
TRANSPARENT DISTRIBUTED PROGRAMMING IN JULIA

BY

VALENTIN CHURAVY

B.Sc, UNIVERSITAT OSNABRiYCK (2014)

SUBMITTED TO THE

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CAMBRIDGE, MASSACHUSETTS

JUNE 2019

@ 2019 MASSACHUSSETS INSTITUTE OF TECHNOLOGY. ALL RIGHTS RESERVED

Signature of Author:

Certified by:

Accepted by:

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUN 13 2019

LIBRARIES

Signature redacted
Department of Electrical Engine and Computer Science

May 23, 2019

Signature redacted
Alan Edelman

Professor of Applied Mathematics
Computer Science and Al Laboratories

Applied Computing Group Leader

Signature redacted
S (QJ Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

ARCHIVES

Abstract

Scientific and engineering problems grow ever larger and more challenging, solving them
requires taking advantage of domain expertise and modern compute capabilities. This
encourages efficient usage of GPUs and using large scale cluster environments efficiently.
Domain experts should not need to acquire the deep knowledge required to develop ap-
plications that scale, but rather should be able to express data science and engineering
problems in terms of vectorized operations and linear algebra, that is in language inherent
to the field.

The approach introduced here, gives performance engineers access to low-level capabil-
ities of the hardware, allowing them to collaborate with domain experts in the same lan-
guage. This removes the need to rewrite scientific code in a low-level language, speeding
up the iteration cycle and allowing for rapid prototyping.

We investigate composable, layered abstractions for scientific computing. They separate
the user intent, the what, from the how of the implementation and the where of the
execution. The focus is on the distributed aspects, how array abstractions for distributed
and accelerated computing can compose with each other and how we can provide access
to low-level capabilities in a transparent fashion.

Building and debugging these abstractions is challenging. This work introduces Cthulhu,
a unique debugging tool for abstractions, that takes into consideration the dynamic execu-
tion model and the static compilation process of Julia.

3

Acknowledgments

I am immensely grateful to Tim Besard for his continued collaboration and the many
valuable discussions we had over the years, without him GPU accelerated prograniming
in Julia would hardly be possible. The Julia community has been an important part of
my last few years and I can't thank all of the many people that make it such a wonderful
community to be part of. I am thankful to Peter Ahrens and Jarret Revels for their valuable
discussions, comments, and a fabulous work environment.

I would like to thank Jameson Nash, Matt Bauman, Keno Fischer, Jeff Bezanson, and
Andreas Noack for their work on these topics, their mentorship, and for welcoming me and
my ideas. These are the giants, whose shoulders I stand upon.

I am grateful for my thesis advisor, Alan Edelman, who always provided me with the
freedom to explore my ideas and who reminds that what matters most is to make someone
else's life just a little bit easier.

Many thanks to my collaborators Ali Rarmadhan, Greg Wagner, Lucas Wilcox, Jeremy
Kozdon, Chris Rackauckas and Yingbo Ma for being open to experimentation and their in-
put on these subjects. I thank Simon Danish for his work on GPUAr'rays and Julia Samaroo
for asking me questions about code generation and for working on A MDGPUnative.

Thank you, to all my family and friends, who have cheered me on and who have provided,
Coffee, Chocolate and Conversation. Special thanks to both Stefan Polenz and Nili Persits
for their valuable comments on this thesis.

This research is supported in part by NSF DMS-1312831, NSF OAC-1835443, Darpa
XDATA, and an ARAMCO MITEI grant.

4

Listings

1 Simple asynchronous code example . 7
3 Combining asynchronous and distributed programming 9
4 Inferring a simple function . 11
8 Calculating the fibonacci sequence in the type-domain 12
11 limit function that operates in the type-domain 13
15 Not all problems can be solved by adding one layer of abstraction 14

16 The natural numbers defined as nested tuples 14

17 Example use of the reduce abstraction. 16
18 Example use of the map and broadcast abstractions. 17
19 Low-level implementation of in-place map taken from DistributedArrays.jl. 20

20 High-level use of the map! abstraction with distributed arrays from Dis-

tributedA rrays.jl . 21

21 Example of a busy worker causing a stall due to communication dependencies. 24
22 Using dispatch to transparently execute a kernel 26
23 Type hierarchy of devices . 27
24 Demonstration of the @launch macro . 28
25 A simple example of the loop macro . 29
28 Usage of the shmem, scratch and synchronize macros 30
29 Inference failure on broadcasting the contains function 34

30 First analysis step with Cthulhu, inspecting unoptimized Julia IR 34

31 Stepping into the copy(Broadcasted) function called from materialize 35
32 Unoptimized Julia IR for combine eltypes, showing the source of the in-

ference issue. eltype is part of the implicit trait of containers and so the

call to returntype uses the wrong argument types. 36

List of Tables

1 Hierarchy of representations, and the reflection macros used to obtain each 9
2 Different forms of broadcast syntax and their execution 18

List of Figures

1 Time to execute the domeigen function from Besard et al. [8] and compute

the dominant eigenvector and eigenvalue of a N x N matrix. We bench-

mark for 1000 iterations of the power method, approximating the reference

eigenvalue with sufficient accuracy. 23

5

1 Introduction

Scientists, engineers and researchers work on ever growing problems, that require more

and more computation. They also face challenging applications and need to quickly adapt

to ever changing requirements. We want domain experts to quickly be able to prototype,

iterate and evaluate new ideas on data-sets ranging from small to large. Programs should

be portable, run on accelerators, work on large scale cluster environments, and be worked

on by teams of domain experts and performance engineers.

This thesis presents my work towards achieving this goal, I will discuss a distributed

and heterogeneous programming model in the Julia [12, 11, 14] programming language,

originally presented as joint work in Besard et al. [8].

I will focus on the distributed aspects, expand on it by introducing a unified kernel

language for heterogeneous programming, and a powerful debugging tool for understanding

complex programs using abstractions in Julia.

In Sections 1.1 and 1.2 I introduce the foundations necessary to build distributed infras-

tructure in Julia. In Sections 1.3 and 1.4 I briefly discuss Julia's compiler and type-inference

mechanism. I find it important to built an appreciation of both in developers and users of

the language so that they are able to build and debug abstractions and advanced programs

in Julia.

I will then introduce the set of abstractions from Besard et al. [8], that form a pro-

gramming model well suited for scientific programming in Section 2. During that work we

observed performance limitations of distributed programming in Julia, and in Section 3 I

will discuss these and potential pathways of addressing them.

The array focused programming model, introduced in Section 2, is good for rapid proto-

typing, but advanced users have expressed a need for more low-level control and to express

computational kernels directly. In Section 4 I introduce a small package, that implements

a limited kernel language for heterogeneous programming.

These contributions are extensions to the programming language Julia and are made

possible by extensively taking advantage of advanced features; some of which make it non-

trivial to debug and understand applications using them. In Section 5 I introduce a tool I

developed to help debug advanced applications.

6

Listing 1: Simple asynchronous code example

1 @sync for i in 1:10
2 Casync begin

3 println("Hello from task $i")

4 end
5 end

Listing 2: Expanded code

1 tasks = Task[]

2 for i in 1:10
3 thunk = () -> println("Hello from task $i")

4 task = Task(thunk)

5 push!(tasks, task)
6 schedule(task)
7 end
8 Base.sync-end(tasks)

1.1 Asynchronous programming in Julia

Asynchronous programming is not the focus of this thesis, but it is used through-out the

distributed progranuning stack in Julia, see Listing 3 as an example of how both interact.

Julia supports asynchronous programming in the form of Tasks, tasks are concurrently

executed threads of control that communicate through Channels and memory. They are

an implementation of communicating sequential processes (CSP) [15] and are scheduled

cooperatively on a single-threaded runtime. They yield control at explicit yield points -

e.g. calls to yield - or implicit yield points, like blocking on a condition, lock, or waiting

for IO.

Listing 1 is an example of tasks in action. The Oasync macro in Line 2 creates a task

object, that takes an anonymous function to be executed. The anonymous function consist

of the expression given to the Oasync macro. The task is then scheduled in the runtime

for execution. Listing 2 contains the expanded code generated from the macros.

The @sync macro synchronizes on all task created in it's lexical scope, by waiting on all

of them to complete.

1.2 Distributed Programming in Julia

There are two prevalent programming models for distributed programming in Julia. An

asynchronous master-worker model based on futures and remote-procedure calls (RPCs)

and Message Passing Interface (MPI[38]) as the more traditional model.

7

Much ink has been spilled on the benefits or lack thereof of MPI and I will focus on an

analysis of the master-worker model as implemented in Julia standard-library Distributed. ji.

There has been work done in Julia to implement a Partitioned Global Address Space

(PGAS) model. The GASP. j1 [40, 45] used for the Celeste project is a good example,

but most users and most of the infrastructure discussed here is built on top of the RPC

interface.

The primary user-facing interface consists of two data-structures Future and RemoteChannel,

and several variants of remotecall. A future represents a value being computed on a re-

mote process, which can be fetched and waited upon, but the future can only be set to

a single value. Remote channels extend this concept by allowing several values to be pro-

duced and fetched. They function similar to channels used in communication between

tasks.

A remotecall invokes a function or lambda on a remote process, it returns a Future as

the handle for the response. There are two variants remotecall_f etch and remotecallwait,

that aim to minimize the number of messages sent. Both variants will block until a response

with the data has been received.

remotecall_f etch(...) is equivalent to f etch(remotecall(...)), it is automatically

fetching the result of the remote call, and remotecallwait automatically waits on the

remote call to finish.

Under the hood remote calls are implemented through different message types that are

serialized and sent across a network channel. This is similar to active messages [21]. The

messages have unique tags and after deserialization the corresponding message handler is

invoked.

We will see how this minimal interface can be used to implement high-level abstractions

in Section 2.5. A common pattern is to combine asynchronous programming with the

blocking variants of remotecall. This reduces the amount of network traffic while allowing

for several remote procedures to be started across the master-worker system. As an example

Listing 3 invokes a thunk on each worker process that generates some random data and

sends back the sum of it to the master process. This intertwined style makes it also harder

to debug and profile distributed code in Julia and was one of the primary motivations for

the creation of more advanced tools in Section 5.1.

8

Listing 3: Combining asynchronous and distributed programming

1
2
3
4
5
6

results = Float64[l
@sync for p in workers()

Casync begin
r = remotecall-fetch(p) do

data = rand(64)
sum (data)

7 end
8 push!(re
9 end

10 end
11 sum(results)

1.3 Multiple level of representation

All computer programs eventually have to be translated into action to be performed by

a computer. This can either happen through interpretation or through compilation and

later execution. The Julia language is, despite its dynamic nature, a primarily compiled

language. The Julia compiler uses multiple levels of representation to optimize code and

in the end to translate it into machine code.

By using multiple representations each layer can focus on one task at a time and the

code successively gets transformed from high-level code written by humans to low-level

code suitable to execution on a machine. The process is called lowering and is used in

many programming languages and compilers.

One powerful characteristic of the Julia language is that it allows access to these various

intermediate representations through reflection methods. Table 1 contains a list of various

representations and the corresponding reflection method, starting from the highest, Julia

source code, and ending with the lowest, machine code. The reflection methods @code_*

operate on the function level and take a callsite like @codelowered f (1.0).

Table 1: Hierarchy of representations, and the reflection macros used to obtain each

Julia source code
@codelowered Lowered code
Ocodetyped optimize=false Type-inferred code, without optimizations
Ocodetyped optimize=true Type-inferred code, with optimizations - primarily inlining

@codellvm optimize=false LLVM IR - as produced by code generation

@codellvm optimize=true LLVM IR - post-optimizations
codenative Machine code

9

sults , r)

Examples of the output of various reflection methods will be given throughout this work

and Section 5.1 I will introduce a tool to easily explore these various levels.

1.4 A brief introduction to Julia's type-inference

One of the major benefits of the Julia programming language is that despite it being an ut-

terly dynamic prograrmuing language, it offers performance comparable to static languages

such as C and C++. This is achieved using, type-inference [14, 50], aggressive devirtualiza-

tion, and compilation through LLVM [30]. Especially type-inference is important to obtain

good performance. This in turn rewards programmers with advanced understanding of it

and an appreciation for its capabilities and limitations. In particular since most knowledge

gained by doing performance optimizations in other programming languages still applies,
but understanding the action of type-inference on a users code and the performance con-

sequences that go along is not trivial for interesting computation.

The type-inference algorithm can be summarized as such: Given a function signature

(set of concrete types), using abstract interpretation to propagate the types in control-flow

order through the function. During propagation we can encounter three kinds of functions,
built-ins, intrinsics or generic functions. To compute the return type of a built-in or

intrinsic function we can use t-funcs (type functions), that take a signature and return

the output type of the intrinsic or built-in, whereas computing the return type of a generic

function, requires us to apply type-inference recursively. This recursion is terminated by

either encountering a function that consists consists solely of intrinsics or built-ins, or by
triggering the recursion detection and returning an upper type-bound. That information

can now be used while inferring the caller.

An example is presented in Listing 4; given the function call f (1, 2), we have the

signature (f , Int64, Int64) where Int64 is a concrete type. Knowing the signature

of the function we are calling and with the t-funcs in Listing 5, we can use its lowered

representation in Listing 6 to obtain the type-inferred result in Listing 7. After type-

inference we now know that the result of this call signature will be a Int64 and we can

reuse this result when inferring other functions that call f.
Note that this process as described is unbounded, mostly due to the presence of recursion

in the user program. Therefore type-inference is limited when detecting a recursive cycle

and the return type of that function is inferred to the current best upper bound or Any

and the function is evaluated with dynamic semantics.

10

Listing 4: Inferring a simple function

1 function f(x, y)
2 return x + 2*y
3 end

Listing 5: Simplified t-funcs

1 tfunc(::typeof(+), ::Type{T}, ::Type{T}) where T = T
2 tfunc(::typeof(*), ::Type{T}, ::Type{T}) where T = T

Listing 6: Lowered representation

1 %1 = 2 * y
2 %2 = x + %I
3 return %2

Listing 7: After type-inference

1 %1 = (2 * y)::Int64
2 7.2 = (x + X1)::Int64
3 return %2::Int64

Programs that perform computation in the type-domain are challenging to analyze since

they can cause unbounded behavior. In Listing 8 the input value of fib is lifted into the

type-domain by wrapping it in Val. As we can see in Listing 9 the return value of fib is

constant. We can introspect the compiler a bit further and see the lattice element Const

that is used for constant propagation in Listing 10.

Since recursion is a common pattern in code, the compiler has relaxed heuristics in the

case of self-recursion, but one can easily run into scenarios where an additional indirection

will defeat the inference pass and the compiler falls back onto dynamic semantics.

In the following I will present three cases; first a computation in the type-domain with

increasing values (Listing 11), next by introducing an intermediate function call the self-

recursion detection will be stimified (Listing 15) and lastly an example of bounded struc-

tural complexity (Listing 16).

The first example in Listing 11 is deceptively simple, we define a function limit, that is

self recursive and increments N until reaching a limit at k (k = 1000 is arbitrarily chosen). In

Listing 8 we have seen that such computation in the type-domain can be constant folded.

Albeit, if we inspect the code with codetyped in Listing 12 we can see that dynamic

semantics are being executed. The reason is that the Julia compiler tries harder to infer

type-domain computations that are potentially convergent and punts on computations that

11

Listing 8: Calculating the fibonacci sequence in the type-domain

1 fib(::Val{O}) = 0
2 fib(::Val{1}) = 1
3 fib(::Val{N}) where N = fib(Val(N-1)) + fib(Val(N-2))

Listing 9: After type-inference and optimizations

1 julia> @code-typed fib(Val(20))
2 CodeInfo(
3 1 return 6765
4) => Int64

Listing 10: After type-inference, without optimizations

1 julia> Dcode-typed optimize=false fib(Val(20))
2 CodeInfo(
3 1 %1 = ($(Expr(:staticparameter, 1)) - 1)::Const(19, false)
4 .2 = (Main.Val)(%1)::Const(Val{19}(), true)
5 %3 = (Main.fib)(%2)::Const(4181, false)
6 %4 = ($(Expr(:static~parameter, 1)) - 2)::Const(18, false)
7 %5 = (Main.Val)(%4)::Const(Val{18}(), true)
8 76 = (Main.fib)(%5)::Const(2584, false)
9 %7 = (M3 + %6)::Const(6765, false)

10 return %7
11) => Int64

are potentially divergent. This includes differentiating between subtraction and additions,

as we can see in Listing 13 and Listing 14.

The second example in Listing 15 demonstrates the limitation that functions have to

be self-recursive to get the benefit of relaxed heuristics. It is in fact similar to the earlier

example of calculating the Fibonacci sequence in Listing 8. The only difference is that

instead of being self-recursive it is a recursive cycle of two functions, for each call to f ib

we call the function notf ib, which in return calls f ib, forming a cycle. The Julia compiler

will not perform the same level of optimizations as in Listing 9, since we are no longer the

triggering the self-recursive heuristic.

An additional limitation is structural complexity of types, in order to prevent geometric

blowup, the Julia compiler limits the inference of functions whose signatures are not de-

creasing in complexity, even in the case of self-recursion. Take Listing 16 as a fun example.

In it we define the natural numbers as tuples! So zero is 0, one is (,), and two is

(((,),), and so forth. Line 2 defines the successor function and the next three lines

define the empty tuple to be the zero element. Line 6 finally defines the addition of two

natural numbers, by unpacking T2 and incrementing T1, we recurse until T2 is zero.

12

Listing 11: limit function that operates in the type-domain

1
2 limit(::Val{1000}) = 1000
3 limit(::Val{N}) where N = limit(Val(N+1))

Listing 12: Heuristic assumes limit diverges

1 julia> Ocode-typed limit(Val(O))
2 CodeInfo(
3 1 %1 = invoke Main.limit($(QuoteNode(Val{2}()))::Val{2})::Int64
4 return X1
5) => Int64

Listing 13: limit function that operates in the type-domain, but uses decrement instead

of increment

I mit(::Val{l000}) = 1000
2 mit(::Val{N}) where N = limit(Val(N-1))

Listing 14: Heuristic assumes that limit converges

1 lia> Ocode-typed limit(Val(2000))
2 deInfo(
3 return 1000
4 => Int64

13

Listing 15: Not all problems can be solved by adding one layer of abstraction

1 fib(::Val{0}) = 0
2 fib(::Val{1}) = 1
3 fib(::Val{N}) where N = notfib(Val(N-1)) + notfib(Val(N-2))

Listing 16: The natural numbers defined as nested tuples

1
2 S(T::Tuple) = (T,)
3 +(::Tuple{}, T::Tuple{Any}) = T
4 +(T::Tuple{Any}, ::Tuple{}) = T
5 +(::Tuple{}, ::Tuple{}) = Tuple{}
6 +(T1::Tuple{Any}, T2::Tuple{Any}) = (T1,) + first(T2)

Julia will infer (0,) + ((((,),),), e.g. 1 + 3, to be constant, whereas 1 + 4, e.g

((),) + (((((),),),),) will not be inferred to be constant, due to the structural con-

plexity of the recursive call not decreasing.

Optimizations During the type-inference process the Julia optimizer also performs more

traditional compiler optimizations, such as constant propagation and function hilining.

14

2 A transparent programming model

In Besard et al. [8] we presented a programming model focused on array based programming,

that lends itself well for prototyping of scientific and engineering software. We found that

in particular such a programming model allows for the easy usage of distributed computing

and composes well with heterogeneous/accelerated computing.

Julia is the perfect language to provide such an infrastructure in, since due to its dynam-

ical nature and its goal to being close to mathematics, it is easy to pick up, and due to the

use of type-inference (as discussed in Section 1.4) and a just-in-time (JIT) compiler built

on-top of LLVM [30] it provides excellent performance.

A fundamental aspect of my work in Besard et al. [8], was to focus on a strong separation

of concerns. using Julia's iultiple-dispatch to layer implementations of array abstractions

in a transparent fashion. This design facilitates code reuse and fosters collaborations, be-

tween domain experts and performance engineers, who can use these layered abstractions

to provide optimized hardware-specific implementations. I will discuss these ideas in See-

tion 2.5.1 and in the following I will provide the basis of the programming model and how

two of the implementations, namely CuArray. jl and DistributedArrays. jl, work.

In order to achieve high-performance codes in a given domain., programmers have to

encode a great deal of knowledge about the problems and about how to efficiently solve

them. In the linear algebra domain this means exploiting knowledge about structured

matrices - not just sparse versus dense.

If abstractions are not well layered, or not present, them implementing programs requires

an in-depth understanding of the chosen programming language and all levels of execution.

To achieve the computational performance necessary for large programs additionally re-

quires often the need to code in a low-level language. This greatly increases the barrier to

entry and makes it harder to write efficient and reusable code.

The core tenant of the programming iodel we are advocating for is the expression of data

science and engineering problems in terms of vectorized operations and linear algebra, that

is in language inherent to the field, not to the prograimirng language. This natural and

concise representation makes it easier to iterate over different prototype implementations,

and from an implementation standpoint nicely separates the concerns of what from the

how. Several examples of high-level programs can be found in Besard et al. [8].
The operations we will focus on are higher-order functional constructs such as map,

reduce, mapreduce, and broadcast. They are commonly used in Julia and many other

15

Listing 17: Example use of the reduce abstraction.

1 a::Array{Int} = [1 2; 3 4]
2
3 reduce(+, a)
4 reduce((x,y)->2x+y^2, a)

high-level languages such as R, Python and Matlab. In contrast to other languages, in Julia

they are not required to achieve high-performance, and are not implemented in a low-level

high-performance language. Rather, they are implemented in Julia itself [13], allowing for

composability and layering of abstractions, while maintaining great performance.

At the same time Julia's compiler infrastructure enables higher-order abstractions that

compose with arbitrary user code. The reduce abstraction is a prime example of such

an abstraction. Listing 17 illustrates how the first argument to the reduce function can

be any transformation function that reduces two scalar values. The compiler specializes

the implementation of reduce, which only deals with the semantics of the abstraction,

with the transformation function as specified by the user. This can be an operation or

function from the standard library, as on Line 3, or a user-specified one as shown on Line 4.

Furthermore, the underlying storage is implemented by a separate container type. In the

example this is the standard Array, which is itself specialized on the standard element type

Int. However, it is as easy to use nonstandard types for containers and elements. This is a

clear separation of concerns, facilitating reuse by limiting the responsibility of each aspect

of the overall computation.

The expressiveness and performance of these array abstractions makes it possible to

reuse them outside of prototyping code. Array abstractions on generically typed arrays are

used, e.g., in the ForwardDif f .j1 package. The code in the package can be composed with

any concrete array implementation, which makes the package equally suited for use during

prototyping and for reuse as is in optimized production code. In Sections 2.4 and 2.5, we

will further focus on portability through the use of different array types.

2.1 The map, reduce, and broadcast abstractions

The map, reduce, and broadcast functions are higher-order abstractions that are essential

to high-level array programming in Julia. They compose with user code that determines

what is computed, while the methods that implement these abstractions determine how

and where that computation will happen. These implementations can be specialized on

16

Listing 18: Example use of the map and broadcast abstractions.

1 a = [1 2; 3 41
2 b = [3 4; 5 61
3 c = [5 6; 7 81

4
5 map(x->x+1, a)
6 map(+, a, b)

7 map((x,y,z)->x+y+z, a, b, c)

8
9 broadcast(+, a, 1)

10 broadcast(+, a, [-1; 1])

the type of the arguments, selecting an implementation that maximizes performance or

otherwise preserves the array type, e.g., to prevent slowdown due to unnecessary memory

transfers. This is especially important in the realm of high performance computing, where

it is crucial to minimize the amount of allocation and to efficiently use the available menory

bandwidth

At its core, map transforms collections by applying a function elementwise over its argu-

ments, as shown in Listing 18. The arguments are collections that all have to be of the

same shape.

The broadcast abstractions generalizes the behavior of map to containers of heteroge-

neous shapes by padding dimensions accordingly. This greatly improves use with objects

of different shape. For example:

All . Aljj ci

broadcast(f, A, b, c) = broadcast(f, b ,)
[Ani ... A77 n j cmj

f (All, b, ci) ... f (Al,, b, c1)

,f(A,,,, b, Cin) ... f (Amn7n, b, cm)

The reduce abstraction reduces the dimensionality of

function along certain dimensions of an collection. As

of an array by calling reduce(+, array), reduces the

dimensional object to a zero-dimensional object - e.g. a

a container by applying a binary

an example computing the sum

array::Array{T, N} from a N-

scalar. By choosing a dimension,

or set of dimensions, to reduce over, we generally go from N to N - M dimensions, where

-N is the number of dimensions to be reduced over.

17

Table 2: Different forms of broadcast syntax and their execution

Source code Execute as
f.(a) broadcast(f, a)

b .= f.(a) broadcast!(f, b, a)
f.(a .+ b) .* c broadcast((a, b, c) -+ f(a + b) * c, a, b, c)

A common pattern is to call reduce after having performed a map. This computation

can be performed with a single call to mapreduce instead, slightly improving performance

by avoiding the intermediate array as returned by the inner map.

Although seemingly simple, these abstractions are very versatile and capable of express-

ing a wide range of computations. Furthermore, the abstractions expose a great deal of

parallelism, and are therefore ideal candidates for parallel programming. This will be

discussed in Section 2.3.

2.2 Dot Expressions

As a means of making broadcast easier to use, so-called dot expressions can be used in Julia

to denote elementwise transformations [25]. The Julia parser lowers this syntactic sugar to

invocations of the broadcast function, as illustrated with some examples in Table 2.

Elementwise assignments call the broadcast! function, which performs in-place assign-

ment to avoid allocating an output container.

A broadcast expression is treated a single statement in the Julia parser, and instead of

being lowered to a series of calls to broadcast, the expression is lowered to several calls

to broadcasted, which constructs a Broadcasted from the expression. A Broadcasted

represents a broadcast tree, e.g. the application of an elementwise function over a set of

arguments. The arguments are either scalars, collections, or Broadcasted themselves. The

constructed Broadcasted is then passed to the materialize or materialize! function in

case of a in-place broadcast [6].

The Broadcasted is used to perform various transformation, among them broadcast

fusion, which eliminates the need for temporary storage. Furthermore the Broadcasted

is accessible to implementers at runtime, which enables fine-grained customization of how

broadcast is computed depending on the arguments and output types. For example, it

allows for broadcast expressions on ranges to be calculated eagerly, for custom array types

to opt-out of broadcast fusion, and for splitting broadcast expressions into chunks that can

18

be computed in parallel.

Despite Broadcasted being a runtime object, its construction can often be elided due

to Julia's type-inference and optimizations.

2.3 Array Infrastructure Portability

The previous sections have only used Array, the basic array type in the Julia base library,

but this conscious layering of abstractions allows user code to instantiates a concrete sub-

type of the AbstractArray type to express where data is stored, array abstractions are

used to describe what is going to be computed, and multiple dispatch is the core mechanism

to influence how computation happens. This section demonstrates how this separation of

concerns makes it possible to compose imultiple array types, and enable reuse of array

infrastructure.

2.4 CuArrays.jI

The CuArrays.jl package [26] defines a CuArray type alongside optimized implementations

of many common array operations for NVIDIA GPUs. Some of these implementations

call out to existing., vendor-provided libraries such as cuBLAS or cuDNN. These libraries

are mature and optimized for each hardware generation. Other operations, such as the

higher-order abstractions from Section 2 are implemented on top of CUDAnative.jl [9], a

package that compiles arbitrary Julia code to PTX machine code for NVIDIA GPUs. The

performance of code generated by this package is on-par with the performance of CUDA C

as compiled by the NVIDIA compiler [9]

CuArrays [8] and CUDAnative [9] are the foundations for the first-class GPU ecosystem

in Julia and have seen wide adoption. Besard et al. [8] contains a full description of its

capabilities and here I will focus on the distributed aspects of the work.

2.5 DistributedArrays.ji

The DistributedArrays.jl package builds upon Julia's distributed computing infrastructure

to provide a Global Array-like interface [39]. A DArray is a data structure that distributes

an array across a set of processes, where each process holds a chunk of the total array. The

memory is globally addressable, and Remote Procedure Calls (RPCs) are issued automat-

ically when accessing memory that is not local to the process. This makes it possible to

19

Listing 19: Low-level implementation of in-place map taken from DistributedArrays.jl.

1 function Base.map!(f, dest::DArray, data)
2 Osync for p in procs(out)
3 Casync remotecall-wait(p, f, dest, data) do f, dest, data
4 local-dest = localpart(dest)
5 map!(f, localoutput, makelocal(data, localindices(dest)...))
6 end

7 end

8 end

support scalar indexing for code compatibility reasons, while optimized implementations of

operations are aware of the distribution of memory and can avoid communication overhead.

The type signature of DArray consists of three type parameters: T and N from the

AbstractArray interface for respectively the element type and dimensionality, and A for

the underlying local array type. The local array type parameter enables a great amount of'

flexibility, since it allows DArray to be mostly agnostic to the underlying array type. This

again allows to separate concerns, where the DArray type manages communication while

the underlying array A is responsible for the storage, computation, etc. Section 2.5.1 will

show how this pattern makes it possible to compose array types that, like DArray, wrap

other arrays.

Listing 19 is an example of an implementation of a high-level abstraction for distributed

arrays in DistributedArrays.jl. It follows the owner-computes rule by which each proces-

sor performs the computations on the data it owns. The example implements an in-place

map through a series of RPCs, predominantly operating on local memory and avoiding

unnecessary communication to other processes. The master process orchestrates the con-

munication between workers and the actual work is delegated to operations on local data.

The example demonstrates the aforementioned separation of concerns: The code of List-

ing 19 only deals with distributing the map operation, and defers to the underlying array

type for the actual implementation of the abstraction.

The example calls remotecallwait from the Julia distributed infrastructure to invoke

an anonymous function on process p that executes the do . . . end block that follows.

The worker process then accesses the localpart of the target array and localizes through

makelocal those parts of the input data array that are required to compute the local part

of the map. If necessary makelocal fetches and copies data from other workers, but if

the data is already locally available this copy is avoided. The call to remotecallwait

is a blocking RPC and is wrapped into an Oasync block, which starts a lightweight task.

20

Listing 20: High-level use of the map! abstraction with distributed arrays from
DistributedArrays.jl

1 # prepare a para l Let computing environrment
2 using Distributed
3 addprocs(2)
4
5 using DistributedArrays
6
7 a = distribute(rand(2,2))
8 b = similar (a)
9

10 map!(sin, b, a)

Tasks are used to prevent the processes, especially the master, from blocking on a call

since otherwise no progress could be made and no other RPCs could be issued. Finally,

the Osync block waits on all enclosed tasks to make sure the computation is finished when

returning from the map! function.

The distributed computing abstractions as used in Listing 19 are defined in the Julia

standard library. They are built on top of a ClusterManager interface for launching worker

processes on distributed systems. The standard library implements this interface for local

processes and for networked systems that expose the Secure Shell (SSH) protocol. Exter-

nal packages can be used to work with managed clusters, such as ClusterManagers.jl that

implements a ClusterManager subtype for the Slurm workload manager [49], the Portable

Batch System [22], and others. For environments that rely on the Message Passing Inter-

face (MPI), MPIManager from MPIjl can be used to communicate with processes over an

optimized communication fabric such as InfiniBand [32]. The design of this infrastructure

enables distributed code that works with distributed processes, such as DistributedArrays.jl,

to be agnostic of the underlying processes and how they communicate.

The implementation as shown in Listing 19 is written by specialists that know how

the DistributedArrays.jl package is structured, and how to execute code efficiently in a

distributed setting. This complexity is completely hidden from the end user: Listing 20

shows how to use the map! abstraction from Listing 19 on a newly allocated DArray. This

does not differ from use of the abstraction with any other array type. The only code

specific to distributed computing deals with launching local processes by calling addprocs

on Line 3.

21

2.5.1 Distributed GPU Arrays

Where the previous section combines array types that have separate responsibilities, we

can also compose types that involve similar concerns. For example, both the CuArrays.jl

and DistributedArrays.jl packages define array types that define where data is stored and

how values are computed. The DArray type distributes data across multiple processes and

prefers computations with local memory, while the CuArray type uses the GPU for storage

and parallel execution. As explained in Section 2.5, the distributed chunks of a DArray are

arrays, typically regular CPU-based Arrays, but we can use CuArray as the underlying data

array, and thereby distribute data and computations across multiple GPUs. For DArray

to be able to wrap and manage an array, the type only needs to implement the object

serialization interface.

Similar to the example in the previous section, the resulting DArray{CuArray} object

implements the AbstractArray interface and can therefore be used as any other array.

This kind of infrastructure portability arises from a clear separation of concerns, each type

implementing specific, fine-grained methods with minimal surface area. Both types are

oblivious about one another and generic code can take advantage of them jointly.

Listing 19 is an example of how DArray separates the responsibilities of communication

and computation. Computation is delegated to a different array type, may it be Array for

CPU or CuArray for GPU execution. Similarly, broadcast of a DArray is implemented

by delegating the computation to a different array type without having to specify which

array types are supported. This allows new array types to be bootstrapped quickly and to

take advantage of these rich abstractions. For example, a transposition of any array can

be represented as an object of type Transpose{. . } without that array having to solve

the problem of transposing data itself. If there exists a better approach to transposing this

kind of array, it can simply be implemented as an additional method of the transpose

function, specialized for this type.

22

101

100 [
-oArray

- - CuArray
-4- DArray{Array)

-+- DArray{CuArray}

20 22 24 26 28 2
input size N

10 912 914 916

Figure 1: Time to execute the domeigen function from Besard et al. [8] and compute the

dominant eigenvector and eigenvalue of a N x N matrix. We benchmark for 1000
iterations of the power method, approximating the reference eigenvalue with

sufficient accuracy.

3 Towards understandable performance

In Besard et al. [8] we discussed three examples that highlight different aspects of writing

high-level code. In Figure 1 as an example we measured a simple iterative method for

calculating the dominant eigenvector and corresponding eigenvalue of a matrix.

The above results showed that distributed arrays display a constant overhead that only

is amortized when the working data is sufficiently large. Some of that overhead is to be

expected because IPC invariably involves communication, while types such as Array and

CuArray require no such communication. However the communication does not explain all

the overhead, some of it is caused by actual inefficiencies in the current implementation of

DArray.

The first major inefficiency stems from the fact that communication and computation

share the same thread. As explained in Section 1.1 Julia uses one event loop to schedule

tasks, which enables forward progress when a task is blocked on 10. The scheduler is

current cooperative tasks, relying on tasks to yield frequently. This has the downside that

23

103

102

Q

10'

10-2

104

Listing 21: Example of a busy worker causing a stall due to communication dependencies.

1 asyncmap([2, 3, 4]) do p
2 if p == 2
3 remotecalljfetch(p, data) do D
4 InteractiveUtils.peakflops()
5 end
6 else
7 remotecall-fetch(p, data) do D
8 remotecall-fetch(2, D) do D
9 DistributedArrays.localpart(D)

10 end
11 end
12 end
13 end

a task not yielding back control to the event loop, because it is busy with a numerical

computation, causes other tasks to be stalled. If one of those stalled task is responsible for

communicating with other workers, those other workers will in turn stall. This in turns

causes more workers to stall - effectively returning to single threaded computation (with

extra overhead).

To investigate this further we examine the code snippet in Listing 21, using three worker

processes labeled 1,2,3. We start a long-running computation on worker 2 using the

remote-procedure infrastructure introduced in Section 1.2, and then try to access data on

process 2 from process 3, 4.

Using a Julia implementation of vectorclocks [34] and the ShiViz and TSViz tools from

Beschastnikh et al. [10], we can observe a serialization of the requests from workers 3 and

4. This limits the forward progress the system can make and inhibits scaling.

There are long-term plans to address these issues, by allowing multiple tasks in a sin-

gle worker process to execute in parallel, gTeatly reducing the frequency of stalling and

hopefully allowing us to add a singular thread responsible for satisfying communication

requests.

Another slowdown is due to the many data copies occurring as part of IPC. The vector-

matrix product in the domeigen function requires sending parts of the vector to different

processes. As part of that communication, extraneous copies of the data are made: The

vector is first serialized on one process and copied to an IPC socket. Then it is deserialized

from that socket on another process to be made available as a vector object again. There are

also places within DistributedArray.jl where unnecessary additional copies are made, such

as the current implementation of copyto! (::Array, : :DArray) where the remote data is

24

first copied into a local buffer and then copied again into the output array. These redundant

copies could be avoided by careful optimization, and communication could be improved,

e.g., by using hardware capabilities such as Remote Direct Memory Access (RDMA) or

NVLink for GPUs. Such optimizations are very local, and often only require certain method

definitions. As an example, support for efficient communication between GPUs would

require implementations of the serialize and deserialize methods for CuArray using

the CUDA IPC programming interfaces. Since our system does not support NVLink, we

did not add such definitions, and would have to explore alternative approaches. For now,

the communication overhead is significant. As a result, the matrix-vector product used in

domeigen shows little speed-up with DArray{Array}. It is bound by memory bandwidth

and the cost of communication is much higher than the computational cost of the operation.

When executing domeigen with DArray{CuArray}, the performance benefit of using GPUs

overcomes that overhead.

Despite these limitations, distributed arrays are still useful, e.g., once the working set

size is too big for one machine or one GPU, or simply when more computational power is re-

quired. Furthermore, in scenarios that require little communication, Distribut edArrays .ji

scale nicely.

25

Listing 22: Using dispatch to transparently execute a kernel

1
2 function kernelf(I, args...

3 # low-level kernel
4 end

5
6 function f(args...

7 execute(kernelf, args...)
8 end

9
10 function execute(f, A::Array, args...)
11 for I in eachindex(A)

12 f(I, A, args...
13 end

14 return nothing

15 end
16
17 function execute(f, A::CuArray, args...)
18 function kernel(f, A, args...)
19 i = (blockIdx(.x-1) * blockDimo).x + threadIdxo).x
20 i > length(A) && return nothing
21 I = eachindex(A)[i)
22 f(I, A, args...
23 return nothing
24 end
25
26 N = length(A)

27 threads = min(N, 256)
28 blocks = ceil(Int, N / threads)
29 Ocuda threads=threads blocks=blocks kernel(f, A, args...
30 return nothing

31 e-d

4 Unified kernel language for heterogeneous programming

The programming model and abstractions presented in Section 2 are sufficient for many sci-

entific programming tasks. As an example the Dif f erent ialEquations . j 1 [43] is running

transparently on GPUs by using the aforementioned abstractions [42, 28].

Even if those abstractions are not enough, Julia's type dispatch allows for transparent ex-

ecution by providing a small harness and separating the kernel from the execution schedule.

Listing 22 is a particular example of this 1.

The execute function has two methods and uses method dispatch on the second argu-

ment to select between them. The first in Line 10 uses the Array type to execute the code

on the CPU (note we could have made this a generic fallback, by using AbstractArray),

'See https: //github. com/JuliaLabs/ShallowWaterBench/blob/aa8b4add55172fOcl92Od6f8cebc8eccc424f2b5/
src/GPUMeshing/src/GPUMeshing. jl#L30-L61 for a real-life example

26

Listing 23: Type hierarchy of devices

1 abstract type Device end

2 struct CPU <: Device end

3
4 abstract type GPU <: Device end

5 struct CUDA <: GPU end

whereas the second method in Line 17 uses CuArray from the CuArrays. ji package [26]

to execute code on the GPU. The inner function kernel in Line 18 uses methods from

CUDAnative. ji [9] that are specific for CUDA GPUs to calculate the index. This wrapper

kernel is then launched on the GPU with the Ocuda macro.

Users now don't need to reason about where the execution happens, as long as in the

opportune moment the execute function is being called. This can also happen trans-

parently if the library writer provides an exposed function f (Line 6), while the kernel

implementation can live in kernelf (Line 2). .

While this pattern is powerful and often sufficient for even complicated libraries - the

GPUArrays . jl [27] library uses a structure similar to this - it does not expose low-level

GPU features such as shared memory or warp-level synchronization and communication.

As an example implementing discontinuous Galerkin methods on the GPU [37] requires

access to shared memory for performant implementations. As part of the CliMA collabora-

tion 2 I developed a package called GPUifyLoops that uses a set of macros to implement a

unified kernel language, enabling the development of heterogeneous programs. The package

was inspired by my collaborators previous experience with OCCA [35].

Host-device interactions Similar to the example in Listing 22 GPUifyLoops uses dispatch

to choose the device on which a kernel will be launched. However instead of using a

positional argument and the array type, GPUifyLoops has an explicit hierarchy of devices,

which allows for future extension. The current type hierarchy is shown in Listing 23 and

only supports single-threaded CPU and CUDA execution. In the future I plan to extend

it with a multi-threaded CPU implementation, MTCPU <: Device, and support for AMD

GPUs, AMD <: GPU. The latter depends on code-generation for AMD GPUs, which is

currently in-progress3

Users can launch a kernel on a compute device by using the Qlaunch macro, which takes

2https: //clima. caltech. edu/
3https: //github. com/Ju1iaGPU/AMDGPUnative . j1

27

Listing 24: Demonstration of the Qlaunch macro

2 deviceCuArray) = CUDAC)
3 device(::Array) = CPU()
4
5 function kernelf(A)

6 # ow-Lezel kerne7
7 end
8
9 function f(A)

10 Qlaunch device(A) threads=length(A) kernelf(A)
11 end

12
13 import GPUifyLoops: launch-config
14 function launch-config(::typeof(kernelf), maxthreads, A; kwargs...)
15 N = length(A)
16 threads = min(N, maxthreads)
17 blocks = ceil(Int, N / threads)
18 return (threads=threads, blocks=blocks)
19 end

as a first argument the kind of device to launch on and as a second argument the function to

execute and that function's arguments. Furthermore it takes the same keyword arguments

(Line 10) as the Ocuda macro from CUDAnative .j1 allowing for fine-grained control of the

launch configuration.

There is a fair amount of flexibility here that allows library writers to decide how to select

which device to launch on. In Line 2 I specified one particular way of choosing the device

through dispatch on the function arguments, but in Oceananigans. ji the device is part

of the model definition. Furthermore users can choose to provide a launch configuration

out-of-band by implementing the launch_ -conf ig function. In Line 14 is a particular

implementation choice that uses reflection on the compiled GPU kernel to obtain the

maximum number of threads that are supported in one block and adaptively changes the

number of launched blocks accordingly. The kwargs ... can be used to consider callsite

knowledge to change the launch configuration.

All other device interactions are mediated by the particular array implementation, for

CUDA as an example that would be CuArrays. j1 and CUDAnative. ji.

Kernel primitives GPUifyLoops .j1 goal is to simplify writing of heterogeneous code and

to reduce boilerplate in users programs. Its main functionality is provided through several

macros.

28

Listing 25: A simple example of the loop macro

1 Oloop for k in (1:Nz; blockIdxO.z)
2 #...
3 end

Listing 26: Expanded CPU version

1 for k in 1:Nz
2 #...
3 end

Listing 27: Expanded GPU version

1 for k in blockIdx().z
2 if (k in 1:Nz)

3 #...
4 end
5 end

@loop split a Julia f or loop iteration space into a CPU expression and a GPU expression.

Oshmem creates a shared memory region on the GPU or a statically sized array on the

CPU.

@scratch creates a register array on the GPU or a statically sized CPU array.

@synchronize synchronizes memory on the warp level on the GPU, no effect on the CPU.

The @loop macro takes a Julia for loop expression and translates it to either a GPU

or CPU version. The primary difference to a normal for-loop is that the iterator - e.g.

for I in iterator - is given by a block with two statements. The first statement is

the expression for the whole iteration space, as one would execute it on the CPU and the

second statement is how to calculate the current index on the GPU.

In Listing 25 we see a reduced example at work, the iteration space spans 1:Nz and the

GPU index is given by blockIdxo .z a method provided by CUDAnative. jl. On the CPU

it lowers to equivalent code given in Listing 26 and on the GPU it expands to Listing 27.

It is important to note that on the GPU there is a bounds check against the CPU iteration

space, otherwise an user error would easily cause executions on CPU and GPU to diverge.

The usage and purpose of both the Oshmem and Oscratch are slightly more subtle. Both

are required for obtaining good performance on GPUs. Oshmem is functionally equivalent

to static shared memory and is used to load data accessed often or irregularly across a

29

Listing 28: Usage of the shmem, scratch and synchronize macros

1
2 sD = Oshmem Float64 (N, N)
3 1 = Oscratch Float64 (N, Ne) 1
4
5 Oloop for e in (1:Ne; blockIdxo.x)
6 @loop for j in (1:N; threadIdxo.y)
7 cloop for i in (1:N; threadIdx().x)
8 sD[i, j] = D[i, j, e]
9 end

10 end
11 Osynchronize
12
13 @loop for j in (1:N; threadIdxo).j)
14 for i in 1:N
15 1[j , e] += s_D[i, j, e]
16 end
17 end
18 end

thread block. On the CPU this turns into a form of cache-blocking. @scratch on the other

hand is used to obtain an array of registers on the GPU allowing for temporary storage

allocation across loop-iterations.

The example in Listing 28 shows these varying use-cases. Firstly in Line 2, we setup

a shared memory region of size N x N that we will fill with data from a global array in

Line 8. Next we setup a scratch memory region in Line 3, that we will use in Line 15 to

perform a thread-local reduction. Before we can use the shared memory, we have to issue a

@synchronize statement so that all threads in a thread block are converged to that point.

The scratch memory has an additional subtlety that some of it's dimensions are implicit on

the GPU, as an example in Line 3 the defined scratch memory has one explicit dimension

on the GPU and the trailing dimensions are implicit.

Function replacement Lastly a common issue with Julia GPU support is that there are

functions whose definitions are not GPU compatible, e.g. the log2 function, which is

implemented by calling into libm. Calling a host library is not possible from the GPU,
and therefore users would experience surprising and hard to understand errors from time

to time. To mitigate this, as part of the @launch macro, GPUifyLoops uses Cassette. j1

[46] to recursively replace functions in the the call tree with GPU compatible functions

provided by CUDAnat ive .ji, additionally this is also how the switching between GPU and

CPU implementations is implemented.

30

Adoption The implementation is made available under the MIT license at https: //

github. com/vchuravy/GPUif yLoops .j 1, and is being actively used in several simulations,

among them a non-hydrostatic ocean model called Oceananigans . jl 4 and a discontinous

Galerkin code as part of the CliMA 5 project. Both applications have been the driving mo-

tivation behind GPUifyLoops and it's features, and both have reported good performance

that is equivalent to hand-written GPU kernels in Julia.

4https: //github. com/climate-machine/Oceananigans . jl
5https ://github. com/climate-machine/CLIMA

31

5 Static walks through dynamic programs

In Section 1.4 I introduced the Julia type-inference algorithm, which is crucial for the

language to achieve good performance. Consequently, when type-inference goes awry, per-

formance degradation will ensue.

In section 1.4 I gave several examples of heuristics triggering, causing code to no longer

fully infer. Small changes to code can cause performance changes that can either accu-

mulate slowly with minor changes or be sudden. Sudden slowdowns often means that a

critical section of code -- may it be a tight loop in a numerical simulation - transitioned

from being statically inferred to being executed with dynamic semantics.

Julia has several tools for benchnarking and profiling, however these traditional profilers

and debuggers focus purely on effect and not on the cause. The dynamic-static dichotomy

in Julia may mean that after finding a region of slow code (via profiling) one has to work

through the compile stack (via reflection), to determine the source of the performance

slowdowns.

The problems one is looking for are sources for type-inference providing suboptimal

results. The origins could be heuristic triggering or the code is dynamic and no static path

could be established, or static knowledge is limited or simply not available.

This is further complicated -- as discussed in Section 1.4 - by the fact that some heuristics

are context sensitive, and are hard to reproduce in isolation.

I have found that code making heavy use of asynchronous programming, as introduced

in Section 1.1, or code that relies heavily on abstractions - like Section 2 - become very

hard to analyze. In Section 1.3 I introduced the multiple levels of representation used

by the Julia compiler and in Section 5.1 1 will introduce Cthulhu. j 1 - a tool I built for

simplifying this debugging task and to take static walks through dynamic programs. It

exposes the multiple representations in an interactive way and tries to faithfully reproduce

the type-inference process described in Section 1.4.

5.1 Cthulhu. jl - a tool for interactive introspection

Cthulhu. ji came about after a part icular long and frustrating debugging session with one

of my lab-mates 6 In particular we were trying to understand a type-inference problem that

occurred several function calls deep. Our method of debugging was to use Ocodetyped to

61 have to thank Peter Ahrens for the fiendish problem and inspiration - Madness; utter madness

32

reflect the result of type-inference on our top-level function, find the function call that was

returning a : :Any, reconstruct the call signature manually and invoke Ocode typed again.

The code was a recursive code-generator and we had to traverse many function calls to get

to the source of the issue.

Cthulhu. ji simplifies this process and makes the various representations easily acces-

sible. Given a top-level function call f (1.0) as a starting point, the user can call the

Odescend macro on it to enter the calltree. The user is presented with the output of

@codetyped on that function call and with a list of all non-inlined function calls inside

the method. The user can then select a particular callsite and descend deeper into the

calltree, while keeping the same inference context and parameters. The menu also offers

the choice to switch to the output of Ocodetyped optimize=false, and to dump the

outputs of @codellvm and Ocodenative.

Cthulhu. j 1 can only use statically available information and cannot use dynamic run-

time information, albeit in limited circumstances for a dynamic callsite, Cthulhu. j 1 offers

the choice between all possible function calls. Furthermore Cthulhu. j 1 is capable of de-

scending into task thunks - e.g. code that will be run asynchronously, and functions that

will be called on the GPU.

To the best of my knowledge Cthulhu. ji is a unique tool, that has no homornorph

in another programming language. While it is useful as a debugger, I would hesitate to

describe it as such, since it does not debug the program under investigation directly, but

rather debugs a part of the compilation process. The only similar tool in the Julia ecosystem

is Traceur. j 1, but it focuses on non-interactive use-cases and dynamic analysis.

Examples The following example in Listing 298 highlights some of of the use-cases and

features of Cthulhu. jl. It demonstrates an inference failure on the function f in Line 8,

where Julia inferred the return value to be Union{BitArray{1}, Array{Union{}, 1}}.

The function f broadcasts the function contains over an Interval and an array of

Float64, how could the return type ever be an array of type Union{} - the bottom lattice

element of type-inference.

An initial investigation with Odescend f (i, xs) reveals very little and the output is

quite verbose, the only notable thing is that there are two paths through the function

and one of the branches introduces an array allocation with element type Union{}. The

7https ://github. com/JunoLab/Traceur . jl
8https ://github. com/JuliaLang/julia/issues/31890

33

Listing 29: Inference failure on broadcasting the contains function

1 struct Interval <: Number
2 a::Float64

3 b::Float64
4 end
5
6 Base.eltype (::Interval) = Float64
7 contains(i::Interval, x::Float64) = i.a <= x <= i.b
8 f (I:: Interval, xs: :Vector{Float64}) = contains. (I, xs)

computation of the element type is most likely elided, which means we have to turn off

optimizations. To reduce the verbosity of the output in all examples line-information

printing is turned off.

Listing 30: First analysis step with Cthulhu, inspecting unoptimized Julia IR

1 %-1 = invoke f(::Interval,::Array{Float64,1})::Union{BitArray{1},
2 Array{Union{},1}}

3 CodeInfo(
4 1 %1 = Base.broadcasted(Main.contains, i, a)::Base.Broadcast.Broadcasted{...}
5 %2 = Base.materialize(M1)::Union{BitArray{1}, Array{Union{},i}}
6 return %2

7)
8 Select a call to descend into or to ascend. [q]uit.

9 Toggles: [o]ptimize, [w]arn, [d]ebuginfo.
10 Show: [L]LVM IR, [N]ative code
11 Advanced: dump [P]arams cache.
12
13 %1 = invoke broadcasted: :typeof (contains),:: Interval,:: Array{Float64 ,1})
14 %2 = invoke materialize(::Base.Broadcast.Broadcasted{...}

In Listing 30 we see the first step down the rabbit hole. After lowering and desugaring

f turns into two function calls, first the construction of the Broadcasted and then, the

materialization thereof. We choose to step into the call to materialize, and after an

additional step into copy end up in Listing 31.

In the abridged version of the code-typed reflection of copy(bc) we can see, that the

first calculation of Union{} as the eltype happens in Line 8. We can also see that Julia

inferred this as a Const, so it is no wonder that we did not see this computation in the

optimized code. In this particular instance we are computing the eltype of contains on

:Interval and Array{Float64,1}.

Stepping into combineeltypes we finally discover the source of our problems. The

call to eltypes in Line 4 returns Tuple{Float64, Float64} and therefore the call to

34

Listing 31: Stepping into the copy(Broadcasted) function called from materialize

1 %-1 = invoke copy(::Base.Broadcast.Broadcasted{...}

2 CodeInfo(

3

4 # Abridged

5 %12 = Base.getproperty(bc, :f)::Core.Compiler.Const(contains, false)
6 %13 = Base.getproperty(bc, :args): :Tuple{IntervalArray{Float64,1}}
7 (ElType =
8 Base.Broadcast.combineeltypes(%12, %13)): :Core.Compiler.Const(Union{})
9 715 = Base.isconcretetype::Core.Compiler.Const(isconcretetype , false)

10 %16 = (%15)(ElType)::Core.Compiler.Const(false, true)
11 # Rest of code abridged

12

13 Select a call to descend into or to ascend. [q]uit.
14 Toggles: [o]ptimize, [wiarn, (d]ebuginfo.

15 Show: [L]LVM IR, [Niative code

16 Advanced: dump [P]arams cache.

17

18 %12 = invoke getproperty(::Base.Broadcast.Broadcasted{.. .},::Symbol)

19 713 = invoke getproperty(::Base.Broadcast.Broadcasted{...},::Symbol)

20 714 = invoke combine-eltypes(

21 ::typeof(contains),

22 ::Tuple{Interval,Array{Float64,111

23)::Core.Compiler.Const(Union{}, false)
24 # Abridged

returntype, in Line 6 yields a Union{}. Recalling our definition from Listing 29 we

intended Interval to be used as a Number and not as a container that can be broadcasted

over. For convenience we implemented the function eltype. The combine eltypes func-

tion base Julia, using eltype as an implicit trait function of containers to establish the

return type of broadcasting contains. This allows the direct allocation of an output array

of the right type and size.

The user code is easily fixed by removing the eltype definition, but cases like this make

a strong argument that ,Julia needs a powerful trait or interface system, so that implicit

assumptions like this could be checked.

Adoption Cthulhu. jl is made available under the MIT license at https://github. com/

JuliaDebug/Cthulhu. ji, and has adoption among advanced Julia users encountering is-

sues that require inspection through heavily layered abstractions. I personally have found

great use for it in debugging interactions between Cassette.jl[46] and user code in

GPUifyLoops . jl.

35

Listing 32: Unoptimized Julia IR for combineeltypes, showing the source of the inference

issue. eltype is part of the implicit trait of containers and so the call to

returntype uses the wrong argument types.

% X-1 = invoke combineeltypes(::typeof(contains),
2 TuplefInterval ,Array{Float64 1}})
3
4 %1 = Base._return-type::Core.Compiler.return-type
5 %2 = Base.Broadcast.eltypes(args)::Tuple{Float64,Float64}
6 %3 = (X1)(f, %2)::Core.Compiler.Const(Union{}, false)
7 return %3
8
9 Select a call to descend into or to ascend. [q]uit.

10 Toggles: [oiptimize, Lw]arn, [d]ebuginfo.
11 Show: [L]LVM IR, [N]ative code
12 Advanced: dump [P]arams cache.
13
14 %2 = invoke eltypes(
15 ::Tuple{Interval,Array{Float64,1}})::Tuple{Float64,Float64}
16 %3 = return-type

17 < #contains(::Float64,::Float64)::Core.Compiler.Const(Union{}, false) >

36

6 Conclusion

6.1 Related work

Section 2 is focused on array abstractions and linear algebra since that is the programming

model most commonly used in the prototyping stage of engineering applications. Indeed

MATLAB and NumPy and a host of other languages that lend themselves more or less

naturally to technical computing use the same programming model. High-level dynamic

languages often use this model not only for its expressibility, but because they can im-

plement the functionality as libraries in a low-level programming language and thereby

gain performance. If they interact with accelerators like GPUs they use libraries, such as

ArrayFire [48], which provide functions that can be called from the CPU but are executed

on a GPU. This split between the programming language that main application develop-

ers write in and the programming language that is used to implement the libraries, is an

instance of the two-language problem [12] and causes composability [33] and extensibility

problems. Numba [29] is a rare exception since it allows heterogenous prograninig in the

same language, but, it still struggles with composability and allowing for user-defined array

abstractions that encode problem-specific knowledge.

Ve have shown that this is not a problem in Julia since the abstractions themselves are

implemented in the same programming language as used by the main application or library

developer. Furthermore we use higher-order array abstractions to separate the intent of

the developer from the actual execution, and we do so in a composable and extensible

manner [6].

The idea of separating the algorithm (what to compute) from the schedule (how and

where to compute) is most prominent in Halide [44, 31]. Halide uses a domain-specific

language (DSL) embedded in C++ to allow programmers to write pipelines (image algo-

rithms) independently of the schedule and then specify a schedule and execution target.

Halide allows for automatic scheduling of pipelines, but most advanced users will want to

specify their own, since a programmer with deep knowledge of the hardware can create

an optimal schedule of the pipeline. Additionally, Distributed Halide [20] allows for the

distributed execution of a Halide pipeline. The Halide approach is declarative and focuses

on stencils, which is unfamiliar to a developer used to high-level languages and their use

of array abstractions.

Heterogeneous programuming has seen a furor of development in the realm of machine

37

learning, mainly in the form of frameworks and DSLs that are capable of transparently using

accelerators and scheduling operations in a distributed heterogeneous manner. Frameworks

such as TensorFlow [1] and PyTorch [41] make it easy to take advantage of heterogeneous

compute resources, but since they are effectively mini languages embedded in Python with

their own compiler infrastructure and their own implementation of array abstractions, they

fail to compose with the larger Python ecosystem and are hard to extend. In Innes et al.

[24] my collaborators and I discussed the reason for this failure of composability in the

context of machine learning itself. While these frameworks can be used for engineering

workloads, they often require recasting the problem at hand in terms of machine learning

arid do not cater to the needs of engineers outside machine learning.

On the other side of the spectrum is the development of special purpose HPC languages

such as Chapel [17], IBMs X10 [18], and Fortress [2], which were created with any number

of good ideas, but have failed to attract a substantial user base outside of the community

that originally developed it. There are some initial developments to adapt these HPC

languages to heterogeneous computing, but it is not clear how that will play out and if

they will manage to address the diverse set of challenges in heterogeneous computing, while

providing an attractive and usable programming model.

In C arid C++ there is a host of solutions for heterogeneous programming, like CUB [36],

Thrust [7], OpenMP [19], OpenACC [47] and several others. There are also several ap-

proaches for distributed programming like MPI [38], Legion [5], and UPC++ [3]. Trili-

nos [23], PetSC [4], and Kokkos [16], are HPC libraries developed to facilitate the reuse

of common numerical infrastructure and have found a fervent following in the HPC com-

rnunity. They are large and complicated libraries that achieve excellent performance in

cluster environments, and they are well suited for performance engineers comfortable with

C/C++, GPU programming, and distributed programming, but they are not as usable as

higher-level programming laniguages and require a higher investment in time and effort to

become proficient. They are thereby less suited for an initial exploration and prototyping

phase.

The most closely related project to the work presented in Section 4 is OCCA [35], with

the major difference being that GPUifyLoops, is more explicit about the calculation of

the kernel indices - OCCA using annotations to denotate inner arid outer loops. Both

approaches are macro based in their host-language, with OCCA targeting C/C++.

38

6.2 Retrospective

The work on CuArrays.jl and DistributedArrays.jl has made it greatly easier to execute

realistic array applications on respectively GPUs and distributed systems. We also show

how these array packages compose, and make it possible to target distributed CPUs and

GPUs alike.

I have introduced a unified kernel language for heterogeneous applications. This ex-

tends the work on array abstraction for scenarios that require fine control to obtain high-

performance on GPUs.

Developers often approach me to help with performance issues they encounter, while

using or developing abstractions in Julia, it seems that there is an innate complexity in

developing well composing, well layered and powerful abstractions. To reduce some of the

complexity involved I developed a tool, Othulha, to help myself and others to navigate some

of these challenges working with such a flexible and powerful language. Cthulhu exposes

the hidden parts of the compiler and the language.

References

[1] Martn Abadi et al. "TensorFlow: A System for Large-scale Machine Learning". In:

Proceedings of the 12th USENIX Conference on Operating Systems Design and fIn-

plementation. OSDI'16. USENIX Association, 2016, pp. 265-283.

[2] Eric Allen et al. The Fortress language specification. 2005.

[3] John Bachan et al. "The UPC++ PGAS Library for Exascale Computing". In: Pro-

ceedings of the Second Annual PGAS Applications Workshop. PAW17. ACM, 2017,

7:1-7:4.

[4] Satish Balay, William D Gropp, Lois Curfman McInnes, and Barry F Smith. "Effi-

cient management of parallelism in object-oriented numerical software libraries". In:

Modern software tools for scientific computing. Springer, 1997, pp. 163-202.

[5] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. "Legion: Expressing

Locality and Independence with Logical Regions". In: Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis. SC

'12. IEEE Computer Society, 2012, pp. 1-11.

39

[6] Matt Bauman. Extensible broadcast fusion. 2018. URL: https: //julialang. org/

blog/2018/05/extensible-broadcast-fusion.

[7] Nathan Bell and Jared Hoberock. "Thrust: A productivity-oriented library for CUDA".

In: GPU computing gems Jade edition. Elsevier, 2011, pp. 359-371.

[8] Tim Besard, Valentin Churavy, Alan Edelman, and Bjorn De Sutter. "Rapid soft-

ware prototyping for heterogeneous and distributed platforms". In: Advances in en-

gineering software 132 (June 2019), pp. 29-46. ISSN: 0965-9978. DOI: 10 . 1016/j .

advengsoft.2019.02.002.

[9] Tim Besard, Christophe Foket, and Bjorn De Sutter. "Effective Extensible Program-

ming: Unleashing Julia on GPUs". In: IEEE Transactions on Parallel and Distributed

Systems (2018).

[10] Ivan Beschastnikh, Patty Wang, Yuriy Brun, and Michael D. Ernst. "Debugging

distributed systems: Challenges and options for validation and debugging". In: Com-

munications of the ACM (2016).

[11] Jeff Bezanson et al. "Julia: A Fresh Approach to Numerical Computing". In: SIAM

Review 59.1 (2017), pp. 65-98.

[12] Jeff Bezanson, Stefan Karpinski, Viral B Shah, and Alan Edelman. "Julia: A fast dy-

namic language for technical computing". In: arXiv preprint arXiv:1209.5145 (2012).

[13] Jeff Bezanson et al. "Array Operators Using Multiple Dispatch: A Design Method-

ology for Array Implementations in Dynamic Languages". In: Proceedings of ACM

SIGPLAN International Workshop on Libraries, Languages, and Compilers for Array

Programming. ACM, 2014.

[14] Jeff Bezanson et al. "Julia: Dynamism and Performance Reconciled by Design". In:

Proceedings of the International Conference on Object Oriented Programming Sys-

tems Languages and Applications. to appear. ACM, 2018.

[15] S. D. Brookes, C. A. R. Hoare., and A. W. Roscoe. A theory of communicating se-

quential processes. 1984.

[16] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. "Kokkos: Enabling

manycore performance portability through polymorphic memory access patterns". In:

Journal of parallel and distributed computing (2014), pp. 3202-3216.

40

-M-r"W- ,,, --- q--.- -,", . -- ", - ., - , - - 7-._,____"_ W - - I ~ - " I-MMMM", , -; ., -_--1 PIR _

[17] Bradford L Chamberlain, David Callahan, and Hans P Zima. "Parallel programina-

bility and the Chapel language". In: The International Journal of High Performance

Computing Applications 21.3 (2007), pp. 291-312.

[18] Philippe Charles et al. "X1O: An object-oriented approach to non-uniform cluster

computing". In: ACM SIGPLAN Notices. Vol. 40. 10. ACM. 2005, pp. 519-538.

[19] Leonardo Dagum and Ramesh Menon. "OpenMP: An Industry-Standard API for

Shared-Memory Programming". In: IEEE Computing in Science 6 Engineering (1998),

pp. 46-55.

[20] Tyler Denniston, Shoaib Kanil, and Sainan Amarasinglie. "Distributed Halide". In:

SIGPLAN Not. 51.8 (2016), 5:1-5:12.

[21] Thorsten von Eicken, David E Culler, Seth Copen Goldstein, and Klaus Erik Schauser.

"Active messages: a mechanism for integrated communication and computation". In:

Proceedings of the 19th annual international symposium on Computer architecture.

Vol. 20. ACM, May 1992, pp. 256-266. ISBN: 9780897915090. DOI: 10.1145/146628.

140382.

[22] Robert L Henderson. "Job scheduling under the portable batch system". In: Proceed-

ings of the Workshop on Job Scheduling Strategies for Parallel Processing. Springer.

1995, pp. 279-294.

[23] Michael A. Heroux et al. "An overview of the Trilinos project". In: ACM Transactions

on Mathematical Software (2005), pp. 397-423.

[24] Mike Innes et al. "On Machine Learning and Programming Languages". SysML Con-

ference. 2018.

[25] Steven G. Johnson. More Dots: Syntactic Loop Fusion in Julia. 2017. URL: https:

//julialang.org/blog/2017/01/moredots.

[26] Julia developers. CuArrYays.jl: CUDA-accelerated arrays for Julia. 2018. URL: https:

//github . com/ JuliaGPU/CuArrays . jl.

[27] Julia developers. GPUArrays.jl: GPU-accelerated arrays for Julia. 2018. URL: https:

//github.com/JuliaGPU/GPUArrays.jl.

[28] JuliaDiffEq. DifferentialEquations.jl v6.4.0: Full GPU ODE, Performance, Aiodeling-

Toolkit. http: //juliadif f eq. org/2019/05/09/GPU. html. Accessed: 2019-5-19.

41

[29] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. "Numba: A LLVM-based Python

JIT Compiler". In: Proceedings of the Second Workshop on the LLVM Compiler In-

frastructure in HPC. LLVM '15. 2015, 7:1-7:6.

[30] Chris Lattner and Vikram Adve. "LLVM: A Compilation Framework for Lifelong

Program Analysis & Transformation". In: Proceedings of the International Sympo-

sium on Code Generation and Optimization: Feedback-directed and Runtime Opti-

mization. CGO '04. Palo Alto, California: IEEE Computer Society, 2004, pp. 75-.

ISBN: 9780769521022.

[31] Tzu-Mao Li et al. "Differentiable programming for image processing and deep learning

in Halide". In: Proceedings of the ACM Transactions on Graphics (SIGGRAPH) 37.4

(2018), 139:1-139:13.

[32] Jiuxing Liu, Jiesheng Wu, and Dhabaleswar K Panda. "High performance RDMA-

based MPI implementation over Infinifland". In: International Journal of Parallel

Programming 32.3 (2004), pp. 167-198.

[33] Anton Malakhov. "Composable Multi-Threading for Python Libraries". In: Proceed-

ings of the Python in Science Conferences. 2016.

[34] F Mattern. "Virtual time and global states of distributed systems". In: (1988).

[35] David S Medina, Amik St-Cyr, and T Warburton. "OCCA: A unified approach to

multi-threading languages". In: (Mar. 2014). arXiv: 1403. 0968 [c s. DC].

[36] Duane Merrill and NVIDIA-Labs. CUDA UnBound (CUB) Library. 2015. URL: https:

//nvlabs.github. io/cub/.

[37] A Modave, A St-Cyr, and T Warburton. "GPU performance analysis of a nodal

discontinuous Galerkin method for acoustic and elastic models". In: Computers &

geosciences 91 (June 2016), pp. 64-76. ISSN: 0098-3004. DOI: 10 . 1016 /j . cageo.

2016.03.008.

[38] MPI Forum. MPI: A Message-Passing Interface Standard. Tech. rep. 1994.

[39] Jaroslaw Nieplocha, Robert J Harrison, and Richard J Littlefield. "Global arrays: A

portable shared-menmory programming model for distributed memory computers". In:

Proceedings of the 1994 ACM/IEEE conference on Supercomputing. IEEE Computer

Society Press. 1994, pp. 340-349.

42

- I

[40] Kiran Pamnany et al. "Dtree: Dynamic Task Scheduling at Petascale". en. In: High

Performance Computing. Lecture Notes in Computer Science. Springer, Cham, July

2015, pp. 122-138. ISBN: 9783319201184, 9783319201191. DOI: 10.1007/978-3-319-

20119-1_10.

[41] Adam Paszke, Sam Gross, Sounith Chintala, and Gregory Chanan. PyTorch. 2017.

[42] Christopher Rackauckas. Solving Systems of Stochastic PDEs and using GPUs in

Julia. Dec. 2017. URL: http : //www. stochasticlif estyle . com/solving- systems-

stochastic-pdes-using-gpus-julia/.

[43] Christopher Rackauckas and Qing Nie. "DifferentialEquations.jl A Perfornant and

Feature-Rich Ecosystem for Solving Differential Equations in Julia". In: 5.1 (2017).

Exported from https://app.dimensions.ai on 2019/05/05. DOI: 10. 5334/jors . 151.

URL: https : //app. dimensions . ai /details/publication/pub. 1085583166%

20and%20http://openresearchsoftware.metajnl.com/articles/10.5334/jors.

151/galley/245/download/.

[44] Jonathan Ragan-Kelley et al. "Decoupling Algorithms from Schedules for Easy Op-

timization of Image Processing Pipelines". In: ACMA Transactions on Graphics 31.4

(201.2), 32:1-32:12.

[45] Jeffrey Regier et al. "Learning an Astronomical Catalog of the Visible Universe

through Scalable Bayesian Inference". In: (Nov. 2016). arXiv: 1611.03404 [cs .DC].

[46] Jarrett Revels et al. jrevels/Cassette.jl: v0.2.3. Apr. 2019. DOI: 10 . 5281 / zenodo .

2625463. URL: https: //doi. org/10. 5281/zenodo.2625463.

[47] Sandra Wienke, Paul Springer, Christian Terboven, and Dieter an Mey. "OpenACC:

First Experiences with Real-world Applications". In: Proceedings of the 18th In-

ternational Conference on Parallel Processing. Euro-Par'12. Springer-Verlag, 2012,

pp. 859-870.

[48] Pavan Yalamnanchili et al. ArrayFire - A high performance software library for parallel

computing with an easy-to-use API. 2015. URL: https: //github. com/arrayfire/

arrayfire.

[49] Andy B Yoo, Morris A Jette, and Mark Grondona. "Slurm: Simple limx utility for

resource management". In: Proceedings of the Workshop on Job Scheduling Strategies

for Parallel Processing. Springer. 2003, pp. 44-60.

43

[50] Francesco Zappa Nardelli et al. "Julia Subtyping: A Rational Reconstruction". In:

Proc. ACM Program. Lang. 2.OOPSLA (Oct. 2018), 113:1-113:27. ISSN: 2475-1421.

DOI:10.1145/3276483.

@2019 Elsevier. Several sections reprinted, with permission, from, "Rapid Software Pro-

totyping for Heterogeneous and Distributed Platforms," by Tim Besard, Valentin Churavy,

Alan Edelman and Bjorn De Sutter in Elsevier Advances in Software Engineering 2019.

44

