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Chapter 1

Introduction

Probabilistic modeling and inference are now mainstream approaches deployed in

many areas of computing and data analysis [33, 36, 22, 28, 12, 9]. To better support

these computations, researchers have developed probabilistic programming languages,

which include constructs that directly support probabilistic modeling and inference

within the language itself [26, 14, 15, 23, 16, 40, 17, 38, 5, 20]. Probabilistic inference

strategies provide the probabilistic reasoning required to implement these constructs.

It is well known that no one probabilistic inference strategy is appropriate for

all probabilistic inference and modeling tasks [241. Indeed, effective inference often

involves breaking an inference problem down into subproblems, then applying differ-

ent inference strategies to different subproblems as appropriate [241. Applying this

approach to probabilistic programs, specifically by specifying subtask decompositions

and inference strategies to apply to each subtask, is called inference metaprogramming.

Inference metaprogramming has been shown to dramatically improve the execution

time and accuracy of probabilistic programs (in comparison with monolithic inference

strategies that apply a single inference strategy to the entire program) [24].

1.1 Subproblems and Traces

When a probabilistic program executes, it produces a sample in the form of a pro-

gram trace. Probabilistic inference algorithms for probabilisitic programs operate by

9



changing stochastic choices in these traces to produce new traces. In this context,

subproblems are subtraces and subproblem inference algorithms operate on these sub-

traces. The current state of the art defines subproblem inference as operating over

the full program trace even though the inference algorithm should change only the

subproblem [24]. This definition entangles the subproblem with the full program trace

and complicates the implementation of the inference algorithms.

Independent Subproblems: I present a new technique that extracts each sub-

problem from the original program trace into its own independent trace. Inference

is then performed over the full extracted trace, with the newly generated trace then

stitched injected back into the original trace to complete the subproblem inference.

By detangling the subproblem from the full trace, this approach simplifies the im-

plementation of the inference algorithm and enforces the isolation of the inference

algorithm within the target subproblem. It also enables the recursive application of

inference metaprogramming to the extracted subtraces.

Successfully detangling the subproblem requires extracting a legal subtrace that

an inference algorithm can successfully process. The first challenge is that the sub-

trace must be a valid trace of some probabilistic program, i.e., the subtrace must

include all dependences required for the computation to be well defined and all de-

terministic computations must be correct within the trace. The second challenge is

that the subtrace must not contain any stochastic choice outside the subproblem.

To overcome these challenges, I present a new technique that appropriately converts

outside stochastic choices into observe statements , then appropriately updates the

extracted subtrace to reflect these changes. The dual stitching operation, which must

reincorporate the newly inferred subtrace back into the original trace, then reverses

the extraction while preserving the changes from the inference algorithm.

I present the technique in the context of a core probabilistic programming lan-

guage based on the lambda calculus. I define an extraction operation that, given a

subproblem defined over a current execution trace, extracts a corresponding subtrace.

I also define a stitching algorithm that, given an inference result from the execution

of the extracted subprogram, updates the execution trace to reflect the subproblem

10
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inference.

Soundness and Completeness: I present new soundness and completeness results

for the extraction and stitching operations. The soundness result states that if the

sequence subproblem extraction, inference over the extract subproblem trace, then

stitching produces a new trace t, the direct subproblem inference applied to the sub-

problem entangled with the original trace can also produce the new trace t. The

completeness result states that if direct subproblem inference applied to the subprob-

lem entangled with the original trace can produce a new trace t, the the sequence

subproblem extraction, inference over the extract subproblem trace, then stitching

can also produce the new trace t.

1.2 Asymptotic Convergence

Probabilistic programs produce traces as samples from a distribution. Many proba-

bilistic inference algorithms (such as Metropolis-Hastings [6] and Gibbs sampling [251)
take a sample as input and produce a new sample as output, with the new sample

serving as input to the next iteration of the algorithm. A standard correctness prop-

erty of such algorithms is asymptotic convergence - a guarantee that, in the limit as

the number of iterations increases, the resulting sample will be drawn from the de-

fined posterior distribution. Markov-Chain Monte-Carlo (MCMC) algorithms (which

include both Metropolis-Hastings and Gibbs sampling) comprise a widely-used class

of probabilistic inference algorithms that often come with asymptotic convergence

guarantees.

Using inference metaprogramming to decompose and solve inference problems into

subprograms produces new hybrid probabilistic inference algorithms. Whether or not

these new hybrid inference algorithms (as implemented in the inference metaprogram-

ming language) also asymptotically converge is often a question of interest (because

it directly relates to the compositional soundness of the inference metaprogram).

I present a new asymptotic convergence result for inference metaprograms that

apply asymptotically converging MCMC algorithms to appropriately defined subprob-
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lems. This result identifies a key restriction on the subproblem selection strategies

that the inference metaprogram uses to identify subproblems. This restriction guar-

antees asymptotic convergence for inference metaprograms that apply a large class

of asymptotically converging MCMC algorithms to the specified subproblems. This

restriction requires:

" Reversibility: The subproblem selection strategy must be reversible, i.e., given

a trace t that can be transformed into a new trace t' by applying the subproblem

selection strategy to t, then applying the specified inference algorithm to the

resulting subprogram to obtain the new trace t', it must also be possible to apply

the subproblem selection strategy to t', then apply the inference algorithm to

obtain the original trace t.

" Connectivity: The combination of all of the subproblem selection strategies

in the inference metaprogram must connect the entire sample space, i.e., given

any trace t, it must be possible to reach any other trace t' in the sample space

by repeatedly applying subproblem selection selection strategies and specified

inference algorithms.

1.3 Contributions

I claim the following contributions:

" Independent Subproblems: I present the first formulation of subproblem ex-

traction for probabilistic programs. This formulation involves dual subproblem

extraction and stitching operations. I state the first soundness and complete-

ness properties that the combination of the extraction and stitching operations

must satisfy and prove that my formulation satisfies these properties (Theorems

1 and 2 ).

" Asymptotic Convergence: I present the first asymptotic convergence result

for hybrid probabilistic inference algorithms applied to subproblems in proba-

12



bilistic programming languages (Theorem 11). This result characterizes sub-

problem selection strategies that guarantee asymptotic convergence for infer-

ence metaprograms that apply asymptotically converging MCMC algorithms to

suproblems.

Effective probabilistic programming requires subproblem identification and hybrid

probabilistic inference algorithms applied to the identified subproblems. The results

in this paper enable the sound and complete decomposition of otherwise intractable

probabilistic inference problems into tractable hybrid inference algorithms applied to

subprograms. It also characterizes properties that entail asymptotic convergence of

these resulting hybrid probabilistic inference algorithms.

13
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Chapter 2

Language and Execution Model

I work with a core probabilistic programming language (Figure 2-1) based on the

lambda calculus. A program in this language is a sequence of assume and observe

statements. Expressions are derived from the untyped lambda calculus augmented

with the Dist(e) expression, which allows the program to sample from a distribution

Dist given parameter e.

en E,:= x | A.xev I (eve',)
e, el, e2 CE x | A.x e | Dist(e) | (eI e2 )

s c S := assume x = e I observe(Dist(e) = ev)
pCP 0 | s; p

Figure 2-1: Probabilistic Lambda Calculus

Dist(e) can be seen as a set of probabilistic lambda calculus expressions {edled E

Dist(e) C Ev}. Based on the parameter expression e, Dist(e) makes a stochastic choice

and returns an expression ev E Dist(e). I define:

Dist(e)[x/y] = Dist'(e[x/y]) = {ed[x/yIed E Dist(e[x/y])}

FreeVariables(Dist(e)) = U FreeVariables(ed)
edEDist(e)U{e}

Because of the nondeterminism associated with stochastic choices, the execution

strategy matters for the semantics of the language. I use call by value as the execution

15



x -+x A.x e - A.x e

e - e' e e'f el -* A.x e
e, c Dist(e') e2 - e2 e2 -+ e2

ev - e' e1 = A.x e e[e' / e'

Dist(e) -+ e'V (ei e 2) -4 (e' e'2) (ei e2) -* e'

e -+ e' e-+e' -+p'

________p[e'/x] -+ p'
0 s e x] + ep, observe(Dist(e) = ev);p -+0 -+ 0 assume x = e;p - p obev(DsW)=v;P

observe(Dist(e') = ev);p'

Figure 2-2: Execution Strategy for Probabilistic Programs

strategy and forbid the reduction of expressions within a lambda. Figure 2-2 presents

the execution strategy.

Traces: When my framework execute a program, it produce a trace of its execu-

tion (Figure 2-3). This trace records the executed sequence of assume and observe

commands, including the value of each evaluated (sub)expression. It also assigns a

unique identifier to each evaluated (sub)expression and stochastic choice. These iden-

tifiers will be later used to construct a dependence graph which helps in defining valid

subproblems.

V E V := X (A.x e, Uv, Uid) I (v1 v2)
aa E aA := _ = ae
ae E aE := (x : x)#id I ((id') : v)#id

(A.x e : v)#id ((aei ae2)aa : v)#id
(Dist(ae#id') = ae' : v)#id

as E aS := assume x = ae observe(Dist(ae#id) = ev)
t G T := 0 as; t

Figure 2-3: Traces

Two traces are equal if and only if they differ in the choice of unique identifiers

selected for each augmented expression and stochastic choice.

I define the execution, including the generation of valid traces t, with the transition

relation ->sE x Eid x P - T (Figure 2-4). Conceptually, the transition relation

16



executes program p (in accordance to my execution strategy defined in Figure 2-

2) under the environment o-, Oid to obtain a trace t, where o, : Vars - V and

Oid : Vars - ID. o-, is a map from variable name to its corresponding assigned

value, whereas cid gives the id of the expression which assigned this value to that

variable.

Given a program p, I define the set of all valid traces which can be obtained by

executing p as Tp = Traces(p).

t C Traces(p) = 0, 0 - p s t

A trace contains all the information about the underlying program from which the

trace was generated. Given a trace, we can drop the computed values and assigned

ids and reroll the augmented expressions to recover the underlying program. The

transition relation ==>,C T - P (Figure 2-5) formalizes this procedure. Given a trace

t, I define

p = Program(t) -o t -, p

Note that V t, p. t E Traces(p) == p = Program(t). The reverse may not be true as

there are additional constraints that valid traces must satisfy.

Dependence Graphs: Given a trace t, I define the dependence graph (K, D, E) =

Graph(t) as a 3-tuple (, D, F) where A : ID -+ {I, Sample} is a map from ID

to either I (when the corresponding augmented expression for an id E ID is a

deterministic computation) or Sample (when the augmented expression for an id E ID

makes a stochastic choice).

D C ID x ID are data dependence edges. There is a data dependence edge

(idi, id2) E D if the value of the augmented expression id2 directly depends on the

augmented expression idi.

8 C ID x ID are existential edges. There is a existential edge (idi, id2) E 8 if

the value of the augmented expression id, controls whether or not an augmented

expression id2 executed. For example, in a lambda application (aei ae 2)x = ae3 ,

all augmented expressions in ae3 were executed only because of the value of ae1 .

17



id <- Fresh ID y dom av

Uv, Uid H y => y, id, (y : y)#id

id <- Fresh ID x E dom av

av, aid H x ->s ov(x), id, (x(oid(x)) : av(x))#id

id <- Fresh ID
a' = RestrictKeys(UV, FreeVariables(A.x e))

a = RestrictKeys(id , FreeVariables(A.x e))
v = (A.x e, o,' I ad)

9-v, Ocxj H A.x e >s v, id, (A.x e : v)#id

id <- Fresh ID id' <- Fresh ID
av, aid H e >S V, ide, ae

e' c Dist(v) 0v, iTd H eI =>s v, ide, aev

0-,, O-id H Dist(e) =>s v, id, (Dist(ae#id') = ae, : v)#id

id <- Fresh ID x <- Fresh variable name

av, aid Hel =t> (A.y e, av, d)Iidl, ae
or, Orid H e 2  s v', d 2, ae2

Or',[x -+ v'], O[x -+ id2] H e[x/y] :s vid, ae

0-, -id H (ei e 2 ) =>s v, id, ((aei ae2 )x = aee : v)#id

id <- Fresh ID
av, -id HeI =*s v1, id1 , ael

v, z (A.x e, o-', or'
0%, aid H e2 =s v 2 , id2, ae2
) v = (v1 v 2 )

O-, ad H (ei e2) -->, v, id, ((aei ae2 ) I: v)#id

(a) Executing expressions, -:C E, x Eid x E -+ V x ID x aE

CV, -id H 0 s 0

-v, aid H e => v,id,ae av[x -4 V], aid[X - id] H p ->, t

o-, -id I- assume y e; p =>, assume x = ae; t

id +- Fresh ID

O-v, O-id H e => ev, ide, ae 0v, aid H p ~ ks t

o-v, a-d H observe(Dist(e) = ev);p =>s observe(Dist(ae#id) = er); t

(b) Executing Programs, Csg Ev x Ei X P -+ T

Figure 2-4: Valid Traces
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(x : x)#id r (x(id') : v)#id 4, x

ae1 =r, eI ae2 4r e2

(A.x e : v)#id A.x e ((aei ae2)aa : v)#id or (ei C2 )
ae r, e

(Dist(ae#id') = ae' : v)#id =: , Dist(e)

(a) Rolling back Augmented Expressions, >,C aE -+ E

ae =:re t 4P P

0 => 0 assume x = ae; t ,r assume x = e; p

ae =r e t ?r P

observe(Dist(ae#id) = ev); t :, observe(Dist(e) = ev); p

(b) Rolling back Traces, = 'rC T -+ P

Figure 2-5: Rolling back Traces to Probabilistic Program

Changing the value of aei would require dropping the augmented expression ae3 and

recomputing another expression based on the new value of ae1 .

I formalize the dependence graph generation procedure as a transition relation

,gC T -+ (.A,D,S) (Figure 2-6) . I use the shorthand (N,D,E) = Graph(t) if

(K, D, 8) is the dependence graph for trace t i.e. t => (K, D, S).

Valid Subproblems: Subproblem inference must 1) change only the identified sub-

problem and not the enclosing trace while 2) producing a valid trace for the full prob-

abilistic program. Valid subproblems must therefore include all parts of the trace

that may change if any part of the subproblem changes. I formalize this requirement

as follows.

Given a trace t with dependence graph (K, D, 8) = Graph(t), a valid subproblem

S C dom K must satisfy two properties: 1) there are no outgoing existential edges

and 2) all outgoing data dependence edges must terminate at a stochastic choice

(Sample node).

The first property ensures that parts of the trace which were executed due to

values of expressions in the subproblem are also part of the subproblem. An example

of this is lambda evaluation (aei ae2)X = ae3 . If the value of aei can be changed by

19



(x : x)#id =*g id, ({id -+1}, 0, 0)

(A.x e : (A.x e, -, ,0))#id zg id,

aei ==>g idi, (K1, D,) 
(A, DIE) =

ae2 =>g id2, (K 2, D2, 82)

(K 1 uK 2 UeDi U D2 UDe,8 i

ae >g ide,
U S2 U Se)

(Ke, De, Ee)

id, (K[id -+L], D U
((aei ae2)x = ae: v)#id ,g

{(idi, id), (ide, id)}, E U {(idi, idn) idn E dom Ke})

ae2 r g id2, (N', DI', ')

((ae1 ae 2 ) 1: v)#id =*
id, (K u K'[id -+L], D U D'{(idi, id), (id2, id)}, 8 u 8)

ae g 'ide, (K, D, E) ae' ==> id', (K', 2', 8')
(JNr, Dr, 9r) =

(K U K'[id' -+ Sample], D U D' U {(ide, id')}, 9 U E' U {(id', idE)idnE dom K'})
(Dist(ae#id') = ae' v)#id ==g

id, (,r[jd -41], Dr U {(id', id), (id', id)}, Er)

(a) Dependence Graph generation for augmented Expressions =gg aE -+ ID x (K, D, 8)

ae =: - id, (M, D, S)
assume x = ae =>g (K, D, 8)

ae == id', (M, D, S)
observe(Dist(ae#id) = e,) ==>g (K[id -÷ Sample], D U {(id', id)}, 8)

(b) Dependence Graph generation for augmented Statements, =-g C aS (A, D,E)

as;t =>g (KUKS, D uD , E U S)

(c) Dependence Graph generation for Traces, ->gg T - (D,9,8)

Figure 2-6: Dependency Graph for a Trace t

20
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as =g (Ks, DEs,8s) t %* (K, D, S)

(x(id') : v)#id =: g id, ({id - L}, {(id',7 id)}, 0)

ae I = > idi, I(Ar, D, I )



the subproblem inference, ae3 may or may not exist. Hence ae3 should be within the

subproblem to ensure that the inference algorithm can change it if necessary.

The second property ensures that any change made by the subproblem inference

can be absorbed by a stochastic choice. For example, when the internal parameter of

a Dist changes, one can absorb the change by changing the probability of the trace to

account for the change in the probability of the value generated by the execution of

the absorbing Dist node. The changes are absorbed by the stochastic choice and do

not propagate further into the remaining parts of the trace outside the subproblem.

I formalize the two properties as follows:

" Vid c S. (id,id) E S ==> id, e S

" Vid e S. (id,id,) E D A id, c dom A/-S = A((id,)= Sample

The absorbing set A C dom K-S of a subproblem S is the set of stochastic choices

whose value directly depends on the nodes in the subproblem i.e. A = {Edalida E

dom AV - S A E idi e S. (id, id,) E D}.

The input boundary B C dom K - S of a subproblem S is the set of nodes on

which the subproblem directly depends on i.e. B = {idblidb E dom K - S A V idi c

S. (idb, idi) c D}.

Entangled Subproblem Inference: Following [24], I define entangled subproblem

inference using the infer procedure [24], which takes as parameters a subproblem

selection strategy SS, an inference tactic IT, and an input trace t. The subproblem

inference mutates t to produce a new trace t'.

SS(t) = S t' = IT(t, S)

t' c Traces(Program(t)) S F- t = t'

infer(SS, IT, t) -=>j t'

This formulation works with arbitrary subproblem selection strategies SS. The

requirement is that, given a trace t, SS must produce a valid subproblem S over t.

I also work with inference algorithms IT that take as input a full program trace t

and a valid subproblem S and return a mutated full program trace t'. I require that

21



the output trace t' 1) is from the same program as the trace t and 2) t' differs from

t only in a) the stochastic choices from the subproblem S and b) the deterministic

computations that depend on these stochastic choices. I formalize these constraints

as

t' E Traces(Program(t))

* S \- t 2t

Figure 2-7 presents the definition of =. Note that operating with entangled subprob-

lems forces the inference tactic IT to take the full program trace t as a parameter

even though it must modify at most only the subproblem.
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S - (x(id,) : v)#id = (x(id') : v')#id'

S F- (A.x e : v)#id - (A.x e : v')#id'

ID(ae1 ) ( S
S - ae' ae'

S F- aei - ae'
S F- ae' ae'

S - ((aei ae2)x = ae3 : v)#id - ((ae' ae')x = ae' : v')#id

ID(ae1) S
S F- aei1 ae' S Fae' ae'

S - ((aei ae2) I: v)#id = ((ae' ae') I: v')#id'

ID(ael) E S
SF- aei =ae' S F-ae' - ae'

S - ((aeI ae2)aa : v)#id = ((ae' ae')aa' : v')#id'

ide S
S - ae = ae' S - ae, = ae'

S F (Dist(ae#ide) = ae, : v)#id - (Dist(ae'#ide) = ae' v')#id'

ide E S S F ae = ae'

S - (Dist(ae#ide) = aee : v)#id - (Dist(ae'#id') = ae' v')#id'

(a) Equivalence Check over augmented expressions, =- P(ID) x P(ID) x aE x aE

S - ae = ae'

S - 0 - 0

S F- t t'

S F assume x = ae; t = assume x = ae'; t'

S F- ae = ae' S F- t t'

S F- observe(Dist(ae#id) = ev); t - observe(Dist(ae'#id) = e,); t'

(b) Equivalence check over traces, C= P(ID) x P(ID) x T x T

Figure 2-7: Equivalence Check for correct Inference

23
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Chapter 3

Independent Subproblem Inference

The basic idea of independent subproblem inference is to extract an independent sub-

trace t, from the original trace t given a subproblem S, perform inference over the

extracted subtrace t, to obtain a new trace t', then stitch t' back into t. Here, consis-

tent with standard inference techniques for probabilistic programs [24j, ts and t's are

valid traces of the same program Ps (the subprogram for the subtraces t, and t'). The

key challenge is converting the entangled subproblem (which is typically incomplete

and therefore not a valid trace of any program) into a valid trace by transforming the

subproblem to include external dependences and correctly scope both internal and

external dependences in the extracted trace without given the inference algorithm ac-

cess to any external stochastic choices (including latent choices nested inside certain

lambda expressions which would otherwise override choices outside the subproblem)

which it must not change.

Extract Trace: I define the extraction procedure ts = ExtractTrace(t, S) using the

transition relation -+ex P(ID) x P(ID) x T -+ T (Figure 3-1).

The extraction procedure removes Dist(ae#id) = ae, augmented expressions

which are not within the subproblem and converts them into observe statements.

This transformation constrains the value of these stochastic choices to the values

present in the original trace. It leaves the stochastic choices in the subproblem in

place and therefore accessible to the inference algorithm.

For augmented expressions of the form (aei ae2 )y = ae3 , when ae1 is within the
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S F (x(id') v)#id -ex (x(id') : v)#id, 0

S I- (x: x)#id =ex (x : x)#id, 0

S F (A.x e v)#id =ex (A.x e : v)#id, 0

ID(aej) E S S F- aei sex ae'1, ts S - ae2 ex ae', t'

S - ((aei ae2)aa: v)#id ==>ex ((ae' ae')aa: v)#id, t,; t'

ID(aej) S S F- aei =e2x ae', ts S F- ae2  >ex ae', t'

S F- ((aei ae2) I: v)#id, tP >ex ((ae' ae') I: v)#id, ts; t'

ID(aej) S
S - ae2 *ex ae', t'

S F- ae1 *ex ae'i, t
S F- ae3 =e> aex',t''

x <- Fresh variable name
t'"= ts; assume x = ae'; t'; assume y = ae'2 ; t''

S F ((aei ae2 )y = ae3 : v) #id, tP ex ae' , t'"

id' ( S S F ae e,ae',t, aev =tr ev S F- aev ='>ex aet, t'

S - (Dist(ae#id') = ae: v)#id we, ae', t,; observe(Dist(ae'#id') = ev); t'

id' E S S F ae =ex ae', ts

S F- (Dist(ae#id') = aev : v)#id 4,e (Dist(ae'#id') = aev : v)#id, ts

(a) Extracting subtrace from an Augmented Expression, e>xg P(ID) x P(ID)
aE x T

id = ID(ae)
S F ae >ex ae',ts S F- t ex t'

S F- 0 weX 0 S F- assume x = ae; t wex t8; assume x = ae'; t'

S F- ae wex ae' t S F- t -=ex t'

S F- observe(Dist(ae#id) = e,); t -=ex t,; observe(Dist(ae'#id) = e,); t'

(b) Extracting subtrace from a given trace, wexg P(ID) x P(ID) x T -+ T

Figure 3-1: Extraction Relation
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S F- (x : v)#id,(x : v')#id', tp =-t (x : v')#id', t,

S - (x(id,) : v)#id, (x(id') v')#id', t =p t (x(id') : v')#id', tp

S F- (A.x e : v)#id', (A.x e v')#id, tp est (A.x e : v')#id, t,

ID(ae') E S S F- ae', ae2, t, ast ae', t' S - ae', aei, t' =,t ae", t''

S - ((ae' ae'2)aa' : v')#id', ((aei ae2)aa : v)#id, t -ist ((ae" ae')aa : v)#id, t"

ID(S'F', ae' V S ae', a 3, t =t
S & ae' ae2, t' ==>t ae'2' t"; assume x = aei

ae', t'; assume y = ae2
S - ae', aei, t" >st ae", t'"

S F- ((ae' ae')y = ae' : v') #id, aC3 , t, e ((ae" ae')y = aez : V(ae'))1#idt

ID(ae') S S - ae' ae2, t, ,t ae'2 t' S F- ae', ael, t' .st ae"l, t"

S F- ((ae' ae') I: v')#id', ((ae1 ae2) I: v)#id, t, eSt ((ae' ae') I: v)#id, t"

id' cS S - ae', ae,t, =>Mt ae", t'

S - (Dist(ae'#id') = ae' : v')#id', (Dist(ae#idv) = aev : v)#id, t, st
(Dist(ae#idv) = aev : v)#id, t'

id', V S S F- ae', ae, t ==>st ae', t'; observe( Dist(ae#id',) = ev)
S F- ae', ae, t' *st ae", t"

S F (Dist(ae'#idv) = ae' : v')#id', aen, - st (Dist(ae#idv) = ae' : V(ae'))#id, t'

(a) Stitching augmented expressions, =:stg P(ID) x P(ID) x aE x aE x T -+ aE x T

S F- ae, ae' t, ==st ae", t' S - t, t' e'st t'

S F- 0, 0 est 0 S - t; assume x = ae, tp; assume x = ae' -i>st assume x = ae"; tS

S F- ae, ae', t, =' st ae",t' S - t,t, -=st t'

S F- t; observe(Dist(ae#id) = ev), tp; observe(Dist(ae'#id') = ev) ->st
observe(Dist(ae"#id) = ev); t'

(b) Stitching trace and subtrace, wtC P(ID) x P(ID) x T x T -+ T

Figure 3-2: Stitching Transition Relation

27



subproblem, its value can change and hence existential edges place the augmented

expressions in ae3 within the subproblem. When ae1 is not within the subproblem,

then some stochastic choices may or not be within the subproblem. If I keep the

augmented expression as is, the inference algorithm may unroll ae3 and execute it

again, changing some stochastic choices in ae3 but not in the subproblem. If I modify

ae, the constraint of ae3 being a valid lambda application breaks. I solve this problem

by introducing assume statements and correctly scoping the resulting dependences.

Stitch Trace: Given a trace t, a valid subproblem S over the trace and a subtrace

ts, the stitching procedure stitches back the trace ts into t to get a new trace t'.

I define the stitching procedure t' = StitchTrace(t, to, S) using a transition relation

>sSt P(ID) x P(ID) x T x T - T (Figure 3-2). Stitching is the dual of extraction.

It uses the original trace to figure out the structure of the resultant trace and stitches

back the expressions to get a new trace t'.

Independent Inference: I define independent subproblem inference using the infer

procedure. infer takes as input a subproblem selection strategy SS, a trace t and

an inference tactic IT. This differs from tangled inference in that inference tactic IT

takes only the extracted subtrace as input and not the entire program trace. This

approach enables the use of standard inference algorithms which are designed to

operate on complete traces (and not entangled subproblems).

The new inference procedure works as described below:

SS(t) = S ts = ExtractTrace(t, S) t' = IT(ts)

t' E Traces(Program(ts)) t' = StitchTrace(t, t', S)

infer(SS, IT), t = t' (3.1)

Soundness and Completeness: Given a trace t, a valid subproblem S, an infered

trace t' and ts = ExtractTrace(t, S), I prove that my subprogam inference method

of extraction and stitching is sound and complete. Soundness in this context means

that for all possible mutated subtrace t' E Traces(Program(ts)), the stitched trace

t' = StitchTrace(t, t', S) is a valid infered trace. Completeness refers to the fact
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t' c Traces(Program(t))
S - t '

t t'

rn

r)

t, ts t,ts
t' E Traces(Program(t,))

Figure 3-3: Entangled vs Independent Subproblem Inference

that for all possible infered traces t', there exists a mutated subtrace t' such that

t' E Traces(Program(ts)) and t' = StitchTrace(t, t', S).

I summarize the comparison between the entangled subproblem inference and

independent subproblem inference approaches in Figure 3-3

I present the theorems, lemmas and their respective proofs to prove the soundness

and completeness of my interface below.

3.1 Soundness

Observation 1. Note that whenever a rule in wex introduces an assume statement

in the subtrace, it creates a new variable name. Therefore variable names in the new

subtrace do not conflict with any variable names previously introduced in another part

of the trace. This fact will be used at various points within this paper.

Observation 2. Note that whenever S I- ae wex aes, t, V(ae) = V(ae,) and when-

ever S I- ae, aes, ts =st ae', V(ae') = V(ae,).

To prove soundness of our interface we start by proving that for a given trace t and

a valid subproblem S on trace t, if for any subtrace ts the stitching process succeeds,

the output trace t' differs from trace t only in parts which are within the subproblem
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(i.e. S n t tc t').

Formally, for any trace t and subproblem S,

= StitchTrace(t, t,, S) - S t- t'

Using the definition of StitchTrace, the above lemma can be rewritten as

S _ t, _ = St t' =-> S - t =_ t'

One will note that the stucture of ts does not play a significant role in proving the

above condition.

To prove the above statement we require a similar condition over augmented ex-

pressions embedded within traces. The lemma over augmented expressions is given

below:

Lemma 1. For all augmented expressions ae, ae',

S H ae, _, _ ts ae', -=> S F- ae = ae'

Proof. Proof using induction.

Base Case:

Case 1: ae = (x : x)#id,

By assumption

S I- ae, -, - =st ae', _

By definition of >st

S F- (x : x)#id' _, _ est (x : x)#id', _

Then ae' = (x : x)#id'.
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By definition of =

S H (x: x)#id = (x : x)#id'

Therefore

S H ae = ae'

Therefore when ae = (x: x)#id,

S H ae, _, _ est ae', _ = S H ae = ae'

Case 2: ac = (x(id,) v)#id

By assumption

S & ae, _,_ st ae',

By definition of e4 st

S H (x(id,) : v)#id, _, _ >st (x(id') : v')# -d'

Then ae' = (x(id',) : v')#id'.

By definition of -

S H (x(idv) : v)#id = (x(id',) : v')#id'

Therefore

S H ae - ae'

Therefore when ae = (x(id,) : v)#id,

S k ae, _ _ ae

Case 3: ae = (A.x e : v)#id

By assumption

== S H ae = ae'

S & ae, __, _ >St ae _
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By definition of >st

S H (A.x e : v)#id, _ _ =st (A.x e : v')#id',

Then ae' = (A.x e : v')#id'.

By definition of

S H (A.x e : v)#id (A.x e : v')#id'

Therefore

S H ae ae'

Therefore when ae = (A.x e : v)#id,

==> S H ae = ae'

Induction Cases:

Case 1: ae = ((aei ae2) I: v)#id and ID(ael) ( S

By assumption

S -ae, _, _ st ae'1

By definition of est

S H ((aei ae2) I: v)#id, __ _ =st ((ae1 ae) I: v')#id', _

Then ae' = ((aei ae2) I: v')#id', S H aei, _, _

ae2, _-

By induction hypothesis

S & ael, _,_ st ae',_

Because S H ael, _, _ *st ae', -

S H ae1 - ae'
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By induction hypothesis

S H- ae2 , , _ st ae', _ S H ae2 ae'2

Because S H ae2 , _, _ -st ae'2,

S H ae2 = ae'2

Because S H aei ae' and S H ae2  ae', by definition of

S H ((aei ae2) I: v)#id ((ae' ae') I: v')#id'

Therefore

S H ae ac'

Therefore when ae = ((aei ae2) I: v)#id,

S & ae, _, _ -st ae' => S H ae ate

Case 2: ae = ((ae ae2 )aa : v)#id and ID(ae1) E S

By assumption

S E ae, _, >st ac'

By definition of ast

S H ((ae ae2)aa : v)#id, _, ->st ((ae' ae')aa' v')#id', _

Then ae' = ((aei ae2)aa' : v')#id', S H ael, _, _ -st ae', _, and S H ae2 , _, _

ae2, .

By induction hypothesis

S H aei, _, _ =>st ae', _ ==> S H aei = ae'
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Because S F ael, _, _ zst ae', -

S F ae1 = ae'

By induction hypothesis

S ae 2, _, _ -st ae'2 , _ -- > S ae 2  = ae'

Because S F ae2 , _, - -st ae', -

S F ae2 - ae'

Because S F ae1 = ae' and S F ae 2 - ae', by definition of

S F ((aei ae 2)aa : v)#id = ((ae' ae')aa': v')#id'

Therefore

S F ae = ae'

Therefore when ae = ((aei ae2)aa: v)#id,

S & ae, -, - ->st ae', _ =- S F ae = ae'

Case 3: ae = ((aei ae2)X = ae3 : v)#id and ID(aei) S

By assumption

S E ae,, _>st ae' _

By definition of -t>,

S - ((aei ae2)X = ae3 : v)#id _, _ -st ((ae' ae2)y = ae' :

Then ae' = ((ae1 ae2)y = ae'

ae 2 , _, _ ->st ae', _-

: v')#id', S F aei, _, _ ->st ae, , and S F
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By induction hypothesis

S H aei, _, _ st ae', _

Because S H aei, _, - est ae', -

S F- aei = ae'

By induction hypothesis

S H ae2 , -, _ est ae2 , _

Because S H ae 2 , _, _ =st ae'2,

S H ae2 = ae'2

By induction hypothesis

S H ae3 , _ - =st ae',_ -- > S & ae3 ae'

Because S H aC3 , , _ e't ae',

S H ae3 = ae3

Because S aei = ae', S & ae2 ae' and S & ae3 ae', by definition of

S H ((aei ae2 )x = ae3 : v)#id - ((ae' ae')y = ae' : v')#id'

Therefore

S H ae = ae'
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Therefore when ae = ((aei ae2)x = ae3 : v)#id,

S E ae, _, _ =:s ae', _ ==- S H- ae = ae'

Case 4: ae = (Dist(aei#ide) = ae2) : v)#id and ide S.

By assumption

S & ae,, = st ae',

By definition of -st

S H (Dist(aei#ide) = ae2) : v)#id, _->st (Dist(ae'#ide) = ae') : v')#id',

Then ae' = (Dist(ae'#ide) = ae') : v')#id', S H aei, _, _

ae2 , _, _ -st ae', _-

By induction hypothesis

S & ael, _, _ ->st ae', -

Because S H aei, _, - =>st ae', -

-->st ae', _, and S H

-- > S H aei = ae'

S H ae1 = ae'

By induction hypothesis

S H ae2 , _ _ stae2 , --- S H ae2 - ae'

Because S H ae2 , _, - ast ae', -

S H ae2 - ae'

Because S H aei 1  ae' and S H ae2 - ae', by definition of

S H (Dist(aei#ide) = ae2) : v)#id - (Dist(ae'#ide) = ae') : v')#id'
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Therefore

S F- ae ae'

Therefore when ae = (Dist(aei#ide) = ae2) v)#id and ide S,

S F ae, _, _ *st ae _ ==- S F- ae = ae'

Case 5: ae = (Dist(aei#ide) = ae2) : v)#id and ide E S.

By assumption

S F ae, __ ae

By definition of >st

S F- (Dist(aei#ide) = ae2) : v)#id, -, - Mst (Dist(ae'#ide) ae') v')#id',

Then ae' = (Dist(ae'#id,) = ae') : v')#id' and S I- aei, _, _ -st ae',

By induction hypothesis

S F- ael, _, _ >st ae', _ = S F- aei = ae'

Because S I- aei, _, _>,t ae', _

S F- aei ae'

Because S F ae = ae', by definition of

S F (Dist(aei#ide) = ae2) : v)#id (Dist(ae'Z#ide) = ae') : v')#id'

Therefore

S F- ae - ae'
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Therefore when ae = (Dist(aei#ide) = ae2) : v)#id and ide E S,

S F- ae, -, - ->st ae', - ==- S F- ae - ae'

Because all cases are covered, using induction, the following statement is true for all

augmented expressions ae, ae' and subproblems S.

S F ae, _, _ -t ae', == S ae = ae'

Next we use Lemma 1 to prove the lemma below::

Lemma 2. Given traces t and t' and a subproblem S,

S - t, _ ->,t t' - S - t =- t'

Proof. Proof by Induction

Base Case: t 0

By assumption

S -t _ -- st t'

By definition of ->st

S F 0, _ ->st 0

Then t' = 0.

By definition of

SF-0 0

Therefore

S F- t t'

Therefore when t = 0

S -t _ -> = tt' == S F- t = t'
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Induction Case:

Case 1: t = t,; assume x = ae

By assumption

S F- t, _ z>t'

By definition of zst

S F- t,; assume x = ae, _ = st t's; assume x = ae'

Then t' = t'; assume x = ae', S F ae, _ _ >st ae' _, and S F-ta, _ st t*

By induction hypothesis

S - ts, _ et t', -o S - t, = t'

Because S - ts, _ stt s

S F- ts = t'

From Lemma 1

S F ae, _, _ >st ae' I =w S F- ae ae'

Because S F- ae, -, - >st ae', _

S F- ae = ae'

Because S F t' to, and S F- ae = ae', by definition of

S F- ts; assume x = ae t's; assume x = ae'

Therefore

S F- t t'

Therefore when t = ts; assume x = ae

S F- t, _ >st t' - S F- t t'
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Case 2: t = t,; observe(Dist(ae) = e,)

By assumption

S -t _ -st t,

By definition of -st

S H t ; observe(Dist(ae) = e,), _-st t'; observe(Dist(ae') = e,)

Then t' = t'; observe(Dist(ae') = e,), S H ae, -_>st ae', _, and S H ts, _ ->st t'.

By induction hypothesis

Because S F t, _ ->t ts

S H to t'

From Lemma 1

S & ae, _, _ ->st ae', _ => S H ae = ae'

Because S & ae, _, - ->st ae', _

S H ae - ae'

Because S H t' ts and S H ae = ae', by definition of

S H t,; observe(Dist(ae) = e,) t'; observe(Dist(ae') = eV)

Therefore

S H t '

Therefore when t = ts; observe(Dist(ae') = ev)

S t, _ -t t' ->4 S 0 t -t'
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Because all cases have been covered, using induction, for all traces t, t', subproblems

S and subtrace to,

S _ tits = -t t' -e S - t -= t'

Corollary 1. Given a valid trace t, a valid subproblem S, a valid subtrace ts, for all

traces t' :

t' = StitchTrace(t, t,, S) ==- S - t - t'

Therefore, given a trace t and a valid subproblem S on t, if the stitching process

succeeds, then the output trace t' will only differ from trace t with parts which are

within the subproblem S.

Next, we prove that given a valid trace t, a valid subproblem S on trace t, and

a subtrace ts = ExtractTrace(t, S), for any subtrace t' E Traces(Program(t,)), the

stitched trace t' = StitchTrace(t, t', S) is a valid trace from the program of trace t (i.e.

t' c Traces(Program(t))).

Formally, given a valid trace t, a valid subproblem S on t, and a subtrace ts =

ExtractTrace(t, S),

V t' c Traces(Program(t,)). t' = StitchTrace(t, t', S) A t' E Traces(Program(t))

To prove the above statement, we require a few lemmas first which prove a similar

condition for augmented expressions and traces under non-empty environment

Lemma 3. Given environements O-,, Uid,oj and o such that dim dv = dom ai-

dom or' = dom o0-s an augmented expression ae within a trace t, and a valid subproblem

S over trace t

3 e, ps.c-O, ci He =_ - , _, ae A S H- ae >, aes, ts

Ats; assume z = aes =' r ps A o-, /id H Ps =>s ts; assume z = ae'I

-> ae'.S H ae, ae', t' est ae' _ A or', o-' H- e S _ , _ ,ae'
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Proof. Proof by induction

Base Case:

Case 1: ae = (x : x)#id

By assumption

Uv, id e = s _, _ , ae

By definition of *s

aO'v, Oid F- X = _, -, (x : x)#id

Then e = x and x dom o-.

By assumption

S F- ae ='>e, aes, ts

By definition of wex

S F- (x : x)#id =ex (x : x)#id, 0

Then aes = (x : x)#id and ts = 0.

By assumption

t,; assume z = ae, 4 , ps

By definition of 4r

assume z = (x : x)#id r, assume z = x

Then ps = assume z = x.

By assumption

oU, ,Oid FPS =psS t's; assume z = aes

By definition of >s, dom o- = dom a-

Of, a/ F- assume z = x => assume z = (x : )#id'

Then t' = 0 and ae' = (x : x)#id'.
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Consider ae' = (x : x)#id'.

By definition of =st

S H (x : x)#id, (x : x)#id', 0 zst (x : x)#id'

Therefore

S H ae, ae', t' >st ae'

By definition of => and x c dom a'

ofI orI x _,, (x : I)#zd'u id x= x xiz

Therefore

OU ,Jodl e =s _ , _ , ae'

Therefore when ae = (x : x)#id

3 e, ps.-Ui d o- e 8, _, ae A S & ae we, aes, ts

At,; assume z = ae, >, p, A o, oiYd H Ps =S ts; assume z = aes

- ae'.S ae, ae', t' =st ae' _ A o, or H e = _, _, ae'

Case 2: ae = (x(idv) : v)#id

By assumption

-, cd H e = _, _, ae

By definition of >s

O'v Uid H- Xv = -i -, (cv(idv) : v)#i'd

Then e = x, v = u(x), and idv = gd(X).

By assumption

S H ae >ex aes, ts
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By definition of ex

S H (x(idv) : v)#id #,ex (x(idv) : v)#id, 0

Then ae, = (x(idv) : v)#id and t, = 0.

By assumption

t,; assume z = ae, ==>, ps

By definition of 4r

assume z = (x(idv) : v)#id =i, assume z = x

Then p, = assume z = x.

By assumption

O-', od F Ps >s t',; assume z = ae'

By definition of , dom o' = dom a-

a I, or/ F- assume z = x =a assume z = (x(id') v')#id'

Then t' 0, ae' = (x(id',) : v')#id', v' = o'(x), and id', = c d x.

Consider ae' = (x(id',) : v')#id'.

By definition of est

S - (x(idv) : v)#id, (x(id',) : v')#id', 0 >st (x(id',) : v')#id'

Therefore

S - ae, ae', t' =>st ae'

By definition of =8 ,v' = o'(x), and id', = Od(

' c ' - x =j _, _, (x(id',) : v') #id'
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Therefore

-', a e as _, _, ae'

Therefore when ae = (x(id) : v)#id

E e, s 0v, o-d F- e =- _, _, ae A S I- ae =>,x aes, ts

Ats; assume z = aes =, ps A ou/, 1 H- pS =s>S t's; assume z = ae'

- 1 ae'.S - ae, ae', t' =st ae' _ A o-', i F- e => ,,ae'

Case 3: ae = (A.x e' : v)#id

By assumption

ov, id H e =s _, _, ae

By definition of as

U-v, Uij - A.x e' =>s , , (A.x e' : v)#id

Then e = A.x e'.

By assumption

S F- ae >ex aes, ts

By definition of zex

S F- (A.x e' : v)#id =>ex (A.x e' : v)#id, 0

Then aes = (A.x e' : v)#id and t, = 0.

By assumption

t,; assume z = aes >r ps

By definition of >r

assume z = (A.x e' : v)#id ,r assume z = A.x e'
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Then p, = assume z = A.x e'.

By assumption

i, H F Ps as ts; assume z = ae'

By definition of >s, dom a-' = dom o-,

o-' I-a - assume z = A.x e' =a assume z = (A.x e' v')#id'

Then t' = 0 and ae' = (A.x e' : v')#id'.

Consider ae' = (A.x e' : v')#id'.

By definition of #=st

S H (A.x e': v)#id, (A.x e': v')#id', 0 *st (A.x e': v')#id'

Therefore

S ae, ae', t' zst ae'

By definition of =s and o-', or' H A.x e' a _, _, (A.x e' : v')#id'

or',, or a F A.x e' =#s __,(A.x e' : v')#Zd'

Therefore

ao 1, / a F e ==s __,ae', id

Therefore when ae = (A.x e' : v)#id

E e, ps.av, aide s -, -, ae A S H ae ex aes, ts

Ats; assume z = ae, = , ps A av d H Ps =s t'; assume z = aeS

-= ae'.S ae ae', t'8 5 t ae', _ Aol, a - e S, ,ae

Induction Cases:

Case 1: ae = (Dist(ae1#ide) = aev : v)#id and ide E S
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By assumption

0 v , aid F e ~>s _ _, ae

By definition of -

O-v, ad F- Dist(ei) = -, _, (Dist(aei#ide) = aev : v)#id

Then e = Dist(ei), o-v, ad F- e1 = _, , ae1 .

By assumption

S - ae ->ex aes, t8

By definition of --ex

S F- (Dist(aei#ide) = aev : v)#id ->ex (Dist(ael#ide) =

Then aes = (Dist(aei#ide) = aev : v)#id, ts = t', and S aei e, ae, tI.

By assumption

t,; assume z = aes ->, ps

By definition of =>,

assume z = (Dist(ae'#ide) = aev : v)#id >, assume z = Dist(el)

Then ps = pl; assume z = Dist(e') and ael ->, e'.

By assumption

P , -=4>S t's; assume z = ae'vI aidr S

By definition of =>,

o-', - F p; assume z = Dist(ei) - ; assume z = (Dist(ae2#id') Sae : v')#id'

Then t' = ts, ae' = (Dist(ae #ide) = ae' : v')#id', and a', F- ps; assume z =

ei - t ; assume z = ae2.
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By induction hypothesis

3 ei p, e 1. gv) Uid - C1 :s _, , e A S - el e=x,, ae ti

At'; assume z = ae ->r PI; assume z = el

Ao',,f - p1; assume z = el ==>s t; assume z = ae2

-- > ] ae'.S ae1 , ae2, t2 ->st ae' A o',, ai H ei - , , ae'

Because Ov, gid H el ->s -, -, ae1 , S H ae1  >ex ae, tI, tI; assume z = ael ->'

p1; assume z = el, and a', U/d HpI; assume z = es =>s t2; assume z = ae2.

S & ael, ae, t2 =st ae' A ' gil F el >s

Consider ae' = (Dist(ae'#id') = ae' : v')#id'.

By definition of =>t, S H ae1 , ae., t= -st ae'

S H (Dist(ae1#ide) = aev : v)#id, (Dist(ae2#id') = ae', : v')#id', t'

=s (Dist(ae'#id') = ae, : v')#id'

Therefore

S H ae, ae', t' =.st ae'

By definition of =>s and or, -' H ei = -S, _, ael,

o',, oi H e =s _, _, (Dist(ae'#id') = ae' : v')#id'

Therefore

o-' U e - S ,, ae

Therefore when ae = (Dist(aei#ide) = aev : v)#id

3 e, Ps Uvid H e =s _, _, ae A S H ae >e, aes, ts
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At,; assume z = ae, ->, p, A ov, aid H ps - assume z = aes

- ae' S ae, ae', t' e=st ae', A a' I F e ae'I 8v' id 8 , e

Case 2: ae = (Dist(aei#ide) = ae2 : v)#id and ide S

By assumption

av, -id H e s _, _, ae

By definition of -->s

Uo, aid H Dist(ei) -, _, (Dist(aei#ide) = ae2 : v)#id

Then e = Dist(ei), o-, o' H el -, , aei, ae 2 r e 2 and av, -id H e 2 -_, _, ae 2.

By assumption

S ae ->ex aes, ts

By definition of ->ex

S H (Dist(aei#ide) = ae2 : v)#id ->ex ael, ts; observe(Dist(ae) = e2 ); ts

Then ae, = ae, t = t'; observe(Dist(ae') = e2); t3, S H aei ->ex ael, tI, and S H

ae2 -->ex ae3, I.

By assumption

t,; assume z = aes ->, ps

By definition of 4r

tl; observe(Dist(ae) = e2); t3; assume z = ae3 -

ps; observe(Dist(e) e2);p assume z = Dist(el)

Then p, = ps; observe(Dist(el) = e 2 );pi; assume z = ei, ae' -=>r el, t' =r p', ae a

2 t3=> 2es, and t sr PS.

By assumption

Sd H ps a 'd assume z = aes

49



By definition of >,,

OltIO, o pI;observe(Dist(e') = e 2 );p2; assume z = e2 =S

t2; observe(Dist(ae2) = e2); t4; assume z = ae4

Then t' = ti;observe(Dist(ael) = e2 );ti, ae' = aej, u-', H p'; assume z = e 1 S

t;assume z =ae, and c, od H ps; assume z = e2 =s t4; assume z = ae4.

By induction hypothesis

] epS, e.O-, uid el =s , ae A S & aei e, aes, ts

At'; assume z = ael 4r P; assume z = el

Au' o d P; assume z = el >S t2; assume z = ae2

- 3 3ae'.S aei, ae, t st ae' A or,, o-ld H ei 1 s _ _, ae'

Because o-v, (-id H el = _, -, aei, S H aei *ex ael, tl, tl; assume z ael 4

p5 ;Iassume z = e5 , and ' o p;assume z = el #, t2; assume z = ae2.

S H ael, ae8, t, >st ae' A , c/ - H ea ' _, ae'

By induction hypothesis

] e2 , P2, e .O, OcYd H e 2 : _, _, ae2 A S H ae2 wex ae, t

At8 ; assume z = ae 3r p ; assume z = e

Au' ,' H p2 ; assume z = e 2 ->, t; assume z = ae

-> ae'2 . H ae2, ae4, t4 zst ae' A', oid He2 a' ,_, ae2

Because U, O-id H e2 =: _, -, ae2, S H ae2 ->ex ael, t3, t ; assume z = ae 3
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P assume z = e2, and o-', o-/ H p 2 ;assume z = c ->S t4; assume z = ae4.

S H ae2, ae, t4 a, ae A oal, ad e 2  _ , ae'

Consider ae' = (Dist(ae'#ide) = ae' : v')#id'.

By definition of =-st, S H aelael, 2 ->st ae'i, and S H ae2, ae , t4 ->st ae'2

S H (Dist(aei#ide) = ae2 : v)#id, ae, t'l

-;st (Dist(ae'#id') = ae' : v')#id'

Therefore

S H ae, ae', t' -st ae'

By definition of ->s, -', a- H el -_, _, ae', or', o' H e2  - , _, ae',

or, aid H e -> , _, (Dist(ae'#ide) ae' v')#id'

Therefore

o-', -ad H e =S _, _, ae'

Therefore when ae = (Dist(ae1#ide) = ae2 : v)#id

1 e,ps.o -, ido- 6 e s _, _, ae A S & ae ->ex aes, ts

Ats; assume z = aes =-, ps A O', a/d H pS -->S t',; assume z = ae'

-=> ] ae'.S ae, ae', t' -->st ae', _ A o, o-/ H e - _, _,ae'

Case 3: ae = ((aei ae2 ) -L: v)#id and ID(ael) V S

By assumption

av, J-id H e s _, _, ae

By definition of -

O-v, 0 id H (el e 2 ) s , , ((aei ae2) -L: v)#id
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Then e = (el e2 ), Or-, Oid H- 1 =s _, _, aei, and o-, oad H- e2 =: _, _, ae2.

By assumption

S I- ae sex aests

By definition of >ex

S H- ((aei ae 2 ) I: v)#id =>ex ((ae1 ae') I: v)#id, tl; t3

Then aes = ((aes aes) I: v)#id, ts = ti;ti, S - ae =>, ael, t', and S H ae2 >ex

ael, t3 .

By assumption

t,; assume z = aes 4, ps

By definition of z,

t1; t3; assume z = ((ael ae3) I: v)#id =:, pi;p2assume z = (el e2)

Then ps = ps; ps; assume z = (el e ), ae' =:', e', t' =>, p', ael 4r e , and t 4r p.

By assumption

-' ad pS =- ts; assume z = ae's

By definition of =>,

/v', H- p; p2; assume z = (eI e2) >s t2; t4; assume z = ((ae2 ae4) I: v)#id

Then t' = t4; t, ae' = ((ae2 ae4) L: v)#id, 1' - jp; assume z = el

assume z = ae , and - o' H- p ; assume z = e t; assume z = ae.

By induction hypothesis

Sel,pi, el.o-, oid H e 1 = s _, _, aei A S H aei >ex ae1, tS

At'; assume z = ael r p1; assume z = eI
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Ao', o d pi ; assume z = el >s t2; assume z = ae2

- I ae'.S Faei, ae 2 t2 -st ae' A oa' el >s I

Because Uv, gd H el s _, _, aei, S H aei =>e, ael, t', tl; assume z ael 4r

P1; assume z = eI, and a',, or/ F pl; assume Z = el >S t2; assume z = ae2.

S H aei, aetI =st ae' A o-', a el - _,_, ae'

By induction hypothesis

E e2 ,p , es ., cd H e2 >s _, _, ae2 A S H ae2  ex ae8 , t

At ; assume z = ae 3 p2 ; assume z = e

A' - p ; assume z = e -* t ; assume z = ae4

- '. S ae'.S ae2, ae4, tj 4 st ae' A o,, or 2  ae

Because O-v, O-id H e2 ->s _, _, ae2, S H ae2 -ex ael, t3, t ; assume z ae3 4

p2 ; assume z e2 and a' a H p2 ; assume z = e2 =s t4 ; assume z = ae4
PS8 , id 8~ s S s'

S H ae2 , ae4, t4 =st ae2 A a', aHe 2 ->s _., , ae2

Consider ae' = ((ae' ae') I: v')#id'.

By definition of -ot, S H aei, ae2, t2 >st ae', and S H ae2 , ae4, t4 *st ae',

S H ((aei ae2) _L: v)#id, ((ae2 ae4) _L: v')#id', t

otst ((aeI ae') I: v')#id'

Therefore

S H ae, ae', t' >st ae'

By definition of >, o7',, a-' H el -, _, ae', a', o-r H e 2 =>s, _ , ae2, and because
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aei is not in the subproblem S, therefore its value will not change

o I' I e =s _, _, ((ae' ae') I: v')#id'

Therefore

, or d - e -ae'

Therefore when ae = ((ae1 ae2) I: v)#id, ID(ael) ( S

3 e, Ps dv, OHi F e _, _, ae A S H ae >ex aes, ts

At,; assume z = ae, , p, A o'i H Ps =v t'; assume z = aeS

-- > ae'.S ae, ae', t' z-.8 t ae', _ ', e s ,,ae'

Case 4: ae = ((aei ae2)aa: v)#id and ID(aei) E S

By assumption

Ov, Uid H e ~ 's _, _, ae

By definition of =+

Uv, Uid H (el e 2) -, , ((aei ae2)aa : v)#id

Then e = (ei e 2 ), Ov, Oid H el ->s , -, ael, and Ov, osi H e2 =>s -, , ae2.

By assumption

S H ae ->ex aes, ts

By definition of -'ex

S H ((aei ae2 )aa : v)#id ->,x ((ael ae3)aa : v)#id, tI; t3

Then ae, = ((aes aes)aa : v)#id, ts = t8;ti, S H ae1 ->ex ae, I, and S H ae2 -->ex

ael, t3 .
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By assumption

t8 ; assume z = ae -, p,

By definition of 4r

tl; t3; assume z = ((ael ae )aa : v)#id -, p';p'assume z = (el e2)

Then p, = p1 ;p,; assume z = (e es) ael -> e> , tC l r p, ael -> ej, and t3 4r, p.

By assumption

0-' ,i- Ps ->S t'; assume z = ae'

By definition of -=s,

O/,i o d P I; 2 ; assume z = (eI e ) =S t2; t'; assume z = ((ae2 ae')aa' : v)#id

Then t' = t2 0, ae' = ((ae2 ae')aa' v)#id, -'$, i H ps; assume z

t; assume z = ae , and orj, Old H p 2 assume z = e 2 =>, t4; assume z = aeC.

By induction hypothesis

1 11

Sei'pS, e .(-v, gid - el ->s _ _,aei A S ei ae ae ti

Ati; assume z = ael > p; assume z = el

Ao , id Hp; assume z = c =>S t ; assume z = ae2
> 'i - S

I= ]ae'.S -aei, ae, 2 1 2 :st act A a' or' H el = -, - act

Because o-7, O-id H e 1 -->s _, _, aei, S H ae1

p1; assume z = el, and or', H p; assume z = el S t2 ; assume z = ae2
8 S , id , s 8  -

SH ael, ae2 It2 =: st ael Auo' I H l=> e
8~i e I _

55

= 1

-e ae , t, tl; assume z = ae -



By induction hypothesis

3 e2 , p2, e2.Uv, ad - e 2 :: _, _, ae2 AS I- ae2 =ex ae, t

t3 3 2 2At5 ; assume z = ae8 
4 r Ps; assume z = e

Ao{, d P 2 ; assume z = e2 =S t ; assume z = ae4

- ae'.S - ae2 , ae , tz >st ae' A or', -d F- e 2 = _, _, ae2

Because O%, aid F- e 2 =>s _, -, ae2, S I- ae2  >ex ae3, t3, t3; assume z = ae3 r

P ; assume z = e , and O'j, o' H- p ; assume z = e 2 S t4; assume z = aeC.

S H ae 2, ae4, t4 =>st ae2 A o i, H- e2 = _, _, ae'

Consider ae' = ((ae' ae')aa' : v')#id'.

By definition of >st, S H- ael, ael, t= :st ae', and S H ae2 , aej, t= =st ae',

S H- ((aei ae2)aa : v)#id, ((ae2 ae4)aa' : v')#id', t'

==St ((ac't ae')aa' : v')#id'

Therefore

S - ae, ae', t' =>st ae'

By definition of =>,-, or, o-' H- e = _, _, ae', C, ad F- e 2  , _, _, ae', and because

V(ae') = V(ae2), V(ae') = V(ae4) (Observation 2)

, I
at I~ or- e z='=>, ((ae' ae')aaf v')#id'

Therefore

a/, -a e _ a '

Therefore when ae = ((ae1 ae2)aa : v)#id, ID(ael) E S

e Ps o- a idH e _, _, ae A S ae >ex aes, ts
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At,; assume z = ae, 8 , p, A ocr, / H p8 = t' assume z = ae'v, id sS

-= -E ae'.S H ae, ae', t' est ae', A o', 0 e _ , _, ae'

Case 5: ae = ((aei ae2 )y = ae3 : v)#id and ID(aei) S

By assumption

Uv, Uid H e s _, _, ae

By definition of a

Uv, Oid H (el e2 ) s _, _, ((ael ae2 )y = ae3 v)#id

Then e = (ei e 2 ), Ocv, Uid H el = _, __, ael, (v, u H e2 == _, _, ae2, o r, H e3 e3

_, _, ae3 , and V(ae1) = (A.x e3 , Ov", O'id)

By assumption

S H ac >ex aes, ts

By definition of ex

S H ((ae1 ae2)y = ae3 : v)#id dex aes, ts; assume x

Then ae, = aes, t, = tl; assume x = ael; t; assume y

=ael; t;assume y = ae3; t5

= aeS;t, S H ae1 =>, ae., S,

S H ae 2 wex ae, t, and S H ae3 =ex ae5, t .

By assumption

ts; assume z = ae, =, ps

By definition of 4r

tl; assume x = ae1; t3;assume y = ae3; t5assume z = ae5 4

p1; assume X = el; p2; assume y = e2; P3; assume z = e3

1 12. 2 3 3 1

Then p, = p;assume x = e ; P;assume y = e ; p ; assume z = e8, ae5 =>r esI t I>r PS,

aes => er, t p , ae =#-r e, and S >r pS.
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By assumption

o' H F ps -->s t'; assume z = ae'

By definition of =>s,

, or H pl; assume z = el P2; assume y = e2 ;P3 ; assume ze ->sv SSPs yS, S

t2; assume x = ae; t; assume y = ae4; t6assume z = ae6

Then t' = ; assume x = ae ; t ; assume y = ae4; t6I ae' = ae6, o', d H p'; assume z =

ej -->, t; assume z = ae2, o, or H p2; assume z = e2 = t4; assume z = ae4, o7'", o '

P3; assume z = e3 =>S t6; assume z = ae6.

By induction hypothesis

1 1 11tel, PS, e . -v, H e ei -l _, ,ae A S H aei ->ex ae , t

At'; assume z = ae- pl; assume z = el

AO',, Ois Hp; assume z = e 2 >S t ; assume z = ae2

2-2 ' e'1A -sISae'.S H- ael, ae, I~ = >st ael A (71, orldHe1 ,ae

Because U-, ad H el ->s _, _, aei, S H aei -ex ae', t1I t1 ; assume z = ael -r5, 5, S

p1; assume z = el, and -' or/ ' pH; assume z = el >S t2 ; assume z = ae2

S H ael, ae2, t2 ->st ae' A o-', o-d H e ->s _, -, ae'

By induction hypothesis

2 2 3 3
] e 2 , pS, e8 .cv, cid H e2 =s , ,ae 2 A S H ae 2 -'*ex ael, ts

Ate; assume z = ae5 ->r p ; assume z = e

Af' 1 2 ; assume z = e2 ->S t4; assume z = ae4v a d S eS S

3 ae'.S ae2 , ae 4 1t4 ==st ae/ Au or' ad H-e2 => 1 1a
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Because (v , 0Yid H e2 -> , _, ae2 , S H ae2 -t>ex ae 3, t3, t3; assume z = ael -

p2 ; assume z = e, 2and ', 0/ H p2;assume z = e2 >s t4; assume z = ae4

SS Vid s ~ s S

SH ae2 , ae4, t 4 st ae' A a', H e2 > _ 2

By induction hypothesis

3 eSpI, I-o", u' He 3  ,,ae 3 A S ae3 -ex ae, tI

At5 ; assume z = ae =->r p; assume z = e3

AUi", 1 f p3; assume z = ei ->S t6; assume z = ae6
AoV cid Hp .3 6

-- ]ae'.S ae 3 , ael, 6 ->st ae'f A or', oH F e 3 ->s ae

Because o-,, o ' H e 3 -> ,,ae 3 , S H ae3 Me, ae5, t5, t5; assume z ae5 r

PS; assume z = e3, and a" .Ij' Ulf p3; assume z = e3 =>S t6; assume z = ae6.

S H ae3 , ae6, t6 ->st ae'3 A r"', u.'. H e 3 =>s _ ae'

Consider ae' = ((ae' ae')y = ae' : v')#id'.

By definition of =st, S H ael, ae, t -> ae', S H ae2 , ael, ti - ae', and S H

ae3 , ae., t =St ae'

S H ((aei ae2)y = ae3 : v)#id, ((ae2 ae4)y = ae6 : v')#id', t'

->st ((ae' ae')y = ae' : v')#id'

Therefore

S H ae, ae', t ->st ae'

By definition of =>,, or', o- H el - , _, ae', , o- H e 2  -s, _, ae, and because

V(ae') = V(ae2), V(ae') = V(ae2) (Observation 2), 7"', Or H e3 => , _, ae'

-id He= -, , ((ae' ae')y = ae' : v')#id'
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Therefore

', -a F- e - , _, ae

Therefore when ae = ((aei ae2)y = ae3 v)#id, ID(ael) S

] eP s jd F- e =: _, _, ae A S F- ae 'ex aes, ts

At,; assume z = ae =>, p, A or, /I F- pS =>S t'; assume z ae'

ae'.S - ae, ae', t' st ae', A F e al _, _, ae

Because we have covered all cases, using induction, the lemma is true. D

Lemma 4. Given environements O-v, a0 id, -' and a-id such that dom a- = dom a-id =

dom o' = dom a a partial trace t within a trace tp(t is a suffix of trace tp), and a

valid subproblem S over trace t,

3.p,ps av,rad - p *s t A S F- t sex ts A ps -r> t, A U -V',- zd F-p8  >s ts

:=>~ 3t'.SF-t, t' est t' Au-, cY'd F-p =s t'

Proof. Proof by induction

Base Case: t = 0

By assumption

o-, i F- p =4>s t

By definition of =s

Cv, aid F- 0 =s 0

Then p = 0.

By assumption

S F- t =ex ts
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By definition of ->e

S H 0 >ex 0

Then t, = 0.

By assumption

ts >r Ps

By definition of or

0or 0

Then p, = 0.

By assumption

Ol ,
0

-/ PS s tls

By definition of =>

-', or / 0 - , 0v i

Then t' = 0.

Consider t' 0.

By definition of >st

S H 0, 0 8 St 0

Therefore

S H tt' 5/ st t'

By definition of -=s

a1', /- H 0 - S 0

Therefore

o(' )0- H p -S t'

Therefore when t = 0

3-APs Uv, gid & P -es t A S H t we, ts A ps -=r ts A o-'/, &id p -> t'
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t' A u', a I H p =>, t'

Induction Case:

Case 1: t = assume x = ae; t1

By assumption

Uv, id Hp -> t

By definition of ->

Uv, -iYd H assume x = e;p, =s assume x = ae; t1

Then p = assume x = e;pi, ov, Uid H e =>s v, id, ae, = +x v], 07i = ugd[x - id],

and -', al Hp1 =S t1 .

By assumption

S H t >ex ts

By definition of ->ex

S H assume x = ae; ti = e, t; assume x = ae,;ti

Then t, = t'; assume x = ae,; ti, S H ae -->ex ae8, t, and S H ti ex t,.

By assumption

ts -->r Ps

By definition of r,

t;assume x = ae,; ti = pl; assume x = es

Then p, = p ;assume x = es; pS, tl ->r pl, aes 4r es, and ti -'r>P,.

By assumption

v' Uid H ps i s S
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By definition of -->-

' id & p; assume x = es;p ->s t ; assume x = ae'; t4

Then t' ty; assume x = ae';ti, o',Osd F ps; assume x = es ->u ti; assume x = ae',

'"= '[x -- V(ae')], o =r [ ID(ae')], and s', o H pl - ti (Observation 1,

variable names in t2 do not collide with variable names in t4).

By induction hypothesis

" // H pi >s ti A S H ti -ex t3 A t3 - P A or" u' H pl --s tj

-,S & ti, t -->St t' Aa, a P 1 >s t'i

Because -", 0 'H Pi -,S ti, S H ti ->ex tx , S H ti - , t 4r pI, and o"',o j H

2 ->s t4,

S & ti, ts - >st t' A or', id H P1>s ti

By statement 3

Uv, aid H e z=4 ae A S H ae dex aes, t

At'; assume z = aes =->r ps; assume z = es

Aoji Ps; assume z = es -s t2; assume z = ae'

-= SH- ae, ae', ti -->st ae' A or', H e => ,, ae'

Because av, -id H e ->, _, _, ae, S H ae sex ae8 , ti, ti; assume z = ae s r

pi; assume z = es and o', a ps; assume z = es -> ti; assume z = ae',

S ae, ae', t8 ->st ae' A o$,, Oid H e-> ,,ae'

Consider t' = assume x = ae'; t1.
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By definition of =>t, S H ti, t4 =t t', and S H ae, ae', tP >st ae',

S H assume x = ae, t2; assume x = ae' ; t4 4 st assume x = ae'; t'

Therefore

S H tt' >st t'

By definition of >s, o', o' H e = _, _, ae', and a',.'. u Hp e ta (V(ae') = V(ae')

and ID(ae') = ID(ae') Observation 2)

a', 79 H assume x = e;p, a> assume x = ae'; t'

Therefore

0 V' 0-d Hp id t

Therefore when t = assume x = ae; t1

]-PPs OUv, Uid H p >s t A S H t wex ts A ps >r ts A O-',, O-Id H ps as t's

- S & tt' -st t' A o-', -a H p t'

Case 2: t = observe(Dist(ae) = ev); ti

By assumption

6v, Oid H p =s t

By definition of =s

O-v, iO-d H observe(Dist(e) = ev);pi >s observe(Dist(ae) = ev); ti

Then p = observe(Dist(e) = ev);pi, 0g, (id H e =S v, id, ae, and 0-, 0-id H Pi *s hi

By assumption

S H t >ex ts
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By definition of -,e,

S H observe(Dist(ae) = e,); ti >ex t1; observe(Dist(ae,) = e,) t

Then t, = t'; observe(Dist(ae,) = e,); t, S H ae ->ex aes, tI, and S H Li - ex t.

By assumption

ts -r Ps

By definition of =r

t; observe(Dist(ae,) = er); i -r> p'; observe(Dist(es) = e,); p'

Then ps = ps; observe(Dist(aes) = e S);p, t -r pi, aeS -r es, and t -> p.

By assumption

U-', oi H Ps -- s t's

By definition of -

i-', P.; observe(Dist ) e) - t; observe(Dist(ae') = ev);eeP

Then t' = t2; observe(Dist(ae') = ev); t, O', Oad H pi; observe(Dst(es) =e) --

ti; observe(Dist(ae') = ev), and o0, ,, H p - t (Observation 1, variable names

in t' do not collide with variable names in t4).

By induction hypothesis

O-v, Uid - P1 -s t1 A S H t1 >ex A t > A o' , o-Hd S S

-==> S I- t, t4 -- >,t t' A af, or' - Pi --> t',
t5 1 5  PS id i ~t

Because o-v, O-id H Pi ->s ti, S H Li - e ti, S H i -ex , t 4 Pi, and or,, l H

PS -s I

S t, t4 -->st t'Ao -', A - H Pi -->s '
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By statement 3

av, aid H- e =i _ _, aeAS ae >e, ae., ti

At,; observe(Dist(ae,) = ev) >, pl; observe(Dist(es) = e,)

f , - 1ie ) =: 2

Ao-', ou j H p"; observe(Dist(e,) = ev) - t ; observe(Dist(e,) = ae')

- a e , a e' t2 e t a e' A H, a F e > _, a e '

Because Uv, caid H e => _, _, ae, S H ae -ex S tI ; observe(Dist(aes) = ev) =,

p; observe(Dist(es) = ev) and or', o-af p; observe(Dist(e,) = e') =+ t2; observe(Dist(ae') =

ev),I

SH ae, ae', t2 =>st ae' Au',, He ->a _, _, ae'

Consider t' = observe(Dist(ae') = ev); t'.

By definition of ->st, S H t1 , t4 =:-st t', and S H ae, ae', t2 ->st ae',

S H observe(Dist(ae) = e,), ts; observe(Dist(ae') = er); t =-st observe(Dist(ae') = e,); t'

Therefore

S H t, t, ->St t'

By definition of =-s, -', or' e - ,, ae', and o',, o-'d p ->S t4

O-', I aH observe(Dist(e) = ev);pi ->, observe(Dist(ae') = ; t

Therefore

o-'I oH E p > t'

Therefore when t = observe(Dist(ae) = e,); ti

3P, Ps Uv, oid H p ->s t A S H t ->ex ts A ps =r ts A aidIU f Ps s-> t'

->S - t, t' ->st t' A o-', a's p -=>s t
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Because we have covered all cases, using induction, the below statement is true.

3PPs Ov, 0-id H p =s t A S H t =r-ex ts A ps -->, ts A O-'u, -id H Ps >s t's

--* & tt' =#>t t' A or', -a - p '

Lemma 5. Given a valid trace t and a valid subproblem S and subtrace ts = ExtractTrace(t, S)

for all possible subtraces t'

t' E Traces(Program(ts)) =-> E t'.t' = StitchTrace(t, t', S) A t' E Traces(Program(t))

Proof. Since statement 4 is true for all 0-u, Oaid, o-', and Oid, given dom o-v = dom Uid

dom o-' = dom o-', replacing g-, aid, -', and 0-'d with 0 (empty environment) will

result in

3-p,p, t E Traces(p)AS H t ex tAt,,t' E Traces(p,) -=> S H t,t' 4st t'At' E Traces(p)

Theorem 1. Given a valid trace t, a valid subproblem S, subtrace ts = ExtractTrace(t, S).

For all possible subtraces t', t' E Traces(Program(t,)) implies there exist a trace t' such

that:

t' = StitchTrace(t, t', S)

* t' E Traces(Program(t))

* S H t=t'

Proof. From Corollary 1 and Lemma 5. 0
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3.2 Completeness

Within this section we prove that our interface is complete, i.e. given a valid trace t, a

valid subproblem S on t, a subtrace t, = ExtractTrace(t, t,, S), for any trace t' which

can be achived from entangled subproblem interface (i.e. t' E Traces(Program(t))

and S F- t = t'), there exists a subtrace t' E Traces(Program(t,)) such that t' =

StitchTrace(t, t', S).

Formally, given valid trace t, a valid subproblem S on t, a subtrace t8, and any trace

t'

t, = ExtractTrace(t, S) A t' E Traces(Program(t)) A S F- t = t'

= t'. t' E Traces(Program(t,)) A t' = StitchTrace(t, t', S)

We need to prove a few lemmas which will aid us in proving the above statement.

Lemma 6. Given an augmented expression ae and a subproblem S, a subtrace te,

subaugmented expression aes and an augmented expressions ae' such that

S - ae '>ex aes, ts A S - ae = ae' A 3 e. ae 4, e A O-, Ord F- e *s ae

then, there exists an ae', ts, ps and es such that

S - ae, ae', t' 4 st ae' A ts =r ps A aes =r es

A O-v, rid F ps; assume z = es =s t's; assume z = aes

Proof. Proof by Induction

Base Case:

Case 1: ae = (x : x)#id

By assumption

S F- ae ->ex aes, ts

By definition of =ex

S F- (x : x)#id =ex (x : x)#id, 0
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Then ae = (x :)#id and t,= 0.

By assumption

S V ae ac'

By definition of =

S V (x: x)#id = (x: x)#id'

Then ae' = (x : x)#id'.

By assumption

ae >, e

By definition of =4,

(x : x)#id ->, x

Then e = x.

By assumption

(O, Oid V e =Ns _, _, ae

By definition of =s

07v, U'id V- X ::z. -s- (x x)#id'

Then x V dom uo and id' is a unique id.

Consider ae' = (x : x)#id', t' = 0, p8 = 0 and e, = x. By definition of =>st

S V (x : x)#id, (x x)#id', 0 ->st (x : x)#id'

Therefore

S V ae, ae', t' >st ae'

By definition of =>

0 ->, 0

Therefore

ts =>r Ps
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By definition of r,

(x : x)#id >, x

Therefore

aes ,r es

Because x dom or, the definition of => implies

av, O-id F- assume z = x 4s assume z = (x : x)#id'

Therefore

Orv Oid ps; assume z =e a te ; assume z = aes

Therefore when ae = (x : x)#id,

Vts, aes, ae' S - ae oex aes, ts A S F ae = ae' 3e. ae r, e A Ov, Oid F- e =s ,,ae'

implies

3ae', t' , PS, es. S F- ae, ae', t' est ae' A ts #r p5 A aes >r es

A Ov, ad F- ps; assume z = es =s t'; assume z = aes

Case 2: ae = (x(id,) : v)#id

By assumption

S F- ae >ex aes, t8

By definition of e

S F- (x(idv) : v)#id we, (x(idv) : v)#id, 0

Then aes = (x(idv) : v)#id and ts = 0.

By assumption

S F- ae = ae'
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By definition of =

S H (x(id,) : v)#id = (x(id') : v')#id'

Then ae' = (x(id',) : v)#id'.

By assumption

ae - r e

By definition of -r

(x(idv) : v)#id -xr x

Then e = x.

By assumption

Ov, Oid e =s _, _, ae'

By definition of -

s, od H x ~ - _, _, (x(id',) v')#id'

Then u,(x) = v', ud(x) =id', and id' is a unique id.

Consider ae' = (x(id') v')#id', t' = 0, p, = 0 and es x. By definition of ->st

S H (x(idv) : v)#id, (x(id,) : v')#id', 0 -=>st (x(id') : v')#id'

Therefore

S H ae, ae', t' =ost ae'

By definition of =,

Therefore

ts ->r Ps

By definition of ,

(x(idv) : v)#id ->, x
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Therefore

aes => es

Because a,(x) = v', gid(x) = id', the definition of =a implies

O-v, Oid H assume z = x = assume z = (x(id's) v')#id'

Therefore

Uv-,id H ps; assume z = es =s t,; assume z = aeS

Therefore when ae = (x(idv) : v)#id,

Vts, aes, ae' S & ae ze, aes, ts A S & ae ae' 3e. ae =, e A O- ,a O-ds e s ,ae'

implies

3ae' t' , ps, e,. S H ae, ae', t' et ae' A ts 4r ps A aes =r es

A o-, O-id H ps; assume z = es =t's ts; assume z = aes

Case 3: ae = (A.x e' : v)#id

By assumption

S H ae -+ex aes, ts

By definition of ex,

S H (A.x e' : v)#id =ex (A.x e' : v)#id, 0

Then ae, = (A.x e' : v)#id and t, = 0.

By assumption

S H ae = ae'

By definition of =

S H (A.x e' : v)#id = (A.x e' : v')#id'
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Then ae' = (A.x e': v)#id'.

By assumption

ae ,r e

By definition of 4r

(A.x e' : v)#id 'r A.x c'

Then e = A.x e'.

By assumption

o-v, O-d H- e =:' _, , ae'

By definition of as

o-v, Uid F A.x e' _, _, (A.x e' : v')#id'

Then id' is a unique id.

Consider ae' = (A.x e' : v')#id', t' = 0, p, = 0 and e, = A.x e'. By definition of -->st

S H (A.x e': v)#id, (A.x e': v')#id', 0 ->st (A.x e' v')#id'

Therefore

S - ae, ae', t' =e>st ae'

By definition of -

0 4r0

Therefore

ts -->r Ps

By definition of ==>r

(A.x e': v)#id ->, A.x e'

Therefore

aes ,r es

73



Because Or, rid H A.x e' as _, _, (A.x e' : v')#id', the definition of >. implies

O-v) gi H assume z = x => assume z = (x(id,) : v')#id'

Therefore

Jv, -id H ps; assume z = e, =s t5; assume z = aeS

Therefore when ae = (A.x e' : v)#id,

VtS, aes, ae' S H ae we, aes, ts A S H ae = ae' le. ae =>, e A O-T, o-7d F e as ae

implies

]ae', t', ps, e,. S H ae, ae', t' est ae' A ts >, ps A aes =:, es

A O-, Uid H- ps; assume z = es =s t's; assume z = aes

Induction Case:

Case 1: ae = (Dist(aei#ide) = ae2 : v)#id and ide E S

By assumption

S H ae *ex aes, ts

By definition of ex

S H (Dist(aei#ide) = ae2 : v)#id wex (Dist(ae,#ide) = ae2 : v)#id, ts

Then aes = (Dist(aes#ide) = ae2 : v)#id, S H aei we, aes, t' and ts = t.

By assumption

S - ae ae'

By definition of

S H (Dist(aei#ide) = ae2 : v)#id (Dist(ae'#id') = ae' : v')#id'
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Then ae' = (Dist(ae'#id') = ae' : v')#id' and S [- aei - ae'.

By assumption

]e. ae r, e

By definition of -

(Dist(ae1#ide) ae2 : v)#id r, Dist(ei)

Then e = Dist(ei) and aei 1-, el.

By assumption

9v, aid F e _, , ae'

By definition of =s

Ov, aid F- Dist(ei) > , , (Dist(ae'#id') = ae' v')#id'

Then Orv, Ori -, _, ae', e2 E dom Dist(v'), and 07, oi F e2 =: _, _,

By induction hypothesis

SF- ae -> ael, t A S - aei = ae' A aei ->r el

-- S F- aei, aes, t -st ae'

A (v, Oi F e1l _, __, ae'

I 1 1 1A ts = r PS A ae, 8> ers

A S V, Oai F p; assume z = el t>s t  a ; assume z = ae-

Because S - aei -- >ex aelI tl, S - ae1 ae', aei -:>, e1, and (TV, O-d [- el -:>s _,_,ae'1

S F- aei, ae , t2 = st ae' A t' >, p' A ae' ->, el

A Uv, 'ijd F- pl; assume z = el ->S t2 ; assume z = ae8

Consider ae' = (Dist(ae2#ide) = ae' : v')#id', t' = ti, pS = pi, and es = Dist(el).
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Because S F ael, ae, tI ->st ae' and ide E S, the definition of =>st implies

S F (Dist(aei#ide) = ae2 : v)#id, (Dist(ae2#id') = ae' : v')#id', t'

-4>st (Dist(ae'#id') = ae' : v')#id'

Therefore

S - ae, ae', t' =>st ae'

Because t> p

ts =:r Ps

Because ae =>r es, the definition of ->r implies

(Dist(aes#ide) = ae2 : v)#id ==> Dist(e')

Therefore

aes => es

Because 0-, oi F p1 ; assume z = el ->S t2; assume z = ae2  , (-jd F e2 ->s _, _, ae',

and all variable names introduced by t2 do not conflict with variable names in ae'2

(Observation 1), the definition of ->i implies

O, O-d F ps; assume z = Dist(el) t's; assume z = (Dist(aes#id') = ae' : v')#id'

Therefore

U-i oid- F ps; assume z = es =s ts; assume z = ae'

Therefore when ae = (Dist(aei#ide) = ae2 : v)#id and ide c S, and assuming

induction hypothesis,

VtS, aes, ae' S - ae =>e aes, ts A S F ae = ae' le. ae =4>, e A Uv, -id F- e ==>s _ ae

-- ae' t', ps, es. S F- ae, ae', t' =:>st ae' A t8 r ps A aes -=>r es
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A Ov, Jid F ps ; assume z = es =s ts; assume z = aes

Case 2: ae = (Dist(aei#ide) = ae2 : v)#id and ide S

By assumption

S H ae > ex aes, ts

By definition of --e,

S H (Dist(ae 1 #ide) = ae2 : v)#id -->ex (ae: v)#id, t8

Then aes = (ae3 : v)#id, S H aei -'ex ael, tI, S H > ae2  > e ae2 ->C e2, and

t, = t'; observe(Dist(ae') = e2 ); t.

By assumption

S H ae ae'

By definition of

S H (Dist(aei#ide) = ae2 : v)#id (Dist(ae'#ide) = ae' : v')#id'

Then ae' = (Dist(ae'#ide) = ae' : v')#id', S H ae1 - ae', S Hae2  ae'

By assumption

3e. ae :-, e

By definition of -

(Dist(aei#ide) = ae2 : v)#id ->, Dist(ei)

Then e = Dist(ei) and ae1 ->, el.

By assumption

Uv, Uid He =s _, _ae

By definition of =s

gv, Oid H Dist(ei) =>-,_, -, (Dist(ae'#ide) = ae' : v')#id'
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Then -, o H e --->_, _, ae', e2 E dom Dist(v'), and o-,, gid H e 2 =>s , -, ae2

By induction hypothesis

S H aei ->ex ae, It' A S F ae1 ae' A aei =r el A O', Oid H e1 =s -,

-- > SH aei, aes, I ->st ae' A tl ->r ps A aes ->r e,

A U, i i p ; assume z = e1 ->s t ; assume z = ae

Because S H aei ->ex ael, t, S H ae1  ae', aei => el, and Orn, o-xi H ei -_, _, ae' ,

S H ael, ae2, ti ->st ae' A t =4r pl A ael #>r el

A O-v, O-Ha p1; assume z = el =>, t2; assume z = ae2

By induction hypothesis

S ae2 ->ex ae3, t3 A S &ae 2 = ae' A ae2 ->, e2 A u1, Oid e 62 - ,>s , ae2

-> S H ae2 , ae, ts =>st ae2 A ts - A ae - e

A O-v, O-id F P ; assume z = e 2>s t4 ; assume z = ae4

Because S H ae2 ->ex aej, t3, S H ae2 ae', ae2 ->r e2, and o-v, Oid H e 2 ->s, -, ae',

4 t t3 >, P 2S H- ae2, ae5, tI = st ae' At5 =rP 3 2

A Uv, O Hi F p2; assume z = e2 =>s t4; assume z = ae4

Consider ae' = (ae : v')#id', t' = t2; observe(Dist(ae2) = e2 ); t4, ps = p'; observe(Dist(e') =

e2 ); p2, and es = e . Because S H ael, ae2,t! -st ae', S H ae2 ,aejt -st ae', and

ide E S, the definition of =-st implies

S H (Dist(aei#ide) = ae2 : v)#id, (ae4 : v')#id', t' -ost (Dist(ae' #ide) = ae' : v')#id'
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Therefore

S H ae, ae', t' ==st ae'

2 11

Because t =>, p1, t3 ,r p2, ael =4r el, definition of =-r implies

ts; observe(Dist(ae1) = e2 ); ti =, pl; observe(Dist(e') =e2)

Therefore

ts ->r Ps

Because ae8 -4>r es, the definition of ->r implies

(ae : v)#id -- > 2

Therefore

aes ='r es

Because o,, Orid H p1; assume z = eC8 ->s t2; assume z = ae5 , (Tv, ( H p2; assume z =

e2 =>s t4; assume z = ae4, and all variable names introduced by t2 do not conflict with

variable names in ae4 and t4 (Observation 1), the definition of =>s implies

2 I; 4
'v, id H- Ps; assume z = es = ts; assume z = ae5

Therefore

0v, Cid H ps; assume z = es =s ts; assume z = aes

Therefore when ae = (Dist(aei$ide) = ae2 : v)#id and id, E S, and assuming

induction hypothesis,

Vts, aes, ae' S & ae ->ex aes, ts A S F ae ae' le. ae ->, e A uO, Uid 5 e-, _, ae'

-- > 3ae', ps, es. S H ae, ae', t' -->st ae' A ts ->r ps A aes ->r es

A Uo, Oid H ps; assume z = es =>s t'; assume z = ae'

79



Case 3: ae = ((aei ae2)aa : v)#id and ID(ael) E S

By assumption

S H ae .ex aes, ts

By definition of ex

S H ((aei ae2)aa : v)#id ex ((ael ae3)aa : v)#id, t,

Then aes ((ael ae3)aa : v)#id, S H ae1 we, ael, t, S H ae2 #=ex ae, I and

ts = t1;t3.

By assumption

S H ae ae'

By definition of

S H ((ae 1 ae2)aa : v)#id ((ae' ae')aa' : v')#id'

Then ae'= ((ae' ae')aa': v')#id', S H aei ae', S & ae2 - ae'2

By assumption

3e. ae 4 e

By definition of z,

((aei ae2)aa : v)#id #:>, (ei e 2)

Then e = (ei e2), aei =>r el, and ae2 >r e2.

By assumption

Uv ,Uid H e =s _, _, ae

By definition of =s

-, o-d H (ei e2) =s _, _, ((ae' ae')aa' : v')#id'

Then -%, -d H ei e _, _, ae' and Qi, aid H e 2 =# _, _, ae'

If V(ae') = (A.x e', o,, a' oTjy -+ V(ae'), aiady- ID(ae')] H e'[y/x] e -, -, aee,
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aa= y = aee, else aa =1.

By induction hypothesis

S F aei Zex ae., t' A S F aei ae' A aei ->, ei A ue, d d F el = ,,_,ae'

1 12- S F aei, aes,ti -st ae' A t' ->, p' A ael ->, el

1.1 2 2A o-, gid F pS; assume z = es =>S t8 ; assume z = ae8

Because S F ae, >ex ae>, tS, S F ae 1 ae, aei =, el, and oC, Uid F el -, _, ae',

S & aei, ae, t2 =-st ae' A t 4, pl A ael ->, el

A Ov, Fpi |- P 1; assume z = e1 ->S t ; assume z = ae2

By induction hypothesis

S F ae2 -->ex ae, t A S & ae 2 - ae' A ae2 =r e2 A U, gd u- e2 ->s ,,ae'2

-z-> S F ae2 , ae,4 t =>st ae' A t3 ->, p2 A ae ->,r e2

9182 4 4

A gv, Uid F p2; assume z = el ->s t4; assume z = ae4

Because S F ae 2 ->ex ae3, t3, S F ae2 = ae', ae 2 ->, e2, and ov, gid F e2  _, _, ae',

S F ae2 , aes, t -->st ae' A ti - A ael -e

A go, Ocij F p2; assume z = e - t4; assume z = ae4

Consider ae' = ((ae2 ae4)aa' : v')#id', t' = t2; t4, p8 = pl; p2 , and es = (el e2).

Because S F aei, aes, ti -- t ae', S F ae2 , aej, t= est ae', and ide c S, the definition

of =-st implies

S F ((aei ae2)aa : v)#id, ((ae2 ae')aa': v')#id', t' -st ((ae'I ae')aa': v')#id'
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Therefore

S H ae, ae', t' >st ae'

Because t' >, p' and t' =*, p', definition of , implies

t1; t' => pI; p2

Therefore

ts > Ps

Because aes >r es and aes =>r e5, the definition of , implies

((ael ae3)aa : v)#id == (el e2)

Therefore

aes =r es

Because O-%, Cid F ps; assume z = es e t ; assume z = ae2, 0-, eid H pj; assume z =

ej 2 s t4; assume z = ae4, and all variable names introduced by t2 do not conflict with

variable names in ae4 and t4 (Observation 1), the definition of >s implies

ov, eid H Ps; assume z = (es et) ' ts; assume z = (ae2 ae4)aa'

Therefore

O-,- Uid H ps; assume z = es as t'; assume z = ae'

Therefore when ae = ((aei ae2)aa v)#id and ide E S, and assuming induction

hypothesis,

Vts, aes, ae' S & ae 'exaes, ts A S ae = ae' le. ae :, e A Uv, o-7dg e ,s ae'

Ske', t' , p, es. S H ae, ae', t' >st ae' A ts => pq A aes =r es

A O-, i0-d H ps; assume z = es =s t' ; assume z = ae'
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Case 4: ae = ((ae ae2) I: v)#id and ID(ae1 ) S

By assumption

S F- ae >ex aes, ts

By definition of =>ex

S F- ((aei ae2 ) I: v)#id -=>ex ((aeI ae) I: v)#id, ts

Then ae = ((ael ae3) I: v)#id, S H aei ->ex ael, t, S H ae2 ->ex ae3, t3, and

t, = t; t3.

By assumption

S F- ae ae'

By definition of

S H ((aei ae2) I: v)#id ((ae' ae') I: v')#id'

Then ae' = ((ae' ae') I: v')#id', S H aei ae', S H ae2 - ae'

By assumption

3e. ae =-, e

By definition of -

((aei ae2) I: v)#id =r (ei e 2 )

Then e = (ei e 2 ), aei ->r ei, and ae2 -> e2 .

By assumption

o,, Uid H e =s _, _, ae

By definition of =s

O-v, 'id H (ei e 2 ) = _, _, ((ae' ae') I: v')#id'

Then o-v, 0 -id H ei -, _, ae' and 0-, -id H e 2 -_, _, ae'
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By induction hypothesis

S aei =>e, ael, ti A S F aei ae' A ae1 >r el A 9v, Uid F el >s _, _, ae'

S F aei, ae , ti 2 st ae' A tl ,, p' A ae' =>-, e'

A Ov, Od- p; assume z = el =>s t2; assume z = ae2

Because S F aei ->ex ael, tl, S F aei ae', ae1 ->r el, and ok,, O'd F el -, _, ae',

S F aei, ae2, ti ->st ae' A t' ->, P1 A ael ->rel

A U-, pd ;- P assume z = el =>, t2; assume z = ae2

By induction hypothesis

S ae 2 exae3, t3 A S c ae2 = ae'2 A ae2 => e2 A Oud ( -2T _,, ae2

4 24 3 2- S- ae 2 , ae, tI =st ae' A t3 =, P2 A aes res

2 2 4 4 : re

A O-v, Op 8- P2; assume z = e2 =>S t4; assume z = ae4

Because S F ae2 -ex ae3, t , S F ae2  ae', ae2 ->r e 2, and o-7, O-id F e2 => _, _, ae',

SF ae2 , ae.,ti ->st ae' A t3 p A ae e

22 4:r A e

A O-v, Op - P2; assume z = e2 S t4; assume z = ae4

Consider ae' = ((ae2 ae4) I: v')#id', t' = t2; t4, ps = pl; p2, and es = (eI e2). Because

S F aei, ae2, ti ->st ae'i, S F ae2 , ae4, t4 >st ae'2, and ide E S, the definition of ->st

implies

S F ((aeI ae2) I: v)#id, ((ael aej) I: v')#id', t' >st ((ae' ae') I: v')#id'
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Therefore

S - ae, ae', t' est ae'

Because t' 4, p' and t' , p', definition of ->, implies

t 8; t3 = - p1; P2

Therefore

ts :>r Ps

Because ae tr es and aes =t'r es, the definition of =>r implies

((ael ae ) I: v)#id = (eI e )

Therefore

aes ,r es

Because Ov, Oid F p1; assume z = es 1 S t2;assume z = aeC, ov, id F p2; assume z

e2 aS t4; assume z = ae4, and all variable names introduced by t2 do not conflict with

variable names in aej4 and t4 (Observation 1), the definition of as implies

Ov, oi F- ps; assume z = (eI es) =s t'; assume z = (ae ae ) 

Therefore

Ov, -id F- ps; assume z = es --', ts; assume z = aes

Therefore when ae = ((aei ae2) I: v)#id and ide S 5, and assuming induction

hypothesis,

Vts, aes, ae' SF ae ==e, aes, ts A S - ae ae' 3e. ae 4 r e A (Tv, Uid F e *s _ ae

-- > 8ae, t PS, e . S - ae, ae', t'=st ae' A t 8 => ps A aes ,r es

A o-, Uid F- ps; assume z = es -->, t's; assume z = aes
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Case 5: ae = ((aei ae2 )y = ae3 : v)#id and ID(ael) 0 S

By assumption

S H ae 4=ex aes, t8

By definition of wex

S I- ((aei ae2)y = ae3 : v)#id >ex (ael : v)#id, ts

Then aes = (ae5 : v)#id, S H aei lex ae =te, S ae2 3ex , S I ae3 -ex

ae5, t5, and ts = t'; assume x = ael; t3; assume y = ae3; t5.

By assumption

S F- ae ae'

By definition of

S - ((aei ae2)y = ae3 : v)#id ((ae' ae')y = ae' : v')#id'

Then ae' = ((ae' ae')y = ae' : v')#id', S F- aei - ae', S - ae2  ae', and

S H ae3  ae'3-

By assumption

3e. ae r, e

By definition of =t,

((aei ae2)y = ae3 : v)#id =:, (ei e 2 )

Then e = (ei e 2), ae1 #r el, and ae2 =,>r e2.

By assumption

9vi did F- e =s _, _, ae'

By definition of =s

Orv, Uid H (el e 2 ) =s >, _, ((ae' ae2)y = ae3 : v')#id'
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Then or, ojd H e1 = _, _, ae' and o, Oid F- e 2  _, _, ae2, V(ae') (A.x e', or, od)

e3 = e'[y/x], and o',y -+ V(ae'), oUdly -+ ID(ae') - e3  ,, ae'

By induction hypothesis

S F- aei ex ael, tl A S H ae1 = ae' A aeir 4 ei A o, d uF- el =s _, _, ae'

-z S F- aei, ae., ts >st ae'
1 1 1 1Ats =>r PS A ae8 =:r CS

A Uv,id H- p1; assume z = eI =s t2; assume z = ae2

Because S F- ae1 we, ael, tl, S F- aei ae', aei >, el, and Ov, id F- el => _, _, ae',

S H aei, ae2, t2 =st ae' A tl =4>r PSI A ae1 =Z, r eI2

A ov, Cid H pI; assume z = el I S t2; assume z = ae8

By induction hypothesis

S F ae2 =ex ae3, t3 A S I ae2 - ae' A ae2 re e2 A ovu gd F e2 =s _,,ae'

-- > S - ae2, ae4, tj 4 st ae' A t3 =>r P2 A ae8 ->, e

A Uv, 0 id F- p; assume z = e2 =S t4; assume z = ae4

Because S F- ae2 ==ex ae3, t3, S F- ae2 = ae', ae 2 ->r 62, and Ov, gid H e 2 =>s , _, ae'2

S - ae2 , ae , t #=st ae' A ti 4r pl A ael 4r el

A cv, Uid H p2; assume z = e= -> t4; assume z = ae4

By induction hypothesis

S F ae3 ->ex ae5, t5 A S Fae 3 -= ae' A ae3 =>re3 A o, d - e3 >s _I, ,ae'

S 3 3S= -a3 e6 6=s e A t 5 3~P A ae 5 re 3
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A 9v-,id H- p3;assume z = e3 =-> t6; assume z = ae6

Because S H- ae3 >ex ae5, t5, S H- ae3 = ae', ae3 4, e 3, and o9, c-jd H e3 ->s _, _, ae',

66 5 3 533

S - ae3 , aet I >st ae' A t5 ->, P3 A ae5 =4 r, e3

H- 3 6

A o-,, cid x p3; assume z = e ->s t6; assume z = ae6

Consider ae' = (ae6 : v')#id', t' = P; assume x = ae2; t4; assume y = ae4; t6, p,

; assume x = el; p ; assume y = e2; p3, and es = e'. Because S F- aei, ae2, t2 >st ae',

S H- ae2 , ae, tI =>st ae', S H ae3 , ael, t ->st ae', the definition of =*st implies

S H- ((aei ae2)y = ae3 : v)#id, (ae: v')#id', t' >st ((aeI ae')y = ae' : v')#id'

Therefore

S ae, ae', t'8 ->st ae'

Because t' ->, p, t3 ->, p2, t5 ->, p3, ael ==>r e1, and ae3 ==>r e2, definition of >r

implies

t ;assume x = ael; t3; assume y = aet5 =,r pl; assume x = el;p2; assume y = e P3

Therefore

ts ->r Ps

Because ael 5> e , the definition of = implies

(aes : v)#id - e

Therefore

aes 4 ,r es

Because O-v, O-d H- p1; assume z = es I s t; assume z = aej, 2-, 07 - H- p2; assume z =

e2 => t4; assume z = ae4, and all variable names introduced by t2 do not conflict with
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variable names in aes and ts (Observation 1), the definition of =s implies

0-v, Uid F- ps; assume z = e -> t; assume z = ae6

Therefore

O-, Uid F ps; assume z = es ->s ts; assume z = aes

Therefore when ae = ((aei ae2)y = ae3 : v)#id and ide S, and assuming induction

hypothesis,

VtS, aes, ae' S - ae >ex aes, t, A SF-ae ae' 3e. ae r, e A 9v-, O-id H e =s_ ,,ae'

- l lae'l, tS Ps, 8e. S - ae, ae', t'> =st ae' A ts ->r ps A aes =r es

/ I 7

A 0-v, id F- ps; assume z = es ->S t' ; assume z = ae'

Because we have covered all cases, using induction, the following statement is true

Vts, aes, ae' S F ae ->ex aes, ts A S F ae = ae' e. ae =,r e A U, rd F- e- _, , ae'

-- 3ae, t, ps, es. S F- ae, ae', t' = st ae' A ts ->r ps A aes >. es

A o-, Oid F- ps; assume z = es ->, ts; assume z = aes

Lemma 7. For any two traces t, t', a valid subproblem S on t and a subtrace S F

t -- >ex ts

S - t - t' A t ->, p A Uv,Jid F- p =s t'

implies there exists a subtrace t' such that

3 ps*ts 4s ps A Cv, Oid F- ps ->s t' A S F- t, t' ->st t'
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Proof. Proof by Induction

Base Case: t = 0

By assumption

S H- t =: ex ts

By definition of wex

S I- 0 wex 0

Then t, = 0.

By assumption

S - t = t'

By definition of

Then t' = 0.

By assumption

t *r P

By definition of ,

0 4r 0

Then p = 0.

By assumption

Uv, Oid P =>s t'

By definition of =s

Ov, Oid H 0 =s 0

Consider t' = 0, Ps = 0. By definition of =,

0~r

Therefore

ts 4'=,r Ps
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By definition of =>

(7,, Orid H- 0 =: > 0

Therefore

O-v, Oid H Ps es t's

By definition of >st

S H 0, 0 >St 0

Therefore

S H t,' est t'

Therefore when t = 0,

V t',ts,p. S & t >ex ts A S & t = t' A t =, p A Ov,U idH P s t'

-B t',ps.t8 s>r ps A (v,id B Ps H s t' A S t, t' s - t'

Induction Case:

Case 1: t = assume x = ae; t1

By assumption

S H t wex ts

By definition of #>x

S H assume x = ae; ti ex ts; assume x = aes; t

Then t, = t'; assume x = aes;t, S & ae =e, aes, t' and S & tj wext .

By assumption

S H t = t'

By definition of =

S & assume x = ae; ti = assume x = ae'; t'
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Then t' = assume x = ae'; t', S H ae = ae', and S H ti = t'.

By assumption

t , P

By definition of *,

assume x = ae; ti =r assume x = e; p,

Then p = assume x = e; pi, ae 4. e, and ti ==r P.

By assumption

U-, jd H p = t

By definition of a

9v, gid H assume x = e;p, es assume x = ae';t'

Then -, a e 4 _, _,a e', or, o' Pi t', and ' = o-v[x - V(ae')], o7' =

O-id[x -+ ID(ae')].

By induction hypothesis

S & t1 wex t3 A S & t1  t' A t1 r AO ,, H P s t'

- 3 t, Ipr.t3 4 P2 A o-', or/ H p 2> t4 A S & ti, t4 =st t'

Because S & ti =e, t3, S H ti t' I ti ,r pi, and o-',, o-r H Pi e> t',

t3 > P A o', o'- P 2 >, t4
tSrP A ~v id H P S A S & t1 ,t =>St t'

By induction hypothesis

Vtl, aes, ae' S H ae 4' e, aes, tl A S H ae = ae' Ee. ae ==>, e A O-v, gid H e = ,, ae'

S ae, t, pI, es. S ae, ae', t2 --ost ae' A t' 4, pl A aes r, es
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12 /A U,, gid p; assume z = C, ts; assume z = aes

Because S H ae wex ae8, t', S H ae = ae', ae 4r e, and 9-, 0 id H e s _, _, ae',

S ae, ae', t2 =i, ae' A t' i r p' A aes =r es

A ov, -ixd H p1; assume z = es >s t2; assume z = ae'

Because S H ae, ae' , t2 >st ae' and S H ti, t4 est t'1, the definition of =as implies

S H assume x = ae; ti, t2; assume x = ae' ti 4 St assume x = ae' t'

Therefore

S H t,t' =t t'

Because t 3 , p2, t' :, pl, and aes r, es, the definition of er implies

s; assume x = aes; t >r pl; assume x = es; p

Therefore

t :'4r P

Because O-v, ogi H pi; assume z = * t; assume z = ae' , o-, Oda d pS Stall

variable names introduced by t2 do not conflict with variable names in t4 (Observa-

tion 1), V(ae') = V(ae'), and ID(ae') = ID(ae') (Observation 2), the definition of

=:'s implies

-, o-d H pi; assume cc = e5 ;p5 s t8 ; assume x = ae'; t4

Therefore

Uv , Oid Hps s t's
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Therefore when t = assume x = ae; t1 , and assuming the induction hypothesis,

V t', tP. S t -->ex ts A S & t = t' A t =, p A Uv,-id P P -->s t'

- t',Ps.ts ->r ps A JvUid - Ps ->s t's A S F tt' -=>,t t'

Case 2: t = observe(Dist(ae) = ev); ti

By assumption

S F- t -->ex ts

By definition of ->ex

S - observe(Dist(ae) = ev); t1 -->ex t'; observe(Dist(aes) = er); tP

Then t, = ts; observe(Dist(ae,) = er); tP, S F- ae --ex ae,, t' and S ti -->ex t.

By assumption

S F- t t'

By definition of

S F- observe(Dist(ae) = e,); t1  observe(Dist(ae') e,); t'

Then t' = observe(Dist(ae') = e,); t', S F- ae - ae', and S F- ti t'.

By assumption

t , P

By definition of ->

observe(Dist(ae) = ev); ti or observe(Dist(e) = ev);pi

Then p = observe(Dist(e) = ev);pi, ae =-r e, and ti ->r P.

By assumption

Ov, Gid - p =>s t'
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By definition of as

-v, Oid H observe(Dist(e) = e,); pi =a observe(Dist(ae') =

Then O-,, O-ds F e a8 _, _, ae' and U-, Osi F PI

By induction hypothesis

S & ti -:>ex t 3 A S - ti t' A ti j p, A o-v, Ud - P1 -->'s t'1

-P S ti, r . P A Uv, I id p2 tS A S H titS -st t'j

Because S H ti ->ex t3, S H i t', ti - >r pi, and (7, Oc d P1 -- >s t1,

t3 3 P A , F P -> S tS ~t~ 8 A Sv~dH~zA S I t1,t4 >St t'

By induction hypothesis

Vt1, ae., ae' S H ae ->ex aes, t A S ae = ae' Ee. ae ==>r e A Ov, Oid e -> _, _, ae'

-t 4ae', , es. S H ae, ae', t2 ->st ae' A t' =:>, pj A ae, => es

A ov, Tid H ps; assume z = es - t8 ; assume z= ae'

Because S H ae ->ex aes, t', S H ae - ae', ae >r e, and o-, d H e >s -, _, ae',

S ae, ae', t2 =,t ae' A t' -=>, p A aes=,res

A o-, gd H p ; assume z = es =s ts; assume z = ae's

Because S H ae, aes, tS =st ae' and S H t1 , t 1 t', the definition of ->st implies

S H observe(Dist(ae) = ev); ti, ts; observe(Dist(aes) = eV); t' >st observe(Dist(ae') = ev); t'
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Therefore

S - t)t' e '

Because ti r p , tl >r p1, and aes Z:,r e,, the definition of tr implies

t1; observe(Dist(aes) = e,); t' 4, p>; observe(Dist(es) = ev);p2

Therefore

t pr P

Because U, aid H ps; assume z = es 4s t; assume z = ae' I-, H-d 2 s t,

and all variable names introduced by t2 do not conflict with variable names in t'

(Observation 1), the definition of =s implies

Uv, aid H p; observe(Dist(es) ev);p! =' ti;observe(Dist(ae') ev); t

Therefore

av, aid - ps -s t's

Therefore when t = observe(Dist(ae) = ev); ti, and assuming the induction hypothesis,

V t',ts,p. S - t *ex ts A S - t - t' A t 4, p A av, aid P s t'

- t',Ps.ts > ps A Uv, id -ps =, t' A S F- t,t' >st t'

All cases have been covered therefore by induction the following statement is true.

V t',ts,p. S - t >ex ts A S - t - t' A t r, p A U, aid F p *, t'

t'sps.ts z#r ps A av, -id - P s t' A S - t,t' >st t'

Theorem 2. Given a valid trace t and a valid subproblem S of t and a subtrace

ts = ExtractTrace(t, S). For all possible traces t', t' E Traces(Program(t)) A S F- t - t'

96



implies there exists a subtrace t' such that

* t' E Traces(Program(ts))

* t' = StitchTrace(t, t', S)

Proof. From definitions of Traces, Program, ExtractTrace, and StitchTrace, given a

trace t and a valid subproblem S

3 P.S & t ->ex ts A S & t = t' A 0,0 k p ->s t A 0,0 F p -->s t'

- t'.S & tt' -l =4t' A ts -->r ps A 0,0 -ps -->s ts

Because Lemma 7 is true for all environments Uv, Oaid, ou, and od. The theorem is

equivalent to the lemma, but with o-v, c-id, or', and o-' set to 0. ED
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Chapter 4

Convergence of Stochastic

Alternating Class Kernels

In this chapter, I introduce the concept of class functions and class kernels which I use

to prove the convergence of hybrid inference algorithms based on asymptotically con-

verging MCMC-algorithms. I present key definitions, theorems, and lemmas required

to prove these results.

4.1 Preliminaries

I begin by introducing some key measure theory definitions required for my proof

[13, 25, 37].

Definition 1 (Topology). A Topology on set T is a collection T of subsets of T

having the following properties:

1. 0 E T and T E T.

2. T is closed under arbitrary unions.

i E I,Ai E T, then

i.e. For any collection {Ai}ie, if for all

U Ai E T.
iGI

3. T is closed under finitely many unions. i.e. For any finite collection {Ai}i 1,

if for all i c I, Ai e T, then n A, E T.
iEI
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Given a set T and a topology T defined on T, the pair (T, T) is called a topological

space.

Given a topological space (T, T), all sets A E T are called open sets.

Note: From this point on, when I say T is

about any topology T on T.

Definition 2 (u-algebra). Let T be a set.

or a u-algebra over T if and only if T E

intersections and complements, i.e.,

a topological space, I assume I are talking

A collection E of subsets of T is a --field

T and r is closed under countable unions,

1. T E E and 0 E E.

2. A E E implies Ac E E.

3. E is closed under countable unions, i.e. For any countable collection {AI}iE1 , if

for all i E I, Ai E E, then ) A Ez E.
iEI

A measurable space is a pair (T, E) such that

over T.

Definition 3 (Measure). m : E -+ R U {-oo, oo}

space (T, E) if

T is a set and E is a u-algebra

is a measure over a measurable

1. m(A) > m(A) = 0 for all A C E,

2. For all countable collection {Ai}i1E of pairwise disjoint sets in E,

m(U A) = Z m(Ai)
iEI i I

Given a measurable space (T, E), a measure r on (T, E) is called probability

measure if r(T) = 1.

I call the tuple (T, E, r) a probability space, if r is a probability measure over

the measurable space (T, E).
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Given a set T, a collection of subsets A, C T (not necessarily countable), I denote

the smallest --algebra E such that A, E E for all ca by -({AA}).

Definition 4 (Borel a-algebra). Given a topological space T, a Borel o-algebra,

B(T) is the smallest u-algebra containing all open sets of T.

(T, B(T)) is called a Borel Space when T is a topological space and B(T) is a

Borel o-algebra over T.

Consider a topological space (T, T), for any set A E T, (A, TA) is also a topological

space (where TA= {E n AIE c T}).

Given a measurable space (T, E), for any set A E E, (A, EA) is also a measurable

space (where EA = {E n AIE E E}).

Topology and o-algebra over Reals: Consider the smallest topology R over the

real space R which contains all intervals (a, oc) C R for all -oc < a < oc. To avoid

confusion, I will refer the topological space over R with the symbol R. I can now use

this topology to define a borel o-algebra B(R) over this topological space. Using the

above defined topology and o-algebra I can define a topological space and a u--algebra

for any open or closed intervel in R.

Definition 5 (Measurable Function over Measurable Spaces). Given measur-

able spaces (T, E1 ) and (T2, E2), a function h : T1 -+ T2 is a measurable function

from (T1, E1 ) to (T2, E2) if h-{B} C E1 for all sets B C E2, where h 1 {B} = {x

h(x) E B}. [131

The measurable function h is also know as a Random Variable from measurable

space (T1 , E1 ) to (T2 , E 2 ).

If h : T1 - T2 is a measurable function from measurable space (T1 , E1 ) to a

measurable space (T2, E 2), and let w be a probability measure on (T1 , Z1 ), then 7Th

E 2 -+ [0, 1] defined as

7 h(A) = T(h- (A))

is a probability measure on (T2 , E2)-

Definition 6 (Pushforward measure). Given a probability space (T1 , El, r) and a

measurable function to a measurable space (T2 , E2), then the pushforward measure of
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7 is defined as a probability measure f,(7r) : E2 -+ [0, 1] given by

(f*(7r))(B) = 7r(f-1 (B)) for B E 2

Definition 7 (Measurable). A function f is measurable if f is a measurable func-

tion from a measurable space (T, E) to (IR, B(R)).

f is measurable if and only if

Va E R.{x E Tjf(x) > a} E E

Intuitively, for every real number -oc < a < oc, there exists a set A E T contain-

ing all elements which f maps to real numbers greater than a.

Definition 8 (Simple Function). Given a measurable space (T, E), s T -a [0, oc)

is a simple function if s(t) = aiIA,(t), where ai E [0, o), A E E, IA,(t) = 1 if

t E Ai and 0 otherwise, and the Ai are disjoint.

Definition 9 (Lebesgue

m over (T, E), for each A

Integral). Given a measurable space (T, E) and a measure

E E and disjoint Ai G E, I define

JA IA,(t)m(dt) = m(Ai n A)

Hence
I. N

s(t)m(dt) = aim(A, n A)

Given a function f : T -+ [0, oc) which is measurable, I define

f (t)m(dt) = sup{j s(t)m(dt)Is(t) is simple ,0 < s < f}

where s < f if Vt.s(t) < f(t), as the Lebesgue Integral of function f over a set E in

measurable space (T, T) with measure m.
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Given a function f : T -- l R which is measurable, I define

j f(t)m(dt) = f+(t)m(dt) - L f_(t)m(dt)

where f+(t) = max(f (t), 0) and f_(t) = max(-f (t), 0). An integral of a measurable

function f is the sum of the integral of the positive part and the integral of the negative

part.

Note: From this point on, f f(t)m(dt) denotes fT f(t)m(dt) where T is the set over

which the measurable space and measure m is defined.

Definition 10 (Markov Transition Kernel). Let (T, E) be a measurable space. A

Markov Transition kernel on (T, E) is a map K : T x E -4 [0, 1] such that :

1. for any fixed A E E, the function K(., A) is measurable function from (T, E) to

[0, 1].

2. for any fixed t E T, the function K(t,.) is a probability measure on (T, E).

Definition 11 (7-irreducible). Given a probability space (T, T, 7), a Markov Tran-

sition Kernel K : T x T -- [0,1] is 7r-irreducible if for each t e T and each A E r,

such that r(A) > 0, there exists an integer n = n(t, A) > 1 such that

Kn(t, A) > 0

where K"(t, A) = fT Kn-I(t, dt')K(t', A) and K1 (t, A) = K(t, A).

Definition 12 (Stationary Distribution). Given a probability space (T, T, ir), 7 is

the stationary distribution of a ,-irreducible Markov Transition Kernel K : T x T -

[0, 1] if

7rK = 7r

where (rK)(A) = f K(t, A),r(dt).

Definition 13 (Aperiodicity). Given a probability space (T, T, -F), a 7r-irreducible

Markov Transition Kernel K : T x T -+ [0,1] is periodic if there exists an integer
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d > 2 and a sequence { Eo El, . . . Ed-I} and N of d non-empty disjoint sets in T such

that, for all i= 0,1,...d - 1 and for all t e Ej,

1. (udjOEj) U N = T

2. K(t,E) = I forj =i+1(mod d)

3. 7r(N) = 0

Otherwise K is aperiodic.

Definition 14 (Asymptotic convergence). Given a probability space (T, r,7r) and

sample t G T, a Markov Transition Kernel K T X T -- [0,1] is said to asymptotically

converge to ir if

Iimn-+oojjKn(t,.) - = 0

where . refers to the total variation norm of a measure A, defined over measurable

space (T, T), defined as

||AII = SUPAEA(A) - inffzeA(A)

Theorem 3. Given a probability space (T,T,,r) and a Markov Transition Kernel

K : T X T - [0,1]. If K is w-irreducible, aperiodic, and 7rK = 7 holds, then for

7r-almost all t,

Iimnoj K"(t, .) - 11 = 0

i.e., K converges to ,r. 7r-almost all t means that there exists a set D C T such that

r(D) = l and for all t E D, Iimnm |Kn(t,.) -- 11 = 0.

Athreya, Doss, and Sethuraman (1992) present the proof for this theorem [2].

All popular asymptotically converging Markov Chain Algorithms, like variants of

the Metropolis Hasting and Gibbs Algorithm, when parameterized over probability

space (T, T, 7r), are r-irreducible and aperiodic with stationary distribution 7r.

Definition 15 (Subalgebra). . is a c--subalgebra of a measurable space (T, r) if S

is a o--algebra of some set A C T and8 C r.
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Definition 16 (Induced Probability space). Given a probability space (T, T, r)

and A E T, define TA = {B n A|B G T}. Note that since T is a --algebra, TA is a

sub-algebra over set A. (A, TA) is a measurable space. If r(A) > 0, then function

WTA TA -+ [0, 1], defined as A(X) = r(x)/ir(A), is a probability measure over (A, TA).

(A, TA, 7A) is the probability space induced by A G T.

4.2 Class functions and Class Kernels

I next introduce the concept of class functions and class kernels which formalize the

concept of subproblem based inference metaprograms. To aid the reader, I reduce

the concepts to analyze the special case of Gibbs sampling.

Definition 17 (Two way measurable function). Given a measurable space (T, E1 )

and a measurable space (T2, E 2), a measurable function f from (T, Z 1 ) to (T2 , E2) is

a two way measurable function, if for all sets A E Ei there exists a set B C E 2,

such that

B = {f(t)|t E A}

i.e., the map of any set A E E1 is a set in E2.

Given a two way measurable function f, I can trivially extend f to a function

g : El Z E2 between sets in E1 to sets in E2, where g(A) = {f(t)It E A}. Since f is

a measurable function, the function f 1  E 2 -+ El is also defined which maps sets in

E 2 to sets in E1 .

Note: From this point on, given a two way measurable function f, I will simply

use it to represent function g defined above, mapping sets from E1 to E 2. I also use

f as a reverse map from E 2 to E1 defined above. Note that f may or may not be

the inverse of the function f.

Example 1. Given measurable spaces (X, X), (Y, Y) and product space (X x Y, X 0

Y), the projection functions projx and proj, are two way measurable functions from

(X x Y, X 0 Y) to (X, X) and (Y, Y), respectively.
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Definition 18 (Generalized Product Space). Given countable sets of disjoint

measurable spaces {(Xi, Xi)|i e I} and {(Yi, Yi)|i G I}, I construct a countable set of

product spaces

{(Xi x Yi, Xi 0 Yi)li E 1}

Given the product spaces defined above, I define generalized product space

(C, C) as a union of product spaces,

(CC) = (UXi x Y1,-(U Xi D Yi))
iEI iEI

Given a probability measure ,v on a generalized product space (C, C), I can define

a conditional distribution 7ri over each product space (Xi x Y, Xi 0 Yi) such that

7r(A) = Z 7ri(A n Xi x Yi)7r(Xi x Yi)
iEI

I assume, for each product probability space (Xi x Y, Xi Yi, 7ri) I can construct

a regular conditional probability measure , : Xi x Yi --+ [0,1], such that for each

U x V E X 0 YZ

ri(U x V) = vsi(x, V)7ri(dx x Yi)

Note: When constructing the generalized product space, one has to prove the above

assumption i.e., the regular conditional probability measure exists.

Example 2. Given measurable spaces (X, X), (Y, Y), the product space (X X Y, X®y)

is a generalized product space if and only if, given a probability measure 7r on the

product space, the regular conditional probability v, : X x Y -+ [0,1] is defined.

Definition 19 (Class functions). Given a measurable space (T, E) and a generalized

product space (C, C), a Class function is a one-to-one two way measurable function

f from (T, E) to (C,C).

Given a class function f and the target product space (C, C), the projection
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functions

f, = proj, o f : T -4 UX, and fy = proj, o f : T - UY
iEI iEI

are also a two way measurable functions from space (T, E) to projection spaces

(U Xj, o-(U Xi)) and ( U Y, (U Y)) respectively.
iEI iCI icI iEI

Example 3. Given measurable space (X, X), (Y, Y) and generalized product spaces

(X x Y, X 9 Y) and (Y x X, Y 9 X), the identity function id: X x Y - X x Y and

the reverse function re : X x Y -> Y x X (i.e. re((x, y)) = (y, x)) are class functions

from (Xx Y,X®Y) to (X x YXOY) and (Y x X,Y®9X).

Note that idx = projx and rex = projy.

Definition 20 (Connecting the space (T, E, 7r)). Given a probability space (T, E, ir),

a finite set of class functions F = {f1, f2 ... fnj connect the probability space (T, E, 7F),

if for all sets A E E and any two functions f, g E F

wr(f-'(fx(A)) n g;-1 (gx(A)')) = qr(fxl(fx(A)c) n gX 1 (gx(A))) = 0

-- lr(fl-l(fx(A)c)) = 0 or r (g;l(gx(A) c)) = 0

Example 4 (Connected product space). Given a probability space (X x Y, X 0

Y, w) and class functions id and re, then id and re connect the space (X x Y, XOY, 7r),

if for all sets U x V E X 0 Y,

7r(U x V) = 7r(U x VC) =0 ==- 7(UCx Y) = 0 or 7r(X x VC) = 0

as

7r(idx-1(idx(U x V)) n re-i(re-'(U x V)C) = r(U x Y n X x VC) = 7(U x VC)

and

7r(id-1(idx(U x V) ) n re-'(re-1 (U x V)) = r(Uc x Y n X x V) = 7r(Uc x V)
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Definition 21 (Class Kernels). Given a probability space (T, E, 7r), a class function

f to a generalized product space (Cf,Cf) = ( X{ x Y, a(U X| 9 Y)), f maps
iEI iEI

each point t E T to some point (x, y) in X{ x Y| for some z.

For each i C I, I define a function Ki : Xf -+ (Y| x Y) - [0,1] such that

" Ki(x) : Yjx yf -+ [0,1] is avf.(,),(x, .)-irreducible, aperiodic Markov Transition

Kernel with vf*(,r)(X,.) as it's stationary distribution.

* Ki(.)(y, A) is measurable for all y E Y| and all A E Y.

Given these kernel functions, for each i I define a Class Kernel Kf : T x E -

[0,1] as a Markov Transition Kernel defined as

Kf (t, A) = Ki(x)(y, V)I(x, U)

where f(t) = (x, y) E X, x Y and U x V = f (A) n (X, x Y).

4.3 Properties of Class kernels

Consider a probability space (T, E, 7r) and a class function f to a generalized product

space (Cf, Cf) = (U Xf x Y|, a( U X! 0 Y!)). Below, I prove properties of a Class
iGl 

iEl

Kernel Kf within this context.

Lemma 8. For all t G T and A E 7,

K7(t, A) = K2 (x)(y, V)I(x, U)

where f (t) = (x, y) E Xi x Y and U x V = f (A) n Xi x Yi.

Proof. Proof by induction.

Base case:

Kf (t, A) = Ki(x)(y, V)I(x, U)

using definition of Kf.
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Induction Hypothesis:

For all 1 K n < m, the following statement is true

K (t, A) = K7'(x)(y, V)I(x, U)

Induction Case:

K7T+1(t, A) = K7" (t', A)Kf(t, dt')
Jt'ET

KT"(f(X', y'), A)Ki(x)(y, dy')I(x, dv')

Note that f(X', y') E Xi x Y

K' (X')(y', V)I(c(', U)Ki(x)(y, dy')I(x, dx')

K"mW ()(y, V))I(x, U)Ki(x)(y, dy')

K"m(W(Y', V) I(x, U) Ki (x) (y, dy')

= Km+1(X)(y, V)I U)

Hence proved.

Lemma 9.

7(A) = JtET
Kf(t, A)-F(dt)

Proof Every set A c E can be written as f-(U x V) for some U x V E Cf as f is a

two-way measurable function.

Kf (t, A)wr(dt) = Kf (t, f -1(U x V))7r(f 1 (dt))

I can split the integral into sum over the constituent product spaces Xi x Y,

=iJ L y
i(E x(EX2 Y~
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I can rewrie Kf (f -'(x, y), f-1 (U x V)) as K(x)(y, V n Yi)I(x, U n Xi).

iGI xEX yeY

K(x)(y, V n Y)I(x, U n Xi)f,(r) (dx x dy)f,(7r)(Xi x Yi)

fX f(x)I(x, U n Xi)m(dx) = fxynxi f(x)m(dx) as I(x, U n Xi) is zero for all

x U nxi.

iE JyYi

K(x)(y, V n Y)f,(7) (dx x dy)f,(7)(Xi x Yi)
ixEUnXi

I can rewrite f*(7r)i(dx' x dy) as vf,(,),)(x, dy)f*(7)(dx' x Y) using the definition of

regular conditional probability distribution.

iCI

K(x)(y, V n Yi)v(x, dy)f*(-r) (dx x Yi)f,(7)(Xi x Yi)
yEYi

= x iEUnXi

JxEUnXi

(JEY
YE K (x)(y, V n Yi)vf*(,),(x, dy) = vf,(7),(x, V n Yi) as vf*(7),(x, .) is the stationary

distribution for kernel Ki(x).

Vf(7r)i(X,V x Y)f*(7) (dx x Yi)f*(7r)(Xi x Yi)
= ~eUX

- Z f* (7)i(U x V n Xi x Yi)f,(7r)(xi x Yi)
iEI

= f*(7)(U x V) = 7(A)

Lemma 10. Kf is aperiodic if for at least one x E Xi for some i e I, Ki(x)

Yi x Yi -- [0,1] is aperiodic.

Proof. Proof by contradiction. Let me assume Kf is periodic, i.e., there exists an

integer d > 2, and a sequence {E, Ei, ... Ed_1} and N of d non-empty disjoint sets

in r such that, for all i = 0, 1.... d - 1 and for all t E Ei,

1. (Uq 0Ei) U N = T
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2. Kf (t, Ej) = 1 for j = I + 1(mod d)

3. 7r(N) 0

For all t E ,, Kf(t, E) = 1 for j = i +1(mod d) Consider any k E I, any x E Xk

and U, x V = f(E) n X x Y.

Consider a trace t E Ej, such that fx(t) = x. Since Kf (t, E+1 ) = 1 I(x, Ui+1 ),

for all i = 0, 1 .. . d - 1, there exists a trace t' E E, such that f (t') = (x, y).

Kf(t, Ej+1 ) = 1 < K(x)(y, Vi+,), Hence if Kf is aperiodic, then for all x, K(x) is

aperiodic.

LI

4.4 Stochastic Alternating Class Kernels

Consider a probability space (T, E, 7r) where E is countably generated. I construct

a new Markov Chain Transition Kernel using a finite set of class functions F =

{ fi, f2 ... fm} and respective class Kernels Kf,, Kf 2 ... Kfm -

Given m positive real numberspk E (0, 1) which sum to 1 (i.e. Z Pk = 1), I define
k=1

a stochastic alternating Markov Chain Transition Kernel K : T x E - [0, 1] as

m

K(t, A) = ZpkKk(t, A)
k=1

This transition kernel corresponds to randomly picking a class kernel Kfk with

probability Pk and using it to transition into the next Markov Chain State.

I will now consider the question of convergence of this transition kernel.

Let Ri = (A E E A 31 < n < k.Kn(t, A) > 0} be the set of all sets in E which

are reachable by kernel K in k steps starting from element t E T.

Consider the limiting case R'. Let B' = {t E TIV A E E.A R1 => t V A}

which is the set of elements t' E T such that any set A in E which contains t' is

reachable by kernel K.

Lemma 11. For any f E F, any element t' G B' such that f (t') = (x, y) E Xf x Y,
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and any set U x V E -(X 09 Y{) such that A = f -1 (U x V), the following condition

holds true

Vf. (7)i(XV) > 0 /\ x E U -- > A E Ro

Proof. Consider class Kernel Kf (t', A) = Ki(x)(y, V)I(x, U). Since Vf*(,), (X, V) > 0

and Ki is vf,(,),-irreducible, there exists an n such that

K7(x)(y, V) > 0

Since x E U, using Lemma 8

K7 (t', A) = Ki(x)(y, V)I(x, U) > 0

Kn(t', A) > 0

Since t' E B , there exists an n' such that, for all sets B E E with t' E B, Kn'(t, B) >

0. Hence

LB A E R

Lemma 12. For any positive probability set A and any function f E F, if A C

fx-N(fx(Bf )) then A E R'.

Proof. Given a set A, I can treat f(A) as a union of sets {U x V Ii e If }, where

Uj x V are elements of set f(A) which are elements of the set X x Y (i.e. Uj x Vi =

f(A) n Xf x Yf). Since 7r(A) > 0, f,(7)(f(A)) > 0 and for at least for one i E If,

f* (7r) i(Uj x Vi) > 0.

Since A C f-1 (fx(B')), for each x E Uj there exists at least one element t' E B'

such that fx(t') = x.

If f,(7r)2 (Uj x V1) > 0, there exists at least one t' E B' such that f(t') = (x, y) E

U x Yf and vf*(,),(x, V) > 0. Hence f- 1 (Ui x V) E R'. D:

Lemma 13. If F connects the space (T, E, 7) then there does not exist a positive

probability set A E , such that A C f-'((fx(B 0))c).
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Proof. Proof by Contradiction.

Let me assume such a set A exists. If A is a positive probability set, then

r(Ofey f;l((fx(B ))c)) > 0.

For any two functions f, g E

-r(fx-'((fx(B ))c) n g- 1(gx(B))) = 0

The set f;l((fx(B ))c) only contains elements which are not in B, and g-'(gx(B ))

contains elements t' such that there exists at least one element t" E BO with gx(t')

Any positive probability set B C g- 1(gx(B )) is also a subset of B' (using

Lemma 12). Hence

7r(f; ((fx(B ))c) n g- 1(gx(B ))) = 0

Similarly

7(fI1(fx(B )) n g;l((gx(B ))c)) = 0

Since 7r(rf cFf;1((fx(B ))c)) > 0,

r(f;1(f;l((fx(B ))c)) > 0 and r(g;-((gx(B ))C)) > 0

But this contradicts the fact the F connects the space (T , ). Hence no such

set A exists. DI

Theorem 4. If F connects the space (T, E, ,r) then the Markov Transition Kernel K

is w-irreducible.

Proof. Proof by contradiction. Let me assume K is not ir-irreducible, then there

exists a positive probability set A E E such that A 0 R , then

If r(A n B') > 0, there exists a set B C B' and B C A which implies A E RO.

Hence 7r(A n B') = 0.

113



For any f E F, 7r(A n f;j(f,(Bo))) > 0, there exists a set B E R' and B C A

which implies A e Ro. Hence r(A n f;1 (fx(B ))) 0.

Since f_ is a 2-way measurable function (and one-one function from sets to sets),

for any set B f;l(fx(B))c = f;,l(f,(B)c).

Since wr(A) > 0 and For any f E F 7r(A n f'(f,(B'))) = 0 this means

-r(A n [ f;1(fx(BO)c)) > 0
fEF

which means there exists a positive probability set B E E and B C f;l(fx(B )c)),

which is impossible.

Hence no such set A exists. K is 7r-irreducible. l

Theorem 5. ir is the stationary distribution of Markov Kernel K, i.e.

J K(t, A)7r(dt)

Proof.

K(t, A) r(dt) =

=w(A) for all A E E

J I K, (t,A)wT(dt)
tET im

m

= p Kf,(t,A),r(dt)= pi r(A) = (A)
i=1

Theorem 6. The Markov Transition Kernel K is aperiodic if at least one of the class

kernels Kf, is aperiodic.

Proof. Proof by Contradiction.

Let me assume K is periodic. i.e., there exists an integer d > 2 and a sequence

{Eo, E,... Ed_1} and N of d non-empty disjoint sets in T such that, for all i =

O1,. .d - 1 and for all t E Ei,

I. (Uq~oEi) U N = T
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2. K(t, Ej) = 1 for j = i + 1(mod d)

3. wr(N) = 0

If K(t, Ej) = 1 then for all f E F, Kf (t, E) = 1. Therefore, for all i = 0, 1,... d-1

and for all t E E, Kf (t, Ej) = 1 for j = i + 1(mod d).

Hence if K is periodic, then for all f E F, Kf is periodic.

Hence by contradiction, K is aperiodic. El

Theorem 7. Markov Transition Kernel K converges to probability distribution 7r.

Proof. Using Theorems 3, 4, 5, and 6. El
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Chapter 5

Inference Metaprograms

Within this Chapter, I formalize the concept of the probability of a trace, introduce

inference metaprogramming and use the results in Chapter 4 to prove the convergence

of inference metaprograms.

5.1 Preliminaries

Within the Section, I will tie mathematical concepts introduced in Chapter 4 to more

concrete concepts used in probabilistic programming.

5.1.1 Probability of a Trace

Given two traces are equal if and only if they differ in the choice of unique identifiers,

within this Section, for clarity, I drop the id's associated with augmented expressions

and stochastic choices in traces and augmented expressions wherever it is not required.

Assuming a countable set of variable names allowed in my probabilistic lambda

calculus language, a countable number of expressions and a countable number of

programs can be described in my probabilistic lambda calculus language.

Within my probabilistic lambda calculus language, I assume that all stochastic

distributions Distk : V x P(E) -+ [0, 1] are functions from a tuple of value and set

of lambda expressions in my language to a real number between 0 and 1, such that
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pdf x :x
pdf x vj

pdf A.x e :v
pdf[(ae1 ae2) -: vB

pdf (aei ae2)x = ae :v
pdf[Disti(ae) = aee ve]

pdf[0]
pdffassume x = ae; t

pdf observe(Dist(ae) =e); t

where

1
1
1
pdf aeij * pdf ae 2
pdf ae] * pdf ae2 * pdf aej
pdf ae * pdf aej * pdfDit, (V(ae), e)
p = aee -->r e

1
pdf aej * pdf t]
pdfDist(V(ae), e) * pdf ae * pdf t

Figure 5-1: Probabilistic measure over traces

for any v E V, Distk(v,.) is a probability measure over probability space (E, P(E)).

I assume that for each distribution Distk, I am given a probability density function

pdfDistk : V x E - [0, 1], such that

Distk(v, A) = [ pdfDistk, e)
eEA

Let Tp = Traces(p) be the set of valid traces of a program p. Tp contains a countable

number of traces. I define a a-algebra EP over set TP such that, for all t E T,,

{t} E E,. Given a trace t, pdf t] is the unnormalized probability density of the trace

t (Figure 5-1). The normalized probability distribution pp : E- - [0, 1] for a given

program p is defined as
E pdf t]

pp,(A) = tE
= pdf tj

tETP

5.1.2 Reversible Subproblem Selection Strategy

Let p be a probabilistic program, t and t' be valid traces from program p (i.e. t, t' E

Traces(p)), and SS be a subproblem selection strategy that returns a valid subproblem

over t.

Definition 22 (Reversible subproblem selection strategy). A subproblem se-
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lection strategy SS is reversible if for any two traces t, t' C Traces(p),

SS(t) tEL' = SS(tl') t' -t

i.e., if given a trace t and a valid subproblem SS(t) on trace t, an inference algorithm

can modify trace t to achieve trace t', then given trace t' and a valid subproblem

SS(t') on t', an inference algorithm can modify trace t' to achieve trace t.

In essence, reversible subproblem selection strategies always allow a subproblem

based inference algorithm to reverse the changes it has made to a trace.

I use the shorthand SS H t t' to denote SS(t) H t I t'. Note that SS H t

t' # SS H t' t for reversible subproblem selection strategies.

Theorem 8. A reversible subproblem selection strategy SS divides the trace space of

program p into equivalence classes.

Proof. SS H t t' is an equivalence relation over traces t, t' C T.

Reflexivity SS H t t is true by definition.

Symmetry By definition of reversibility.

Transitivity : SS H t1  t2 , SS H t 2  t3 then SS H ti - t3 (by definition of E). D

A reversible subproblem selection strategy SS divides the trace space Tp into a

countable number of equivalence classes where each equivalence class contains traces

which can be modified into any other trace in that class under the subproblem selec-

tion strategy.

A trace from a equivalence class cannot be modified by any subproblem based

inference algorithm to a trace from a different equivalence class under the given sub-

problem selection strategy.

Given a reversible subproblem selection strategy SS, let Css = {c1,... c?,,...} be

the countable set of equivalence classes created by SS over the trace space TP and

{T, .... TC. . .. } be the equivalence partitions created by SS over Tp.

Note that for all c E Css and t, t' E TC,

SS L t t' A SS H t' = t
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and for all ci, cj C Css, t E T,, and t' E Tc4, where ci 4 c3

(SS H t = t' V SS H- t' = t) = false

In practice, subproblems are often specified by associating labels with stochastic

choices, then specifying the labels whose stochastic choices should be included in

the subproblem [241. A standard strategy is to have a fixed set of labels, with the

labels partitioning the choices into classes. Any strategy that always specifies the

subproblem via a fixed subset of labels is reversible. Because of this property, all of

the subproblem selection strategies presented in [24] are reversible.

Any subproblem selection strategy that always selects a fixed set of variables is

also reversible. This property ensures that the subproblem selection strategy in Block

Gibbs sampling, for example, is reversible. Hence if two traces only differ in the choice

of their id's, all reversible subproblem selection strategy will assign them to the same

equivalence class.

5.1.3 Class functions given a subproblem selection strategy

Consider a reversible subproblem selection strategy SS

classes Css = {ci,.... c,...} and equivalence partitions

a generalized product space and class functions using the

strategy.

which creates equivalence

{Tc 1, ... Tc,. . .}. I create

given subproblem selection

Consider the countable set of disjoint measurable spaces

wh(C, C),.{.. (C, C{),.C.}.}

where Ck = {ck} and Ck = {0, Ck}, and

{ (TcI, EcI),I ... (Tc, Ec) . .. }
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where ECk = {A n Tc, A E Ep}, I construct the generalized product space

(C, C) = ( U C x Tci,0( U Ck 3 Ekc))
Ci ECss CkECSS

Given ir a probability measure on (C, C), I can compute the conditional distribution

7r2 on (0i x Tei, Css 0 Eck), when r(Ci x Te2 ) > 0 where

- r(A)7ri(A) = (A
T (Ci X Tc)

and then I can trivially define the regular conditional probability measure vi : Ci x

Eli -+ [0, 1], where

vi(ci, A) =ri (Ci x A)

I create the class function fss : Tp - C, where

fss(t) = (c, t) where c is the equivalence class of trace t

Since fss is a one-to-one function, it is trivial to see that fss is a two way measurable

function.

5.1.4 Probability of the subtraces

For all traces t, t' E TP, such that SS H t _ t', subtraces t, = ExtractTraces(t, SS(t))

and t' = ExtractTraces(t', SS(t')) are traces from the same program, i.e., t5, t' E

Traces(pS), where p, is the subprogram (Soundness).

Similarly, for all traces t E T and subtraces t, = ExtractTrace(t, SS(t)), for all

subtraces t' E Traces(p,) (where p, = Program(t,)) and t' = StitchTrace(t, t', SS(t))

then SS H t - t' (Completeness).

Hence given a equivalence class ci and partitioned trace space Tc, created by

subprogram selection strategy SS, there exists a subprogram p5, such that for all

traces t E T,,, subtraces t, = ExtractTrace(t, SS(t)) are valid traces of p, i.e. t, E TE .

I can therefore associate traces from an equivalence class to valid subtraces of a
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subprogram.

Lemma 14. For any augmented expression ae and subproblem S,

S H ae wex aes, ts ==> pdf~ae = pdf~aes] * pdf~t]

Proof. Proof by Induction

Base Case:

Case 1: ae = x:x,

By assumption

S H ae 4,2 aes, ts

By definition of wex

S H x : X >ex X x, 0

Then ae, = x :x and t, = 0.

By definition of pdf, pdf x : xj = 1 and pdf[0] = 1. Therefore

pdf ae = pdf ae, * pdf t,

Case 2: ae = x :v,

By assumption

S H ae wex aes, ts

By definition of wex

S H x : V *ex X: v,0

Then aes = x : v and ts = 0.

By definition of pdf, pdf x : v] = 1 and pdf[0] = 1. Therefore

pdf ae] = pdf ae] * pdf tsj

Case 3: ae = A.x e : v,
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By assumption

S H ae wex aes, ts

By definition of ex

Then pdf[A.x e : v = v, 1

S H A.x e : v =e, A.x e : v, 0

and pdf[0f = 1. Therefore

pdflae = pdf~aej * pdf~ts

Induction Case:

Case 1: ae = (aei ae2) I: v,

By assumption

S H ae =e> aes, ts

By definition of =ex

S H (aei ae2 ) -: V >ex (ael ae2) _: v, tl; t2

Then ae, = (ael ae2) I: v, ts = tl;t2, S H aei wex aeI, tl, and S H ae2  ex ae2 t2

By induction hypothesis

S & aei ex ael It = pdf ae1j = pdf ael * pdf tlj

Because S H aei we, ael ti,

pdf~ae1j = pdflae1 * pdf~tl

By induction hypothesis

S H ae 2 4ex ae2, t8 - pdf~ae 2 = pdf~ae21 * pdft2]
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Because S F ae2 =e, ael, t2

pdf ae2j= pdf aes] * pdf~ts]

From definition of pdf

pdf ae = pdf aell * pdf ae2

= pdf ael] * pdf ael] * pdf tJ * pdf tp2

From definition of pdf pdf aeJ = pdf aes] * pdf ae2] and pdf tsj = pdf tl * pdf t ].

Therefore

pdf ael = pdf aes * pdf tsj

Case 2: ae = ((aei ae2)x = ae3 : v)#id and ID(aei) E S

By assumption

S F ae >ex aes, ts

By definition of >ex

S F (aei ae2 )x = ae3 : V =ex (ael ae2)x = ae3 : V, tl; t2

Then aes = (ael ae2)x = ae3 : V,

ael, t2 .

By induction hypothesis

S & aei ->ex ael, ts -- >

t, = tl; t2, S F ae1 ze, ae', t', and S F ae2 -ex

pdf aejj = pdf ae ] * pdf t'j

Because S F aei -> ex ael, t,

pdf [aej = pdf ae'j * pdf tl

By induction hypothesis

S F ae2 ->ex aes, t ==> pdf ae 2j = pdf ae ] * pdf tS1
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Because S H ae2 wex ael, t2

pdf ae 2l = pdf ae * pdf pt

From definition of pdf

pdf aej = pdf ae1j * pdf ae 2  * pdf ae3

= pdf aesJ * pdf ae21 * pdf ae3  * pdf tljj * pdf tp1

From definition of pdf pdf ae, = pdf ae'j * pdf ae21 * pdf ae 3] and pdf t,]= pdf t1]*

pdf t2]J. Therefore

pdf~ae = pdf~aej] * pdfftsl

Case 3: ae = ((ae ae2 )X = ae3 : v)#id and ID(ae1 ) S

By assumption

S H ae ,ex aes, ts

By definition of >ex

3 1 12; 23
S H (ae1 ae2)X = ae3 : v =ex ae : v,t; assume y = ae 8; t; assume x ae8 ;t

Then ae, = ae3 : v, t, =t; assume y = ael; t2; assume x = ae2; t3, S H ae1 =ex ae , t,

S H ae2 -Mex ael, t2 , S H ae3 wer ae , t.

By induction hypothesis

S H ae1 we, aes, ti == pdf ae1j = pdf aef j * pdf t'j

Because S H aei :ex aes, tI,

pdf aeij = pdf ae'j * pdf t'j
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By induction hypothesis

S - ae2 ->,, ae ,t = pdf ae 2]j = pdf ae21 * pdf t21

Because S F- ae2 =ex ae2, tP

pdf ae 2 = pdf ae]j * pdf t'1

By induction hypothesis

S I- ae3 -->e, ae , t3 -- pdf ae3 ] = pdf ae j * pdf tp3

Because S I- ae3 -ex ael, t3

pdf ae] = pdf ae ]J * pdf t3]

From definition of pdf

pdf Jael = pdf ae1 ] * pdf ae 2j * pdf ae3 j

= pdf ael * pdf ae1j * pdf ae31 * pdf t'j * pdf tij * pdf t31

From definition of pdf pdf aej = pdfJae ] and pdf tj] = pdf t' * pdf ae l * pdf Jt2 *

pdf ae2J * pdf ti]j. Therefore

pdf ae = pdf ae,] * pdf tj]

Case 4: ae = Dist(aei#ide) = ae2 : v and ide E S

By assumption

S F- ae .ex aes, ts
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By definition of aex

S H Dist(ae1) ae 2 : v wex Dist(ae,) = ae 2 : v, t

Then ae, = Dist(ael) = ae2 : v, t8 = ti, and S H aei we, ael, tl.

By induction hypothesis

S H ae1 , ae, t => pdf ae1j = pdf ae 1 * pdf t i

Because S H aei w'e, ae, tS,

pdf ae1] = pdf ae1 * pdf tl]

From definition of pdf, ae2 or e

pdf~ae = pdflaejj * pdf[ae 2  * pdfDist(V(aej), e)

pdf aeslj * pdf ae2  * pdf t,] * pdfDist(V(ael), e)

From definition of pdf pdf aej = pdf ael *pdf ae2 *pdfDist(V(ael), e) and pdf ts=

pdf tlj. Therefore

pdf ael = pdf aes] * pdf ts]

Case 5: ae = (Dist(aei#ide) = ae2 : v)#id and id, S

By assumption

S H ae wex aes, ts

By definition of ex

S H Dist(ae1) = ae 2 V = Mex ae : v, s; observe(Dist(ae') = er); t

Then aes = ae2 : v, ts = t, S H aei wex aeI, tl, ae2 r-r evand S H ae2 =z>ex ae, tl.
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By induction hypothesis

SH aei ->exaes, tI =-> pdf [ae1 = pdfaej] * pdf t'j

Because S H aei ->,x ael, tI

pdf ae1j = pdf ae'j * pdf til

By induction hypothesis

S - ae2 ->ex ae2, t2 =-> pdf~ae 2  = pdf~ael] * pdf t21

Because S F- ae 2 ='>ex aes, tI,

pdf ae2j = pdf ae'1 * pdf t2

From definition of pdf,

pdf ae = pdf ael] * pdf ae 2] * pdfDis(V(ae), e)

= pdfTael,I * pdf [ae2 * pdf ft' * pdf tpj * pdfDis(V(ael), e)

From definition of pdf pdf aes] = pdf ae f, pdf tsj = pdf t 0 * pdf [ae * pdf ty *

pdfDist(V(ae), e) and V(ae') = V(ae 1) (Observation 2). Therefore

pdf [aej = pdf aesj * pdf tsj

Because we have considered all cases, by induction, for augmented expression ae,

subproblem S, augmented subexpression aes, and a subtrace ts,

S F- ae >ex aes, t ==> pdf ae] = pdf aes * pdf tj]
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Theorem 9. Given a trace t and a valid subproblem S on t, then for subtrace ts =

ExtractTrace(t, S),

pdf t] = pdf tsj

i. e. for the unnormalized density of t and t, is equal.

Proof. Proof by induction

Base Case: t = 0

By assumption

S H t ex, t

By definition of ex

S H 0 =ex 0

Then ts = 0.

By definition of pdf, pdff0= 1

pdf tj = pdf t]

Induction Case:

Case 1: t = assume x = ae; ti

By assumption

S H t >ex ts

By definition of wex

S H assume x = ae; ti we, ts; assume x = ae,; t

Then S H ae ex aes, t', S H t1 4,e t'.

By induction hypothesis

S H L1i " t2 ==> pdf ft1 ] = pdf pt2
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Because S H- t1 =ex S)

pdf tij = pdft!]

From Lemma 14 over augmented expressions

S H- ae *ex aes, tl -a pdf aej = pdf aesj * pdf til

Because S H- ae 4 >ex ae8, tS

pdf~ae = pdf[ae, * pdf~til

From definition of pdf

pdf t] = pdf ae * pdf tij = pdf aej * pdf tlj * pdf t1j

Because pdf tsj = pdf ae] * pdf t1J * pdf t2

pdf tj = pdf tsl

Case 2: t = observe(Dist(ae) = e); ti

By assumption

S H- t >ex ts

By definition of =ex

S H- observe(Dist(ae) = e); ti ->ex t'; observe(Dist(aes) =e); t

Then S H- ae ->, aests, S ti ->e t

By induction hypothesis

S H-t1 wex t ==> pdf~tif = pdf tp2
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Because S K ti e' I

pdf tij = pd f pt ]

From Lemma 14 over augmented expressions

S H ae>aex , as ---> pdf aej = pdf aesj * pdf til

Because S F- ae >ex ae8, t

pdf ae= pdf aej * pdf t1

From definition of pdf

pdf~tj = pdf~ae *pdf~tl*pdfDit(V(ae), e) = pdf aes]*pdf t *pdf t 1*pdfDis(V(ae),e)

Because pdf ts = pdf ae, * pdf tjj * pdf t1j * pdfDis(V(ae), e) and V(ae) = V(ae,)

(Observation 2)

pdf Tt = pdf Tts

Because we have covered all cases, by induction, for any trace t and subproblem

S

S K t =4x ts -- > pdf tj = pdf ts

Therefore for any trace t and subproblem S

ts = ExtractTrace(t, S) ==> pdf t = pdf ts

Consider an equivalence class ci and partitioned trace space Tc,, let p, be the

subprogram, such that all subtraces of traces in Tc, are valid traces of ps. (T,, Ep)

is the measurable space over traces of subprogram p,. The normalized probability
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distribution tp, : E, -+ [0, 1] for the subprogram ps is

E pdf ts 1 pdf[tj
ps (A) = tEzA - tGA' = (p p) (A') - p (A') -vi(ci, A')

E pdf tj > pdf t] y(c(TC,
tETP, tETci

where A'= {t' t, E A, t' = StitchTrace(t, ts, SS(t))} for any trace t E T,,.

Hence, sampling/ inference over subprogram ps is equivalent to sampling/infer-

ence over the original program p with the constraint that all traces belong to the

equivalence class ci.

Theorem 10. Consider equivalence class ci and partitioned trace space Te,, let ps be

the subprogram, such that all subtraces of traces in Tc, are valid traces of p,. Then

given a Markov Kernel K : T,, x E>, -+ [0,1] which is ip, -irreducible, aperiodic and

with stationary distribution pp, the Markov kernel K(ci) : Te, x E,, -+ [0,1] defined

as

K(c)(t, A) = K(ts, A')

where ts = ExtractTrace(t, SS(t)) and A' = {tsIt E A, t, = ExtractTrace(t, SS(t))}, is

vi(ci, .)-irreducible, aperiodic and with stationary distribution vi(ci, .).

Proof. ExtractTrace is one-one function from Tc, to T, and push forward measure of

Vi (ci, .) is p, ' .

5.1.5 Generalized Markov Kernels

Definition 23 (Generalized Markov Kernel). A Generalized Markov Kernel K

is a parameterized Markov Kernel which when parameterized with a probabilistic pro-

gram p, which defines the probability space (T,, EZ, ,) (as defined above), returns a

Markov Kernel K(p) : Tp x Ep -* [0,1], which is y,-irreducible, aperiodic and has the

stationary distribution pp.

A generalized Markov Kernel formalizes the concept of Markov chain inference al-

gorithms. The inference algorithms used within the probabilistic programming frame-

work are generally coded to work with any input probabilistic program p and still
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provide convergence guarantees. For example, Venture [241 allows the programmer

to use a variety of inference algorithms which in general work on all probabilistic

programs which can be written in that language.

Definition 24 (Generalized Class Kernels). Given a generalized Markov Ker-

nel K and a subproblem selection strategy SS, a generalized class Kernel Kf5, is a

parameterized with a probabilistic program p (which defines space (T ,, ,u)), where

KfsS(p)(t, A) = K'(ci)(t, A) = K(p,)(ts, A')

where ts = ExtractTrace(t, SS(t)), PS = Program(ts), fss(t) = (ci, t) and A' = {tsjt E

A, t= ExtractTrace(t, SS(t))}.

5.2 Inference Metaprogramming

Using the concept of independent subproblem inference (Chapter 3) and generalized

Markov Kernels, I define an Inference Metaprogramming Language (Figure 5-2). An

inference metaprogram is either one of the black box Generalized Markov Kernel

inference algorithms bi : T -+ Tp in my framework, which takes a trace from an

arbitrary program p as an input and returns another trace from the same program,

or a finite set S = {pi ic1 , p2 ic 2 ... pk ick} of inference statements with an attached
k

probability value pi c (0, 1), such that PA = 1. These probability values are used
z=O

to randomly select a subproblem inference statement to execute. Each infer statement

is parameterized with a subproblem selection strategy SS, which returns a valid sub-

problem over input trace t and an inference metaprogram that is executed over the

subtrace. Figure 5-3 presents the execution semantics of my inference metaprogram-

ming language. In comparison with entangled subproblem inference, one benefit of

the approach is that it is straightforward to apply independent subproblem inference

recursively.

Theorem 11. If all the subproblems used in my inference metaprograms are reversible

and connect the space of their respective input probabilistic programs, then all inference
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ic G IC := infer(SS, ip)
k

ip e IP := bil{p ic1 ,p 2 ic2 ... Pk iCk} where EPN = 1
i=O

Figure 5-2: Inference Metaprogramming language

n ~ multinomial(p1 , P2 - -Pk) icn = infer(SSn, ipn) SSn(t) = S
ts = ExtractTrace(t, S) ipn, t =>. t, t' = StitchTrace(t, t', S)

t'= b(t) where t' E Traces(Program(ts))

b, t w> t' {p1 iC1 , p 2 iC2 ... Pk iCk}, t =i t'

Figure 5-3: Execution Semantics for Inference Metaprograms

metaprograms in my inference metaprogramming language implement a generalized

Markov Kernel.

Proof. Proof by induction over structure of inference metaprograms,

Base Case: All black box inference algorithms in my inference metaprogramming

language are generalized Markov Kernels. Hence given traces of program p (which de-

fine probability space (T, Ep, [p)) the black box inference algorithm is yp-irreducible,

aperiodic and has the stationary distribution pp.

Induction Case: Consider the inference metaprogram ip = {pi ic1 , P2, ic2 ,... Pk iCk},
k

where ici = infer(SSi, ipi) and pi = 1.
i=1

Using induction hypothesis, I assume, for all i E {1, 2, ... k}, all ipi implement

a Generalized Markov Kernel K'Pi. Since my subproblem SS is reversible, I lift the

Generalized Markov Kernel to Generalized Class Kernel (Definition 24) Kf,,, where

for any program p (which defines space (T, E, pp)), defines a class kernel.

Given an probabilistic program p, the inference metaprogram ip implements the

Generalized Markov Kernel K, where

k

K(p)(t, A) = pi Kf,,,(t, A)
i=1

Using Theorems 4, 5, and 6, if the class functions fss1 , fss2 , ... fssk connect the space

(T, EZ, pp), K(p) is pp-irreducible, aperiodic and has p, as its stationary distribution.
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F-1

Corollary 2. Given an input probabilistic program p (defining trace space (T, E, pp)),

inference metaprograms which use reversible subproblem selection strategies which con-

nect the space of their respective input probabilistic programs, will converge to pp.
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Chapter 6

Related Work

I discuss related work in three areas: probabilisitic programming languages, subprob-

lem inference in probabilistic programming, and asymptotic convergence.

Probabilistic Programming Languages: Over the last several decades researchers

have developed a range of probabilistic programming languages. With current prac-

tice each language typically comes paired with one/a few black box inference strate-

gies. Example language /inference pairs include Stan [51 with Hamiltonian Monte

Carlo inference [11; Anglician [381 with particle Gibbs, etc. Languages like LibBi [291,

Edward [391 and Pyro [201 provide inference customization mechanisms, but without

subproblems or asymptotic convergence guarantees.

The Augur 118, 401 compiler generates efficient compiled implementations of Markov

Chain Monte Carlo inference algorithms that operate over a fixed set of stochastic

choices. Our techniques, in contrast, work with traces that have a dynamically chang-

ing and potentially unbounded set of stochastic choices.

Subproblem Inference: Both Turing 110] and Venture 124] provide inference metapro-

gramming constructs with subproblems and different inference algorithms that op-

erate on these subproblems. In Venture subproblem inference is performed over full

program traces, with subproblems entangled with the full trace. The inference algo-

rithms in Venture must therefore operate over the entire trace while ensuring that the

inference effects do not escape the specified subproblem. Our extraction and stitch-

ing technique eliminates this entanglement and enables the use of standard inference
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algorithms that operate over complete traces while still supporting subproblem identi-

fication and inference. Turing only provides mechanisms that target specific stochastic

choices in the context of the complete probabilistic computation.

Asymptotic Convergence: There is a vast literature on asymptotic convergence of

Markov chain algorithms in various statistics and probability settings [25, 37]. Our

work is unique in that it provides the first characterization of asymptotic convergence

for subproblem inference in probabilistic programs. Complications that occur in this

setting include mixtures of discrete and continuous variables, stochastic choices with

cascading effects that may change the number of stochastic choices in the compu-

tation, and resulting sample spaces with unbounded numbers of random variables.

Standard results from computational statistics, computational physics, and Monte-

Carlo methods focus on finite dimensional discrete state spaces, a context in which

linear algebra (i.e., spectral analysis of the transition matrix of the underlying Markov

chain [8] or coupling arguments [211) is sufficient to prove convergence. State spaces

with continuous random variables are outside the scope of these formal analyses.

Measure-theoretic treatments are more general [311. Our results show how to ap-

ply the concepts in these treatments to prove asymptotic convergence results in my

probabilistic programming with subproblems contexts.
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