seg in seg-list {
assignFil(seg);

}

/* Call routines similar to FastCap to compute multipole expansions with each filament
corresponding to a FastCap 'charge’. See Chapter 4 */

SetupMulti(sys);

/* Find user defined meshes, from algorithm in [2], pages 280-284. For the mesh formulation,
the user may have created loops in the specified geometry. This finds those loops in this
user created graph*/

make_trees(sys);

59



/* If user has put holes in any reference planes, must make one mesh for each of these holes
*/

find hole meshes(sys) ;

/* Create the Mesh Matrix M (see below and also Chapter 3) */
£illM(sys);

/* Fill the R and L matrices (see below and also Chapter 2) */
£i11Z(sys);

for each frequency point {

/* form preconditioner for this frequency (Chapter 5)*/
indPrecond (sys,frequency) ;

/* Do (;ne solve with GMRES for each terminal pair specified in geometry */

for each ext in terminal-pair-list {
/* fill the right hand side corresponding to this ext turned on */

£ill b(ext,b);

/* call gmres to solve for solution, x. (see below and Chapter 3) */
gmres(sys,b,x);

/* multiply x by preconditioner one last time and put result in x */
multPrecond(sys,x,y);
X =y;

/* extract the appropriate entries in x to go into one column of reduced admittance
matrix, Y */
extractYcol(Y, x, ext, terminal-pair-list);

}

/* save Y to disk */
dump_to_Ycond(Y);

/* invert Y to get Zc */
invert(Y,Zc);

/* save Zc to disk */
cx-dumpMat_totextfile(Zc, "Zc.mat");

}
}

/* this function creates the M matrix. Actually, it creates Mlist, a

60



list of meshes */
£illM(sys)

{

/* make a mesh out of user created graph loops (found in make_trees() ) */

for each loop {
make.mesh_from_path(loop,Mlist);

}

/* Make meshes resulting from a segment being divided into many filaments (two fils
per mesh) */
for each seg in seg-list {
make fil meshes(seg,Mlist);

}

/* make meshes resulting from discretizing grcund plane. {(four fils per mesh) */
for each plane in plane-list {
makeMlist(Mlist, plane);

}
}

/* this computes the diagonal R matrix (resistance of each fil) and the dense L matrix (par-
tial inductance matrix). This is only called if the matrix-vector products are done directly,
however the mutual() function is called for multipole products when inside SetupMulti()
for the interactions which are to be done directly */

£i11Z(sys)

{

for each filament, fili, in fil-list {
R{fili] = resistance(fili);
for each filament, filj, in fil-list {
if (£ili == £ilj)
LI£fili][£ili] = selfterm(fili);
else
/* compute mutual inductance between two fiis. See [7] and [10]. */
LI£fili][£ilj] = mutual(fili, £ilj);

}
}

/* This computes the solution x with right hand side b and implicit matrix A. This pseudo-
code version is similar to Algorithm 3.2.1.*/

gnres(sys,b,x)

{

/* assume initial guess, x, is zero. norm() is the Euclidean norm of a vector. */
r0 =r = b;

61



k =0;
while (norm(r)/norm(r0) > tolerance) and (k < max_iterations) {
k=k + 1;

/* compute matrix-vector product with mulitpole algorithm (see below)*/
SetupComputePsi(sys,x,p);
r=>b-p;

/* update x as described in [18]. */
x = update x();

}
}

/* use multipole algorithm to compute Ax. Return value in p */
SetupComputePsi(sys,x,p)

{

/* apply preconditioner, result in y */
multPrecond(sys,x,y);

/* Call multipole algorithm for each of the three components of the vector potential.
(MLMt)y */
p=0;
for i = 1 to 3 {
p = p + ComputePsi(y,i,sys);
}

/* add in the contribution due to (MRMt)y */
p = p + doreal_part(sys,y);

62



Appendix B

FastHenry User’s Manual

63



FastHenry USER’S GUIDE

M. Kamon C. Smithhisler J. White

Research Laboratory of Electronics
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139 U.S.A.

28 June 1993

This work was supported by Defense Advanced Research Projects Agency contract
N00014-91-J-1698, a National Science Foundation Graduate Fellowship, and grants from
IBM and Digital Equipment Corporation.

64



Copyright © 1993 Massachusetts Institute of Technology, Cambridge, MA. All rights re-
served.

This Agreement gives you, the LICENSEE, certain rights and obligations. By using the
software, you indicate that you have read, understood, and will comply with the terms.

M.I.T. MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED.
By way of example, but not limitation, M..T. MAKES NO REPRESENTATIONS OR
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PUR-
POSE OR THAT THE USE OF THE LICENSED SOFTWARE COMPONENTS OR
DOCUMENTATION WILL NOT INFRINGE ANY PATENTS, COPYRIGHTS, TRADE-
MARKS OR OTHER RIGHTS. M.I.T. shall not be held liable for any liability nor for any
direct, indirect or consequential damages with respect to any claim by LICENSEE or any
third party on account of or arising from this Agreement or use of this software.

65



This manual describes FastHenry, a three-dimensional inductance extraction program.
FastHenry computes the frequency dependent self and mutual inductances between con-
ductors of complex shape. The algorithm used in FastHenry is an acceleration of the mesh
formulation approach. The linear system resulting from the mesh formulation is solved
using a generalized minimal residual algorithm with a fast multipole algorithm to efficiently
compute the iterates.

This manual is divided into two sections. The first section explains how to prepare input
files for FastHenry. The input files contain the description of the conductor geometries. The
second section shows how to run the program. It mainly explains how to modify the default
settings assumed by FastHenry. Also included in this section is output {from an example
run.

Information on compiling FastHenry, obtaining the FastHenry source code and corre-
sponding about FastHenry is given in Appendix B.3.

B.1 How to Prepare Input Files

This section of the manual describes how to prepare input files for FastHenry. The input
files specify the discretization of conductor volumes into filaments. The input file specifies
each conductor as a sequence of straight segments, or elements, connected together at nodes.
Each segment has a finite conductivity and its shape is a cylinder of rectangular cross section
of some width and height. A node is simply a point in 3-space. The cross section of each
segment can then be broken into a number of parallel, thin filaments, each of which will be
assumed to carry a uniform cross section of current along its length. The first part of this
section describes the file format through a simple example. A detailed description is in the
second part, and more complex examples can be found later in this manual.

B.1.1 A Simple Example

The following is an input file which calculates the loop inductance of four segments nearly
tracing the perimeter of a square:

**This is the title line. It will always be ignoredx*x*.
* Everything is case INsensitive
* An asterisk starts a comment line.

* The following line names the length units for the rest of the file
.Units MM

* Make z=0 the default z coordinate and copper the default conductivity.
* Note that the conductivity is in units 1/(mm*Ohms), not 1/(m*Ohms) .
.Default z=0 sigma=5.8e4

* The nodes of a square (z=0 is the default)
N1 x=0 y=0

N2 x=1
N3 x=1
N4 x=0
N5 x=0

66



N ®

1 mm

H=0.1 mm )

W=0.2 mm

Figure B-1: Example Segment for Sample Input File

* The segments connecting the nodes
E1 N1 N2 w=0.2 h=0.1
E2 N2 N3 w=0.2 h=0.1
E3 N3 N4 w=0.2 h=0.1
E4 N4 N5 w=0.2 h=0.1

* define one ’'port’ of the network
.external N1 N5

* Frequency range of interest.
.freq fmin=1e4 fmax=1e8 ndec=1

% All input files must end with:
.end

As described in the comments, .Units MM defines all coordinates and lengths to be in
millimeters. All lines with an N in the first column define nodes, and all lines starting with
E define segments. In particular, the line

E1 N1 N2 w=0.2 h=0.1

defines segment E1 to extend from node N1 to N2 and have a width of 0.2mm and hight of
0.1 mm as drawn in Figure B-1. If the n X n impedance matrix, Z(w), for an n-conductor
problem is thought of as the parameters describing an n-port network, then the line

.external N1 NS

defines N1 and N5 as one port of the network. In this example, only one port is specified, so
the output will be a 1 x 1 matrix containing the value of the impedance looking into this

one port.
FastHenry calculates Z(w) at the discrete frequencies described by the line

.freq fmin=1e4 fmax=1e8 ndec=1

where fmin and fmax are the minimum and maximum frequencies of interest, and ndec is
the number of desired frequency points per decade. In this case, Z(w) will be calculated at
104, 105,108,107, and 10® Hz. All input files must end with .end.

67



1 mm

H=0.1 mm

nhinc =5 Ni®
W=0.2 mm
nwinc =7

Figure B-2: Segment discretized into 35 filaments

In the above example, FastHenry created one filament per segment since no discretization
of the segments into filaments was specified. In order to properly model non-uniform cross
sectional current due to skin and proximity effects, a finer discretization must be used.
Fine- filaments are easily specified in the segment definition. For example, replacing the
definition for E1 with

E1 N1 N2 w=0.2 h=0.1 nhinc=5 nwinc=7

specifies that E1 is to be broken up into thirty-five filaments: five along its height (nhinc=5)
and seven along its width (nwinc=7). See Figure B-2.

B.1.2 Input File Syntax

The previous section described many of the basics required for an input file. This section
gives a more complete and detailed description of the input file format and should serve as
a reference.

Some general facts about file syntax:

e Lines are processed sequentially
e Upper and lower case are not distinguished.

e Lines are restricted to 1000 characters but can be continued with a “+” as the first
character in subsequent lines. Intervening “*” lines are not allowed.

“*” marks a comment line.

The first line in the file is considered the title line and is ignored. It is recommended
that this line start with an “*” for future compatibility.

e The file must end with the .End keyword.

In general, each line in the input file will either define some geometrical object, such
as a node or segment, or it will specify some program parameter. All input lines that
define geometrical objects begin with a letter defining their type, and then some unique
alphanumeric string. For instance, all node definitions begin with the letter N. This sets
object lines apart from parameter specification lines which begin with a period, “.”.

The remainder of this section will describe all possible input lines. In the following
description, all arguments enclosed in ‘[ )’ indicate an optional argument. If not included on

68



the input line, the actual value used for this argument will be either the program default,
or the user default defined by the .Default keyword (described below).

Node Definitions

Syntax: Nstr [x = x_vall [y = y.val] [z = z_vall

This defines a node called Nstr where str is any alphanumeric string. The first character
on the line must begin with an N for this to be interpreted as a node definition. The node will
have location (z-val,y-val, z-val) where each coordinate has units defined by the .Units
keyword.

Any of the coordinates can be omitted assuming that a default value has been previously
specified with the .Default keyword. Otherwise, an error will occur and the program will
exit.

Segment Definitions

Syntax: Estr nodel node2 [w = value] [h = value] [sigma, rho = value]
[wx = value wy = value wz = value]
[nhinc = value] [nwinc = value]

This defines a segment called Estr where str is any alphanumeric string. The first
character on the line must begin with the letter E for this to be interpreted as a segment
definition. The segment will extend from node nodel to node node2 where these are pre-
viously defined node names. h and w are the segment height and width. Either sigma, the
conductivity, or rho, the resistivity, can be specified for the segment.

Discretization of the segment into multiple, parallel th:n filaments is specified with the
nhinc and nwinc arguments. nhinc specifies the number of filaments in the height directicn,
and nwinc, the number in the width direction. Both must be integers. See Figure B-2.

To specify the orientation of the cross section, wx, wy, and wz represent any vector
pointing along the width of the cross section. If these are omitted, the width vector is
assumed to lie in x-y plane perpendicular to the length. If the length lies along the z-axis,
then the width is assumed along the x-axis.

h and w can be omitted provided they are assigned a default value in a previous .Default
line.

nhinc, nwinc, and sigma or rho can be omitted, and if not previously given a default
value, then 1, 1, and the conductivity of copper, respectively, are used as default values.

Note that the nodes used to define the nodes must be nodes defined under Node Def-
initions described above and cannot be ground plane nodes. To connect to the ground
plane, the user must instead create a new node at the desired location as described in
Node Definitions and then use the .Equiv keyword to equivalence the ground plane node
and the new node.

.Units keyword
Syntax: .Units unit-name
This specifies the units to be used for all subsequent coordinates and lengths until

the end of file or another .Units specification is encountered. Allowed units are meters,

69



centimeters, millimeters, micrometers, inches, and mils with unit-name specified asm, cm,
mm, um, in, mils, respectively.
Note that this keyword affects the expected units for the conductivity and resistivity.

.Default keyword

Syntax: .Default [x = value] [y = value] [z = value] [w = value]
[h = value] [sigma, rho = value]
[nhinc = value] [nwinc = value]

This keyword specifies default values to be used for subsequent object definitions. A
certain default value is used until the end of the file, or until it is superseded by another
.Default line changing that value.

.External keyword

Syntax: .External nodel node2

This keyword specifies node nodel and node node2 as a terminal pair or port whose
impedance parameters should be calculated for the output impedance matrix. If an input
file includes n .External lines, then the impedance matrix will be an n x n complex matrix.

This keyword effectively places a voltage source between these nodes and will later use
the current through that source to determine an entry in the admittance matrix. Note that
it is up to the user to insure that there are NO loops of only voltage sources. Also, a voltage
source with no possible return path will always have zero current through it producing a
row of zeros in the admittance matrix. The output impedance matrix will thus be nonsense.

.Freq keyword

Syntax: .Freq fmin=value fmax=value [ndec = value]

This keyword specifies the frequency range of interest. fmin and fmax are the minimum
and maximum frequencies of irterest, and ndec is the number of desired frequency points
per decade. FastHenry must perform the entire solution process for each frequency.

Note that ndec need not be an integer. For instance,

.freq fmin=1e3 fmax=1e7 ndec=0.5

will have FastHenry calculate impedance matrices for f = 103,10%, and 107 Hz.
If £fmin is zero, FastHenry will run cnly the DC case regardless of the value of fmax.

.Equiv keyword

Syntax: .Equiv nodel node2 node3 node4 ...
This keyword specifies that nodes nodel, node2, node3, node4,... are to be con-
sidered electrically equivalent yet maintain their separate spatial coordinates. It basically

‘shorts’ all these nodes together. If any of the node names are not previously defined, then
they become pseudonyms for those nodes in the list which are defined.

70



Figure B-3: Discretization of a Ground Plane. Segments are one-third actual width.

.End keyword
Syntax: .End

This keyword specifies the end of the file. All subsequent lines are ignored. This line
must end the file.

Ground Plane definitions

Syntax: Gstr xi=value yl=value zl=value x2=value y2=value z2=value
x3=value y3=value z3=value
thick=value segi=value seg2=value [sigma, rho = valuel
[nhinc=value] [relx=value] [rely=value] [relz=valuel

[Nstri (x_val,y_val,z_val) ]
[Nstr2 (x_val,y_val,z_val) ]
[Nstr3 (x_val,y_val,z_val) J.....

[hole <hcle-type> (vall,val2,....)]
[hole <hole-type> (vali,val2,....)].....

This defines a ground nlane of finite extent and conductivity called Getr where str is any
alphanumeric string. The first character on the line must begin with the letter G for this to be
interpreted as a ground plane definition. The three locations (z1,y1, 21), (22,2, 22), (23, ¥3, 23)
mark three of the four corners of the plane in either clockwise or counterclockwise order.
The code will determine the fourth corner assuming the first three are corners of a paral-
lelogram. Actually, the plane must be a rectangle, but this condition may not be flagged
until later in the code. The thickness of the plane is specified with the thick argument and
the conductivity with either the sigma or rho argument.

The ground plane is approximated by first laying down a grid of nodes on the plane,
and then connecting, with a segment, every node to its adjacent nodes excluding diagonally
adjacent nodes. Each segment is given a height equal to the specified thickness of the plane
and width equal to the node spacing in order to completely fill the space between segments.
Figure B-3 shows a sample ground plane with segments that are one-third normal width
for illustration.

segl and seg?2 specify the number of segments along each edge of the plane. segi will
be the number of segments along the edge from (z1,yl, z1) to (22,%2, 22) and seg2, the
number along the edge from (z2,y2,22) to (23,y3,23). Thus the total number of nodes

71



created will be (segl+1)*(seg2+1), and the total number of segments created will be
(segl + 1)* seg2 + segl x (seg2+ 1) .

nhinc can be used to specify a number of filaments for discretization of each segment
along the thickness. This could be used for modelling nonuniform current along the thick-
ness. If omitted, the value of 1 is assumed, regardless of the .Default setting.

In general, since the grovnd plane nodes are generated internally, there is no way to refer
to them later in the input file. The exceptions to this are the nodes explicitly referenced in
the ground plane definition. The argument

Nstri (x_val,y_val,z_val),

where str1 is an alphanumeric string, will cause all subsequent references to Nstr1 to refer
to the node in the plane closest to the point (z_val,y-val, z_val). Note that no spaces are
allowed between the ‘()’. This referencing is accomplished, in effect, by doing the equivalent
of

.Equiv Nstrl <internal-node-name>

where <internal-node-name> is the internal node name of the nearest ground plane node.

If one or more of relx, rely, and relz are specified, then the above node referencing
instead chooses the node closest to (z_val + relz, y_val + rely, z_val + relz). In other words,
relx, rely, and relz default to 0 if not specified.

A coarse ground plane may cause two different references to refer to the same ground
plane node. FastHenry will warn of such an event, but it is not an error condition.

Holes can be specified in the plane with

hole <hole-type> (vall,val2,val3,...)

where <hole-type> is the hole type and the valn’s make the list of arguments to be sent to
the hole generating function. Holes are generated by first removing ground plane nodes, and
then removing all segments connected to those nodes. The following describes the available
hole generating functions:

hole point (x,y,z)
removes the node nearest to the point (x,y,z).
hole rect (x1,y1,z1,x2,y2,22)

removes a rectangular region whose opposite corners are the nodes in the plane nearest
(x1,y1,z1) and (x2,y2,22).

hole circle (x,y,z,r)
removes the nodes contained within the circle of radius r centered at (x,y,z).
hole useri (vali,val2,...)

calls the user defined function hole_userl() to remove nodes. userl - user7 are available.
The user can add the functions to the source file hole.c contained in the release. See the
functions hole_rect(), hole_point(), and hole_circle() to see examples of the format for writing
user hole functions.

Any shaped hole can be formed with a combination of hole directives. A few exceptions
exist, however. Forming a hole that isolates or nearly isolates a section of the plane is not
allowed. FastHenry warns of this with:

72



Warning: Multiple boundaries found around one hole region
possibly due to an isolated or nearly isolated region of conductor.
This may lead to no unique solution.

Holes may not be produced as expected if the discretization of the plane is coarse. It
is recommended that the plane be viewed by using the options ’-f simple -g on’ options to
generate a fastcap file which can be used to generate a postscript image of the plane.

See example hole.inp.

Warning: Fast convergence for ground planes has not been fully accomplished. At the
time of release, some ground planes with many closely coupled conductors converged slowly
using the iterative aigorithm. This may also happen when nhinc > 1. If you have practical
examples for which this happens, please send them to fasthenry@rle-vlsi.mit.edu.

B.2 Running FastHenry
The basic form of the FastHenry program command line is
fasthenry [<input file>] [<Options>]

Usually only the input file, as described in the previous section, is specified. For example,
the command

fasthenry pin-connect.inp

runs fasthenry on the example pin connect structure.

Information about the input file and other FastHenry information are sent to the stan-
dard output. The impedance matrices for the frequencies specified in the input file will be
placed in the file Zc.mat. The source file ReadOutput.c is a sample program for reading
the output file for postprocessing.

B.2.1 Command Line Options

This section describes using the command line options for changing the defaults settings.
All arguments are case insensitive.

-s {ludecomp | iterative} - Specifies the matrix solution method used to solve the
linear system arising from the discretization. iterative uses the GMRES iterative algo-
rithm and ludecomp uses LU decomposition with back substitution. In general, GMRES is
faster, however some speed up may be obtained using LU decomposition for problems with
fewer than 1000 filaments. iterative is the default.

-m {direct | multi} - Specifies the method to use to perform the matrix-vector
product for the iterative algorithm. direct forms the full matrix and performs the product
directly. multi uses the multipole algorithm to approximate the matrix-vector product.
For larger problems, the multipole algorithm can save both computation time and memory.
multi is the default.

-p {on | off} - Determines whether or not to precondition the matrix to accelerate
iteration convergence. on is the default.

-o n - Specifies n as the order of multipole expansions. Default is 2.

-1 {n | auto} - Specifies n as the number of partitioning levels for the multipole algo-
rithm. auto chooses the level automatically and is the default.

73



-f {off | simple | refined | both} - Specifies the type of FastCap generic file to
make for visualization ONLY. off will produce no file and is the default. simple will
produce a file named fastcapfile from the segments defined in the input file. refined
produces a similar file, named fastcapfile2, but using the segments produced by either
user refinement with -i or required refinement necessary for accuracy of the multipole
algorithm. both produces both files. One FastCap ’panel’ is created for each of the four
sides along the length of the each segment. Ground planes are handled differently. See the
-g option below. fastcap -mfastcapfile should produce the appropriate postscript file.
See the FastCap manual for more details.

-g {on | off} - controls appearance of the ground plane when using the -f option. on
will draw all the overlapping segments of the ground plane. Note that this may take a long
time to run through fastcap to generate a postscript image. off is the default and only
four panels are produced for each plane, one for each of the edges. Thus only the outline
of each plane is drawn. This makes generation of the postscript image faster and also the
planes are transparent. No holes are visible however.

-a {on | off} - on allows the multipole algorithm to automatically refine the structure
as is necessary to maintain accuracy in the approximation. The structure will be refined
whether or not *he multipole algorithm is used. off prevents refinement and will produce
a warning if the multipole algorithm is used and prevented from necessary refinement. on
is the default. Note that this is NOT refinement to reduce discretization error. This must
be done by the user. See the ~i option.

-i n - Specifies n as the level for initial refinement. This option allows the user to refine
the structure if the input file is too coarse. It will divide each segment of the geometry into
multiple segments so that no segment has a length greater than 2—1,,- times the iength of the
smallest cube which contains the whole structure. The default is 0 (no refinement).

-d {on | off | mrl | mzmt | grids | meshes} - dump certain internal matrices to
files. The format of the file is specified with the -k option. on dumps all files, off dumps
none and is the default. mrl dumps the M, R, and L matrices. mzmt dumps the M ZM?*
matrix. grids dumps matrices for viewing the current distribution inside each ground
plane. It only dumps in matlab format. The same is true for meshes which is a matlab file
for viewing the meshes chosen by FastHenry. For information on using grids send mail to
fasthenry@rle-vlsi.mit.edu.

-k {matlab | text | both}- Specifies type of file to dump with the -d option. matlab
dumps the files as MRL.mat and MZMt.mat and are in a format readable by matlab. text
saves the files M.dat, L.dat, R.dat, and MZMt.dat as text. both saves files in both formats.

-t rtol, -b atol - Specifies the tolerance for iteration error. FastHenry calculates
each column of the impedance matrix separately. The iterative algorithm will stop iterating
when both the real and imaginary part of each element, z, of the current column being
calculated satisfies

|zi~! — z}| < rtol (|| + atol * (maxj|z§|)) (B.1)

where i is the iteration number. The defaults are rtol = 103 and atol = 1072,
-¢ n - n = maximum number of iterations to perform. Overrides the default of 200.
-D {on | off} - Controls the printing of debugging information. off is the default. on
will cause FastHenry to print more detailed information about the automatic partitioning
level selection, memory consumption, preconditioner calculation, and convergence of the
iterates.

74



B.2.2 Example Run

With the release are example structures 30pin.inp, pin-connect.inp, onebargp.inp,
hole.inp, broken.inp, and together.inp. Here is a sample run of FastHenry for the
30 pin connector example, 30pin. Comments describing the output appear along the right
margin in addition to the FastHenry command line option which would change the described
setting.

prompt % fasthenry 30pin

Solution technique: ITERATIVE <-- use GMRES (-s)

Matrix vector product method: MULTIPOLE <-- and multipole algorithm (-m)
Order of expansion: 2 <-- order of multipole (-0)

Preconditioner: ON <-- GMRES preconditioner (-p)

Error tolerance: 0.001 <-- relative tol (-t, -b)

Reading from file: 30pin

Title:

#%30 pin, right angle connector** <-- first line from input file

all lengths multiplied by 0.001 to convert to meters
Total number of filaments before multipole refine: 290
Total number of filaments after multipole refine: 455 <-- multipole needed
to refine (-a)
Multipole Summary
Expansion order: 2 <-- -0 option
Number of partitioning levels: 3 <-- -1 option
Total number of filaments: 455
Percentage of multiplies done by multipole: 100%

Scanning graph to find fundamental circuits... <-- find meshes
Number of Groundplanes : 0 <-- some data about
Number of filaments: 455 input geometry
Number of segments: 455
Number of nodes: 605
Number of conductors:30
Number of meshes: 60
----from tree: 60 <-- fundamental circuits from graplL

----from planses: 0
Nuvmber of real nodes:455

filiing M...

filling R and L...

Total Memory allocated: 1985 kilobytes <-- Total memory consumed
Frequency = 10000

Forming overlapped preconditioner <-- form preconditioner for this freq.
conductor 0 from node npin4_5_1 <-- do 1st column of admittance matrix
Calling gmres...

1234567891011 <-- Iterations until convergence
conductor 1 from node npin4_4_1 <-- Begin next column

Calling gmres...
1234567891011
conductor 2 from node npin4_3_1
Calling gmres...
123456678910 11
conductor 3 from node npiné_2_1

75



conductor 28 from node npinC_1_1
Calling gmres...
123456788910

conductor 29 from node npin0O_0_1
Calling gmres...
12345678910

All impedance matrices dumped to file Zc.mat <-- Where the results are

Times: Read in stuff 1.51 <-- some execution time info
Multipole setup 11.94
Scanning graph 0.01
Form A M and Z 0.06

form M’ZM 0
Form precond 1.36
GMRES time 75.92
Total: 90.8
90.980u 0.640s 1:36.62 94.8Y% 321+2448k 0+0io 4pf+0w
prompt %

B.2.3 Processing the Output

The file Zc .mat is a text file containing the impedance matrices for the frequencies requested
in the input file. The file ReadOutput.c is an example program for reading the text file for
whatever processing is necessary. It contains the function ReadZc() which reads from a file
and returns a linked list in which each element of the list contains an impedance matrix
and its corresponding frequency. See the source file for more details. This function can be
extracted and included in whatever program the user desires.

The function main() is provided as an example use of ReadZc(). For each of the
matrices, it divides the imaginary part by the frequency to give the matrix R+ jL and then
dumps the result to the standard output.

ReadOutput.c can be compiled by typing

cc -o ReadOutput ReadOutput.c

Here is a sample of its output after processing Zc.mat produced by running fasthenry
on example file onebargp. inp:

prompt % ReadOutput Zc.mat

Not part of any matrix: Row 2 : nodein to nodeout

Not part of any matrix: Row 1 : nbl to nbout

Reading Frequency 10000

Reading Frequency 100000

Reading Frequency 1e+08

Reading Frequency 1e+07

Reading Frequency 1e+08

freq = 1e+08

Row 0: 0.00112838+3.50478e-08j —2.21062e-05-7.0002e-09j
Row 1: -2.23118e-065-6.59684e-09j 4.83217e-05+2.02968e~08j
freq = 1et07

Row 0: 0.00112837+3.50478e-08j -2.21065e-05-7.0003e-09j
Row 1: -2.2311e-05-6.99564e-09j 4.83217e-05+2.02958e-08j

76



freq = 1e+086

Row 0: 0.0011272+3.50601e-08j -2.203366-05-7.00045e~09]
Row 1: ~2.22379e-05-6.99578e-09j 4.83168e-05+2.02958e-08]
freq = 100000

Row 0: 0.00106093+3.51782e-08j ~1.7938e~05-7.00784e-09j
Row 1: -1.80766e-05-7.003416-09j 4.80425e-05+2.02964e-08j
freq = 10000

Row 0: 0.000955377+3.58556e-08j —1.25489e~05-7.01913e-09j
Row 1: -1.25828e-06-7.01518e-09j 4.75474e-05+2.03045e-08)
prompt %

B.2.4 Other Examples

This example shows how to run fasthenry on example 30pin. inp with user refinement at
level 4 so that no segment will be larger than 1/16 of the largest dimension of the structure.
It will aiso have FastHenry dump the unrefined structure to a FastCap readable file for
visualization:

fasthenry 30pin.inp -i 4 -f simple

Run fasthenry on example onebargp.inp still using the iterative algorithm, but without
the multipole algorithm for the matrix vector product:

fasthenry onebargp.inp -m direct

B.3 Compiling FastHenry

A tar file containing the source files for fasthenry and this guide may be obtained on tape
by sending a written request to

Prof. Jacob White

Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science
Room 36-880

Cambridge, MA 02139 U.S.A.

This address may also be used for general correspondence regarding fasthenry, although
electronic mail may be sent to fasthenry-bug@rle-vlsi.mit.edu, for bug reports, and to
fasthenry@rle-vlsi.mit.edu, for questions or comments, if it is more convenient.

The tar file has the form

fasthenry-1.0-13Jan93.tar.Z
and yields a one level directory when untarred with the commands

uncompress fasthenry-1.0-13Jan93.tar.Z
tar xvf fasthenry-1.0-13Jan93.tar

It will create a directory called fasthenry and which contains all the C source files, the
IATEX files for this manual, and the example files.

77



B.3.1 Compilation Procedure

FastHenry is compiled by changing to the fasthenry directory, and typing
make

to create the executable fasthenry. This will use the file Makefile to make fasthenry.
Certain DEC compilers run out of space during the compile. If either this is the case or
Matlab files will be dumped, replace the file Makefile with a copy of Makefile.dec. To
compile on a Silicon Graphics Workstation, change the first line of Makefile to

CFLAGS = -0 -DFOUR -DOLDPRE -0limit 2000 -cckr

B.3.2 Producing this Guide

In the fasthenry directory, type
latex manual.tex

and then again,
latex manual.tex

to get the references correct. The manual will be the file manual.dvi.

78



Bibliography

[1] A. C. Cangellaris, J. L. Prince, and L. P. Vakanas. Frequency-dependent inductance
and resistance calculation for three-dimensional structures in high-speed interconnect
systems. IEEFE Transactions on Components, Hybrids, and Manufacturing Technology,
13(1):154-159, March 1990.

[2] N. Deo. Graph Theory with Applications to Engineering and Computer Science.
Prentice-Hall, Englewood Cliffs, N.J., 1974.

[3] C. A. Desoer and E. S. Kuh. Basic Circuit Theory. McGraw-Hill, New York, 1969.

[4] R. Freund. On conjugate-gradient type methos and polynomial preconditioners for a

class of complex non-hermitian matrices. Numer. Math., 57:285-312, 1990.

[5] G. H. Golub and C. F. Van Loan. Matriz Computations. The Johns Hopkins University

Press, Baltimore, second edition, 1989.

(6] L. Greengard. The Rapid Evaluation of Potential Fields in Particle Systems. M.L.T.
Press, Cambridge, Massachusetts, 1988.

[7] F. W. Grover. Inductance Calculations, Working Formulas and Tables. Dover Publi-
cations, New York, 1962.

[8] R. F. Harrington. Field Computation by Moment Methods. MacMillan, New York,
1968.

[9] H. A. Haus and J. R. Melcher. Electromagnetic Fields and Energy. Prentice-Hall,
Englewood Cliffs, NJ, 1989.

79



[10]

[11]

[12]

(13]

[14]

[15]

[16]

[17]

[18]

[19]

C. Hoer and Carl Love. Exact inductance equations for rectangular conductors with
applications to more complicated geometries. J. Res. Natl. Bureau Standards, 69C:127-
137, 1965.

R. A. Horn and C. R. Johnson. Matriz Analysis. Cambridge University Press, Cam-
bridge, 1985.

M. Kamon, M. J. Tsuk, and J. White. Fasthenry, a multipole-accelerated 3-d in-
ductance extraction program. In Proceedings of the ACM/IEEFE Design Automation
Conference, Dallas, June 1993.

K. Nabors and J. White. Fastcap: A multipole accelerated 3-D capacitance extraction
program. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 10(11):1447-1459, November 1951.

K. Nabors and J. White. Fast capacitance extraction of general three-dimensional

structures. IEEFFE Trans. on Microwave Theory and Techniques, June 1992.

A. E. Ruehli. Inductance calculations in a complex integrated circuit environment.

IBM J. Res. Develop., 16:470-481, September 1972.

A. E. Ruehli. Survey of computer-aided electrical analysis of integrated circuit inter-
connections. IBM Journal of Research and Development, 23(6):626-639, November
1979.

A. E. Ruehli and P. A. Brennan. Efficient capacitance calculations for three-dimensional
multiconductor systems. IEFEFE Transactions on Microwave Theory and Techniques,

21(2):76-82, February 1973.

Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Com-

puting, 7(3):856-869, July 1986.

W. T. Weeks, L. L. Wu, M. F. McAllister, and A. Singh. Resistive and inductive skin
effect in rectangular conductors. IBM Journal of Res. and Develop., 23(6):652-660,
November 1979.

80



