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Abstract

Most modern Information Extraction (IE) systems are implemented as sequential
taggers and only model local dependencies. Non-local and non-sequential context is,
however, a valuable source of information to improve predictions. In this thesis, we
introduce a graph-based framework (GraphIE) that operates over a graph represent-
ing a broad set of dependencies between textual units (i.e. words or sentences). The
algorithm propagates information between connected nodes through graph convolu-
tions, generating a richer representation that can be exploited to improve word-level
predictions. Evaluation on three different tasks - namely textual, social media and
visual information extraction - shows that GraphlE consistently outperforms the
state-of-the-art sequence tagging model by a significant margin.
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Chapter 1

Introduction

1.1 Information Extraction

Information extraction (IE) is the task of automatically extracting structured infor-

mation from unstructured documents. Most modern Information Extraction systems

are implemented as sequential taggers. While such models effectively capture rela-

tions in the local context, they have limited capability of exploiting non-local and

non-sequential dependencies. In many applications, however, such dependencies can

greatly reduce tagging ambiguity, thereby improving overall extraction performance.

For instance, when extracting entities from a document, various types of non-local

contextual information such as co-references and identical mentions may provide valu-

able cues. See for example Figure 1-1, in which the non-local relations are crucial to

discriminate the entity type of the second mention of Washington (i.e. PERSON or

LOCATION).

Most of the prior work looking at the non-local dependencies incorporates them

by constraining the output space in a structured prediction framework [4, 26, 6].

Such approaches, however, mostly overlook the richer set of structural relations in the

input space. With reference to the example in Figure 1-1, the co-referent dependencies

would not be readily exploited by simply constraining the output space, as they would

not necessarily be labeled as entities (e.g. pronouns). In the attempt to capture

non-local dependencies in the input space, alternative approaches define a graph

13



Text

... his father. Washington came from a prosperous family of planters ...
Jefferson was invited by Washington to serve as Secretary of State ...
He was involved in a wide range of duties for Washington's request ...

Graph

... his father . Washington4-- came from a prosperous family of planters ...
........... .. e,,

co-referent ' . ..

Jefferson - was invited by the president to servea Secretary of State ...
t

co-referent

He was involved in a wide range of duties for4- Washington 4- 's request ...

Figure 1-1: Example of the entity extraction task with an ambiguous entity mention
(i.e. "...for Washington's request..."). Aside from the sentential forward and backward
edges (green, solid) which aggregate local contextual information, non-local relations
- such as the co-referent edges (red, dashed) and the identical-mention edges (blue,
dotted) - provide additional valuable information to reduce tagging ambiguity (i.e.
PERSON or LOCATION).

that outlines the input structure and engineer features to describe it [25]. Designing

effective features is however challenging, arbitrary and time consuming, especially

when the underlying structure is complex. Moreover, these approaches have limited

capacity of capturing node interactions informed by the graph structure.

1.2 Proposed Framework: GraphIE

In this thesis, we propose a graph-based information extraction framework (GraphIE).

The framework improves IE predictions by automatically learning the interactions be-

tween local and non-local dependencies in the input space. Specifically, our approach

integrates a graph module with the encoder-decoder architecture for sequence tag-

ging. The algorithm operates over a graph, where nodes correspond to textual units

(i.e. words or sentences) and edges describe their relations. At the core of our model,

a recurrent neural network sequentially encodes local contextual representations and

then the graph module iteratively propagates information between neighboring nodes

14



using graph convolutions [9]. The learned representations are finally projected back

to a recurrent decoder to support tagging at the word level.

We evaluate the proposed GraphIE framework on three IE tasks, namely tex-

tual, social media, and visual [1] information extraction. For each task, we provide

in input a simple task-specific graph, which defines the data structure without ac-

cess to any major processing or external resources. Our model is expected to learn

from the relevant dependencies to identify and extract the appropriate information.

Experimental results on multiple benchmark datasets show that GraphIE consis-

tently outperforms a strong and commonly adopted sequential model (SeqIE, i.e. a

bi-directional long-short term memory (BiLSTM) followed by a conditional random

fields (CRF) module). Specifically, in the textual IE task, we obtain an improvement

of 0.5% over SeqIE on the CoNLL03 dataset, and an improvement of 1.4% on the

chemical entity extraction [10]. In the social media IE task, GraphIE improves over

SeqIE by 3.7% in extracting the EDUCATION attribute from twitter users. In visual

IE, finally, we outperform the baseline by 1.2%. Our code and data are available at

https://github.com/thomas08O9/GraphIE.

1.3 Related Work

The problem of incorporating non-local and non-sequential context to improve in-

formation extraction has been extensively studied in the literature. The majority of

methods have focused on enforcing constraints in the output space during inference,

through various mechanisms such as posterior regularization or generalized expecta-

tions [4, 17, 26, 15, 6]. Research capturing non-local dependencies in the input space

have mostly relied on feature-based approaches. Roberts et al. [27] and Swampil-

lai and Stevenson [30] have designed intra- and inter-sentential features based on

discourse and syntactic dependencies (e.g., shortest paths) to improve relation ex-

traction. Quirk and Poon [25] used document graphs to flexibly represent multiple

types of relations between words (e.g., syntactic, adjacency and discourse relations).

Graph-based representations can be also learned with neural networks. The most

15



related work to ours is the graph convolutional network by Kipf and Welling [9],

which was developed to encode graph structures and perform node classification.

In our framework, we adapt GCN as an intermediate module that learns non-local

context, which - instead of being used directly for classification - is projected to

the decoder to enrich local information and perform sequence tagging.

A handful of other information extraction approaches have used graph-based neu-

ral networks. Miwa and Bansal [20] applied Tree LSTM [31] to jointly represent

sequences and dependency trees for entity and relation extraction. On the same line

of work, Peng et al. [211 and Song et al. [29] introduced Graph LSTM, which extended

the traditional LSTM to graphs by enabling a varied number of incoming edges at each

memory cell. Zhang et al. [34] exploited graph convolutions to pool information over

pruned dependency trees, outperforming existing sequence and dependency-based

neural models in a relation extraction task. These studies differ from ours in several

respects. First, they can only model word-level graphs, whereas our framework can

learn non-local context either from word- or sentence-level graphs, using it to reduce

ambiguity during tagging at the word level. Second, all these studies achieved im-

provements only when using dependency trees. We extend the graph-based approach

to validate the benefits of using other types of relations in a broader range of tasks,

such as co-reference in named entity recognition, followed-by link in social media, and

layout structure in visual information extraction.

16



Chapter 2

GraphlE Framework

2.1 Problem Definition

We first formalize a novel problem named graph-based information extraction. Rather

than simply modeling inputs as sequences, we assume there exists a graph structure in

the data that can be exploited to capture non-local and non-sequential dependencies

between textual units, namely words or sentences.

In graph-based information extraction, the input consists of a set of sentences

S = {Si, .. . , sN} and an auxiliary graph G = (V, E), where V = {vi, . . . , vM} is the

node set and E C V x V is the edge set. Each sentence is a sequence of words. We

consider two different designs of the graph:

(1) sentence-level graph, where each node is a sentence (i.e. M = N), and the edges

encode sentence dependencies;

(2) word-level graph, where each node is a word (i.e. M is the number of words in

the input), and the edges connect pairs of words, such as co-referent tokens.

The edges eij = (vi, vj) in the graph can be either directed or undirected. Multiple

edge types can also be defined to capture different structural factors underlying the

task-specific input data.

To obtain the extracted text span, we use the BIO (Begin, Inside, Outside) tagging
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scheme in this thesis. For each sentence si = (w, w , . .. , W), we sequentially

tag each word as y, = (y(i), ( . (0).

2.2 Method

In this thesis, we propose a general framework for graph-based information extraction

named GraphIE. GraphIE jointly learns local and non-local dependencies by itera-

tively propagating information between node representations. Our framework has

three components:

* an encoder, which generates local context-aware hidden representations for the

textual unit (i.e. word or sentence, depending on the task) with a recurrent

neural network;

" a graph module, which captures the graph structure, learning non-local and

non-sequential dependencies between textual units;

" a decoder, which exploits the contextual information generated by the graph

module to perform labelling at the word level.

Figure 2-1 illustrates the overview of GraphIE and the model architectures for

both sentence- and word-level graphs. In the following sections, we first introduce

the case of the sentence-level graph, and then we explain how to adapt the model for

the word-level graph.

2.2.1 Encoder

In GraphIE, we first use an encoder to generate text representations. Given a sentence

si = (w(), w(),..., w ()) of length k, each word w(' is represented by a vector x(',

which is the concatenation of its word embedding and a feature vector learned with a

character-level convolutional neural network (CharCNN; Kim et al. [7]). We encode

'While sentences may have different lengths, for notation simplicity we use a single variable k.
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(a) Overview

Output: Tags

I
ecoder

Graph ModuleI
Encoder

Input: Text

(b) Sentence-level graph

Decoder I Graph Module I -
(BiLSTM + CRF) GrpIMdI

Encoder - - --
(BiLSTM)

Sentence i Sentence j

(c) Word-level graph _

Decoder
(BiLSTM + CRF)

- -- -- --- - - - -

Graph Module

Encoder _ _+_

(BiLSTM)

x x x x x x

Sentence i Sentence j

Figure 2-1: GraphIE framework: (a) an overview of the framework; (b) architecture
for sentence-level graph, where each sentence is encoded to a node vector and fed into
the graph module, and the output of the graph module is used as the initial state
of the decoder; (c) architecture for word-level graph, where the hidden state for each
word of the encoder is taken as the input node vector of the graph module, and then
the output is fed into the decoder.

the sentence with a recurrent neural network (RNN), defining it as

h( = RNN x1 ;O, eenc) (2.1)

where x(') denotes the input sequence [x(',)-- , x(j], h denotes the hidden states

[h(',)-- , h(j], 0 indicates the initial hidden state is zero, and eec represents the

encoder parameters. We implement the RNN as a bi-directional LSTM [51, and

encode each sentence independently.

We obtain the sentence representation for si by averaging the hidden states of its

words, i.e. Enc(sj) = I ( k h(')). The sentence representations are then fed into

the graph module.

19



2.2.2 Graph Module

The graph module is designed to learn the non-local and non-sequential information

from the graph. We adapt the graph convolutional network (GCN) to model the

graph context for information extraction.

Given the sentence-level graph G = (V, E), where each node vi (i.e. sentence si)

has the encoding Enc(si) capturing its local information, the graph module enriches

such representation with neighbor information derived from the graph structure.

Our graph module is a GCN which takes as input the sentence representation,

i.e. go = Enc(s ), and conducts graph convolution on every node, propagating

information between its neighbors, and integrating such information into a new hidden

representation. Specifically, each layer of GCN has two parts. The first gets the

information of each node from the previous layer, i.e.

a = Wv{) g(1l-), (2.2)

where wU1 is the weight to be learned. The second aggregates information from the

neighbors of each node, i.e. for node vi, we have

1 ( (2-i3)
# =dv)-W g'-J, (2.3)
d(vi) 9jE

(eig EE

where d(vi) is the degree of node vi (i.e. the number of edges connected to vi) and is

used to normalize /31), ensuring that nodes with different degrees have representations

of the same scale.2 In the simplest case, where the edges in the graph are undirected

and have the same type, we use the same weight W(1) for all of them. In a more general

case, where multiple edge types exist, we expect them to have different impacts on

the aggregation. Thus, we model these edge types with different weights in Eq. 2.3,

similar to the relational GCN proposed by Schlichtkrull et al. [28]. When edges are

directed, i.e. edge eij is different from ejj, the propagation mechanism should mirror

2 We choose this simple normalization strategy instead of the two-sided normalization in Kipf and
Welling [9], as it performs better in the experiments. The same strategy is also adopted by Zhang
et al. [34].
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such difference. In this case, we consider directed edges as two types of edges (forward

and backward), and use different weights for them.

Finally, a ') and 3(1) are combined to obtain the representation at the 1-th layer,

gi =o a + 3(1) + b() (2.4)

where o-(.) is the non-linear activation function, and bO is a bias parameter.

Because each layer only propagates information between directly connected nodes,

we can stack multiple graph convolutional layers to get a larger receptive field, i.e.

each node can be aware of more distant neighbors. After L layers, for each node vi

we obtain a contextual representation, GCN(s) = gi, that captures both local and

non-local information.

2.2.3 Decoder

To support tagging, the learned representation is propagated to the decoder.

In our work, the decoder is instantiated as a BiLSTM+CRF tagger [12]. The

output representation of the graph module, GCN(si), is split into two vectors of the

same length, which are used as the initial hidden states for the forward and backward

LSTMs, respectively. In this way, the graph contextual information is propagated to

each word through the LSTM. Specifically, we have

Ik =RNN (h(') GCN(si), Idec, (2.5)

where h(') are the output hidden states of the encoder, GCN(si) represents the initial

state, and edec is the decoder parameters. A simpler way to incorporate the graph

representation into the decoder is concatenating with its input, but the empirical

performance is worse than using as the initial state.

Finally, we use a CRF layer [111 on top of the BiLSTM to perform tagging,

y arg max p (y z M ; Ecrf) , (2.6)
y(EYk '~ rf

21



where Yk is the set of all possible tag sequences of length k, and ecrf represents the

CRF parameters, i.e. transition scores of tags. CRF combines the local predictions of

BiLSTM and the transition scores to model the joint probability of the tag sequence. 3

2.2.4 Adaptation to Word-level Graphs

GraphlE can be easily adapted to model word-level graphs. In such case, the nodes

represent words in the input, i.e. the number of nodes M equals the total number

of words in the N sentences. At this point, each word's hidden state in the encoder

can be used as the input node vector g) of the graph module. GCN can then

conduct graph convolution on the word-level graph and generate graph-contextualized

representations for the words. Finally, the decoder directly operates on the GCN's

outputs, i.e. we change the BiLSTM decoder to

ZW = RNN GCN(w(),- , GCN(w)] ; 0, ec , (2-7)

where GCN(w(')) is the GCN output for word w). In this case, the BiLSTM initial

states are set to the default zero vectors. The CRF layer remains unchanged.

As it can be seen in Figure 2-1(c), the word-level graph module differs from the

sentence-level one because it directly takes the word representations from the encoder

and feeds its output to the decoder. In sentence-level graph, the GCN operates on

sentence representations, which are then used as the initial states of the decoder

BiLSTM.

2.3 Applications

The proposed GraphlE framework can be applied to various information extraction

tasks with specified graphs. In this thesis, we evaluate GraphlE on three different IE

31n GraphlE, the graph module models the input space structure, i.e. the dependencies between
textual units (i.e. sentences or words), and the final CRF layer models the sequential connections of
the output tags. Even though loops may exist in the input graph, CRF operates sequentially, thus
the inference is tractable.
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Task Graph Type Node Edge

Textual JE word-level word 1. non-local (identical mentions)
2. local sentential (forward, backward)

Social Media IE sentence-level tweets followed-by

Visual IE sentence-level text box spatial layout (horizontal, vertical)

Table 2.1: Comparison of graph structure in the three IE tasks used for evaluation.

tasks:

(1) textual information extraction, where we focus on named entity recognition

at discourse level;

(2) social media information extraction, where we extract information from

users' posts in online social networks;

(3) visual information extraction, where we aim to extract several attribute val-

ues from documents formatted in various layouts.

For each of these tasks, we created a simple task-specific graph topology, designed

to easily capture the underlying structure of the input data without any major pro-

cessing. Table 2.1 summarizes the three tasks. In the subsequent three chapters, we

will present the experimental setup and results for the three tasks.4

4 Our code and data are available at https ://github.com/thomas08O9/GraphIE.
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Chapter 3

Textual Information Extraction

In the first task, we focus on named entity recognition at discourse level (DiscNER). In

contrast to traditional sentence-level NER (SentNER), where sentences are processed

independently, in DiscNER, long-range dependencies and constraints across sentences

have a crucial role in the tagging process. For instance, multiple mentions of the same

entity are expected to be tagged consistently in the same discourse. Here we propose

to use this (soft) constraint to improve entity extraction.

3.1 Experimental Setup

3.1.1 Dataset

We conduct experiments on two NER datasets: the CoNLL-2003 dataset (CoNLLO3)

[32], and the CHEMDNER dataset for chemical entity extraction [10]. We follow the

standard split of each corpora. Statistics are shown in Table 3.1.

3.1.2 Graph Construction

In this task, we use a word-level graph where nodes represent words. We create two

types of edges for each document:

* Local edges: forward and backward edges are created between neighboring words

in each sentence, allowing local contextual information to be utilized.

25



DATASET Train Dev Test

CoNLL03 #doc 946 216 231
#sent 14,987 3,466 3,684

#doc 3,500 3,500 3,000
#sent 30,739 30,796 26,399

Table 3.1: Statistics of the CONLL03 and the CHEMDNER datasets.

9 Non-local edges: re-occurrences of the same token other than stop words are

connected, so that information can be propagated through, encouraging global

consistency of tagging. 1

3.1.3 Baseline

We implement a two-layer BiLSTM with a conditional random fields (CRF) tagger

as the sequential baseline (SeqIE). This architecture and its variants have been ex-

tensively studied and demonstrated to be successful in previous work on information

extraction [12, 16]. The baseline shares the same encoder and decoder architecture

with GraphIE, but without the graph module.

3.2 Results

Table 3.2 describes the NER accuracy on the CONLL03 [32] and the CHEMDNER

[10] datasets.

For CoNLL03, we list the performance of existing approaches. Our baseline SeqIE

obtains competitive scores compared to the best methods. The fact that GraphIE sig-

nificantly outperforms it, highlights once more the importance of modeling non-local

and non-sequential dependencies and confirms that our approach is an appropriate

method to achieve this goal.2

'Note that other non-local relations such as co-references (cf. the example in Figure 1-1) may be
used for further improvement. However, these relations require additional resources to obtain, and
we leave them to future work.

2We achieve the best reported performance among methods not using the recently introduced
ELMo [23] and BERT [3], which are pretrained on extra-large corpora and computationally demand-
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C

DATASET Model

Lample et al. [12]
Ma and Hovy [16]

CoNLL03 Ye and Ling [33]
SeqIE
GraphIE

Krallinger et al. [1
HEMDNER SeqIE

GraphIE

F1

90.94
91.21
91.38
91.16
91.74*

87.39
88.28
89.71*

0]

Table 3.2: NER accuracy on the CoNLL03 and the CHEMDNER datasets. Scores

for our methods are the average of 5 runs. * indicates statistical significance of the

improvement over SeqIE (p < 0.01).

For CHEMDNER, we show the best performance reported in Krallinger et al. [101,

obtained with a feature-based method. Our baseline outperforms the feature-based

method, and GraphlE further improves the performance by 1.4%.

Analysis To understand the advantage of GraphIE, we first investigate the im-

portance of graph structure to the model. As shown in Figure 3-1, using random

connections clearly hurts the performance, bringing down the F1 score of GraphIE

from 95.12% to 94.29%. It indicates that the task-specific graph structures intro-

duce beneficial inductive bias. Trivial feature augmentation also does not work well,

confirming the necessity of learning the graph embedding with GCN.

We further conduct error analysis on the test set to validate our motivation that

GraphIE resolves tagging ambiguity by encouraging consistency among identical en-

tity mentions (cf. Figure 1-1). Here we examine the word-level tagging accuracy. We

define the words that have more than one possible tags in the dataset as ambiguous.

We find that among the 1.78% tagging errors of SeqIE, 1.16% are ambiguous and

0.62% are unambiguous. GraphlE reduces the error rate to 1.67%, with 1.06% to

be ambiguous and 0.61% unambiguous. We can see that most of the error reduction

indeed attributes to the ambiguous words.

ing.
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96.0
95.12

95.0 --- 9473---9.4-

U-
> 94.0 -

93.0

92.0
SeqiE random feature GraphiE

connection augmentation

Figure 3-1: Analysis on the CoNLL03 dataset. We compare with two alternative

designs: (1) random connection, where we replace the constructed graph by a random

graph with the same number of edges; (2) feature augmentation, where we use the

average embedding of each node and its neighbors as the input to the decoder, instead

of the GCN which has additional parameters. We report F1 scores on the development

set.
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Chapter 4

Social Media Information Extraction

Social media information extraction refers to the task of extracting information from

users' posts in online social networks [2, 14]. In this chapter, we aim at extracting

education and job information from users' tweets. Given a set of tweets posted by

a user, the goal is to extract mentions of the organizations to which they belong.

The fact that the tweets are short, highly contextualized and show special linguistic

features makes this task particularly challenging.

4.1 Experimental Setup

4.1.1 Dataset

We construct two datasets, EDUCATION and JOB, from the Twitter corpus released

by Li et al. [14]. The original corpus contains millions of tweets generated by ~ 10

thousand users, where the education and job mentions are annotated using distant

supervision [18]. We sample the tweets from each user, maintaining the ratio between

positive and negative posts.1 The obtained EDUCATION dataset consists of 443, 476

tweets generated by 7, 208 users, and the JOB dataset contains 176, 043 tweets gen-

erated by 1, 772 users. Dataset statistics are reported in Table 4.1.

'Positive and negative refer here to whether or not the education or job mention is present in the
tweet.
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EDUCATION JOB

Users 7,208 1,772
Edges 11,167 3,498

Positive Tweets 49,793 3,694
Negative Tweets 393,683 172,349

Table 4.1: Statistics of the EDUCATION and JOB datasets.

The datasets are both split in 60% for training, 20% for development, and 20%

for testing. We perform 5 different random splits and report the average results.

4.1.2 Graph Construction

We construct the graph as ego-networks [13], i.e. when we extract information about

one user, we consider the subgraph formed by the user and his/her direct neighbors.

Note that we use the sentence-level graph architecture in this task. Each node corre-

sponds to a Twitter user, who is represented by the set of posted tweets.2 Edges are

defined by the followed-by link, under the assumption that connected users are more

likely to come from the same university or company. An example of the social media

graph is reported in Figure 4-1.

4.2 Results

Table 4.2 shows the results for the social media information extraction task. We first

report a simple dictionary-based method as a baseline. Neural IE models achieve

much better performance, showing that meaningful patterns are learned by the mod-

els rather than simply remembering the entities in the training set. The proposed

GraphlE outperforms SeqIE in both the EDUCATION and JOB datasets, and the im-

provements are more significant for the EDUCATION dataset (3.7% versus 0.3%). The

reason for such difference is the variance in the affinity scores [19] between the two

datasets. Li et al. [14] underline that affinity value for EDUCATION is 74.3 while for
2As each node is a set of tweets posted by the user, we encode every tweet with the encoder, and

then average them to obtain the node representation. In the decoding phase, the graph module's
output is fed to the decoder for each tweet.
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DATASET Dictionary SeqIE GraphlE

P R F1 P R F1 P R F1

EDUCATION 78.7 93.5 85.4 85.2 93.6 89.2 92.9 92.8 92.9*
JOB 55.7 70.2 62.1 66.2 66.7 66.2 67.1 66.1 66.5

Table 4.2: Extraction accuracy on the EDUCATION and JOB datasets. Dictionary

is a naive method which creates a dictionary of entities from the training set and
extracts their mentions during testing time. SeqIE is the same as described in Sec-
tion 3.1.3. Scores are the average of 5 runs. * indicates the improvement over SeqIE

is statistically significant (Welch's t-test, p < 0.01).

JOB it is only 14.5, which means that in the datasets neighbors are 5 times more likely

to have studied in the same university than worked in the same company. We can

therefore expect that a model like GraphlE, which exploits neighbors' information,

obtains larger advantages in a dataset characterized by higher affinity.
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Laura Xavier @xoxolaura

Tweets V_ _

@sarahk254 and I will be taling
about art at Harvard nwm. Join

__ us! #HarvardArt2859 o.

000

/
Gloria Carlos

eets V V

Si... *
So hiled to be starting college

atHradnet fall! #reshmnen19

S ~.. *a 1%

CENTRAL USER
Philo MNgrm @pnegreen
Tweets 0

OMG, I oould hav never
studied math at MIT D:

Being a Harvard-Graduated
doctor has some advantagesl

Leaving Cambridge for good...

Rachel Kim @kinchipie29
Tweets V

6-month soiological study by
Havard, read it here:
ow.Iy/Qav3146au7 ._

James Lazo _Iaz_

ITeeft V

@michy723 so far I've applied to
NYU, Stanford & MIT

Figure 4-1: Mock-up example of Social Media Information Extraction.
represented as users and edges are follow-by relations.
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Chapter 5

Visual Information Extraction

Visual information extraction refers to the extraction of attribute values from doc-

uments formatted in various layouts. Examples include invoices and forms, whose

format can be exploited to infer valuable information to support extraction.

5.1 Experimental Setup

5.1.1 Dataset

The corpus consists of 25,200 Adverse Event Case Reports (AECR) recording drug-

related side effects. Each case contains an average of 9 pages. Since these documents

are produced by multiple organizations, they exhibit large variability in the layout

and presentation styles (e.g. text, table, etc.). 1 The collection is provided with a

separate human-extracted ground truth database that is used as a source of distant

supervision.

Our goal is to extract eight attributes related to the patient, the event, the drug

and the reporter (cf. Table 5.1 for the full list). Attribute types include dates, words

and phrases - which can be directly extracted from the document.

The dataset is split in 50% cases for training, 10% for development, and 40% for

testing.

'This dataset cannot be shared for patient privacy and proprietary issues.
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ATTRIBUTE

Patient Initials
Patient Age
Patient Birthday
Drug Name
Event
Reporter First Name
Reporter Last Name
Reporter City

Avg. (macro)
Avg. (micro)

SeqIE

P R F1

93.5 92.4 92.9
94.0 91.6 92.8
96.6 96.0 96.3
71.2 51.2 59.4
62.6 65.2 63.9
78.3 95.7 86.1
84.5 68.4 75.6
88.9 65.4 75.4

83.7 78.2 80.3
78.5 73.8 76.1

P

93.6
94.8
96.9
78.5
64.1
79.5
85.6
92.1

85.7
80.3

GraphlE

R F1

91.9 92.8
91.1 92.9
94.7 95.8
50.4 61.4
68.7 66.3
95.9 86.9
68.2 75.9
66.3 77.1

78.4 8 1.1t
74.6 7 7 .3 t

Table 5.1: Extraction accuracy on the AECR dataset. To increase the competitiveness
of the SeqIE baseline (cf. Section 3.1.3), we sequentially concatenate the horizontally
aligned text boxes and feed into the model, therefore fully utilizing the horizontal
edges of the graph. Scores are the average of 5 runs. t indicates statistical significance
of the improvement over SeqIE (p < 0.05).

5.1.2 Graph Construction

We first turn the PDFs to text using PDFMiner, 2 which provides words along with

their positions in the page (i.e. bounding-box coordinates). Consecutive words are

then geometrically joined into text boxes. Each text box is considered as a "sentence"

in this task, and corresponds to a node in the graph.

Since the page layout is the major structural factor in these documents, we work

on page-by-page basis, i.e. each page corresponds to a graph. The edges are defined

to horizontally or vertically connect nodes (text boxes) that are close to each other

(i.e. when the overlap of their bounding boxes, in either the vertical or horizontal

direction, is over 50%). Four types of edge are considered: left-to-right, right-to-left,

up-to-down, and down-to-up. When multiple nodes are aligned, only the closest ones

are connected. An example of visual document graph is reported in Figure 5-1.

2https://euske.github.io/pdfminer/
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|PH ARMA COMP|
|ADVERSE EVENT REPOR TING SYT|

DATE: 12/1/ 201 7|

INAMEJ - URNAME: ---- ATE OF BIRT:

1AGE: 42 H -~e patient has been informed that this|

rinformation IS Deir q shared to the relevant

1wn pille, nf XXYY77

HARMACOMP - - -- -- ------- Robert Johnson|

|BostonHUSA

ITHERPHARMAJ
1ADVERSE EVENT REPORTI ING SYSTEM I

head t rhes. - rp
Wartha - n

New York. U.S.A -tcitDt: 1/01

Figure 5-1: Mock-up example of Visual Information Extraction. The two forms have
different layouts. Graphical dependencies are shown as green lines connecting text in
blue bounding-boxes.
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Model Dev F1

GraphIE 77.8
- Edge types 77.0 (4 0.8)
- Horizontal edges 74.7 (4 3.1)
- Vertical edges 72.4 (4 5.4)
- CRF 72.1 (4 5.7)

Table 5.2: Ablation study on the AECR dataset. Scores are micro average F1 on the
development set. "-" means removing the element from GraphlE.

5.2 Results

Table 5.1 shows the results in the visual information extraction task. GraphlE out-

performs the SeqIE baseline in most attributes, and achieves 1.2% improvement in the

mirco average F1 score. It confirms that the benefits of using layout graph structure

in visual information extraction.

The extraction performance varies across the attributes, ranging from 61.4% for

Drug Name to 95.8% for Patient Birthday (similar variations are visible in the base-

line). Similarly, the gap between GraphlE and SeqIE varies in relation to the at-

tributes, ranging between -0.5% in Patient Birthday and 2.4% in Event.

In the ablation test described in Table 5.2, we can see the contribution of: using

separate weights for different edge types (+0.8%), horizontal edges (+3.1%), vertical

edges (+5.4%), and CRF (+5.7%).

Generalization We also assess GraphIE's capacity of dealing with unseen layouts

through an extra analysis. From our dataset, we sample 2, 000 reports containing the

three most frequent templates, and train the models on this subset. Then we test all

models in two settings: 1) seen templates, consisting of 1, 000 additional reports in

the same templates used for training; and 2) unseen templates, consisting of 1, 000

reports in two new template types.

The performance of GraphlE and SeqIE is reported in Figure 5-2. Both models

achieve good results on seen templates, with GraphlE still scoring 2.8% higher than

SeqIE. The gap becomes even larger when our model and the sequential one are
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100 -- -

80.3 83.1 SeqlE

75 -
GraphlE

U~ 50 -
33.7

25 1

0
Seen Templates Unseen Templates

Figure 5-2: Micro average F1 scores tested on seen and unseen templates.

tested on unseen templates (i.e. 20.3%), demonstrating that by explicitly modeling

the richer structural relations, GraphIE achieves better generalizability.
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Chapter 6

Conclusions

In this thesis, we introduced GraphIE - an information extraction framework that

learns local and non-local contextual representations from graph structures to improve

predictions. The system operates over a task-specific graph topology describing the

underlying structure of the input data. GraphlE jointly models the node (i.e. textual

units, namely words or sentences) representations and their dependencies. Graph

convolutions project information through neighboring nodes to finally support the

decoder during tagging at the word level.

We evaluated our framework on three IE tasks, namely textual, social media

and visual information extraction. Results show that it efficiently models non-local

and non-sequential context, consistently enhancing accuracy and outperforming the

competitive SeqIE baseline (i.e. BiLSTM+CRF).
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Appendix A

Implementation Details

The models are trained with Adam [8] to minimize the CRF objective. For regular-

ization, we choose dropout with a ratio of 0.1 on both the input word representation

and the hidden layer of the decoder. The learning rate is set to 0.001. We use the

development set for early-stopping and the selection of the best performing hyperpa-

rameters. For CharCNN, we use 64-dimensional character embeddings and 64 filters

of width 2 to 4 [7]. The 100-dimensional pretrained GloVe word embeddings [22] are

used in textual and social media IE, and 64-dimensional randomly initialized word

embeddings are used in visual IE. We use a two-layer GCN in textual IE, and a one-

layer GCN in social media and visual IE. The encoder and decoder BiLSTMs have

the same dimension as the graph convolution layer. In visual IE, we concatenate a

positional encoding to each text box's representation by transforming its bounding

box coordinates to a vector of length 32, and then applying a tanh activation.
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