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Abstract

Fine-grained complexity aims to understand the exact exponent of the running time

of fundamental problems in P. Basing on several important conjectures such as Strong

Exponential Time Hypothesis (SETH), All-Pair Shortest Path Conjecture, and the

3-Sum Conjecture, tight conditional lower bounds are proved for numerous exact
problems from all fields of computer science, showing that many text-book algorithms

are in fact optimal.

For many natural problems, a fast approximation algorithm would be as important

as fast exact algorithms. So it would be interesting to show hardness for approxima-

tion algorithms as well. But we had few techniques to prove tight hardness for ap-

proximation problems in P-In particular, the celebrated PCP Theorem, which proves

similar approximation hardness in the world of NP-completeness, is not fine-grained

enough to yield interesting conditional lower bounds for approximation problems in

P.
In 2017, a breakthrough work of Abboud, Rubinstein and Williams [12] estab-

lished a framework called "Distributed PCP", and applied that to show conditional

hardness (under SETH) for several fundamental approximation problems in P. The

most interesting aspect of their work is a connection between fine-grained complexity

and communication complexity, which shows Merlin-Arther communication proto-

cols can be utilized to give fine-grained reductions between exact and approximation
problems.

In this thesis, we further explore the connection between fine-grained complexity

and communication complexity. More specifically, we have two sets of results.

In the first set of results, we consider communication protocols other than Merlin-

Arther protocols in [121 and show that they can be used to construct other fine-grained

reductions between problems.

E E2 Protocols and An Equivalence Class for Orthogonal Vectors (OV).
First, we observe that efficient E" protocols for a function imply fine-grained re-
ductions from a certain related problem to OV. Together with other techniques

including locality-sensitive hashing, we establish an equivalence class for OV
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with O(log n) dimensions, including Max-IP/Min-IP, approximate Max-IP/Min-IP,
and approximate bichromatic closest/further pair.

* NP -UPP Protocols and Hardness for Computational Geometry Prob-
lems in 2 0(og*n) Dimensions. Second, we consider NP - UPP protocols which
are the relaxation of Merlin-Arther protocols such that Alice and Bob only
need to be convinced with probability > 1/2 instead of > 2/3. We observe that
NP - UPP protocols are closely connected to Z-Max-IP problem in very small di-
mensions, and show that Z-Max-IP, f2-Furthest Pair and Bichromatic f2-Closest
Pair in 2 0(og*'n) dimensions requires n2-o(l) time under SETH, by constructing
an efficient NP - UPP protocol for the Set-Disjointness problem. This improves
on the previous hardness result for these problems in w(log2 log n) dimensions
by Williams [172].

* IP Protocols and Hardness for Approximation Problems Under Stronger
Conjectures. Third, building on the connection between IP" protocols and a
certain alternating product problem observed by Abboud and Rubinstein [111
and the classical IP = PSPACE theorem [123, 1551. We show that several fine-
grained problems are hard under conjectures much stronger than SETH (e.g.,
the satisfiability of n"(')-depth circuits requires 2(10-o())n time).

In the second set of results, we utilize communication protocols to construct new
algorithms.

" BQP" Protocols and Approximate Counting Algorithms. Our first
connection is that a fast BQP protocol for a function f implies a fast deter-
ministic additive approximate counting algorithm for a related pair counting
problem. Applying known BQPC protocols, we get fast deterministic additive
approximate counting algorithms for Count-OV (#OV), Sparse Count-OV and
Formula of SYM circuits.

" AM"/PH" Protocols and Efficient SAT Algorithms. Our second connec-
tion is that a fast AM" (or PH") protocol for a function f implies a faster-
than-bruteforce algorithm for a related problem. In particular, we show that
if the Longest Common Subsequence (LCS) problem admits a fast (computa-
tionally efficient) PHCC protocol (polylog(n) complexity), then polynomial-size
Formula-SAT admits a 2 -" time algorithm for any constant J > 0, which is
conjectured to be unlikely by a recent work of Abboud and Bringmann [6].

Thesis Supervisor: Richard R. Williams
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Background: Fine-Grained Complexity, from Ex-

act to Approximate

The program of Fine-Grained Complexity (a.k.a. Hardness in P), is one of the most

exciting recent developments in theoretical computer science. The program seeks to

answer the following type of questions: what is the exact exponent on the running

time for a problem in P? These type of questions were mostly ignored by complexity

theorists, as in their language, being in P already means easy. But from a practical

perspective, there is a clear desire to understand whether the running time of (say)

Edit Distance can be made close to linear, or it inherently requires roughly quadratic

time, as the difference between linear-time and quadratic-time is tremendous in the

real life, especially in this modern big data era.

Motivated by this quest of getting a more "fine-grained" understanding of compu-

tation, there has been a surge of works in this area, which established tight running

time lower bounds on nearly all classical problems, ranging from pattern matching

and bioinformatics [15, 41, 40, 55, 57, 6], dynamic data structures [140, 14, 14, 100,

112, 8, 101, 911, graph algorithms [150, 89, 16, 113, 43, 118, 811, computational ge-

ometry [54, 172, 83, 70, 1071 and machine learning [421 under the SETH', the APSP

'The Strong Exponential Time Hypothesis (SETH) states that for every e > 0 there is a k such
that k-SAT cannot be solved in O((2 - E)") time 11021.
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Conjecture, and the k-Sum Conjecture. See [163] for a wonderful recent survey on

the whole development.

The first generation of fine-grained complexity results are mostly concerned about

exact problems: e.g., they showed that computing Edit Distance, Longest Common

Subsequence or Maximum Inner Product exactly requires N 00) time under plausible

conjectures. But it is often the case that a good enough approximation algorithm

would be as significant as a good exact algorithm, and these results fail to show any

interesting lower bound for approximation algorithms.

The lack of fine-grained approximation lower bounds had been recognized as one of

the most important open questions in this field [3]. One crucial difficulty for showing

such approximation lower bounds is that the traditional PCP paradigm [37, 36, 99]

which proves similar approximation hardness for NP-hard optimization problems can-

not be applied directly to fine-grained complexity, due to the super-linear size blow

up in the constructed PCP instances [37, 36, 87], which becomes super-polynomial

after reducing to problems in P. (When we care about the exact exponent of the

running time, a super-polynomial blow-up is certainly unacceptable.)

There were basically no non-trivial fine-grained approximation lower bounds be-

fore the breakthrough work of Abboud, Rubinstein, and Williams [12] (which is fur-

ther improved by Rubinstein 1151]). They introduced a "Distributed PCP" framework

and used it to show tight conditional lower bounds for several fundamental approx-

imation problems, including approximate Bichromatic Max-Inner Product, Subset

Query, Bichromatic LCS Closest Pair, Regular Expression Matching and Diameter in

Product Metrics, under the SETH assumption.

1.2 Fine-Grained Complexity Meets Communication

Complexity

To establish fine-grained lower bounds for approximation problems, the most impor-

tant question is how to design a reduction which creates a gap in the optimal value. As

16
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discussed previously, one cannot afford the blowup of the traditional PCP paradigm,

so one must try to explore other methods to construct gap-creating reductions.

The most interesting aspect of [121 is that it crucially relies on the O(v'N)-

complexity Merlin-Arther protocol for Set-Disjointness of Aaronson and Widger-

son 121. In a Merlin-Arther Protocol, there are two players Alice and Bob hold-

ing two inputs x E X and y E Y, and they wish to jointly compute a function

f : X x y -+ {0, 1}. To minimize their communication, they also seek help from an

untrusted prover Merlin. Merlin sends them a proof V, and Alice and Bob verify this

proof with randomized communication. We say a protocol H correctly computes the

function f, if when f(x, y) = 1, there exists a proof V) which makes Alice and Bob

accepts with high probability; and when f(x, y) = 0, Alice and Bob reject all proofs

with high probability.

Satisfying-Pair Problem and MA"-Satisfying-Pair

To further discuss their underlying ideas, we introduce the f-Satisfying-Pair problem.

For a function f : X x Y --+ {0, 1}, the f-Satisfying-Pair is the problem that given

two sets A C X and B C Y, and decide whether there exists a pair (X, y) E A x B

such that f(x, y) = 1. In this way, the well-studied Orthogonal Vectors problem

(OV)2 is just fov-Satisfying-Pair, where fov checks whether two Boolean vectors are

orthogonal.

Now, suppose f admits an MA" protocol LI. Then we can reduce f-Satisfying-Pair

to H-Satisfying-Pair, the latter one is the similar problem which asks whether there is

a pair (x, y) C A x B which makes the protocol LI accept (in other words, there exists

a proof 4 such that Alice and Bob accepts 4' with inputs x and y).

The key observation of j12] is that the MA"-Satisfying-Pair problems (the class

of H-Satisfying-Pair problems for a valid MA protocol LI) can be further reduced to

simpler problems such as approximate Max-IP. Also, the function fov is in fact

equivalent to the classical function Set-Disjointness in communication complexity.

2Given two sets A, B C {0, 1 }d, determine the existence of a pair (a, b) E A x B such that

(a, b) = 0.
3 1n the Set-Disjointness problem, Alice and Bob hold two sets A, B C [d], and want to determine

17



Therefore, combing these observations together with the efficient MA protocol for

Set-Disjointness [21, it established a reduction from OV to approximate Max-IP, which

implies approximate Max-IP requires n2-,() time under SETH.

Potentially Extensions

Some natural questions arise from their intriguing work.

" First, can we apply this to f-Satisfying-Pair problems for f other than fov?

This general approach would clearly work for any f admitting an efficient MA"

protocol, and it is a potential way to create more reductions.

" Second, what about other types of communication protocols? They may cor-

respond to some other problems different than approximate Max-IP. In this

way, we may obtain interesting fine-grained reductions to other fundamental

problems as well.

" Third, can these connections be used algorithmically? Suppose that f has

an efficient C protocol H, and one can solve the corresponding H-Satisfying-Pair

problem with a faster algorithm. Then, one would automatically obtain a faster

algorithm for f-Satisfying-Pair as well.

" Fourth, what about problems beyond f-Satisfying-Pair?

1.3 Our Results

Our thesis is motivated by all the questions above. In particular, we have two sets of

results: first, we consider communication protocols other than MA" protocols, and

obtain various fine-grained reductions between problems; second, we investigate the

algorithmic use of communication protocols, and obtain several new algorithms.

whether their sets are disjoint. Let IA, IB E {0, 1 1d be the indicator vectors of A and B, then A and
B are disjoint iff (IA, IB) = 0.
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1.3.1 Fine-Grained Reductions from Other Communication

Protocols

The first direction we try to extend 112] is noting that if we consider different com-

munication protocols other than MA" protocols, we would obtain other fine-grained

reductions between problems.

E2 Protocols and An Equivalence Class for Orthogonal Vectors

We begin with considering Ell protocols. The key observation here is that Ell proto-

cols imply fine-grained reductions to OV. This is especially useful if we want to show

some fine-grained problems can be reduced back to OV (and therefore potentially

form an equivalence class for OV).

Formally, we show OV is truly-subquadratic equivalent to several fundamental

problems, all of which (a priori) look harder than OV. A partial list is given below:

1. (Min-IP/Max-IP) Find a red-blue pair of vectors with minimum (respectively,

maximum) inner product, among n vectors in {0, 1 }0(logn).

2. (Exact-IP) Find a red-blue pair of vectors with inner product equal to a given

target integer, among n vectors in {o, 1 }O(logn).

3. (Apx-Min-IP/Apx-Max-IP) Find a red-blue pair of vectors that is a 100-approximation

to the minimum (resp. maximum) inner product, among n vectors in {0, 1}0(logn).

4. (Approximate Bichrom.-4k-Closest-Pair) Compute a (1 +Q(1))-approximation to

the f -closest red-blue pair (for a constant p E [1, 2), among n points in Rd

d < nM

5. (Approximate fp-Furthest-Pair) Compute a (1 + Q(1))-approximation to the ef-

furthest pair (for a constant p E [1, 2]), among n points in Rd, d < nO(l).

Therefore, quick constant-factor approximations to maximum inner product imply

quick exact solutions to maximum inner product, in the O(log n)-dimensional setting.
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Another consequence is that the ability to find vectors with zero inner product suffices

for finding vectors with maximum inner product.

Our equivalence results are robust enough that they continue to hold in the data

structure setting. In particular, we show that there is a poly(n) space, n1-6 query

time data structure for Partial Match with vectors from {0, 1 }0(logn) if and only if

such a data structure exists for 1 + Q(1) Approximate Nearest Neighbor Search in

Euclidean space. These results are discussed in Chapter 3 in details.

NP -U PP" Protocols and Hardness for Computational Geometry Problems

in 2 0(log* n) Dimensions

Next, we consider NP- UPP" protocols, which is a relaxation of the original Merlin-

Arther protocols. In particular, recall that in a Merlin-Arther protocol, Alice and

Bob are required to accept the proof with probability > 2/3 if the answer is yes and

the proof is correct, and reject the proof with probability > 2/3 if the answer is no.

In an NP - UPP" protocol, the threshold 2/3 is relaxed to 1/2. That is, Alice and

Bob only need to have a better-than-half probability of being correct.

We observe that NP - UPPcc protocols imply reductions to the Z-Max-IP problem4 .

Therefore, by constructing efficient NP - UPPCC for the Set-Disjointness problem, we

obtain fine-grained reductions from OV to Z-Max-IP, and therefore establish OV-

hardness for the latter problem.

Formally, we show that Z-Max-IP is hard to solve in n2- 1 ) time, even with

20(log* n)-dimensional vectors. As direct corollaries, using reductions implicit in [172],

we also conclude hardness for f2-Furthest Pair and Bichromatic f2-Closest Pair under

SETH (or OVC) in 2 0(log*n) dimensions.

The above lower bounds on 2-Furthest Pair and Bichromatic f2 -Closest Pair are in

sharp contrast with the case of 2 -Closest Pair, which can be solved in 2 0(d) n log0 (1() n

time [49, 109, 86].

Our results are proved by constructing an NP - UPP protocol for DISJ" with o(n)

proof complexity and 0 (log* n) communication complexity, which is based on a re-

4 Given two sets A, B C Zd, compute max(a,b)EAxB(a, b .
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cursive application of the Chinese Remainder Theorem. If one can further reduce the

communication complexity to a(n) while keeping the proof complexity sub-linear,

it would automatically imply OV-hardness for Z-Max-IP with 2(f") dimensions. We

discuss the details in Chapter 4.

IP" Protocols and Hardness for Approximation Problems Under Stronger

Conjectures

Then we consider IPcc protocols, which are similar to MACC protocols except for that

Alice, Bob, and Merlin are now allowed to interact. The insight here is that IP"

communication protocols can be reduced to several interesting combinatorial prob-

lems (this is crucially observed in [11}). Our contribution here is to notice that by

the classical IP = PSPACE theorem, all low-space computable functions admit effi-

cient IPCC protocols. Therefore, combine these two ideas, we can construct reductions

from BP-Satisfying-Pair' instead of OV, which lets us to show hardness results under

conjectures much weaker than SETH.

Basing on the above observation, we are able to construct reductions from an

exact to an approximate solution for a host of problems.

As one (notable) example, we show that the Closest-LCS-Pair problem (Given two

sets of strings A and B, compute exactly the maximum LCS(a, b) with (a, b) E A x B)

is equivalent to its approximation version (under near-linear time reductions, and with

a constant approximation factor). More generally, we identify a class of problems,

which we call BP-Pair-Class, comprising both exact and approximate solutions, and

show that they are all equivalent under near-linear time reductions.

Exploring this class and its properties, we also show:

* Under the NC-SETH assumption (a significantly more relaxed assumption than

SETH), solving any of the problems in this class requires essentially quadratic

time.

5Roughly speaking, BP-Satisfying-Pair is the problem that given two sets A, B c {0, 1}d and a

branching program P on 2d bits, asks whether there is a pair (a, b) E A x B such that P(a, b) = 1.

See Section 5.2 for formal definitions of BP-Satisfying-Pair and Branching Programs.
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* Modest improvements on the running time of known algorithms (shaving log

factors) would imply that NEXP is not in non-uniform NC.

* Finally, we leverage our techniques to show new barriers for deterministic ap-

proximation algorithms for LCS.

A very important consequence of our results is that they continue to hold in the

data structure setting. In particular, it shows that a data structure for approximate

Nearest Neighbor Search for LCS (NNSLCS) implies a data structure for exact NNSLCS

and a data structure for answering regular expression queries with essentially the

same complexity.

Moreover, we show that under the conjecture that the satisfiability of an no(')-

depth circuit cannot be solved in 2 (1-(1))n time, Subtree Isomorphism, approximate

Largest Common Subtree, and Regular Expression Membership Testing cannot be

solved in N 2 -"(). This improves upon several previous works showing similar hardness

results under SETH by significantly weaken the hypothesis (CNF is much, much weaker

than no(l)-depth circuits). These results are discussed in Chapter 5.

1.3.2 Algorithms from Communication Protocols

Our second set of results discusses a different way of viewing the connection between

fine-grained complexity and communication complexity. We show that in some cases

these communication protocols may help us develop interesting algorithms.

BQP Protocols and Approximate Counting Algorithms

We first consider BQP protocols. It is well-known that an efficient BQPCC protocol for

a function f : X x Y -+ {0, 1} implies a low-rank approximation to the corresponding

matrix MJ. This connection is often interpreted as an approach to prove BQP" lower

bounds. We show in fact they can also be used to construct new algorithms.

For a function f as above, and two sets A C X and B C Y, the f-#Satisfying-Pair

problem asks to count the number of pairs (x, y) E A x B such that f(x, y) = 1.

We show that a fast BQP protocol implies a deterministic algorithm for computing
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an additive approximation to f-#Satisfying-Pair. In particular, using the O(vn)-

complexity BQPcc protocol for Set-Disjointness [1], we obtain an ni+o(i) time algo-

rithm for computing an E - n2 additive approximation to #OV 6 with n vectors and

o(log 2 n) dimensions. The details can be found in Chapter 6.

PH" Protocols and Efficient SAT Algorithms

Next, we consider PHC protocols. It is a long-standing open question to prove non-

trivial PH" lower bounds for an explicit function [38, 93, 94], which is an interme-

diate step towards the notoriously hard problem of constructing an explicit rigid

matrix [145].

We show that, for a function f : X x Y -+ {0, 1}, a computational efficient

(meaning, Alice and Bob's actions can be computed in polynomial-time given the

history of communication) PHCC protocol in fact implies a non-trivial algorithm for

f-Satisfying-Pair.

An interesting consequence is that, if the natural Edit-Distc problem or LCS

problem (in which Alice and Bob each hold an n-bit string, and want to compute

the edit distance/longest common subsequence between them) have a computational

efficient PHCC protocol of polylog(n) complexity, then the satisfiability of polynomial-

size formulas has a 2"-T- time algorithm, for any 6 > 0. This is much faster

than the current state-of-the-art algorithm in 11611, which solves n3-E-size formula-

SAT in 2 time (the algorithm can only handle formulas of sub-cubic size), and

is conjectured to be impossible by a recent work 16]. The details can be found in

Chapter 7.

1.4 Related Works

In this section we discuss some related works which are generally related to the topics

of this thesis. In each chapter we may also discuss some additional related works

which are only related to that chapter.

6 Given two sets A, B C {0, 1}d, count the number of pairs (a, b) e A x B such that (a, b) = 0.
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Communication Complexity and Conditional Hardness

The connection between communication protocols (in various models) for Set-Disjointness

and SETH dates back at least to [142], in which it is shown that a sub-linear, compu-

tational efficient protocol for 3-party Number-On-Forehead Set-Disjointness problem

would refute SETH. It is worth mentioning that [1's result builds on the O(log n)

IP communication protocol for Set-Disjointness in 12].

Distributed PCP

Using Algebraic Geometry codes (AG codes), [1511 obtains a better MA protocol,

which in turn improves the efficiency of the previous distributed PCP construction

of [12]. He then shows the n2-,(1) time hardness for 1+ o(1)-approximation to Bichro-

matic Closest Pair and o(d)-additive approximation to Max-IPn,d with this new tech-

nique.

[106 use the Distributed PCP framework to derive inapproximability results for k-

Dominating Set under various assumptions. In particular, building on the techniques

of [1511, it is shown that under SETH, k-Dominating Set has no (log n)1/Poly(ke(E))

approximation in n time7 .

[1071 also utilize AG codes and polynomial method to show hardness results for

exact and approximate Monochromatic Closest Pair and approximate Monochromatic

Maximum Inner Product.

Hardness of Approximation in P

Making use of Chebyshev embeddings, [181 prove a 20 (lo ogn ) inapproximability lower

bound on {-1, 1}-Max-IP. [3] take an approach different from Distributed PCP, and

shows that under certain complexity assumptions, LCS does not have a deterministic

1 + o(1)-approximation in n2 -e time. They also establish a connection with circuit

lower bounds and show that the existence of such a deterministic algorithm implies

ENP does not have non-uniform linear-size Valiant Series Parallel circuits. In I111, it is

24
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improved to that any constant factor approximation deterministic algorithm for LCS

in n2-E time implies that ENP does not have non-uniform linear-size NC1 circuits.

Using a mostly combinatorial construction, 11171 improves the inapproximability

ratio under SETH for k-Dominating set to Q( k/log n).

See [121 for more related results in hardness of approximation in P.

Equivalence Classes in Fine-Grained Complexity

It is known that the All-Pairs Shortest Paths problem is sub-cubic time equivalent

to many other problems [164, 39, 9, 1181. A partial list includes Negative Triangle,

Triangle Listing, Shortest Cycle, 2nd Shortest Path, Max Subarray, Graph Median,

Graph Radius and Wiener Index (see [1631 for more details on the APSP equivalence

class).

In [891, it is shown that "moderate-dimensional" OV (i.e., OV with n6 dimensions

for some 6 > 0) is equivalent to High-dimension Sparse OV, High-dimension 2-Set

Cover, and High-dimension Sperner Family. It is also shown that for every (k + 1)-

quantifier first-order property, its model-checking problem can be reduced to Sparse

k-OV. In [801, the authors present an equivalence class for (min, +)-convolution,

including some variants of the classical knapsack problem and problems related to

subadditive sequences. [115j prove several equivalence between one-dimensional dy-

namic problems and their corresponding core problems. In particular, it is shown

that OV is equivalent to finding the longest subset chain (SubsetChain).
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Chapter 2

Preliminaries

In this chapter we introduce some common preliminaries which are used throughout

the thesis.

2.1 Notations

We begin by introducing some notation. In this thesis, we let R+ denote the set

all positive reals. For an integer d, we use [d] to denote the set of integers from 1

d. For a vector u, we use ui to denote the i-th element of u.

of

to

We use log(x) to denote the logarithm of x with respect to base 2 with ceiling as

appropriate, and ln(x) to denote the natural logarithm of x.

We also need the iterated logarithm function log*(n), which is defined recursively

as follows:

log*(n) :=

{log*(log n) + 1

n <1

n >1
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2.2 Problems and Hypothesis in Fine-Grained Com-

plexity

We first define the F-Satisfying-Pair problem for a problem F.1

Definition 2.2.1 (110]). Let F : {0, 1}d x {0, 1}d 9 {0, 1}, F-Satisfying-Pairn is the

problem: given two sets A and B of n vectors from {0, 1}d, determine whether there

is a pair (a, b) c A x B such that F(a, b) = 1.

Remark 2.2.2. For example, let Fov be the function checking whether two vectors

from {0, 1}d are orthogonal. Then, Fov-Satisfying-Pairn is simply OVn,d (defined be-

low).

We use OVnd to denote the Orthogonal Vectors problem: given two sets of vectors

A, B each consisting of n vectors from {0, 1}d, determine whether there are a E A

and b c B such that a -b= 0.2 Similarly, we use Z-OV,,d to denote the same problem

except for that A, B consists of vectors from Zd (which is also called Hopcroft's

problem).

The following widely used conjecture about OV is used multiple times in this

thesis.

Conjecture 2.2.3 (Orthogonal Vectors Conjecture (OVC) 1168, 15]). For every E >

0, there exists a c > 1 such that OVn,d requires n2-, time when d = clog n.

OVC is a plausible conjecture as it is implied by the popular Strong Exponential

Time Hypothesis 1102, 621 on the time complexity of solving k-SAT [168, 174].

2.3 Communication Protocols

Next we introduce these communication protocols which are used in this thesis. See

also [94] for a recent reference on them.

'This notation is borrowed from [101, which studied the Satisfying Pair problem for Branching
Programs.

2Here we use the bichromatic version of OV instead of the monochromatic one for convenience,
as they are equivalent.
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Definition 2.3.1 (MA" Protocols). We say an MA Protocol is (M, r, f, s)-efficient for

a communication problem, if in the protocol:

" There are three parties Alice, Bob and Merlin in the protocol, Alice holds input

x and Bob holds input y.

" Merlin sends an advice string z of length m to Alice, which is a function of x

and y.

" Alice and Bob jointly toss r coins to obtain a random string w of length r.

* Given y and w, Bob sends Alice a message of length f.

" After that, Alice decides whether to accept or not.

- When the answer is yes, Merlin has a proof such that Alice always accept.

- When the answer is no, Alice accepts with probability at most s regardless

of the proof sent by Merlin.

Definition 2.3.2 (IP" Protocols). Let F : X x Y -+ {0, 1} be a function. An IP"

protocol IH for F is specified as follows:

" There are three parties Alice, Bob and Merlin in the protocol, Alice holds input

x and Bob holds input y.

" Alice and Merlin interact for several rounds. After that, Alice communicates

with Bob to decide whether they accept or not.

- When F(x, y) = 1, Merlin has a strategy which make Alice and Bob accept

with probability at least 2/3.

- When F(x, y) = 0, Alice and Bob accept with probability at most 1/3,

regardless of Merlin's strategy.

The communication complexity of II is simply the total number of bits sent by

Alice, Bob, and Merlin.
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Definition 2.3.3 (E"' Protocols [38]). Let F : X x Y -- {0, 1} be a function. A E

protocol H for F is specified as follows:

" There are two players, Alice holds input x C X and Bob holds input y E Y.

" There are two provers Merlin and Megan.

" Merlin sends a string a G {0, 1}m" and Megan sends a string b E {0, 1}12

(which are functions of both x and y) to both Alice and Bob. Then Alice and

Bob communicate f bits with each other, and Alice decides whether to accept

or reject the pair (a, b).

" F(x, y) = 1 if and only if there exists a string a from Merlin, such that for all

strings b from Megan, Alice accepts (a, b) after communications with Bob.

We say the protocol H is computationally-efficient, if both Alice and Bob's re-

sponse functions can be computed in polynomial time with respect to their input

length.

Definition 2.3.4 (PH" Protocols [38]). A PH communication protocol (PHCC) H for

a function F : X x Y -+ {0, 1, I} proceeds as follows:

" Alice holds input x E X and Bob holds input y E Y.

" For a constant k C N, there are 2k provers P1 , P2 , ... , P2k-

" For each i E [2k], the prover Pi sends both Alice and Bob a proof zi E {0, 1}mi.

" We use A(x, z1 , z2 , ... , Z2k) (resp. B(y, z 1 , z 2 ,... , Z2k)) to be the indicator func-

tion that whether Alice (resp. Bob) accepts the proof sequence z 1 , z 2 , ... , Z2k,

given the input x (resp. y).

" If F(x, y) = 1, then

] V I. V [A(x, z1, . Z2) / B(y, zi, Z2)
ziE{O,1}

m
l z 2 E{O,1}

m
2 2 k-IE{,1}

2
k-1 z2 kE{0,1}

m
2k
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9 If F(x, y) = 0, then

V 3 V 3 [-,A(x, z,... , z 2 k)V -B(y, zi, ... , 2 k)]
ZiE{0. I}m1 z2 E{0,1}

m
2 z 2k-1E{0,1}

2
k-1 Z2 kE{O1}

m
2k

Moreover, we say the protocol is computationally efficient if Alice and Bob's de-

cision functions (the functions A and B) can be computed in polynomial-time w.r.t.

their input lengths. The communication complexity of II is simply the total number

of proof bits from all provers, i.e. It, mi.
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Chapter 3

E2 Protocols and An Equivalence

Class for Orthogonal Vectors

3.1 Introduction

3.1.1 Motivation: On the Similarities and Differences between

NP-Hardness and Fine-Grained Complexity

Recall that Fine-grained complexity asks: what is the "correct" exponent in the run-

ning time of a given problem? For a problem known to be solvable in time t(n), can

it be solved in time t(n)1 , for a constant E > 0? If not, can we give evidence that

such an improvement is impossible?

In a nutshell, results in the Fine-Grained Complexity program begin with the

conjecture that it is hard to improve the runtime exponent of some problem H hard, and

show it is also hard to improve the exponent of another problem H, by constructing

a "fine-grained" reduction from Hhaard to H. This is similar to the situation with NP-

completeness, where one shows a problem H is "hard" by giving a polynomial-time

reduction from another NP-complete problem to H.

A crucial conceptual difference between the Fine-Grained Complexity program

and NP-hardness is that all of the thousands of known NP-complete problems form an

equivalence class: there is either a polynomial-time algorithm for all of them, or no
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polynomial-time algorithm for any of them. In contrast, with Fine-Grained Complex-

ity, few equivalence classes are known, especially for those numerous problems whose

hardnesses are based on the SETH/OVC (a notable exception is the equivalence class

for APSP [164, 163]; see the related works section for more details).

To give three (out of many examples), it is known that Edit Distance [411, Frechet

Distance [54], and computing the diameter of a sparse graph [150] cannot be done in

n'- time for any 6 > 0, assuming the Orthogonal Vectors Conjecture.

However, it is not known if Edit Distance, Frechet Distance, or Diameter are

equivalent to OV, in any interesting sense.

Prior work has established an equivalence class for "moderate-dimensional OV",

where the vector dimension d = n' for a constant 6 > 0 [89]. In particular, this

version of OV is equivalent to various sparse graph and hypergraph problems. It

seems likely that "moderate-dimensional OV" is much more difficult to solve than the

"low-dimensional" setting of d = O(log n) as defined above, and the SETH already

implies that the low-dimensional case is difficult [168, 174}. Thus, the problem of

establishing an equivalence class for "low-dimensional" OV is an interesting one.

3.1.2 An Equivalence Class for Sparse Orthogonal Vectors

Our first result is an interesting equivalence class for Orthogonal Vectors in the

O(log n)-dimensional setting. To formally state our results, we begin with some no-

tation.

* For a problem H on Boolean vectors, we say H is in truly subquadratic time if

there is an E > 0 such that for all constant c, H is solvable in O(n 2
-) time on n

vectors in c log n dimensions. Note the Orthogonal Vectors Conjecture (OVC)

is equivalent to saying "OV is not in truly subquadratic time."

9 For a problem H on real-valued points, we say H can be approximated in truly

subquadratic time, if there is a J > 0 such that for all e > 0, a (1 + E) approxi-

mation to H is computable in O(n2-1) time.
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* For a problem H with output in [0, L] (for a parameter L), we say H can be

additively approximated in truly subquadratic time, if there is a 6 > 0 such that

for all e > 0, an E - L additive approximation to H is computable in O(n2-)

time.

Theorem 3.1.1. The following problems are either all in (or can be approximated

in) truly subquadratic time, or none of them are:1

1. (OV) Finding an orthogonal pair among n vectors.

2. (Min-IP/Max-IP) Finding a red-blue pair of vectors with minimum (respectively,

maximum) inner product, among n vectors.

3. (Exact-IP) Finding a red-blue pair of vectors with inner product exactly equal to

a given integer, among n vectors.

4. (Apx-Min-IP/Apx-Max-IP) Finding a red-blue pair of vectors that is a 100-approximation

to the minimum (resp. maximum) inner product, among n vectors.2

5. (Approximate Bichrom. p,-Closest Pair) Approximating the f,-closest red-blue

pair (for a constant p e [1, 2]), among n points.

6. (Approximate , -Furthest Pair) Approximating the er-furthest pair (for a con-

stant p G [1, 2]), among n points.

7. (Approximate Additive Max-IP) Additively approximating the maximum inner

product of all red-blue pairs, among n vectors.

8. (Approximate Jaccard-Index-Pair) Additively approximating the maximum Jac-

card index' between a c A and b c B, where A and B are two collections of n

sets.

1A list of formal definitions of the these problems can be found in Definition 3.3.1.
2The constant 100 can be replaced by any fixed constant r > 1.
3see Theorem 3.3.3 for a formal definition
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For approximate additive Max-IP, L (the additive approximation parameter) is

simply the dimensions of the vectors, while for approximate Jaccard-Index-Pair, L is

1. For H among the first four problems listed above, we use the notation n,d to

denote H with n vectors from {0, 1}d. ' For the last four problems, we assume the

dimensions (or the size of the sets) and the bit complexity of the points are n'(1)

throughout the chapter.

Prior work showed OV is equivalent to Dominating Pair5 [671 and other simple set

problems [52]; our results add several interesting new members into the equivalence

class. All problems listed above were already known to be OV-hard [168, 24, 1511. Our

main contribution here is to show that they can all be reduced back to OV. For

example, detecting an orthogonal Boolean pair (OV) is equivalent to approximating

the distance between two sets of points in Rn"(1) (Bichrom.-Closest-Pair)!

In previous works [89, 71, several general techniques are given for constructing

reductions to OV. These papers focus on the "moderate-dimensional" setting, and

their reductions can not be used directly in the "sparse" O(log n) dimensional setting

here.

Our Techniques: Two Reduction Frameworks for OV. In order to construct

reductions to O(log n) dimensional OV, we propose the following two general frame-

works.

E" Protocols. Inspired by previous works on the connections between com-

munication complexity and fine-grained complexity [12, 151, 106, 11, 70, 711, we

draw another connection along this line, showing that an efficient E" protocol'

for a function F implies a reduction from a related problem to OV. We use

this technique to establish the equivalences among the first four problems in

Theorem 3.1.1.

4 1n this chapter we will consider red-blue version for all the above problems, and in,d denotes rl
with two sets of n vectors from {0, 1}d.

5Given two sets A, B of vectors from RO(Iogn), find (a, b) e A x B such that b dominates a (that
is, bi > ai for all i).

6see Definition 3.2.1 for a formal definition
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* Locality-sensitive Hashing Families (LSH). To show equivalences between

OV and the last four approximation problems, we apply known tools from

locality-sensitive hashing. In particular, we show that for any metric admit-

ting an efficient LSH family, finding the closest bichromatic pair or the furthest

pair w.r.t. this metric can be reduced to Apx-Max-IP, which can in turn be

reduced to OV.

We remark that there are no non-trivial lower bounds known against E"C pro-

tocols 194], which suggests that E" protocols could be very powerful, and the

first approach (Theorem 3.2.2) may be applicable to many other problems. This

is not the case for MACC protocols which were used in several previous works [12,

151, 106, 70]: for example, there is an essentially tight Q(xfn) MACC lower bound for

Set-Disjointness [110, 2, 701. These two frameworks are discussed in Section 3.2 in

detail.

Equivalence between Partial Match and Approximate Nearest Neighbor

Search. Our reductions are robust enough that they also hold in the data struc-

ture setting. In particular, consider the following two fundamental data structure

problems:

" Partial Match: Preprocess a database D of n points in {0, 1}d such that, for

all query of the form q C {0, 1,*}d, either report a point x C D matching all

non-* characters in q or report that no x exists.

" Approximate Nearest Neighbor Search (NNS) in fp space: Preprocess

a database D of n points from R"' such that, for all query point x E R"n, one

can find a point y E D such that lix - yILl < (1 + E) - minzEv lix - zl1P.

Remark 3.1.2. We remark that Partial Match is known to be equivalent to an online

version of OV /131 (see also Section 3.8), and NNS in Cp space is simply the online

version of Bichrom. -p -Closest-Pair.
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Partial Match has been studied extensively for decades (see e.g. Rivest's PhD

thesis [149]). However, the algorithmic progress beyond trivial solutions (building a

look-up table of size 2V , or trying all n points on each single query) have been quite

limited. It is generally believed that it is intractable when d is large enough. Many

unconditional lower bounds are known in the cell-probe model [130, 53, 103, 139, 1411,

but the gap between the best data structures [69, 761 and known lower bounds remains

very large.

Approximate Nearest Neighbor Search has a wide range of applications in comput-

ing, including machine learning, computer vision, databases and others (see [31, 132]

for an overview). Tremendous research effort has been devoted to this problem (see

e.g. the recent survey of [321 and Razenshteyn's PhD thesis [1461). Yet all known

algorithms exhibit a query time of at least nil-O(e) when the approximation ratio is

1 + E, approaching the brute-force query time n when E goes to 0.

In general, whether there is a polynomial space, ni-i query time data structure for

Partial Match for all d = O(log n), or Approximate NNS for all constant approxima-

tion ratio > 1 are two long-standing open questions.7 We show these two questions

are equivalent.

Theorem 3.1.3. The following are equivalent:

" There is a 6 > 0 such that for all constant c, there is a data structure for

Partial Match with string length d = clog n that uses poly(n) space and allows

ni-j query time.

" There is a 6 > 0 such that for all E > 0, there is an data structure for Approx-

imate NNS in p with approximation ratio (1 + e) that uses poly(n) space and

allows n- query time, for some constant p E [1, 2].

A Tighter Connection between Max-IP, Bichrom. fp-Closest Pair and f,-

Furthest Pair. For a subset of problems in Theorem 3.1.1, we can establish even

tighter reductions.

7 Under SETH, it is shown that there is no such data structure with polynomial pre-processing
time 118, 168, 1511.
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The state-of-the-art algorithm for (1+e) approximation to Bichrom.-fp-Closest-Pair

runs in n 2-6(E) time, and for Max-lPn,ciog , the best running time n2-6(1/ V/-_). Both

algorithms are presented in (221, and relied on probabilistic threshold functions.

Comparing to the n 2 -1/O(logc) time algorithm for OVn,c iogn (13, 68], the dependence

on c or e in these two algorithms are much worse, rendering them useless when E-1

or c are log'(1) n. So it is natural to ask whether the dependence can be improved to

at least sub-polynomial in E and c, i.e. n2-/co1 or n2-o.

We show that a modest improvement on the running time dependence on e or

c for any of the following problems directly implies similar improvements for other

problems as well.

Theorem 3.1.4. The following are equivalent:

" An E - d additive approximation to Max-IP,,d is computable in n 2-(OM time.

" Max-IPn,cion, is solvable in n2-1/cOM time.

" Exact-lPn,ciogn is solvable in n2-1/coM time.

" A (1 + E) approximation to Bichrom. -2,-Closest-Pair is computable in n2_o-M

time (for a constant p E [1, 2]).

" A (1 + e) approximation to fp-Furthest-Pair is computable in n2-Eo() time (for a

constant p G [1, 2]).

In [1511 (Theorem 4.1), it is implicitly shown that Exact-lPn,ciog n can be reduced

to (1 + 1/exp(c)) approximating Bichrom.-1,-Closest-Pair. This suffices for the case

when c is a constant (which is needed for Theorem 3.1.1), but falls short of proving

the above tighter connections.

In a nutshell, [151]'s reduction applies a very efficient MA protocol for Set-Disjointness

using AG-codes, and it uses "brute-force" gadgets to simulate an inner product be-

tween two short vectors in Fq2. We improve [1511's reduction by carefully modifying its

MA protocol, and replacing its brute-force gadgets by a more efficient one. Informally,

our theorem shows Exact-lPn,ciogn can be reduced to (1 + 1/ poly(c)) approximating
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Bichrom.-Closest-Pair (see Lemma 3.7.4 and Lemma 3.7.7), which is an exponential

improvement over the old reduction.

Equivalence Results in the Moderate Dimensional Setting. Theorem 3.1.1

establishes an equivalence class for the sparse O(log n) dimensional setting. It is

natural to ask whether the equivalence continues to hold in the moderate dimensional

case as well.

Unfortunately, an unusual (and interesting) property of our reduction used in The-

orem 3.1.1 is that it blows up c (the constant before log n) exponentially, and creates

multiple instances. That is, an Exact-IP instance with clogn dimensions is reduced

to many OV instances with exp(c) log n dimensions (see the proof of Lemma 3.5.2).

This renders the reduction useless in the moderate-dimensional setting, where c could

be as large as n.

Still, using different techniques, we obtain some additional equivalence results

in the moderate dimensional setting. For a problem II on Boolean vectors, we say

that moderate dimensional II is in truly subquadratic time, if there are two constants

e, 3 > 0 such that H is solvable in n'- time on n vectors with n6 dimensions.

Theorem 3.1.5. Moderate dimensional OV is in truly subquadratic time if and only

if moderate dimensional Apx-Min-IP is.

Theorem 3.1.6. For moderate dimensional Max-IP, Min-IP, and Exact-IP, either all

of them are in truly subquadratic time, or none of them are.

To show moderate dimensional OV and Apx-Min-IP are equivalent, we use a so-

phisticated reduction which is partially inspired by the classical Goldwasser-Sipser

AM protocol for approximate counting 192] (see the proof of Lemma 3.6.1 for details).

For Max-IP, Min-IP and Exact-IP, we apply some folklore encoding tricks.

It is an interesting open question that whether these two separate equivalence

classes can be merged into one. In particular, is moderate dimensional OV equivalent

to moderate dimensional Max-IP?

An immediate corollary of Theorem 3.1.5 is that it adds Apx-Min-IP as a new

member to the equivalence class of moderate dimensional OV established in 1891.
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3.2 Techniques: Two General Frameworks for Estab-

lishing Equivalence with OV

In the following we discuss two general frameworks for reductions to OV.

3.2.1 2 Communication Protocols and Reductions to Orthog-

onal Vectors

Our first framework is based on E 2 communication protocols (EZc protocols). We

begin with a formal definition of such protocols.

Definition 3.2.1 (Elc Protocol [38]). Let F : X x Y -+ {0, 1} be a function. A Ecc

protocol H for F is specified as follows:

" There are two players, Alice holds input x G X and Bob holds input y E Y.

" There are two provers Merlin and Megan.

" Merlin sends a string a E {0, 1}r" and Megan sends a string b E {0, 1}"

(which are functions of both x and y) to both Alice and Bob. Then Alice and

Bob communicate f bits with each other, and Alice decides whether to accept

or reject the pair (a, b).

" F(x, y) = 1 if and only if there exists a string a from Merlin, such that for all

strings b from Megan, Alice accepts (a, b) after communications with Bob.

We say the protocol H is computationally-efficient, if both Alice and Bob's re-

sponse functions can be computed in polynomial time with respect to their input

length.

We show that for any function F, if F admits a certain efficient E" protocol, then

F-Satisfying-Pair can be efficiently reduced to OV. Formally, we have:

Theorem 3.2.2. Let F : {0, I}d x {O, 1}d -+ {0, 1} and n E N, suppose F has a

computationally-efficient E"j protocol, in which Merlin sends m1 bits, Megan sends
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m 2 bits, and Alice and Bob communicate f bits. Then there is a reduction from every

F-Satisfying-Pair, instance I to OV,2 (m2 +f) instances J1, J2 ,. . . J2 .,, such that I is a

yes instance if and only if there is a j such that J is a yes instance. The reduction

takes n -20("12+f) - poly(d) time.

Applications. We use Theorem 3.2.2 to establish the equivalence between OV,

Min-IP / Max-IP, Apx-Max-IP / Apx-Min-IP and Exact-IP. Previous works have estab-

lished that OV can be reduced to all these problems, and that these problems can be

reduced to Exact-IP. So it suffices for us to construct a reduction from Exact-IP to

OV. Let the IPd,m : {0, 1I}d x {0, 1I}d {0, 1} be the function that checks whether

(X, y) = m, Exact-IP is IPdm-Satisfying-Pair, so we can apply Theorem 3.2.2 with an

efficient EC protocol for IPdrn

Locality-sensitive Hashing (LSH) Families and Reductions to Additive Ap-

proximation to Max-IP

To establish equivalence between OV and other approximation problems, we make

use of a connection with LSH families. We begin with a generalized definition of an

LSH family for a partial function. In the following, let X be an arbitrary set.

Definition 3.2.3. Let f : X x X -+ {0, 1, JL}8. We say f admits a (pi, p2)-sensitive

LSH family, if there is a family F of functions h : X -+ S, such that for any x, y C X,

a uniformly random function h c F satisfies:

" If f(x, y) = 1, then h(x) = h(y) with probability at least pi.

" If f(x, y) = 0, then h(x) = h(y) with probability at most P2.

In addition, we require that h can be efficiently drawn from F, and h(p) can be

efficiently computed.9

The usual LSH families for a metric space are special cases of the above generalized

definition.
8 f (X, y) = I means f is "undefined" on (x, y).
9Being efficient here means the running time is polynomial in the bit complexity of the input.
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Definition 3.2.4. For a function dist : X x X -+ R>O, we say dist admits an LSH

family, if for all E > 0 and real R > 0, there are two reals pi = p 1 (E) and P2 = P2(E)

such that the function f,+)R: X x X -+ {0, 1, I} defined as

I dist(x, y) < R,

f,(+E)R(X, Y) 0 dist(x, y) > (1 + e)-R

I otherwise,

admits a (P1, p2 )-sensitive LSH family and pi > P2-

In particular, we show that an LSH family for a function implies a reduction to

additively approximating Max-IP, which can in turn be reduced to OV. To formally

state our reduction, we need to define F-Satisfying-Pair for a partial function F.

Definition 3.2.5. For a partial function F : X x X - {0, 1, I}, F-Satisfying-Pair,

is the problem: given two sets A, B C X of size n, distinguish between the two cases:

" There is an (x, y) C A x B such that F(x, y)=1.

" For all (x, y) E A x B, F(x, y) = 0.

Remark 3.2.6. Let X be Rd, and set F(x, y) = 1 for lix - yjI R, F(x, y) = 0 for

ix - y|| > (1 + E) - R and undefined otherwise. Then F-Satisfying-Pair distinguishes

between the cases that the minimum distance between A and B is < R and > (1+E)-R,

which is the decision version of (1 + E) -approximation to Bichrom.-Closest-Pair.

Now we are ready to state our general reduction.

Theorem 3.2.7. Suppose f : X x X -+ {0, 1, I} admits a (pi, p2 )-sensitive LSH

family. Let E = pi - P2.

Then there is a randomized reduction from f-Satisfying-Pair, to computing an

E/8 -d additive approximation to Max-IPn,d with d = O(E- 2 log n), which succeeds with

probability at least 1 - 1/n.
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From Theorem 3.2.7, reductions from Bichrom.- 2-Closest-Pair and FP to OV fol-

lows:

Corollary 3.2.8. For a distance function dist : X x X -+ R;>O which admits an

LSH family, Bichrom.-Closest-Pairdi and FPnsi, can be approximated in truly sub-

quadratic time if OV is in truly subquadratic time.

Applications. We use Theorem 3.2.7 and Corollary 3.2.8 to establish the equiva-

lence between OV and all approximation problems listed in Theorem 3.1.1. In par-

ticular, the , metric and Jaccard Index admit efficient LSH families via p-stable

distributions and the minHash method, which implies that they can be reduced to

OV by Theorem 3.2.7.

3.3 Preliminaries

For notational convenience, we first give the formal definitions of the problem we

study in this section.

3.3.1 Problem List

Definition 3.3.1 (Boolean Vector Problem List). For n, d E N, we define several

problems. For all of them, the input is the same: we are given sets A and B of n

vectors from {0, i}d.

1. OVn,d10 : Given A, B C {0, i}d with JA| = |B| = n, determine whether there

exists (a, b) E A x B such that a - b = 0.

2. Exact-IPn,d: Given A, B as before, and an integer 0 < m < d, determine whether

there exists (a, b) C A x B such that a - b = m.

10 Note that we consider the red-blue version of OV in this chapter for convenience, and it is
equivalent to the original monochromatic version.
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3. Max-IP,d: Given A, B as before, compute

Max(A, B):= max a -b.
ac A,bE B

4. Min-Pn,,: Given A, B as before, compute

Min(A,B):= min a-b.
aEA,bEB

5. Apx-Max-\P,,d: Given A, B as before, output a number Max(A, B) E [Max(A, B)/2,

Max(A, B)].

6. Apx-Min-IP,,d: Given A, B as before, output a number Min(A, B) E [Min(A, B),

2 - Min( A, B)].

Remark 3.3.2. The constant factor 2 in the definitions of Apx-Min-IP and Apx-Max-IP

is only chosen for convenience, it can be replaced by any constant r > 1 (such as 1.001,

or 100).

Definition 3.3.3 (Other Problems). We define the following problems.

1. Bichrom.-f,-Closest-Pairn: For a fixed real p C [1, 2], given two sets A, B of n

points in Rd where d = n'(1), compute min(a,b)EAxB Ia - bIIp.

2. fp-Furthest-Pairn: For a fixed real p c [1, 2], given a set A of n points in Rd

where d = n'(1), compute max(a,b)EAXA Ila - blIp.

3. Jaccard-Index-Pairn: Given A, B as two collections of n sets of size n'(1), compute

max(S,T)EAxB J(S, T), where J(S, T) := snTISUTJ

3.3.2 Locality-sensitive Hashing

In this chapter we apply some well-known results from the theory of locality-sensitive

hashing (LSH) (See [165, 32] for excellent recent references on LSH families and their

applications).
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fp Norm. From the theory of p-stable distributions, LSH families for p norm when

p E [1, 2] have been constructed.

Lemma 3.3.4 ([821). For a constant p E [1, 2], the f, distance distp(x, y) := |jx - yIp

admits a LSH family. Moreover, for all real E E (0, 0.1) and real R > 0, fdi+e)R

admits a (p1, p2)-sensitive LSH family, such that p, - P2 > _(e).

Jaccard Index. For two sets A, B, recall that their Jaccard index is defined as

J(A, B) := AnB It is well-known that this measure admits a LSH family by theIAUBj

MinHash method.

Lemma 3.3.5 ([58]). Let 0 <_ P2 < P1 < 1 be two reals, and f be the function on two

sets such that f (A, B) = 1 when J(A, B) > p1, f (A, B) = 0 when J(A, B) P2 and

undefined otherwise. f admits a (p1p2 )-sensitive LSH family.

3.4 General Reduction Frameworks with E2 Commu-

nication Protocols and LSH Families

In this section we present two general reduction frameworks for showing equivalence

to OV.

3.4.1 E2 Communication Protocols and Reductions to OV

We first show that an efficient EC protocol for a function f implies a reduction from

f-Satisfying-Pair to OV.

Reminder of Theorem 3.2.2 Let F: {0, 1}d x {0, 1} {0, 1} and n E N, suppose

F has a computationally-efficient Ej' protocol, in which Merlin sends m1 bits, Megan

sends m2 bits, and Alice and Bob communicate f bits. Then there is a reduction from

every F-Satisfying-Pair, instance I to OV 2(m2 +e) instances J1, J2 , .. , J2 m1, such that

I is a yes instance if and only if there is a j such that J, is a yes instance. The

reduction takes n - 20(m1+m2+f) . poly(d) time.
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Proof of Theorem 3.2.2. Let F be the given function and 11 be its E 2 protocol. Fix

a E {o, 1}m and b E {0, 1 }2 as the proofs from Merlin and Megan. Let w1 , w2 ,... , w 2R

be an enumeration of all possible communication transcripts between Alice and Bob

(note they communicate f bits). We define two binary vectors R,(a, b), R.(a, b) E

{0, 1}2' as follows: for all a, b, R,(a, b) = 1 (Ry(a, b), = 1) if and only if the transcript

wi is consistent with Alice's input x (Bob's input y), and wi makes Alice reject. Note

that since the transcript is uniquely determined by x, y, a and b, only one wi is con-

sistent with both x and y given the pair (a, b). It follows that (Rx(a, b), R(a, b)) = 0

if and only if Alice accepts the pair (a, b).

Now, suppose we are given an F-Satisfying-Pair, instance I with sets A and B of n

vectors from {0, 1}d. We first enumerate Merlin's possible string a E {0, 1}mi, and use

Rx(a,-) to denote the string obtained by concatenating all Rx(a, b)'s for b C {0, 1}M2.

Ry(a,-) is defined similarly. For each a, let Aa be the set of Rx(a,-) E {0, 1}m2 +e for

all x E A, and Ba be the set of Ry(a, -) C {0, 1}m 2 +1 for all y E B.

We claim I is a yes instance if and only if some pair (Aa, Ba) is a yes instance for

Ov.

" Suppose I is a yes instance. Then there is an (x, y) C A x B such that F(x, y)

1. By the definition of E'C protocols and our constructions, there is an a E

{0, 1}m such that for all b E {0, 1}M2 we have (Rx(a, b), Ry (a, b)) = 0. Hence,

for such an a, (Rx(a, .), Ry(a,-)) 0, and therefore (Aa, Ba) is a yes instance

for OV.

" Suppose I is a no instance. Then for all (x, y) E A x B, F(x, y) = 0. Hence, for

all a E {0, 1}1I and all (x, y) c A x B, we have (Rx(a, .), Ry (a, -)) $ 0, which

means all (Aa, Ba)'s are no instances for OV.

Finally, since LI is computationally-efficient, the above reduction takes O(n -

20(m1+m2+ ) . poly(d)) time, which completes the proof. 0
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3.4.2 LSH Families and Reductions to Additive Approximate

Max-IP

Next, we show that an efficient LSH family implies a reduction to additively approx-

imating Max-IP.

Reminder of Theorem 3.2.7 Suppose f : X x X -+ {0, 1, I} admits a (p1, p2)-

sensitive LSH family. Let E - p1 - P2-

Then there is a randomized reduction from f-Satisfying-Pairn to computing an

E/8 -d additive approximation to Max-IPn,d with d = 0(E-2 log n), which succeeds with

probability at least 1 - 1/n.

Proof. Let F be the corresponding (pl,p2 )-sensitive LSH family, and S be the co-

domain for hash functions from F. Consider the following process: draw h from T

uniformly at random, then map each item in S independently to the string (0, 1) or

(1, 0), each with probability 0.5. Let this map be p. Composing h and p, we obtain

a function g(x) =(h(x)) such that:

" If f (x, y) 1, then (g(x), g(y)) = 1 with probability at least p, + (1 - pi)/2 >

" If f(x, y) = 0, then (g(x), g(y)) = 1 with probability at most P2 + (1 - P2)/ 2 <

2 P2.

Repeat the above process for N = clog n times, independently drawing functions

g 1 , 92, - - -, gN, where c is a parameter to be specified later. We set our reduction w(x)

to be the concatenation of all gi(x)'s. Let T 1 = 4 +-(pi-e/4) and T2 = -+-(P2+E/4).

By a simple Chernoff bound, there is a real c, E=(E 2) such that

SIf f(x, y) =1, then (w(x), w(y)) > T1 -N with probability at least 1 -

* If f(x, y) = 0, then (w(x), w(y)) < 2 - N with probability at least 1 - 2

Set c := 3/ci, and let Ane, (respectively, Bew) be the set of w(a)'s for all a E A

(the set of w(b)'s for all b E B). It follows that with probability at least 1 - 1/n,
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if there is an (x, y) E A x B with f(x, y) = 1 then Max(Anew, Bew,) > r1 - N, and

if f(x, y) = 0 for all (x, y) E A x B, then Max(Anew, Bnew) < T2 N. Observe this

reduction satisfies the desired approximation property.

3.5 An Equivalence Class for Orthogonal Vectors

In this section we apply our two general frameworks to prove Theorem 3.1.1.

3.5.1 Equivalence between Boolean Vectors Problems

We first show that all Boolean vectors problems listed in Theorem 3.1.1 can be trivially

reduced to Exact-IP, and OV can be reduced to all of them.

Lemma 3.5.1. The following holds:

" If Exact-IP is in truly subquadratic time, then so are OV, Apx-Min-IP (Apx-Max-IP)

and Max-IP (Min-IP).

" If any of Apx-Min-IP (Apx-Max-IP), Max-IP (Min-IP) and Exact-IP is in truly

subquadratic time, then so is OV.

Proof. For the first item, Apx-Min-IP (Apx-Max-IP) and Max-IP (Min-IP) can all be

trivially reduced to Exact-IP, and OV can be reduced to Max-IP by 1168].

For the second item, the case of Apx-Max-IP follows from Theorem 4.1 in [1511,

and it is easy to see that OV can be trivially reduced to Min-IP or Apx-Min-IP (OV is

equivalent to asking whether the minimum inner product is zero). l

Therefore, all we need is a reduction from Exact-IP to OV. We provide it by

constructing a good E 2 communication protocol, and applying Theorem 3.2.2.

Lemma 3.5.2. If OV is in truly subquadratic time, then so is Exact-/P.

Proposition 3.5.3. Let IPs,,k {, 1}" x {0, 1}' -+ {0, 1} be the function that checks

whether (x, y) = k. For all n, k G Z+, and a parameter 1 < F < n, there is a E1'

computationally-efficient protocol for IPn,k in which Merlin sends f - [log( [n/f1 + 1)]

bits, Megan sends [log f] bits and Alice and Bob communicate [n/f) bits.
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Proof. We assume f divides n for simplicity. Let x, y be the inputs of Alice and Bob,

respectively. We partition x into i equally-sized groups of length n/f, let them be

x 1 , x2 ,... , x. Similarly, we partition y into groups Yi, Y2,. . ,Y e Clearly, (x, y) =

i=_1( i, yi).

Merlin's message is a vector C {O,1, ... ,n/}, where 4i is intended to be

(xi, yi).

Alice rejects immediately if 0 =4' k, regardless of Megan's message. Other-

wise, Megan's message is an index i in [f]. Bob sends yi to Alice, and Alice accepts

if and only if (xi, y%) = 0i.

We argue the protocol correctly decides IPn,k. If (x, y) = k, it is easy to see that

for the correct 4, Alice accepts all messages from Megan (and Bob). When (x, y) # k,

for all 4 such that O_ i ' k (otherwise Alice always rejects), there must be an

i such that (Xi, yi) 4 O4, which means Alice rejects on the pair 0 and i. Finally, it

is easy to see that the protocol satisfies the requirements of computational efficiency,

which completes the proof.

Now we are ready to prove Lemma 3.5.2.

Proof of Lemma 3.5.2. Suppose there is a universal constant 6 > 0 such that for all

constants c', OVnciogn can be solved in n2-6 time. Let c be an arbitrary constant.

Observe that an Exact-IPnc logn instance with target integer m, is simply a IPc log n,m

-Satisfying-Pair, instance. Set f := E - logn for an e > 0 to be specified later. By

Proposition 3.5.3, there is a Ec protocol for 'Pciogn,rn such that Merlin sends E

log(c/E) - log n bits, Megan sends log(e log n) bits and Alice and Bob communicate

c/E bits.

By Theorem 3.2.2, there is a reduction from an Exact-IPn,c iog n instance to 2 ' og(c/) log n

nelog(c/6) many OVno( 2 c/6 Iogn) instances. We can set e so that E log(c/E) < 6/2. Note

that E only depends on c and 6, so it is still a fixed constant, which means (by assump-

tion) that OVn,Q( 2c/E logn) can be solved in n2 6 time. Applying the algorithm for OV,

we get an n2-6/ 2 time algorithm for Exact-IPn,ciogn, which completes the proof. l
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3.5.2 Equivalence between OV and Approximation Problems

Now we deal with approximation problems in Theorem 3.1.1.

Bichrom.-G,-Closest-Pair and fp-Furthest- Pair

We first show OV is equivalent to approximate Bichrom.-f,-Closest- Pair, fp-Furthest-Pair

and additive approximate Max-IP. One direction is already established in [1511.

Lemma 3.5.4 (Theorem 4.1 of [1511). If Bichrom.-fp-Closest-Pair or p-Furthest-Pair

can be approximated in truly subquadratic time for any p C [1, 2] or Max-IP can be

additively approximated in truly subquadratic time, then OV is in truly subquadratic

time."

In the following we show the reverse also holds.

Lemma 3.5.5. If OV is in truly-subquadratic time, then for all p C [1, 2], Bichrom.-Cp

-Closest-Pair and f -Furthest-Pair can be approximated in truly subquadratic time, and

Max-IP can be additively approximated in truly subquadratic time.

We are going to apply Theorem 3.2.7 and will actually prove a much stronger

result. We show that for any metric dist : X x X -* R>0 which admits a Locality-

sensitive hashing (LSH) family, approximate Bichrom.-Closest-Pair and FP with re-

spect to dist can be efficiently reduced to OV.

In the following, we use Bichrom.-Closest-Pair,,dis, and FP,,dist to denote the cor-

responding problems with respect to the metric dist. Now we are ready to give the

reduction.

Reminder of Corollary 3.2.8 For a distance function dist: X x X -+ R>o which

admits an LSH family, Bichrom.-Closest-Pair,,ist and FP,,dit can be approximated in

truly subquadratic time if OV is in truly subquadratic time.

Proof. Suppose OV is in truly subquadratic time. By Lemma 3.5.1 and Lemma 3.5.2,

Max-IP and Min-IP are also in truly-subquadratic time. In the following we only

1111511 only discussed Bichrom.-fp-Closest-Pair and additive approximation to Max-IP, but it is
easy to see that the proof also works for fp-Furthest-Pair.
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discuss Bichrom.-Closest-Pairdist ; the reduction for FP,dist is analogous (with Min-IP

in place of Max-IP).

Let E > 0 be an arbitrary constant. We want to approximate the minimum dis-

tance between two sets A and B of n elements from X within a (1 + e) multiplicative

factor. By a standard (simple) search to decision reduction that incurs only a neg-

ligible factor in the running time, we only have to consider the decision version, in

which you are given a real R, and want to distinguish the following two cases: (1)

min(a,b)EAxB d(a, b) < R; (2) min(a,b)EAxB d(a, b) > (1 + e) -R.

By Theorem 3.2.7, this decision problem can be reduced to additive approxima-

tion to Max-IPn,o(logn), which is in truly-subquadratic time by Lemma 3.5.2. This

completes the proof. E

Now, from the LSH families for G-metric, Lemma 3.5.5 follows directly.

Proof of Lemma 3.5.5. Assume OV is in truly-subquadratic time. It follows directly

from Corollary 3.2.8 and Lemma 3.3.4 that for all p E [1, 2], Bichrom.-fp-Closest-Pair

and fp-Furthest-Pair can be approximated in truly subquadratic time.

Also, by a simple random sampling method and a Chernoff bound (see e.g. Lemma

3.6 of [70]), computing an E -d additive approximation to Max-IP",d can be reduced to

Max-IPn,O(e-2 log n), which can be solved in truly-subquadratic time by Lemma 3.5.2

and Lemma 3.5.1. l

Jaccard-Index-Pair

Finally, we show the equivalence between OV and approximate Jaccard-Index-Pair.

Lemma 3.5.6. OV is in truly-subquadratic time if and only if Jaccard-Index-Pair can

be additively approximated in truly-subquadratic time.

Proof. For one direction, suppose OV is in truly subquadratic time. Using a similar

argument as in Corollary 3.2.8, from Lemma 3.3.5 and Theorem 3.2.7 it follows that

Jaccard-Index-Pair can be additively approximated in truly-subquadratic time.
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For the other direction, suppose Jaccard-Index-Pair can be additively approximated

in truly subquadratic time. By Lemma 3.5.4, it suffices to show that Max-IP can be

additively approximated in truly-subquadratic time. Given a Max-IPs,d instance with

sets A, B consisting of n vectors from {0, i}d, suppose we want to compute an E - d

approximation to it. In the following we show how to reduce it to a Jaccard-Index-Pair

instance.

We begin by setting up some notation. For t E [d], we use el'] to denote the

Boolean vector 1 tod- from {0, I}d (that is, the first t coordinates are 1, and the rest

are 0). For two vectors a, b, we use a o b to denote their concatenation.

For each x E A C {0 , I}d and y E B C {, }d, we create two vectors i,y E

{0, 1}d, as follows:

cv = c a e j- ] e[0], - y 0 e[01 a e[d-Ilylli].

Interpreting - and Q as indicator vectors, we create their corresponding sets

Sx, Ty C [3d]. That is, for i E [3d], = 1 if and only if i C Sx (the same holds

for - and Ty). Observe that

J(S, T) = = ' .(Y) (3.1)
JSx U Tyl 2d - (x, y)

Now we create A and B as the sets of all Sx for x E A and Ty for y E B. Let

t = max(ST) E B J(S, T) and w = max(a,b)EAxB(a, b). From Equation (3.1), we can

see t = - and w = d - 2 - n. Therefore, an E/3 approximation to t is enough to2d-w t+1

obtain an E - d approximation to w, which completes the reduction. L

And Theorem 3.1.1 follows from Lemma 3.5.1, Lemma 3.5.2, Lemma 3.5.4, Lemma 3.5.5

and Lemma 3.5.6.

53



3.6 Equivalence between Moderate Dimensional Prob-

lems

In this section we prove our equivalence theorems for moderate dimensional Boolean

vectors problems.

3.6.1 OV and Apx-Min-IP

We first show moderate dimensional OV and Apx-Min-IP are equivalent.

Reminder of Theorem 3.1.5 Moderate dimensional OV is in truly subquadratic

time if and only if moderate dimensional Apx-Min-IP is.

To prove Theorem 3.1.5, we construct the following reduction.

Lemma 3.6.1. For all integers n, d and a parameter e > 0, an Apx-Min-IP,,d instance

can be reduced to nO(') OV,,,d01/e ogn, instances. The reduction is randomized and

succeeds with probability at least 2/3, and it takes n1+0(e) - dO('i*) time.

Before proving Lemma 3.6.1, we show it implies Theorem 3.1.5.

Proof of Theorem 3.1.5. Recall that Min(A, B) := min(ab)EAx(a, b). For the first

direction, note that OV with two sets A and B essentially asks whether Min(A, B) =

0, and a 2-approximation to Min(A, B) is already enough to answer that question.

Therefore, if moderate dimensional Apx-Min-IP is in truly subquadratic time, then so

is OV.

For the second direction, suppose there are constants Ei, 51 > 0 such that OVnnj1

can be solved in n2 - time. Let E be a parameter to be set later, by Lemma 3.6.1, there

are constants ci, c 2 such that all Apx-Min-IP ,n, instance can be efficiently reduced to

nClE OV,,sr, instances.

We set E such that c1e = E1/2, and 6 such that - c2 /e < 61. Then applying the

algorithm for OV, Apx-Min-IPnsn can be solved in n2-e1/ 2 time, which completes the

proof. 11
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The following probability inequality will be useful in the proof of Lemma 3.6.1.

Lemma 3.6.2. Letting E e (0,0.1), and U be a distribution on {0,1} such that

Ex-u[X] = e, there is a universal constant c such that for any integer m and any cm

independent random variables X 1 , X2, ... X, , from U, we have

Pr Xi > - cm < E.

The proof of Lemma 3.6.2 can be found in Section 3.9.

Finally, we prove Lemma 3.6.1.

Proof of Lemma 3.6.1. Before presenting the reduction, we first introduce some no-

tation. For a vector x E {0, 1}d, and a subset S C [d], xIs C {0, 1}1I denotes the

projection of x onto the coordinates of S. Similarly, for a sequence T of integers from

[d], let XIT E {0, 1 }1TI denote the projection of x on T, such that (XIT). := xT, for

each i G [ITI]. We also use the Iverson bracket notation: for a predicate P, [P takes

value 1 when P is true, and 0 otherwise.

Reduction to a Decision Problem. Our reduction will focus on a corresponding

decision problem: given two sets A, B of n vectors from {0, I}d and an integer T < d/2,

we want to distinguish the following two cases: Min(A, B) > 2T or Min(A, B) < T

(the algorithm can output anything when T < Min(A, B) < 2T). It is easy to see

that via a binary search, log d calls to this decision problem can be used to solve the

original Apx-Min-IP problem, and a factor of log d < log n can be ignored here.

One Step Reduction with UT. Now, suppose we pick a sequence of d/r uniform

random numbers from [d] and let UT be its distribution. Then for x, y E {0, 1}d, we

have:

55



* If (x, y) < T:

Pr [(XIT, YIT) = 0] (1 - T/d)d/T > 1 - 2
T*-UT 2)

> 0.25.

o If (x, y) > 2 r:

Pr [(XIT, yIT) = 0] < (1 - 2T/d)d/T < e- 2 < 0.14.
T+-UT

The important observation is that there is a constant probability gap between the

above two cases.

A Micro Reduction to OV. Now, let N be an integer and UTN be the joint

distribution of N independent samples from UT. We write {T} +- U,1 N to denote

that (T1 , T2 , ... , TN) is a random sample from UT4 N. By a standard Chernoff bound,

when {T} <- UTN, there is a constant c1 such that:

* If (x, y) < T:

N

Pr [(xIT, yiT) = 0] > 0.2N > 1 - 2 -c 1 N

" If (x, y) > 2r:

N

Pr [(xlT., yT,) = 0] < 0.2N > - 2

Now, for a fixed {T}, we can distinguish the above two cases via a reduction to

a "micro" OV instance.

Note that E_1 [(xlTp, yIT ) = 0] > 0.2N is equivalent to the condition that there

is are t = 0.8N pairs (ii, ji), (i2 ,0 2 ), . . . , (it, jt) E [N x [d/T] such that all ik's are

distinct, and for all k E [t], (xIT k) (YI )j 1
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With this observation, we can construct our reduction. There are

L = - (d/r)t = (d/r)O(N)
t

possible t-tuples of pairs. We sort them in an arbitrary but consistent order. Now we

construct a mapping 0T,{I : {O, I}d {0, 1 }L as follows:

For each f c [L], let (ii,j1 ), (Z 2 , j 2 ), . . . , (itj) be the f-th t-tuple of pairs. For a

vector z E {0, 1}d, we set O{Til(z)= 1, iff (zIT ) 1 for all k C [t-.

Then for all x, y E {0, }d, we have j., [(xTi, ylT2 ) = 0] > 0.2N is further equiv-

alent to (#1{TrI(x), #{1T,(y)) = 0. For convenience, we let U0 denote the distribution

of #1{Tj when {T} is drawn from UTON and we set N = E- 1/ci.

To summarize, we have:

" If (x, y) < T:

Pr [(O(x), 0(y)) = 0] > 1 - 2-1.

" If (x, y) > 2T:

Pr [(O(x), #(y)) > 0] > 1 - 2-E'

The Final Reduction. Finally, letting c2 be the universal constant in Lemma 3.6.2,

we pick m = 3c 2 E log n i.i.d. mappings #, /2, - - -, from U0. Applying Lemma 3.6.2,

we have:

0 If (x, y) < T:

P m [(#i(x), #i(y)) 0] > 2.- m 1 -

* If (x, y) > 2T:

Prm [(#4(x), #imy) = 01 < - m M >1 - n-
0, 1}+-UOO 2 2
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Now, we use our final reduction to distinguish the above two cases. Note that

$L1 (0i(x), 0i (y)) 0] > m is equivalent to the condition -that there is a subset

S C [m] with IS > -m such that (#i(x), Oi(y)) = 0 for all i E S.

We enumerate all possible such subsets S. For a vector z G {0, i}d, we define

ks(z) to be the concatenation of #i(z)'s for all i c S. We set As as the set of all

Os(x)'s for x E A, and Bs as the set of all Os(y)'s for y c B.

Then we can see that j [(#O(x), #i(y)) = 0] > m is further equivalent to

whether there is a subset S with ISI > m and (As, Bs) is a yes instance for OV.

Summary. Putting everything together, we have a randomized reduction to T =

2 0(E log n) _ nO(E) OVn,(d/)o(1/c) 0gn instances with set-pairs (A 1 , B 1 ), (A 2 , B2 ), . . .,(AT, BT)

such that, with probability at least 1 - 1/n:

* If Min(A, B) <T T, then one of the (Ai, Bj) is a yes instance for OV.

" If Min(A, B) > 27, all (As, Bj)'s are no instance for OV.

The above completes the proof.

3.6.2 Exact-IP, Max-IP, and Min-IP

Now we proceed to show moderate dimensional Exact-IP, Max-IP and Min-IP are

equivalent.

Reminder of Theorem 3.1.6 For moderate dimensional Max-IP, Min-IP and

Exact-IP, either all of them are in truly subquadratic time, or none of them are.

To prove the above theorem, we need the following two simple reductions, whose

proofs can be found in Section 3.9.

Lemma 3.6.3. There are functions V',, Y, : {0, 1}* -+ {0, 1}* such that for all

integer d and x, y E {0, 1 }d, we have be,(x), 4ev(y) E {0, 1}2d and (O'e(x), V (ev(y))

d - (x, y).
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Lemma 3.6.4. For all integers d and 0 < m < d, there are mappings yPdrn

{0, I}d -+ {o, 1 }0(d 2 ) and an integer Md, such that for all x, y E {0, l}d:

* If (x, y) = m, then (pmrn(x), VY,(y)) Md.

* Otherwise, (Px,W(x), m (y)) > Md.

Proof of Theorem 3.1.6. By Lemma 3.6.3, one can easily reduce a Max-IPl,d instance

to a Min-IPn, 2d and vice versa. Therefore, moderate dimensional Max-IP and Min-lP

are truly-subquadratic equivalent. We only need to show that moderate dimensional

Min-IP and Exact-IP are equivalent.

Assuming moderate dimensional Exact-IP is in truly subquadratic time, so there

are two constants 6 and 6 such that Exact-IPn,ns can be solved in n2-E time. Let

6' min(e, )/2. Given a Min-lPnn' instance, by enumerating all possible inner prod-

ucts between 0 and n 1, we can reduce the instance to n ' instances of Exact-IPnnb.

Applying the algorithm for Exact-IP, we then have an n2-e+6 ' < n2-' time algorithm

for Min-IPn,,3. Hence, moderate dimensional Min-IP is also in truly-subquadratic

time.

Finally, assume moderate dimensional Min-IP is in truly subquadratic time. Note

that by Lemma 3.6.4, an Exact-IPn,d instance can be reduced to a Min-IPn,o(d2) in-

stance, which immediately implies that moderate dimensional Exact-IP is also in truly

subquadratic time. 0

3.7 A Tighter Connection between Max-IP, Bichrom.-

fp-Closest-Pair, and fp-Furthest-Pair

In this section we establish the tighter connections between Max-IP, Bichrom.-t-Closest-Pair

and f,-Furthest-Pair.

In Section 3.7.1, we show tighter connections for Max-IP, Exact-IP and additive

approximation to Max-IP. And in Section 3.7.2, we show similar connections for

additive approximation to Max-IP, Bichrom.-L,-Closest-Pair and t,-Furthest-Pair.
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3.7.1 A Tighter Connection between Exact-IP, Max-IP, and

Additive Approximation to Max-IP

The following lemma is implicit in [151], which is used to show Bichrom. -A-Closest-Pair

can not be approximated in truly-subquadratic time under SETH. 1151] only states

a reduction from OV. However, the MA protocol in [151] works equally well for the

Inner Product problem, so it actually gives a reduction from Exact-IP.

Lemma 3.7.1 (Implicit in Theorem 4.1 of [151]). For all sufficiently large integers

n, c and a parameter E > 0, an Exact-IPn,ciogn instance can be reduced to nO(Elog(c/6))

instances of computing Q(1/ exp{ (c/)}}) -d additive approximation to Max-IPn,d for

d = no").

In order to prove our tighter connection, our goal here is to improve the additive

approximation ratio from Q(1/ exp{O(c/E)}) to Q(1/ poly(c/E)).

A New MA Protocol for Inner Product

For that purpose, we need to modify the MA protocol from [1511. In the following, we

first describe the MA protocol for Inner Product in [151] based on AG codes. Below

we only summarize the relevant properties we need; readers can refer to 11511 for the

details of the protocol.

Lemma 3.7.2 (Theorem 3.1 [151]). For every T E [2, N], there is a computationally-

efficient MA protocol for Inner Product such that

1. Alice and Bob hold input x, y G {0, 1}N respectively, and want to decide whether

(x, y) = m for a target integer m.

2. Set q to be the first prime larger than T and a universal constant c1 , and set

R = log(N/T) + 0(1).

3. Merlin sends Alice a vector z E F 2, Alice rejects z immediately if it doesn't

satisfy some conditions.
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4. Alice and Bob then toss R coins to get r C [ 2 R]. Based on x (or y) and r, Alice

and Bob generate two vectors in FT2 , d(x, r) and b(y, r) respectively,

5. Bob sends Alice b(y, r), and Alice calculates u(x, y, r) = (d(x,r), b(y, r)). Alice

accepts if and only if u(x, y, r) = z,.

The protocol satisfies the following conditions:

" If (x, y) = m, then there is a proof (the vector z) from Merlin such that Alice

always accepts.

" If Kx, y) # m, then for all proofs from Merlin, Alice accepts with probability at

most 1/2.

Our Modified Protocol. We make some minor modifications to the above proto-

col. First, note that an element from Fq2 can be treated as an element in Fq[X]/(Pirred(X)),

where Prred (x) E Fq [X] is an irreducible polynomial of degree 2. In this way, we can

interpret all elements in d(x, r) and b(y, r) as degree 1 polynomials in Fq[x], which

can in turn be interpreted as degree 1 polynomials in Z[x]. We denote these vectors

of polynomials by U(x, r), V(y, r) E Z[x]T, with coefficients from {O, 1, . . . , q - 1}.

Next, we set W(x, y, r) = (U( , r), V(y, r)), which is a degree 2 polynomial in

Z[x]. Note that the coefficients of W(x, y, r) are between 0 and O(q 2 - T) = O(T 3).

Now, in the message from Merlin, for all possible r E [ 2 R], we also add a claimed

description of W(x, y, r). This takes 0 (NlogT) bits, so it doesn't affect the message

complexity from Merlin. Then, after Alice receives b(y, r) from Bob (from which

she can obtain V(y, r)), Alice computes W(x, y, r) instead of u(x, y, r), and rejects

immediately if this W(x, y, r) does not match the one given by Merlin. After that, she

knows that u(X, y, r) = W(x, y, r)/(Pirred(x)), and proceeds as in the original protocol.

It is easy to see that, when (x, y) = m, if Merlin provides the correct W(x, y, r)'s,

then Alice still always accepts (regardless of r). And when (x, y) f m, since these

W(x, y, r)'s only provide additional checks, Alice still accepts with probability at most

1/2 for all proofs.
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We let Horig denote the protocol from [151] (Lemma 3.7.2), and Hnew denote our

new protocol. In the following we utilize Hnew to give an improved reduction from

Exact-IP to additive approximation to Max-IP.

Before that, we need the following encoding trick, whose proof can be found in

Section 3.9.

Lemma 3.7.3. For all integers d, r and 0 < m < dr2 , there are mappings y', 0 y

{0, 1, ... , r}d -+ {0, 1 }O(dr2 ) 2 and an integer 0 < M < O(dr2 ) 2 , such that for all

x, y E {0, 1,..., r}d:

* If (x, y) = m, then (px(x), (y)) = M.

* Otherwise, ( px(x)y(y)) < M.

e Moreover, M only depends on d and r.

Lemma 3.7.4. For all sufficiently large integers n, c and a parameter E > 0, ev-

ery Exact-IP,clogn instance can be reduced to no(Elot(c/)) instances of computing an

((E/C)6 ) - d additive approximation to Max-IPn,d for d = no(l).

Proof. Consider an Exact-IPn,ciogn instance with sets A and B, and integer m. Using

our protocol Hnew for checking whether (x, y) = m, we only need to figure out whether

there is a pair (x, y) E A x B and a proof from Merlin such that Alice always accepts.

Let N = clog n, and set T = c/E. Then the message complexity from Merlin is

O(e log n log(c/E)) and the total number of random bits is R = log(N/T) + 0(1) <

log(e log n) + 0(1).

We first enumerate all valid proofs 4, which is a pair of z C F R and W E Z[x]2R

such that for all r E [ 2 R], we have Z, = W!,/rred(X).

Next, we want to determine whether there is a pair (x, y) E A x B, such that this

proof 4 makes Alice always accepts. Note we only need to distinguish the following

two cases:

. For all r E 2 ] (U(x, r), (y, r)) = Wr.
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* For at most half of r e [2 R], (x, r), (y, r)) W,. -

Recall that U(x, r) and V(y, r) are vectors of T degree 1 polynomials from Z[x],

with coefficients in {o, 1,... , q - 1}, and Wr is a degree 2 polynomial in Z[x], with

coefficients in {o, 1,.. . , O(q 3 )}. For a polynomial P(x) in Z[x] and an integer t, let

[t]P(x) denote the coefficient of xt in P(x). Then we can see (U(x, r), V(y, r)) = Wr

is equivalent to the condition: for all 0 < t < 2,

tT

[i]U(x, r) k [t - i]V(y, r)k = t]Wr. (3.2)
i=O k=1

Note that the left side of Equation (3.2) is an inner product between two vectors

from {0, 1,. . . , q - 1}3T. By Lemma 3.7.3, we can construct three Boolean vectors

UO, U 1 , U2 E {0, 1 }O(q6 ) from U(x, r) and also vO, v1 , v 2 E {0, 1 }0(q 6 ) from V(y, r) and

an integer M (which only depends on T), such that:

" If Equation (3.2) holds for all t, then I=0K(ui, vi) = M.

* Otherwise, Z 0 (ui, vj) < M.

Now, we concatenate all these uO, u 1 , U2 for all possibles r's to form a single vector

Ua, and construct vy similarly. We have:

" If for all r E [2 R], (U(x, r), V(y, r)) = W,, then (ux, vy) > 2R . M.

" If for at most half of r E [2R], (U(x, r), V(y, r)) = Wr, then (ux, vy) < 2R (M -

1/2).

Now, let AV and Bp be the collections of ux and vy with the proof 0 respectively.

Then we want to distinguish between the following two cases:

" There is a 0 such that Max(Ap, Bp) > 2 R. M.

" For all 7P, Max(Ap, BO) < 2 R. (M - 1/2).
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Note that vectors in A. and Bp are of dimension d = O(q6 .2'), so the above can

be solved by 2 0(eobgnIog(c/f)) - no(EloO&/O) calls to Q(1/q 6 ) - d = Q((EIC)6) - d additive

approximation to Max-IPfA, which completes the proof. l

Now we are ready to prove Theorem 3.7.5.

Theorem 3.7.5. The following are equivalent:

1. An e - d additive approximation to Max-IP,,d is computable in n2-EO( time.

2. Max-IPn,ciogn is solvable in n2-1/co() time.

3. Exact-IP,ciogn is solvable in n2-1/co(l time.

Proof. We only need to show that Item (1) implies Item (3). By Lemma 3.7.4, there

are constants c1, c2 such that for any constant E, > 0, every Exact-IPn,ciogn instance

can be reduced to nclEl g(c/E 1) instances of c2 - (El/c) 6 - d additive approximations to

Max-IPn,d for d = no(.

Suppose Item (1) holds, we set El = 1/c, then Exact-IPn,ciogn can be solved in

n i C1og(c2)/c+2-(C2 -C-12)o(l) _ 2-1/cOM1

time, which completes the proof. L

3.7.2 A Tighter Connection between Additive Approximation

to Max-IP and Some Geometric Problems

Now we are ready to establish a similar connection between additive approximation

to Max-IP and some geometric problems.

Theorem 3.7.6. The following are equivalent:

1. An E - d additive approximation to Max-IPnd is computable in n 2-Eo( time.

2. An E - d additive approximation to Min-IPn,d is computable in n 2-Eo(1) time.
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3. A (1 + E) approximation to Bichrom.-f -Closest-Pair is computable In n 2"

time (for a constant p E [1, 2]).

4. A (1+ E) approximation to f, -Furthest-Pair is computable i n2-eo(1) time (for a

constant p G [1, 2]).

One direction is simple, and already implicit in previous work.

Lemma 3.7.7 (Theorem 4.1 1151]). For any p E [1, 2], if Bichrom.-fp -Closest-Pair

or Cp-Furthest-Pair can be approximated in n2-om time, then there is an algorithm

computing E - d additive approximation to Max-IP in n2E0m time.

So it suffices to prove the other direction, we are going to apply Theorem 3.2.7.

Proof of Theorem 3.7.6. The equivalence between Item (1) and (2) follows directly

from Lemma 3.6.3. By Lemma 3.7.7, Item (3) and (4) both imply Item (1). So it

suffices to show Item (1) implies Item (3) and Item (4).

We only consider Bichrom.-,f-Closest-Pair here; the case for fp-Furthest-Pair are

symmetric. Note that by a binary search (which incurs a negligible factor in the

running time), we only need to consider the decision version, in which we are given

a real R, and want to distinguish the two cases: (1) min(a,b)EAxB Ia - blI <; R; (2)

min(a,b)EAxB Ia - bIIp > (1 + E) - R.

By Theorem 3.2.7 and Lemma 3.3.4, this decision problem can be reduced to

computing an Q(e . d) approximation to Max-IP,,0(,-2 logn), which by assumption can

be solved in n 2-EOM time. 0

Finally, Theorem 3.1.4 is a simple corollary of Theorem 3.7.5 and Theorem 3.7.6.

3.8 Equivalence in the Data Structure Setting

In this section, we generalize our equivalence results to the data structure setting.

We first introduce the data structure versions of OV and Max-IP, which are used

as intermediate problems for the reductions.
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* Online OV: Preprocess a database D of n points in {0, I}d such that, for all

query of the form q E {0, i}d, either report a point x e D which is orthogonal

to q or report that no x exists.

" Online Max-IP: Preprocess a database D of n points in {0, 1 }d such that, for

all query of the form q E {0, 1}d, find a point x E D maximizing (x, q).

Theorem 3.8.1. The following are equivalent:

" There is a 6 > 0 such that for all constant c, there is a data structure for Online

OV with d = clog n uses poly(n) space and allows ni-6 query time.

" There is a 6 > 0 such that for all constant c, there is a data structure for Online

Max-IP with d = c log n uses poly(n) space and allows n- query time.

" There is a 6 > 0 such that for all e > 0, there is a data structure for approximate

NNS in ip with approximation ratio (1 + E) uses poly(n) space and allows ni-5

query time for a constant p E [1, 2].

Note that by 113], Online OV is equivalent to Partial Match, so the above theorem

implies Theorem 3.1.3.

We also need the following two important observations from the proof of Lemma 3.5.2

and Lemma 3.7.4.

Lemma 3.8.2 (Implicit in Lemma 3.5.2). Let n be an integer, c be a constant,

e > 0 and 0 < k < clog n. There are two families of functions f1, f2,. . ., fm and

Yi, 92,. . . , gn from {0, 1 } logn to {0, 1}20(c/E)og where m = no(E log(c/E)), such that

for all x, y E {0, 1 }clogn, (x, y) = k if and only if there is an i E [m] such that

(fj(x), gj(y)) = 0. Moreover, functions fi's and gi's can be evaluated in polylog(n)

time.

Lemma 3.8.3 (Implicit in Lemma 3.7.4 and 3.7.7). Let p C [1, 2], n be an integer,

c be a constant, e > 0 and 0 < k < c log n. There are two families of functions

fi, f2,. .. , fm and gi, 92 .. , 9 m from {0, 1 }clogn to Rno(l) where m = no(Elog(c/e)), such

that for all x, y E {0, 1}clogn

66



* If (x,y) = k, then there is on i E [m] such that Ifi(x)-gj(y) I I 1-Q((E/c) 6 ).

& Otherwise, for all i E [m], |fi(x) - gi(y), '> 1.

Moreover, functions f,'s and gi 's can be evaluated in no(') time.

Proof of Theorem 3.8.1. In the below we first show the equivalence between Online

OV and Online Max-IP, the equivalence between Online Max-IP and NNS is proved

similarly, so we only sketch the main ideas.

Online OV * Online Max-IP. The reduction from Online OV to Online Max-IP

is trivial. For the other direction, suppose there is a 6 > 0 such that for all constant

c, there is an algorithm for Online OV with d = clog n such that it uses poly(n) space

and allows ni- query time.

Let d = clog n for a constant c, and ci be the constant hiding in the big-O of

= 20(El(c/s)) in Lemma 3.8.2. Suppose we are given a set D of n points from

{o, 1}d.

We set E such that c1 -e log(c/E) = 6/2 and apply Lemma 3.8.2. Now, for each

0 < k < d, we build nci.lg(c/E - n'/
2 data structures for Online OV, the i-th data

structure consists of the fi(x)'s for all x E D. Note that the fi(x)'s have length

20(c/') - log n, which is still O(log n) as e is a constant.

For each query q E {0, I}d, note that there is an x E D such that (X, q) = k if and

only if there is an i such that the i-th Online OV structure contains an orthogonal point

to gi(q). Therefore, by enumerating k from d down to 0, i from [n6 2], and making

corresponding queries to the Online OV data structures, one can answer queries for

Online Max-IP in n1-1/2 - d time.

Online Max-IP * Approximate NNS (Sketch). Using Lemma 3.8.3, the re-

duction from Online Max-IP to Approximate NNS can be proved similarly as from

Online Max-IP to Online OV.

For the direction from approximate NNS to Online Max-IP: suppose the approxi-

mation ratio is (1 + E). It suffices, for all R of the form (1 +E/ 3 )k for an integer k, to
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construct a data structure which finds a point with distance smaller than R -(1 + e/3)

if the minimum distance is smaller than R, and reports a failure if the minimum

distance is greater than R - (1 + e/3) (its behavior can be arbitrary if neither case

holds). Using the reduction implicit in proof of Theorem 3.2.7, this can be reduced

to Online Max-IP with d = O(log n).

3.9 Missing Proofs

Here we give some missing proofs in the chapter.

Proof of Lemma 3.6.2. Let X = Z:X Xi and p = E[X] e cm. Set 6 =E-1/3. By

the multiplicative Chernoff bound, we have

Pr[X > (1+6) < p] <

Note that (1 + 6) =(1 + E-1/3) E -cm < -cm. Also, we have

((1 + 6)1+6)

<2

< -p.-[5 In 5-6]

< -E-cmn-[E--1/3 n(E-1/3)]/2

e -Cm- [E-1 in(-)/12

-In E-I-cm/12 _E cm/12

Therefore, we can set c = 12, and the proof is completed. l

Proof of Lemma 3.6.3. We define two functions o, pv: {0, 1} -+ {0, 1}2 such that:

WX (0) :=- (1, 0), WX (1) :=- (0, 1), W" (0) : = (1, 1), W" (1) : = (1, 0).

It is easy to check that for a, b E {0, 1}, a - b = 1 - (Wp(a), py(b)). Then, for
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X, y E {0, 1} , we define V,(x) E {0, 1}2d as the concatenation of ,ox(xi) for each

i E [d], and similarly 0Y (y) C {O, 1 }2d as the concatenation of (py(yi) for each i E [d].

Then we can see (Vv(X), O v (y)) = 1 (W. (xi), W,(y)) =d- (x, y). LI

Proof of Lemma 3.6.4. We remark the reduction here is essentially the same as the

trick used in [1721. For a vector v E {0, 11*, we use v~k to denote the concatenation

of k copies of v.

Consider the following polynomial P(x, y) ((x, y) - M) 2, we have

P(X, y) = (X, y) 2 - 2m(x, y) + m2 = (x, y) 2 + 2m(d - (x, y)) + M2 - 2dm.

For convenience, for a vector z c {0, i}d , we use Z(i,j) to denote the (i-1)-d+j-th

coordinate of z. For x, y E {0, 1}d, we construct Y, E {0, 1 }d 2 such that Y(i,j) = xi -x

and Y(ij) = y, - yj. Then we can see

d d2.

( -,) = x ixi - Yiy = iyi =(X, Y ).
i=1 j=1 i=1

Let ox, and 0v be the two functions from Lemma 3.6.3. For x, y E {0, I}d, we define

Ip.(X) :=(, @b(X) 1(2,)) and Y,(Y) :=(, v/(y) (2 mn)

Then we have (Kx,(X), c pn (y)) = (x, y) 2 + 2m(d - (x, y)) = P(x, y) + 2dm - M2.

And we set Mdr= 2dm - m 2

Now, if (x, y) m, we have P(x, y) = 0, and therefore (Kx,(x), Wrn(y)) Md,.

Otherwise, (x, y) f m and we have P(x, y) > 0, and hence (,rn(x), WPyn (y)) > MAd,,.

Note that Wx,(X), p ,(y) E {0, 1 }d2 +4dm, we add 5d2 - Md,m dummy ones to the end

of WP,m(x) and Wy,,(y) and set Md= 5d2 , which completes the proof. L

Proof of Lemma 3.7.3. We begin by the construction of two embeddings x,@ :

{0,1,...,r} - {0,1}r2 such that for any x, y {0, 1,...r, , /x(x),,y(y)) = x - y.

For convenience, in the following we use z(i,j) to denote the (i - 1) - r + j-th

coordinate of z. Then we define ox(x)(ij) as 1 when i < x, and 0 otherwise; similarly,
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we define 'b,(y)(jj) as 1 when j ; y, and 0 otherwise. We have

r r xy

(O() Y(Y)) = Z (x)(ij) - Y(y)(i) = (Xy).
i=1 j=1 i=1 j=1

Slightly abusing notations, for x, y E {0, 1,. . , r}, we define ox(x) and 4y(y) as

the concatenation of 0, or Oy applying on all coordinates of x and y. Then we have

Ox (x), by (y) C {0, }dr 2 , and (Ox (x), Oy/(y)) = (x, y). Then applying Lemma 3.6.4

and Lemma 3.6.3 completes the proof. D

3.10 More Applications of the E"j Reduction Frame-

work

To demonstrate the potential power of our E" framework. In the following we discuss

some of its applications other than establishing our equivalence class. The first one

is a very simple reduction from Hopcroft's problem in constant dimensions to OV in

polylogarithmic dimensions. And the second one is a reduction from 3-SUM to 3-OV.

3.10.1 Integer Inner Product and Hopcroft's Problem

The Hoperoft's problem is defined as follows: you are given two sets A, B of n vectors

from Zd, and want to determine whether there is an (a, b) E A x B such that (a, b) = 0.

In other words, it is the same as OV except for now vectors consist of integer entries.

We use Z-OVn,d to denote this problem in d dimensions for simplicity, and as-

sume the integers in Z-OVl,d belong to [-nc, nc] for a constant c, which is the most

interesting case. Now we formally state our reduction.

Theorem 3.10.1. Let c, d be two constants, a Z-OVn,d instance I with entries in

[-nc, nc] can be reduced to an OVn,O(ogn)d+1 instance J in nl+o(l) time, such that I is

a yes instance if and only if J is a yes instance.

An immediate corollary is that if moderate dimensional OV is in truly subquadratic

time, then Z-OVnd is also in truly subquadratic time for all constant d.
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Let d be an integer, we define Z-lPd Zd x Zd - {0, 1} as the function that

checks whether two d dimensional vectors in Zd are orthogonal. Note that Z-OV.,d is

equivalent to Z-IPd-Satisfying-Pair,.

Theorem 3.10.1 is just a direct corollary of the following fast E2 communication

protocol for Z-IPd (it is in fact a coNP communication protocol, as Merlin sends

nothing) and Theorem 3.2.2.

Lemma 3.10.2. Let c, d be two constants, there is a EjC protocol for Z-IPd with entries

in [-nc, nc], in which Merlin sends nothing, Megan sends log log(n) + 0(1) bits and

Alice and Bob communicate d - log log(n) + O(d) bits.

Proof. Let x, y be two vectors from [-nc, nc]d, we have I(x, y)l d- n2c.

Let t be the smallest number such that the first t primes Pi, P2, - - - , Pt satisfy

IJl$ pi > d - n 2 c. We first bound t and the largest prime pt. Clearly, t < log(d -n2 c)

0(log n). Recall that n# denotes the product of all primes less than or equal to n

(the primordial function), and we have n# = e(+o(1))n. By the definition of t, it

follows that (pt - 1)# = e(1+o())(Pt-1) < d -n2c and pt = 0(log n).

From our choice of t, we have (x, y) = 0 if and only if (x, y) = 0 (mod pi) for all

i E [t]. So in the protocol, Merlin sends nothing. Megan sends an index i E [t], which

takes log t = log log n + 0(1) bits. After that, for each j E [d], Bob sends yj mod pi

to Alice, which takes d -log pi < d - log log n + 0(d) bits, and Alice accepts if and only

if (x, y) = 0 (mod pi).

3.10.2 Sum-Check and 3-Sum

Next we discuss a reduction from 3-SUM to 3-OV. 3-OV is a generalized version of

OV, in which you are given three sets A, B, C, each of n vectors from {0, I}d, and want

to determine whether there is an (a, b, c) E A x B x C such that _ ai - be - ci = 0

(the generalized inner product of a, b, and c is zero). We use 3-OV,,d to denote the

3-OV problem with sets of n vectors of d dimensions.
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Theorem 3.10.3. If 3-OV is in truly-subquadratic time1 2 , then so is 3-SUM.

We remark that this reduction is not optimal, as it is conjectured that 3-OV

requires n3-o(l) time (also implied by SETH). We include it here only as an illustration

of the applicability of our reduction framework. It would be very interesting to

improve it to a reduction from 3-SUM to OV1 3 .

Note that 3-OV is actually a Satisfying-Triple problem 14 , and Theorem 3.2.2 only

works for Satisfying-Pair problems. Still, we can generalize Theorem 3.2.2 easily to get

the same connection between a 3-party E2 communication protocol and a reduction

from a satisfying-triple problem to 3-OV.

Let F: ({0, i}d)
3 - {0, 1} be a function. F-Satisfying-Triple, is the problem that

you are given sets A, B, C of n vectors from {0, 1}d, and want to determine whether

there is an (a, b, c) E- A x B x C such that F(a, b, c) = 1. A 3-party E2 communication

protocol can be defined similarly as in Definition 3.2.1 with the third player named

Charles (we omit it here). We have the following analogous theorem of Theorem 3.2.2.

Theorem 3.10.4. Let F : ({O, 1}d) 3 -+ {0, 1} and n be an integer, suppose F admits

a computationally-efficient E' protocol. In which Merlin sends m1 bits, Megan sends

m 2 bits, Alice, Bob, and Charles communicate f bits.

Then there is a reduction from an F-Satisfying-Triple, instance I to 2 m" 3-OVn,22

instances J1 , J2 ,... , J2 m 1 , such that I is a yes instance if and only if one of the re-

duced instances is a yes instance. And the reduction takes O(n -2 0(n1+m2+) - poly(d))

time.

We omit its proof here as it is identical to that of Theorem 3.2.2.

Note that we can assume the integers in the 3-SUM instance are in [-n 4/2, n4 /2)

without loss of generality. In order to apply Theorem 3.10.4, we need an efficient E"

protocol for checking whether 3 numbers sum to zero.

12This means there is an E > 0 such that for all constants c, 3-OVn, log n can be solved in n2 -e

time.
131n [631, it is shown that under the NSETH (which is controversial, see 11671), there is no fine-

grained reduction from OV to 3-SUM. But there is no formal evidence against the other direction.
14It is also called a Product Space Problem in [1061.
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Theorem 3.10.5. For an integer n, let Fzero : ({o, 1 }4logn) 3 -* {0, 1} be the function

that treats its inputs as three numbers in [-n4 /2, n4/2) (via a natural encoding), and

checks whether they sum to zero. For any 1 < T < 4 log n, Fzero admits a E' protocol

in which Merlin sends 0(log n/T) bits, Megan sends [log(n/T)] bits and Alice, Bob,

and Charles communicate O(T) bits.

Proof. Let x, y, z be three input numbers. Suppose Alice holds x, Bob holds y, and

Charles holds z. We add n 4 /2 to each of them so that they now belong to [0, n4 ), and

we want to check whether they sum up to t = n4 /2 -3. Assuming T divides 4 log n for

simplicity, we treat x, y, z as numbers in 2T base. Let f = 4 log n/T, and x 1, x 2 , - - - , Xe

be the digits of x (from the least significant one to the most significant one, yi's, zi's,

and ti's are defined similarly).

Suppose we add x, y, z together as numbers in 2 T base. Let c E {0, 1, 2 } be a

sequence of carries. We can see x + y + z = t with respect to the carry sequence c if

and only if

xi + yi + zi + ci_1 = ti + ci .2 2T for i E [f + 1].

In the above we set co = x+1 = y+1 = zf+1 = 0.

Therefore, in the protocol, Merlin sends the carry sequence c, which takes 0(f)

0(log n/T) bits. Megan sends an index i E [C + 1]. After that, Bob and Charles send

yj and zi to Alice, respectively, and Alice accepts if and only if the above equality

holds. It is straightforward to verify the protocol works.

Finally, we are ready to prove Theorem 3.10.3.

Proof of Theorem 3.10.3. Suppose 3-OV is in truly-subquadratic time. That is, there

is a constant E such that for all constant c, 3 -OVncogn can be solved in n2 - time.

Given a 3-SUM instance with integer entries in [-n4 /2, n4 /2), it is just an Fzero

-Satisfying-Triple, instance. Let ci be the constant hiding in O(log n/T) of Theo-

rem 3.10.4, then Fzero admits a EC protocol in which Merlin sends c1 log n/T bits,

Megan sends [log(n/T)l bits and Alice, Bob, and Charles communicate O(T) bits.

Set T = c1 - 2/E, Theorem 3.10.4 implies this 3-SUM instance can be reduced
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to W7/2 3-OVn,20/) logn instances. Applying the algorithm for 3-OV, 3-SUM can be

solved in n2-e/2 time, which completes the proof. LI
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Chapter 4

N P - U P P Protocols and Hardness for

Furtherest Pair and Hopcroft

Problem in 20(log* ) Dimensions

4.1 Introduction

We study the following fundamental problem from similarity search and statistics,

which asks to find the most correlated pair in a dataset:

Definition 4.1.1 (Bichromatic Maximum Inner Product (Max-IP)). For n, d E N, the

Max-IP,,d problem is defined as: given two sets A, B of vectors from {0, I}d compute

OPT(A,B):= max a-b.
aE A,bE B

We use Z-Max-IPn,d (R-Max-IPfl,d) to denote the same problem, but with A, B

being sets of vectors from Zd (Rd).

Hardness of Exact Z-Max-IP

Recall that from [168], there is no n2-Q()-time algorithm for exact Boolean Max-IPnw(og n).

Since in real life applications of similarity search, one often deals with real-valued data

75



instead of just Boolean data, it is natural to ask about Z-Max-IP (which is certainly

a special case of R-Max-IP): what is the maximum d such that Z-Max-IPn,d can be

solved exactly in n2-w1 ) time?

Besides being interesting in its own right, there are also reductions from Z-Max-IP

to f2-Furthest Pair and Bichromatic f2-Closest Pair. Hence, lower bounds for Z-Max-IP

imply lower bounds for these two famous problems in computational geometry (see [172]

for a discussion on this topic).

Prior to our work, it was implicitly shown in [1721 that:

Theorem 4.1.2 ([172]). Assuming SETH, there is no n2-M1 )-time algorithm for

7Z-Max-IPn,w((oglog,,)2) with vectors of O(log n)-bit entries.

However, the best known algorithm for Z-Max-IP runs in n2-e(1/d) time [125, 17,

1761, hence there is still a gap between the lower bound and the best known upper

bounds. To confirm these algorithms are in fact optimal, we would like to prove a

lower bound with w(1) dimensions.

Hardness of Exact Z-Max-IP in 2 0(log*n) Dimensions

In this paper, we significantly strengthen the previous lower bound from W((log log n)2 )

dimensions to 2 0(log*n) dimensions ( 2 0(lg* n) is an extremely slow-growing function,

see preliminaries for its formal definition).

Theorem 4.1.3. Assuming SETH (or OVC), there is a constant c such that any

exact algorithm for Z-Max-IPn,d for d = c log* dimensions requires n2-o(l) time, with

vectors of O(log n)-bit entries.

As direct corollaries of the above theorem, using reductions implicit in [172], we

also conclude hardness for f2-Furthest Pair and Bichromatic f2 -Closest Pair under

SETH (or OVC) in 2 0(1'g*n) dimensions.

1117, 1761 are for f 2-Furthest Pair or Bichromatic e2-Closest Pair. They also work for Z-Max-IP as
there are reductions from Z-Max-IP to these two problems, see 11721 or Lemma 4.4.5 and Lemma 4.4.6.
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Theorem 4.1.4 (Hardness of 6-Furthest Pair in c log* n Dimensions). Assuming SETH

(or OVC), there is a constant c such that 2 -Furthest Pair in c log* dimensions re-

quires n2-o(l) time, with vectors of O(log n)-bit entries.

Theorem 4.1.5 (Hardness of Bichromatic 2 -Closest Pair in clog Dimensions).

Assuming SETH (or OVO), there is a constant c such that Bichromatic 2 -Closest

Pair in c log* dimensions requires n>0(l) time, with vectors of O(log n)-bit entries.

The above lower bounds on f 2 -Furthest Pair and Bichromatic f2-Closest Pair are in

sharp contrast with the case of 1-Closest Pair, which can be solved in 2 0(d) -n log0 1 ) n

time [49, 109, 86].

Improved Dimensionality Reduction for OV and Hopcroft's Prob-

lem

Our hardness of Z-Max-IP is established by a reduction from Hoperoft's problem,

whose hardness is in turn derived from the following significantly improved dimen-

sionality reduction for OV.

Lemma 4.1.6 (Improved Dimensionality Reduction for OV). Let 1 < f < d. There

is an

O (n eO(61 * d/)) . poly(d) -time

reduction from OV,,d to fO(610'* d (df)) instances of Z-OVn,,+ 1 , with vectors of entries

with bit-length 0 (d/C - log f - 6 lo'* d).

Comparison with [172]. Comparing to the old construction in [172], our re-

duction here is more efficient when f is much smaller than d (which is the case we care

about). That is, in [172j, OVn,d can be reduced to dd/ instances of Z-OVn,f+1, while

we get efg " instances in our improved one. So, for example, when f = 719* d,

the old reduction yields dd/7'9 d -- n'(1) instances (recall that d = clogn for an

arbitrary constant c), while our improved one yields only n'(1) instances, each with

2 0(log* n) dimensions.
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From Lemma 4.1.6, the following theorem follows in the same way as in 11721.

Theorem 4.1.7 (Hardness of Hopcroft's Problem in cIog* " Dimensions). Assuming

SETH (or OVC), there is a constant c such that Z-OVrttiog- with vectors of O(log n)-

bit entries requires n2 -o(l) time.

Connection between Z-Max-IP Lower Bounds and NP - UPP

Communication Protocols

We also show a new connection between Z-Max-IP and a special type of communica-

tion protocol. Let us first recall the Set-Disjointness problem:

Definition 4.1.8 (Set-Disjointness). Let n E N, in Set-Disjointness (DISJn), Alice

holds a vector X c {o, 1}", Bob holds a vector Y E {o, 1}", and they want to

determine whether X - Y = 0.

In 112], the hardness of approximating Max-IP is established via a connection to

MA communication protocols (in particular, an MA communication protocol with

small communication complexity for Set-Disjointness). Our lower bound for (exact)

Z-Max-IP can also be connected to similar NP - UPP protocols (note that MA

NP - promiseBPP).

Formally, we define NP - UPP protocols as follows 2

Definition 4.1.9. For a problem H with inputs x, y of length n (Alice holds x and

Bob holds y), we say a communication protocol is an (m, f)-efficient NP - UPP com-

munication protocol if the following holds:

* There are three parties Alice, Bob and Merlin in the protocol.

2Here are some comments on the name NP - UPP. Roughly speaking, a UPP protocol H is a
private-coin randomized communication protocol in which Alice and Bob accept with probability
> 1/2 if and only if the answer is yes. For a communication protocol class D, NP -D denotes a new
class of protocol resembling a Merlin-Arthur game: A prover (who knows the inputs of Alice and
Bob) sends a proof to both Alice and Bob first; then Alice and Bob run a prescribed D protocol on
their inputs and the proof to decide whether they accept the proof or not. The protocol needs to
satisfy the soundness and completeness conditions similar to an original MA protocol.
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" Merlin sends Alice and Bob an advice string z of length m, which is a function

of x and y.

" Given y and z, Bob sends Alice E bits, and Alice decides to accept or not.3

They have an unlimited supply of private random coins (not public, which is

important) during their conversation. The following conditions hold:

- If II(x, y) = 1, then there is an advice z from Merlin such that Alice accepts

with probability > 1/2.

- Otherwise, for all possible advice strings from Merlin, Alice accepts with

probability < 1/2.

Moreover, we say the protocol is (m, f)-computational-efficient, if in addition the

probability distributions of both Alice and Bob's behavior can be computed in poly(n)

time given their input and the advice.

Our new reduction from OV to Max-IP actually implies an efficient NP - UPP

protocol for Set-Disjointness.

Theorem 4.1.10. For all 1 < a <n, there is an

(a - 6 log* - (n/2"), 0(a)) -computational-efficient

NP - UPP communication protocol for DISJ.

For example, when a = 3 log* n, Theorem 4.1.10 implies there is an 0(o(n), 0(log* n))-

computational-efficient NP . UPP communication protocol for DISJn. Moreover, we

show that if the protocol of Theorem 4.1.10 can be improved a little bit (like re-

moving the 6 1 g* term), we would obtain the desired hardness for Z-Max-IP in w(1)-

dimensions.

3 1n UPP, actually one-way communication is equivalent to the seemingly more powerful one in
which they communicate [1431.
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Theorem 4.1.11. Assuming SETH (or OVO), if there is an increasing and un-

bounded function f such that for all 1 < a < n, there is an

(n/f (a), a) -computational-efficient

NP - UPP communication protocol for DISJn, then Z-Max-IP,,a(l) requires n2-o(1) time

with vectors of polylog(n)-bit entries. The same holds for f 2 -Furthest Pair and

Bichromatic f2 -Closest Pair.

4.2 Intuition for Dimensionality Self Reduction for

oV

The 2 0 g*") factor in Lemma 4.1.6 is not common in theoretical computer science

and our new reduction for OV is considerably more complicated than the polynomial-

based construction from 11721. Hence, it is worth discussing the intuition behind

Lemma 4.1.6, and the reason why we get a factor of 20(log*n)

A Direct Chinese Remainder Theorem Based Approach. We first dis-

cuss a direct reduction based on the Chinese Remainder Theorem (CRT) (see The-

orem 4.3.3 for a formal definition). CRT says that given a collection of distinct

primes qi,. . . , qg, and a collection of integers r 1 , .. . , rb, there exists a unique integer

t = CRR({r3};{qj}) such that t = rj (mod qj) for each j E [b] and 0 < t < _

(CRR stands for Chinese Remainder Representation).

Now, let b, f E N, suppose we would like to have a dimensionality reduction P

from {0, 1}- to Ze. We can partition an input x E {0, 1}b' into f blocks, each of

length b, and represent each block via CRT: that is, for a block z E {0, 1}b, we map

it into a single integer Pblock(z) := CRR({z3 }; {qj}), and the concatenations of Pblock

4Other examples include an O(2o(log* n)n4 /3 ) time algorithm for Z-OVn, 3 11261,
0 (2 0(o* ")n logn) time algorithms (Hrer's algorithm with its modifications) for Fast Inte-

ger Multiplication 188, 78, 981 and an old Q(nd/220(o10*)) time algorithm for Klee's measure
problem 1641.
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over all blocks of x is y(x) C V.

The key idea here is that, for z, z' E {0, 1}, (Pblock(Z) -Wblock(z) (mod qj) is simply

zj - zj. That is, the multiplication between two integers WPick(Z) - Pblock(Z') simulates

the coordinate-wise multiplication between two vectors z and z'!

Therefore, if we make all primes q3 larger than f, we can in fact determine x - y

from W(x) - W(y), by looking at p(x) - p(y) (mod qj) for each j. That is,

x -y = 0 < (x) - (y) - 0 (mod qj) for all j.

Hence, let V be the set of all integer 0 < v K b - [ that v = 0 (mod q3)

for all j C [b], we have

3 - y =0 . W(X) - p(y) C V.

The reduction is completed by constructing a Z-OV instance for each v E V: we

append corresponding values to make WA(X) = [W(x), -1] and PB (Y) = [W(y), v] (this

step is from [172]).

Note that a nice property for p is that each W(x)i only depends on the i-th block of

X, and the mapping is the same on each block (Wbiock); we call this the block mapping

property.

Analysis of the Direct Reduction. To continue building intuition, let us

analyze the above reduction. The size of V is the number of Z-OVnei instances we

create, and IVI > H _b qj. These primes q3 have to be all distinct, and it follows that

qj is be(b). Since we want to create at most no() instances (or n for arbitrarily

small E), we need to set b < log n/log log n. Moreover, to base our hardness on OVC

which deals with c log n-dimensional vectors, we need to set b -f = d = c - log n for an

arbitrary constant c. Therefore, we must have e > log log n, and the above reduction

only obtains the same hardness result as [172].

Key Observation: "Most Space Modulo qj" is Actually Wasted. To

improve the above reduction, we need to make IV| smaller. Our key observation about
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o is that, for the primes qj's, they are mostly larger than b >> f, but O(x) - p(y) E

{o, 1,. . . , f } (mod qj) for all these qj's. Hence, "most space modulo qj " is actually

wasted.

Make More "Efficient" Use of the "Space": Recursive Reduction. Based

on the previous observation, we want to use the "space modulo qj" more efficiently. It

is natural to consider a recursive reduction. We will require all our primes qj's to be

larger than b. Let bm be a very small integer compared to b, and let 4': {O, Z}bm~ Z

with a set VIP and a block mapping bock be a similar reduction on much smaller

inputs: for x, y E {0, i}bme, x - y = 0 * (x) - (y) E Vp. We also require here that

,O(x) -0(y) < b for all x and y.

For an input x E {0, 1 }b. and a block z E {0, 1}b of x, our key idea is to par-

tition z again into b/bn "micro" blocks each of size b,. And for a block z in x,

let zI,... ,Z/bm be its b/b micro blocks, we map z into an integer Pblock(z)

CRR({$biock(Z }j_=1;{, =1)

Now, given two blocks z, w E {0, 1}b, we can see that

Wblock(Z) * Pblock(W) = Oblock (Zj) * bIock(WV) (mod qj).

For two inputs x, y E {0, i}b-, for (i, j) E [f] x [b/bm], we use x"i E {0, i}bm iJ)

to denote x's (y's) j-th micro block in the i-th block. We also define x5b] c {0, 1}bme

as the concatenation of xi I x 2 ,.. . xe,3 (ySiI is defined similarly). Then we have

W(x) W(y) = 4'block(X'j) bOblock(y'i) (mod qj)
i=1

= O(xl) . O(ylI). (O(xlj) - 4(yb) < b < qg)

Hence, for all j E [b/bm], we can determine whether x5] . yj] = 0 from whether

W(x) - W(y) (mod qj) E V,, and therefore also determine whether x - y = 0 from

W(x) c p(y).

We can now observe that IVI be(b/bm), smaller than before; thus we get an
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improvement, depending on how large can bm be. Clearly, the reduction 4 can also

be constructed from even smaller reductions, and after recursing E(log* n) times, we

can switch to the direct construction discussed before. By a straightforward (but

tedious) calculation, we can derive Lemma 4.1.6.

High-Level Explanation on the 2 0(log*n) Factor. Ideally, we want to have

a reduction from OV to Z-OV with only fO(b) instances, in other words, we want

IVj = eO(). The reason we need to pay an extra 2 0(log*n) factor in the exponent is as

follows:

In our reduction, IVI is at least H [ b" qj, which is also the bound on each coordinate

of the reduction: yo(x)j equals to a CRR encoding of a vector with {qj} j", whose

value can be as large as _[ " qj - 1. That is, all we want is to control the upper

bound on the coordinates of the reduction.

Suppose we are constructing an "outer" reduction o : {O, 1}b~ -+ Z from the

"micro" reduction 0 : {0, i}b- -+ Z with coordinate upper bound Lb (O(x) < Lv),

and let L =K-bm (that is, K is the extra factor comparing to the ideal case). Recall

that we have to ensure qj > 4(x) - 0(y) to make our construction work, and therefore

we have to set qj larger than L2'

Then the coordinate upper bound for p becomes L H1bb" qj > (Lp)2b/bm

f2sb . Therefore, we can see that after one recursion, the "extra factor" K at least

doubles. Since our recursion proceeds in e(log*n) rounds, we have to pay an extra

20(log*n) factor on the exponent.

4.3 Preliminaries

4.3.1 Number Theory

Here we recall some facts from number theory. In our reduction from OV to Z-OV,

we will apply the famous prime number theorem, which supplies a good estimate of

the number of primes smaller than a certain number. See e.g. [33] for a reference on

this.
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Theorem 4.3.1 (Prime Number Theorem). Let ir(n) be the number of primes < n,

then we have

lim =-1.
n-eoo n/ln n

From a simple calculation, we obtain:

Lemma 4.3.2. There are IOn distinct primes in [n + 1, n 21 for any sufficiently large

n.

Proof. For a sufficiently large n, from the prime number theorem, the number of

primes in [n + 1, n2 ] is equal to

7(n2 ) - 7r(n) ~ n2 /2inn - n/Inn > 10n.

Next we recall the Chinese remainder theorem, and Chinese remainder represen-

tation.

Theorem 4.3.3. Given d pairwise co-prime integers q1 ,q2,..., qd, and d integers

r1 , r 2 , ... ,rd, there is exactly one integer 0 < t < I~'_qi such that

t = ri (mod qj) for all i G [d].

We call this t the Chinese remainder representation (or the CRR encoding) of the ri's

(with respect to these qj's). We also denote

t = CRR({ri}; {qi})

for convenience. We sometimes omit the sequence {qi} for simplicity, when it is clear

from the context.

Moreover, t can be computed in polynomial time with respect to the total bits of

all the given integers.
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4.4 Hardness of Exact Z-Max-IP, Hopcroft's Prob-

lem and More

In this section we show hardness of Hoperoft's problem, exact Z-Max-IP, 2 -Furthest

Pair and Bichromatic 2 -Closest Pair. Essentially our results follow from the frame-

work of [172], in which it is shown that hardness of Hopcroft's problem implies hard-

ness of other three problems, and is implied by dimensionality reduction for OV.

f2rfurthestn,20log* n)

OVn,c log n O ZVn,20(og* n) -Max-IPn, 20(lo* n)

Bichrom. 2-closestn, 2 0(1o* n)

Figure 4-1: A diagram for all reductions in this section.

The Organization of this Section

In Section 4.4.1, we prove the improved dimensionality reduction for OV. In Sec-

tion 4.4.2, we establish the hardness of Hopcroft's problem in 2 0(log* n) dimensions

with the improved reduction. In Section 4.4.3, we show Hopcroft's problem can be re-

duced to Z-Max-IP and thus establish the hardness for the later one. In Section 4.4.4,

we show Z-Max-IP can be reduced to 2-Furthest Pair and Bichromatic 2-Closest

Pair, therefore the hardness for the last two problems follow. See Figure 4-1 for a

diagram of all reductions covered in this section.

The reductions in last three subsections are all from [172] (either explicit or im-

plicit), we make them explicit here for our ease of exposition and for making the

paper self-contained.
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4.4.1 Improved Dimensionality Reduction for OV

We begin with the improved dimensionality reduction for OV. The following theorem

is one of the technical cores of this paper, which makes use of the CRR encoding (see

Theorem 4.3.3) recursively.

Theorem 4.4.1. Let b, f be two sufficiently large integers. There is a reduction

10b,e {O, 1 1'-' -+ and a set Vb, C Z, such that for every x, y E {o, 1}.,

x - y = 0 * 'Ob,(x) - i,e(y) E Vb,f

and

0 < 'bb(X)i < f a

for all possible x and i e [f]. Moreover, the computation of bb,f(x) takes poly(b - f)

time, and the set Vb,e can be constructed in 0 (fO(610*(b)-b) . poly(b f) time.

Remark 4.4.2. We didn't make much effort to minimize the base 6 above to keep the

calculation clean, it can be replaced by any constant > 2 with a tighter calculation.

Proof. We are going to construct our reduction in a recursive way. f will be the same

throughout the proof, hence in the following we use Ob (V) instead of 'b,f (V,e) for

simplicity.

Direct CRR for small b: When b < f, we use a direct Chinese remainder repre-

sentation of numbers. We pick b distinct primes qi, q2 , ... , qb in [f + 1, f2] (they are

guaranteed to exist by Lemma 4.3.2), and use them for our CRR encoding.

Let x C {0, 1}b, we partition it into f equal size groups, and use xZ to denote the

i-th group, which is the sub-vector of x from the ((i - 1) b+ 1)-th bit to the (i - b)-th

bit.

Then we define 4b(x) as

b(X) :=(CRR ({ }=) , CRR ({x} , .. , CRR ({ } ))
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That is, the i-th coordinate of Ob(x) is the CRR encoding of the i-th sub-vector

xi with respect to the primes qj's.

Now, for x, y E {0, l}b./, note that for j E [b],

(mod qj)

aZ CRR ({X } i) CRR ({y;})

(mod qj).

Since the sum X' - y, is in [0, f], and qj > f, we can see

x -y> = 0 4 'b(X) -Ob(Y) 0 (mod qj).
i=1

Therefore, -y = _j1 x' . yj = 0 is equivalent to that

4b(X) ' Vb(y) = 0 (mod qj)

for every j E [b].

Finally, we have 0 < b(x)i < I' q < f2.b <6lo*(b) b. Therefore

b (X ' Ob(Y) < f61og*(b)-2b+1

and we can set Vb to be the set of all integers in [0, gl1o *(b).2b+1] that is 0 modulo all

the qj's, and it is easy to see that

x -y Y <- b(X) - b(y) E Vb

for all x, y E {0 , }b.

Recursive Construction for larger b: When b ;> f, suppose the theorem holds

for all b' < b. Let bm be the number such that (we ignore the rounding issue here and
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pretend that bm is an integer for simplicity),

61 -m).bm .

Then we pick b/bn primes P1, P2, . -, P/bm in [(b 2f), (b 2 ) 2], and use them as our

reference primes in the CRR encodings.

Let x E {o, }b-, as before, we partition x into f equal size sub-vectors xi, x2 7

where xi consists of the ((i - 1) - b + 1)-th bit of x to the (i - b)-th bit of x. Then we

partition each x' again into b/b micro groups, each of size bm. We use xi' to denote

the j-th micro group of xi after the partition.

Now, we use xHj] to denote the concatenation of the vectors 2, .. . , x''". That

is, x[iI is the concatenation of the j-th micro group in each of the f groups. Note that

xWj] E {0, 1}bm-, and can be seen as a smaller instance, on which we can apply obm.

Our recursive construction then goes in two steps. In the first step, we make use

of Obm, and transform each bm-size micro group into a single number in [0, b). This

step transforms x from a vector in {0, 1}W into a vector S(x) in Z(b/bm)l. And in the

second step, we use a similar CRR encoding as in the base case to encode S(x), to

get our final reduced vector in ZV.

S(x) is simply

S(X) := (0bm(X[ )1,0b b(X[2] ), O,(X[bN,)1

Obm (X1)2, bm (X[2 1 )2, .. b [b/bm] 2

That is, we apply bm on all the x 1l's, and shrink all the corresponding micro-

groups in x into integers. Again, we partition S = S(x) into f equal size groups

S, S2 S.

Then we define Ob(x) as
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, CRR ({52 }bm " ,. CRR ({S}= .

In other words, the i-th coordinate of Vib(x) is the CRR representation of the

number sequence S', with respect to our primes {qj}b/"

Now, note that for x, y E {0, 1 }b.1, x - y = 0 is equivalent to xW1 - ydi] = 0 for every

j E [b/bn], which is further equivalent to

b,(X -'Ob. b,

for all j c [b/b], by our assumption on bm-

Since 0 -< /bm.(X[])i,4b (Y[jl)j < b for all x, y c {0, 1}bf, i E [f] and j E [b/bm], we

also have /b (XU') - 4 .(Y) < b2 _ f, therefore we can assume that Vbm C [0, b2f).

For all x, y E {0, 1}bW and j E [b/bm], we have

CRR ({S(x) }')~j 1=

S(x) -S(y)i

(mod p.)

(mod pj)

(mod pj)bX" i b,(Y i

(mod pj).

Since Pj > b2 -f, we can determine Obm,(X[j]) - b .(Y 1 ) from /b(X) - O(y) by taking

modulo pj. Therefore,

x-y=0

is equivalent to
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(bb(x) - )b(Y) mod pj) E Vb,

for every j c [b/b].

Finally, recall that we have

f6109*(bm). - b.

Taking logarithm of both sides, we have

6 "o*g(b-) - bm - log f? log b.

Then we can upper bound 4'b(x)i by

b/bmn

'b (X)i < J7 Pj
j=1

< b2f)2-(b/b-) (b > L.)

< 26-b/bm,,-log b

S2 6-b/b 6 l6* (bm)-bm-log e

< 6-61g* (bm) -b

< f61 (b) (bm log b, log*(bm) + 1 < log*(log b) + 1 - log*(b).)

Therefore, we can set Vb as the set of integer t in [0, f61o*(b) .2b+l) such that

(t mod pj) c Vbm

for every j E [b/bm]. And it is easy to see this Vb satisfies our requirement.

Finally, it is easy to see that the straightforward way of constructing 4b(x) takes

O(poly(b - f)) time, and we can construct Vb by enumerating all possible values of

7Pb(X) ' 4b(y) and check each of them in O(poly(b - f)) time. Since there are at most

fQ(61Og*(b).b) such values, Vb can be constructed in
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0 (6s*(b)-) . poly(b - f))

time, which completes the proof.

Now we prove Lemma 4.1.6, we recap its statement here for convenience.

Reminder of Lemma 4.1.6 Let 1 < f < d. There is an

0 (n - f0(610 * d(d/e)) . poly(d)) -time

reduction from OVn,d to fQ( 6 0o d .(d/e)) instances of Z-OVn,+ 1 , with vectors of entries

with bit-length 0 (d/t - log f - 61o9* d)

Proof. The proof is exactly the same as the proof for Lemma 1.1 in [172] with different

parameters, we recap it here for convenience.

Given two sets A' and B' of n vectors from {0, j}d, we apply 4'd/f,e to each of the

vectors in A' (B') to obtain a set A (B) of vectors from ZV. From Theorem 4.4.1,

there is a (u, v) E A' x B' such that u - v = 0 if and only if there is a (u, v) E A x B

such that u - v E Vd/e,f.

Now, for each element t C Vd/e,e, we are going to construct two sets At and Bt of

vectors from Z'+1 such that there is a (U, v) E A x B with u - v = t if and only if

there is a (u, v) E At x Bt with u - v = 0. We construct a set At as a collection of all

vectors a = [U, 1] for u E A, and a set Bt as a collection of all vectors VB = [v, -t]

for v c B. It is easy to verify this reduction has the properties we want.

Note that there are at most fQ(61"9* d~(d/e)) numbers in Vd/jf, so we have such a

number of Z-OVn,j+1 instances. And from Theorem 4.4.1, the reduction takes

0 (n. &1* d.(d/)) poly(d))
time.
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Finally, the bit-length of reduced vectors is bounded by

log (fO(61 * d(d/e))) = 0 (d/e - log f - 6 109* d)

which completes the proof.

A Transformation from Nonuniform Construction to Uniform Construc-

tion

The proof for Theorem 4.4.1 works recursively. In one recursive step, we reduce the

construction of 4/,f to the construction of 4bm,e, where bm < log b. Applying this

reduction log* n times, we get a sufficiently small instance that we can switch to a

direct CRR construction.

An interesting observation here is that after applying the reduction only thrice,

the block length parameter becomes b' < log log log b, which is so small that we can

actually use brute force to find the "optimal" construction 4ble in bo(1) time instead of

recursing deeper. Hence, to find a construction better than Theorem 4.4.1, we only

need to prove the existence of such a construction. See Section 4.7 for details.

4.4.2 Improved Hardness for Hopcroft's Problem

In this subsection we are going to prove Theorem 4.1.7 using our new dimensionality

reduction Lemma 4.1.6, we recap its statement here for completeness.

Reminder of Theorem 4.1.7 [Hardness of Hopcroft's Problem in c log* Dimension]

Assuming SETH (or OVC), there is a constant c such that Z-OVn,1og-n with vectors

of O(log n)-bit entries requires n2-o(l) time.

Proof. The proof here follows roughly the same as the proof for Theorem 1.1 in 11721.

Let c be an arbitrary constant and d := c - log n. We show that an algorithm

A solving Z-OVnf 1 where f - 71g*' in O(n2-6) time for some 6 > 0 can be used

to construct an O(n>8 +o(l)) time algorithm for OVn,d, and therefore contradicts the

oVC.
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We simply invoke Lemma 4.1.6, note that we have

log {fO(61o* d.(d/e)) } logf - 0 (6 lg d (d/f))

= 0 (log* n - 6"* - c -log n/7o n1")

0 (log* n - (6 / 7 )1g'- c - log n)

o(log n).

Therefore, the reduction takes O(n . fO(6o d.(d/)) - poly(d)) = ni+o(i) time, and an

OV,,d instance is reduced to nol) instances of Z-OVn,e+i, and the reduced vectors

have bit length o(log n) as calculated above. We simply solve all these nroM instances

using A, and this gives us an O(n2-J+o(l)) time algorithm for OV.,d, which completes

the proof.

4.4.3 Hardness for Z-Max-IP

Now we move to hardness of exact Z-Max-IP.

Theorem 4.4.3 (Implicit in Theorem 1.2 [172]). There is an 0(poly(d) - n)-time

algorithm which reduces a Z-OV,d instance into a Z-Max-IP,d2 instance.

Proof. We remark here that this reduction is implicitly used in the proof of Theo-

rem 1.2 in [172], we abstract it here only for our exposition.

Given a Z-OVn,d instance with sets A, B. Consider the following polynomial

P(x, y), where X, y E Zd.

p(X, Y) = (X . y)2 = (Xi _ y") . (Xj . yj) = (X, . Xj) . (y, -yj).
ijE[d] ijE[d]

It is easy to see that whether there is a (x, y) c A x B such that x y 0 is

equivalent to whether the maximum value of P(x, y) is 0.

Now, for each x E A and y E B, we identify [d2] with [d] x [d] and construct
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c, E 2 such that

X(ij) = xi , xj and Y(ij) =Yi , 3-

Then we have 3F = P(x, y). Hence, let A be the set of all these 's, and b be the

set of all these v's, whether there is a (x, y) E A x B such that x - y = 0 is equivalent

to whether OPT(A, b) = 0, and our reduction is completed.

0

Now, Theorem 4.1.3 (restated below) is just a simple corollary of Theorem 4.4.3

and Theorem 4.1.7.

Reminder of Theorem 4.1.3 Assuming SETH (or OVC), there is a constant c

such that every exact algorithm for Z-Max-IPn,d for d = clog* dimensions requires

n2 -o(l) time, with vectors of O(log n)-bit entries.

A Dimensionality Reduction for Max-IP

The reduction 'b,f from Theorem 4.4.1 actually does more: for x, y E {0, I}b-1, from

'b,(x) -4,f(y) we can in fact determine the inner product x y itself, not only whether

x - y = 0.

Starting from this observation, together with Theorem 4.4.3, we can in fact derive

a similar dimensionality self reduction from Max-IP to Z-Max-IP, we deter its proof

to Section 4.6.

Corollary 4.4.4. Let 1 < E < d. There is an

0 (n . f0(61 ** -(d/f)) . poly(d)) -time

reduction from Max-IPn,d to d -f (6 log* d.(d/A)) instances of Z-Max-P,(e1)2, with vectors

of entries with bit-length 0 (d/E - log f - 61og* d)
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4.4.4 Hardness for (2-Furthest Pair and Bichromatic e2-Closest

Pair

We finish the whole section with the proof of hardness of f2-Furthest Pair and Bichro-

matic f2 -Closest Pair. The two reductions below are slight adaptations of the ones in

the proofs of Theorem 1.2 and Corollary 2.1 in 1172].

Lemma 4.4.5. Assuming d = no(), there is an O(poly(d) - n)-time algorithm which

reduces a Z-Max-IPn,d instance into an instance of 2 -Furthest Pair on 2n points in

Rd+2. Moreover, if the Z-Max-IP instance consists of vectors of O(log n)-bit entries,

so does the 2-Furthest Pair instance.

Proof. Let A, B be the sets in the Z-Max-IPn,d instance, and k be the smallest integer

such that all vectors from A and B consist of (k - log n)-bit entries.

Let W be nC-k where C is a large enough constant. Given x E A and y E B, we

construct point

i= (x, /W - Ix||2, 0) and =(-y 0, W - 1y12),

that is, appending two corresponding values into the end of vectors x and -y.

Now, we can see that for X 1 , x 2 E A, the squared distance between their reduced

points is

II - i212 < ||x1 - x2 |12 + W < 4 - d -n2k + W.

Similarly we have

I- u2|| 2 < 4 - d - n2k + W

for Y1, Y2 E B.

Next, for x E A and y E B, we have

I| - i||2 =I11Il2 + p112 2 - -= 2- W + 2. (x - y) > 2 - W - d -n 2k > 4 d - 2k _ ,

the last inequality holds when we set C to be 5.
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Putting everything together, we can see the f 2-furthest pair among all points

i's and V's must be a pair of Y and V with x E A and y c B. And maximizing

I IY - VI| is equivalent to maximize x -y, which proves the correctness of our reduction.

Furthermore, when k is a constant, the reduced instance clearly only needs vectors

with O(k) - log n = O(log n)-bit entries. l

Lemma 4.4.6. Assuming d = n'(1, there is an 0(poly(d) - n)-time algorithm which

reduces a Z-Max-IP,,d instance into an instance of Bichromatic f 2 -Closest Pair on 2n

points in Rd+2. Moreover, if the Z-Max-IP instance consists of vectors of O(log n) -bit

entries, so does the Bichromatic e2 -Closest Pair instance.

Proof. Let A, B be the sets in the Z-Max-IPn,d instance, and k be the smallest integer

such that all vectors from A and B consist of (k - log n)-bit entries.

Let W be n Ck where C is a large enough constant. Given x E A and y E B, we

construct point

x = (X, OW - |1x12, 0) and y= (y, 0, W - 11y12) ,

that is, appending two corresponding values into the end of vectors x and y. And our

reduced instance is to find the closest point between the set A (consisting of all these

Y where x E A) and the set b (consisting of all these V where y E B).

Next, for x E A and y E B, we have

I| - 112 = 2 + 2 - 2 .3F - = 2 - W - 2. (x - y) > 2 - W - d - n2k >> 4 - d - n2k,

the last inequality holds when we set C to be 5.

Hence minimizing I| - Vfl where x E A and y E B is equivalent to maximize x -y,

which proves the correctness of our reduction. Furthermore, when k is a constant, the

reduced instance clearly only needs vectors with 0(k) -log n = (log n)-bit entries. 0

Now Theorem 4.1.4 and Theorem 4.1.5 are simple corollaries of Lemma 4.4.5,

Lemma 4.4.6 and Theorem 4.1.3.

96

IN 11 111111111'j, """_#



4.5 N P - U PP Communication protocols and Exact

Hardness for Z-Max-IP

We note that the inapproximability results for (Boolean) Max-IP is established via

a connection to the MA communication complexity protocol of Set-Disjointness [12].

In the light of this, in this section we view our reduction from OV to Z-Max-IP

(Lemma 4.1.6 and Theorem 4.4.3) in the perspective of communication complexity.

We observe that in fact, our reduction can be understood as an NP - UPP commu-

nication protocol for Set Disjointness. Moreover, we show that if we can get a slightly

better NP - UPP communication protocol for Set-Disjointness, then we would be able

to prove Z-Max-IP is hard even for w(1) dimensions (and also f 2 -Furthest Pair and

Bichromatic f2 -Closest Pair).

4.5.1 An NP-UPP Communication Protocol for Set-Disjointness

First, we rephrase the results of Lemma 4.1.6 and Theorem 4.4.3 in a more convenience

way for our use here.

Lemma 4.5.1 (Rephrasing of Lemma 4.1.6 and Theorem 4.4.3). Let 1 < . < d, and

m = fO(61og* d-(d/)). There exists a family of functions

V)pic~e, O'Bob : {0, }7 >R

for i (- [in] such that:

" when x- y = 0, there is an i such that 'Le(x) - BOb(y) > 0

" when x y > 0, for all i V)'Aice(X) . OiBob(y) < 0;

* all /iiie(x) and BbPb(y) can be computed in poly(d) time.

We also need the standard connection between UPP communication protocols and

sign-rank [143] (see also Chapter 4.11 of [1051).

97



Recall that for a function F : X x Y -i {0, 1}, a UPP protocol for F is a private-

coin randomized communication protocol such that: Alice and Bob hold x C X and

y E Y respectively; F(x, y) = 1 if and only if Alice and Bob accepts with probability

> 1/2. The cost of the protocol is the maximum bits communicated over all pairs

(x, y) E X x Y and Alice and Bob's corresponding private random coins.

Lemma 4.5.2 (Equivalence of sign-rank and UPP communication protocol (Theo-

rem 3 of [143])). The following holds

" There is a d-cost UPP protocol for F implies that for f = d + 1, there are

mappings ' : X -+ R2' and O/ : Y -+ R2' such that for all (x, y) E X x Y:

- if F(x, y) = 1, b' (x) -.y(y) > 0;

- otherwise, VX(x) - 4Y(y) < 0.

" There are mappings V'/ : X -* R2' and '/ : Y - R21 satisfying the above

conditions implies that for d = f + 1, there is a d-cost UPP protocol for F.

From the above lemmas, we immediately get the needed communication protocol

and prove Theorem 4.1.10 (restated below for convenience).

Reminder of Theorem 4.1.10 For all 1 < a < n, there is an

(a . 6 1 Q* n (n/2"), 0(a)) -computational-efficient

NP - UPP communication protocol for DISJ,.

Proof Sketch. We set a = log f here. Given the function families {Alce}, {0'ob}

from Lemma 4.5.1, Merlin just sends the index i E [m] and the rest follows from

Lemma 4.5.2. 0
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4.5.2 Slightly Better Protocols Imply Hardness in w(1) Dimen-

sions

Finally, we show that if we have a slightly better N P-UPP protocol for Set-Disjointness,

then we can show Z-Max-IP requires n 2 -o(l) time even for w(1) dimensions (and so do

f2-Furthest Pair and Bichromatic f2-Closest Pair). We restate Theorem 4.1.11 here

for convenience.

Reminder of Theorem 4.1.11 Assuming SETH (or OVC), if there is an increasing

and unbounded function f such that for all 1 < a < n, there is a

(n/f (a), a) -computational-efficient

NP- UPP communication protocol for DISJa, then Z-Max-IPn,,(1) requires n2 -(1) time

with vectors of polylog(n)-bit entries. The same holds for (2 -Furthest Pair and

Bichromatic 2- Closest Pair.

Proof. Suppose otherwise, there is an algorithm A for Z-Max-IPn,d running in n2-,5

time for all constant d and for a constant El > 0 (note from Lemma 4.4.5 and

Lemma 4.4.6, we only need to consider Z-Max-IP here).

Now, let c be an arbitrary constant, we are going to construct an algorithm for

OVn,ciogn in n 2 - 1 ) time, which contradicts OVC.

Let e = E1/2, and a be the first number such that c/f(a) < E, note that a is also

a constant. Consider the (clog n/f (a), a)-computational-efficient NP - UPP protocol

H for DISJcogn, and let A, B be the two sets in the OVn,ciogn instance. Our algorithm

via reduction works as follows:

" There are 2' possible messages in {0, 1}, let Mi 1 , m2 ,... , m 2c. be an enumeration

of them.

" We first enumerate all possible advice strings from Merlin in f-, there are

2 clogn/f(a) < 2 "logn - nE such strings, let 0 C {0, 1}E' ogn be such an advice

string.
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- For each x E A, let /bAlice(X) E R2a be the probabilities that Alice accepts

each message from Bob. That is, 4'Alice(X)i is the probability that Alice

accepts the message mi, given its input x and the advice #.

- Similarly, for each y E B, let 'lBob(Y) E R2" be the probabilities that Bob

sends each message. That is, OBob(y)i is the probability that Bob sends

the message mi, give its input y and the advice #.

- Then, for each x E A and y E B, /)Alice(X) ' 4Bob(y) is precisely the prob-

ability that Alice accepts at the end when Alice and Bob holds x and y

correspondingly and the advice is 0. Now we let AO be the set of all the

LAlice(x)'s, and BO be the set of all the OBob(Y)'s-

* If there is a # such that OPT(AO, BO) > 1/2, then we output yes, and otherwise

output no.

From the definition of H, it is straightforward to see that the above algorithm

solves OVn,c.iog n. Moreover, notice that from the computational-efficient property of

H, the reduction itself works in nl+E- polylog(n) time, and all the vectors in AO's and

BO's have at most polylog(n) bit precision, which means OPT(AO, BO) can be solved

by a call to Z-Max-Pn,21 with vectors of polylog(n)-bit entries.

Hence, the final running time for the above algorithm is bounded by n' - n2-E

n2-E (2' is still a constant), which contradicts the OVC.

4.6 A Dimensionality Reduction for Max-I P

Tracing the proof of Theorem 4.4.1, we observe that it is possible to compute the

inner product x - y itself from Ob,f(x) - 'b,d(y), that is:

Corollary 4.6.1. Let b, f be two sufficiently large integers. There is a reduction

{, Ilb -4 V and b - f + 1 sets V," V .. VY C Z, such that fr every

x, y E {o, 1}b.i,

x-y =k b x)- b,f(y) CV forallO<k<b-e,
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and

0 _ ?be(x)i < f -

for all possible x and i G [f]. Moreover, the computation of 'b,e(x) takes poly(b -f)

time, and the sets V 's can be constructed in 0 fo(61-g*(b).b) . poly(b -f) time.

Together with Theorem 4.4.3, it proves Corollary 4.4.4 (restated below).

Reminder of Corollary 4.4.4 Let 1 < f < d. There is an

S(n . fO(6 o* d-(d/e)) . poly(d)) -time

reduction from Max-IPn,d to d -0( 61o* d.(d/e)) instances of Z-Max-/Pn,(+1)2, with vectors

of entries with bit-length 0 (d/C - log f - 6
1
o*d d)

Proof Sketch. Let b = d/f (assume f divides d here for simplicity), A and B be the

sets in the given Max-IPd, instance, we proceed similarly as the case for OV.

We first enumerate a number k from 0 to d, for each k we construct the set Vbf

as specified in Corollary 4.6.1. Then there is (x, y) E A x B such that x -y = k if and

only if there is (x, y) E A x B such that 4', x) -. Of/(y) E V . Using exactly the same

reduction as in Lemma 4.1.6, we can in turn reduce this into fo( 6 og (b)b) instances of

Z-OVne+.

Applying Theorem 4.4.3, with evaluation of (d + 1) _ f0(6'9 (b)b) Z-Max-P,(+ 1 )2

instances, we can determine whether there is (x, y) E A x B such that x - y = k for

every k, from which we can compute the answer to the Max-IPn,d instance. [l

4.7 Nonuniform to Uniform Transformation for Di-

mensionality Reduction for OV

In this section we discuss the transformation from nonuniform construction to uniform

one for dimensionality reduction for OV. In order to state our result formally, we need

to introduce some definitions.
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Definition 4.7.1 (Nonuniform Reduction). Let b, f, , c N. We say a function p :

{0, 1} -1 - Z' together with a set V C Z is a (b, f, )-reduction, if the following holds:

" For every x, y E {0, }b4,

x - y = 0 e O(x) - (y) E V.

" For every x and i E [C],

0 < V(x)i <

Similarly, let T be an increasing function, we say a function family {b,}b,f together

with a set family {Vb.}b,e is a r-reduction family, if for every b and f, (Vb,f, V,f) is a

(b, , T(b))-reduction.

Moreover, if for all b and all f < log log log b, there is an algorithm A which

computes pb,e(x) in poly(b) time given b, f and x C {0, 1}b'-, and constructs the set

Vb, in 0 (fO(r(b)-b) . poly(b)) time given b and f, then we call (Vb,f, Vb,f) a uniform-T-

reduction family.

Remark 4.7.2. The reason we assume f to be small is that in our applications we only

care about very small f, and that greatly simplifies the notation. From Theorem 4.4.1,

there is a uniform- (61og* b) -reduction family, and a better uniform-reduction family

implies better hardness for Z-OV and other related problems as well (Lemma 4.1.6,

Theorem 4.4.3, Lemma 4.4.6 and Lemma 4.4.5).

Now we are ready to state our nonuniform to uniform transformation result for-

mally.

Theorem 4.7.3. Letting T be an increasing function such that T(n) = O(log log log n)

and supposing there is a -r-reduction family, then there is a uniform-O(r)-reduction

family.

Proof Sketch. The construction in Theorem 4.4.1 is recursive, it constructs the re-

duction @bf from a much smaller reduction 4'b,,, where bm < log b. In the original
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construction, it takes log* b recursions to make the problem sufficiently small so that

a direct construction can be used. Here we only apply the reduction thrice. First let

us abstract the following lemma from the proof of Theorem 4.4.1.

Lemma 4.7.4 (Implicit in Theorem 4.4.1). Letting b, f, bm, K E N and supposing

f = b and there is a (bi, e, K)-reduction (p, V'), the following holds:

* There is a (b, , 6 - K)-reduction (4, V).

* Given (o, V'), for all x E {0, 1}b-4' (x) can be computed in poly(b -e), and V

can be constructed in 0 (lo(K b) . poly(b -f)) time.

Now, let b, f C N, we are going to construct our reduction as follows.

Let b1 be the number such that

-r(b>)62 .bi = b,

and similarly we set b 2 and b3 so that

f-(b)-6-b2 = b1  and -r(b)b3 = b 2 -

We can calculate from above that b3 < log log log b.

From the assumption that there is a T-reduction, there is a (b 3 , f, 'r(b3 ))-reduction

(ob 3 ,e, Vb3 ,), which is also a (b 3 , f, T(b))-reduction, as T is increasing. Note that we

can assume f < log log log b and T(b) < log log log b from assumption. Now we simply

use a brute force algorithm to find (Ob,, Vb3,f). There are

f-T(b)-b 3 4.2 b3e -1 bo(l)

possible functions from {0, 1}b34 -+ {0, . . . T(b3 )~b 3 - 1}'. Given such a function p, one

can check in poly(2 b3^) -- bo(l) time that whether one can construct a corresponding

set V to obtain our (b 3 , f, T(b))-reduction.
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Applying Lemma 4.7.4 thrice, one obtain a (b, f, O(-r(b)))-reduction (b, V). And

since (Pb,e can be found in b') time, together with Lemma 4.7.4, we obtain a uniform-

T-reduction family.

Finally, we give a direct corollary of Theorem 4.7.3 that the existence of an 0(1)-

reduction family implies hardness of Z-OV, Z-Max-IP, f2-Furthest Pair and Bichro-

matic f 2-Closest Pair in w(1) dimensions.

Corollary 4.7.5. If there is an 0(1)-reduction family, then for every e > 0, there

exists a c > 1 such that Z-OV, Z-Max-IP, f 2 -Furthest Pair and Bichromatic f 2 -Closest

Pair in c dimensions with 0(log n)-bit entries require n2 -E tme.

Proof Sketch. Note that since its hardness implies the harnesses of other three, we

only need to consider Z-OV here.

From Theorem 4.7.3 and the assumption, there exists a uniform-0(1)-reduction.

Proceeding similar as in Lemma 4.1.6 with the uniform-0(1)-reduction, we obtain

a better dimensionality self reduction from OV to Z-OV. Then exactly the same

argument as in Theorem 4.1.7 with different parameters gives us the lower bound

required.
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Chapter 5

IP Protocols and Hardness for

Approximation Problems Under

Stronger Conjectures

5.1 Introduction

In this chapter we apply the classical IP = PSPACE theorem and the connection

between communication complexity and fine-grained complexity to obtain various

reductions between exact and approximate problems in fine-grained complexity.

5.1.1 Exact to Approximate Reduction for Nearest Neighbor

Search for LCS

We begin with one of our most interesting results: an equivalence between exact and

approximate Nearest Neighbor Search for LCS.

* Nearest Neighbor Search for LCS (NNSLCS): Preprocess a database D of N

strings of length D < N, and then for each query string x, find y E D maxi-

mizing LCS(x, y).

The approximate version only requires to find y E D such that LCS(x, y) is an
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f(D)-approximation of the maximum value.

Approximate data structures for the above problem that support fast prepro-

cessing and queries would be highly relevant for bioinformatics. For the similar

NNSEdit-Distance problem, a breakthrough work of 11381 used a metric embedding tech-

nique to obtain an 20(" 1og logog D)-approximate data structure with polynomial pre-

processing time, poly(D, log n) query time.

In contrast, our first result shows that exact NNSLCS and approximate NNSLCS

are essentially equivalent. That is, a similar data structure for approximate NNSLCS

would directly imply a data structure for exact NNSLCS with essentially the same

complexity!

Theorem 5.1.1 (Informal). For D = 2 og , suppose there is a data structure for

NNSLCS with approximation ratio 2 (log D) 1-'('), then there is another data structure for

exact NNSLCS with essentially the same preprocessing time/space and query time.

In the following, we first discuss Closest-LCS-Pair (a natural offline version of

NNSLCS) to illustrate our techniques, and then discuss our other results in details.

5.1.2 Techniques: Hardness of Approximation in P via Com-

munication Complexity and the Theory of Interactive

Proofs

Closest-LCS-Pair is the problem that given two sets of strings A and B, compute the

maximum LCS(a, b) with (a, b) E A x B. We show how to reduce exact Closest-LCS-Pair

to approximate Closest-LCS-Pair as an illustration of our proof techniques.

Theorem 5.1.2 (Informal). There is a near-linear time1 reduction from Closest-LCS-

Pair to 2 (logN)' 1 ') factor approximate Closest-LCS-Pair, when A, B are two sets of N

strings of length D - 2 (logN)o(l)

'Throughout this chapter, we use near-linear time to denote the running time of Nl+o'().
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We first introduce the concept of A-Satisfying-Pair problem. This problem asks

whether there is a pair of (a, b) from two given sets A and B such that (a, b) is a

yes-instance of A. By binary search, Closest-LCS-Pair can be easily formulated as an

A-Satisfying-Pair problem: is there a pair (a, b) E A x B such that LCS(a, b) > k?

The key property we are going to use is that the function ALCs (a, b) := [LCS(a, b) k]

can be computed in very small space, i.e., it is in NL (see Lemma 5.6.4). Indeed, we

will show in this chapter that for all A-Satisfying-Pair such that A can be computed

in small space, A-Satisfying-Pair can be reduced to approximate Closest-LCS-Pair.

The Reduction in a Nutshell. First, we consider an IP communication protocol

for LCS. In this setting, Alice and Bob hold strings a and b, and they want to figure

out whether LCS(a, b) > k. To do so, they seek help from an untrusted prover Merlin

by engaging in a conversation with him. The protocol should satisfy that when

LCS(a, b) > k, Merlin has a strategy to convince Alice and Bob w.h.p., and when

LCS(a, b) < k, no matter what Merlin does, Alice and Bob will reject w.h.p. The goal

is to minimize the total communication bits (between Alice and Bob, or Alice/Bob

and Merlin).

Next, by a result of Aaronson and Wigderson [2], it is shown that any function

f(a, b) which can be computed in NL admits an IP communication protocol with

polylog(N) total communication bits. Finally, using an observation from [11], an

efficient IP communication protocol can be embedded into approximate LCS, which

completes the reduction. In the following we explain each step in details.

IP Communication Protocols for Low Space Computation. The key tech-

nical ingredient of our results is the application of IP communication protocols for

low space computation by Aaronson and Wigderson [2]. It would be instructive to

explain how it works.

Let us use the sum-check I P protocol for the Inner Product problem as an example.

Arthur gets access to a function f : {0, 1}' --+ {0, 1} and its multilinear extension

f : F -F over a finite field Fq. Let fi(x) = f(i o x) for i 0 {, 1} be the restrictions
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of f after setting the first bit of the input, Arthur wants to compute the inner product

Zx({o,ijn.-i fo(x) - fi(x). To do so, he engages in a conservation with an untrusted

Merlin who tries to convince him. During the conversation, Merlin is doing all the

"real work", while Arthur only has to query f once at the last step, which is the crucial

observation in [2].

Now, imagine a slightly different setting where fo and fi are held by Alice and Bob

respectively, which means each of them holds a string of length N = 2-1. They still

want to compute the inner product with Merlin, while using minimum communication

between each other.

In this setting, Alice (pretending she is Arthur) can still run the previous IP

protocol with Merlin. When she has to query f(z) for a point z at the last step, she

only needs Bob to send her the contribution of his part to f(z), which only requires

O(log q) bits. In terms of the input size of Alice and Bob, this IP communication

protocol runs in poly(n) = polylog(N) time. The same also extends to any poly(n) =

polylog(N) space computation on f, if we use the IP protocol for PSPACE 1123, 155].

In Section 5.5, we provide a parameterized IP communication protocol for Branch-

ing Program2 (Theorem 5.5.5). Informally, we have:

Theorem 5.1.3 (I P Communication Protocol for BP (Informal)). Let P be a branch-

ing program of length T and width W with n input bits, equally distributed among Alice

and Bob. For every soundness parameter E > 0, there is an IP-protocol for P, such

that:

" Merlin and Alice exchange 0 (log 2 W log 2 T loge- 1) bits, and toss the same

amount of public coins;

" Bob sends O(log log(WT) - log E- 1 ) bits to Alice;

" Alice always accepts if P accepts the input, and otherwise rejects with probability

at least 1 - E.

2Informally speaking, a branching program with length T and width W formulates a non-uniform
low-space computation with running time T and space log W, see Definition 5.2.1 for a formal
definition.
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Since Acs(a, b) is in NL, the above in particular implies that there is an IP com-

munication protocol for A cs with polylog(D) total communication bits (D is length

of strings).

IP Communication Protocols and Tropical Tensors. The next technical in-

gredient is the reduction from an IP communication protocol to a certain Tropical

Tensors problem [111. We use a 3-round IP communication protocol as an example to

illustrate the reduction. Consider the following 3-round IP communication protocol

II:

* Alice and Bob hold strings x and y, Merlin knows both x and y.

* Merlin sends Alice and Bob a string zi c Z1.

* Alice sends Merlin a uniform random string z 2 E Z2 -

* Merlin sends Alice and Bob another string z 3 C Z3 -

* Bob sends Alice a string z4 E Z4 , and Alice decides whether to accept or reject.

The main idea of [11] is that the above I P protocol can be reduced into a certain

Tropical Similarity function. That is, for x and y, we build two tensors u = u(X)

and v = v(y) of size Zi I x 121 x lZ31 x lZ41 as follows: we set uziZ2,Z3 Z4 to indicate

whether Alice accepts, given the transcript (zI, z 2 , z3 , z 4 ) and input x; we also set

VZZ2,Z3,Z4 to indicate whether Bob sends the string z 4 , given the previous transcript

(z, Z2 , z3 ) and input y. Then, by the definition of IP protocols, it is not hard to see

the acceptance probability when Merlin uses optimal strategy is:

acc(u, v) := max EZ 2 EZ2  max UZ1,Z2,Z3,Z4 ' VzZ2,Z3,Z4
ziEZI (Z3, Z4) EZ3 XZ4

In the above equality, the max operator corresponds to the actions of Merlin, who

wishes to maximize the acceptance probability, while the E operator corresponds to

actions of Alice, who sends a uniform random string. It can be easily generalized to IP

protocols of any rounds, by replacing acc with a series of max and E operators, which
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is called Tropical Similarity (denoted by s(u, v)) in [11] (see also Definition 5.2.8).

When the number of total communication bits is d, both u and v are of size 2 d.

Applying the above to the polylog(D) bits IP protocol for A>cs, it means for two

strings a, b, we can compute two tensors u, v of length 2 polylog(D) = 2 (log N)(1), such

that when LCS(a, b) > k, s(u, v) is large, and otherwise s(u, v) is small.

Simulating Tropical Tensors by Composing max and E Gadgets. While the

above reduction is interesting in its own right, the Tropical Similarity function seems

quite artificial. Another key idea from [11] is that s(u, v) can be simulated by LCS.

The reduction works by noting that with LCS, one can implement the max and E

(which is equivalent to E) gadgets straightforwardly, and composing them recursively

leads to gadgets for Tropical Similarity. That is, for tensors u and v, one can construct

strings S(u) and T(v) of similar sizes, such that LCS(S(u), T(v)) is proportional to

s(u, v).

Putting everything together, for two strings a, b, we can compute two other

strings S(a) and T(b) of length 2 polylog(D) _ 2 (logN)o(), such that LCS(a, b) > k,

LCS(S(a), T(b)) is large, and otherwise LCS(S(a), T(b)) is small. This completes our

reduction.

Our Results In Detail

5.1.3 From Exact to Approximate in the Fine-Grained World

More generally, we consider the following four (general flavor) problems.

" The Closest-LCS-Pair problem.

" The Closest-RegExp-String-Pair problem: Given a set A of N regular expressions

of length 2 (logN)o(1) and a set B of N strings of length 2 (og find (a, b) E

A x B with maximum Hamming Similarity3

3Hamming Similarity between two strings are defined as the fraction of positions that they are
equal, while the hamming similarity between a regular expression a and a string b is the maximum
of the hamming similarity between z and b where z is in the language of a.
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* The Max-LCST-Pair problem: Given two sets A, B of N bounded-degree trees

with size 2 (log N) (1 , find a pair (a, b) E A x B such that a and b's have the

largest common subtree.

9 The Max-TropSim problem: Given two sets A, B of N binary tensors with size

2(log N)( , find the pair with maximum Tropical Similarity4 .

Our main theorem shows equivalence between exact and approximation versions

of the above problems. In fact, we show that all these problems, together with the

following two closely related decision problems and a generic satisfying pair problem,

are equivalent under near-linear time reductions. See Theorem 5.3.1 for a formal

statement of the equivalence class.

" The RegExp-String-Pair problem: Given a set A of N regular expressions of

length 2 (log N)o(l and a set B of N strings of length 2 (log N)o(l), is there a pair

(a, b) E A x B such that b matches a?

" The Subtree-Isomorphism-Pair problem: Given two sets A, B of N bounded-

degree trees with size 2 (logN)o(l, is there a pair (a, b) E A x B such that a is

isomorphic to a subtree of b?

" The BP-Satisfying-Pair problem: Given a branching program' P of size 2 (log N) (
1

and two sets A, B of N strings, is there a pair (a, b) E A x B making P accepts

the input (a, b)?

We will refer to this set of problems as BP-Pair-Class.

Remark 5.1.4. Subtree-Isomorphism-Pair and Max-LCST-Pair may seem artificial,

but they are nice intermediate problems for showing hardness of the closely related

problems Subtree Isomorphism and Longest Common Subtree, which are extensively

studied natural problems (see Section 5.1.5).

4 see Definition 5.2.8 for a formal definition.
5see Definition 5.2.1 for a formal definition
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Equivalence in the Data Structure Setting

These pair problems are interesting as they are natural off-line versions of closely

related data structure problem, which are highly relevant in the practice [162, 135,

51, 134, 175, 111, 133, 136, 471. Therefore, a lower bound on the time complexity of

these pair problems directly implies a lower bound for corresponding data structure

problems (see Theorem 5.9.4). In the next section, we will show under some con-

jecture which is much more plausible than SETH, these problems requires essentially

quadratic time.

Our equivalence continues to hold in the data structure version, in particular,

for the following data structure problems, any algorithm for one of them implies an

algorithm for all of them with essentially the same preprocessing time/space and

query time (up to a factor of No(')). See Section 5.9 for the details.

" NNSLC56: Preprocess a database D of N strings of length D = 2(logN) , and

then for each query string x, find y C D maximizing LCS(x, y).

* Approx. NNSLCS: Find y E D s.t. LCS(x, y) is a 2 (logD) 1 (') approximation to

the maximum value.

* Regular Expression Query: Preprocess a database D of N strings of length

D = 2 (log N)o(
8

, and then for each query regular expression y, find an x e D

matching y.

" Approximate Regular Expression Query: For a query expression y, distinguish

between 7 : (1) there is an x E D matching y; and (2) for all x E D, the Hamming

distance between x and all z c L(y) is at least (1 - o(1)) - D, where L(y) is the

set of all strings matched by y.

That is, a non-trivial data structure for finding approximate nearest point with

LCS metric would imply a non-trivial data structure for answering regular expression

query! The latter one is supported by most modern database systems such as MySQL,
6already discussed in Section 5.1.1
7behavior can be arbitrary when neither of the two cases hold
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Oracle Database, Microsoft SQL etc., but all of them implement it by simply using

full table scan for the most general case.

LCS is the Hardest Distance Function for Approximate NNS. In fact, our

results also suggest in a formal sense that LCS is the hardest distance function for

approximate Nearest Neighbor Search. We show that for all distance function dist

which is computable in poly-logarithmic space8 , exact NNS for dist can be reduced to

approximate NNSLCS.

Theorem 5.1.5 (Informal). For a distance function dist that is computable in poly-

logarithmic space, exact NNS for dist can be reduced to 2 (log D) 1-Q(1) -approximate NNSLCS

in near-linear time.

5.1.4 Weaker Complexity Assumptions for Approximation Hard-

ness

An important goal in the study of fine-grained complexity is to find more plausible

conjectures, under which to base hardness. For example, although SETH is based on

the historically unsuccessful attempts on finding better algorithms for k-SAT, there

is no consensus on its validity (see, e.g. [167, 173]).

This concern has been addressed in various ways. For example, in [16], the authors

prove hardness for several problems, basing on at least one of the SETH, the APSP

conjecture, or the 3-SUM Conjecture being true. In [10], Abboud et al. introduce

a hierarchy of C-SETH assumptions: the C-SETH asserts that there is no 2(-')'

time satisfiability algorithm for circuits from C. 9 They show that the quadratic time

hardness of Edit-Distance, LCS and other related sequence alignment problems can be

based on the much weaker and much more plausible assumption NC-SETH. However,

this has not been shown for approximation version of fine-grained problems.

8 Which is true for almost all nature distance functions. For example, edit distance and LCS can
be computed in NL, thus in (log 2 N) space by Savitch's Theorem 11531.

9 1n this way, the original SETH assert that there is no 20-01 time algorithm for satisfiability of
CNF with arbitrary constant bottom fan-in.
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In this work, we show that all problems in BP-Pair-Class require essentially quadratic

time under NC-SETH. Indeed, our hardness results are based on a weaker assumption

which we call 2 'o(1) -size BP-SETH: 10

Hypothesis 5.1.6 (2"n)-size BP-SETH). The satisfiability of a given 2"0(1) -size non-

deterministic branching program cannot be solved in O(2(1-~)n) time for any 6 > 0.

Theorem 5.1.7. All problems in BP-Pair-Class require N 2 (1 ) time if we assume

2 no() -size BP-SET H.

Note that 2'0(' -size BP-SETH is even weaker than n"(')-depth circuit SETH: sat-

isfiability for no()-depth bounded fan-in circuits cannot be solved in O(2 (1-)n) time

for any 6 > 0. This is because by Barrington's Theorem [46], noD()-depth bounded

fan-in circuits can be simulated by branching programs of size 2 '(.

It is worthwhile to compare with [121. It is shown in [121 that assuming SETH,

a 2 (log N)"-(1-approximation to Closest-LCS-Pair (Closest-RegExp-String-Pair) requires

N 2-ol) time for D = NOM. (The 2 (logN)l-0(1) factor is later improved to No(') in 1151,

70].)

Although our results here are quantitatively worse, it is "qualitatively" better in

many ways: (1) the results in [12] is based on SETH, while our hardness results are

based on the assumptions in Theorem 5.1.7, which are much more plausible than

SETH; (2) we in fact have established an equivalence between Closest-LCS-Pair and

its approximation version, which seems not possible with the techniques in [12]; (3)

our framework allows us to show that even a tiny improvement on the running time

would have important algorithmic and circuit lower bound consequences (see Theo-

rem 5.1.10), which again seems not possible with the techniques in [12].

5.1.5 BP-Pair-Class Hard Problems

We also identify a set of other problems which are at least as hard as any problem in

BP-Pair-Class, but not necessarily in it. We say these problems are BP-Pair-Hard.

' 0lndeed, results in [10 are also based on a conjecture about branching programs, which can be
seen as 0(1)-width and 2 (')-length BP-SETH or 2'(V -)size BP-SETH using the terminology in
Hypothesis 5.1.6.
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Theorem 5.1.8 (BP-Pair-Hard Problems). There are near-linear time reductions from

all the problems in BP-Pair-Class to any of the following problems:

1. (Subtree Isomorphism) Given two trees a, b of size at most N, determine whether

a is isomorphic to a subtree of b (even if restricted to the case of binary rooted

trees);

2. (Largest Common Subtree) Given two trees a, b of size at most N, compute

the exact value or a 2 (log N)o(1) -approximation of the size of the largest common

subtree of a and b (even if restricted to the case of binary rooted trees);

3. (Regular Expression Membership Testing) Given a regular expression a of length

M and a string b of length N, determine whether b is in the language of a;

Corollary 5.1.9. All the above BP-Pair-Hard problems require N2 0(l) time (or (NM)1-(l)

time for Regular Expression Membership Testing) under the same assumption as in

Theorem 5.1.7.

We remark that both Subtree Isomorphism and Largest Common Subtree are

studied in [4]. In particular, they showed that Subtree Isomorphism and Largest

Common Subtree require quadratic-time under SETH, even for binary rooted trees.

Our results improve theirs in many ways: (1) for Subtree Isomorphism, we estab-

lish the same quadratic time hardness, with a much safer conjecture; (2) for Largest

Common Subtree, we not only put its hardness under a better conjecture, but also

show that even a 2(logN) (l)-approximation would be hard; (3) for both of these prob-

lems, we demonstrate that even a tiny improvement on the running time would have

interesting algorithmic and circuit lower bound consequences (see Theorem 5.1.11).

[55] (which builds on [40]) classified the running time of constant-depth regular

expression membership testing. In particular, they showed a large class of regular

expression testing requires quadratic-time, under SETH. Our results are incomparable

with theirs, as our hard instances may have unbounded depth regular expressions.

On the bright side, our hardness results rely on a much safer conjecture, and we show

interesting consequences even for a tiny improvement of the running time.
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5.1.6 The Consequence of "shaving-logs" for Approximation

Problems

There has been a large number of works focusing on "shaving logs" of the running time

of fundamental problems [34, 44, 66, 1781 (see also a talk by Chan [651, named "The

Art of Shaving Logs"). In a recent exciting algorithmic work by Williams [1701, the

author shaves "all the logs" on the running time of APSP, by getting an n3/2e(vrogI)

time algorithm.

However, the best exact algorithms for LCS and Edit distance [124, 96] remain

Q(n2 / log 2 n), which calls for an explanation. An interesting feature of [101 is that

their results show that even shaving logs on LCS or Edit Distance would be very hard.

In particular, they prove that an n2 / logw'() n time algorithm for either of them would

imply a 2" /n'(1) time algorithm for polynomial-size formula satisfiability, which is

much better than the current state of arts [152, 161]. Such an algorithm would also

imply that NEXP is not contained in non-uniform NC 1 , thereby solving a notorious

longstanding open question in complexity theory.

The "shaving logs barrier" only has been studied for a few problems. It was not

clear whether we can get the same barriers for some approximation problems.

In this work we show that slightly improved algorithms (such as shaving all

the logs) for any BP-Pair-Class or BP-Pair-Hard problems, would imply circuit lower

bounds which are notoriously hard to prove. This extends all the results of [101 to

approximation problems.

Theorem 5.1.10. If there is an 0 (N2 poly(D)/2(g log1N)3) or 0 (N 2 /(log N)(l))

time deterministic algorithm for any decision, exact value or polylog(D) -approximation

problems in BP-Pair-Class, where D is the maximum length (or size) of elements in

sets, then the following holds:

" NTIME[20 (n)] is not contained in non-uniform NC and

" Formula-SAT with n0) size can be solved in 2f/n'(1) time.
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Theorem 5.1.11. If there is a deterministic algorithm for any decision, exact value

or polylog(N)-approximation problems among BP-Pair-Hard problems listed in The-

orem 5.1.8 running in O (N2/2( log N)3) time (or O (NM/2w(log lo(NM))3) time

for Regular Expression Membership Testing), then the same consequences in Theo-

rem 5.1.10 follows.

5.1.7 Circuit Lower Bound Consequence of Improving Ap-

proximation Algorithms for P Time Problems

Finally, we significantly improve the results from [11], by showing much stronger

circuit lower bound consequences for deterministic approximation algorithms to LCS.

Theorem 5.1.12. The following holds for deterministic approximation to LCS:

1. A 2(log N)I- QM -approximation algorithm in N2- 6 time for some constant 6 > 0

implies that ENP has no no(1)-depth bounded fan-in circuits;

2. A 2o(logN/(IoglogN)2)-approximation algorithm in N2-6 time for some constant

6 > 0 implies that NTME[20 (n)] is not contained in non-uniform NC1 ;

3. An O(polylog(N))-approximation algorithm in N 2/ 2w(og log N)
3 time implies that

NTIME[20 (n)] is not contained in non-uniform NC1 .

In comparison with [11], they show that an O(N2-,) time algorithm for constant

factor deterministic approximation algorithm to LCS would imply that ENP does not

have non-uniform linear-size NC circuits or VSP circuits. Our results here generalize

theirs in all aspects: (1) we show that a much stronger lower bound consequence

would follow from even a sub-quadratic time 2 (logN) 1-(')-approximation algorithm;

(2) we also show that a modestly stronger lower bound would follow even from a

quasi-polylogarithmic improvement over the quadratic time, for approximate LCS.

More generally, following a similar argument to [10], we can show that truly-

subquadratic time algorithms for these BP-Pair-Class or BP-Pair-Hard problems would

imply strong circuit lower bounds against ENP
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Corollary 5.1.13. If any of the problems listed in Theorem 5.3.1 and Theorem 5.1.8

admits an N * time algorithm (or (NM)'-' time algorithm for Regular Expression

Membership Testing) for some E > 0, then ENP does not have:

1. non-uniform 2 "o(1) -size Boolean formulas,

2. non-uniform n'(1) -depth circuits of bounded fan-in, and

3. non-uniform 2"o(l) -size nondeterministic branching programs.

5.1.8 Discussions and Open Problems

Here we discuss some open problems arising from our work.

Find More Members for BP-Pair-Class

One immediate question is to find more natural quadratic-time problems belonging

to BP-Pair-Class:

Open Question 1. Find more natural problems which belong to BP-Pair-Class.

It could be helpful to revisit all SETH-hard problems to see whether they can sim-

ulate BP-Satisfying-Pair. In particular, one may ask whether the Orthogonal Vectors

problem (OV), the most studied problem in fine-grained complexity, belongs to this

equivalence class:

Open Question 2. Does OV belong to BP-Pair-Class?

If it does, then it would open up the possibility that perhaps all SETH-hard

quadratic-time problems are equivalent. However, some evidence suggests that the an-

swer may be negative, as OV seems to be much easier than problems in BP-Pair-Class:

* The Inner Function in OV is Much Weaker. When viewing as a Satisfying-Pair

problem, the inner function in OV is just a simple Set-Disjointness, which seems

incapable of simulating generic low-space computation.
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o There are Non-trivial Algorithms for OV. We know that for OV with N

vectors of length D = clog n, there are algorithms with running time N21/O(ogc) [13,

68]. This type of non-trivial speed up seems quite unlikely (or at least much

harder to obtain) for problems in BP-Pair-Class (see Theorem 5.1.10).

It would be interesting to show that OV and BP-Satisfying-Pair are not equivalent

under certain plausible conjectures, perhaps ideas from [631 could help.

Quasi-Polynomial Blow Up of the Dimension

In the reductions between our BP-Pair-Class problems, we get a quasi-polynomial

blowup on the dimensions: that is, a problem with element size (vector dimension,

string length or tree size) D is transformed into another problem with element size

2 Pol log(D). This is the main reason that we have to restrict the element size to be

small, i.e., D = 2 (logN)o

This technical subtlety arises from the polynomial blow-up in the IP = PSPACE

proof: given a language in NSPACE[S], it is first transformed into a TQBF instance

of size O(S 2 ), which is proved by an b(S') time IP protocols, using arithmetization.

Applying that into our setting, an NL computation on two strings of length D

(like LCS), is transformed into an O(log 4 D) time IP communication protocol, which

is then embedded into an approximate problem with at least 2 5(log 4 D) dimensions

(say approximate LCS).

However, if we have an 0(log D) time IP communication protocol for N L. The new

dimension would be 2 0(log D) = D0 (1), only a polynomial blow up. Which motivates

the following interesting question:

Open Question 3. Is there an 0(log D) time IP communication protocol for every

problems in NL?

A positive resolution of the above question would also tighten several parameters

in many of our results. For example, in Theorem 5.1.7, no(Ml-depth circuit SETH

could be replaced by o(n)-depth circuit SETH, and Theorem 5.1.10, Theorem 5.1.11,

Theorem 5.1.8 and Corollary 5.1.13 would also have improved parameters.
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It is worth noting that IP communication lower bounds are extremely hard to

prove--proving a non-trivial lower bound for AM communication protocols is already

a long-standing open question 1121, 93, 94]. Hence, resolving Open Question 3 nega-

tively could be hard.

5.1.9 Related Works

Hardness for Shaving Logs

In 1101, it is shown that an n2 / log,(') time algorithm for LCS would imply that the

Formula-SAT have a 2n/nw(l) time algorithm. The construction is later tightened in [6],

which shows that an n2/ n time algorithm for any of LCS, regular expression

pattern matching or Fr6chet distance is already enough to imply new algorithm for

Formula-SAT.

Related Works for Specific Problems

Longest Common Subsequence. LCS is a very basic problem in computer science

and has been studied for decades [75, 50, 84, 79]. In recent years, a series of works

[41, 5, 56, 10, 11] have shown different evidences that LCS may not have truly sub-

quadratic time algorithm, even for approximation.

Subtree Isomophism and Largest Common Subtree. Subtree Isomorphism

has been studied in 1127, 128, 119, 148, 74, 120, 90, 1561. Largest Common Subtree is

an NP-hard problem when the number of trees is not fixed, and has been studied in

[108, 19, 20]. For (rooted or unrooted) bounded-degree trees, both the two problems

can be solved in O(N 2 ) time, and the fastest algorithm for Subtree Isomorphism

runs in O(N 2 / log N) time [119, 156]. In [41, these two problems are shown to be

SETH-hard.

Regular Expression. The found of O(NM) algorithm for regular expression match-

ing and membership testing in [162] is a big success in 70s, but after that no algorithm

has been found to improve it to truly sub-quadratic time [135, 51]. Related works
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about the hardness of exact regular expression matching or membership testing in-

clude [40, 551. There are many works on approximate regular expression matching in

different formulations [134, 175, 111, 133, 136, 471, and its hardness has been analyzed

in [12].

5.2 Preliminaries

In this section, we define the SAT problem for branching program (BP-SAT), and then

we introduce the formal definitions for each problem in BP-Pair-Class and BP-Pair-

Hard.

Definition 5.2.1 (Branching Program). A (nondeterministic) Branching Program

(BP) on n Boolean inputs x 1,... , x, is defined as a layered directed graph with T

layers L1, . . . , LT. Each layer Li contains W nodes. Except the last layer, every node

in Li (1 < i < T) is asscociated with the same variable x (i) for some f(i) E [n]. T

and W are called the length and width of the BP.

For every two adjacent layers Li and Li+1, there are edges between nodes in Li to

nodes in Li+1, and each edge is marked with either 0 or 1. The size of a BP is defined

as the total number of edges O(W2 T).

For 1 < i < T 1 < j < W, the j-th node in the i-th layer Li is labeled as (i,j).

Ustart = (1, 1) is the starting node, and Uacc = (T, 1) is the accepting node. A BP

accepts an input x iff there is a path from the starting node to the accepting node

consisting of only the edges marked with the value of the variable associated with its

starting endpoint.

Definition 5.2.2 (BP-SAT). Given a branching program P on n Boolean inputs, the

BP-SAT problem asks whether there is an input making P accept.

Like the relationship between k-SAT and Orthogonal Vectors (OV), we can de-

fine BP-Satisfying-Pair problem as the counterpart of BP-SAT in the P world. BP-

Satisfying-Pair can be trivially solved in O(N2 .poly(W, T)) time, and a faster algorithm
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for BP-Satisfying-Pair running in O(N 2 -) time implies a faster algorithm for BP-SAT

running in O(2(1-E/2)n) time.

Definition 5.2.3 (BP-Satisfying-Pair). Given a branching program P on n Boolean

inputs (assume n is even) and two sets of N strings A, B ; {0, 1}n/2, the BP-Satisfying-

Pair problem asks whether there is a pair a E A, b C B such that P accepts the

concatenation of a and b.

Throughout this chapter, unless otherwise stated, we use BP-Satisfying-Pair to

denote the BP-Satisfying-Pair problem on branching program of size 2 (logN)o(l) for

convenience.

5.2.1 Satisfying Pair and Best Pair Problems

Satisfying Pair Problems. Note that problems like Orthogonal Vectors are in the

form of deciding whether there is a "satisfying pair". In general, we can define the

A-Satisfying-Pair problem, where A is an arbitrary decision problem on two input

strings x, y:

Definition 5.2.4 (A-Satisfying-Pair). Given two sets A, B of N strings, the A-

Satisfying-Pair problem asks whether there is a pair of a E A, b c B such that

(a, b) is an Yes-instance of A.

In this work, we study a series of A-Satisfying-Pair problems, including OAPT,

RegExp-String-Pair and Subtree-Isomorphism-Pair, which will be formally defined in

later subsections.

Best Pair Problems. For an optimization problem A on two input strings x, y,

we can define the Max-A-Pair and the Min-A-Pair problems:

Definition 5.2.5 (Max-A-Pa ir/Min-A-Pair). Given two sets A, B of N strings, the

Max-A-Pair (or Min-A-Pair) problem asks to compute the maximum value (or mini-

mum value) of the result of problem A on input (a, b).
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In this work, we study a series of Max-A-Pair/Min-A-Pair problems, including Max-

TropSim, Min-TropSim, Closest-LCS-Pair, Furthest-LCS-Pair, Closest-RegExp-String-Pair,

Max-LCST-Pair and Min-LCST-Pair, which will be formally defined in later subsec-

tions.

Note that both satisfying pair problems and best pair problems contain two sets

A, B in the input. Without additional explanation, we use N to denote the set size,

and D to denote the maximum element size in sets.

5.2.2 Two Tensor Problems

We introduce two kinds of tensor problems: the Orthogonal Alternating Product Ten-

sors problem (OAPT) and the Max/Min Tropical Similarity problem (Max-TropSim/Min-

TropSim). The former one is an A-Satisfying-Pair problem, which helps us to prove

hardness for decision problems; the latter one is a Max-A-Pair/Min-A-Pair problem,

which helps us proving hardness of approximation for optimization problems.

First we define OAPT. OAPT implicitly appears in the reduction from BP-SAT to

LCS in [10] as an intermediate problem. In our reductions, OAPT appears naturally,

and we show that BP-Satisfying-Pair and OAPT of certain size are equivalent under

near-linear time reduction in Section 5.5.

Definition 5.2.6 (OAPT). Let t be an even number and d, = d2 =- - t = = 2.

The Alternating Product Pait(u, v) of two tensors u, v E {0, i}dix~~~xdt is defined as

an alternating sequence of logical operators A and V applied to the coordinatewise

product of u and v:

Pit (u, v)= A V (A L. (ui A vi)-- . . (5.1)
iiE[di] i2E[d2] (i3E[d3] it E[dt]

Given two sets of N tensors A, B C {0, i}dix.~xdt, the Orthogonal Alternating Prod-

uct Tensors (OAPT) problem asks whether there is a pair a E A, b C B such that the

Alternating Product palt (a, b) = 0.

Restricted OAPT is a restricted version of OAPT. We mainly use this restricted
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version in our analysis.

Definition 5.2.7 (Restricted OAPT). We say that a tensor x E {0, 1}dix..x dt is

A-invariant if the value of xi,... i does not depend on i 1 , i3 , i5 ,.-. , it-1. The Re-

stricted OAPT problem is a restricted version of OAPT, where one set of A, B contains

only A-invariant tensors.

For proving our hardness of approximation results, we further define the Max-

TropSim and Min-TropSim problems. The Max-TropSim problem was firstly proposed

by Abboud and Rubinstein in [11] under the name Tropical Tensors in their study of

LCS.

Definition 5.2.8 (Max-TropSim/Min-TropSim). 1 Let t be an even number and d, =

d2 Z= .. -- = d = 2. The Tropical Similarity score s(u,v) of two tensors u,v E

{o, I}di x...xdt is defined as an alternating sequence of operators E and max applied to

the coordinatewise product of u and v:

s(u, v) = EilE[dI F max E i3 E[d3] ... max {ui -vi}--l . (5.2)
[ 2 E [d 2] I it E [dt] I I

Given two sets of N tensors A, B C {0, 1}dix .xdt, the Max-TropSim problem asks to

compute the maximum Tropical Similarity s(a, b) among all pairs of (a, b) C A x B,

while the Min-TropSim problem asks to compute the minimum Tropical Similarity

s(a, b) among all pairs of (a, b) E A x B.

Restricted OAPT is a restricted version of OAPT. We mainly use this restricted

version in our analysis.

Definition 5.2.9 (Restricted Max-TropSim/Restricted Min-TropSim). We say that

a tensor x E {0, I}di x.. xdt is max-invariant if the value of xi,...i, does not depend

on i2 , i4 , i 6 , . . , it. The Restricted Max-TropSim/Restricted Min-TropSim problem is a

restricted version of Max-TropSim/Min-TropSim, where one set of A, B contains only

A-invariant tensors.

Like in [111, we also define the following approximation variants of the Max-

TropSim and Min-TropSim.
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Definition 5.2.10 (E-Gap-Max-TropSim). Let t be an even number and d, = d2 =

- - - = dt = 2. Given two sets of N tensors A, B E {0, i}dix...xdt of size D = 2,

distinguish between the following:

" Completeness: There is a pair of (a, b) C A x B with a perfect Tropical

Similarity s(a, b) = 1;

" Soundness: Every pair has low Tropical Similarity score, s(a, b) < e.

Here e is a threshold value that may depend on N and D. Restricted e-Gap-Max-

TropSim is defined similarly.

Definition 5.2.11 (E-Gap-Min-TropSim). Let t be an even number and d, = d2 =

= d= 2. Given two sets of N tensors A, B E {0, i}dix ...xdt of size D = 2,

distinguish between the following:

" Completeness: There is a pair of (a, b) E A x B with a low Tropical Similarity

s(a, b) < E;

" Soundness: Every pair has perfect Tropical Similarity score, s(a, b) 1.

Here E is a threshold value that may depend on N and D. Restricted E-Gap-Min-

TropSim is defined similarly.

In this chapter we use the proof idea for IP = PSPACE to show that BP-Satisfying-

Pair can be reduced to E-Gap-Max-TropSim/e-Gap-Min-TropSim of certain size in near-

linear time. The proof is in Section 5.5.

5.2.3 Longest Common Subsequence

We study the hardness of Longest Common Subsequence (LCS) and its pair version

in this chapter.

Definition 5.2.12 (LCS). Given two strings a, b of length N over alphabet E, the

LCS problem asks to compute the length of the longest sequence that appears in both

a and b as a subsequence.
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Definition 5.2.13 (Closest-LCS-Pair/Furthest-LCS-Pair). Given two sets of N strings

A, B, the Closest-LCS-Pair (or Furthest-LCS-Pair) problem asks to compute the max-

imum (or minimum) length of the longest common subsequence among all pairs of

(a, b) c A x B.

5.2.4 Subtree Isomorphism and Largest Common Subtrees

We study the hardness for the following two problems on trees:

Definition 5.2.14. (Subtree Isomorphism) Given two trees G and H, the Subtree

Isomorphism problem asks whether G is isomorphic to a subtree of H, i.e., can G

and H be isomorphic after removing some nodes and edges from H.

Definition 5.2.15. (Largest Common Subtree) Given two trees G and H, the Largest

Common Subtree problem asks to compute the size of the largest tree that is isomor-

phic to both a subtree of G and a subtree of H.

In this chapter, we focus on the case of unordered trees with bounded degrees.

We are interested in both rooted and unrooted trees. Here "rooted" means that the

root of G must be mapped to the root of H in the isomorphism.

The pair versions of these two problems are defined as follows:

Definition 5.2.16 (Subtree-Isomorphism-Pair). Given two sets of N trees A, B, the

Subtree-Isomorphism-Pair problem asks whether there is a pair of trees (a, b) c A x B

such that the tree a is isomorphic to a subtree of the tree b.

Definition 5.2.17 (Max-LCST-Pair/Min-LCST-Pair). Given two sets of N trees A, B,

the Max-LCST-Pair (or Min-LCST-Pair) problem asks to compute the maximum (or

minimum) size of the largest common subtrees among all pairs of (a, b) c A x B.

5.2.5 Regular Expression Membership Testing

We study the hardness of testing membership for regular expression. A regular ex-

pression over an alphabet set E and an operator set 0 = { o, I, +, *} is defined in a
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inductive way: (1) Every a C E is a regular expression; (2) All of [R I S], R o S, R,

[R]+ are regular expressions if R and S are regular expressions. A regular expression p

determines a language L(p) over alphabet E. Specifically, for any regular expressions

R, S and any a E E, we have: L(a) {a}; L([R I S]) = L(R) U L(S); L(R o S) =

{uv | u E L(R),v c L(S)}; L([R]+) Uk>1{u1U2 - -Uk I U1 , .. . , Uk E L(R)}; and

L([R]*) = L(R+) U {E}, where E denotes the empty string. The concatenation oper-

ator o and unnecessary parenthesis is often omitted if the meaning is clear from the

context.

In this chapter, we study the Regular Expression Membership Testing problem,

which is defined as follows:

Definition 5.2.18 (Exact Regular Expression Membership Testing). Given a regular

expression p of length M and a string t of length N over alphabet E, the Exact Regular

Expression Membership Testing problem asks whether t is in the language L(p) of p.

And its pair version is defined as follows:

Definition 5.2.19 (RegExp-String-Pair). Given a set A of regular expressions of

length O(poly(D))and a set B of N strings of length D, the RegExp-String-Pair prob-

lem asks to determine whether there is a pair (a, b) such that b is in the language

L(a) of a.

In [12], Abboud, Rubinstein and Williams studied a problem called RegExp Closest

Pair and showed that it is SETH-hard using their distributed PCP framework. In this

work, we study a slightly different problem.

Definition 5.2.20 (Closest-RegExp-String-Pair). For two strings x, y of the same

length n, the Hamming Similarity HamSim(x, y) between x and y is defined as the

fraction of positions for which the corresponding symbols are equal, i.e.,

HamSim(x, y) = n .

Given a set A of N regular expressions of length O(poly(D)) and a set of N strings

of length D, the Closest-RegExp-String-Pair problem asks to compute the maximum
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Hamming Similarity among all pairs of (x, b) satisfying x E L(a) is a string of length

D for some a E A and b c B.

5.3 BP-Pair-Class and an Outline of all Reductions

In this section, we first state the equivalence class formally, and outline how it is

proved in this chapter.

Theorem 5.3.1 (BP-Pair-Ctass). There are near linear-time1 reductions between all

pairs of following problems:

1. (Exact or Approximate Closest-L CS-Pair / Furthest-L CS-Pair) Given two sets

A, B of N strings of length D = 2 (log N)o(0), compute the exact value or a

2 -approximation of the maximum (minimum) LCS among (a,b) E

A x B;

2. (Approximate Closest-RegExp-String-Pair) Given a set A of N regular expres-

sions of length 2 (log N)o(1) and a set of N strings of length D - 2 (logN)o(1), dis-

tinguish between the case that there is a pair (a, b) E A x B such that b E L(a)

(the language of a), and the case that every string in B has Hamming Similarity

< 2 -log D)'-Q(l) from every string of length D in UaEA L(a).

3. (Exact or Approximate Max-LCST-Pair / Min-LCST-Pair) Given two sets A, B

of N bounded-degree trees with size at most D 2 (logN)"(), compute the exact

value or a 2 (log D) 1-() -approximation of the maximum (minimum) size of largest

common subtree among (a, b) E A x B;

4. (Exact or Approximate Max- TropSim / Min-TropSim) Given two sets A, B of N

binary tensors with size D - 2 (logN)o(l), compute the exact value or a 2 (IogD)'-(') _

approximation of the maximum (minimum) Tropical Similarity among (a, b) E

A x B;

"Throughout this chapter, we use near-linear time to denote the running time of Ni+o(l).
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Sectio

Sectio

Sectio

5. Orthogonal-Alternating-Product-Tensors (OAPT): Given two sets A, B of N bi-

nary tensors with size 2 (log N) 00) is there a pair (a, b) E A x B with Alternating

Product1 2 0?

6. BP-Satisfying-Pair;

7. RegExp-String-Pair;

8. Subtree-Isomorphism-Pair;

Remark 5.3.2. A technical remark is that our reductions actually have a quasi-

polynomial blow-up on the string length (tensor/tree size) D. That is, the new

string length after the transformation would be at most D' = 2 polylog(D), which is

still 2 (log N)o ) assuming D = 2 (logN)o(1 ). That is the reason we set the size parameter

to be 2 (log N)o(1) in the equivalence class.

For the ease of exposition, we break the proofs for Theorem 5.3.1 and Theo-

rem 5.1.8 into many sections, each one dealing with one kind of problems. Here

we give an outline of the reductions for proving Theorem 5.3.1 and Theorem 5.1.8

(Figure 5-1).

n 5.4 BP-Satisfying-Pair. We present a generic reduction from A-Satisfying-Pair

and Max-A-Pair/Min-A-Pair problems to BP-Satisfying-Pair (Theorem 5.4.1 and

Theorem 5.4.2). This implies all problems in BP-Pair-Class can be reduced to

B P-Satisfying- Pair.

n 5.5 Tensors Problems. We show reductions from BP-Satisfying-Pair to tensors

problems OAPT, approximate Max-TropSim and Min-TropSim (Theorem 5.5.1,

Theorem 5.5.6 and Theorem 5.5.7), putting these tensor problems into our

BP-Pair-Class (Theorem 5.5.4 and Theorem 5.5.10).

n 5.6 LCS. We show reductions from approximate Max-TropSim (Min-TropSim) to

approximate Closest-LCS-Pair (Furthest-LCS- Pair) (Theorem 5.6.2 and Theo-

rein 5.6.3), putting these LCS-Pair problems into our BP-Pair-Class (Theorem 5.6.5).

12see Definition 5.2.6 for a formal definition
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BP-Satisfying-Pair

O-AP

Subtree Isomiiorphisin

e-Gap-Max-TropSim
E-Gap-Min-TropSim

Approx.
Closest-RegExp-String-Pair

Approx. Max-LCST-Pair
Approx. Min-LCST-Pair

Approx.
Largest COI nmi Subtree

Approx. Closest-LCS-Pair
Approx. Furthest-LCS-Pair

H
F

k-

Figure 5-1: A diagram for all our reductions (red means it is BP-Pair-Hard).

Regular Expression. We show reductions from OAPT to RegExp-String-Pair

and from approximate Max-TropSim to approximate Closest-RegExp-String-Pair

(Theorem 5.7.3 and Corollary 5.7.2), putting these regular expression pair prob-

lems into our BP-Pair-Class (Theorem 5.7.5).

We also show a reduction from OAPT to Regular Expression Membership Test-

ing, showing the latter problem is BP-Pair-Hard (Theorem 5.7.6).

Section 5.8 Subtree isomorphism. We show reductions from OAPT to Subtree-Isomorphism-Pair

and from approximate Max-TropSim (Min-TropSim) to approximate Max-LCST--Pair

(Min-LCST-Pair) (Theorem 5.8.1 and Theorem 5.8.5), putting these problems

related to subtree isomorphism into our BP-Pair-Class (Theorem 5.8.3 and The-

orem 5.8.10).

We also show reductions from OAPT to Subtree Isomorphism and from approx-

imate Max-TropSim to approximate Largest Common Subtree, showing that the
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latter problems are BP-Pair-Hard (Theorem 5.8.4 and Theorem 5.8.12).

5.4 Low-Space Algorithms Imply Reductions to BP-

Satisfying-Pair

In this section, we present two important theorems for showing reductions from A-

Satisfying-Pair, Max-A-Pair/Min-A-Pair problems to BP-Satisfying-Pair.

The key observation is a classic result in space complexity: for S(n) > log n, if

a decision problem A is in NSPACE[S(n)], then there is a BP of length T = 2 0(s(n))

and width W = 2 0(s(n)) that decides A (See, e.g., [351 for the proof). This means

that if A can be solved in small space, then we can construct a BP of not too large

size to represent this algorithm.

Now we introduce our first theorem, which shows that a low-space algorithm for a

decision problem A implies a reduction from A-Satisfying-Pair to BP-Satisfying-Pair:

Theorem 5.4.1. If the decision problem A on inputs a, b of length n can be decided

in NSPACE [polylog(n)], then A-Satisfying-Pair with two sets of N strings of length

2 (log N) (M can be reduced to BP-Satisfying-Pair on branching program of size 2 (log N)o(l

in near-linear time.

Proof. Let n - 2 (logN)o(). Since A is in NSPACE [polylog(n)], we can construct a BP

P of size 2 POlylog(n) < 2 (logN) (1) that decides A on inputs a, b of length n. Then to

check if there is a pair of (a, b) E A x B such that (a, b) is an Yes-instance of A, it is

sufficient to check if there is a pair of a, b making P accept. L

Our second theorem is similar. It shows that a low-space algorithm for the decision

problem of an optimization problem A implies a reduction from Max-A-Pair/Min-A-

Pair to BP-Satisfying-Pair:

Theorem 5.4.2. Let A be an optimization problem. If the answer to A on input

a, b of length n is bounded in [-O(poly(n)), O(poly(n))], and the decision version of

A (deciding whether the answer is greater than a given number k) can be decided in
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NSPACE [polylog(n)], then Max-A-Pair (or Min-A-Pair) with two sets of N strings of

length 2 (logN) (1) can reduced to 2 (log N)'(') instances of BP-Satisfying-Pair with branch-

ing programs of size 2 (log N)o(0) in near-linear time.

Proof. For Max-A-Pair, we enumerate each possible answer k, and then we check

if there is a pair of (a, b) C A x B with answer > k by reducing to BP-Satisfying-

Pair via Theorem 5.4.1. This reduction results in O(poly(n)) < 2 (logN)'(1) instances

of BP-Satisfying-Pair, and each branching program is of size 2 (logN)o(l). Note that

NSPACE [polylog(n)] = coNSPACE [polylog(n)], thus deciding whether the answer of

A is < k is also in NSPACE [polylog(n)]. Using a similar argument we can reduce

Min-A-Pair to BP-Satisfying- Pair.

5.5 Tensor Problems

In this section, we show that BP-Satisfying-Pair on branching program of size 2 (log N)O(')

is equivalent to OAPT and (exact or approximate) Max-TropSim/Min-TropSim prob-

lems on tensors of size 2 (log N)o(1) under near-linear time reductions.

5.5.1 Orthogonal Alternating Product Tensors

First we show the equivalence between BP-Satisfying-Pair and OAPT. To start with,

we present the reduction from BP-Satisfying-Pair to OAPT:

Theorem 5.5.1. There exists an O(N . 20(logWlogT))-time reduction from a BP-

Satisfying-Pair instance with a branching program of length T and width W and two

sets of N strings to an OAPT problem with two sets of N tensors of size 2 0(logWlogT).

Proof. Let P be a branching program of length T and width W on n Boolean inputs

x = (X 1 ,... , X,). First, we follow the proof for the PSPACE-completeness of TQBF

[160] to construct a quantified Boolean formula O(x), which holds true iff the branch-

ing program P accepts x. Then, we construct two sets A', B' of N tensors such that

there is a pair (a, b) c A x B satisfying #(a, b) is true iff there is a pair (a', b') E A' x B'

with Pait (a', b') = 0.
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Construction of Quantified Boolean Formula. We assume that n, T - 1, W

are powers of two without loss of generality. First we construct formulas <k(X, U, v, i)

for all 0 < k < log(T - 1), u, v E [W], i E [T] such that k (X, U, v, i) holds true iff the

node (i + 2 k, v) is reachable from the node (i, u) on the input x = (x1 , . . . , x").

The construction is by induction on k. For k = 0, we split the n input variables

x = (xi, ... , x,) into two halves: Xa = (X 1, - - - , X/2) and xb = (Xn/2+1, --- ,Xn). We

construct two formulas a(xa, u, v, i) and 13(xb, , v, i). We construct the formula a

to be true iff the variable xf(i) associated with the layer Li is in xa, and there is

an edge that goes from the node (i, u) to the node (i + 1, v) and is marked with

the value of xf(i). We define the formula /3 similarly for xb. Then we construct

0o(X, U, V, i) = a(Xa, U, v, i) V/3(Xb, U, v, i). It is easy to see that V)o(x, u, v, i) holds true

iff the node (i + 1, v) is reachable from the node (i, u) on the input x = (i,. . . , n)

For k > 1, we construct 4k(x, U, V, i) as:

(]m)(VU')(Vv')(Vj) [((U', v',j) = (u, m, O)V(u', v',j) = (M, v, 1)) -> k1(X, i', v, i-- 2k1)]

where m, it', v' E [W] and j E {0, 1}. It is easy to see that the above formula is

equivalent to

(3m)[Okl(x, U, m, i) A 4k-1(x, m, v, i + 2-1

thus it holds true iff the node (i + 2 k, v) is reachable from the node (i, u).

In the end, we construct the formula W(x) = O1og(T-1)(X, 1, 1, 1), so p(x) holds

true iff the branching program P accepts the input x (X, ... , zXn) (Recall that

Ustart = (1, 1) and iacc =(T, 1)).

We split all the variables m, u', v', j occurred in o(x) into t Boolean variables

z i ,. . . , zt E {0, 1} for some t = O(log W log T). Without loss of generality we assume

t is even. Then we transform o(x) into the following equivalent formula 0:

O(X) = (]z1 )(Vz 2)(]z 3) ... (Vzt)(f(z) --> (gi(Xa, z) V g2 (Xb, z)))

where f(z) is the logical conjunction of all the predicates ((a, b, j) = (u, m, 0) V

133



(a, b,j) = (m, v, 1)) in 11, .. . , @iog(T_1), and gi(xa, z), g 2 (Xb, z) are the innermost

a(Xa, u, v, i), (xb, u, v, i). The quantifiers V and I appear alternatively.

Converting Quantified Boolean Formula into Tensors. Let di = ... = dt = 2.

Now we construct two sets of N tensors A', B' C {0, I}dix...xdt to be our OAPT

instance. For 1 < k < t, we associate the k-th dimension of a tensor with the variable

Zk and associate each index p E [d1 ] x ... x [dt] with an assignment to zi, ... , zt. Note

that strings in the set A correspond to assigments to Xa, and strings in the set B

correspond to assigments to xb. Thus every two strings (a, b) E A x B along with an

index p specify an assignment to x and z.

For each string a E A, we construct a tensor a' E {0, 1}dix~.~xdt where for every

index p, a' is 0 iff the formula -,f(z)V gi(Xa, z) is true with corresponding assignments

to Xa and z; for each string b E B, we construct a tensor b' E {0, i}dix*~xd, where for

every index p, b' is 0 iff the formula g2 (Xa, z) is true with corresponding assignments

to Xb and z.

Note that f(z) -- (gi(Xa, z)Vg2(Xb, z)) is equivalent to -,f(z)Vg,(Xa, z)Vg2 (X bz),

so we have

a' A b' = 0 4--> [f(z) => (gi(Xa, z) vg2 (z))]

Then it is easy to see that pait(a', b') 0 iff #(a, b) is true, and thus P accepts a

pair of (a, b) E A x B iff pait(a', b') 0 for their corresponding a', b'. Note that

did2 - - d = 2t = 2 0(og W log T), so each tensor has size 2 0(ogwlogT)

Note that in the above construction, tensors in B are all A-invariant, so we have

the following corollary for Restricted OAPT:

Corollary 5.5.2. There exists an O(N . 20(logwlogT))-time reduction from a BP-

Satisfying-Pair instance with a branching program of length T and width W and two

sets of N strings to an Restricted OAPT problem with two sets of N tensors of size

W log T)

For the other direction, by Theorem 5.4.1, it is sufficient to show that computing

Alternating Product can be done in SPACE[O(logn)] 9 NSPACE[polylog(n)].
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Lemma 5.5.3. Given two tensors a, b of size n = 2t, their Alternating Product

pait(a, b) can be computed in SPA CE[O(log n)].

Proof. We compute the Alternating Product recursively according to the definition.

There are t levels of recursion in total. Since t = log n, space O(log n) is enough for

our algorithm. O

Combining Theorem 5.5.1 and Lemma 5.5.3, we can prove the equivalence between

BP-Satisfying-Pair and OAPT.

Theorem 5.5.4. The OAPT problem on tensors of size 2 (logN)o(1) is equivalent to

BP-Satisfying-Pair on branching program of size 2 (log N)o() under near-linear time re-

ductions.

5.5.2 A Communication Protocol for Branching Program

Before we turn to show the equivalence between BP-Satisfying-Pair and Max-TropSim Min-

TropSim, we introduce the following IP-protocol for branching program. Our reduction

from BP-Satisfying-Pair to Max-TropSim (or Min-TropSim) directly follows by simulat-

ing the communication protocol using tropical algebra.

Theorem 5.5.5. Let P be a branching program of length T and width W on n Boolean

inputs x1 ,... ,xn. Suppose Alice holds the input x 1,...1xn 2 and Bob holds the input

Xn/2+1,--- , X. For every e > 0, there exists a computationally efficient IP-protocol

for checking whether P accepts on x 1,... , xn, in which:

1. Merlin and Alice exchange O(log 2 W log 2 T (log log W + log log T + log E 1 ))

bits;

2. Alice tosses O(log2 W log 2 T - (log log W + log log T + log E--1)) public coins;

3. Bob sends O(log logW + log log T + loge-1) bits to Alice;

4. Alice accepts or rejects in the end.
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If P accepts on the input xl,. .. , xn, then Alice always accepts; otherwise, Alice rejects

with probability at least 1 - e.

Proof. Let a be the assignment to the input variables held by Alice, and b be the

assignment to the input variables held by Bob. Recall the construction of the tensors

in the proof for Theorem 5.5.1. First Alice constructs a tensor a = G(d), and Bob

constructs a tensor b = H(b). Each tensor here is of shape d, x d2 x ... d = 2x 2 x ... x 2

for t = O(log T log W). Then the problem reduces to check whether the Alternating

Product Pait(a, b) equals 0. Now we show that there exists a communication protocol

for checking Pait(a, b) = 0, using the idea for proving IP = PSPACE [123, 1551.

Arithmetization. First we arithmetize the computation of Alternating Product.

Let q > 1 be a parameter to be specified. Construct a finite field F21. Then Alice

finds a multilinear extension a over F2q for her tensor a, i.e., Alice finds a function

o(zi, . . . , zt) such that a is linear in each of its variables, and a(zi, . . . , zt) = ai for

all i E [di x ... x [dt] and ik = Zk + 1 (1 < k < t). Bob finds a multilinear extension

3 for his tensor b similarly. Recall that the definition of Alternating Product. Pa(a, b)

can be rewritten as

Pait (a, b)= A \/ A --- V (a(z1 , ... ,zt) 3(z 1,..., Zt)) .. 1
zlE{0.1} Z2E{0,1} (Z3E{0,1} - ZtE{0,1}

To arithmetize AZkE ,1} and VZkE{o,11, we define three kinds of operators acting

on polynomials:

1. Hzm operator, which arithmetizes the formula AzmE{ 0,1} F(zi,... , ZM-1, Zm).

HzmF(Z, . . .,.) = F(zi,.... , Zm> 0) - F(zi,..., zm-, 1)

2. Ezm operator, which arithmetizes the formula VzmE{o,1} F(zi, ... , ZM-1, Zm).

ZzmF(zi, ... , z.) = 1 - (1 - F(zi,.. ., z_1-, 0)) - (1 - F(zi, . . . , Zm.-, 1)).
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3. Rzi operator, which is used for the degree reduction. When acting on a polyno-

mial F(zi,... , Zm), it replaces 4 for k > 1 by zi in all terms. In this way, any

polynomial F(zi,... , z,) can be converted into a multilinear one preserving the

values at every (zi, .. . , zM) c {o, 1}". Rz, operator can be written as

R ziF(zi, .. . , zm) = F(zi, ... , zi_1 , 0, zj+1, . ... z,-)+zi-F(zi,., zi_1, 1, zi+1, .. z.,,).

Then it is easy to see that

Pait (a, b) = Hzi Ez 2  - .. Ezz (a -).

Note that in the computation of Alternating Product, we only use the function value

at Boolean inputs, thus we can insert i operators Rz1 Rz 2 - Rz. right after each rz,

or Ezi without changing the final result:

Pait (a, b) = Hz1 Rz, EZ2R RzZ2 1Z3 Rz, R Z2Ra -Z-3 Ezt Rz, ..-. Rz (a -e )

In total we use only M = O(t2 ) < 0(log 2 T log 2 W) operators.

The Protocol. We introduce our IP-protocol in an inductive way. Suppose that

we have an IP-protocol for some polynomial F(zi, ... , Zm), in which for any given

(vi, ... , Vm) E F" and u = F(vi,... , vn), Merlin can convince Alice and Bob that

F(vi, . . . , vrn) u with perfect completeness and soundness error E0 . We show that for

G(zi, . . . , z,,,,) 0F, . . , Zm) and given vi, . . . , vm' and u' (Oz, E {Ezs , IIzi, Rz},

m = m when Oz = Rz, and m' = m - 1 otherwise), Merlin can convince Alice

and Bob that G(v,...,vm') = u' with perfect completeness and soundness error

EO + O(2-q):

* First Merlin sends the coefficients of the polynomial F(vi,... ,vi1, zi, vi+.... , Vr)

to Alice (note that it is a univariate polynomial of zi);

* Alice calculates the value of G(vi, . .. , vni) using the information sent by Merlin
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(assuming Merlin is honest), and reject if G(vi, ... , v,) $ u';

" Alice randomly draws an element r E ]F2q. Let vi = r (reset vi = r if vi already

exists);

" Alice checks if F(vi, .. . , v_1, r, vai, . ,Vm) = via the IP-protocol for F.

It is easy to see that the above protocol has perfect completeness. For soundness,

notice that F and G are always of 0(1) degree because our use of degree reduction

operators, thus Alice can find G(vi,..., vm,) $ u' with probability 0(2 -) if Merlin

lies. By the union bound, the soundness error of the IP-protocol for G is 0 Q( 2-q).

Our I P-protocol starts by checking Palt (a, b) = 0. Following the inductive process

above, there are M rounds of communication between Merlin and Alice. And after

the last round, palt(a, b) = 0 reduces to check if a(v1,... , vt) - #(v 1,... , vt) = U for

given (vi, . . . , Vt) E F2 , u E F2 q. Note that all the values of v,... , v can be inferred

by the results of public coins Alice tossed. Thus the I P-protocol for a -# is as follows:

Bob learns the results of public coins and obtains v 1 , . . . , vt. Then Bob sends the value

of 0(vi, . . . , Vt) to Alice. Finally, Alice accepts iff a(v,... ,Vt) V - (vi,. . . , Vt) = U.

By induction, we can show that the whole IP-protocol has perfect completeness

and soundness error O(M - 2-q). Setting 2q = c. M - e-1 for large enough constant c,

we can achieve the soundness error e. And in this case we have

q = log M + log6E 1 + logc = O(loglog W + log logT + log e-1).

It can be easily seen that Alice tosses

O(Mq) = O(log 2 T log 2 W(log log T + log log W + log E-1))

public coins and Bob sends

O(q) = O(log log T + log log W + log E- 1 )

bits to Alice in our communication protocol.
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In each of the M rounds, Merlin sends 0(1) elements in F2q since F is of at most

constant degree. Thus Merlin sends at most

O(Mq) = O(log 2 T log 2 W(log log T + log log W + log E1))

bits to Alice. El

5.5.3 Tropical Tensors

Following from [111, we can show a reduction from BP-Satisfying-Pair to E-Gap-Max-

TropSim based on our IP-protocol for branching program.

Theorem 5.5.6. There is a reduction from BP-Satisfying-Pair on branching program

of length T and width W and two sets of N strings to E-Gap-Max-TropSim on two sets

of N tensors of size

D = 2 0(log 2 
W log 2 T(log log W+log log T+Iog E-))

and the reduction runs in O(N poly(D)). Here e is a threshold value that can depend

on N.

Proof. For convenience, let

K = log 2 W log 2 T(log log W + log log T + log E-').

By Theorem 5.5.5, there is an IP-protocol using 0(K) bits for determining whether a

branching program accepts when Alice knows the first half and Bob knows the second

half, with soundness error E. We can easily modify the communication protocol such

that

o Alice and Merlin interact for m = O(K) rounds, in each round Merlin sends

one bit to Alice and Alice tosses one public coin;

o After the interaction between Alice and Merlin, Bob sends L O(K) bits to

Alice, and after Bob sending each bit Merlin sends a dummy bit to Alice;
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. Alice accepts or rejects in the end.

Let t = 2f+ 2m and di = - - - = dt = 2. Now we construct two sets of N = 2,/ 2

tensors A, B E {O, 1 }dix-~.xdt as our e-Gap-Max-TropSim instance. For every 0 < k <

m, we associate the (t - 2k)-th dimension with the result of the public coin Alice

tosses at the (k + 1)-th round and associate the (t - 2k - 1)-th dimension with the bit

Merlin sends to Alice at the (k + 1)-th round. For every 0 < k < e, we associate the

(2f - 2k)-th dimension of a tensor with the (k + 1)-th bit sent by Bob and associate

the (2f -2k - 1)-th dimension with the bit Merlin sent to Alice right after Bob sending

the (k + 1)-th bit to Alice. In this way, every index p E [di] x -x [dt] of a tensor

can be seen as a communication transcript.

Let A, B Q; {0, 1}fn/2 be the two sets in the BP-Satisfying-Pair instance. For each

assignment a E A to the first half variables x1 , .. , X/2, we construct a tensor G(a) E

{0, 1}1 ~ -d, where for every index p, G(a)p is 1 iff Alice accepts after seeing the

communication transcript p when she holds the assignment a for x1 , . . . , x"/2. For

each assignment b E B to the second half variables Xn/2+1, . .-, Xn, we construct a

tensor H(b) E {O,1}di"-Xdt where for every index p, H(b)p is 1 iff the bits sent by

Bob in the communication transcript p matches what Bob sends when he holds the

assignment b for X,/2+1, - . , xn and learning the results of Alice's public coins in p.

Let D = 2' = 2 O(K) be the size of each tensor. It is easy to see that when Al-

ice holds a and Bob holds b, the maximum probability (over all Merlin's actions)

that Alice accepts in our communication protocol equals the Tropical Similarity

s(G(a), H(b)). 0

By negating the branching program P, we can also show a similar reduction from

BP-Satisfying-Pair to E-Gap-Min-TropSim:

Theorem 5.5.7. There is a reduction from BP-Satisfying-Pair on branching program

of length T and width W and two sets of N strings to e-Gap-Min-TropSim on two sets

of N tensors of size

D = 2 0(og
2 

W log2 T(loglog W+log log T+1g E-))
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and the reduction runs in O(N poly(D)). Here E is a threshold value that can depend

on N.

Proof. The IP-protocol in Theorem 5.5.5 can be easily adapted to check the branching

program P does not accept, i.e., if P rejects on the input x,.... , X, then Alice always

accepts; otherwise, Alice rejects with probability 1 - E. To do this, the only thing

we need to change is to check whether the Alternating Product is 1 rather than

0. Then, using the same reduction as in Theorem 5.5.6, we can obtain two sets

A' = {G(a)I a c A}, B' = {H(b) I b E B} of N tensors of size

D = 2 0(log 2 W log 2 T(log log W+Iog log T+log e- 1 ))

such that for every pair of strings (a, b) E A x B, the maximum probability (over all

Merlin's actions) that Alice accepts in the I P-protocol equals the Tropical Similarity

score of the corresponding tensor gadgets G(a) and H(b). Thus, to decide whether

there exists a pair of (a, b) E A x B that can make P accept, it is sufficient to

distinguish from the case that there is a pair of G(a), H(b) such that the Tropical

Similarity score s(G(a), H(b)) < E and the case that every pair of G(a), H(b) has

perfect Tropical Similarity score s(G(a), H(b)) = 1. El

Note that in the above constructions in Theorem 5.5.6 and 5.5.7, tensors in B are

all max-invariant, so we have the following corollary for Restricted OAPT:

Corollary 5.5.8. There is a reduction from BP-Satisfying-Pair on branching pro-

gram of length T and width W and two sets of N strings to a Restricted E-Gap-Max-

TropSim/Restricted E- Gap-Min- TropSim on two sets of N tensors of size

D = 2 0(log 2 
W log 2 T(log log W+Iog log T+log e-))I

and the reduction runs in O(N poly(D)). Here E is a threshold value that can depend

on N.

Theorem 5.5.6 and 5.5.7 also imply reductions from BP-Satisfying-Pair to exact
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Max-TropSim or exact Min-TropSim. For the other direction of reduction, we have the

following lemma:

Lemma 5.5.9. Given two tensors a, b of size n = 2 t, their Tropical Similarity s(a, b)

can be computed in SPACE[O(log 2 n)].

Proof. We compute the Tropcial Similarity recursively according to the definition.

Note that there are t levels of recursion in total, and 0(t)-bit precision is sufficient

in this computation. Thus this algorithm uses only O(t2) O(log2 n) space. El

Combining Theorem 5.5.6, Theorem 5.5.7 and Lemma 5.5.9, we can establish

the equivalence between BP-Satisfying-Pair and the exact or approximate Tropical

Similarity problems:

Theorem 5.5.10. For the case that the maximum element size D = 2 (log N)o('), there

are near-linear time reductions between all pairs of the following problems:

o BP-Satisfying-Pair;

o Exact Max-TropSim or Min-TropSim;

* 2 -(log D (1 ) -Gap-Max-TropSim or 2 -(log D)'-( 1) -Gap-Mm-TropSim;

0 2 (ogD)1-(1) -approximate Max-TropSim or Min-TropSim;

Proof. Let c > 0 be a constant. For any instance of BP-Satisfying-Pair on BP of size

S, by Theorem 5.5.6 with parameter e = 2 -(ogS)c , we can reduce it to an e-Gap-Max-

TropSim instance on tensors of size D - 2 e(log 4 S log -1) -- 2 e(log 4 +c S) (adding dummy

dimensions to tensors if necessary).

Thus, we have e - 2 e(og D)c/(4 +c). For any 0 < J < 1, by choosing an appropriate

value for c, we can obtain a reduction from BP-Satisfying-Pair on BP of size S

2 (log N)o(1) to 2-(log D) -3-Gap-Max-TropSim.

2 -(og D)'1-- Gap-Max-TropSim can be trivially reduced to 2 (log D)1-"-approximate

Max-TropSim, and 2 (logD)' -- approximate Max-TropSim can be trivially reduced to

Max-TropSim. By Lemma 5.5.9 and Theorem 5.4.2, Max-TropSim can be reduced to

BP-Satisfying-Pair.
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Therefore under near-linear time reductions BP-Satisfying-Pair, exact Max-TropSim,

2-(09 D)1-"(1)-Gap-Max-TropSim and 2 (log D)1 " -approximate Max-TropSim are all equiv-

alent. Using a similar argument, we can also prove the same result for Min-TropSim.

F]

5.6 Longest Common Subsequence

In this section, we show near-hear time reductions between BP-Satisfying-Pair and

(exact or approximate) Closest-LCS-Pa ir/ Furthest-LCS-Pair.

Our reduction from BP-Satisfying-Pair to Closest-LCS-Pair / Furthest-LCS-Pair re-

lies on the following LCS gadgets in {11].

Theorem 5.6.1 ([11]). Let t be an even number and d1 = d = 2. Given two

sets of N tensors A, B in {O, i}ix---xdt, there is a deterministic algorithm running

in O(N poly(2t)) time which outputs two sets A', B' of N strings of length 2t over

an O(2t)-size alphabet E, such that each a E A corresponds to a string a' G A',

each b G B corresponds to a string b E B', and LCS(a', b') = 2t/2 - s(a, b) for every

a c A, b e B, where s(a, b) stands for the Tropical Similarity score of two tensors a

and b.

Theorem 5.6.1 directly leads to the following two theorems:

Theorem 5.6.2. There exists an O(Npoly(D))-time reduction from an E(D)-Gap-

Max-TropSim instance with two sets of N tensors of size D to an instance of the

following approximation variant of Closest-LCS-Pair: Given two sets of N strings of

length D, distinguish between the following:

e Completeness: There exists a pair of a, b such that LCS(a, b) = I;

& Soundness: For every pair a, b, LCS(a, b) < - -E(D).

Thus e(D)-Gap-Max-TropSim can be O(N poly(D))-time reduced to E(D) 1 -approximate

Closest-L CS-Pair.
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Theorem 5.6.3. There exists an O(Npoly(D))-time reduction from an E(D)-Gap-

Min-TropSim instance with two sets of N tensors of size D to an instance of the

following approximation variant of Furthest-L CS-Pair: Given two sets of N strings of

length D, distinguish between the following:

" Completeness: There exists a pair of a, b such that LCS(a, b) < VID - E(D)

" Soundness: For every pair a, b, LCS(a, b) = V'i.

Thus E(D)-Gap-Min-TropSim can be O(N poly(D))-time reduced to e(D)-1 -approximate

Furthest-LCS-Pair.

According to Theorem 5.4.2, in order to reduce Closest-LCS-Pair or Furthest-LCS-

Pair problem to BP-Satisfying-Pair, we only need to show that given a number k,

deciding LCS(a, b) > k for two strings a, b of length n is in NSPACE[polylog(n)]:

Lemma 5.6.4 (Folklore). Given two strings a, b of length n and a number k, deciding

whether LCS(a, b) > k is in NL.

Proof. The algorithm consists of k stages. Let c be a longest common subsequence

of a and b. In the i-th stage, we nondeterministically guess which positions of a and

b are matched with the i-th character of c, and then we check if the characters on

the two positions of a and b are the same. Also, in each stage we store the positions

being matched in the last stage, so that we can check if the matched positions in each

string are increasing. Finally, we accept if the nondeterministic guesses pass all the

checks. The total space for this nondeterministic algorithm is O(log n) since we only

need to maintain 0(1) positions in each stage. D

Combining Theorem 5.6.2, 5.6.3 and Lemma 5.6.4 together, we can prove the

equivalence between BP-Satisfying-Pair and exact or approximate LCS pair problems:

Theorem 5.6.5. For the case that the maximum element size D = 2 (logN) 00), there

are near-linear time reductions between all pairs of the following problems:

o BP-Satisfying-Pair;
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o Exact Closest-LCS-Pair or Furthest-L CS-Pair;

* 2 (tog D) I -Q -approximate Closest-L CS-Pair or Furthest-L CS-Pair.

Proof. By Theorem 5.5.10, the BP-Satisfying-Pair problem on branching program of

size 2 (log N)o00) is equivalent to 2(logD)l--Gap-Max-TropSim under near-linear time re-

ductions. By Theorem 5.6.2, 2(log D)'-'-Gap-Max-TropSim can be reduced to 2 (log D)1-"_

approximate Closest-LCS-Pair. 2 (log D)'- -approximate Closest-LCS-Pair can be triv-

ially reduced to Closest-LCS-Pair. By Lemma 5.6.4 and Theorem 5.4.2, Closest-

LCS-Pair can further be reduced to BP-Satisfying-Pair. Thus BP-Satisfying-Pair, ex-

act Closest-LCS-Pair and 2 (logD) '-approximate Closest-LCS-Pair are equivalent under

near-linear time reductions for all 6 > 0.

Using a similar argument, we can also prove the same result for exact and approx-

imate Furthest-LCS-Pair. l

5.7 Regular Expression Membership Testing

In this section, we study the hardness of regular expression problems. First we prove

that BP-Satisfying-Pair, RegExp-String-Pair and Closest- RegExp-String-Pair are equiv-

alent under near-linear time reductions, then we show the hardness for the Regular

Expression Membership Testing problem.

For simplicity, we denote maxxEL(a),Ix|=b HamSim(x, b) by MaxSim(a, b) for any

regular expression a and string b. The following theorem gives a construction to

implement the Tropical Similarity using MaxSim.

Theorem 5.7.1. Let t be an even number and d1  dIt = 2. Given two sets of

N tensors A, B C {0, }1dix-..xdt satisfying that all the tensors in B are max-invariant,

there is a deterministic algorithm running in O(N poly(2')) time which outputs a set

A' of N regular expressions and a set B' of N strings. Here strings are of length

2 t, regular expressions are of length poly(2t), and both of them are over alphabet

E = {0, 1, 1}. Each a c A corresponds to a regular expression a' G A', each b C B
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corresponds to a string b' C B', and

MaxSim(a', b') = s(a, b).

Proof. For each k and each prefix of index i(k) E [d1 ] x ... x [dk] , we construct

corresponding gadget a' = Gi(k) (a) and b' = Hik) (b) for each a E A and b E B

(when k = 0, i(k) can only be the empty prefix, and we simply use G(a) and H(b)

for convenience) inductively, mimicking the evaluation of the Tropical Similarity. For

this purpose, we need to construct the following three types of gadgets.

Bit Gadgets. First we need bit gadgets to simulate the innermost coordinatewise

product in the evaluation of Tropical Similarity. For each coordinate i E [d1 ] x ... x [dtI,

for every a E A and b E B, we construct

Gi (a) = L if ai = 0, and Hi(b) = 0 if bi = 0,

1 if ai = 1, 1 if bi = 1.

It is easy to see that ai - bi = MaxSim(Gi (a), Hi(b)).

Now we combine bit gadgets recursively according to the max and E operators in

the evaluation for Tropical Similarity. Starting from k = t - 1, there are two cases to

consider.

Expectation Gadgets. The first case is when E operator is applied to (k + 1)-

th dimension. We construct the corresponding gadgets Gi(,) (a) and Gi(k) (b) for any

Z(k) E [d1 ] x x [dk], a E A and b E B as follows:

Gi(k)(a) = Gi(k),o(a) o Gi(k),1(a) and Hi(k)(b) = Hi(k),o(b) o H 1(k),1(b).

where o stands for concatenation as usual. It is easy to see that

MaxSim(Gi(k) (a), Hi(k)(b)) = Eje{o [,11 MaxSim(Gi(k),J(a), Hi (k)J,(b))]
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Max Gadgets. The second case is when max operator is applied to (k + 1)-th

dimension. For i(k) E [di] x ... x [dk] and a c A, Gi(k)(a) is constructed as follows:

G(k) (a) = G ,(k),o(a) G ,i(k), (a)

and we construct Hi(k)(b) for bE B to be

Hi(k) (b) = Hi(k) (b)

for all j E {0, 1}, which is well-defined since b is max-invariant. It is easy to see that

MaxSim(Gi(k) (a), Hi(k, (b)) =max .[MaxSim(Gi (k), (a), Hi(k), (b))]

Finally, we can obtain tensor gadgets G(a), H(b) for each a E A and b E B. El

From Theorem 5.7.1, we have the following reduction:

Corollary 5.7.2. Let E-Gap-Closest-RegExp-String-Pair be the approximation vari-

ant of Closest-RegExp-String-Pair: Given a set of N regular expressions of length

O(poly(D)) and a set of N strings of length D, distinguish between the following:

" Completeness: There exists a pair of a, b such that MaxSim(a, b) = 1 (i.e.,

b E L(a));

" Soundness: For every pair a, b, MaxSim(a, b) < E.

There exists an O(N poly(D))-time reduction from a Restricted E(D)-Gap-Max-TropSim

instance on two sets A, B of N tensors of size D to an instance of e(D)-Gap-Closest-

RegExp-String-Pair on a set of N regular expressions of length O(poly(D)) and a set

of N strings of length D.

This corollary also follows that there is a reduction from e-Gap-Max-TropSim

to RegExp-String-Pair, which is enough to show that RegExp-String-Pair is no eas-

ier than BP-Satisfying-Pair. But actually it is possible to show a direct reduction
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from Restricted OAPT to RegExp-String-Pair, without using the reduction from Re-

stricted OAPT to Restricted E-Gap-Max-TropSim:

Theorem 5.7.3. There exists an O(N poly(D))-time reduction from a Restricted OA PT

instance with two sets A, B of N tensors of size D to an RegExp-String-Pair instance

with a set of N regular expressions of length O(poly(D)) and a set of N strings of

length D.

Proof. We use nearly the same reduction as in Theorem 5.7.1. The bit gadgets are

constructed as follows:

[0 1] if ai = 0, 0 if b = 0,
Gi (a) =and Hi(b) =

0 if ai = 1, 1 if bi = I.

for any a E A, b E B. And we construct A gadgets in the same way as the max

gadgets, V gadgets in the same way as the E gadgets. By De Morgan's laws, we can

show that H(b) E L(G(a)) iff Pait(a, b) = 0. l

For the other direction, we note that the following theorem gives a low-space

algorithm for exact and approximate regular expression membership testing, then we

can obtain a reduction by Theorem 5.4.1. The following theorem is noted in [104}:

Theorem 5.7.4 ([1041). Given a regular expression a and a string b, deciding whether

b E L(a) is in NL.

Combining all the above reductions together, we can show the equivalence between

all pairs of BP-Satisfying-Pair, RegExp-String-Pair and E-Gap-Closest-RegExp-String-

Pair.

Theorem 5.7.5. For the case that the maximum element size D = 2 (logN)(), there

are near-linear time reductions between all pairs of the following problems:

" BP-Satisfying-Pair;

" RegExp-String-Pair;
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0 2(log D) 1-(1) - Gap-Closest-RegExp-String-Pair.

Proof. By Theorem 5.7.1 and 5.7.4, we can show cyclic reductions between these three

problems in a similar way as in the proof of Theorem 5.6.5.

We can also show a reduction from Restricted OAPT to Regular Expression Mem-

bership Testing on two strings using the same gadgets in Theorem 5.7.3.

Theorem 5.7.6. There exists an O(N poly(D))-time reduction from a Restricted OAPT

instance with two sets A, B of N tensors of size D to an instance of Regular Expres-

sion Membership Testing on a regular expression R of length O(N poly(D)) and a

string S of length O(N poly(D)).

Proof. We construct the two sets A', B' as in Theorem 5.7.1. For the construction

for the regular expression, let w be the concatenation of all a' C A separated by" "

Then we construct the regular expression R to be

R = [o 1[0 I1]]*O [w] o [o%1[0 I1l]*

and we construct the string S by concatenating all b' E B directly. It is easy to see

that there exists a pair (a, b) E A x B with pait(a, b) 0 iff S E L(R), by noticing

that all the strings x c L(w), b' E B are of the same length D.

5.8 Subtree Isomorphism and Largest Common Sub-

tree

In this section, we study the hardness of Subtree Isomorphism and Largest Common

Subtree. Our reductions here are inspired by [4, 111. We begin with some notations

to ease our construction of trees. Recall that all trees considered in this chapter are

bounded-degree and unordered. We are interested in both rooted and unrooted trees.

Here "rooted" means that the root of G must be mapped to the root of H in the

isomorphism.

149



We use T2 to denote the tree with exactly two nodes. Let ' be the 3-node tree

with root degree 1, and let T be the 3-node tree with root degree 2. For a tree T,

let Pk(T) be the tree constructed by joining a path of k nodes and the tree T: one

end of the path is regarded as the root, the other end of the path is linked to the root

of T by an edge. For two trees T and Tb, we use (T o Tb) to denote the tree whose

root has two children T and Tb.

5.8.1 Subtree Isomorphism

In this subsection, first we prove that BP-Satisfying-Pair and Subtree-Isomorphism-Pair

are equivalent under near-linear time reductions, then we show the hardness for Sub-

tree Isomorphism on two trees.

For two trees Ta, T, we use STI(T, T) to indicate whether T is isomorphic to

a subtree of T when Ta, T are seen as unrooted trees. Also, we use RSTI(a, b) to

indicate whether Ta is isomorphic to a subtree of T when Ta, T are seen as rooted

trees.

Theorem 5.8.1. Let t be an even number and d1 = - = dt 2. Given two sets of

N tensors A, B in {0, 1}dix-xdt satisfying that all the tensors in A are A-invariant,

there is a deterministic algorithm running in O(N poly(2t)) time which outputs two

sets A', B' of N binary trees of size 0(2t) and depth 0(t), such that each a C A

corresponds to a tree a' E A', each b E B corresponds to a tree b E B', and

pait(a, b) = RSTI(a', b') = STI(a', b'),

where Palt(a, b) is the negation of the Alternating Product of a and b.

Proof. For each k and each prefix of index i(k) E [d1 ] x ... x [dk] , we construct

corresponding tree gadgets G(k) (a) and Hi(k) (b) for each a E A and b E B (when

k = 0, i(k) can only be the empty prefix, and we simply use G(a) and H(b) for

convenience) inductively, mimicking the evaluation of the alternating product. Our
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gadgets satisfy that

RSTI(Gi, (a), Hi(,) (b)) = palt (a(k), bi(k))

for any subtensors a(k),, bi(k). For this purpose, we need to construct the following

three types of tree gadgets.

Bit Gadgets. First we need bit gadgets to simulate the innermost coordinatewise

product in the alternating product. For each coordinate i C [d 1 ] x - x [dt], for every

a C A and b E B, we construct

if ai = 0,

if ai = 1,

and Hi(b) =

T2

if bi = 0,

if bi = 1.

It is easy to see that RSTI(Gi(a), Hi(b)) iff ai A bi = 0.

Now we combine bit gadgets recursively according to the A

the Alternating Product. Starting from k = t - 1, there are two

and V operators in

cases to consider.

AND Gadgets. The first case is when A operator is applied to (k+1)-th dimension,

then by De Morgan's laws, we need to construct our gadgets such that for all i(k) E

[d 1] x ... x [dk]

RSTI(Gi(k) (a), Hi(k) (b)) = RSTI(Gi(k),o(a), Hi(k),O(b)) V RSTI(Gi(k),1 (a), Hi(k),1(b)).

To do so, for a E A, we construct Gi(k) (a) to be

Gi(k)(a) = -P1 (G (k),o(a)) = P(G (k),1 (a)),

which is well-defined since a is A-invariant. And we construct Hi(k) (b) to be

Hi(k) (b) = (Hi(k),o(b) 0 Hi(k) 1(b)) .
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In any subtree isomorphism, it is easy to see that Gi(k,o(a) (or Gj(k,),(a)) can only be

mapped to either Hi(k),o(b) or Hi, (k),(b), so Gi(k) (a), Hi(k)(b) implement an A operator.

OR Gadgets. The second case is when V operator is applied to (k+1)-th dimension,

then by De Morgan's laws, we need to construct our gadgets such that for all Z(k) E

[d1] x - x [dk],

RST(Gi(k) (a), Hi(k)(b)) = RSTI(G ,(k)o(a), Hi(k),O(b)) A RSTI(G (k)J (a), Hi(k),1 (b)).

First for

struction:

any tree T, we define two auxiliary trees Uo (T), U, (T) to ease our con-

bo(T) = (P 3 (T) o 7?) and U1(T) = (P3 (T) o ' 3 ).

It is easy to verify that for any two trees T1 , T2 ,

RSTI(Uo(T1), Ui(T2)) = RSTI(U1(T1), Uo(T2 )) = 0,

and

RSTI(Uo(T1), Uo(T2)) = RSTI(U1(T1), U,(T2)) = RSTI(T1 , T2 ).

We construct the corresponding tensor gadgets Gi(k) (a) and Hi(k) (b) for a E A and

b E B as follows:

Gi(k)(a)= (Uo(Gi(k),o(a)) o l(Gi(k)J(a)))

and

Hi(k)(b) = (Uo(Hi(k),o(b)) a U1 (Hi(k,l(b))) .

In any subtree isomorphism, it is easy to see that Uo(Gi(k),o(a)) can only be mapped to

Uo(Hiz(k),o(b)), and U1, (Gi(k)J, (a)) can only be mapped to U1 (Hi(k)J (b)), so Gi(k) (a), Hi(k) (b)

implement an V operator.
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Correctness. It is not hard to verify that RSTI(G(a), H(b)) = pait(a, b) by De Mor-

gan's laws. To show RSTI(G(a), H(b)) = STI(G(a), H(b)), we focus on the case that

t > 0 since the case that t = 0 is obvious. Let the root of GA be r and the height of

GA be h. The outermost operator in an Alternating Product is A, so r has only one

child which has two subtrees of equal height h - 2. It is easy to see that the height

of HB is also h. Suppose that r is mapped to a node r' in HB and c is mapped to c'.

If we regard c' as the root of HB, then after deleting c', HB should be split into two

subtrees of height > h - 2 and a single node r'. The only possible case is that c' is of

depth 1 w.r.t. the original root of HB (the depth of a root is 0) and r' is the original

root of HB. 

Theorem 5.8.2. Given two bounded-degree unrooted trees TA and TB, it can be de-

cided in NSPACE[(log n) 2] that whether TA is isomorphic to a subtree of TB.

Proof. This algorithm works by divide and conquer on trees. At each recursion, we

have two trees SA and SB (implicit representation) as well as a set of node pairs

M = {(ai, bi),. . ., (ak, bk)} (initially, SA = TA, SB = TB and M = 0). We need to

decide whether there is an isomorphism from SA to some subtree of SB satisfying ai

in SA is mapped to bi in SB for all 1 < i < k.

First we find a centroid c of SA, i.e., a node of SA that decomposes SA into subtrees

of size at most [ISA 1/21 when the node is deleted. Then we nondeterministically guess

a node c' in SB to be the node that mapped by c in the isomorphism. If c = ai for

some i but c' # bi, then we reject; otherwise, we guess an injective mapping from the

neighbors of c in SA to the neighbors of c' in SB-

For each neighbor v of c, let v' be the neighbor of c' mapped by v, Sj be the subtree

of SA containing v when the edge between v and c is deleted, Sv' be the subtree of

SB containing v' when the edge between v' and c' is deleted. We create a new set of

node pairs M' = {(ai, bi) E M I a, E S4}. If bi SI for some pair (ai, bi) E M', then

we reject; otherwise, we recursively checking if there is an isomorphism from S to

some subtree of S' satisfying ai is mapped to bi for all (ai, bi) E M' and v is mapped

to v'.
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This algorithm terminates when SA is a single node. There are at most O(log n)

levels of recursion by the property of centroid. At each level, we use only O(log n)

space for c, c' and their neighbors (note that SA, SB are bounded-degree trees), and

SA, SB can always be accessed according to the information stored at the upper levels

of recursion. Thus this algorithm runs in NSPACE[(log n)2 ]. l

Combining the above reductions together, we can show the equivalence between

BP-Satisfying-Pair and Subtree-Isomorphism-Pair.

Theorem 5.8.3. BP-Satisfying-Pair on branching program of size 2 (log N)o(') and Subtree-

Isomorphism-Pair on (rooted or unrooted) trees of size 2 (log N)O() are equivalent under

near-linear time reductions.

We can also show a reduction from OAPT to Subtree Isomorphism on two trees

using the same gadgets in Theorem 5.8.1.

Theorem 5.8.4. There exists an O(N poly(D))-time reduction from a Restricted OAPT

instance with two sets A, B of N tensors of size D to an instance of Subtree Iso-

morphism on two (rooted or unrooted) binary trees of size O(N poly(D)) and depth

2log N + O(log D).

Proof. Using the recursive construction in Theorem 5.8.1 we can obtain tensor gadgets

G(a),H(b) for each a E A and b E B, such that pait(a,b) = RSTI(G(a),H(b))

STI(G(a), H(b)).

We can assume the set size N is a power of 2 by adding dummy vectors into each

set. Now we combine the tensor gadgets in each set respectively to construct two

trees GA, HB as our instance for Subtree Isomorphism:

a) To construct GA for set A:

" Initialize GA by a complete binary tree of N leaves;

" Associate each leaf with a tensor a - A;

* For all a E A, construct plog N(G(a)) and link an edge from its root to the

corresponding leaf of a.
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b) To construct HB for set B:

" Initialize HB by a complete binary tree of N leaves;

* Select one leaf node vf;

" For every unselected leaf, construct plog N(H(O)) and link an edge from its

root to the leaf.

* Construct a complete binary tree of N leaves rooted at ve;

" Associate each leaf of the tree rooted at ve with a tensor b E B;

" For all b E B, construct plog N(H(b)) and link an edge from its root to the

corresponding leaf of b.

Correctness For any subtree isomorphism, one G(a) can be mapped to any H(b)

or H(O). Since there are only N - 1 gadgets of H(O), there must be some G(a)

mapped to some H(b). Thus RSTI(GA, HB) iff there exists a pair of (a, b) E A x B

with Palt(a, b) = 0. It is not hard to see that the root of GA can only be mapped

to the root of HB by arguing about the tree height (similar as Theorem 5.8.1), so

RSTI(GA, HB) = STI(GA, HB). l

5.8.2 Largest Common Subtree

In this subsection, first we prove that under near-linear time reductions between

BP-Satisfying-Pair and (exact or approximate) Max-LCST-Pair /Mi n- LCST- Pair are equiv-

alent, then we show the hardness for Largest Common Subtree on two trees.

For two trees a, b, define LCST(a, b) to be the size of the largest common subtree

of a and b when a, b are seen as unrooted trees. Also, we define RLCST(a, b) to be

the size of the largest common subtree of a and b when a, b are seen as rooted trees.

Now we establish a connection between Restricted Max-TropSim and Max-LCST-

Pair:

Theorem 5.8.5. Let t be an even number and d1 = = - d 2. Given two sets of N

tensors A, B in {0, }1dix..xdt satisfying that all the tensors in A are max-invariant,
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for any L > 2 ', there is a deterministic algorithm running in O(N poly(2') - L)

time which outputs two sets A', B' of N binary trees of size Q(poly(2t) L) and depth

0((2 1/2 + log L) - t), such that each a E A corresponds to a tree a' c A', each b E B

corresponds to a tree b c B', and

RLCST(a', b') = (2t1/ 2s(a, b) + O(1))L

L CST(a', b') = (2t/ 2s(a, b) + O(1))L

where s(a, b) is the Tropical Similarity score of a and b. In particular, if s(a, b) = 1,

then a',b' satisfy RLCST(a', b') = LCST(a',b') = |a'|.

Proof. For each k and each prefix of index i(k) E [di] x ... x [dk] , we construct

corresponding gadget a' = G(k) (a) and b' = Hi(k) (b) for each a z A and b E B

(when k = 0, i(k) can only be the empty prefix, and we simply use G(a) and H(b)

for convenience) inductively, mimicking the evaluation of the Tropical Similarity. For

this purpose, we need to construct the following three types of gadgets.

Bit Gadgets. For each coordinate i E [di] x ... x [dtl, let Ci be the tree constructed

by join a path of length 2t/2 and a complete binary tree of L nodes: one end of the

path is regarded as the root, and we link an edge between the node of depth binodd(i)

and the root of the complete binary tree, where binodd(i) [ 0, 2t/2) is the number

whose binary representation is ii 3 . . . it-1.

For every a E A and for each coordinate i E [di] x ... x [dt], we construct Gi(a) = Ci

if ai = 1, or simply a path of length 2t/2 if ai = 0. Similarly, for every b E B and for

each coordinate i E [di] x ... x [d,], we construct Hi (b) = C, if bi = 1, or simply a

path of length 2t/2 if ai = 0.

If ai - bi = 0, then RLCST(Gi(a), Hi(b)) = 2t/2; otherwise RLCST(Gi(a), Hi(b)) =

2 t/2 + L. Furthermore, for any two coordinates i, j with binodd(i) 4 binodd(),

RLCST(Gi(a), Hj(b)) - 2 t/2

Let K - 2t/2 + Flog Li + 1 be the maximum possible height of a bit gadget.

Now we combine bit gadgets recursively according to the E and max operators in the
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evaluation of Tropical Similarity score. Starting from k = t - 1, there are two cases

to consider.

Expectation Gadgets. The first case is when E operator is applied to (k + 1)-th

dimension. For i(k) E [di] x ... x [dkl and a E A, we construct Gi(k) (a), Hi(k) (b) as

follows:

Gi(k) (a) (pK-1(Gi(k),(a)) a pK-1(Gi()),1 )

and

Hi (k (a) _ K-(H i (, (b)) 0 pK-(Hitk),1(b))

Max Gadgets. The second case is when max operator is applied to (k + 1)-th

dimension. For i(k) E [d1 ] x ... x [dk] and a c A, we construct Gi(k) (a), Hi(k) (b) as

follows:

Gi(k) (a) = PK(Gi (k, (a)) PK(GiI(a))

and

Hi(k) a - (PK-1(Hi, ,, 0(b)) 0 PK-1(H )1(b)))

Note that Gi(k) (a) is well-defined since a is max-invariant.

Finally we obtain tensor gadgets G(a), H(b) for every a c A, b E B. It is easy to

see that the depth of trees is O(tK) < o(( 2t/2 + log L) - t), and the size of trees is

O(L -2' + K - 2t) = O(poly(2t) - L).

Correctness for RLCST. First we show that RLCST(G(a), H(b)) = (2t/2s(a, b) +

O(1))L. We fix two tensors a, b. For every dimension k, let Uk be a set of gadget

pairs:

Uk = {(Gi(k)(a), H(k)(b)) I i(k), J(k) E [d1 ] x ... x [dk], ip f jP for some odd p}.

Let Ek be the maximum RLCST among the pairs in Uk.

For every i(k) E [d1 ] x... x [dt], let f(i(k)) = RLCST(Gi( (a), Hi(k)(b)). For the last

dimension t, it is easy to see that f(i) = 2 t/2+(a -bi) -L and -t = 2 t/2. Now we prove
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by induction that f(i(k)) Ek holds for every 0 < k < t and i k) c [d1] x ... x [d].

On the one hand, if an E operator is applied to the (k + 1)-th dimension, by

induction hypothesis we have f(i(k), 0) + f(i(k), 1) > 2 Ek+1, so f(i(k)) f((k), 0) +

f (i(k), 1) + 2(K - 1) + 1. Note that sE < 2 Ek+1 + 2(K - 1) + 1, SO f(i(k)) Ek holds.

On the other hand, If the max operator is applied to the (k + 1)-th dimension, then

we have f(i(k)) = max{f(i(k), 0), f(i(k), )} + K and ek Ek--1 + K, so f(i(k)) Ek

holds as well.

Expanding the above recurrence relation of f(i(k)), we have

RLCST(G(a), H(b)) = 2t/2 s(a, b)L + O(K) .2t/2

= 2t/2s(a, b)L + 0(2 t/2 + log L) - 2 t/2

= (2 / 2 s(a, b) + 0(1))L.

Correctness for LCST. Now we show that LCST(G(a), H(b)) = RLCST(G(a), H(b))+

O(L). Fix a pair of (a, b) E A x B. If a node of G(a) or H(b) is in a bit gadget, then

we call it bit node. If a node of G(a) or H(b) is not in any bit gadget, then we call it

operator node.

Let IG(a) and IH(b) be the largest isomorphic subtrees in G(a) and H(b). Let ra

be the root of IG(a), i.e., the lowest node when the tree is directed with respect to

the root of G(a), and let rb be the root of IH(b). Let r' be the node in G(a) that is

mapped to rb, and r' be the node in H(b) that is mapped from ra.

If ra = r', then let q = l and ul = ra, U' = rb. Otherwise, let u1 , . . . , u be the

list of nodes that are in IG(a) and are adjacent to some node on the path from ra to

rg. Assume U1, ... , Uq is in depth-increasing order (it is easy to see that no two such

nodes are of same depth). Let u', ... ,u' be the nodes in IH(b) that are mapped by

U1,... , Uq, respectively. Each node in u', ... , u' should be adjacent to some node on

the path from r' to rb in IH(b).

For a node ui, we denote the whole subtree of ui in G(a) as T, and we define 1

similarly. We can decompose the subtree IG(a) into two parts: the first part is the path

from ra to r', and the second part is the q rooted subtrees Ta 1 = T. 1 flIG(a), -, Tuq
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Tu, n IG(a). Similarly, we can decompose IH(b) into the path from rb to r' and q

rooted subtrees TU1 = T 1 n IH(b), ... , Tu,= 0T, n IH(b). Thus we have

q q

LCST(G(a), H(b)) = q + Tu, I O(tK) + RLCST(Ti, T' )
i=1 i=1

It is sufficient to obtain a bound for the sum of RLCST of T,,, T',. If some uj is

a bit node, then ui is also a bit node for all i > j, and all of them are in the same

bit gadget, so Ej_, RLCST(TI, Ti,) < O( 2t/2 + L). Similarly, some u is a bit node,

then u' is also a bit node for all i < j, and all of them are in the same bit gadget, so

3 R LCST(T, T',) Q( 2t/2 + L).

Now we consider the following three cases when both ui and u' are operator nodes:

(depth(ui) stands for the depth of ui in G(a), depth(u') stands for the depth of u' in

H(b))

Case 1. depth(ui) 0 depth(u') (mod K), then it is impossible to map some operator

node with two children in Tu, to an operator node with two children in Tu'.
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If depth(ui) > depth(u'), then at most one bit gadget in Tu, can have nodes

being mapped to Tu;, and the case that depth(ui) < depth(u') is similar.

Thus RLCST(Ts, T',) < O(tK) + (2t/2 + L) = O(tK + L).

Note that the depth of parent nodes of ui and u' should also be different

modulo K, so either ui has no parent in IG(a) (this is the case when ra = r')

or the parent of ui has only one child in IG(a), and either case implies i = q.

Case 2. If depth(ui) = depth(u') (mod K) but depth(ui) > depth(u'), then since K

is an upper bound of the height of any bit gadget, all the nodes in T", can

only be mapped to the operator nodes in Ta;, which implies RLCST(T,, T',)

is no more than the number of operator nodes in ' The case that

depth(ui) = depth(u') (mod K) but depth(ui) < depth(u') is similar.

All the trees T' are disjoint. Thus the sum E> RLCST(Ti, T 7) over all i

in this case can be upper-bounded by the total number of operator nodes

in G(a), which is O(K- 2 t/2).

Case 3. If depth(ui) = depth(u'), then there exists two prefixes of index i(k),J(k),

such that

RLCST(Tui, Tu,) = RLCST(Gi(k (a), H(k) (b)) + O(K)

Note that u1,... ,uq are in depth-increasing order, and u.,.... ,' are in

depth-decreasing order, so this case can only happen for at most one pair

of nodes.

Summing up all the above cases, we have

LCST(G(a), H(b)) < 0(tK)+0(2 t/2 +L)+0(tK+L)+0(K-2 t/2) +R LCST(Gik (a), Hiyk (b))

for any i(k), J(k). Thus LCST(G(a), H(b)) < RLCST(G(a), H(b)) + O(L). E

By Theorem 5.8.5 with L = 2', we can easily have the following reductions from

e(D)-Gap-Max-TropSim and E(D)-Gap-Min-TropSim to approximation variants of Max-
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LCST-Pair and Min-LCST-Pair. Here we focus on the case that E(D) = Q(D-1/ 2 ). It

is reasonable since v/D - s(a, b) is always an integer, and o(D-1/ 2 )-Gap-Max-TropSim

is essentially equivalent to Max-TropSim. This argument also holds for o(D- 1/ 2 )-Gap-

Min-TropSim.

Theorem 5.8.6. For any function E(D) = Q(D- 1 / 2 ), there exists an O(Npoly(D))-

time reduction from a Restricted E(D)-Gap-Max-TropSim instance with two sets of N

tensors of size D to an instance of the following approximation variant of Max-L CST-Pair:

Given two sets A, B of N trees of size poly(D) and a set B of N strings of length D

over a constant-size alphabet, distinguish between the following:

" Completeness: There exists a pair of a, b such that LCST(a, b) = |a| = (1 +

o(1))D 3/2;

" Soundness: For every pair a, b, LCST(a, b) < O(e(D)D 3 / 2 ).

And this conclusion also holds for RLCST.

Remark 5.8.7. Note that Theorem 5.8.6 also implies a reduction from BP-Satisfying-

Pair to Subtree-Isomorphism-Pair, but the trees constructed by the reduction in Theorem

5.8.1 have a smaller size and a lower depth.

Theorem 5.8.8. For any function E(D) = Q(D-1/ 2 ), there exists an O(N poly(D))-

time reduction from a Restricted e(D)-Gap-Min-TropSim instance with two sets of N

tensors of size D to an instance of the following approximation variant of Min-L CST-Pair:

Given two sets A, B of N trees of size poly(D) and a set B of N strings of length D

over a constant-size alphabet, distinguish between the following:

" Completeness: There exists a pair of a, b such that LCST(a, b) < O(e(D)D/ 2);

" Soundness: For every pair a, b, LCST(a, b) = |a| = (1 + o(1))D/ 2

And this conclusion also holds for RLCST.

By Theorem 5.4.2, we show reductions from Max-LCST-Pair (or Min-LCST-Pair)

to BP-Satisfying-Pair via the following theorem:
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Theorem 5.8.9. Given two bounded-degree unrooted trees T1 and TB and a number

q, it can be decided in NSPACE[(log n)2 ] that whether there is an isomorphism between

a subtree of TA and a subtree of TB of size q.

Proof. The algorithm in Theorem 5.8.2 suffices to fulfill the requirement if modified

slightly. At each level of recursion, we have two trees SA and SB, a number q, and a

set of node pairs M {(a, bi),.. . , (ak, bk)}. We need to decide whether there is an

isomorphism from a subtree of SA to a subtree of SB satisfying it is of size q and ai

in SA is mapped to bi in SB for all 1 <i < k.

First we find a centroid c of SA, then we guess if there is a subtree of size q that

contains c and is isomorphic to a subtree of SB. If not, then we delete c to decompose

SA into subtrees, guess which subtree contains a subtree that is isomorphic to a

subtree of SB of size q, and runs our algorithm to check recursively; If it is, then

follow the same routine as in Theorem 5.8.2: we guess a node c' in SB to be the

node that mapped by c in the isomorphism and a bijective mapping from some of the

neighbors of c in SA to some of the neighbors of c' in SB. Additionally, we guess a

number q, for each neighbor v of c and ensure the sum of q, over all neighbors equals

to q - 1. We then check recursively if there is an isomorphism from a subtree of S'

to a subtree of Sv7 of size q subject to the constraint that some set of node pairs are

matched. It is clear that this algorithm runs in NSPACE[(logn) 2]. E

Theorem 5.8.10. For the case that the maximum element size D = 2 (logN)o(l , there

are near-linear time reductions between all pairs of the following problems:

* BP-Satisfying-Pair;

e Max-LCST-Pair or Min-LCST-Pair on (rooted or unrooted) trees;

* 2(ogD)l-Q(l)-approximate Max-LCST-Pair or Min-LCST-Pair on (rooted or un-

rooted) trees;

Proof. By Theorem 5.8.6, 5.8.8 and 5.8.9, we can show cyclic reductions between

these three problems in a similar way as in the proof of Theorem 5.6.5. I
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We can also show a reduction from E(N)-Gap-Max-TropSim to Largest Common

Subtree on two large trees using the same gadgets in Theorem 5.8.5.

Theorem 5.8.11. Let t be an even number and d1 = - - - = dt = 2. Given two sets

of N tensors A, B in {0, 1 }di x.xdt, for L = e(2t log 2 N), there is a deterministic

algorithm running in O(N log 2 N2o(t)) time which outputs two binary trees A', B' of

size O(N log2 N20 (t)) and depth O(log 2 N poly(t)2t/2), such that

RLCST(A', B') = (2t/2smax + O(1))L

LCST(A', B') = (2t/2smax + O(1))L

where smax is the maximum Tropical Similarity among all pairs of (a, b) E A x B.

Proof. Using the recursive construction in Theorem 5.8.5, we can obtain tensor gad-

gets G(a), H(b) for each a E A and b E B. Let m be the smallest number such that

N < 2 '. Now we combine the tensor gadgets in each set respectively to construct

two trees GA, HB as our instance for Largest Common Subtree.

For any number K, we define K-zoomed complete binary tree ZK of 2 ' as follows:

first we construct a complete binary tree of 2 "' leaves, then we insert K - 1 internal

nodes between every pair of adjacent nodes (so ZK is of height mK + 1).

Let KD = O((2t/2 +log L)t) be the maximum diameter of any tensor gadget (G(a)

or H(b)). Let KG = 2(m + 1)KD.

We construct GA ='pmKG+l(TA), where TA is the following auxiliary tree:

" Initialize TA - ZKD, and arbitrarily select N leaves;

" For each selected leaf, associate it with a tensor a E A;

" Construct G(a) for every a E A, and link an edge from its root to the corre-

sponding leaf of a.

And the tree HB for set B is constructed as follows:

* Initialize HB = ZKG and arbitrarily select N leaves;
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e For each selected leaf, associate it with a tensor b E B;

* Construct pmKD+1(b) for every b E B, and link an edge from its root to the

corresponding leaf of b.

Proof for RLCST. Note that all the tensor gadgets are of same depth, and only

one gadget G(a) in GA can be mapped to a gadget H(b) in HB-

For L = E(2'log 2 N), using the fact that RLCST(G(a), H(b)) = (2t/2s(a, b) +

0(1))L, one can easily show that

RLCST(GA, HB) - (2 smax + 0(1))L + 0(mKG + mKD ) t/ 2 smax + 0(1))L.

Proof for LCST. Now we show that LCST(GA, HB) < LCST(G(a), H(b)) + O(L)

for some (a, b) c A x B.

If a node of GA or HB is in a tensor gadget, then we call it tensor node. If a node

of G(a) or H(b) is not in any tensor gadget, then we call it assembly node. Let G'A

be the tree GA with all tensor nodes removed, and we define H respectively.

We consider the following three cases:

Case 1. If none of tensor node of GA is in the LCST, then

LCST(CA, HB) = LCST(G', HB) < LCST(PA, HB) - LCST(ZKD, HB),

where PA is the path of length mKG + 1 linked with the root of TA. It

is easy to see that LCST(PA, HB) < mKG + 1. Note that every pair of

two tensor node from different tensor gadgets has distance at least 2KG,

which is greater than the diameter of TA, so the isomorphic subtree of TA in

HB cannot contain nodes from more than one tensor gadgets. By noticing

that LCST(ZKD, H(b)) = O(KD) for all b G B and LCST(ZKD, ZKG)

O(KG), we have LCST(ZKD, HB) = 0(KG). Thus LCST(GA, HB) = rnKG i

O(KG) = 0(mKG)-

Case 2. If LCST contains some tensor nodes of GA, and all such tensor nodes are
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mapped to assembly nodes of HB, then LCST(GA, HB) is no more than

LCST(G'A, HB) plus the number of tensor nodes in the LCST. By Case 1,

LCST(G', HB) = O(mKG). Note that every two tensor nodes in GA has

distance at most KG and any set of nodes of diameter O(KG) in HB can

only have size O(KG), so the number of tensor nodes in LCST is at most

O(KG). Thus LCST(GA, HB) O(mKG) + O(KG) =O(mKG).

Case 3. If some tensor node in GA is mapped to a tensor node in HB, then all the

tensor nodes of GA in the LCST are in the same tensor gadget, and it also

holds for GB. This can be shown as follows: Let a1 , U2 be two tensor node

in GA that are mapped to tensor nodes u', ' in HB, then

* U1, a 2 are in the same tensor gadget. This is because that the minimum

distance between two tensor nodes from different tensor gadgets in GA

is at least 2KD and at most KG, but the distance between any two

tensor nodes in HB is either < KD or > 2KG.

Su', U/' are in the same tensor gadget. This is because that the minimum

distance between two tensor nodes from different tensor gadgets in HB

is at least 2KG, but the distance between any two tensor nodes in GA

is at most KG.

Let G(a) be the unique tensor gadget in GA that has nodes in the LCST,

and let H(b) be the unique tensor gadget in HB that has nodes in the LCST.

By Case 1, LCST(G' , HB) = O(mKG). Thus we have

LCST(GA, HB) < LCST(GA \ G(a), HB) + LCST(G(a), H(b))

= O(mKG) + LCST(G(a), H(b)).

In any case, we can show that LCST(GA, HB) < LCST(G(a), H(b)) + O(L) for

some (a, b) E A x B, which completes the proof. l
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Theorem 5.8.12. There exists an O(Npoly(D))-time reduction from an E(N)-Gap-

Max-TropSim instance with two sets of N tensors of size D to an instance of o(E(N) 1 )-

approximate Largest Common Subtrees on two (rooted or unrooted) binary trees of size

O(N poly(D, E(N) )) and depth O(log 2 N poly(D, e(N)-)).

Proof. First we add dummy dimensions to each tensor such that the new size C of

every tensor is at least Q(E-2(N)). We construct the two trees A', B' as in Theorem

5.8.11. By setting L = Clog2 N, we have

LCST(A', B') = (v . Smax + 0(1)) . C log2 N.

Thus it reduces to distinguish LCST(A', B') from being ;> C3 / 2 log 2 N and < O(e(N)

C3 / 2 log 2 N), which can be solved by an o(E(N) )-approximation algorithm for LCST.

This conclusion also holds for RLCST. 0

5.9 Equivalence in the Data Structure Setting

In this section, we establish the equivalence between BP-Pair-Class problems in the

data structure setting.

Theorem 5.9.1. For the following data structure problems, if any of the following

problems admits an algorithm with preprocessing time T(N), space S(N) and query

time Q(N), then all other problems admits a similar algorithm with preprocessing

time T(N) - N'('), space S(N) - NM(1) and query time Q(N) - N ).

" NNSLCS: Preprocess a database D of N strings of length D = 2 (log N)() and

then for each query string x, find y E D maximizing LCS(x, y).

* Approx. NNSLCS: Find y E D s.t. LCS(x, y) is a 2 (1ogD) 1-( 1
) approximation to

the maximum value.

* Regular Expression Query: Preprocess a database E of N strings of length D =

2(log N)o(M), and then for each query regular expression y, find an x E D matching

y.
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* Approximate Regular Expression Query: for a query expression y, distinguish

between: (1) there is an x c D matching y; and (2) for all x c D, the hamming

distance between x and all z E L(y) is at least (1 - o(1)) - D.

Proof. We show a reduction from NNSLCS to Approx. NNSLCS for illustration, and

the proofs for the other pairs of problems are essentially the same.

By Lemma 5.6.4, there is a BP of poly-logarithmic size that accepts (a, b, k)

iff LCS(a, b) > k. Then using a similar argument as in Theorem 5.6.5, we can

show a reduction from an instance # = (A, B) of the following problem to an Ap-

prox. Closest-LCS-Pair instance 0' = (A', B'): given a set of strings A and a set of

string-integer pairs, determine whether there are a E A and (b, k) E B such that

LCS(a, b) > k. Moreover, this reduction maps each element separetely, i.e., there

exist two maps f, g such that A' = {f(a) I a c A}, B' = {g(b, k) I (b, k) c B}, and

both f and g are computable in Q( 2 polylog(D)) -_ 2 (log N)o(l) time and space for each

string of length D.

Now suppose there is a data structure for Approx. NNSLCS with preprocessing

time T(N), space S(N) and query time Q(N). For a set of string A, we construct

a data structure for NNSLCS as follows. In the preprocessing stage, we map all the

strings in A via f and store them in a data structure D for Approx. NNSLCS. For

each query string, we do a binary search for the maximum LCS. For every length k

encountered, we first map the query string and the length k via g and then query it

in the data structure D. The time cost and space usage of the new data structure

can be easily analyzed. l

A direct generalization of the above proof is that NNSLCS is actually the hardest

NNS problem among all distance that can be computed in small space.

Corollary 5.9.2. For every distance function dist that can be computed in poly-

logarithmic space, the exact NNS problem with respect to dist (NNSdist) can be reduced

to 2 (og D) 1 1(l) -approximate NNSLCS in near-linear time.

Remark 5.9.3. Here we assume that when the size parameter for NNSdit is N, the
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inputs to dist takes 2 (logN)o(l) bits to describe, and the output of dist takes polylog(N)

bits to describe.

Furthermore, basing on the hardness of solving BP-SAT, we can show that there

may not be an efficient data structure for NNSLCS in the following sense:

Theorem 5.9.4. Assuming the satisfiability for branching programs of size 2"(1)

cannot be decided in O(2(-)n) for some 6 > 0, there is no data structure for Ap-

prox. NNSLCS (or other data structure problems listed in Theorem 5.9.1) with prepro-

cessing time O(NC) and query time N1 - for some c, E> 0.

Proof. Our proof closely follows the proof for Corollary 1.3 in [151]. We only prove

that it is true for Approx. NNSLCS, the case for other data structures are similar.

Assume such a data structure for Approx. NNSLCS does exist. Now we show that

there is an algorithm for approximate Closest-LCS-Pair that runs in O(N 2'-) time for

some 6' > 0.

Let (A, B) be an instance of approximate Closest-LCS-Pair. Let y = 1/(2c). We

partition the set A into M = O(N 1 -7) subsets A 1,.. . ,Am, each of size O(NT'). Now

for each subset Aj, we build a data structure for Approx. NNSLCS, and query each

b E B in the data structure. Finally, we take the maximum among all the query

results. The total time for preprocessing is O(M - (N)c) = O(N 3/ 2 ) and that for

query is O(N -M - (N-) 1 ~") O(N2-e-y).

5.10 Faster BP-SAT Implies Circuit Lower Bounds

In [10], Abboud et al. showed that faster exact algorithms for Edit Distance or

LCS imply faster BP-SAT, and it leads to circuit lower bound consequences that are

far stronger than any state of art. Using a similar argument, strong circuit lower

bounds can also be shown if any of BP-Pair-Class or BP-Pair-Hard problems has faster

algorithms, even for shaving a quasipolylog factor.

We apply the following results from [101 to show the circuit lower bound conse-

quences, which are direct corollaries from [169, 1711:
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Theorem 5.10.1 ([169, 171]). Let n K S(n) 20(") be a time constructible and

monotone non-decreasing function. Let C be a class of circuits. If the satisfiability of

a function of the form

" AND of fan-in in O(S(n)) of

" arbitrary functions of fan-in 3 of

" O(S(n))-size circuits from C

can be decided in DTIME[O(2n/n10 )] time, then E'P does not have S(n)-size C-circuits.

Theorem 5.10.2 ([1691). For the complexity class NTIME[2 0 (')], we have

1. If for every constant k > 0, there is a satisfiability algorithm for bounded fan-in

formulas of size n k running in DTIMEfO(2n/nk)] time, then NTME[20 (n)] is

not contained in non-uniform NC 1 ;

2. If for every constant k > 0, there is a satisfiability algorithm for NC-circuits of

size n k running in DTIMEfO(2lnk)] time, then NTIME2O(n)] is not contained

in non-uniform NC.

First we show the circuit lower bound consequences if truly-subquadratic algo-

rithm exists:

Reminder of of Corollary 5.1.13 If any of the BP-Pair-Class or BP-Pair-Hard

problems admits an N2-, time deterministic algorithm (or (NM) 1 " time algorithm

for regular expression membership testing) for some e > 0, then ENP does not have:

1. non-uniform 2 '0(1) -size Boolean formulas,

2. non-uniform n'(1)-depth circuits of bounded fan-in, and

3. non-uniform 2 no(l) -size nondeterministic branching programs.

Furthermore, NTIME[20 (n)] is not in non-uniform NC.
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Proof. A truly-subquadratic time algorithm for BP-Pair-Class or BP-Pair-Hard prob-

lems implies a 2-(10())n-time algorithm for BP-SAT on branching program of size

2fl0"). Let S(n) = 2n(. O(S(n))-size Boolean formulas, O(log S(n))-depth circuits,

2"" "-size nondeterministic branching programs are all closed under AND, OR and

NOT gates proscribed in Theorem 5.10.1. Note that any formula of size 2 "o(l) can be

transformed into an equivalent n"(1)-depth circuit [159], and any n"oM-depth circuit

can be transformed into 2"O( -size branching program by Barrington's Theorem [46].

Then all the consequences in Item 1, 2, 3 follow from Theorem 5.10.1. Combining

Item 2 and Theorem 5.10.2, we can obtain the consequence that NTIME[2 0 (")] is not

in non-uniform NC.

We can also obtain results showing that even shaving a quasipolylog factor 2(log log N) 3

for problems in BP-Pair-Class and BP-Pair-Hard can imply new circuit lower bound.

First, it is easy to see that shaving a (log N)wM) factor can lead to new circuit lower

bound by Theorem 5.10.2.

Theorem 5.10.3. If there is a deterministic algorithm for BP-Satisfying-Pair on BP

of size S = 2 (log N)o(l) running in O(N 2 poly(S)/(log N)wM)) time, then the following

holds:

1. For any constant k > 0, SAT on bounded fan-in formula of size nk can be solved

in O(2n/n'()) deterministic time;

2. NTIME[20 (")] is not contained in non-uniform NC1 .

Proof. By Theorem 5.10.2, Item 1 implies Item 2, so we only need to show the con-

clusion in Item 1.

If BP-Satisfying-Pair can be solved in O(N2 poly(S)/(log N)w(l)) time, then BP-

SAT on BP of size O(poly(n)) can be solved in

O(2' poly(n)/n(l)) = O(2"/nw(l)).

Note that any formula of size n k can be transformed into an equivalent BP of width

W = 5 and length T = O(nSk) (by rebalancing into a formula of depth 4k log n [1591
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and using Barrington's Theorem [46J). Thus SAT on bounded fan-in formulas of size

nk can also be solved in Q(2n/nw(l)). l

A part of our reductions from BP-Satisfying-Pair to problems in BP-Pair-Class

can be summerized below. In the rest of this section, for each problem in BP-Pair-

Class (but except BP-Satisfying-Pair), we use the variable N to denote the number of

elements in each set, and D to denote the maximum length (or size) of each element.

We exclude BP-Satisfying-Pair here because the size S of BP is more important than

D in BP-Satisfying-Pair.

Corollary 5.10.4. For every problem P in BP-Pair-Class except BP-Satisfying-Pair:

o If P is a decision problem, then there is an O(Npoly(D))-time reduction from

Restricted OAPT to P;

0 If P is an approximate problem, then for every E(D) = Q(D- 1/2 ), there is

an O(Npoly(D))-time reduction from Restricted E(D)-Gap-Max-TropSim or Re-

stricted E(D)-Gap-Max-TropSim to P with approximation ratio o(E(D)- 1 ), and

each element has size O(poly(D)).

And any reduction here preserves the value of N.

Reminder of Theorem 5.1.10 For D = 2 (log N)o0 if there is an

O (N2 poly(D)/2(log1og N) 3) or 0 (N 2 /(log N)w(l))

time deterministic algorithm for the decision, exact value, or O(polylog(D))-approximation

problems in BP-Pair-Class, then the same consequences in Theorem 5.10.3 follows.

Proof. By Corollary 5.10.4 and the fact that exact value problem can be trivially

reduced to its approximation version, we only need to show that this statement is

true for OAPT and (log D)c-Gap-Max-TropSim for every c > 0 (the proof for (log D)C-

Gap-Min-TropSim should be similar).
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Note that all our reductions here preserve the value of N. If there is an O(N2 /(log N)O(l))-

time algorithm, then BP-Satisfying-Pair can also be solved in O(N2 /(log N)W(l))-time

and the consequences in Theorem 5.10.3 follows.

Now consider the case that a O(N 2 poly(D)/2(10o log N) 3 )-time algorithm exists. Re-

call that the hard instances of BP-Satisfying-Pair we constructed in the proof of Theo-

rem 5.10.3 is on BP of width W = 0(1) and length T = O(poly(n)) = O(polylog(N)).

By Theorem 5.5.1, we know that this instance can be near-linear time reduced to an

OAPT instance with

D = 2 0(logw log T) - 2 0(log log N) - polylog(N).

Thus shaving an 0(2(loglogN)3
) factor to OAPT implies an O(N2/(log N)W(l))-time

algorithm for BP-Satisfying-Pair.

By Theorem 5.5.6, for e = log- 3c(T), we know that a hard instance of BP-

Satisfying-Pair can also be near-linear time reduced to an E-Gap-Max-TropSim instance

with (adding dummy dimensions if necessary)

D = 2e(log
2 

W log
2 T(log log W+log log T+log e- 1)) - 2 E(log

2 TloglogT)

Then we have (log D)C = o(e-1 ), and thus shaving an 0(2 (loglogN)3 ) factor to (log D)C-

Gap-Max-TropSim implies an algorithm for the hard instances of BP-Satisfying-Pair

running in the following time:

O(N 2 poly(D)/2(log log N)
3 ) = O(N 2 . 2e(log 2 Tlog log T) / 2 (log log N)

3
)

= O(N2 /(log N)w()).

For BP-Pair-Hard problems, recall that part of our reduction can be summerized

below:

Corollary 5.10.5. For every problem P in BP-Pair-Hard:
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" If P is a decision problem, then there is an O(N poly(D))-time reduction from

Restricted OAPT to P on input of length O(N poly(D));

" If P is an approximate problem, then for every E(N), there is an O(N poly(D,

e(N>)1 ))-time reduction from Restricted E(N )-Gap-Max-TropSim or Restricted e(N)-

Gap-Max-TropSim to P with approximation ratio o(e(N)- 1 ) on input of length

O(N poly(D, e(N)- 1)).

Then we can obtain the following result:

Reminder of Theorem 5.1.11 If there is an deterministic algorithm for any de-

cision, exact value or polylog(N)-approximation problems among BP-Pair-Hard prob-

lems listed in Theorem 5.1.8 running in running in

o (N2/ 2wo loN)3

time (or 0 (NM2w(loglog(NM))3) time for Regular Expression Membership Testing),

then the same consequences in Theorem 5.1.10 follows.

Proof. By Corollary 5.10.5 and the fact that exact value problem can be trivially

reduced to its approximation version, we only need to show that this statement is

true for OAPT and (log N)c-Gap-Max-TropSim for every c > 0.

The proof for OAPT is similar as in Theorem 5.1.10. For (log N)c-Gap-Max-

TropSim, we know that the hard instances of BP-Satisfying-Pair in Theorem 5.10.3

can be reduced to a e-Gap-Max-TropSim instance with

D = 2 0(log 2 
W log 2 T(log log W+log log T+log E- 1 )) -- 2 0(log log N)

3

for e = (log N)c. Thus shaving an 0(2w(loglog N) 3 ) factor to (log N)c-Gap-Max-TropSim

implies an algorithm for the hard instances of BP-Satisfying-Pair running in O(N 2 /

(log N)w(l)) time. E
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5.11 Derandomization Implies Circuit Lower Bounds

For the some problems A like Longest Common Subsequence, despite its approximat-

ing for the pair version of A (Approximate Max-A-Pair) is subquadratically equivalent

to Max-TropSim, it is still hard to find a reduction from approximating A. The main

barrier is when trying to construct gadgets to reduce Approximate Max-A-Pair to

Approximate A, the contribution to the final result for just one pair is too small to

make a large approximating gap.

To overcome this barrier, we follows from [111 to define e(N)-Super-Gap-Max-TS,

which is a variant of e(N)-Gap-Max-TropSim with a large fraction of pairs having

perfect Tropical Similarities:

Definition 5.11.1 (e-Super-Gap-Max-TS). Let t be an even number and d, = d2=

. = dit = 2. Given two sets of tensors A, B E {0, 1}dix-~.xdt of size D = 2', distinguish

between the following:

" Completeness: A (1 - 1/ log 0 N)-fraction of the pairs of a E A, b E B have a

perfect Tropical Similarity, s(a, b) = 1;

" Soundness: Every pair has low Tropical Similarity score, s(a, b) < E.

where E is a threshold that can depend on N and D.

In [111, Abboud and Rubinstein has shown that o(1)-Super-Gap-Max-TS can be

reduced to 0(1)-approximate LCS. Using the same reduction, we have the following

corollary for arbitrary approximation ratio:

Theorem 5.11.2 ([111). Given an e(N)-Super-Gap-Max-TS instance on N tensors of

size D, we can construct two strings x, y of length ND in O(N poly(D)) deterministic

time such that:

" If (1 - 1/log 1 U N)-fraction of the pairs have a perfect Tropical Similarity, then

L CS(x, y) > (1/ 3)ND;

" If every pair has low Tropical Similarity score, then LCS(x, y) < 2e(N)ND
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Thus, if there is an E(N)- 1 -approximation algorithm for such kind of (x, y) pairs,

then there is a faster algorithm for (E(N)/6)-Super-Gap-Max-TS.

Proof. We construct strings G(a), H(b) as tensor gadgets for each tensor a E A, b E B

as in the reduction in [11] (stated in Theorem 5.6.1). Then we construct the final

strings x, y by concatenating all the tensor gadgets. Using a similar argument as in

[111, we can show that if there are at least (1 - 1/ log1 0 N)N 2 pairs of tensors with

perfect Tropcial Similarities, then LCS(x, y) > (1 - 1/ log10 N) - ND/2; if every pair

has low Tropical Similarity score, then LCS(x, y) < E(N) - 2ND. L

There is no obvious reduction from BP-Satisfying-Pair to E(N)-Super-Gap-Max-TS,

and a randomized algorithm can even solve E(N)-Super-Gap-Max-TS in nearly linear

time. But finding a deterministic algorithm for E(N)-Super-Gap-Max-TS is still hard:

as noted by Abboud and Rubinstein in [11], a truly-subquadratic time deterministic

algorithm for E(N)-Super-Gap-Max-TS can imply some circuit lower bound for ENP

Combining their ideas with the connection between Tropical Tensors and BP-SAT we

established, we can show even stronger circuit lower bounds if such algorithm exists.

We base our proof on the following results in the literature:

Theorem 5.11.3 ([48j). Let F be a set of function from {0, 1}' to {0, 1} that are

efficiently closed under projections. If the acceptance probability of a function of the

form

" AND of fan-in in no()1 of

" OR's of fan-in 3 of

" functions from Fn+0(1ogn)

can be distinguished from being = 1 or < 1/n'0 in DTIME[2n/nw(l)], then there is a

function f E Ec on n variables and f F,.

Theorem 5.11.4 ([169, 48]). If the acceptance probability of a function from NC can

be distinguished from being = 1 or < 1/n'0 in DTIME[2'n/nw(l)], then NTME[20 (n)] is

not contained in NC1 .
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Theorem 5.11.5. Let AC-BP-SAT be the following problem: given a branching pro-

gram P of length T and width W on n inputs, distinguish the acceptance probability

of P from being = 1 or < 1/n1 0 .

There is a reduction from AC-BP-SAT to e-Super-Gap-Max-TS on two sets of N =

2 n/2 tensors of size D = 2 0(log 2 Wlog 2 T(oglog W+loglog T+log6-1)), and the reduction runs

in O(N poly(D)). Here e is a threshold value that can depend on N (but cannot

depend on D).

Reminder of Theorem 5.1.12 The following holds for deterministic approximation

to LCS:

1. A 2 (log N) 1-0( 1) -approximation algorithm in N2-1 time for some constant 6 > 0

implies that ENP has no n'(1) -depth bounded fan-in circuits;

2. A 2 o(logN/(IoglogN)2 ) approximation algorithm in N 2- time for some constant

6 > 0 implies that NTME[2 0 (')] is not contained in non-uniform NC1 ;

3. An O(polylog(N))-approximation algorithm in N2/2w(loglogN)3 time implies that

NTIME20 (n)] is not contained in non-uniform NC 1 .

Proof. By Theorem 5.11.3 and Theorem 5.11.4, for Item 1, it is sufficient to show AC-

BP-SAT on BP of length 2f(1) and width 0(1) on n inputs can be solved in 2 (1-Q(1))n

time; for Item 2 and 3, it is sufficient to show AC-BP-SAT on BP of length O(poly(n))

and width 0(1) on n inputs can be solved in 2'/n'(1) time (the former scale of BP

is able to simulate n"O)-depth circuit, while the later one is able to simulate NC by

Barrington's Theorem [46]).

Item 1. Assume there exists a 2(log N) -approximation algorithm for LCS in N2 -

time for some c > 0 and 6 > 0. By Theorem 5.11.5, AC-BP-SAT on BP of length

T = 2""oM and width W = 0(1) on n inputs can be reduced to (2-(logK)- /6)-Super-

Gap-Max-TS on K = 2 n/2 tensors of size

D = 2 (""('-(o(logn)+(log K)1-c)) 1-c+o(1)
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Then by Theorem 5.11.2, (2-0 g K)" /)-Super-Gap-Max-TS can be reduced to 2(logK)'-c_

approximate LCS for strings of length

N = KD = 2 n/2+n-C+o() = 2 (1/2+o(1))n

By our assumption, the last problem can be solved in N 2-6 time, so AC-BP-SAT

on branching program of length 2 '0() and width 0(1) on n inputs can be solved in

2(1-/2+o(1))n time. Applying Theorem 5.11.3 completes the proof.

Item 2. Assume there exists a 2 f(log N)-approximation algorithm for LCS in N 2-6

time for some constant 6 > 0 and some function f(k) = o(k/ log 2 k). Let g(k) =

2f (k) + log k. Then we have g(log N) = o(log N/(log log N) 2) and

2 f((1+0(1)) log K) < 2 (1+o(1))f(logK) < 2 2f(logK) = 0 ( 2 9(logK))

By Theorem 5.11.5, AC-BP-SAT on BP of length T = 0(poly(n)) and width W -

0(1) on n inputs can be reduced to 2-g0 g K)-SUper-Gap-Max-TS on K = 2 n/2 tensors

of size

D = 2 0(log 2 n-(log log n+g(log K))) - 2 0(log 2 n-o(log K/(log log K)
2 )) = 2 0(n)

Then by Theorem 5.11.2, 2-g(logK)-SUper-Gap-Max-TS can be reduced to o( 2 g(logK)_

approximate LCS for strings of length N = KD = 2(1/2+o(1))n. Note that 2 f (log(Kluo(l)))

o( 2 9(logK)). Thus by our assumption, the last problem can be solved in N2-6 time,

which means AC-BP-SAT on branching program of length 2n'(1) and width 0(1) on n

inputs can be solved in 2(16/2+o())n time. Applying Theorem 5.11.4 completes the

proof.

Item 3. Assume there exists a log(N)-approximation algorithm for LCS in N2/2(1og log N)
3

time for some c > 0. Using a similar calculation as in Theorem 5.1.11, we know that

AC-BP-SAT on branching program of length O(poly(n)) and width 0(1) on n inputs
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can be solved in

N2/ 2 w(log log N) 3 < 2n+O(log3 n) / 2 w(1og3 n) < 2n/w(1)

time. Applying Theorem 5.11.4 completes the proof.
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Chapter 6

BQP Protocols and Approximate

Counting Algorithms

6.1 Introduction

6.1.1 Motivation: from the Polynomial Method in Algorithm

Design to Communication Complexity

Recent works have shown that the polynomial method, a classical technique for

proving circuit lower bounds [144, 1571, can be useful in designing efficient algo-

rithms [170, 166, 13, 24, 22, 122, 21j.

At a very high level, these algorithms proceed as follows: (1) identify a key subrou-

tine of the core algorithm which has a certain low-degree polynomial representation;

(2) replace that subroutine by the corresponding polynomials, and reduce the whole

problem to a certain batched evaluation problem of sparse polynomials; (3) embed

that polynomial evaluation problem to multiplication of two low-rank (rectangular)

matrices, and apply the fast rectangular matrix multiplication algorithm [77].

As [23] point out, in term of step (3), these algorithms are ultimately making

use of the fact that the corresponding matrices of some circuits or subroutines have

low probabilistic rank.1 [23] suggest that the probabilistic rank, or various low-rank

'See Section 7.5 for an illustration with the n2-1/(ogc) time algorithm for OVn,clog n in [131.
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decompositions of matrices in general2 , could be more powerful than the polynomial

method, and lead to more efficient algorithms, as the polynomial method is just one

way to construct them.

It has been noted for a long time that communication protocols are closely related

to various notions of rank of matrices. To list a few: deterministic communication

complexity is lower bounded by the logarithm of the rank of the matrix [129]; quantum

communication complexity is lower bounded by the logarithm of the approximate rank

of the matrix [30, 601; UPP communication complexity is equivalent to the logarithm

of the sign-rank of the matrix [143].

These connections are introduced (and usually interpreted) as methods for prov-

ing communication complexity lower bounds (see, e.g. the survey by Lee and Shraib-

man [116]), but they can also be interpreted in the other direction, as a way to

systematically construct low-rank decompositions of matrices.

In this chapter and the next chapter, we explore the connection between differ-

ent types of communication protocols and low-rank decompositions of matrices and

establish several applications in algorithm design. For all these connections, we start

with an efficient communication protocol for a problem F, which implies an efficiently

constructible low-rank decomposition of the corresponding communication matrix of

F, from which we can obtain fast algorithms.

In fact, in our applications of quantum communication protocols, we also consider

k-party protocols, and our algorithms rely on the approximate low-rank decompo-

sition of the tensor of the corresponding communication problem. To the best of

our knowledge, this is the first time that approximate tensor rank is used in algo-

rithm design (approximate rank has been used before, see e.g. [25, 45, 27, 26] and the

corresponding related works section) .3

2A low probabilistic rank implies a probabilistic low-rank decomposition of the matrix.
3We remark that a concurrent work 11771 makes algorithmic use of non-negative tensor approxi-

mate rank to construct an optimal data structure for the succinct rank problem.
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6.1.2 Quantum Communication Protocols and Deterministic

Approximate Counting

In this chapter we establish a generic connection between quantum communication

protocols and deterministic approximate counting algorithms.

Theorem 6.1.1. (Informal) Let X, Y be finite sets and f : X x Y -+ {0, 1} be a

Boolean function. Suppose f has a quantum communication protocol P4 with com-

plexity C(P) and error E. Then there is a classical deterministic algorithm C that

receives A C X, B C Y as input, and outputs a number E such that

E f(x, y)- E <. J -|A .|B.
(x,y)EAxB

Furthermore, C runs in (AI + BI) - 20(c(P)) time.

We remark here that there is a simple randomized algorithm running in sub-linear

time via random-sampling. Thus the above algorithm is indeed a derandomization of

that randomized algorithm.

The above theorem can also be easily generalized to the (number-in-hand) k-party

case. See Section 6.2.3 for the definition of the multiparty quantum communication

model.

Theorem 6.1.2. (Informal) Let X1, X 2 ,... , Xk be finite sets and f : X1,X 2 ,-,Xk --

{ 0, 1} be a Boolean function. Suppose f has a k-party quantum communication pro-

tocol P with complexity C(P) and error E. Then there is a classical deterministic

algorithm C that receives X1 9 X1 ,X 2 C X 2 , ... , X as input, and outputs a

number E such that

k

f (X1, X2, .. , k) -E <E - Q Xjj.
x1EX1,x2EX2,...,xkEXk i=1

Furthermore, C runs in (IX,I + X 2 + .... + IXkI) - 2 0(C(P)) time.
4We need some technical condition on P, see Corollary 6.3.2 for details.
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Sketching Algorithms. In fact, Theorem 6.1.2 implies a stronger sketching algo-

rithm. Given subsets X1, X2 ,..., Xk, the algorithm first computes a w = 20(C(P))

size sketch ski from each X in O(IXij - w) time deterministically, and the number E

can be computed from these ski's in O(k - w) time.

The sketch computed by the algorithm is in fact a vector in R', and it satisfies a

nice additive property. That is, the sketch of X1 u X2 (union as a multi-set) is simply

sk(XI) + sk(X2).

Applying existing quantum communication protocols, we obtain several applica-

tions of Theorem 6.1.1 and Theorem 6.1.2.

SET-DISJOINTNEss and Approximate #OV and #k-OV

We first consider the famous SET-DISJOINTNESS problem (Alice and Bob get two

vectors u and v in {0, i}d correspondingly, and want to determine whether (u, v) =

0), which has an efficient quantum communication protocol [1] with communication

complexity O(Vd).

The corresponding count problem for SET-DISJOINTNESS is the counting version

of the Orthogonal Vectors problem (OV), denoted as #OVd. In this problem, we

are given two sets of n vectors S, T C {0, I}d, and the goal is to count the number of

pairs u E S, v E T such that (u, v) = 0.

Applying the quantum communication protocol for SET-DISJOINTNESS and The-

orem 6.1.2, we immediately get an algorithm for the approximate version of #OV.

Theorem 6.1.3. For any d and any constant E > 0, #OVd can be approximated

deterministically with additive error E - n2 in n - 20( d) time. In particular, it runs in

n1+(o1) time when d = o(log 2 n).

Comparison with [68]. [68] gives a deterministic exact counting algorithm for

#OVn,ciog n, which runs in n2 -O(1/logc) time. Note that their running time is n2-o(l)

when d = w(log n), while our algorithm only achieves an additive approximation, but

runs in near-linear time for all d = o(log 2 n).
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Another closely related problem, COUNTING PARTIAL MATCH, is the problem

that given n query strings from {0, 1, *}d (* is a "don't care") and n strings from

{0, 1}', and the goal is to count the number of matching string and query pairs.

Using known reductions between PARTIAL MATCH and OV (see, e.g., Section 2 in

[13]), together with the approximate counting algorithm for #OV, we can also solve

COUNTING PARTIAL MATCH approximately in the same running time.

The approximate counting algorithm for #OV can be easily generalized to solve

#k-OV, which is the problem that given k sets of n vectors X 1, X2 , .. . , Xk g {o, 1 }d,

and count the number of k-tuples u1 E X1 , u2 E X2 ,... , Uk E Xk such that (1, U2 ,...,

Uk) =0

Applying Theorem 6.1.2 and observe that the 2-party SET-DISJOINTNESS protocol

in [1] can be easily generalized to solve the k-party case (in k-party SET-DISJOINTNESS,

there are k players getting U1 , u2 , - - - , Uk respectively, and they want to determine

whether (ai, U2 ,. - - , Uk) = 0), we obtain the following approximate counting algo-

rithm for #k-OV.

Theorem 6.1.4. For any integers k, d and any constant E > 0, #k-OV.d can be ap-

proximated deterministically with additive error E- nk n n- 2 0(kf) time. In particular,

it runs in n1 +o(1) time when k is a constant and d = o(log 2 n).

Remark 6.1.5. We remark that similar algorithms with slightly worse running time

(n - do( ) time for additive approximation to #OVld) can also be derived using the

polynomial method, see Section 6.4 for details. However, we think our new algorithms

via quantum communication protocols have the following extra benefits: (1) our algo-

rithm is slightly faster, with a running time of n - 2 0("T); (2) our algorithm is derived

via a general connection. Once the connection is set up, the algorithm follows in

an elegant and black-box way. We hope this general connection could stimulate more

applications of quantum communication protocols.

5the generalized inner product of k vectors, is defined as (ui,U2,.. -,uk) = ' Hi 1 .j=
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Sparse SET-DISJOINTNESS and Approximate Sparse #OV

Next we consider a sparse version of SET-DISJOINTNESS, in which Alice and Bob get

two sparse vectors u, V E {O, 1}<d, and want to decide whether (u, v) = 0.

Using the famous quantum-walk algorithm for ELEMENT DISTINCTNESS [28],

there is an O(d 2/ 31 log m) communication protocol for sparse SET-DISJOINTNESS,

which is much better than the O(Vmf) protocol for SET-DISJOINTNESS when m > d.

Applying this protocol and Theorem 6.1.1, we can give an algorithm for a sparse

version of #OV, denoted as #Sparse-OVmd in which we are given sets A, B C

{0, 1}d of n vectors, and the goal is to count the number of distinct (a, b) c A x B

such that (a, b) = 0. Formally, we have:

Theorem 6.1.6. For integers n,m,d and any constant E > 0, #Sparse-OVnmd can

be approximated deterministically with additive error e - n 2 i

n - 2 0(d2 /1 log(m))

time. In particular, when m = poly(d) and d = o , 1.5)it runs in ni-+i-)

time.

We remark that it is possible to improve Theorem 6.1.6 via the polynomial method

(see Section 6.4 for details). Again, we emphasize that our focus here is to provide

direct applications of our general framework, with the hope that it could stimulate

more applications of quantum communication protocols in the classical settings.

Approximate Counting for Formula o SYM Circuits

Finally, we apply our algorithm to approximately count solutions (i.e., satisfying

assignments) to a class of circuits, for which no non-trivial algorithms were previously

known.

A Formula o SYM circuit of size m is a formula with {AND, OR, NOT} basis on m

SYM gates 7 at the bottom. Using the quantum query algorithm for FORMULA

6We use {0, 1}d to denote all Boolean vectors of length m with at most d ones.
7A SYM gate is a gate whose output only depends on the number of ones in the input.
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EVALUATION [29] and the split-and-list technique, we obtain the following determin-

istic approximate counting algorithm for Formula o SYM circuits:

Theorem 6.1.7. For any constant E > 0, the number of solutions to a Formulao SYM

circuit of size m can be approximated deterministically within E - 2n additive error in

0(n/
2
ml/

4
+o(1)V log n+logrm)

time. In particular, when m = n2-6 for some 6 > 0, the running time is 2 ,(n).

Previously, even no non-trivial deterministic approximate counting algorithms for

AND o SYM circuits were known. A recent line of works [95, 97, 154], culminating

in [1371, construct a PRG for ANDmo THR circuits with seed length poly(log m, 6-1).

log n, using which one can obtain a quasi-polynomial time deterministic approximate

counting algorithm for polynomial size AND o THR circuits. However, their PRG

constructions rely on the fact that the solution set of an ANDm o THR circuit is a

polytope, while the solution set of an AND o SYM circuit may not have such a nice

geometric structure.

In fact, the only property we need for SYM gates is that they admit an efficient

classical k-party communication protocol when the inputs are divided to k players

(each player sends the contribution of her part). Our algorithm actually works for

the following more general problem.

Problem 1. Given k sets of n vectors X 1 , X2 ,..., Xk {0, ... , r} and d functions

fi, f2,. . . , fd where each fi is from [r]k to {0, 1}, and a Boolean formula F: {0, 1 }d -+

{0,1} of 0(1) fan-in. Count the number of k-tuples u1 E X1 ,u 2 C X2 ,. .. ,uk Xk

such that

F (fi(ui, 1 , U2 ,1 , - , uk,1), f 2 (u1 ,2 , U2 ,2 , . . . , uk,2), . .. , fd(ui,d, U2,d, --. , uk,d)) 1.

Theorem 6.1.8. For any constant c > 0, the above problem can be solved determin-

istically in n - 20(d1/ 2
+o(l)-k(logd+logr)) time, within E - nk additive error.
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6.1.3 Related Works

Other Algorithmic Applications of Approximate Rank

Alon studies the approximate rank of the identity matrix In in [251. It is shown

that it is at least Q (l2 and at most 0 (1*9). Built upon this result, several

applications in geometry, coding theory, extremal finite set theory and the study of

sample spaces supporting nearly independent random variables are derived. The lower

bound also has applications in combinatorial geometry and in the study of locally

correctable codes over real and complex numbers, as shown in [451. In [27, 26], several

bounds on approximate rank are derived, together with applications of approximate

rank in approximating Nash Equilibria, approximating densest bipartite subgraph

and covering convex bodies.

6.2 Preliminaries

6.2.1 Tensor Ranks

In this chapter we are interested in the approximate tensor rank with respect to the

f, norm. For more on approximate tensor rank with respect to other norms and their

applications, see [158] and the references therein. Now we introduce some relevant

definitions.

Definition 6.2.1. We say a tensor T E R nlxn2X-..x. nk is simple if T = v 1 ( v2 0 . . .Vk

where vi (E R~.

Definition 6.2.2. For a tensor T E Rnixn2x...xnk, its rank(T) is defined to be the

smallest integer r such that T = rj Ar and A is simple for all i E [r].

Definition 6.2.3. For a tensor T E Rnjixn2X...xnk, the approximate rank of T is

defined as follows:

ranke(T) = min{rank(S) I |IT - Sll < E.
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Here 11 -|1 is the entry-wise cx-norm of a tensor.

6.2.2 Quantum Query Complexity

In this section we recall some previous results on quantum query complexity. Here we

emphasize the number of qubits used by the algorithms, which will be crucial when

simulating them using classical algorithms (see Section 6.5).

Definition 6.2.4. In the FORMULA EVALUATION problem, we are given a formula

F with {AND, OR, NOT} basis and 0(1) fan-in on n variables x 1, x 2 , ... , Xn. In each

query, the algorithm gets the value of xi, where i E [n] is determined by the algorithm.

The goal is to evaluate the formula.

Theorem 6.2.5 ([29]). The FORMULA EVALUATION problem can be solved in 0(n1 / 2+o(l))

queries using 0(polylog(n)) qubits, with failure probability at most 1/3.

Remark 6.2.6. There is an optimal O(n1 /2 ) query algorithm for FORMULA

EVALUATION [147]. However, that query algorithm doesn't fit in our applications here

for two reasons: (1) the algorithm needs 0(n) qubits, which is too much for classical

simulation; (2) the algorithm is not computationally efficient and it takes too much

time to compute the corresponding unitary transformation.

Definition 6.2.7. In the ELEMENT DISTINCTNESS problem, we are given n elements

X = (X 1 , x 2 , ..., Xn) E [m]'. In each query, the algorithm gets the value of xi, where

i E [n] is determined by the algorithm. The goal is to decide whether there are two

distinct indices i 74 j such that xi = xj.

Theorem 6.2.8 ([28]). The ELEMENT DISTINCTNESS problem can be solved in 0(n2 /3 )

queries using O(n2 /1 log m) qubits, with failure probability at most 1/3.

6.2.3 Multiparty Quantum Communication Protocols

In this section, we give our definition of multiparty quantum communication proto-

cols.

187



Let X1, X 2 , . . . , Xk be finite sets and f : X1, X 2 , . . . , Xk - {0, 1} be a function.

In a k-part quantum communication protocols, there are k players P1, P2 , .. . , Pk,

together with a Hilbert space H = H, 0 H2 0 ... 0 Hk 0 H. Here Hi serves as the

inner working space for player P, and H is the communication channel between all

the players. Each player P receives an input xi E X and the goal is to determine

f (X1, X2, . . . , Xk).-

Now we give the formal definition of a k-party quantum communication protocol.

Definition 6.2.9. A k-part quantum communication protocol P = P(Xi, X 2 ,. . . , Xk)

is a sequence of r unitary transforms P = (Uf' (x, 1), U 2 ( ),. Ur(x,)), such

that:

* Uf'(xp,) is a unitary transform acting on Hp, 0 H where Hl is a subspace

spanned by some qubits of H 8 . That is, it is the action of pi-th player P,, who

is in charge of the i-th turn.

* The sequence Pi, P2,.-. ,pr, and H1 , H2 , . . . , H, are fixed and do not depend on

X 1 , x 2 ,... , Xk. In other words, Hi corresponds to the qubits in the channel H

that player Ppi will modify during its action in the i-th turn, and all players

take actions in a fixed, predefined order.

* The communication complexity of P is defined to be C(P) = Z'=1 log(dim(Hi)).

The space complexity of P is defined to be Sj(P) = log(dim(Hi 0 H)).

For a protocol P = (Uf 1 (xp1 ), U[2 (xP2 ), .. U(x,)), we say P computes f with

error E if we measure the first qubit in H on the state UPr(xp,) - Urt (x~ -)

U2 U 1 (x, 1 ) -0), we get f(X 1 , X2 ,.. .X, c) with probability at least 1 - C, for all

X1 C X1 , X2 E X2 , -. , k Xk-

Remark 6.2.10. We remark that our definition here is more complicated than the

usual definition of quantum communication protocols in the literature (see, e.g., [114),
but nonetheless, it is equivalent to them. We choose to formulate it in such a way

8 i.e., Uj'(xp,) does not alter qubits other than those in Hp, 0 Hi.
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because it is easier to describe the classical simulation of quantum communication pro-

tocols for low approximate rank decompositions (see Section 6.5), and the simulation

of quantum query algorithms (see below).

Simulating Quantum Query Algorithm in Quantum Communication Pro-

tocols

Quantum communication protocols can be built upon quantum query algorithms (see,

e.g., [611). Here we give an example to show how to simulate a quantum query algo-

rithm for FORMULA EVALUATION to construct a quantum communication protocol

for the communication problem corresponding to Problem 1, under our definition.

In the corresponding k-party communication problem, there are k players, and the

i-th player P is given a vector ui - [r] d. There are d functions fi, f2,. . . , fk where each

fi is from [r]k to {0, 1}, and a Boolean formula T : {0, I}d _- {0, 1} of 0(1) fan-in.

Set v(i) = fi (i, U2,i, . . . , uk,i). Their goal is to compute T(v(1), v(2), . . ,v(d)).

Now we show how to construct a quantum communication protocol for the above

problem.

Example 1. Assuming the first player runs a quantum query algorithm for FORMULA

EVALUATION. For the simulation, we only need to implement the following query gate

Ov: Ii) Ib) -+ Ii) lb ED v(i)), where i is the index of a variable written in binary form

and v(i) is the corresponding input bit to T.

We first specify the channel, H is defined as Hinde, 0 Houtput 0 H1 0 ... 0 Hk.

Hindex and Houtput together simulate the query gate, and Hi is the place for player P

to write her number.

In the beginning, all qubits in H are 10). When the first player wants to apply O

on some qubits in H1 , it first swaps the qubits containing i and b in H1 with Hindex

and Houtput in H.

Each player P in turn reads i in Hindex and writes the value of uj,i to qubits in

Hi. Note that each player can write the value of ujj to qubits in Hj using a unitary

transformation since all qubits in 7j are 10) at the beginning, by assumption.
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Now, given the value of i and u1 ,i, u2 i, - - -, uki, the first player maps Ii) 1b) to

|i) lb E v(i)) via a unitary transformation. Now the gate 0, is implemented, but we

still have to clean up the garbages in H3 's, and set them back to 10) 's. This can

be done by applying reverse transforms of all applied unitary transformation, in the

reverse order.

The communication complexity of this protocol is O(Q - k(log d + log r)), where Q

is the query complexity of the quantum -query algorithm. Also, using the algorithm in

Theorem 6.2.5, the communication complexity of this protocol is O(n1/ 2 +o(1) -k(log d+

log r)).

6.3 Approximate Counting Algorithms from Quan-

tum Communication Protocols

Let X1 , X2 ,... , Xk be finite sets and f : x1, X2 ,... , Xk -+ {0, 1} be a function. Let

Mf E {0, 1}1X11x1X21x...xlXkl denote the Boolean tensor whose (Xi, x 2 ,... , xk) entry is

f(x 1 , x 2 , - - , xk). The following connection between 2-party quantum communication

complexity and approximate rank is first observed in [611. This result can be gener-

alized to the k-party case to get the following theorem. Full details can be found in

Section 6.5.

Theorem 6.3.1. Let X1, X2 ,. .., Xk be finite sets and f : X1 , X2 , . . ., 2k -+ {0, 1} be

a Boolean function. Suppose there exists a k-party efficient quantum communication

protocol P, such that P gives the correct answer with probability at least 1 - E on

every input, then ranke(Mf) < 2 0(C(P)) or equivalently, there exist simple tensors

A1, A 2 ,. . ., A 20(c(P)) such that

20(C('P))

Mf - Ai < e

00

In Section 6.5 we further show how to use classical deterministic algorithms to

simulate quantum communication protocols. Notice that here the time complexity
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depends on the space complexity of the quantum communication protocol to use.

Corollary 6.3.2. Let X1, X2 ,... , Xk be finite sets and f : X1, X2,... , X -+ {O, 1}

be a Boolean function. Suppose there exists a k-party efficient quantum commu-

nication protocol P, such that P gives the correct answer with probability at least

1 - E on every input, and all the unitary transformation used in the P can be con-

structed in polynomial time (with respect to their sizes) by a deterministic classical

algorithm. Then there exists k deterministic classical algorithms Ax 1, Ax2 ,. . , Axk

such that Axruns in 2 0(C(P)+Si(P)) time, receives xi E Xi as input and outputs a

vector Av (xi) C R20(c7) , and for any x 1 E X1, X 2 E 2 ,..., IXk E Xk,

-E (Ax,(xl), Ax2(X2),..., Ax(Xk)) - f(XI, x 2,..., Xk) 6 E.

Based on Corollary 6.3.2, for any Boolean function f : X 1 , X 2 ,... , Ak -+ {0, 1}

with an efficient efficient quantum communication protocol, there also exists an effi-

cient approximate counting algorithm for f.

Theorem 6.3.3. Let X1 , X 2 , ... ., Xk be finite sets and f : X1, X2 ,. . . , Xk -+ {0, 1} be

a Boolean function. Suppose there exists a k-party efficient quantum communication

protocol P, such that P gives the correct answer with probability at least 1 - E on

every input, and all the unitary transformation used in the 7 can be constructed in

polynomial time (with respect to their sizes) by a deterministic classical algorithm.

Then there exists a classical deterministic algorithm C that receives X1 C X1, X2 C

X 2 , . , X k C Ak as input, and outputs a number E such that

k

S f(XI, 2 ,..., Xk)-E <E-JIXi.
XlEX 1 ,X 2 EX2 ,. XkEXki1

Furthermore, C runs in _1| XjI . 2 c(P)+si(P) time.

Proof. For all xi c Xi we first use Ax, in Corollary 6.3.2 to calculate Ax, (xi) c
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lR2o(c(P>,in Zi= lXii 2c(P)+si(p) time. Then we directly output

Ax, (x1), A (2).. A Xk
x1EX1 X2 GX2 xk EXk

The correctness simply follows from the fact that for all (X 1 , x2 ,..., Xk) E Hi Xi,

-< (Ax (x1), Ax 2 (X2),...Axk (Xk)) - f (X17X 2 ,...Xk) <_ E.

Remark 6.3.4. The algorithm described above is actually a sketching algorithm. We

may define the sketch for Xi as ski(Xi) = ExX Ax,(xi) e R20 (c(P)) and the number

E can be computed from these ski 's. This sketching algorithm satisfies a nice additive

property, i.e., the sketch of A U B (union as a multi-set) is simply ski(A) + ski(B).

Now we give approximate counting algorithms for concrete problems, using The-

orem 6.3.3.

6.3.1 Counting the k-Tuples of Orthogonal Vectors

The goal of this section is to prove the following theorem.

Reminder of Theorem 6.1.4 For any integers k, d and any constant & > 0,

#k-OVd can be approximated deterministically with additive error E. n k in n- 2o(kvd)

time. In particular, it runs in n1+o(1) time k is a constant and d = o(log 2 n).

We first consider quantum communication protocols for the following function f.

Definition 6.3.5. Let X1 = 2= .. = Xk = {0, I}d and

{ 1 if (x1 , x 2 , . k) = 0

0 otherwise

The corresponding communication problem can be solved using the quantum com-

munication protocol in [1] with communication complexity O(kv d) and space com-
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plexity O(polylog(d)), with constant failure probability. If we use the algorithm in

Theorem 6.3.3, together with the efficient quantum communication protocol men-

tioned above, we can then deterministically count the number of k-tuples of orthog-

onal vectors, in time n - 2 0(k-"d) time, with an additive E n k error.

6.3.2 Counting the Pairs of Orthogonal Sparse Vectors

The goal of this section is to prove the following theorem.

Reminder of Theorem 6.1.6 For integers n, m, d and any constant E > 0, #Sparse-OV,,d

can be approximated deterministically with additive error E - n 2

n - 2 0(d 2/ 3 log(m))

time. In particular, when m = poly(d) and d = o ( , 1.5),it runs in n+0()

time.

Again we consider quantum communication protocols for the following function

f.

Definition 6.3.6. Let X = Y = {0, 1}" and

1 if (x,y)=0

0 otherwise

The corresponding communication problem can be solved with communication

complexity O(d'13 log m), by simulating the quantum query algorithm in Theorem

6.2.8 for ELEMENT DISTINCTNESS. Too see the connection, let S = {i I xi = 1}

and T = {i I y = 1}. We will have f(x, y) = 1 if and only if all elements in

S U T (union as a multi-set) are distinct. Now, using the algorithm in Theorem 6.3.3,

together with the efficient quantum communication protocol mentioned above, we can

deterministically count the number of orthogonal pairs in S and T, in n - 2 0(d2/ 3 log(m))

time, with an additive e n k error.
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6.3.3 Counting Solutions to Formula o SYM Circuits

The goal of this section is to solve the following problem.

Reminder of Problem 1 Given k sets ofn vectors S1, S2,..., Sk ; {O, ... , r}d and

d functions fi, f2,... , fd where each fi is from {0,.. . , r}k to {0, 1}, and a Boolean

formula F {0,1d} -+ {O, 1} of 0(1) fan-in. Count the number of k-tuples u1 E

S1,u2 E S2,...,uk E Sk such that

F(fi(u 1 ,1 , U2 ,1 , ... , Uk,1), f2 (u 1,2 , U2 ,2 , . , uk,2), ... , fd(Uik U2,d, . . Uk,d)) 1.

Reminder of Theorem 6.1.8 For any constant e > 0, the above problem can be

solved deterministically in n - 2 0(d1/ 2 +o(1)-k(logd+Iogr)) time, within E -nk additive error.

The corresponding k-party communication problem can be solved by a quantum

communication protocol with communication complexity O(d1 /2 +o(1 ) -k(log d+log r)),

by simulating the quantum query algorithm for Formula-Evaluation in Theorem 6.2.5.

For details see Example 1. By our framework, this implies an approximate counting

algorithm to the problem mentioned above in time n . 2 0(di/ 2+o(1)k(logd+logr)), with an

additive E - nk error.

Here we mention one application to the approximate counting algorithm above.

Reminder of Theorem 6.1.7 For any constant e > 0, the number of solutions to

a Formula o SYM circuit of size m can be approximated deterministically within E - 2'

additive error in

O(n/2mI/4+o(1)Vlog n+logrm)

time. In particular, when m = n2 for some J > 0, the running time is 2o(n).

Proof of Theorem 6.1.7. Consider a Formula o SYM circuit C : {0, 1} -4 {0, 1} with

7n symmetric gates X1, X .. . , Xm and a Boolean formula F of 0(1) fan-in. Here

we slightly abuse of notation by regarding X, as a function that maps the number of

inputs bits with value one to an output in {0, 1}. We can approximately count the

number of solutions to C as follows.
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We split the n inputs bits into s groups, each with n/s input bits. Then for each

group, we enumerate all the 2 n/s possible assignments to the n/s input bits. We create

a vector in {o, ... , n/s}m for each possible assignment, where the i-th entry is simply

the number of ones in the assignment which is an input bit to the i-th symmetric gate

Xi. Now, the number of solutions to the circuit C, is simply the same as Problem 1,

by setting

f(uI,i, u2,i,... , Uk,i) - X (U1 ,i + u2,i + . . + uki).

The total time complexity would be 2 '1/ - 2 0(,1/2+o(1)s(logm+log(n/s))) with an additive

E - 2"' error. Setting s = , the final time complexity would beml/4 o(1) log'I log m

2 0(n/2m1/4+o(1) Vlogn+log m)

6.4 Deterministic Approximate Counting Algorithm

for #OV via Approximate Polynomial

Here we show that using the approximate polynomial for OR, one can also derive a

deterministic approximate counting algorithm for #OV, but with running time worse

than Theorem 6.1.3.

Theorem 6.4.1. For any d and any E > 0, #OVd can be approximated with additive

error E - n2 in n. (do( a'1og1/&)) time. In particular, it runs in n1+o(l) time when E is

a constant and d = o((log n/ log log n) 2).

Proof. By [59, 85], there is a polynomial P, : {0, I}d --+ R such that:

" PE is of degree D = 0 (d logl/e) .

" Given z c {0, I}d, if OR(z) = 0, then PE(z) e [ - E, 1], otherwise P(z) E [0, E.

" P can be constructed in time polynomial in its description size.

Let zs := leS zi, one can write P,(z) := EISID cs zs. Let A, B C {0, I}d with

195



JAl = IBI = n be the given #OV instance, we compute

E = : P'S(X1 ' Y1, X2 * 2, ... d - Yd)

(x,y)EAxB

- )cs- s -ys
(x,y)EAxB ISI<D

= cs - Xs ys
ISI D (x,y)EAxB

Y cs . s y -s (6.1)
ISI<D xEA yEB

In above xs and ys denote ZieS xi and Es yi respectively.

By the property of Pe, is easy to see that E approximates the number of orthogonal

pairs with an additive error O(e - n2 ). And by (6.1), E can be computed in

n(<d )=-( d

- D < O(Vw/d log 1/E)

time.

When E is a constant, the above simplifies to n - do("d), which is nl+o(l) when

d = o((log n/ log log n) 2).

Remark 6.4.2. We remark that the above algorithm also works for #Sparse-OVnmd

and #k-OV,d, with running times 'n (< and n -k - ( 1 ,og110))Y respec-

tively. In particular, it improves the running time in Theorem 6.1.6.

6.5 Quantum Communication Protocols and Approx-

imate Rank

In this section we explain how to simulate a quantum communication protocol by a

deterministic algorithm, and thus prove Theorem 6.3.1 and Corollary 6.3.2.

We first prove the following theorem under our definition of k-party quantum

communication protocol. The proof itself follows closely previous proof for 2-party

quantum communication protocols in [611.
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Theorem 6.5.1. For a k-party quantum communication protocol. The final state of

P on input x1 E X1 , x2 G X 2,.. ., xe 2 X4, can be written as

E al(x1) . af (2) af (Xk) - IA' (x1)) JAf (2) . .z|f(g fi

i i (X )i(2)..I 
i(k)IW

iES

where aj(x1), a (x2 ),... , c4(X,) are complex numbers and IA'(xi)) ,A (x2)) ,..., IA (xk))

are unit vectors, S {0, 1}C(P) is the set of all possible histories of modifications,

and f : S -+ H is a function which maps the history of modifications to a state in H.

Proof. The proof is by induction. When r = 0 the theorem is obvious. Suppose after

applying UP, U2 , ... , U r'j the final state is

a' (x1) -a (2) - . . . af (k - Aj )|(2) ... -|A k(zi fi

where S' = {0, i}Zr4 log(dim(1)). Now we apply Ufr. Since UPr acts on Hp,, 0 H, thus

every element of the superposition in the previous states splits into at most 2 logdim(H,.)

terms, depending on the state of the qubits in H, after applying Ufr. Thus, after

applying U? there will be at most ' 21Og dim(-H,-) .2 , log(dim(7T)) terms in the

superposition. E

Now let S, to be the set that contains all i C S such that the first qubit in f(i) is

11), and let

5(x1, X2, . . . , Xk) = 4(xi) -af(x2) . (.. a(xk) IA'(xi)) IA (x2)) . .. IA'(xk)) IfW(i)
iESi

be the part of the final state that corresponds to a 1-output of the protocol.

Now for i, j C Si, we define

apj (xp) = a' (xp) a' (xp) (AP (xp) IAP (xp)) .
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Thus, the probability of outputting 1 is

k

ijESi P=1

Thus, we have
k

S (xp) -f(X1, x2,... , Xk) < E.
ijES1 p=1

Now we have finished our prove for Theorem 6.3.1, since the tensor defined by

k

A(x,x 2, ...Xk) = ]7a (xP)
p=1

is a simple tensor, and thus rank,(Mf) < IS 1 12 = 20(c()).

Scrutinizing the proof of Thereom 6.5.1, for each player P,, for any input xp (-

XP, we can calculate a (x,) in 2 0(s,(p)) - poly(ISI) = 20(SP(P)+C(P)) time, by using

a classical deterministic algorithm to simulate the procedure above, as long as all

unitary transforms Up can be constructed in polynomial time (with respect to its

size).
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Chapter 7

PHC Protocols and Efficient SAT

Algorithms

7.1 Introduction

In this chapter we consider PH" protocols and AM"C protocols (note that the latter

protocols are special cases of the first protocols). We show that these protocols imply

non-trivial f-Satisfying-Pair algorithms.

7.1.1 Arthur-Merlin Communication Protocols and a New Ap-

proximate Max-IP Algorithm

We first consider AMCC protocols, which are defined as below.

Definition 7.1.1. An Arthur-Merlin communication protocol (AMcc) H for a partial

function F : X x Y -+ {0, 1, 1}1 proceeds as follows:

o Alice holds input x E X and Bob holds input y C Y.

o Alice and Bob toss some public coins jointly and send the random string r E

{0, 1}* to Merlin (r is called the random challenge).

'F(x, y) = I means F(x, y) is undefined.
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* Based on x, y and the random challenge r, Merlin sends Alice and Bob a proof 4,
and Alice and Bob decide to accept or not independently and deterministically.

We require the following conditions:

- If F(x, y) 1, with probability 1 - E over the random challenge r, there

is a proof 4 from Merlin such that Alice and Bob both accept.

- If F(x, y) = 0, with probability 1 - e over the random challenge r, there

is no proof 0 from Merlin such that Alice and Bob both accept.

We call the parameter e the error of the protocol H. Moreover, we say the pro-

tocol is computationally efficient if Alice and Bob's behavior can be computed in

polynomial-time w.r.t. their input lengths.

We show that for any function F, a low-complexity and computationally effi-

cient AM" protocol implies a faster algorithm for the corresponding F-Satisfying-Pair

problem (defined below).

For a partial function F : X x Y -+ {0, 1, I}, where X and Y are two sets, we

define F-Satisfying-Pairn as the problem that given two sets A C X and B C Y of

size n, distinguish between the following two cases: (1) There is an (x, y) E A x B

such that F(x, y) = 1. (2) For all (x, y) c A x B, F(x, y) = 0.

Theorem 7.1.2 (Algorithms from AM"C protocols). Let F: X x Y -+ {0, 1, I} be a

partial function. Suppose there is a computationally efficient AM" protocol for F with

communication complexity T and error E. Then for n such that 2T < (xfin)01 , there

is an 0 (en2 
. polylog(n) + n -2" ) time randomized algorithm for F-Satisfying-Pair,.

A New Algorithm for Approximate Max-IP

The first application of Theorem 7.1.2 is a new algorithm for approximate Maximum

Inner Product. We use Max-IPn,d to denote the problem that given sets A, B C {0, I}d

with size n, compute Max(A, B) := max(a,b)eAxB(a - b).

To phrase this as an F-Satisfying-Pair problem, we first define the following gap

inner product problem.
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Definition 7.1.3 (Multiplicative-Gap Inner Product). Consider the following prob-

lem, denoted as Gap-Inner-Productd, Alice and Bob hold strings x, y E {0, I}d re-

spectively, and they are given an integer r. They want to distinguish between the

following two cases: (Yes) x - y > 2T; (No) x - y r.

Adapting the classical Goldwasser-Sisper AM protocol for approximating set size 1921,
we can derive an efficient AM" protocol for Gap-Inner-Productd.

Lemma 7.1.4 (AMCC protocol for Gap-Inner-Productd). There is an AAM" protocol for

Gap-Inner-Productd with error E and communication complexity

log d 1). 2
lo O(log E1)

Applying Theorem 7.1.2, the following algorithm for approximating Max-IP follows

directly, matching the previous best algorithm in [70].

Corollary 7.1.5. There is an algorithm for computing a 2-approximation to Max-IPn,cioag,

which runs in n2-1/(logc) time.

Remark 7.1.6. The constant 2 in Corollary 7.1.5 can be replaced by any other con-

stant r > 1.

We remark here that a direct application of the Goldwasser-Sisper protocol and

parallel repetition leads to a communication protocol with communication complex-

ity O(log d log e-), which is slightly worse than Lemma 7.1.4. In particular, such

a protocol only gives an algorithm with running time n2-1/(logd), which is worse

than n2 -1/O(logc) when c < d = clog n. In order to get the improved complexity in

Lemma 7.1.4, we make use of a clever sampling scheme using Poisson distributions,

see Section 7.3.1 for details.

2 ( <;m) denotes Em0 (n).
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Evidences that Longest Common Subsequence and Edit Distance do not

Have Fast AM" Protocols

It has been a long-standing open problem in communication complexity to prove an

w(log n) AM" lower bound for any explicit function [38, 93, 94]-it is consistent with

our current knowledge that all known natural communication problems have O(log n)

AMCC protocols.

We consider two natural communication problems here, LCS)' and Edit-Dist'c, in

which Alice and Bob hold strings x, y E {0, 1}d respectively, and are given an integer

T. Their goal is to decide whether LCS(x, y) > r (Edit-Distance(x, y) > T).

Our Theorem 7.1.2 shows that if LCS" or Edit-Dist" admit low-complexity and

computationally efficient AM" protocols, it would imply non-trivial algorithms for the

corresponding F-Satisfying-Pair problem. By a known reduction in [101, that would, in

turn, implies non-trivial algorithms for Formula-SAT 3 -much faster than the current

state-of-the-art [1611! Therefore, at least for these two problems, constructing low-

complexity AMCC protocol could be hard, which may also be viewed as an evidence

that they do not have efficient AM protocols.

Theorem 7.1.7. If LCSd' admits computationally efficient AM" protocols with com-

plexity polylog(d), then Formula-SAT of polynomial-size formulas admits an 2n-,

time algorithm for any constant 6 > 0. The same holds for Edit-Dist" in place of

LCSC.

The state-of-the-art algorithm for Formula-SAT runs in o(2") time only when the

formula size is smaller than n3 [161]. It is even purposed as a hypothesis that no

2n/n'(1) time algorithm exists for n3+Q(1)-size Formula-SAT in [6]. Therefore, our

results imply that if LCSC or Edit-Dist" admits fast (computationally efficient) AMcc

protocols, then that would refute the hypothesis in [61:

Corollary 7.1.8. Under the following hypothesis4 , LCSdC and Edit-Distd" do not admit

computationally efficient AM" protocols with complexity polylog(d):

3Formula-SAT is the problem that deciding whether a given formula is satisfiable.
4which is much weaker than the hypothesis in [61
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* There is a constant 6 > 0 such that Formula-SAT of polynomial-size formulas

requires 2 -- 6 time.

In fact, in Section 7.6, we show that the above corollary can be generalized to hold

for computationally efficient PH" protocols (see Section 7.6 for a formal definition).

Formally, we have:

Theorem 7.1.9. Under the same hypothesis as in Corollary 7.1.8, LCSd and Edit-DistCc

do not admit computationally efficient PH" protocols with complexity polylog(d).

7.2 Preliminaries

7.2.1 Fast Rectangular Matrix Multiplication

In this chapter we make use of the algorithms for fast rectangular matrix multiplica-

tion.

Theorem 7.2.1 ([77]). There is an N 2 - polylog(N) time algorithm for multiplying

two matrices A and B with size N x Na and Nc x N, where a > 0.172.

7.2.2 Random Variables and Poisson Distributions

Throughout the chapter, we use X -_ Y to mean that X and Y have the same

distribution. We use X >- Y to denote stochastic dominance, i.e., X >-- Y iff for any

t - R, Pr[X > t] > Pr[Y > t].

We use Pois(A) to denote a Poisson distribution with parameter A. We will need

the following two facts about Poisson distributions in the chapter.

Lemma 7.2.2. Suppose {Xj} _1 is a set of independent random variables with Xi

Pois(Ai), then
n n

X, ~ Pois Ai.
i=1i=

Lemma 7.2.3.

Pr [Pois(A) > 1.2\] < e-00A
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and

Pr [Pois(A) < 0.8A] < e-0 A.

Proof. By standard tail inequalities of Poisson distribution (see Theorem 5.4 in [131]),

Pr [Pois(A) > x] eA(eA/x)x

and

Pr [Pois(A) < x] e-A (eA/x)x.

Thus for any A > 0, we have

Pr [Pois(A) > 1.2A] < e-A (e/1.2)1 2 A < e~-^-1A

and

Pr [Pois(A) < 0.8A] < e~A(e/0.8)0.8A < e-0.01A. L

7.3 Algorithms from Arthur-Merlin Communication

Protocols

In this section, we prove our algorithmic applications of AM" protocols. We first

show faster AM" protocols for F imply faster F-Satisfying-Pair algorithms.

Reminder of Theorem 7.1.2 Let F : X x Y -+ {0, 1, I} be a partial function.

Suppose there is a computationally efficient AM" protocol for F with communica-

tion complexity T and error e. Then for n such that 2T < (VEr")- 1, there is an

o (en2 -polylog(n) + n - 2T) time randomized algorithm for F-Satisfying-Pairn.

Proof. We first assume n < 1. After drawing a random challenge, for each element1OV/-6

x E X and y E Y we construct a Boolean vector Ax(x) and Ay(y) of length 2T, where

each the i-th entry indicates whether Alice (Bob) accepts when receiving the proof i

from Merlin. Here we regard i as a Boolean string of length T via a natural bijection

between [2 T] and {0, 1}T.
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According to the guarantee of an AM" protocol, for each x E X and y E Y,

when F(x, y) = 1, with probability at least 1 - e over the random challenge, we

have (Ax(x),Ay(y)) > 0, and when F(a,b) = 0 we have (Ax(x),Ay(y)) > 0 with

probability at most e over the random challenge.

By a union bound on all pairs of elements in A and B, we have with probability

at least 0.99, for all a E A and b E B, (AA(a), AB(b)) > 0 if and only if F(a, b) = 1.

Consequently, with probability at least 0.99,

KE:AA(a), ZAB(b) > 0
\acA bEB

if and only if there exist a E A and b E B such that F(a, b) = 1.

For general n = BA = BI, we first split A and B into O(x/En) groups, each

with at most 1 elements. I.e., we assume A Ug= 1 Ai and B= U= Bi such that

g = O(xEn) and IAi ,B I < 1. For each ij E [g], we use the algorithm mentioned

above to calculate two vectors EaEAi AA(a) and EZbeB AB(b). We write MA E R2Txg

to denote the matrix

AA (a), )7AA(a), AA --,A(a)
aEA 1  aEA2  aEA9

and MB C R2Txg to denote the matrix

AB)(b), b), - - , AB (b)
bEB 1  bEB2  bEB J

Since 2 T < ( Kn)0 < O(g 01 ), we can use the rectangular matrix multiplication algo-

rithm in Theorem 7.2.1 to calculate MIMB in O(g 2 .polylog(g)) = 0(E 2 polylog(r))

time. We repeat this procedure for O(logn) times. For any i,j E [g], by standard

concentration bounds, with probability at least 1 - poly(n), there exist a c Ai and

b E B such that F(a, b) = 1 if and only if the majority of the O(log n) repetitions

satisfies (MTMB)ij > 0. Applying union bound again over all i, j E [g], we can
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now solve F-Satisfying-Pairn by checking whether there exist i and j such that the

majority of the O(log n) repetitions satisfies (M7AMsB)iJ > 0. The overall algorithm

runs in O(En2 - polylog(n)) time and succeeds with high probability, as stated. 0

7.3.1 A New Algorithm for Approximate Max-IP

The first application of Theorem 7.1.2 is to use the Goldwasser-Sisper AM protocol [921

for approximating set size to obtain a new algorithm for approximating Max-IP.

We first need the following adaption of [92], which has a better dependence on E.

Reminder of Lemma 7.1.4 There is an AM" protocol for Gap-Inner-Productd with

error E and communication complexity

log .
(< O(log E-

Proof. Recall that x, y E {0, 1}d are the inputs hold by Alice and Bob respectively.

Let X = {i I xi = 1} and Y = {i I yi = 1}. The problem is equivalent to determine

whether X n YI 2r or IX n YI <T . Here we give an A M" communication protocol

with error e and communication complexity log ( ( -))-

In the communication protocol, Alice and Bob first generate i.i.d. random vari-

ables pi ~ Pois(k/-r) for each i E [d], for a parameter k = O(log(1/e)) to be deter-

mined later. When IX n YJ > 2T, Merlin finds an arbitrary set S C X n Y of size

O(k) such that JEisspi > 1.6k, and then sends it to Alice and Bob. Upon receiving

S, Alice (Bob) decides to accept or reject by checking whether S C X (S C Y) and

ies pi > 1.6k. The communication complexity of this protocol is upper bounded by

log ( o-d_) since jSI < 1.6k = O(log(l/E)).

Now we prove the correctness by considering the following two cases.

Case 1: IX n YI > 2T. For this case, we have

pi ~ Pois(IX n Y - k/T) >- Pois(2k).
iEXnY

206



Thus by Lemma 7.2.3, with probability at least 1 - e (k), Eicxny Pi > 1.6k.

Since for each pi > 0 we must have pi 1, with probability at least 1 - eQ(k),

there exists a set S C X n Y of size O(k) such that Zism 1.6k.

Case 2: AX n YI T. For this case, we have

E pi ~ Pois(IX n Y - k/r) - Pois(k).
iExnfY

Thus by Lemma 7.2.3, with probability at least 1 - e (k), Eisxny pi < 1.2k.

When both Alice and Bob accept, it must be the case that S c x n Y and

scs pi > 1.6k. However when IX n YI l r, with probability at least 1 - e (k),

EicsxyPi < 1.2k. Thus there is no S such that both Alice and Bob accept,

with probability at least 1 - e-(k).

The lemma follows by setting k to be a large enough multiple of log(1/E).

By Theorem 7.1.2 and the above lemma, Corollary 7.1.5 follows from a binary

search over T.

Reminder of Corollary 7.1.5 There is an algorithm for computing a 2-approximation

to Max-IPn,ciogn, which runs in n2-1/(logc) time.

7.4 Consequence of Fast AMcc Protocols for LCS and

Edit-Distance

Next we discuss the consequences of LCS and Edit-Distance having efficient AMC

protocols. We first introduce some classical notations about the communication com-

plexity classes (see [38, 94]). We say a function family F = {Fd {0, I}d x {0, 1 }d +

{0, 1, _L}}deN is in AM" if AMcc(F) = polylog(d) (we use AM"(Fd) to denote the

AMCC communication complexity for FR with error 1/3).
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We also say F is AM" if for all d E N, Fd admits a computationally efficient AM"

protocol with error 1/3 and complexity polylog(d).

Now we prove the consequence of a function family F E AMAe.

Corollary 7.4.1 (Consequence of F E AMcc). Let F = {F {0, 1}d x {0, i}d

{0, 1, -L}}deN be a partial function family. If F E AMif, then there is an n2/2101l5n

time algorithm for Fpolylog(n)-Satisfying-Pairr, for any constant 6 > 0.

Proof. By standard repetition arguments, there exists an AMcc communication proto-

col with communication complexity polylog(d) log(1/E) and failure probability 1 - E.

In order to invoke Theorem 7.1.2 we need to make sure

2 polylog(d) log(1/E) - 2 Polyloglog(n) log(1/E) < n0
-
1

,

and thus we can set e = 2 - o . For this choice of E we will then get an

n2/21" polylog(n) < n2/21'- " time algorithm for Fpolylog()-Satisfying-Pairn,

which completes the proof. 0

Recall that in LCSd (Edit-Dist) ), Alice and Bob hold strings x, y E {0, i}d re-

spectively, and are given an integer -r. Their goal is to decide whether LCS(x, y) 2 T

(Edit-Distance(x, y) > -r). Now we are ready to prove Theorem 7.1.7.

Reminder of Theorem 7.1.7 If LCSdC admits computationally efficient AM" proto-

cols with complexity polylog(d), then Formula-SAT of polynomial-size formulas admits

a 2n-" time algorithm for any constant 6 > 0. The same holds for Edit-Dist' in

place of LCS".

We will only discuss LCS" here, the proof for Edit-Dist"c follows exactly the same.

We first introduce the reduction from 1101 (see also [61).

Theorem 7.4.2 (Implicit in [101). For a given formula _ with n input variables and

size s, let a C {0, 1}n/2 be an assignment to first n/2 variables in F and b E {0, 1}n/2

be an assignment to last n/2 variables in F. There exists an algorithm A which

outputs G(a) E {0, 1}POlY(s) and 0(b) E {0, 1}Poly(s) such that for a fixed integer Y (Y

depends on F),
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o LCS(G(a), G(b)) =Y if a 0 b is a satisfying assignment to F;

o LCS(G(a), C(b)) < Y - 1 if a 0 b is not a satisfying assignment to F.

Proof of Theorem 7.1.7. For a given formula F of size s = poly(n), we first enumerate

all 2n/2 possible assignments to first n/2 variables in F and all possible assignments

to last n/2 variables in F. For each a E {0, 1}n/2 corresponding to an assignment to

first n/2 variables in F and b e {0, 1}n/2 corresponding to an assignment to last n/2

variables in F, we calculate G(a) and 0(b) using Theorem 7.4.2. Note that all G(a)'s

and G(b)'s have length poly(s) = poly(n).

Now suppose LCS E AM" for T = Y. Applying Corollary 7.4.1 with all possible

G(a)'s and G(b)'s, we can solve Formula-SAT in 2- time for any constant 6 >

0. M

7.5 Probabilistic Rank and OV Algorithms in [13]

In this section we explain [23]'s observation with the OV algorithm in [13] as an

example. [131 derived an n2 -1/O(logc) time algorithm for OVn,ciogn with the classi-

cal polynomial methods [144, 157] (i.e., the probabilistic polynomials for AND and

OR). Here we demonstrate that their results ultimately rely on the fact that the

SET-DISJOINTNESS matrix has a low probabilistic rank.

For the rest of the section we will always work with F2 -matrices and vectors. A

probabilistic matrix M is a distribution of matrices over F"<". We say a probabilistic

matrix A computes a matrix A E F24n with error E, if for every entry (i, J) C [n] x [n],

Pr [Ai = Mi) 1 - E.
M~M

We say a probabilistic matrix A has rank r, if the maximum rank of matrices

from M is r. We define the E-probabilistic rank of a matrix A to be the minimum

rank of a probabilistic matrix A computing A with error at most e.

Consider the following SET-DISJOINTNESS matrix AIDISJ E F dx2d. We use subsets

of [d] to index rows and columns of MDIsJ, and for subsets S, T C [ D
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DISJ(S, T) (DISJ(S, T) is the indicator function that whether S n T = 0).

The following fact is implicit in [13]:

Proposition 7.5.1 ([13]). The e-probabilistic rank of MDISJ is r <

Moreover, let M be the corresponding probabilistic matrix and M - M, there are

mappings 0 ,# : [d] -+ F2 which can be computed in poly(r) time, such that

O (S) -o(T)= MS,T for all S, T C [d].

Now, we derive the OV algorithm in [13] only using the above proposition.

Theorem 7.5.2 ([13]). There is an n2-1/O(logc) time algorithm for OVn,ciog n.

Proof. Our presentation here will be different from [13] for simplicity. Let d = clog n,

and A, B C {0, I}d with IAl = IBI = n be the given OV instance. We say OV(A, B) =

1 if there is an orthogonal pair in A x B, and OV(A, B) = 0 otherwise.

We first set logE-1 = E(logn/log c) so that after applying Proposition 7.5.1,

r < n0 .

Let m = N-/10, and assume m divides n for simplicity. We partition A and

B into g = n/m groups of vectors, each of size m. Let them be A 1 , A 2 , ... , Ag and

B1, B2, ., Bg correspondingly.

Let M be the e-error probabilistic matrix for MDISJ. And M ~ M be a sample

from it. We also draw two random vectors u, V E F".

Fix two groups Ai and BJ, consider the following quantity

DISJ((Ai)k, (Bj)e)) uk ye. (7.1)
k=1 f=1

Note that this is just uTWv, where Wk,j = DISJ((Ai)k, (Bj)j)). Since u and v are

two random vectors, when OV(Ai, B3 ) = 0, (7.1) is always zero as W is the all-zero

matrix; and otherwise (7.1) is 1 with probability at least 1/4.
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We are going to approximate (7.1) by the following

m m

)7 M1(Aj>k,(Bj), - k - Vf (7.2)
k=1 f=1

5{#J ((Aj)k) - #((Bj)-)} Uk - Vf
k=1 f=1

M 

mk=1 F=1

Note that there are m 2 =-/100 entries of M are considered in (7.2). So by a

union bound and the fact that M computes MDISJ with error E. With probability

0.99, (7.2) and (7.1) are equal, over M, u and v.

Let U = X _1 #O ((Ai)k) i- U and V = E,"1 #0 ((Bj)e) -vj. Then by (7.3), (7.2)

equals Uj -1V. Putting everything together, for each (i, J) E [g] x [g], we have: (1) when

OV(A2 , Bj) = 0, PrM,,,,[U- V = 1] < 0.01; (2) when OV(Aj, Bj) = 1, PrM,,,,[U - V =

1] > 0.24.

For a tuple of M, u and v, we can compute Uj - V for all i, j via a rectangular

matrix multiplication between two matrices of size g x r and r x g. By Theorem 7.2.1,

it can be solved in g2 . polylog(g) time. Repeating this for T = 1000 log n times, for

each i, j, we record how many times we get Uj -V = 1 as Tij. The algorithm outputs

yes if there are i, j such that Ti > T - 0.15, and no otherwise.

By a simple Chernoff bound, one can show the algorithm solves the OV instance

with high probability, and the running time is (n/M)2 .polylog(n) 2 .n2 
. polylog(n)

n 2-1/O(logc)

Remark 7.5.3. From the above proof, it is easy to see that for any function F

whose corresponding communication matrix MF admits a lou probabilistic rank with

an efficient decomposition as in Proposition 7.5.1. A fast F-Satisfying-Pair algorithm

can be derived similarly.
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7.6 Conditional Lower Bounds for Computational-

Efficient PH"C Protocols

In this section we prove Theorem 7.1.9 (restated below).

Reminder of Theorem 7.1.9 Under the following hypothesis, LCS"C and Edit-Distcc

do not admit computationally efficient PH" protocols with complexity polylog(d):

o There is a constant J > 0 such that Formula-SAT of polynomial-size formulas

requires 2- time.

We first recall the definition of a PH" protocol from [38].'

Definition 7.6.1 (1381). A PH communication protocol (PH") II for a function F:

X x Y -+ {0, 1, -} proceeds as follows:

" Alice holds input x G X and Bob holds input y E Y.

" For a constant k E N, there are 2k provers P1, P2,- - , P2k-

" For each i E [2k], the prover P sends both Alice and Bob a proof zi c {0, 1}"M.

* We use A(x, z1 , z2 , .. . , Z2k) (resp. B(y, z 1 , z 2 , .. . , z2k)) to be the indicator func-

tion that whether Alice (resp. Bob) accepts the proof sequence z1 , z 2 ,..., Z2k,

given the input x (resp. y).

" If F(x, y) =1, then

] V ] V [A(x, z 1, z 2k) A B(y, z1 , z 2k)]
zlE{O,1}

m
l z 2 E{O,1}

m
2 Z2 k-lE{,1}m

2
k-

1 
z2 kE{O,1}

m
2k

" If F(x, y) = 0, then

V I V ]
zi E{O,1}ml z 2 E{0,1}

m
2 Z2 k-1E{0,1}m

2
k-1 Z2 kE{O,l}

m
2k

'See also [941 for a more recent reference.

[-,A(x, z, . . . , z 2 k) v -,B(y, z1, .. ., z2k)] -
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Moreover, we say the protocol is computationally efficient if Alice and Bob's de-

cision functions (the functions A and B) can be computed in polynomial-time w.r.t.

their input lengths. The communication complexity of I1 is simply the total number

of proof bits from all provers, i.e. Z31 mi.

Theorem 7.6.2. Let F : X x Y -+ {0, 1, I} be a partial function. Suppose there is a

computationally efficient PH" protocol for F with communication complexity T and

number of provers 2k. If e > 0 satisfies

2 < no-1
< 10 - (2 - T)2k . log(I/E))-

then there is an O(E - n2 polylog(n)) time algorithm for F-Satisfying-Pair,.

Proof. By Remark 7.5.3, we only need to argue the probabilistic rank of the commu-

nication matrix MF is small, which is already established in [145]. In the following,

we follow the proof structure of Theorem 7.5.2.

Recall that T 2i mi. Let M = 2 and z E{0, 1}". With a natural bijection

between [M] and {0, 1}T, we can use a string x E {0, 1}T to index z.

We define the following AC 0 function

F(z) := Vxiegoimi Ax 2 E{0,1}m2 ' - - VX 2k -ie{O,1} 2k- AX 2kE{O,1}m2kZ(x1oX20...x 2 ),

where X 1 o x 2 0 . . . X2k means the concatenation of the xi's.

By standard polynomial method [144, 157], there is a

D = 10 - (2 -T) 2k .log(I/E)

degree, E-error probabilistic polynomial for the function F. Formally, there is an

efficiently-sampleable distribution on D-degree polynomials 'P, such that for all z E

{o, 1}M,

Pr [P(z) = F(z)] > 1 - E.
P~Pe
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In particular, this means the E-probabilistic rank of MF is smaller than

T<M)
r< D

and the corresponding distribution on low-rank matrices has efficiently computable

decomposition as specified in Proposition 7.5.1. Then we can proceed exactly as in

Theorem 7.5.2. L

Finally, we are ready to prove Theorem 7.1.9.

Proof of Theorem 7.1.9. We proceed similarly as in Theorem 7.1.7. Below we only

discuss LCSCC, the proof for Edit-Dist" is exactly the same.

For a given formula F of size s = poly(n), we first enumerate all 2n/2 possible as-

signments to first n/2 variables in F and all possible assignments to last n/2 variables

in F. For each a E {0, 1}n/2 corresponding to an assignment to first n/2 variables

in F and b E {0, 1}n/2 corresponding to an assignment to last n/2 variables in F we

calculate G(a) and G(b) using Theorem 7.4.2. We can assume that both G(a) and

G(b) have length f = poly(s) = poly(n).

Now suppose LCS" with T = Y has a computationally efficient PHCC protocol with

T = polylog(e) = polylog(n) and the number of provers 2k (k is a constant). We set

E such that

2 2/20
(< 1-0 - (2 - T)2k . og(1/E)) - -n

The above can be satisfied if

2 T10..(2.T)
2
k.lOg(1/E) - polylog(n)-log(1/) n20

Finally, we set E = 2 ~1-/2 for the 6 > 0 in the hypothesis. Now we can complete

the proof by applying Theorem 7.6.2. E
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