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Abstract

In this work, equality-constrained bilevel optimization problems, arising from engi-

neering design, economics, and operations research problems, are reformulated as an

equivalent semi-infinite program (SIP) with implicit functions embedded, which are

defined by the original equality constraints that model the system. Using recently

developed theoretical tools for bounding implicit functions, a recently developed algo-

rithm for global optimization of implicit functions, and a recently developed algorithm

for solving standard SIPs with explicit functions to global optimality, a method for

solving SIPs with implicit functions embedded is presented. The method is guaran-

teed to converge to ε-optimality in finitely many iterations given the existence of a

Slater point arbitrarily close to a minimizer. Besides the Slater point assumption, it

is assumed only that the functions are continuous and factorable, and that the model

equations are once continuously differentiable.
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Introduction

Many engineering design feasibility and reliability problems give rise to optimization pro-

grams whose feasible sets are parametrized. This is because it is often of great interest to

study performance and/or safety of engineering systems under parametric uncertainty. Par-

ticularly, it is important to study the performance and/or safety in the face of the worst

case, giving rise to equality-constrained bilevel programs of the following form:

f ∗ = min
x
f(x)

s.t. 0 ≥ max
ỹ,p

g(x, ỹ,p) (1)

s.t. h(x, ỹ,p) = 0

x ∈ X = {x ∈ Rnx : xL ≤ x ≤ xU}

p ∈ P = {p ∈ Rnp : pL ≤ p ≤ pU}

ỹ ∈ Dy ⊂ Rny .

It is assumed that the objective function f : Dx → R and the inequality constraint func-

tion g : Dx × Dy × Dp → R are continuous and are factorable in the sense that they are

composed from elementary arithmetic operations and transcendental functions. The equal-

ity constraints of (1) are the system of equations representing a steady-state model of the

system of interest:

h(x, ỹ,p) = 0, (2)

with h : Dx × Dy × Dp → Rny , also assumed factorable and continuously differentiable on

its domain with Dx ⊂ Rnx , Dp ⊂ Rnp open. Due to the complexity of the models to be

considered in this problem, the bilevel formulation (1) is intractable, or even impossible to

solve.

It is proposed in this work that, under some relatively mild assumptions, the equality

constraints are used to eliminate ỹ and (1) is reformulated as an equivalent semi-infinite
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program (SIP) without equality constraints. If a ỹ exists that satisfies (2) for each (x,p) ∈

X × P ⊂ Dx × Dp, then it defines an implicit function of (x,p), expressed as y(x,p). It

must be assumed that there exists at least one implicit function y : X × P → Y such that

h(x,y(x,p),p) = 0, ∀(x,p) ∈ X × P with Y ⊂ Dy. Conditions guaranteeing uniqueness

of y ∈ Y are given by the semilocal implicit function theorem.1 Given the existence of an

implicit function y (and its uniqueness in Y ), the equality constraints can be eliminated and

the program (1) can be expressed as

min
x
f(x)

s.t. 0 ≥ max
p

g(x,y(x,p),p) (3)

x ∈ X = {x ∈ Rnx : xL ≤ x ≤ xU}

p ∈ P = {p ∈ Rnp : pL ≤ p ≤ pU}.

Furthermore, the inner maximization program can be expressed as:

max
p∈P

g(x,y(x,p),p) ≤ 0⇔ g(x,y(x,p),p) ≤ 0, ∀p ∈ P, (4)

where the latter constraint is referred to as the (implicit) semi-infinite constraint. The

following SIP, equivalent to the original bilevel program in (1), can then be formulated:

f ∗ = min
x
f(x)

s.t. g(x,y(x,p),p) ≤ 0, ∀p ∈ P (5)

x ∈ X = {x ∈ Rnx : xL ≤ x ≤ xU}

P = {p ∈ Rnp : pL ≤ p ≤ pU}.

For a chemical engineering application, ỹ may represent internal state variables, such as

composition, determined by an equation of state or some other physics, the variables x may
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represent design variables such as chemical reactor dimensions or some pipe lengths, and

p may represent uncertain model parameters such as reaction rate constants. In this case,

f may represent some economic objective related to sizing and g may represent a critical

performance and/or safety constraint. The global solution (if one exists) will correspond to

the worst-case realization of uncertainty and address the question of optimal design under

uncertainty. Alternatively, x may represent uncertainty in the system or environment and p

may represent the controls. The function f may then represent some metric of uncertainty

and g may again represent a performance and/or safety constraint. In that case, the global

solution (if one exists) will correspond to the worst-case realization of uncertainty for which

there exists a control setting such that the system meets specification. This formulation

addresses the question of feasibility of the design as well as the determination of the maximum

allowable uncertainty realization such that the design remains feasible.

In the next section, a background and literature review of semi-infinite programming is

given. Then, the previous work on standard SIPs is extended to SIPs with implicit functions

embedded including the full statement of the algorithm for solving such SIPs. Following the

presentation of the algorithm, three numerical examples are presented and analyzed.

Background

It has long been known that bilevel programs and SIPs can be utilized to address problems

that are inherently uncertain. Kwak and Haug 2 addressed the question of optimal design

under uncertainty using the bilevel formulation in (1) with first-order (affine) approxima-

tions of f , g, and h. A stochastic version of the program in (1) was considered by Malik

and Hughes 3 for optimal design of chemical processes under uncertainty. In Halemane and

Grossmann,4 the equality constraints were manipulated to give an explicit function of the

control and uncertainty variables and a special case of the SIP in (5), known as a max-

min, min-max, or “minimax” problem. This approach was explored further by Swaney and
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Grossmann 5 with application to addressing the feasibility problem. Two algorithms were

presented by Swaney and Grossmann 6 for solving the problem under certain convexity re-

quirements. This formulation was further explored by Stuber and Barton,7 with general

nonconvex g as in (5), in order to address the question of robust feasibility of engineering

designs. A rigorous finite ε-convergent deterministic global optimization algorithm was pre-

sented that was based on the algorithm of Bhattacharjee et al..8 The algorithm relies on the

ability to solve the equality constraints approximately for an implicit function of the control

and uncertainty variables using the successive-substitution fixed-point iteration7 and so is

limited certain systems. Halemane and Grossmann 4 explained that the SIP formulation

leads to an optimization problem that is not necessarily differentiable. In order to maintain

differentiability, a special case of the bilevel formulation (1), equivalent to that given by

Halemane and Grossmann,4 was further explored by Floudas et al..9 The authors presented

a rigorous deterministic algorithm, relying on twice-differentiability of h and g.9 Ostrovsky

and coworkers10–12 developed algorithms for bounding solutions of the feasibility problem

as formulated by Halemane and Grossmann 4 and Swaney and Grossmann.5 The algorithms

rely on iteratively solving nonlinear programming problems under similar certain convexity

requirements. Therefore, the applicability is limited to such systems considered by Hale-

mane and Grossmann 4 and Swaney and Grossmann.5 Kwak and Haug 2 briefly discussed

the relationship between the min-max problem formulation3–7,9 and the bilevel formulation.

In Mitsos et al.,13 the authors presented an algorithm to address the bilevel formulation

with a nonconvex inner program. However, their algorithm was limited in that it could

only handle inequality constrained problems and so cannot be applied to (1). This paper

will focus on solving the general SIP in (5), without relying on approximations of f , g, and

h, such as in Kwak and Haug,2 with application to the min-max problems that show up

in economics and design feasibility problems considered in the aforementioned articles,3–7,9

only requiring continuity of f and g, once-differentiability of h, the existence of a Slater

point arbitrarily close to a minimizer, and the existence of a unique implicit function y ∈ Y
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such that h(x,y(x,p),p) = 0, ∀(x,p) ∈ X × P .

Solving SIPs with explicit functions (e.g., without implicit functions embedded as in (5)),

referred to as explicit SIPs herein, has been an active area of research for many years. An

overview of the previous application of explicit SIPs to real-world problems with theoretical

results and available methods can be found in previous works.14–16 Contributions that have

specific relevance to this work are summarized below.

Blankenship and Falk 17 present a cutting-plane algorithm for approximating solutions

to explicit SIPs which amounts to solving two nonlinear programs (NLPs), to global opti-

mality in the general case, at each iteration. Their algorithm generates a sequence of (not

necessarily feasible) points that converge to the solution of the SIP in the limit.17 Under

appropriate convexity assumptions, their algorithm converges finitely17 to a feasible solu-

tion. Their method is applicable to SIPs in general and they make specific mention of the

application to the max-min problem. The max-min problem is further explored by Falk

and Hoffman 18 for general nonconvex functions. The cutting-plane algorithm relies on the

techniques of discretization and what is called local reduction, which is a technique for the-

oretically describing (locally) the SIP feasible region with finitely many constraints.19 Most

SIP algorithms employ these techniques in various ways.16

Zuhe et al. 20 presented a method based on interval analysis for solving explicit min-max

problems, again, which are special instances of explicit SIPs. Their method is applicable to

min-max problems with twice continuously differentiable explicit functions. Interval analysis

was used to dynamically exclude regions of the search space guaranteed not to contain

solutions.20 It was suggested that, using the properties of interval analysis and generalized

bisection, their method converges in finitely many iterations.20 Bhattacharjee et al. 21 applied

interval analysis to the general case of explicit SIPs in order to construct what is called the

inclusion-constrained reformulation, which is a valid restriction of the original explicit SIP.

This idea was used further in the first algorithm for generating SIP-feasible points finitely,

that relies on the inclusion-constrained reformulation.8 A lower-bounding procedure that
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relies on McCormick’s convex and concave relaxations22 and discretization was introduced.8

Together with the inclusion-constrained reformulation and the branch-and-bound (B&B)

framework, Bhattacharjee et al. were able to solve SIPs to global optimality with guaranteed

finite ε-optimal convergence.8 As previously mentioned, this algorithm was employed by

Stuber and Barton 7 to solve implicit max-min problems cast as implicit SIPs. Due to the

overestimation of inclusion functions and the fact that the size of the upper- and lower-

bounding problems grow rapidly with depth in the branch-and-bound tree,8 this algorithm

can be ineffective at solving implicit SIPs modeling more complex processes.

Stein and Still 23 solved explicit SIPs, with g convex, as a Stackelberg game using an

interior-point method. By convexity of g, they were able to exploit the first-order optimality

conditions to characterize the solution set of the inner program and solve equivalent finite

nonlinear programs.23 Floudas and Stein 24 used a similar idea and constructed concave

relaxations of g on P using αBB.25 They then replaced the inner program with its KKT

optimality conditions and solved the resulting finite nonlinear program with complementarity

constraints.24 By doing so, the resulting program is a restriction of the original explicit SIP

and therefore, upon solution, generates SIP-feasible points.24 This idea was concurrently

discussed by Mitsos et al.,26 where they also considered a technique closely related to the

inclusion-constrained reformulation8,21 but instead used interval analysis to further construct

McCormick-based concave relaxations22 of g on P to restrict the inner program and generate

SIP-feasible points finitely.

More recently, Mitsos 27 developed an algorithm based on the ideas of Blankenship and

Falk17 that relies on a new restriction technique for the upper-bounding procedure that

requires the right-hand side of the semi-infinite constraint to be perturbed from zero. This

formulation results in solving at least three NLP subproblems to global optimality at each

iteration, in the general case, and the computational results reported27 are quite promising.

The key contribution is the novel upper-bounding procedure that is guaranteed to generate

SIP-feasible points after finitely many iterations. It is stated explicitly that the algorithm
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only requires continuity of f and g and the existence of a Slater point arbitrarily close to a

SIP minimizer, “provided the functions can be handled by the NLP solver”.27 Therefore, this

algorithm could be applied to solve the SIP in (5) while handling the equality constraints

directly, without requiring the introduction of the implicit function, by formulating each

nonconvex subproblem as an equality-constrained global optimization problem. However,

this strategy is not advisable since the algorithm would then require the number of variables

in the upper- and lower-bounding subproblems to increase with each iteration. Thus, these

subproblems become increasingly more expensive to solve with each iteration. However, this

algorithm is a promising candidate for the global solution of SIPs with implicit functions

embedded; the focus of this paper.

With the exception of Stuber and Barton,7 all of the aforementioned methods were devel-

oped to solve explicit SIPs (or explicit min-max programs). For clarity, it is worth mentioning

that all of the previously developed methods that are guaranteed to generate a rigorous SIP-

feasible point in finitely-many iterations rely on the existence of a Slater point or sequence of

Slater points arbitrarily close to an SIP minimizer. If one were to simply reformulate (1) as

an SIP and handle the equality constraints, h, directly as a series of inequality constraints,

as is commonly done in global optimization, the Slater point assumption would be violated.

In other words, the rigorous methods are simply not applicable to programs of the form (1).

The major complication with formulating the bilevel program in (1) as the SIP in (5), is

that an implicit function y, which may not have a closed algebraic form, becomes embedded

within the semi-infinite constraint g. Therefore, y (and g) cannot be evaluated directly, but

instead must be approximated using a numerical method, such as Newton’s method or some

other fixed-point iteration. In order to modify previously developed methods that rely on re-

laxations of the inner program, it must be possible to construct relaxations of g(· ,y(· ,p),p)

on X, ∀p ∈ P . However, in order to relax g(· ,y(· ,p),p) on X, ∀p ∈ P, convex and con-

cave relaxations of the implicit function y(· ,p) on X, must be calculable. As previously

mentioned, this has been achieved for problems in which the implicit function y could be
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approximated using the successive-substitution fixed-point iteration.7 The theoretical details

of these relaxations were presented by Scott et al. 28 This work will improve on the previous

results of Stuber and Barton 7 and consider solving SIPs with more general implicit functions

embedded that can be approximated using any available method, such as Newton’s method,

instead of being restricted to the successive-substitution case. This work will make use of a

modified version of the algorithm developed by Mitsos,27 where the solution of each of the

(implicit) subproblems will be performed using the novel relaxation techniques and global

optimization algorithm developed in a recently published article.29

In that article,29 theoretical developments were made to construct convex and concave

relaxations of more general implicit functions. The construction of these relaxations are

analogous in many ways to how interval bounds can be calculated for implicit functions using

(parametric) interval Newton-type methods. By applying (parametric) interval Newton-type

methods1,7,30,31 to a function h, under certain conditions, an interval can be calculated that

bounds a unique root, y, of h over the set X×P . Taking these bounds as initial relaxations

of y, they can be iteratively refined using the methods developed by Stuber et al. 29 to

produce convex and concave relaxations of y on X × P . As a result, global optimization

of implicit functions was developed.29 It should be noted that although global optimization

of implicit functions will be relied upon in this paper, the intricate theoretical details of

constructing relaxations of implicit functions and the workings of the B&B algorithm will

not be necessary as these developments will be called upon simply as part of the external

optimization subroutines.

In the next section, the global optimization algorithm for SIPs with implicit functions

embedded is discussed. The application to min-max and max-min problems is made explicit,

immediately following the statement of the algorithm. Finally, three numerical examples are

given that illustrate the solution of implicit SIPs to global optimality.
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Global Solution of SIPs with Implicit Functions Embed-

ded

The global optimization algorithm for implicit SIPs is based entirely on the cutting-plane

algorithm presented by Mitsos 27 which itself is based on the algorithm developed by Blanken-

ship and Falk 17 but with a novel upper-bounding procedure. The algorithm, as applied to

explicit SIPs is guaranteed to produce SIP-feasible points after finitely many iterations un-

der the assumption that there exists a Slater point arbitrarily close to a minimizer.27 As

previously mentioned, the algorithm relies on the ability to solve three nonconvex NLP sub-

problems to global optimality at each iteration. The three subproblems are discussed below

specialized to the case of implicit SIPs.

Lower-Bounding Problem

The lower-bounding procedure comes from a simple relaxation technique based on the adap-

tive discretization procedure originally described by Blankenship and Falk.17 The SIP is

reduced to an implicit NLP, again by considering only a finite number of constraints cor-

responding to realizations of p ∈ PLBD with PLBD ⊂ P a finite set. The lower-bounding

problem is formulated as

fLBD = min
x
f(x)

s.t. g(x,y(x,p),p) ≤ 0, ∀p ∈ PLBD (6)

x ∈ X = {x ∈ Rnx : xL ≤ x ≤ xU}.

In order to guarantee fLBD ≤ f ∗, the lower-bounding problem must be solved to global

optimality.
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Inner Program

The inner program, stated explicitly in (3) and (4), which is equivalent to the semi-infinite

constraint, defines the SIP feasible region. Thus, given a candidate x̄ ∈ X, feasibility can

be determined by solving the inner (in general nonconvex) program:

ḡ(x̄) = max
p∈P

g(x̄,y(x̄,p),p). (7)

The point x̄ is feasible in the original SIP given in (5) if ḡ(x̄) ≤ 0. Therefore, in order

to determine feasibility of a candidate x̄, the inner program (7) must be solved to global

optimality for the general case.

Upper-Bounding Problem

The upper-bounding problem comes from perturbing the right-hand side of the semi-infinite

constraint away from zero by a parameter εg > 0, referred to as the restriction parameter,27

and reducing the SIP to an implicit NLP by only considering a finite number of constraints

corresponding to realizations of p ∈ PUBD, where PUBD ⊂ P is a finite set. The upper-

bounding problem is formulated as

fUBD = min
x
f(x)

s.t. g(x,y(x,p),p) ≤ −εg, ∀p ∈ PUBD (8)

x ∈ X = {x ∈ Rnx : xL ≤ x ≤ xU}.

As mentioned by Mitsos,27 the upper-bounding problem ((8)) must be solved to global

optimality in order for the algorithm to solve the original SIP ((5)) to global optimality.

However, a valid upper bound, fUBD ≥ f ∗, can be obtained by solving (8) locally for x̄ and

verifying that it is feasible in the original SIP ((5)).
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Algorithm

In this section, the algorithm used for solving globally SIPs with implicit functions embed-

ded to guaranteed ε-optimality is given. Again, as presented, this algorithm is an adaptation

of the algorithm given by Mitsos 27 to SIPs with implicit functions embedded. Finite con-

vergence of the algorithm for explicit SIPs was previously proven.27 The results proven by

Mitsos 27 extend directly to the implicit SIP algorithm provided that finite convergence of

each implicit NLP subproblem can be guaranteed. The latter result was proven by Stuber

et al. 29 The assumptions on which the SIP algorithm relies upon are stated explicitly in the

following.

Assumption 1.

(a) The functions f : Dx → R and g : Dx×Dy×Dp → R are factorable28 and continuous

on their domains.

(b) Derivative information ∇yhi, i = 1, . . . , ny is available and is factorable, say by au-

tomatic differentiation.32,33

(c) There exists y : X×P → Dy such that h(x,y(x,p),p) = 0, ∀(x,p) ∈ X×P , and an

interval Y ⊂ Dy is available such that y(X,P ) ⊂ Y and y(x,p) is unique for every

(x,p) ∈ X × P .

(d) A matrix Ψ ∈ Rny×ny is known such that A ≡ ΨJy(X, Y, P ) satisfies 0 /∈ Aii for all

i, where Jy is an inclusion monotonic interval extension of the Jacobian matrix of h,

Jy, on X × Y × P .

(e) There exists a point xS ∈ X with g(xS,y(xS,p),p) < 0, ∀p ∈ P such that f(xS) −

f ∗ < εtol.

Assumptions 1(a)-(d) are essentially required by the external subroutines for constructing

convex and concave relaxations for global optimization of implicit functions.29 Assumption
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1(c) can be satisfied by applying parametric interval-Newton methods1,7,30,31 and their key

theoretical results. For Assumption 1(d), the matrix Ψ is a preconditioning matrix, and

has been the focus of many research articles. The application to interval-Newton methods

is discussed by Kearfott,34 among others. The interval-valued matrix A can be calculated

efficiently by taking natural interval extensions,1,35 and thus satisfying Assumption 1(d). As-

sumption 1(e) is the εtol-optimal SIP-Slater point condition which guarantees that a sequence

of feasible points can be generated by the algorithm. Altogether, satisfying Assumption 1

guarantees that the following SIP algorithm terminates in finitely many iterations with a

certificate of optimality and a rigorous εtol-optimal feasible point.27,29 The algorithm for

semi-infinite optimization with implicit functions embedded is presented in the following.

Algorithm 1 (Global Optimization Algorithm for Implicit SIPs).

1. (Initialization)

(a) Set LBD = −∞, UBD = +∞, εtol > 0, k := 0.

(b) Set initial parameter sets PLBD = PLBD,0, PUBD = PUBD,0.

(c) Set initial restriction parameter εg,0 > 0 and r > 1.

2. (Termination) Check UBD − LBD ≤ εtol.

(a) If true, f ∗ := UBD, terminate.

(b) Else k := k + 1.

3. (Lower-Bounding Problem) Solve the lower-bounding problem (6) to global opti-

mality.

(a) Set LBD := fLBD, set x̄ equal to the optimal solution found.

4. (Inner Program) Solve the inner program (7) to global optimality.

(a) If g(x̄,y(x̄, p̄), p̄) = ḡ(x̄) ≤ 0, set x∗ := x̄, UBD := f(x̄), terminate algorithm.
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(b) Else, add p̄ to PLBD.

5. (Upper-Bounding Problem) Solve the upper-bounding problem (8) to global opti-

mality.

(a) If feasible:

i. Set x̄ equal to the optimal solution found and solve the inner program (7) to

global optimality.

ii. If ḡ(x̄) < 0:

A. If f(x̄) ≤ UBD, set UBD := f(x̄), x∗ := x̄.

B. Set εg,k+1 := εg,k/r, go to 2.

iii. Else (ḡ(x̄) ≥ 0), add p̄ to PUBD, go to 2.

(b) Else (infeasible), set εg,k+1 := εg,k/r, go to 2.

It should be noted that the subproblems can only be solved finitely to within some

chosen tolerances. In order to guarantee that the SIP algorithm is rigorous, the convergence

tolerances for the subproblems must be set such that they are lower than εtol.

In order to better visualize Algorithm 1, the flowchart is given in Figure 1.

Application to Max-Min and Min-Max Problems

Constrained min-max problems of the form:

min
x∈X

max
p∈P,ŷ∈Y

G(x, ŷ,p) (9)

s.t. h(x, ŷ,p) = 0,

14
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Figure 1: The flowchart for Algorithm 1.

and constrained max-min problems of the form:

max
x∈X

min
p∈P,ŷ∈Y

G(x, ŷ,p) (10)

s.t. h(x, ŷ,p) = 0,

can also be solved using Algorithm 1. The min-max case results in solving the implicit

program:

G∗ = min
x∈X

max
p∈P

G(x,y(x,p),p) (11)
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which can be reformulated as an implicit SIP by introducing a variable η ∈ H ⊂ R, with H

a compact interval, and writing:

min
x∈X,η∈H

η (12)

s.t. η ≥ max
p∈P

G(x,y(x,p),p).

Using the relationship given by (4), and setting g(x,y(x,p),p, η) = G(x,y(x,p),p)−η, the

following SIP can be written:

min
x∈X,η∈H

η (13)

s.t. g(x,y(x,p),p, η) ≤ 0, ∀p ∈ P,

which is equivalent to the implicit SIP in (5). The implicit SIP algorithm can be applied

directly to this problem without any modification by setting nx := nx + 1 and treating η as

the nx + 1 component of x. Here, an optimal solution value of η∗ ≤ 0 implies that G∗ ≤ 0,

and alternatively, η∗ > 0 implies G∗ > 0.

The constrained max-min problem reformulation is slightly different. This case results

in solving

G∗ = max
x∈X

min
p∈P

G(x,y(x,p),p). (14)

Again, the variable η ∈ H ⊂ R is introduced and (14) is written as

max
x∈X,η∈H

η (15)

s.t. η ≤ min
p∈P

G(x,y(x,p),p)
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which can be written as

max
x∈X,η∈H

η (16)

s.t. η ≤ G(x,y(x,p),p), ∀p ∈ P

or equivalently as

min
x∈X,η∈H

−η (17)

s.t. g(x,y(x,p),p, η) ≤ 0, ∀p ∈ P

by using the identity g(x,y(x,p),p, η) = η − G(x,y(x,p),p). Now, the implicit SIP algo-

rithm can be applied without modification by again setting nx := nx + 1 and treating η as

the nx + 1 component of x. Now, analogous to the min-max case, an optimal solution value

of η∗ ≤ 0 implies that G∗ ≤ 0 and η∗ > 0 implies G∗ > 0.

Numerical Examples

Example 1. Consider the following illustrative example with nx = np = ny = 1:

f(x) =(x− 3.5)4 − 5(x− 3.5)3 − 2(x− 3.5)2 + 15(x− 3.5)

h(x, ŷ, p) =ŷ − (x− x3/6 + x5/120)/
√
ŷ − p = 0

g(x, ŷ, p) =ŷ + cos(x− p/90)− p ≤ 0, ∀p ∈ P

x ∈ X = [0.5, 8.0]

p ∈ P = [80, 120].

The objective function and implicit semi-infinite constraint are shown in Figure 2. An in-

terval Y = [68.8, 149.9], guaranteed to contain a unique implicit function y : P × X → Y
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was obtained using the parametric interval-Newton method.1,7 This illustrative example was

chosen because the SIP feasible set and the objective function are obviously nonconvex and

the objective function has a suboptimal local minimum that is SIP-feasible.
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Figure 2: The objective function and implicit semi-infinite constraint for Example 1.

Example 2. Consider the robust design of an isothermal flash separator under uncertainty.

We wish to verify robust operation of a proposed design in the face of the worst-case re-

alization of uncertainty. The flash separator is designed to separate a ternary mixture of

n-butane, n-pentane, and n-hexane, with molar fractions of 0.5, 0.4, and 0.1, respectively.

The separator is designed to create a vapor product stream with no more than 0.05 mole-

fraction of n-hexane. To do so, it is designed to operate at 85◦C and a pressure no greater

than 5100torr (6.80bar). It is expected that during operation, the vessel temperature, error

in the thermocouple reading, or both, may vary by as much as ±5◦C. For this system there

are six unknowns: the compositions of the vapor and liquid streams. Three species balance

equations and three phase-behavior equations can be written, resulting in a dimensionality

ny = 6. However, an alternative, and equivalent, model formulation with ny = 1 can be

formulated by writing the stream composition model equations in terms of the cut fraction α̂:

h(τ, α̂, p) =
∑
i

zi(Ki(τ, p)− 1)

(Ki(τ, p)− 1)α̂ + 1
= 0,
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where τ will be the temperature (uncertain) variable, the cut fraction, α̂, is defined as the

fraction of the feed that leaves in the vapor stream (internal state variable), p is the vessel

pressure which can be controlled in order to mitigate fluctuations in τ , Ki is the vapor-

liquid equilibrium coefficient for the ith chemical component, and zi is the mole-fraction of

chemical component i in the feed. Solving h(τ, α̂, p) = 0 for α̂ defines the cut fraction as

an implicit function of temperature and pressure, α : T × P → Y . Any value α /∈ [0, 1]

is nonphysical so the interval Y = [0, 1] was considered. For this system, the vapor-liquid

equilibrium coefficient can be calculated as

Ki(τ, p) =
psati (τ)

p

for each chemical component i with

log10 p
sat
i (τ) = Ai −

Bi

Ci + τ
,

with τ in ◦C and psati in torr. The Antoine coefficients Ai, Bi, Ci are available in Table 1.

For robust design problems, one must consider the worst-case realization of uncertainty and

Table 1: Antoine coefficients for the ternary mixture in Example 2.36

Ex. 2 Antoine Coefficients
i Ai Bi Ci Temp. Range

1: n-butane 7.00961 1022.48 248.145 −138.29− 152.03◦C
2: n-pentane 7.00877 1134.15 238.678 −129.73− 196.5◦C
3: n-hexane 6.9895 1216.92 227.451 −95.31− 234.28◦C

examine if there exists a control setting that allows the design to still meet the performance

and/or safety specification. This problem can be formulated mathematically as a max-min
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problem:

max
τ∈T

min
p∈P

G(τ, α(τ, p), p)

T = [80, 90]

P = [4400, 5100],

which, if G(τ ∗, α(τ ∗, p∗), p∗) ≤ 0, the design is robustly feasible, or simply, for the worst-

case realization of uncertainty, there exists a control setting such that the system meets

specification. The lower bound on the control variable comes from a requirement that there

80 82 84 86 88 90
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Figure 3: The design constraint function for Example 2.

are two phases present in the separator at all times (i.e. any lower pressure will flash all of

the liquid into the vapor phase). According to the previous discussion, this problem can be

reformulated as an implicit SIP:

min
τ∈T,η∈H

−η

s.t. η −G(τ, α(τ, p), p) ≤ 0, ∀p ∈ P

20



with H = [−1, 1]. The performance specification can be written as

G(τ, α(τ, p), p) =
z3K3(τ, p)

(K3(τ, p)− 1)α(τ, p) + 1
− 0.05 ≤ 0,

which comes from material balances on the system. Figure 3 shows G plotted against τ .

Stream 1

Stream 2

Figure 4: The continuous-stirred tank reactor for Example 3.

Example 3. Consider the optimal design of a continuous-stirred tank reactor (CSTR) for

the chlorination of benzene, shown in Figure 4. The reactions taking place are

C6H6 + Cl2
k1−→ C6H5Cl +HCl

C6H5Cl + Cl2
k2−→ C6H4Cl2 +HCl

where the rate constants k1 and k2 (hr−1), as well as the feed flowrate F1 (kmol/hr), will

be considered as uncertain parameters, p = (k1 k2 F1)
T. The design variable will be the

reactor volume (m3), x = v. The reaction kinetics can be considered to be first-order with

respect to benzene and chlorobenzene and the reactions are irreversible.37 For simplicity, A

will denote C6H6, B will denote C6H5Cl, and C will denote C6H4Cl2. Therefore, there

are a total of four unknowns: the composition (mole-fractions) of the product stream and the

product stream flowrate in terms of A, B, and C, ŷ = (yA yB yC F2)
T. In this formulation,

nx = 1, ny = 4, and np = 3. Note that F1 and F2 are the flowrates (kmol/hr) in terms of
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the chemical species A, B, and C only. The model equations are then:

h(x, ŷ,p) =



yA,1p3 − ŷ1ŷ4 − xr1

yB,1p3 − ŷ2ŷ4 + x(r1 − r2)

yC,1p3 − ŷ3ŷ4 + xr2

1− ŷ1 − ŷ2 − ŷ3


= 0 (18)

with yi,1 as the mole-fraction of chemical specie i in the feed stream, and the reaction rates

r1 and r2 are given by:

r1 = p1ŷ1/(ŷ1VA + ŷ2VB + ŷ3VC),

r2 = p2ŷ2/(ŷ1VA + ŷ2VB + ŷ3VC).

with Vi as the molar volumes of chemical specie i: VA = 8.937 × 10−2m3/kmol, VB =

1.018× 10−1m3/kmol, VC = 1.13× 10−1m3/kmol. The feed was taken to be pure benzene.

For this particular system, the design objective is to minimize the reactor volume while

satisfying the performance constraint that at least 22kmol C6H5Cl/hr is produced:

min
x∈X

x

s.t. 22− y2(x,p)y4(x,p) ≤ 0, ∀p ∈ P.

The uncertainty interval will be P = [0.38, 0.42]× [0.053, 0.058]× [60, 70], the design interval

will be X = [10, 20]. From the parametric interval-Newton method,1,7 an interval Y =

[0.15, 0.85]× [0.3, 0.65]× [0.0, 0.12]× [60, 70] was calculated that encloses the implicit function

y : X × P → Y such that h(x,y(x,p),p) = 0, ∀(x,p) ∈ X × P .
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Experimental Conditions and Results

Algorithm 1 was implemented in C++. Each NLP subproblem was solved using the algorithm

for global optimization of implicit functions,29 which was also implemented in C++ and utilizes

the library MC++.38 The algorithm for global optimization of implicit functions relies on

the ability to solve convex nonsmooth subproblems. This is because convex and concave

relaxations of implicit functions29 are in general nonsmooth. For this task, the nonsmooth

bundle solvers PBUN and PBUNL39 were utilized with default settings for the NLP lower-

bounding problems and the objective function was evaluated at NLP feasible points to obtain

valid upper bounds on the NLP. Since the constrained bundle solver (PBUNL) can only

handle affine constraints, affine relaxations of the convex constraints with respect to reference

points must be calculated. In other words, once a nonconvex program is convexified by

constructing relaxations of the nonconvex objective function and nonconvex constraints,

the newly-constructed convex constraints must be further relaxed by constructing affine

underestimating functions that PBUNL can handle. The hierarchy of information flow for

global optimization of implicit functions is shown in Figure 5.

Two sets of experiments were conducted:

Case 1: A single reference point—taken as the midpoint of X—was used to construct affine

relaxations of constraints.

Case 2: Three reference points—the lower bound, the midpoint, and the upper bound of

X—were used to construct affine relaxations of the constraints and used simultane-

ously.

The numerical experiments were performed using a PC with an Intel Core2 Quad 2.66GHz

CPU operating Linux. For each example, absolute and relative convergence tolerances of

10−7 and 10−5, respectively, were used for the NLP subproblems unless otherwise noted.
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Global Optimization of Implicit Functions

Main B&B Routine

Lower Bound Upper Bound

Real Solve

Convex/Concave Rlxns 
of Implicit Functions

Interval-
Newton

PBUN/
PBUNL

Affine
Rlxns

Figure 5: The hierarchy of information flow for global optimization of implicit functions.29

Example 1

For the SIP algorithm, each constraint set was initialized as empty, εg,0 = 0.9, r = 2.0, and

εtol = 10−4. For each set of experiments, the implicit SIP algorithm was applied and an

approximate global optimal solution with an objective function value of f ∗ = −7.8985 at

x∗ = 2.95275. Convergence was observed in 3 iterations for each case and took 0.211 seconds

for Case 1 and 0.24815 seconds for Case 2. For this example, the algorithm terminates after

the lower-bounding problem furnishes a SIP-feasible point (Step 4a of the algorithm) and so

the parameter r does not affect the performance of the implicit SIP algorithm.

In an effort to explore the behavior of the algorithm, the NLP subproblem algorithm

absolute and relative convergence tolerances were relaxed to 10−6 and 10−4, respectively.

Interestingly, for both cases, the SIP algorithm doesn’t terminate with the lower-bounding

problem furnishing an SIP-feasible point but instead terminates at Step 2 of the algorithm.

This suggests that spending more time solving the NLP subproblems to higher accuracy

benefits the total algorithm runtime by helping to accelerate locating a global optimal SIP-

feasible point. The convergence results are plotted in Figure 6. Qualitatively, the algorithm

performed similarly to the explicit SIP algorithm by Mitsos27 where the solution time and

number of iterations rapidly decreased with increasing reduction parameter. This behavior

readily plateaued after a value of around r = 8. As expected, Case 2 exhibited higher

computational cost without reducing the overall solution time or number of iterations.
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Figure 6: The computational effort in terms of the solution time (left) and the number of
iterations (right) the algorithm takes to solve Example 1 versus the reduction parameter r.
Note that the number of iterations is the same for both cases.

Example 2

For the implicit SIP algorithm, each constraint set was initialized as empty, εg,0 = 0.9,

r = 2.0, and εtol = 10−4. For both Case 1 and Case 2, the implicit SIP algorithm was

applied and an approximate global optimal solution was obtained with η∗ = 3.6165× 10−3,

τ ∗ = 90◦C, p∗ = 5100torr. For both cases, the algorithm terminates in 3 iterations after

the lower-bounding problem furnishes an SIP-feasible point. Thus, as previously mentioned,

the parameter r has no effect on the performance of the algorithm. Relaxing the NLP

convergence tolerances did not have the same effect on the behavior of the algorithm as it

did in Example 1. Case 1 converged just after 0.381 seconds whereas Case 2 took 0.667

seconds. This suggests that the choice of the reference point for linearizing the constraints

for the NLP subproblems was not very important and choosing more than one reference

point just increased the computational complexity, and therefore, the solution time.

Returning to the idea of robust design, since η∗ > 0, the flash separator design is not

robust. However, as can be seen from Figure 3, if the design can be improved such that the

temperature (or thermocouple reading) may only vary by ±4◦C, the design appears to be

robust. This result was verified by the implicit SIP algorithm converging after 3 iterations

and 0.386 seconds to an approximate optimal solution with η∗ = −1.015× 10−3.
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Figure 7: The computational effort in terms of the number of solution time (left) and the
number of iterations (right) the algorithm takes to solve Case 2 of Example 3 versus the
reduction parameter r.

Example 3

For the SIP algorithm, each constraint set was initialized as empty, εg,0 = 0.9, and εtol = 10−4.

For Case 2, the implicit SIP algorithm was applied and an approximate global optimal

solution was obtained with f ∗ = x∗ = 10.1794m3, p∗ = (0.38 0.058 60)T. Therefore, in

order to produce at least 22kmol/hr of chlorobenzene, taking into account uncertainty in the

input flowrate and the reaction rate constants, the reactor volume must be 10.1794m3. The

reader is reminded that, similar to Example 2, this example is looking to solve the problem

of robust design under uncertainty. However, there is a key difference in the formulation,

between the two examples. Example 2 is seeking a “yes” or “no” answer to whether or not

the process is robust to the worst-case realization of uncertainty. Alternatively, this example

is seeking to identify the actual size of the reactor such that the process will perform as

desired in the face of the worst-case realization of uncertainty. Note that the worst-case

realization of uncertainty is exactly what is to be expected; in order to have the least amount

of chlorobenzene in the product stream, k1 should be the smallest value it can take, k2 should

be the largest it can take, and the least amount of benzene should be fed to the reactor.

For a value of r = 18, the algorithm converges in 7 iterations and 13.17 seconds. The

performance of the algorithm for Case 2 can be found in Figure 7. Similar to Example 1, a
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small value for r resulted in the implicit SIP algorithm taking many iterations to converge.

As r was increased, the number of iterations required to converge, as well as the total solution

time dropped drastically and plateaued. A parameter value of r = 18 reduced the solution

time and number of iterations by 94% over r = 1.1. Again, qualitatively, this behavior is

similar to what Mitsos27 demonstrated. In his explicit SIP examples, the number of iterations

was reduced from about 80 to between 5 and 20, depending on the example.

For this example, Case 1 failed to converge within 200 iterations of the algorithm. This

result is simply a consequence of using PBUNL which only accepts affine constraints. In this

case, since the affine constraints are being constructed with reference to the midpoint of X,

the solver apparently fails to ever return a point that is feasible in the original SIP.

Conclusion

A method was presented for reformulating equality-constrained bilevel programs as SIPs

with embedded implicit functions, requiring that:

(a) all functions involved are continuous and factorable,

(b) derivative information of the equality constraint function is available and is factorable,

(c) there exists at least one solution y to the system of equations in (2) for every (x,p) ∈

X × P , and an interval Y can be found that bounds an isolated solution,

(d) an appropriate matrix for preconditioning the interval-Jacobian can be calculated such

that their product has nonzero diagonal elements, and

(e) there exists a Slater point arbitrarily close to a SIP minimizer.

To solve the resulting implicit SIP, the global optimization algorithm developed by Mitsos 27

has been adapted. The algorithm relies on the ability to solve three nonconvex implicit NLP

subproblems to global optimality. This is performed utilizing the relaxation methods and the
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deterministic algorithm for global optimization of implicit functions which were developed

by Stuber et al. 29 The algorithm developed by Stuber et al. 29 relies on the ability to solve

nonsmooth lower- and/or upper-bounding problems at each iteration. This can be done

using any available nonsmooth optimization algorithm or using the calculated subgradient

information to construct affine relaxations and transform the problem into a linear program

and solved using any efficient LP optimization algorithm. For this paper, the nonsmooth

bundle solvers PBUN and PBUNL,39 were utilized. Note that the requirements (b) and

(c) are only due to current limitations of the algorithm for global optimization of implicit

functions. The requirements (d) and (e) imply that the SIP is feasible and (a) and (e) are

required for guaranteed ε-optimal convergence of the original explicit SIP algorithm27 after

finitely many iterations. Altogether, these requirements guarantee ε-optimal convergence of

Algorithm 1.

As a proof-of-concept, three numerical examples were presented that illustrate the global

solution of implicit SIPs using this algorithm. The first example illustrated the solution

of a simple numerical system that fits the implicit SIP form given in (5). This problem is

interesting because it is easy to visualize the nonconvexity of the functions and identify the

SIP-feasible suboptimal local minimum. The second example was an engineering problem of

robust design under uncertainty, originally cast as a constrained max-min problem. It was

then reformulated as an implicit SIP of the form in (5) and solved using the implicit SIP

algorithm. Under the original design conditions and uncertainty interval, the design was not

robustly feasible. After altering the design such that the uncertainty interval was reduced,

the design was found to be robust. The third example was an engineering problem of optimal

design of a chemical reactor considering uncertainty in the kinetic parameters and feed rate

which was formulated as an SIP. The examples chosen offered varying levels of complexity

as well as size which allowed various features and behavior of the implicit SIP algorithm to

be explored.
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Due to the limitations of the PBUNL solver, only affine constraints could be used. Since

the implicit semi-infinite constraint is almost surely nonlinear, affine relaxations must be

constructed. For the numerical examples, two sets of experiments were conducted: one using

a single reference point for constructing affine relaxations of the constraints and another using

three reference points for constructing affine relaxations of the constraints and using them

all simultaneously. The first method was hypothesized to be advantageous since it required

less computational effort to calculate the constraints. Alternatively, the second method

was hypothesized to be advantageous since using multiple reference points results in better

approximations of the constraints, which in turn may speed up convergence of the overall

algorithm. For Experiments 1 and 2, it was observed that Case 2 offered no benefit over

Case 1 and only added computational complexity. However, for Example 3, Case 1 failed to

converge after 200 iterations. This was likely due to the affine relaxations of the semi-infinite

constraint not being very tight, resulting in PBUNL failing to find a solution that is feasible

in the original SIP. It was found that for this problem, Case 2 and its multiple reference

points for calculating affine relaxations were clearly superior with the algorithm converging

after 7 iterations and 13.17 seconds.

Lastly, the generalization of (5) with the semi-infinite constraint g ∈ R to g ∈ Rng will

be discussed. For this case, (5) would take the form

f ∗ = min
x
f(x)

s.t. gj(x,y(x,p),p) ≤ 0, j = 1, . . . , ng, ∀p ∈ P (19)

x ∈ X = {x ∈ Rnx : xL ≤ x ≤ xU}

P = {p ∈ Rnp : pL ≤ p ≤ pU}.

The explicit case was discussed by Mitsos.27 The The inner program would of course need

to be replaced with ng inner programs: one for each j = 1, . . . , ng and instead of a single

constraint index set for the upper- and lower-bounding problems there should be a set PUBD
j
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and PLBD
j for each j = 1, . . . , ng constraints, respectively. Furthermore, instead of a single

restriction εg,k, there should be one for each constraint, εg,kj , j = 1, . . . , ng. As noted by

Mitsos,27 since the constraints can be sufficiently different from one another, having a single

constraint index set each for the lower-bounding problem and the upper-bounding problem

would unnecessarily increase the problem size and number of constraints of the subproblems.

Investigation into other strategies is still an open research objective.
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