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Abstract

Deep learning-based natural language processing classifiers often have difficulty classi-
fying texts that stem from a different domain than the labeled training data. Many
domain adaptation methods have been proposed to train classifiers using only labeled
texts from a single domain and unlabeled texts from other domains. Nevertheless,
we find that the state-of-the-art methods all lack one or more desirable properties
for real-world modeling. In particular, we find that the many methods using a
domain-adversarial loss are unable to model domains with different label distributions.
Motivated by these limitations, we are developing a new method, Prediction Propa-
gation, that can classify texts from different domains without using an adversarial
loss. Our method will use the label prediction for reconstructing the input text and
backpropagates through the prediction as a way to learn label-related information for
the new domain. Our method has the desirable properties for real-world modeling
while not compromising on performance.

Thesis Supervisor: Alex P. Pentland
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Chapter 1

Introduction

Modern natural language processing (NLP) models rely heavily on machine learning,

which has enabled impressive results, but has also made the learned models closely

tied with the training data [12]. For NLP, there are large amounts of unlabeled data

available, and it is thus useful to exploit this data to make classifiers more robust to

data coming from other domains than that of the training data.

The task of learning models that can exploit unlabeled data sources from other

domains to successfully classify observations in those domains has been formalized

in [10] under the name of domain adaptation. Many methods have been proposed

with some prominent approaches leveraging unsupervised learning to learn a shared

representation [5, 37, 7] and others using adversarial loss to learn domain-invariant

representations [1, 15, 40].

We find that many of the state-of-the-art methods rely on assumptions about the

datasets that are often not upheld for real-world applications. Motivated by these

limitations, we propose a new method, Prediction Propagation, that uses the label

prediction for each piece of text, together with the surrounding words, to separately

reconstruct each word in the text, see Figure 1-1. When backpropagating through

the label classifier, the reconstruction loss forces the model to improve its label-

related information for domains without labeled data. A new neighborhood encoding

architecture and multi-phase training is used to ensure that the label prediction

remains a good estimate of the label even when updating the model parameters only

13
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Figure 1-1: Simplified illustration of how our method works. Text-level sentiment

prediction feeds into a word-level reconstruction model.

using a reconstruction loss. Our method has the desirable properties for real-world

modeling and is able to obtain state-of-the-art performance.
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Chapter 2

Desirable Properties for Domain

Adaptation

2.1 Related Work

Structured correspondence learning (SCL) [5], stacked denoising autoencoders (SDA) [37],

and marginalized SDA [7] have all been used for domain adaptation within NLP. These

methods first use an unsupervised method to learn a low-dimensional representation

and then train a classifier using the source domain labels on this representation. In

this way, they rely on the unsupervised projection to a low-dimensional representation

being able to capture the information relevant for label classification, which is a

limitation that the current state-of-the-art methods do not have.

A simple approach to learn domain-invariant representations is to use a pretrained

deep neural network and align the feature spaces across domains. This approach is

used in DAN [26] and Deep CORAL [32]. While these methods can be effective, they

require that a pretrained network is available. In the vision domain, these methods

have relied on models that have been pretrained on large-scale annotated datasets

such as ImageNet [11]. In NLP, it is not clear which pretrained models could be used.

An approach to avoid this issue of not having a pretrained model is to create a new

pretrained model by first training using Ds. However, as we show in the Results

chapter, this approach is not able to achieve state-of-the-art accuracy.

15



There are domain adaptation methods that have been used successfully within

computer vision, but are not easily applicable to NLP. For instance, one approach

in computer vision has been to use a generative adversarial network (GAN) [17] to

transform the inputs, thereby improving the accuracy of the source classifier [25].

While there has been a large amount of interest in making GANs work for text [18, 39]

with promising initial results, there has to our knowledge not been any papers that's

successfully used these methods for improving domain adaptation for NLP tasks.

Similarly, the state-of-the-art method within domain adaptation for computer vision

uses a teacher-student model to achieve domain-specific input space invariances such

as color and rotation invariance [14] through extensive data augmentation. As it is

not clear how to adapt these methods for NLP tasks, they are not included in the

comparisons in this thesis.

The domain-adversarial neural network (DANN) [1, 15] uses an adversarially

trained domain classifier to align the feature spaces across domains in addition to a

traditional classifier on the source domain. A gradient reversal layer (GRL) ensures

that the encoder's parameters are updated such that the domain classification loss

increases. While training, the model simultaneously minimizes the label prediction

loss while maximizing the domain classifier's cross entropy loss. Many of the recent

state-of-the-art methods build on this DANN framework. For instance, [35] proposed

the Deep Domain Confusion (Deep DC) method that instead of maximizing the

domain classifier's cross-entropy loss minimize the maximum mean discrepancy. Other

differences between methods are the model architecture with methods like ADDA and

DSN using separate encoders for each domain [36, 6]. The DSN method reconstructs

the input as part of the training process, thereby learning which parts of the feature

space to share across domains and which to keep private [6]. Similarly, the aspect-

augmented adversarial network (AAN) was recently proposed, which stabilizes the

adversarial training for NLP applications through the use of an additional word-level

autoencoder loss [40].

Our method's reconstruction of words in the context of neighboring words bear

resemblance to window-based tagging [8] and continuous bag-of-words (CBOW) used

16



to learn word vectors [28]. However, to our knowledge, no approach uses the label

prediction for the text reconstruction as our method does.

2.2 Desirable properties

Due to the many ways of designing domain adaptation methods, we aim at identifying

some desirable properties for these methods that can put our method in the context

of previous work. We identify three such desirable properties.

First, it is desirable that the method can be trained from scratch on the dataset

without any pretrained parameters because there are many important real-world tasks

for which there are no pretrained classifiers available to adapt. While most of the

state-of-the-art domain adaptation methods are able to do this, the DAN [26] and

Deep CORAL [32] rely on aligning features of pretrained neural network models and

are thus restricted in the tasks they can be applied to.

Secondly, it is desirable that the method can classify an observation without

knowledge of the domain from which that observation originated. Some domain

adaptation methods require such information for each observation due to e.g. the use

of separate encoders for different domains [6, 36]. While this issue could potentially be

'solved by having a domain classifier that is used as part of the preprocessing, it is not

trivial to determine the domain of individual observations in NLP. To demonstrate the

difficulty of this task, we have trained LSTM models using two sets of standard NLP

datasets to predict the domain (or dataset) that each example comes from. Amazon

Reviews +4 Twitter has an error rate of 11.4% and AG + Yahoo of 43% (random:

50%). For comparison, we also train a convolutional neural network (CNN) that

predicts the domains for two sets of computer vision datasets; MNIST +-* SVHN has

an error rate of 1% and Amazon Pictures ++ DSLR of 3.7%. For NLP as well as for

computer vision domains the error rate naturally depends a lot on the homogeneity of

the specific domains, but these experiments do show the importance of being able to

classify observations without domain information, especially for NLP classifiers. In

addition to classifying observations from known domains, NLP models for real-world

17



Table 2.1: Properties of various NLP domain adaptation methods.

Learn w/o Classify w/o Train on
Method pretrained different label

paramsdomain info distributions

DAN [26] no yes yes
Deep CORAL [32] no yes yes
ADDA [36] yes no no
DSN [6] yes no suboptimal'
Deep DC [35] yes yes no
DANN [1] yes yes no
AAN [40] yes yes no
Prediction Propagation (ours) yes yes yes

applications might also need to classify new observations that cannot be clearly defined

as being part of any of the existing domains used for training. It is not clear how these

methods with separate layers for different domains would handle such observations.

Thirdly, it is desirable that a method is able to model domains with different

label distributions as many real-world domains vary in their label distributions. For

instance, Amazon reviews have a proportion of positive reviews ranging from 78% to

93% depending on the product category (see Table 2.2). All the methods that are

rooted in the gradient reversal technique from DANN (i.e. ADDA, DSN, Deep DC,

DANN, AAN) suffer from an inability to handle such differences in label distributions

across domains. For these methods, the domain classifier exploits the label information

encoded in the feature vector to predict the domain, causing the reversed gradient

to remove information pertinent to the classification task. This issue is formalized in

Appendix A and experimentally confirmed in the Results chapter.

Table 2.1 summarizes the properties of the state-of-the-art methods within NLP (see

the Related Work section for other methods). Prediction Propagation stands out as

the only method with all three desirable properties. With this thesis's focus on domain

adaptation for real-world applications, the adversarial methods, DANN, Deep DC and

AAN methods are relevant baselines due to their ability to learn without pretrained

1DSN's similarity loss is defined as the adversarial loss from either DANN or Deep DC, both
of which have difficulty training on domains with different label distributions. Table 3 in the DSN
paper shows that the model works without this loss, but achieves results below state of the art for 2
out of 4 benchmark datasets.
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parameters and classify observations without domain information. Additionally, in

case one has access to pretrained parameters, DAN and Deep CORAL are relevant

baselines. Recent work has shown that DANN performs comparable or better than

Deep DC [36, 27] and that Deep CORAL outperforms DAN [32], which is why we only

use DANN, AAN and Deep CORAL as baseline comparisons in the Results chapter.

Table 2.2: Label distributions for the top 15 Amazon categories in the dataset after
filtering to only include reviews with 30 tokens or less. The positivity percentage is
the proportion of positive reviews out of all the reviews.

Category Positivity

Books 93%
Movies And Tv 91%
Grocery And Gourmet Food 90%
Toys And Games 90%
Sports And Outdoors 90%
Automotive 90%
Home And Kitchen 89%
Tools And Home -Improvement 89%
Office Products 87%
Beauty 87%
Electronics 87%
Clothing, Shoes And Jewelry 86%
Apps For Android 85%
Health And Personal Care 85%
Cell Phones And Accessories 78%
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Chapter 3

Methods

Consider the example in Figure 3-1, where our model is reconstructing the word

sweetiepie using only the two neighboring words and the text-level label prediction.

Given the two neighboring words, a simple model will be able to predict that the

reconstructed word should be a noun, but without the text-level label prediction it

is unclear if the reconstructed word should be a positive noun (e.g. 'sweetiepie') or

a negative noun (e.g. 'moron'). Our method focuses precisely on how to use such

reconstruction difficulties to learn label-related information about the target domain.

Word-level * Text-level

?

,You were such a sweetiepie yesterday. I love you!

Figure 3-1: Simplified illustration of our model reconstructing each word using its two
neighbors and the text-level label prediction.
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Word-level * Text-level

embT enco decp A

Xo CO X0

I tX, e i C i X,

X2 62 C2 X2

glo,5

clfo

Figure 3-2: Illustration of the architecture for our method with T = 3 and k = 1. Each

word is encoded based on that word's two neighboring words. The predicted distribu-

tion over the labels, y, is computed for the entire text, which is then concatenated
to each encoded word as part of the decoding. Similarly, a global representation g is

computed and concatenated. The decoder has thus access to word-level neighborhood
encodings, the text-level prediction, and the text-level global representation.

3.1 Prediction Propagation

For the unsupervised domain adaptation task involving a source domain Ds and

a target domain DT, we aim to learn a function f : X -÷ Y that obtains a low

generalization error on the target domain DT. We have Ns labeled training samples,

{ (Xi, yi), ... , (xNs , yNs)}, from Ds and NT unlabeled training samples, {(xi), ..., (xNT) ,

from DT. The task focus is how to make use of the NT unlabeled training samples to

teach the model about DT in order to reduce the generalization error.

It is easy to obtain general semantic information about words in DT using an

unsupervised method like CBOW [28], but it is non-trivial to learn label-related

information for each word. For instance, CBOW would likely have difficulty learning

that sweetiepie is a positive word in the example in Figure 3-1. The goal of our

Prediction Propagation method is thus to enrich our word embedding function emb(.)

with label-related information about words in DT and to enrich our classifier function

clf(.) to account for patterns specific to DT.

22



We represent each text of T words as x = {(xo), ... , (XT_1)} and assume that the

probability of each word xi is a function only of its k-adjacent neighbors for some

k > 0 (i.e. it has the k-Markovian property [16]) and a text-level prediction of the

probability distribution over the classes, y:

p(Xi IXO, ... , xi_ 1 , Xi+1, ... , XT-1, Y) = P(Xi IXi-k, -. Xi-1, Xi+1, -. Xi+kY) (3.1)

The central idea of this thesis is to use the predicted distribution y as part of a

generative model, thereby learning label-related information for DT by backpropagating

through the classifier. To do this properly requires a special architecture and training

procedure that is presented in the remainder of this chapter.

3.2 Neighborhood Encoding Architecture

In parallel to the neighborhood encoding of each word, a classifier function predicts

the probability distribution over the labels from the embedding representations, i.e.

y = clf,(e), where e contains all embedded words eO, ei,..., eT_1. This text-level

prediction is used as part of the input to decoding. Similarly, we compute a global

text-level representation g = glo6(e) of dimensionality 1. The global representation is

added to help y remain a good estimate of y by capturing the main global patterns that

are relevant for reconstruction, thus preventing the gradients from strongly pushing

y towards capturing this information. The benefit of the global representation is

confirmed experimentally in the Results chapter.

The decoder function is applied to each word to reconstruct that part of the input,

i.e. xE = decp(ci, yr, g). As opposed to a classic autoencoder [37], the entire input is

not compressed to a single vector representation, but rather each word xi is represented

independently by its word-level neighborhood representation ci, the text-level predicted

distribution y, and the global representation g. Figure 3-2 illustrates this network

architecture for an input of size T = 3.
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The key to our model's success is the connection from the text-level prediction

y to each word as it is being decoded. From an implementation perspective, the

prediction is simply repeated with an identical prediction value being concatenated

to each encoded word cO, c1 ... CT_1. The same goes for the global representation g.

We tie weights 0 with the weights T for the embedding function, thereby reducing

overfitting and the numbers of parameters in the model [22, 30].

Implementation

The embedding function embT consists of a single embedding layer with an embedding

size of m + n + 1, where m = 64 and 1 = 8 are hyperparameters and n is the number

of classes. The embedding weights, T, is consequently a matrix of size V x (m + n),

where V is the vocabulary size.

The classifier function clf, has an attention layer that averages the representations

across words by weighing each word based on their attention importance score as

done in [13] and a bidirectional long short-term memory [20, 31] module with 512

dimensions in each direction for detecting sequential patterns. These two layers are

combined using a fully-connected layers with 1024 units and a Softmax layer that

computes a probability distribution over the n classes. The global representation

function glo6 uses the same layers as the classifier function, but has a final layer of

dimensionality I = 8 with a tangents hyperbolic activation rather than the Softmax

layer.

The neighborhood encoding function encp uses a center-masked convolutional layer

with a filter size of 3 to encode each word using its two neighboring words. We define

a center-masked convolution as a standard convolution that is applied across a feature

map, where the central neuron is masked by multiplying it with zero to have no

influence on the filters (see enco in Figure 3-2). The center-masked convolutional

layer has 2048 filters and is followed by a time-distributed fully-connected layer that

projects each word independently down to 64 dimensions. Both layers use the ReLU

activation.

The decoder function multiplies the concatenated input from encO and clf, with a
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matrix of size (m + n) x V. A bias is added for each word and the softmax activation

function is applied, thereby for each word producing a probability distribution over

all the words in the vocabulary.

3.3 Multi-Phase Training

In order to learn label-related information about words and patterns occurring in DT

by backpropagating the gradients from a reconstruction loss through the classifier, it

is crucial that y remains a good estimate of y throughout training. This is non-trivial

as the gradients from the reconstruction loss will attempt to move the prediction yr
away from being a good estimate of y and instead towards something more useful

for reconstructing the words. One could imagine trying to make yr remain a good

estimate by using a classification loss based on the labeled samples from Ds, but this

would introduce a dataset-dependent hyperparameter related to the trade-off between

the reconstruction loss and classification loss.

We ensure that yr remains a good estimate by training the model in five consecutive

phases. Each phase involves minimizing one or more of the model's three losses

with respect to a subset of the parameters T, #, 4 and w. The three losses are the

classification loss on the source dataset, Lcf, and the two reconstructions losses,

1source and Ltarget, making the total training loss:

L = Aclf Lif +Asource L source +Atar get Ltar get (3.2)

While this training scheme may seem excessive, it is unlike most other domain

adaptation methods free of hyperparameters that need to be tuned for each new

dataset. Moreover, the main difference between phases is which parameters are

trainable and which losses are used, making the training easy to implement in any

modern deep learning library. The loss multipliers, Aclf, Asource and Atarget are always

binary, meaning that the loss is simply on or off for any given phase. Table 3.1 details

which parameters of the model are trainable in which phase and which losses are used.

The first three phases teaches the model how to reconstruct the words xO, x 1 , . .. , x _
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and predict y for Ds, whereas the last two phases make use of the trained model to

learn label-related information for DT. In particular, the fourth phase updates the

word embeddings parameters r to learn the meanings of previously unknown words

and new meanings of existing words. Similarly, the fifth phase updates W to capture

patterns specific to DT. As phase 1 does not yet have a trained classifier to provide

yT, the labels are provided instead. Table 4.5 in the Results chapter shows how the

model is improving in each phase.

Table 3.1: Parameters being
are binary.

updated in each phase using which losses. Loss multipliers

Parame-
Phase ters Asource

1 T,#,<),6 0 1 0
2 w 1 0 0
3 T,,')l,6 0 1 0

4 T,4,4, 6  0 1 1
5 w 0 1 1

The training is done using the Adam optimizer [24] using the default parameters

and with gradient clipping of the norm set at 1. In all phases the model is trained

until convergence.
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Chapter 4

Results

We compare our model to DANN, AAN and Deep CORAL. For our implementation

of DANN we use similar embedding and classification layers as for our own model,

while using the same gradient reversal factor schedule as in the original DANN paper

(see Appendix B for implementation details). For AAN we use the authors' GitHub

code and default hyperparameters. The Deep CORAL model was pretrained on the

source dataset and then trained jointly across both domains using the proposed loss

function. For all models, we used hyperparameter optimization to ensure that any

differences in performance were not due to hyperparameter choices.

4.1 Benchmark Datasets

We create three new datasets due to lack of properly sized evaluation datasets for

domain adaptation in NLP (the AAN datasets have not been made available by the

authors). An overview of the datasets can be seen in Table 4.1. For all datasets we

use 5000 observations for the validation set and 15000 observations for the test set.

To tokenize the texts and create vocabularies we use code from DeepMoji [13].

For sentiment classification we consider domain adaptation between Amazon re-

views and tweets on Twitter as well as between three Amazon product categories.

Previous work has also used Amazon product categories to evaluate domain adap-

tation [15, 7], but the review datasets used in these previous papers only had 2000
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labeled source samples, making the dataset small for modern standards. We thus

create our own binary classification Amazon review datasets based on previously

released data [19]. Our datasets are substantially larger, making for a more realistic

test case. The reviews are on an ordinal scale from 1 to 5, which we binarize by

regarding reviews with scores below 3 as negative and above 3 as positive. Reviews

with a score of 3 are discarded to establish a clear separation between negative and

positive reviews. To make for a more challenging domain adaptation task, we use only

reviews with less than 30 tokens and remove all trivially easy observations. These

observations are defined as the ones that a bag-of-words logistic regression using only

a vocabulary of the top 1000 tokens predicts with 99% confidence or more. In addition

to creating balanced datasets, we also randomly sample observations from the Amazon

categories to create a version of that dataset that is naturally unbalanced, varying

from 78% to 93% of the reviews being positive depending on the product category

(see Table 2.2 for details).

In agreement with prior work [29, 33], we define positive sentiment for tweets as

those containing a positive emoji and, similarly, negative sentiment for those containing

a negative emoji. To handle the noisy text on Twitter we use the tokenization scheme

and vocabulary from DeepMoji [13], where words with 2 or more repeated characters

are shortened to use the same token. Furtermore, all URLs, numbers, and -mentions

are replaced by special tokens.

For topic classifciation we consider domain adaptation between between Yahoo

Answers and AG News [38] where the two overlapping topics in both domains, Sci-

ence/Technology and Sports, are used as our two prediction classes. Both corpora are

balanced. A large proportion of the observations had the website domain as part of

the text, making it trivially easy to classify these observation (e.g. if the domain is

www.spacescience.com). We thus remove the website domains from the texts as part

of the preprocessing.
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Table 4.1: Description of benchmark datasets.

Un-
Experiment Study Task Classes Ntrain Nal Ntest Bal bal

Twitter *-+ Amazon [34] Sentiment 2 200000 5000 15000 /
Amazon Categories [19] Sentiment 2 40000 5000 15000 /
AG News 4 Yahoo [38] Topic 2 40000 5000 15000 /

4.2 Performance on Balanced and Unbalanced Datasets

To evaluate the performance on the datasets we use the area under the curve (AUC)

of the receiver operating characteristic, which is suited for evaluating both balanced

and unbalanced datasets. Table 4.2 shows that Prediction Propagation is the method

of the three that achieves state-of-the-art performance across the most datasets. All

the results are averaged across 3 runs. Additionally, we compute the standard error of

the mean (SEM) of the AUC for each combination of method and dataset.

To our knowledge, DANN, AAN and Deep CORAL have only been benchmarked

on domain adaptation tasks, where the distribution of labels is uniform for both the

source and target domain. However, obtaining a balanced target dataset necessarily

requires access to the labels, which would not be present in a real-world application

of domain adaptation. We thus evaluate the methods, where the source domain is

balanced (as often done for training) and the target domain is naturally unbalanced,

i.e. the observations are sampled randomly from the original dataset. Table 4.3

shows that DANN, AAN and Deep CORAL perform substantially worse on these

tasks with a unbalanced target domain, thereby confirming the issue discussed in the

chapter on Desirable Properties for Domain Adaptation and formalized in Appendix

A. Our method substantially outperforms DANN, AAN and Deep CORAL on these

unbalanced datasets.
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Table 4.2: Balanced tasks. AUC on the target dataset averaged across 3 runs. Higher
is better.

DANN

.734 .006

.8227- .008

.773 i .026

.948 .007

.947 .001
.911 .004
.929 .002
.918 t .003
.842 A .014
.896 A .005

AAN

.752 t .032

.851 .015

.913 t .003
.965 A.002

.898 A .004

.876 A .005

.903 A .001

.888 t.012

.864 t .007

.846 t .017

Deep CORAL

.718 t .008

.851 t .019

.836 A .005

.969 A .001

.925 A .006
.922 t .004
.916 t .002
.906 t .007
.867 t .027
.889 A .018

Our method

.766 A.004

.874 A.016

.894 A .004
.978 A.003

.938 t .001

.918 A .001

.924 A .001

.899 t .002
.900 A .002
.921 A .003

Table 4.3: Unbalanced tasks. AUC on the target dataset averaged across 3 runs.
Higher is better.

DANN AAN Deep CORAL Our method

Books -4 Movies .848 .008 .680 t .067 .908 .018 .918 t .005
Books -+ Clothing .836 .003 .732 t .061 .885 .008 .901 .001
Movies -4 Books .816 .003 .614 t .021 .902 .005 .912 .006
Movies -+ Clothing .819 .004 .786 .023 .886 .019 .898 .005
Clothing -4 Books .724 i .008 .693 t .077 .751 .001 .848 .005
Clothing -4 Movies .743 .010 .738 .033 .862 .003 .870 .003

4.3 Analysis

In this section we analyze the importance of our modeling choices and provide some

insight into what our model learns.

We analyze our underlying premise of the backpropagation through the classifier

being crucial for the performance of our model (see Methods chapter). We run the

balanced Amazon -+ Twitter task, where we stop the gradient from backpropagating

from the decoder to the classifier. The AUC on DT drops from .766 to .731, which is

below the current state-of-the-art methods, thereby emphasizing the importance of

backpropagating gradients through the classifier to update our encoder.

Our method does not have any training hyperparameters, but instead has two

hyperparameters related to the architecture: neighborhood size k and global dimen-

sionality 1. Table 4.4 shows a grid search over hyperparameter values with the results
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being averaged across 3 runs. We find that the model is relatively insensitive for

changes in hyperparameter values but performs best using k = 3 and 1 = 8 for this

task. To avoid excessive hyperparameter tuning, we use these hyperparameter values

across all tasks and analysis experiments.

Table 4.4: Grid search over neighborhood
AUC for Amazon - Twitter.

size k and size of global representation 1.

I

k 0 4 8 16

1 .747 .756 .741 .742
3 .753 .741 .766 .742
5 .753 .756 .742 .760

To understand the impact of each of our training phases we evaluate the sentiment

and word reconstruction accuracies on the target domain for the balanced task Amazon

-+ Twitter. As seen in Table 4.5 each phase improves the performance. Phase 4

substantially improves the word reconstruction accuracy, which is intuitive as this is

the first phase, where the target domain reconstruction loss, Ltar get is used. Phase 1

and 4 take the longest with the remaining three phases accounting for less than 25%

of the overall training time.

Table 4.5: Accuracies for sentiment prediction
balanced task Amazon -+ Twitter.

and word reconstruction on DT for the

Phase Sentiment Words

1 - 14.5 .1
2 61.8 .4 -
3 62.8 .5 14.5 .2
4 68.1 .1 29.1 .6
5 68.5 .2 29.2 .3

The Methods chapter describes how our method learns label-related information

about the target domain, DT, which is important for domain adaptation tasks. To see

the degree to which our method learns more label-related information about the target

domain than the competing method, DANN, we analyze their performance on a subset
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of the test set, OT, that contains observations with information only present in the

target domain. To create the subset OT, we count the word occurrences in the training

set for the two domains as C(Ds) and C(DT). We then identify all observations OT

in the test set containing a word that fulfills C(Ds) = 0 and C(DT) > 0. Table 4.6

shows that the difference in performance between DANN and our method is larger

for these observations OT than for the test set in general, thereby suggesting that

the overall performance gain seen in Table 4.2 and 4.3 are likely due to our method

learning more label-related information about DT than DANN.

Table 4.6: AUCs for subset of test set OT that contain words not in Ds for Amazon
- Twitter.

PredProp DANN Diff

Test set .766 .002 .734 .003 .031 .003
OT .816 .002 .765 .003 .051 .005
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Chapter 5

Conclusion

An important paradigm within domain adaptation for NLP is adversarial training with

methods such as DANN, ADDA, Deep DC and AAN yielding the best performance

on the typical benchmark datasets. We show that these recent approaches based

on adversarial training with gradient-reversal have an important limitation for real-

world applications in that they cannot effectively model domains with different label

distributions. This is formalized in Appendix A and shown experimentally in Table 4.3.

Motivated by the limitations of the existing domain adaptation methods, we

introduced the Prediction Propagation method that does not use adversarial training.

Our method uses word-level reconstruction to improve the label classifier on domains

without labels. The new neighborhood encoding architecture and multi-phase training

enables us to force a label prediction to remain a good estimate of the label while

training without any classification loss, thereby allowing us to use the reconstruction

loss to learn label-related information about DT. Our method is able to model domains

with different label distributions and obtains state-of-the-art performance across three

challenging domain adaption datasets, thereby proving its usefulness. We release our

new benchmark datasets and documented code for our new method.
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Appendix A

Optimal Reweighing of Data from

Different Distributions

Following Ben-David et al. [2], we define a domain as a pair consisting of a domain

X and a distribution D, along with a labeling function f : X -- [0, 1], which can

optionally take fractional values if the label occurs non-deterministically. Considering

a hypothesis function h : X -- {0, 1} that maps any input from the space of inputs X

to a binary classification output, we can define the error ED(h, f) as the probability

that the hypothesis function disagrees with the labeling function on the domain D:

ED(h, f) = ExDD [Ih(x) - f(x)1] (A.1)

The corresponding empirical error is given by eD(f, h). Additionally, we may also

evaluate c,(h), which is the empirical a-weighted error of function h for a = (aj) ,
and Ec ai = 1:

N

E(h) = Z lh(x) - fj (x)I (A.2)
j=1 M Sg

We denote the source domain by Ds and target domain by DT. We now state

an important theorem in understanding differently balanced data distributions in

domain adaptation. [2] Let 'N be a hypothesis class of VC dimension d. For each
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j c {1, 2,...N}, let S be a labeled sample of size O3m generated from drawing

/3# points from D and labeling them according to fj. If h C W is the empirical

minimizer of eI,(h) for a fixed vector a on these samples and h*= minhE- eT(h) is

the target error minimizer, then for any 6 E (0, 1), with probability at least (1 - 6):

ET(h) < ET(h*) + 4 N2 2dlog(2(m+ + N =1 a (2, + duA(Dj, DT)),

where A = minhEN{ET(h) + Ej (h)}

It is known from [2, 3] that the excess risk ET(h*) - eT(h) by an optimal choice

of a and low values of E ajdHA- (D, DT). Typically, to make the bound tighter,

the cost of making an error in each source domain a, is chosen by calculating a

"distance" of each sample in the source dataset from the target datasets, to minimize

the excess risk. This technique has been adopted by numerous instance-weighting

domain adaptation techniques [21, 4, 23, 9]. As a first step, we partition the data

into sub-domains, weighted by the relative number of samples 3j introduced by each

subdomain. One partition for the empirical source data distribution could be that we

assume it is composed of two separate distributions Ds and Ds1 corresponding to

the classes 0 and 1 respectively, meaning that we have Ds = Dso U Dsi.

However, we can create any number of subpartitions of the source domain based

on the precision we wish to approximate the target domain with, and the amount of

information we have about the domains. As an extreme case, instead of considering

two subdomains Ds and Ds, one can also employ an instance-based reweighting

rule, where each training point is considered to be its own domain. In the general

case, we can assume k partitions, each with (bim)> elements. Since the target label

distribution is not known a priori, we calculate the expected risk over the entire target

distribution DT, which can be given by Theorem A. We can then estimate ai from a

chosen, optimizable "distance" measure between the source and target domains.

This method of instance-based reweighing can be applied to techniques that

attempt to reduce the excess risk by minimizing an empirical approximation of

Z, adxNA(Dj, DT) as well (one of which is the DANN approach by [1]). However,

to optimize this exactly, the knowledge of which domain each feature representation

sample belongs to is required in order to estimate a "distance" measure based on the
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membership of the training sample. Since by definition, gradient-reversal techniques

aim to create a domain-invariant feature representation, we can say that there is no

information about the domain D in the feature representation X. In terms of mutual

information between the random variables X0 (since the features are a learnable

function of the inputs, given parameters 0) and D, we can write:

I(D; Xo-) = 0 --> H(Xo-) = H(Xo-ID) (A.3)

Where 0* is the set of optimal parameters for a method employing the gradient-

reversal approach to learn a domain-invariant representation. Consequently, the

feature representation X0 . cannot be used for differentiating between domains (since

the information gained on observing the feature itself is zero, by Equation A.3), or

doing an instance-based reweighting (where each point is its own source domain).

Thus, the formulation penalizes each point equally (following oz - U), which can

lead to inferior performance whenever the empirical label distributions of Ds and

DT diverge significantly, since the uniformly-distributed a values will, in expectation,

predict the majority class (which is not an issue when the empirical label distributions

of the source and target domains are similar). Our Results chapter substantiates

this insight by evaluating two domain adaptation methods using gradient reversal on

domains with different label distributions.
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Appendix B

DANN Baseline Implementation

We attempt to keep our DANN implementation as close as possible to our Prediction

Propagation method. For the DANN model we use an embedding layer with 64

dimensions. Similarly, we use the same classification function as for Prediction

Propagation except that the fully-connected layer for DANN uses the hyperbolic

tangent function rather than ReLU to ensure proper gradient propagation back

through the model when training adversarially. The feature vector that the DANN

model attempts to make domain-invariant through adversarial training is a new 128-

dimensional vector obtained by adding an additional fully-connected layer to clf,. The

adversarial classifier is a multi-layer perceptron architecture with two fully-connected

layers each with 1024 units, dropout of p = 0.5, and the hyperbolic tangent activation

function. Lastly, another fully-connected output layer is used to predict the domain of

the input observation. We use the same schedule as proposed in the DANN paper [15]

to slowly increase the gradient reversal factor.
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