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Abstract. We establish new bounds on character values and character ratios for finite
groups G of Lie type, which are considerably stronger than previously known bounds,
and which are best possible in many cases. These bounds have the form |χ(g)| ≤ cχ(1)αg ,
and give rise to a variety of applications, for example to covering numbers and mixing
times of random walks on such groups. In particular we deduce that, if G is a classical
group in dimension n, then, under some conditions on G and g ∈ G, the mixing time of
the random walk on G with the conjugacy class of g as a generating set is (up to a small
multiplicative constant) n/s, where s is the support of g.
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1. Introduction

For a finite group G, a character ratio is a complex number of the form χ(g)
χ(1) , where

g ∈ G and χ is an irreducible character of G. Upper bounds for absolute values of
character values and character ratios have long been of interest, for various reasons; these
include applications to random generation, covering numbers, mixing times of random
walks, the study of word maps, representation varieties and other areas. For example,
character ratios are connected with the well-known formula∏k

i=1 |Ci|
|G|

∑
χ∈Irr(G)

χ(c1) · · ·χ(ck)χ(g−1)

χ(1)k−1

expressing the number of ways of writing an element g ∈ G as a product x1x2 · · ·xk of
elements xi ∈ Ci, where Ci = cGi are G-conjugacy classes of elements ci, 1 ≤ i ≤ k, and the
sum is over the set Irr(G) of all irreducible characters of G (see [2, 10.1]). This connection
is sometimes a starting point for such applications; it has been particularly exploited for
almost simple (or quasisimple) groups G.

Another classical formula involving character ratios goes back to Frobenius in 1896 [10].
It asserts that, for any finite group G, the number N(g) of ways to express an element
g ∈ G as a commutator [x, y] (x, y ∈ G) satisfies

N(g) = |G|
∑

χ∈Irr(G)

χ(g)

χ(1)
.

This formula is widely used, and served (together with character bounds) as an important
tool in the proof of Ore’s conjecture [32].

We are particularly interested in so called exponential character bounds, namely bounds
of the form

|χ(g)| ≤ χ(1)αg ,

sometimes with a multiplicative constant, holding for all characters χ ∈ Irr(G), where
0 ≤ αg ≤ 1 depends on the group element g ∈ G. Obviously, if g is central in G, then we
must have αg = 1, but for most elements g we aim to find αg < 1 which is as small as
possible. One advantage of exponential character bounds is that they imply the inequality

|χ(g)
χ(1) | ≤ χ(1)−(1−αg), so the upper bound on the character ratio becomes smaller as the

character degree grows.

The first exponential character bound was established in 1995 for symmetric groups Sn
by Fomin and Lulov [9]. They show that, for permutations g ∈ Sn which are products of
n/m cycles of length m and for all characters χ ∈ Irr(Sn) we have

|χ(g)| ≤ c(m)n
1
2
− 1

2mχ(1)
1
m , (1.1)

for a suitable function c : N→ N.

In [37] this bound and some extensions of it were applied in various contexts, including
the theory of Fuchsian groups. Subsequently, exponential character bounds which hold for
all permutations g ∈ Sn and which are essentially best possible were established in 2008 in
[27], with applications to a range of problems: mixing times of random walks, covering by
powers of conjugacy classes, as well as probabilistic and combinatorial properties of word
maps.

Can we find good exponential character bounds for groups of Lie type? This problem
has turned out to be quite formidable; it has been considered by various researchers over
the past two decades, and various approaches have been attempted, but it is only in this
paper that strong (essentially best possible) such bounds are established.
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The first significant bound on character ratios for groups of Lie type was obtained in

1993 by Gluck [15], who showed that |χ(g)|
χ(1) ≤ Cq

−1/2 for any non-central element g ∈ G(q),

a group of Lie type over Fq, and any non-linear irreducible character χ of G(q), where C
is an absolute constant. In [16], he proved a bound of the form

|χ(g)|
χ(1)

≤ χ(1)−γ/n,

when G(q) is a classical group with natural module V = Fnq of dimension n, and γ = γ(q, d)
is a positive real number depending on q and on d = dim[V, g], the dimension of the
commutator space of g on V . While this result provides an exponential character bound
|χ(g)| ≤ χ(1)αg , the exponent αg = 1 − γ/n is not explicit, and in the general case we
have γ(q, d) ≤ 0.001, so αg ≥ 1− 1

1000n , which is very close to 1.

An explicit character bound for finite classical groups, with natural module V = Fnq , in
terms of the support supp(g) of the element g was obtained in [28, 4.3.6]: namely,

|χ(g)|
χ(1)

< q−
√

supp(g)/481, (1.2)

where supp(g) is the codimension of the largest eigenspace of g on V ⊗Fq Fq. These results
have applications to covering, mixing times and word maps.

In this paper we obtain asymptotically much stronger bounds for character ratios of
finite groups of Lie type in good characteristic (this restriction comes from the fact that
our proof relies on certain results in the Deligne-Lusztig theory, which currently are only
known to hold in good characteristics). In fact we provide the first explicit exponential
character bounds for groups of Lie type, and show that these bounds are asymptotically
optimal in many cases.

These character bounds lead to several new results on random walks and covering by
products of conjugacy classes that are far stronger than previously known such results.
Further applications to the theory of representation varieties of Fuchsian groups and prob-
abilistic generation of groups of Lie type will be given in a sequel to this paper [39].

We also prove the first bounds on character ratios for Brauer characters, for the groups
SLn(q) and GLn(q), and in characteristics coprime to q.

We now describe our results. Throughout the paper, let K be an algebraically closed
field of characteristic p, G a connected reductive algebraic group over K, F : G → G a
Frobenius endomorphism, and G = GF . For a subgroup X of G write Xunip for the set
of non-identity unipotent elements of X. For a fixed F , a Levi subgroup L of G will be
called split, if it is an F -stable Levi subgroup of an F -stable proper parabolic subgroup of
G. For an F -stable Levi subgroup L of G and L = LF , we define

α(L) := max u∈Lunip

dimuL

dimuG
, α(L) := max u∈Lunip

dimuL

dimuG

if L is not a torus, and α(L) = α(L) := 0 otherwise.

Theorem 1.1. There exists a function f : N→ N such that the following statement holds.
Let G be a connected reductive algebraic group such that [G,G] is simple of rank r over a
field of good characteristic p > 0. Let G := GF for a Frobenius endomorphism F : G → G.
Let g ∈ G be any element such that CG(g) ≤ L := LF , where L is a split Levi subgroup of
G. Then, for any character χ ∈ Irr(G) and α := α(L), we have

|χ(g)| ≤ f(r)χ(1)α.

Remark 1.2. (i) The α-bound in Theorem 1.1 is sharp in several cases – see Example
2.8. In fact, this α-bound is always sharp in the case of GLn(q) and SLn(q), by Theorem
1.3.
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(ii) If r ≥ 9 and q ≥ r2 + 1, then the function f(r) in Theorem 1.1 can be chosen

to be 22r+
√

2r+3 · (r!)2 (with the main term being the square of the largest order of the
Weyl group of a simple algebraic group of rank r) – see Proposition 2.7. Moreover,
α .r 1−1/r by Theorem 1.6 and χ(1) ≥ qr/3 if χ(1) > 1 by [26], hence Theorem 1.1 yields

|χ(g)| .r χ(1)α+1/2r .r χ(1)1−1/2r if q > r4r; in fact, χ(1) ≥ qr2/2 for most of χ ∈ Irr(G),

for which the bound becomes |χ(g)| .r χ(1)α+1/3r .r χ(1)1−2/3r if q > r12. (Here, we say
that f1(x) .x f2(x) for two functions f1, f2 : R→ R≥0 if lim supx→∞ f1(x)/f2(x) ≤ 1.)

(iii) Although the aforementioned choice of f(r) in Theorem 1.1 can be improved, Ex-
ample 2.8(vi) shows that f(r) should be at least the largest degree of complex irreducible

characters of the Weyl group W (G) of G, which can be quite close to |W (G)|1/2. In partic-

ular, choosing G of type Ar and applying [40], [55], we get f(r) > e−1.283
√
r+1
√

(r + 1)!.

Note that Theorem 1.1 and its various consequences also apply for finite twisted groups
of Lie type.

Theorem 1.3. In the notation of Theorem 1.1, there is a constant Cn > 0 depending only
on n such that the following statement holds. For G = GF = GLn(q) with q ≥ Cn and
for any split Levi subgroup L of G, there is a semisimple element g ∈ G and a unipotent
character χ ∈ Irr(G) such that CG(g) = L = LF and

χ(g) ≥ 1

4
χ(1)α(L).

The same conclusion holds for SLn(q), if for instance we choose q so that q − 1 is also
divisible by (n!)n.

In the case of GLn(q) and SLn(q) we can also prove a version of Theorem 1.1 for Brauer
characters in cross-characteristic.

Theorem 1.4. There exists a function h : N → N such that the following statement
holds. Let G = GLn or SLn be an algebraic group over a field of characteristic p > 0 and
F : G → G a Frobenius endomorphism, such that G = GF ∼= GLn(q) or SLn(q). Let ` = 0
or a prime not dividing q. Let g ∈ G be any `′-element such that CG(g) ≤ L := LF , where
L is a split Levi subgroup of G. Then for any irreducible `-Brauer character ϕ of G and
α := α(L), we have

|ϕ(g)| ≤ h(n)ϕ(1)α.

The above results do not cover, for instance, the case where g ∈ GF is a unipotent
element. However, we have been able to obtain a complete result covering all elements in
GLn(q) and SLn(q):

Theorem 1.5. There is a function h : N → N such that the following statement holds.
For any n ≥ 5, any prime power q, any irreducible complex character χ of H := GLn(q)
or SLn(q), and any non-central element g ∈ H,

|χ(g)| ≤ h(n) · χ(1)1− 1
2n .

For the remaining groups of Lie type, character bounds, which work for arbitrary ele-
ments g ∈ GF , and are weaker than the one in Theorem 1.1 but asymptotically stronger
than the ones in [16] and [28], will be proved in a sequel to this paper.

To be able to apply Theorem 1.1 we need information on the values of α(L) ≤ α(L).
For classical groups, we prove the following upper bound.

Theorem 1.6. If G is a classical algebraic group over K in good characteristic, and L is
a Levi subgroup of G, then

α(L) ≤ 1

2

(
1 +

dimL
dimG

)
.
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For exceptional types we obtain fairly complete information.

Theorem 1.7. If G is an exceptional algebraic group in good characteristic, the values of
α(L) for (proper, non-toral) Levi subgroups L are as in Table 1.

In Table 1, for G = F4 or G2 the symbols Ã1, Ã2 refer to Levi subsystems consisting
of short roots. For G = E7, there are two Levi subgroups A5 and A′5: using the notation
for the fundamental roots αi (1 ≤ i ≤ 7) as in [3], these are the Levi subgroups with
fundamental roots {αi : i = 1, 3, 4, 5, 6} and {αi : i = 2, 4, 5, 6, 7} respectively. The
notation .A4, for instance, means that L′ = [L,L] has a simple factor of type A4.

Table 1. α-values for exceptional groups

G = E8, L′ = E7 D7 L′ . E6 D6 A7 .D5 .A6 .A5 .D4 rest
α(L) = 17

29
9
23

11
29

9
29

15
56

7
29

5
23

4
23

5
29 ≤ 1

6

G = E7, L′ = E6 D6 L′ . D5 A6 A5 .A′5 .D4 .A4 .A3 rest
α(L) = 11

17
5
9

7
17

5
13

4
13

1
3

5
17 ≤ 1

4 ≤ 1
5 ≤ 1

6

G = E6, L′ = D5 A5 D4 L′ . A4 .A3 .A2 Ak1
α(L) = 7

11
1
2

5
11

3
8

3
11 ≤ 7

27 ≤ 3
20

G = F4, L′ = B3 C3 A2Ã1, A2 Ã2A1 Ã2 A1Ã1 A1 Ã1

α(L) = 1
2

7
15

1
4

2
9

1
5

1
7

1
8

1
11

G = G2, L′ = A1 Ã1

α(L) = 1
3

1
4

We can now easily deduce the following.

Corollary 1.8. Let G, G = GF , and f be as in Theorem 1.1. Suppose y ∈ G is a
(semisimple) element such that CG(y) = LF , where L is a split Levi subgroup of G. Then
for any non-linear χ ∈ Irr(G),

|χ(y)| ≤ f(r)χ(1)1− 1
2

dim yG
dimG .

Next, we establish a new strong bound on character ratios given the support (which is
defined right after (1.2)) of the semisimple part of the ambient element.

Theorem 1.9. Assume G = SLn(Fq) with n ≥ 2, Spn(Fq) with n ≥ 4, or Spinn(Fq) with
n ≥ 7, all in good characteristic, and define

c := c(G) =


(r + 1)/(2r + 4), G = SLr+1,
r/(4r + 2), G = Sp2r,
r/(4r − 2), G = Spin2r,
1/4, G = Spin2r+1.

Let G = GF = G(q) and f be as in Theorem 1.1, and let g ∈ G be any element such that
its semisimple part y has centralizer CG(y) = LF , where L is a split Levi subgroup of G.
Then, for any non-linear χ ∈ Irr(G),

|χ(g)|
χ(1)

≤ 3f(r) q−c·supp(y).

In particular it follows that |χ(y)|
χ(1) ≤ 3f(r)χ(1)−c·supp(y), and that for any ε > 0, r ≥ r(ε)

and q larger than a suitable function of r, we have

|χ(y)|
χ(1)

≤ q−(b−ε)·supp(y),
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where b = 1/2 in the SLr+1 case and b = 1/4 in the other cases.

Theorem 1.9 and its consequences considerably improve the bound (1.2) from [28, 4.3.6]
for elements as above.

We also obtain more precise character bounds for GLn. To state them we need some
notation. For positive integers n1, . . . , nm define

β(n1, . . . , nm) := max

∑m
i=1(n2

i −
∑n

j=1 a
2
ij)

n2 −
∑n

j=1(
∑m

i=1 aij)
2
,

where n = n1 + . . . + nm and the maximum is taken over all non-negative integers aij
(1 ≤ i ≤ m, 1 ≤ j ≤ n) satisfying

n∑
j=1

aij = ni, ai1 ≥ ai2 ≥ . . . ≥ ain, 1 ≤ i ≤ m, max
1≤i≤m

ai2 > 0,

if max1≤i≤m ni ≥ 2, and let β(1, 1, . . . , 1) = 0.

Theorem 1.10. Let G = GLn(q) and let L ≤ G be a Levi subgroup of the form L =
GLn1(q)× · · · ×GLnm(q), where ni ≥ 1 and

∑m
i=1 ni = n. Let ni0 = max1≤i≤m ni. Then

ni0 − 1

n− t
≤ α(L) = β(n1, . . . , nm) ≤ ni0

n

if ni0 ≥ 2 and t is the number of 1 ≤ j ≤ m such that nj = ni0, and α(L) = β(n1, . . . , nm) =
0 if ni0 = 1. Consequently, for every g ∈ G with CG(g) ≤ L and every χ ∈ Irr(G) we have

|χ(g)| ≤ f(n− 1)χ(1)β(n1,...,nm),

where f : N→ N is the function specified in Theorem 1.1.

Suppose now that m divides n and n1 = . . . = nm = n/m > 1. Then we can show that
β(n1, . . . , nm) = 1

m , so we immediately obtain the following.

Corollary 1.11. Let G = GLn(q) where q is a prime power. Let m < n be a divisor of n
and let L ≤ G be a Levi subgroup of the form L = GLn/m(q)m. Let g ∈ G with CG(g) ≤ L.
Then we have

|χ(g)| ≤ f(n− 1)χ(1)
1
m

for all characters χ ∈ Irr(G), where f : N→ N is the function specified in Theorem 1.1.

Example 2.8 again shows that the exponent 1/m in Corollary 1.11 is sharp. In general,
Theorem 1.10 determines α(L) up to within 1/n. It is reasonable to conjecture that, under
the hypotheses of Theorem 1.10, α(L) = (ni0 − 1)/(n − t). This conjecture is confirmed
in Theorem 4.13 for the case m = 2 (as well as in the cases, where either n ≤ 8, or m ≤ 4
and n ≤ 13, by direct calculation).

The bound in Theorem 1.10 and some variations on it have applications to Fuchsian
groups (see [39]). Corollary 1.11 may be regarded as a Lie analogue of the Fomin-Lulov
character bound (1.1) for Sn mentioned before.

We now present some applications of the above results to the theory of mixing times
for random walks on finite quasisimple groups of Lie type corresponding to conjugacy
classes. Let G = G(q) be such a group, let y ∈ G be a non-central element, and let
C = yG, the conjugacy class of y. Consider the random walk on the corresponding Cayley
graph starting at the identity, and at each step moving from a vertex g to a neighbour gs,
where s ∈ yG is chosen uniformly at random. Let P t(g) be the probability of reaching the
vertex g after t steps. The mixing time of this random walk is defined to be the smallest
integer t = T (G, y) such that ||P t − U ||1 < 1

e , where U is the uniform distribution and
||f ||1 =

∑
g∈G |f(g)| is the l1-norm.
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Mixing times of such random walks have been extensively studied since the pioneering
work of Diaconis and Shashahani [6] on the case G = Sn and C the class of transpositions
in Sn. Additional results on random walks in symmetric and alternating groups have been
obtained in various papers, see for instance [45], [56], [42] and [27]. The latter paper
obtains essentially optimal results on mixing times in these groups.

However, if we turn from symmetric groups to finite groupsG of Lie type, good estimates
on mixing times have been obtained only in very few cases. Hildebrand [19] showed that
the mixing time for the class of tranvections in SLn(q) is of the order of n. In [38] it
is shown that if y ∈ G is a regular element, then the mixing time T (G, y) is 2 when
G 6= PSL2(q) is large. In [46] it is proved that, if G is any finite simple group, then for
a random y ∈ G we have T (G, y) = 2 (namely, the latter equality holds with probability
tending to 1 as |G| → ∞). Other than that, the mixing times T (G, y) for groups G of Lie
type remain a mystery.

The next result contains bounds for mixing times, and also (in parts (I)(a) and (II)) for
the number of steps required so that P t is close to U in the l∞-norm, which is stronger
than the l1-norm condition for mixing time (and also implies that the random walks hits
all elements of G). Here we define ||f ||∞ = |G|maxx∈G|f(x)|, and say that Ct = G almost
uniformly pointwise as q →∞ if ||P t − U ||∞ → 0 as q →∞.

We denote by h := h(G), the Coxeter number of G, defined by

h(G) =
dimG
r
− 1,

where r is the rank of G. Note that h ≥ 2 and that h→∞ as r →∞.

Theorem 1.12. Suppose G is a simple algebraic group in good characteristic, and G =
G(q) = GF is a finite quasisimple group over Fq. Let y ∈ G be such that CG(y) ≤ L,
where L = LF for a split Levi subgroup L of G. Write C = yG.

(I) Suppose G is of classical type.
(a) If t > (4 + 4

h) dimG
dimG−dimL , then Ct = G almost uniformly pointwise as q →∞.

In particular, Ct = G for sufficiently large q.
(b) The mixing time T (G, y) ≤ d(2 + 2

h) dimG
dimG−dimLe for large q.

(II) Suppose G is of exceptional type. Then C6 = G almost uniformly pointwise as
q →∞, and the mixing time T (G, y) ≤ 3.

Remarks (i) Note that the multiplicative constants above are very small. For example,
2 + 2

h ≤ 3 and it tends to 2 as r →∞.

(ii) The constant 2 + 2
h in part I(b) of Theorem 1.12 is best possible for some classes,

for example homologies y = diag(µIn−1, λ) in G = SLn(q) (where µ, λ ∈ F×q and µ 6= λ
and so q ≥ 3), for which the bound given by part (I)(b) is T (G, y) ≤ n+ 3 and for which
the mixing time is at least n by Lemma 5.2(ii).

(iii) The bound T (G, y) ≤ 3 for exceptional groups in (II) is best possible for many
classes – namely, those classes for which dim yG is smaller than 1

2 dimG. For such classes,

|yG|2 < |G|/2 for large q, so the mixing time cannot be 2 by Lemma 5.2(i).

Theorem 1.12(I)(b) implies the following linear bounds for classical groups.

Corollary 1.13. Let G = GF be a quasisimple classical group over Fq, where G is simple
of rank r over Fq, and let y ∈ G be as in Theorem 1.12. Then for large q,

(i) the diameter diam(G, yG) ≤ 2r + 4, and
(ii) the mixing time T (G, y) ≤ r + 2.
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A linear bound for the diameter (of the order of 40r), which holds for all non-central
conjugacy classes, can be found in [29].

Using Theorem 1.5 we can obtain such a bound for all conjugacy classes in SLn(q):

Corollary 1.14. Let G = SLn(q), let x be an arbitrary non-central element of G and let
C = xG.

(i) If t > 4n+ 4, then Ct = G almost uniformly pointwise as q →∞.
(ii) The mixing time T (G, x) ≤ 2n+ 3 for large q.

Note that [30, Theorem 1] shows that Cn = G for any nontrivial conjugacy class C of
G = PSLn(q), where n ≥ 3, q ≥ 4.

We can also use Theorem 3.3 (or rather its corollary 3.5) to obtain a better bound for
unipotent elements of SLn(q).

Theorem 1.15. Let G = SLn(q) and let u be a non-identity unipotent element in G.
Write C = uG.

(i) If t > 2n, then Ct = G almost uniformly pointwise as q → ∞. In particular,
Ct = G for sufficiently large q.

(ii) The mixing time T (G, u) ≤ n for sufficiently large q.

One can compare part (ii) of the above theorem with Hildebrand’s result [19] for
transvections, where he proves that for n varying, the mixing time for the class of tran-
vections in SLn(q) is of the order of n. In our case n may still vary, but q should be much
larger than n. The coincidence of values seems striking.

It is interesting to compare the mixing time T (G, y) with the covering number cn(G,C)
of the conjugacy class C = yG, defined as the minimal t for which Ct = G. It is known
that there is an absolute constant b such that for any conjugacy class C 6= {1} of any
finite simple group G we have

log |G|
log |C|

≤ cn(G,C) ≤ b log |G|
log |C|

.

Indeed the first inequality is trivial, while the second is [36, 1.2].

It is easy to see that, with the above notation,

log |G|+ log(1− e−1)

log |C|
≤ T (G, y). (1.3)

Indeed, this follows from Lemma 5.2.

It is conjectured in [48, 4.3] that there is an absolute constant c such that for any finite
simple group G of Lie type and any non-identity element y ∈ G we have

T (G, y) ≤ c log |G|
log |C|

, (1.4)

where C = yG.

Note that this statement does not hold for alternating groups G (take y ∈ G to be a

cycle of length around n/2 – then log |G|
log |C| is bounded, while T (G, y) is of the order of log n).

The above conjecture is related to an older conjecture posed by Lubotzky in [41, p.179].
Lubotzky conjectured that, if G is a finite simple group and C is a non-trivial conjugacy
class of G, then the mixing time of the Cayley graph Γ(G,C) of G with C as a generating
set is linearly bounded above in terms of the diameter of Γ(G,C). Since this diameter
is exactly the covering number cn(G,C), this conjecture (combined with the more recent
upper bound on cn(G,C) mentioned above) implies conjecture (1.4).
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Applying Theorem 1.12 we are able to prove the above conjectures in many interesting
cases. Let G be a simple algebraic group in good characteristic, and G = G(q) = GF
a finite quasisimple group over Fq. We say that a non-central element y ∈ G is nice if
CG(y) = L, where L = LF for a split Levi subgroup L of G. Note that (non-central) split
semisimple elements are nice.

Corollary 1.16. Let G, G(q) be as above, and suppose q is large (given G). Then Conjec-
ture (1.4) holds for all nice elements y of the quasisimple group G(q). In particular, the
conjecture holds for all split semisimple elements of G(q).

Indeed, this readily follows from part I(b) of Theorem 1.12, with a very small constant
c (around 3).

Conjecture (1.4) and Corollary 1.16 suggest a distinctive difference between mixing
times for Sn as opposed to classical groups Cln(q).

Our final result essentially determines the mixing time T (G, y) in terms of the support
of y as follows (recall the notation f1(x) .x f2(x) from Remark 1.2).

Theorem 1.17. Assume G = SLn(Fq) with n ≥ 2, Spn(Fq) with n ≥ 4, or Spinn(Fq)
with n ≥ 7, and define

r′ := r′(G) =


r(2r + 4)/(r + 1), G = SLr+1,
4r + 2, G = Sp2r,
4r − 2, G = Spin2r,
4r, G = Spin2r+1.

Let G = GF = G(q) and f be as in Theorem 1.1, and let g ∈ G be any element such that
its semisimple part y has centralizer CG(y) = LF , where L is a split Levi subgroup of G.
Suppose q is large enough (given r). Then we have

T (G, g) ≤ d(2 +
2

h
)r′/supp(y)e.

Furthermore, we have

1

2
r′/supp(y) .|G| T (G, y) ≤ d(2 +

2

h
)r′/supp(y)e.

Thus, under the above conditions, the mixing time T (G, y) is essentially n/supp(y) (up
to a small multiplicative constant).

2. Character bounds: Proof of Theorem 1.1

Throughout this section, let G be a connected reductive algebraic group over a field of
characteristic p > 0, F : G → G a Frobenius endomorphism, and let G := GF . We will
say GF is defined over Fq, if q is the common absolute value of eigenvalues of F acting on
X(T )⊗ R, where X(T ) is the character group of an F -stable (maximally split) maximal
torus T of G.

First we prove the following statement concerning Harish-Chandra restriction.

Proposition 2.1. Suppose that g ∈ G is such that CG(g) ≤ LF , where L is an F -stable
Levi subgroup of an F -stable parabolic subgroup P = UL of G with unipotent radical U .
Let ` = 0 or a prime not dividing p|g|, F an algebraically closed field of characteristic `,
and let ϕ be the Brauer character of some FG-module V . Also, let ψ denote the Brauer
character of the LF -module CV (UF ). Then

ϕ(g) = ψ(g).
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Proof (a) Write L := LF , P := PF , and U := UF . First we handle the case ` = 0.
Consider the map f : U → U given by f(u) = g−1ugu−1. Then, for u, v ∈ U we have that

f(u) = f(v)⇔ v−1u ∈ U ∩CG(g) ⊆ U ∩ L = 1⇔ u = v.

Thus the map f is injective, and so bijective. Hence, when u runs over U , ugu−1 runs
over the elements of gU , each element once:

{ugu−1 | u ∈ U} = gU.

Now we decompose V = CV (U)⊕ [V,U ] as a P -module (note that P = NG(U)), and let
Φ = diag(Φ1,Φ2) denote the representation of P with respect to some basis respecting
this decomposition. In particular, no irreducible constituent of (Φ2)|U is trivial, and so∑

u∈U Φ2(u) = 0. It follows that∑
u∈U

Φ(ugu−1) =
∑
u∈U

Φ(gu) = Φ(g)
∑
u∈U

Φ(u) =

= diag(Φ1(g)
∑
u∈U

Φ1(u),Φ2(g)
∑
u∈U

Φ2(u)) = diag(|U |Φ1(g), 0).

Taking the trace of both sides, we obtain |U |ϕ(g) = |U |ψ(g), as stated.

(b) For the modular case ` > 0, let χ◦ denote the restriction of any complex character
χ of G or P to `′-elements. It is well known, see e.g [22, Theorem 15.14], that any
Brauer character of G is a Z-combination of χ◦ with χ ∈ Irr(G). It follows that (in the
Grothendieck group of FG-modules) we can write V = V1−V2, where V1 and V2 are some
reductions modulo ` of CG-modules W1 and W2 affording complex characters χ1 and χ2.
Since ` 6= p, CV (U) = CV1(U)−CV2(U) in the Grothendieck group of FP -modules. Now
g ∈ P , ϕ(g) = χ1(g) − χ2(g), and the statement follows by applying the results of (a) to
W1 and W2.

Recall that the complex irreducible characters of G = GF can be partitioned into Harish-
Chandra series, see [5, Chapter 9]. We refer to [5] and [8] for basic facts on Harish-Chandra
restriction ∗RGL and Harish-Chandra induction RGL .

Proposition 2.2. There is a constant A = A(r) depending only on the semisimple rank
r of G with the following property. Suppose that χ ∈ Irr(G) is such that ∗RGL (χ) 6= 0
for L = LF , where L is a split Levi subgroup of G. Then the total number of irreducible
constituents of the L-character ∗RGL (χ) (with counting multiplicities) is at most A. In fact,
if [G,G] is simple then one can choose A = W (r)2, where W (r) denotes the largest order
of the Weyl group of a simple algebraic group of rank r.

Proof Since ∗RGL (χ) 6= 0, χ is not cuspidal. By [5, Proposition 9.3.1], we may assume
that L is a standard F -stable Levi subgroup of a standard F -stable parabolic subgroup
P = UL of G. Suppose that χ belongs to the Harish-Chandra series labeled by a standard
Levi subgroup L1 and a cuspidal character ψ ∈ Irr(L1). Here, L1 = LF1 , where L1 is a
split Levi subgroup of G, and χ is an irreducible constituent of RGL1

(ψ).

Suppose now that η is any irreducible constituent of ∗RGL (χ), and let η belongs to the
Harish-Chandra series labeled by a standard Levi subgroup L2 (of L) and a cuspidal char-
acter δ ∈ Irr(L2). Then η is an irreducible constituent of RLL2

(δ). Then by the adjointness
of the Harish-Chandra induction and restriction and their transitivity [8, Proposition 4.7],
we have that

0 < cη := [∗RGL (χ), η]L = [χ,RGL (η)]G

≤ [χ,RGL (RLL2
(δ))]G = [χ,RGL2

(δ)]G ≤ [RGL1
(ψ), RGL2

(δ)]G.
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Since ψ ∈ Irr(L1) and δ ∈ Irr(L2) are cuspidal, it follows by [5, Proposition 9.1.5] that the
pair (L1, ψ) is G-conjugate to the pair (L2, δ) and RGL1

(ψ) = RGL2
(δ). Hence, with no loss

of generality we may replace (L1, ψ) by (L2, δ). Furthermore, by [5, Proposition 9.2.4],
[RGL1

(ψ), RGL1
(ψ)]G can be bounded by the order of the Weyl group W (G) of G and so in

terms of the semisimple rank r as well. Thus we can bound cη in terms of r. The same
is true for [RLL1

(ψ), RLL1
(ψ)]L, and so for the number of possibilities for η. In particular, if

[G,G] is simple, then |W (L)| ≤ |W (G)| ≤W (r) and so we can choose A(r) = W (r)2.

From now on we assume that p is a good prime for G (and K = K is a field of char-
acteristic p). Then a theory of generalized Gelfand-Graev representations (GGGRs) was
developed by Kawanaka [24]: for each unipotent element u ∈ G = GF one can associate a
GGGR with character Γu (which depends only the conjugacy class of u in G).

Suppose now that O = uG is an F -stable unipotent conjugacy class in G. By the Lang-
Steinberg theorem, since G is connected we may assume that u ∈ G. Then O is called a
unipotent support for a given ρ ∈ Irr(G) if

(i)
∑

g∈OF ρ(g) 6= 0;

(ii) If O′ is any F -stable unipotent class of G such that
∑

g∈O′F ρ(g) 6= 0, then dimO′ ≤
dimO.

As shown in [11], as p is a good prime for G, each ρ ∈ Irr(GF ) has a unique unipotent
support Oρ (see also [14]).

Next, O ∩ G is a disjoint union ∪ri=1u
G
i of, say, r conjugacy classes in G. If A(x) =

CG(x)/CG(x)◦ is the component group of the centralizer of x ∈ G, then one defines

Γ̃u :=

r∑
i=1

[A(ui) : A(ui)
F ]Γui .

Then O is called a wave front set for a given ρ ∈ Irr(G) if

(i) [Γ̃u, ρ]G 6= 0;

(ii) If O′ = vG is a unipotent class of G with v ∈ GF such that [Γ̃v, χ]G 6= 0, then
dimO′ ≤ dimO.

Work of Lusztig [43] and subsequently [52, Theorem 14.10] show that each ρ ∈ Irr(G) has
a unique wave front set O∗ρ. Moreover, if Z(G) is connected, then O∗ρ is the unipotent class
denoted by ξ(ρ) in [43, (13.4.3)], and, if G is defined over Fq, then as a polynomial in q
with rational coefficients, the degree of ρ is

ρ(1) =
1

nρ
q(dimO∗ρ)/2 + lower powers of q, (2.1)

for some positive integer nρ dividing |A(u)| if u ∈ Oρ. Furthermore, if DG denotes the
Alvis-Curtis duality (cf. [8, Chapter 8]), and ρ∗ = ±DG(ρ) ∈ Irr(G) for ρ ∈ Irr(G), then

Oρ∗ = O∗ρ, (2.2)

(see e.g. [52, §1.5]).

The next two lemmas are well known to the experts. In particular, they have similar
conclusions and proofs to Theorems 4.1(ii) and 1.7 of [38]. However, for application to
bounding the function f(r) in Theorem 1.1 (see Proposition 2.7), we need the extra detail
in the lemmas concerning polynomials being products of cyclotomic polynomials, which is
not made explicit in [38]. We omit their proofs.

Lemma 2.3. There is a constant N = N(r) depending only on r and a collection of N
monic polynomials, each being a product of cyclotomic polynomials, such that the following
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statement holds. If G is a connected reductive group of semisimple rank ≤ r in good
characteristic p, GF is defined over Fq, and s ∈ GF is semisimple, then

[GF : (CG(s)◦)F ]p′ = f(q),

where f is one of the chosen polynomials.

In what follows, with a slight abuse of language, we also view t as a cyclotomic polyno-
mial in variable t.

Lemma 2.4. There are constants B1 = B1(r) and B2 = B2(r) depending only on r, and
B2 monic polynomials, each being a product of cyclotomic polynomials in one variable t,
such that the following statement holds for any connected reductive algebraic group G of
semisimple rank ≤ r with connected center in good characteristic. When GF is defined
over Fq and χ ∈ Irr(GF ), then

χ(1) = (1/nχ)Deg∗χ(q),

where Deg∗χ is one of the chosen monic polynomials, nχ ∈ N, 1 ≤ nχ ≤ B1. In fact,
if [G,G] is simple, then one can take B1 to be the largest order of the component group
CH(u)/CH(u)◦, where H is any simple algebraic group of rank r and u ∈ H any unipotent
element.

Recall that the set of unipotent classes in G admit the partial order ≤, where uG ≤ vG

if and only if uG ⊆ vG .

Proposition 2.5. Let p be a good prime for G, G = GF , and let u ∈ G be a unipotent
element. Then the following statements hold.

(i) DG(Γu) is unipotently supported, i.e. is zero on all non-unipotent elements of G.
(ii) Suppose that DG(Γu)(v) 6= 0 for some unipotent element v ∈ G. If Z(G) is discon-

nected, assume in addition that q is large enough compared to the semisimple rank
of G. Then uG ≤ vG.

Proof (i) is well known, and (ii) is [7, Scholium 2.3]. (Even though [7] assumes p is
large enough, in fact the proof of [7, Scholium 2.3] needs only that p is a good prime. As
pointed out to the authors by J. Michel and J. Taylor, the proof in [7] relies on the validity
of the results in [44], which were shown to hold under the indicated hypotheses by Shoji
[49], cf. [50, Theorem 4.2].)

Proposition 2.6. Let G/Z(G) be simple, p be a good prime for G, G = GF , and let Z(G)
be connected. Suppose that χ ∈ Irr(G) is such that ∗RGL (χ) 6= 0 for L = LF , where L is a
split Levi subgroup of G, and let η ∈ Irr(L) be an irreducible constituent of ∗RGL (χ). Let
O∗χ = vG and O∗η = uL. Then dimuG ≤ dim vG.

Proof (i) To distinguish between GGGRs for G and L, we will add the relevant super-
script to their notation, e.g. ΓLu is the GGGR of L labeled by u. First we show that if
RGL (DLΓLu )(w) 6= 0 for w ∈ G, then w is unipotent and uG ≤ wG . Indeed, by Proposition
2.5(i), the generalized character DLΓLu is unipotently supported, whence RGL (DLΓLu ) is also
unipotently supported. In particular, w is unipotent. Recall that L is a Levi subgroup
of an F -stable parabolic subgroup P with unipotent radical U . The condition on w now
implies that some G-conjugate of w is w′ = xy where x ∈ UF , y ∈ L, and DLΓLu (y) 6= 0.
By Proposition 2.5 applied to DLΓLu , y is unipotent and uL ≤ yL. It then follows by [13,
Lemma 5.2] (which is true for any connected reductive group G) that

uG ≤ yG ≤ (xy)G = wG ,

as stated.
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(ii) By the assumption, we may assume that u ∈ L and η is an irreducible constituent
of the GGGR ΓLu . It follows that

0 < [∗RGL (χ), η]L ≤ [∗RGL (χ),ΓLu ]L = [χ,RGL (ΓLu )]G =

= [DG(χ), DG(RGL (ΓLu ))]G = [DG(χ), RGL (DLΓLu )]G.

Here we use the self-adjointness of DG and the intertwining property of DG with RGL (see
[8, Proposition 8.10, Theorem 8.11]). In particular, there must exist some w ∈ G such
that

DG(χ)(w) 6= 0, RGL (DLΓLu )(w) 6= 0.

Let χ∗ = ±DG(χ) ∈ Irr(G) so that Oχ∗ = O∗χ = vG with v ∈ G. By (i), the condition

RGL (DLΓLu )(w) 6= 0 implies that w is unipotent and

uG ≤ wG .
Now we can apply [1, Theorem 8.1] (which uses only the assumption that Z(G) is connected
and G/Z(G) is simple; cf. also [52, Corollary 13.6]) to obtain from χ∗(w) 6= 0 that

dimwG ≤ dim vG .

It follows that

dimuG ≤ dimwG = dimwG ≤ dim vG ,

as desired.

Proof of Theorem 1.1.

(i) Denoting ρ = ∗RGL (χ), we have by Proposition 2.1 that |χ(g)| = |ρ(g)| ≤ ρ(1). Hence,
it suffices to bound ρ(1) in terms of χ(1). Fix the semisimple rank r of G. First we handle
the case where Z(G) is connected. Note that H := G/Z(G) is simple (of rank r) as [G,G]
is simple. Consider any irreducible constituent η of ρ and let O∗η = uL for some u ∈ L
and O∗χ = vG for some v ∈ G. By Proposition 2.6 we have dimuG ≤ dim vG . On the other

hand, dimuL ≤ α(dimuG) by the choice of α, and so

dimuL ≤ α(dim vG). (2.3)

Now (2.1) and Lemma 2.4 imply that

η(1) ≤ (q + 1)(dimuL)/2, B1χ(1) ≥ (q − 1)(dim vG)/2.

Let D = D(r) denote the largest dimension of unipotent classes in simple algebraic groups
of rank r. Using (2.3) and noting that dim vG = dim vH ≤ D(r), we then get

η(1) ≤
(
q + 1

q − 1

)αD/2
·Bα

1 χ(1)α.

Setting C := 3D/2 and applying Proposition 2.2, we now obtain

ρ(1) ≤ A(max
η

η(1)) ≤ AB1Cχ(1)α,

and we are done in this case.

(ii) Next we handle the general case, where Z(G) may be disconnected. Consider a

regular embedding of G into G̃ with connected center and with compatible Frobenius map
F : G̃ → G̃, and set G̃ := G̃F , Z := Z(G̃). As G̃ = Z[G,G], G̃ and G have the same
semisimple rank. Also, if L is a Levi subgroup of an F -stable parabolic subgroup P of
G, then we can embed P in the F -stable parabolic subgroup P̃ = UL̃ = NG̃(U), with the

same unipotent radical U as of P and with L̃ = ZL. Now, set L̃ := L̃F and note that

G̃ = GL̃. (2.4)
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Consider any χ ∈ Irr(G) and some χ̃ ∈ Irr(G̃) lying above χ, and denote

ρ := ∗RGL (χ), ρ̃ := ∗RG̃
L̃

(χ̃).

Note that P̃F = UL̃, and by (2.4) we can choose a set of representatives of G-cosets in G̃

that is contained in L̃. Hence, by Clifford’s theorem we can write

χ̃|G =
t∑
i=1

χxi ,

where 1 = x1, . . . , xt ∈ L̃. As L̃ normalizes U , we see that the Harish-Chandra restrictions
ρi of χxi to the Levi subgroup L all have the same dimension, equal to [χ|U , 1U ]U . Thus

ρ(1) = ρ̃(1)/t, χ(1) = χ̃(1)/t.

Now, any unipotent element v ∈ L̃ is contained in L̃ ∩ G = L, and vG̃ = vG and similarly

vL̃ = vZL = vL. Thus the constants α for L and for L̃ as defined in Theorem 1.1 are the
same. Applying Lemma 2.1 to χ and the result of (i) to χ̃, we now have

|χ(g)| = |ρ(g)| ≤ ρ(1) =
1

t
ρ̃(1) ≤ 1

t
f(r)χ̃(1)α ≤ f(r)χ(1)α.

This completes the proof of Theorem 1.1.

Remark In the case of GLn(q), it is possible to give an alternate proof of Theorem 1.1
which does not use recent results on unipotent supports and wave front sets; we do not
give this here, but a sketch can be found in the last section of [31].

The next result provides a bound for the function f in Theorem 1.1.

Proposition 2.7. Under the assumptions of Theorem 1.1, suppose that q ≥ q0 ≥ 2. Then
f(r) can be chosen to be

W (r)2 ·B(r) ·
(
q0 + 1

q0 − 1

)(d(r)−r)/2
,

where W (r) is the largest order of the Weyl group of H, B(r) is the largest order of A(u)
for unipotent elements u ∈ H, and d(r) is the largest dimension of H, when H runs over
simple algebraic groups of rank r. In particular, if r ≥ 9 and q ≥ r2 + 1, one can take

f(r) = 22r+
√

2r+3(r!)2.

Proof By the proof of Theorem 1.1 we may choose f(r) = AB1C1, with C1 =

( q0+1
q0−1)(d(r)−r)/2 (because D = d(r) − r). Next, A ≤ W (r)2 by Proposition 2.2 and

B1 ≤ B(r) by Lemma 2.4. Now assume that r ≥ 9 and q0 ≥ r2 + 1. Then W (r) = 2r · r!,
d(r) = 2r2 + r and so (

q0 + 1

q0 − 1

)(d(r)−r)/2
≤
(

1 +
2

r2

)r2
.

It remains to bound B(r). If H = Spinn (with n = 2r or 2r + 1) and u =
∑

i J
ri
i is a

unipotent element in H with ri Jordan blocks of size i ≥ 1, then, according to [34, §3.3.5],
|A(u)| ≤ max(2, 2k), where k is the number of odd i with ri > 0. Note that

2r + 1 ≥
k∑
j=1

(2j − 1) = k2,
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and so |A(u)| ≤ 2
√

2r+1. Other simple groups of rank r can be analyzed similarly using

[34, Theorem 3.1] and yield smaller bound on |A(u)|. Hence we can take B(r) = 2
√

2r+1

and complete the proof by observing that(
1 +

2

r2

)r2
· 2
√

2r+1 < 2
√

2r+3.

We conclude the section with some examples illustrating the sharpness of the α-bound
in Theorem 1.1.

Example 2.8. (i) Let G := GLn(q) with q > 2, and let g = diag(ε, In−1) ∈ G for some
1 6= ε ∈ F×q . Then L := CG(g) = GL1(q)×GLn−1(q) is a Levi subgroup of G.

Let χ = ρn denote the unipotent character of GLn(q) labeled by the partition
(n− 1, 1). Then ρn(1) = (qn − q)/(q − 1). A computation inside the Weyl group of
G (using the Comparison Theorem [20, Theorem 5.9]) shows that

∗RGL (ρn) = 1GL1(q) ⊗ (ρn−1 + 1GLn−1(q)).

Now Proposition 2.1 implies that

|χ(g)| = ρn−1(1) + 1 =
qn−1 − 1

q − 1
≈ χ(1)

n−2
n−1

if q is large enough. For this Levi subgroup L, the value of α in Theorem 1.1 is
precisely n−2

n−1 (see Proposition 4.3), so the α-bound is perfectly sharp in this example.

(ii) The Steinberg character St of a group G = GF as in Theorem 1.1 provides a good
source of examples, since its values are easily calculated (see [5, 6.4.7]): for a semisim-
ple element g ∈ G,

|St(g)| = |CG(g)|p,
(where p is the underlying characteristic).

As a first example, let G = GLn(q) and let g = diag(ε, In−1) as in the previous
example. Then

St(g) = |GLn−1(q)|p = q
1
2

(n−1)(n−2) = St(1)
n−2
n ,

while α = n−2
n−1 for the Levi subgroup CG(g), as observed above.

As another example, let G = GLn(q) and suppose n = mk, where 2 ≤ m ≤ q − 1
and k > 1. Let λ1, . . . , λm be distinct elements of F×q , and define

g = diag(λ1Ik, · · · , λmIk) ∈ G.
Let L = CG(g) = GLk(q)

m. By Corollary 1.11, α(L) = 1
m . On the other hand,

St(g) = q
1
2
mk(k−1) = St(1)

k−1
mk−1 ,

and the exponent k−1
mk−1 is close to α = 1

m for k large and m fixed.
Similar examples showing the sharpness of Theorem 1.1 for the Steinberg character

of other classical groups can be constructed using [39, Lemma 3.4].
(iii) Fix m ≥ 2 and consider G = GL2m(q) with q large enough (compared to m). Again

let λ1, . . . , λm be distinct elements of F×q , and define

g = diag(λ1I2, · · · , λmI2) ∈ G.
Then L = CG(g) = GL2(q)m, and α = α(L) = 1/m as mentioned above. Consider

the unipotent characters χ(2m−j,j) of G labeled by the partition (2m− j, j), 0 ≤ j ≤
m. Then

∑j
i=0 χ

(2m−i,i) is the permutation character of G acting on the set of j-
dimensional subspaces of the natural module V = F2m

q . Note that g fixes mqm−1(1+
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O(q−1)) (m−1)-dimensional subspaces of V , and (q+1)m(1+O(q−1)) m-dimensional

subspaces of V . It follows that for χ := χ(m,m) we have

χ(g) = qm(1 +O(q−1)),

whereas χ(1) = qm
2
(1 +O(1/q)). Thus χ(g) ≈ χ(1)α.

(iv) More generally, fix k,m ≥ 2 and consider G = GLmk(q) with q large enough (com-
pared to max(m, k)). Again let λ1, . . . , λm be distinct elements of F×q , and define

g = diag(λ1Ik, · · · , λmIk) ∈ G.

Then L = CG(g) = GLk(q)
m, and α = α(L) = 1/m as mentioned above. Consider

the unipotent character χ := χµ of G labeled by the partition µ := (mk) ` mk.
Observe that ∗RGL (χ) contains the Steinberg character StL of L. (Indeed, by [18,
Proposition 5.3], the Alvis-Curtis duality functor DG sends χ to ±χν , where ν =
µ′ = (km) ` mk, whereas DL(1L) = StL. Now, by [8, Corollary 8.13] we have

[∗RGL (χ), StL]L = [∗RGL (±DG(χν)),StL]L = ±[DL(∗RGL (χν)), DL(1L)]L
= ±[∗RGL (χν), 1L]L = ±[χν , RGL (1L)]G.

But note that L is a Levi subgroup of a rational parabolic subgroup of type ν of
GLmk(Fq), whence χν is an irreducible constituent of RGL (1L), and the claim follows.)
Since χ is a unipotent character and the Harish-Chandra restriction preserves rational
series, every irreducible constituent of ∗RGL (χ) is a unipotent character of L and so
contains g ∈ Z(L) in its kernel. It now follows from Proposition 2.1 that

χ(g) = ∗RGL (χ)(g) = ∗RGL (χ)(1) ≥ StL(1) = qmk(k−1)/2.

On the other hand, the degree formula [5, §13.8] implies that

χ(1) = qm
2k(k−1)/2(1 +O(q−1)),

and we again obtain that χ(g) & χ(1)α.
(v) As far as the exceptional groups of Lie type are concerned, it is again interesting

to use the Steinberg character to test the sharpness of Theorem 1.1. For example,
let G = E8(q), and suppose g ∈ G is a semisimple element with centralizer a Levi
subgroup of type E7. Then

St(g) = |E7(q)|p = q63 = St(1)β,

where β = 21
40 , while the α-value of this Levi is 17

29 , by Theorem 1.7. One can calculate
such β-values for all the Levi subgroups in Table 1 of Theorem 1.7; it is never the
case that β = α, but in some cases the values of β and α are quite close.

(vi) We offer one more example with G = GF = SLn(q), with q ≥ n+ 2, and

g = diag(λ1, λ2, · · · , λn) ∈ G,

where λ1, . . . , λn ∈ F×q are pairwise distinct. Then T = CG(g) is a maximally split
maximal torus. Let µ ` n be such that the irreducible character Sµ of the Weyl group
W (G) ∼= Sn labeled by µ has the largest possible degree, and let χ := χµ denote the
unipotent character of G labeled by µ. As in (iv), every irreducible constituent of
∗RGT (χ) is trivial at g. A computation in W (G) and Proposition 2.1 show that

χ(g) = ∗RGT (χ)(g) = ∗RGT (χ)(1) = Sµ(1),

whereas α(T ) = 0. Thus for the function f in Theorem 1.1 we have

f(n− 1) ≥ Sµ(1) ≥ e−1.283
√
n
√
n!,

with the latter following from the main result of [40], [55].
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3. General and special linear groups

In this section we prove Theorems 1.3, 1.4 and 1.5. Along the way we establish character
bounds for unipotent elements of GLn(q) (see Theorem 3.3), and also for elements with
extension-field centralizers for its semisimple parts (Theorem 3.2).

3.1. Proof of Theorem 1.4. We will keep the notation of §2.

(i) First we consider the case G = GLn. In this case, the centralizer of any element
in G is connected and one can check (e.g. using [17]) that nρ = 1 in (2.1). Let ϕ be an
irreducible `-Brauer character of G = GF = GLn(q) and g ∈ G as in Theorem 1.4. By
Proposition 2.1, |ϕ(g)| = |ψ(g)| for ψ := ∗RGL (ϕ). According to [4, Theorem B], one can
label complex and `-Brauer characters of G and find a complex character χ ∈ Irr(G) with
the same label as of ϕ such that both the generic degree of χ and the lower bound (given
in [4, Theorem B]) are monic polynomials in q of same degree say Nχ. Using (2.1) and
the equality nχ = 1, we have

Nχ := (dimO∗χ)/2.

As χ(1) is a product of cyclotomic polynomials in q, we also have that

χ(1) ≤ (q + 1)Nχ .

Furthermore, one can easily check that the lower bound in [4, Theorem B] satisfies

ϕ(1) ≥ (q − 1)Nχ .

As Nχ ≤ dimG = n2, there is a constant D = D(n) ≤ 3n
2

such that

χ(1)

ϕ(1)
≤ D. (3.1)

Since χ and ϕ have the same labeling, ϕ is a constituent of the restriction χ◦ of χ to
`′-elements of G. Let P = UL be an F -stable parabolic subgroup of G with Levi subgroup
L and unipotent radical U . As U := UF is an `′-group, we also have that

ψ(1) = [ϕ|U , 1U ]U ≤ [χ|U , 1U ]U = ρ(1),

where ρ := ∗RGL (χ). The proof of Theorem 1.1 yields a function f : N→ N such that

ρ(1) ≤ f(n)χ(1)α.

Choosing h such that h(n) ≥ f(n)D and applying (3.1), we obtain

|ϕ(g)| = |ψ(g)| ≤ ψ(1) ≤ ρ(1) ≤ h(n)ϕ(1)α,

as desired.

(ii) Now we consider S = SLn(q) as the derived subgroup of G = GLn(q), an irreducible
`-Brauer character ϕ1 of S, and its Harish-Chandra restriction ψ1 to the Levi subgroup
L ∩ S, where L is a suitable split Levi subgroup of G. Note that we can choose a set of
representatives of S-cosets in G that is contained in L. If ϕ ∈ IBr(G) lies above ϕ1, then
by Clifford’s theorem and the last observation we can write

ϕ|S =

t∑
i=1

(ϕ1)xi ,

where 1 = x1, . . . , xt ∈ L. As L normalizes U , we see that the Harish-Chandra restrictions
ψi of (ϕ1)xi to the Levi subgroup L ∩ S all have the same dimension. Thus

ψ1(1) = ψ(1)/t, ϕ1(1) = ϕ(1)/t.

Applying Proposition 2.1 and the results of (i), we now have

|ϕ1(g)| = |ψ1(g)| ≤ ψ1(1) =
1

t
ψ(1) ≤ 1

t
h(n)ϕ(1)α ≤ h(n)ϕ1(1)α,
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and so we are done.

3.2. Proof of Theorem 1.3. (i) First we consider the case G = GLn(q). If L is a torus,
we can choose a regular semisimple element g ∈ L and take χ = 1G. Assume now that L
is not a torus, and choose u ∈ Lunip such that

α(L) = (dimuL)/(dimuG). (3.2)

We may assume that

L = GLn1(q)×GLn2(q)× · · · ×GLnr(q), u = diag(u1, u2, . . . , ur) (3.3)

where n1 ≥ n2 ≥ . . . ≥ nr ≥ 1; furthermore, ui ∈ GLni(q) is a unipotent element, the sizes
of whose Jordan blocks form a partition λi ` ni. Let µi ` ni be the partition conjugate to
λi and let χµi be the unipotent character of GLni(q) labeled by µi. Now Green’s formula
for the degree of χµi (see the discussion before [4, Theorem A]) implies that χµi(1) is a
monic polynomial in q of degree (1/2) dimuLi . Hence, if we choose Cn large enough, then
using Lemma 2.3 we see that

γ(1) ≥ (1/2)q(1/2) dimuL , (3.4)

for γ := χµ1 ⊗ χµ2 ⊗ . . .⊗ χµr ∈ Irr(L) whenever q ≥ Cn.

Next, let µ := µ1 +µ2 + . . .+µr, where we have added zero parts to µi so that µ1, . . . , µr
have the same number of parts, and then take the ith part of µ to be the sum of all the ith

parts of µ1, . . . , µr. Again using Green’s formula, we then see that the unipotent character

χ = χµ of G labeled by µ is a monic polynomial in q of degree (1/2) dimuG , whence

χ(1) ≤ 2q(1/2) dimuG (3.5)

if q ≥ Cn.

For any ν ` m, let Sν denote the irreducible character of Sm labeled by ν. An application
of the Littlewood-Richardson formula [23, 2.8.14] shows that the restriction of Sµ to
Sn1 ×Sn2 × . . .×Snr contains Sµ1 ⊗Sµ2 ⊗ . . .⊗Sµr . This computation in the Weyl groups
of G and L implies that γ is an irreducible constituent of ∗RGL (χ). Now, if q ≥ n + 1,
then we can choose a semisimple element g ∈ Z(L) such that CG(g) = L. As in Example
2.8(iv), we have that every irreducible constituent of ∗RGL (χ) has g in its kernel, and so by
Proposition 2.1,

χ(g) = ∗RGL (χ)(g) = ∗RGL (χ)(1) ≥ γ(1).

Hence the statement follows from the choice (3.2) of u and the bounds (3.4), (3.5).

(ii) To handle the case of SLn(q), first we recall that any unipotent character of G
remains irreducible over SLn(q). Furthermore, as mentioned in the proof of Theorem 1.1,
for any split Levi subgroup L of G = GLn(Fq) we have G = [G,G]Z and L = (L∩ [G,G])Z,
where Z := Z(G). It follows that

dimuG = dimu[G,G], dimuL = dimuL∩[G,G]

for any element u ∈ Lunip = (L ∩ [G,G])unip. Finally, the condition (n!)n divides q − 1
implies by the next Lemma 3.1 that, for any non-toral Levi subgroup L given in (3.3) we
can find an element g ∈ SLn(q) with CG(g) = L. Now the statement for SLn(q) follows
from (i).

Lemma 3.1. Let 1 ≤ n1 ≤ n2 ≤ . . . ≤ nr with r, nr ≥ 2, n =
∑r

i=1 ni, and let q be a

prime power such that N := nr ·
∏r−1
i=1 (ni + 1) divides q − 1. Then, for

L := GLn1(q)×GLn2(q)× · · · ×GLnr(q) < G := GLn(q),

there exists a semisimple element s ∈ SLn(q) such that CG(s) = L.
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Proof Choose ζ ∈ F×q of order N , and for any d|N let ζd := ζN/d. Define

hi = ζ−1
(n1+1)(n2+1)...(ni+1)Ini ∈ GLni(q), 1 ≤ i ≤ r − 1, hr = ζInr ∈ GLnr(q).

We prove by induction on 1 ≤ i ≤ r − 1 that
∏i
j=1 det(hi) = ζ(n1+1)(n2+1)...(ni+1). The

induction base i = 1 is obvious. For the induction step from i− 1 to i ≥ 2, we have

i∏
j=1

det(hi) = ζ(n1+1)(n2+1)...(ni−1+1)ζ
−ni
(n1+1)(n2+1)...(ni+1) = ζ(n1+1)(n2+1)...(ni+1).

Hence, for s := diag(h1, h2, . . . , hr) ∈ Z(L) we have

det(s) = ζ(n1+1)(n2+1)...(nr−1+1)ζ
−nr = 1.

The construction of s and the condition nr ≥ 2 ensure that CG(s) = L.

3.3. Elements with extension-field centralizers.

Theorem 3.2. Let G = GLn(q) with n ≥ 2 and q ≥ 8, and let g = su = us with s ∈ G
semisimple and u ∈ G unipotent. Suppose that CG(s) ∼= GLn/k(q

k) for some 1 < k | n.
Then

|χ(g)|
χ(1)

≤ f(n)

qn/3

for any χ ∈ Irr(G) with χ(1) > 1 and f(n) = (11/7)n − 13/10. In particular, if q ≥ 227

then |χ(g)| ≤ χ(1)1−1/2n for all χ ∈ Irr(G).

Proof We proceed by induction on n ≥ 2. Let L := SLn(q) and let W = Fnq denote the
natural G-module. Since χ(1) > 1, all irreducible constituents of χL are non-trivial. In
particular, if n ≥ 3 then χ(1) ≥ (qn − q)/(q − 1) > qn−1 by [54, Theorem 1.1].

(i) First we consider the case k = n. Since |CG(g)| ≤ |CG(s)| = qn − 1, we have that

|χ(g)| ≤
√
|CG(g)| < qn/2; in particular,

|χ(g)|/χ(1) ≤ q1−n/2 ≤ q−n/3 (3.6)

if n ≥ 6, or if n = 5 and χ(1) ≥ q5. The condition CG(s) ∼= GL1(qn) also implies that no
eigenvalue of g on W can belong to Fq.

Assume now that n = 5 and χ(1) < q5. By [54, Theorem 3.1], every irreducible
constituent of χL is one of q− 1 Weil characters, of degree (qn− 1)/(q− 1)− δ with δ = 0
or 1. Since Weil characters of L extend to Weil characters of G, χ is a Weil character.
Since no eigenvalue of g on W belongs to Fq, using the well-known character formula for
Weil characters of G, see e.g. [53, (1.1)], we now see that |χ(g)| ≤ q + 1 and so

|χ(g)|/χ(1) < (q2 − 1)/(q5 − q) < q−n/3.

Consider the case n = 4. If χ(1) ≥ (q − 1)(q3 − 1)/2, then

|χ(g)|
χ(1)

≤ (q4 − 1)1/2

(q3 − 1)(q − 1)/2
< q−n/3

as q ≥ 8. Assume now that χ(1) < (q3 − 1)(q − 1)/2. By [54, Theorem 3.1], every
irreducible constituent of χL is one of q − 1 Weil characters, all of which extend to Weil
characters of G. Arguing as in the previous case, we see that

|χ(g)|/χ(1) < (q2 − 1)/(q4 − q) < q−n/3.

If n = 3, then inspecting the character table of G [51] we get

|χ(g)|
χ(1)

≤ max

(
1

q(q + 1)
,

3

(q2 − 1)(q − 1)

)
< q−n/3.
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Similarly, for n = 2 we have |χ(g)|/χ(1) ≤ 2/(q − 1) < (1.15)q−n/3 as q ≥ 8.

Note that f(n) > 1.16 for all n ≥ 2. Hence, to complete the induction base 2 ≤ n ≤ 5,
it remains to consider the case (n, k) = (4, 2). Again inspecting the character table of G
[12], we see that

|χ(g)|/χ(1) < 1/(q − 1)2 < q−n/3.

(ii) From now on we may assume that n ≥ 6 and 2 ≤ k < n. Consider the action of u on

the natural module W ′ = Fn/k
qk

of CG(s). If this action induces an element with only one

Jordan block, then |CG(g)| = |CGLn/k(qk)(u)| < qn and again (3.6) holds. Thus we may

assume that the 〈g〉-module W ′ is decomposable as a direct sum of two 〈g〉-submodules:
W ′ = W ′1 ⊕W ′2, with

dimF
qk
W ′1 = a ≥ n/2k, dimF

qk
W ′2 = b ≥ 1.

Viewing W ′i as vector spaces over Fq, we get a g-invariant decomposition W = W1 ⊕W2,
with dimW1 = ak ≥ n/2 and dimW2 = bk ≥ 2. Writing g = diag(g1, g2) with gi ∈ Gi :=
GL(Wi) and let si denote the semisimple part of gi, we have

CG1(s1) = GL(W ′1) ∼= GLa(q
k), CG2(s2) = GL(W ′2) ∼= GLb(q

k).

In particular, the induction hypothesis applies to the elements gi ∈ Gi.

(iii) Let V be a CG-module affording the character χ, and denote Li := [Gi, Gi] for
i = 1, 2. We decompose the G1 ×G2-module V as

V = V1 ⊕ V2 ⊕ V3,

where V1 := CV (L1), every irreducible constituent of V2 is trivial on L2 but not on L1,
and every irreducible constituent of V3 is nontrivial on L1 and on L2. Let χj denote the
G1 ×G2-character afforded by Vj , for 1 ≤ j ≤ 3.

If α⊗ β is any irreducible constituent of χ3, then α(1), β(1) > 1 by the construction of
V3, whence

|α(g1)|/α(1) ≤ f(ak)q−ak/3, |β(g2)|/β(1) ≤ f(bk)q−bk/3

by the induction hypothesis applied to g1 ∈ G1 and g2 ∈ G2. It follows that

|χ3(g)|/χ3(1) ≤ f(ak)f(bk)q−n/3. (3.7)

Next, let α ⊗ β be any irreducible constituent of χ2. Then α(1) > 1 and β(1) = 1 by
the construction of V2, whence

|α(g1)|/α(1) ≤ f(a)q−ak/3, |β(g2)| = 1

by the induction hypothesis applied to g1 ∈ G1. It follows that

|χ2(g)|/χ2(1) ≤ f(a)q−ak/3. (3.8)

(iv) We will now estimate χj(1)/χ(1) for j = 1, 2. Let d(X) denote the smallest degree
of a nontrivial complex representation of a finite group X, and let

am,q :=

√
q − 1

d(SLm(q))
+

1

d(SLm−1(q))
, bm,q :=

∞∑
i=m+1

ai,q.

The proof of [28, Proposition 4.2.3] shows that, if U is any nontrivial irreducible CSLn(q)-
module for n > m ≥ 3 and SLm(q) is embedded naturally in SLn(q), then

dim CU (SLm(q)) ≤ bm,q dimU. (3.9)
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By [54, Theorem 1.1], for m ≥ 4 we have am,q < (q+
√
q − 1)/qm−2(q+ 1). It follows that

bm,q <
q +
√
q − 1

q + 1

∞∑
i=m−1

q−i =
q(q +

√
q − 1)

qm−1(q2 − 1)
<

1.36

qm−1
(3.10)

if m ≥ 3 and q ≥ 8. As a3,q =
√
q − 1/(q2 + q) + e/(q − 1) with e := 3 − gcd(q, 2) and

q ≥ 8, we then have

b2,q = a3,q + b3,q < 1.3q−2/3. (3.11)

Now, since ak ≥ n/2 ≥ 3, we have ak − 1 ≥ n/3. Applying (3.9) and (3.10), we get

χ1(1)/χ(1) ≤ bak(q) < 1.36q−n/3. (3.12)

Similarly,

χ2(1)/χ(1) ≤ bbk(q) < 1.36q−(bk−1) ≤ 0.17q−bk/3. (3.13)

if bk ≥ 3, and

χ2(1)/χ(1) ≤ b2(q) < 1.3q−2/3. (3.14)

if bk ≥ 2 (using (3.11) instead of (3.10)). Note that in the case bk = 2, we must have
6 ≤ n = ak + 2, and so ak ≥ 4, ak − 1 ≥ 1 + n/3, whence instead of (3.12) we have

χ1(1)/χ(1) ≤ bak(q) < 0.17q−n/3. (3.15)

(v) Now, if bk ≥ 3, then putting (3.7), (3.8), (3.12), (3.13) together, we obtain

|χ(g)| ≤ |χ1(1)|+ |χ2(g)|+ |χ3(g)| ≤ χ(1)

qn/3
· (1.36 + 0.17f(ak) + f(ak)f(bk)).

If bk = 2, then (3.7), (3.8), (3.14), (3.15) altogether imply

|χ(g)| ≤ |χ1(1)|+ |χ2(g)|+ |χ3(g)| ≤ χ(1)

qn/3
· (0.17 + 1.3f(ak) + f(ak)f(bk)).

The choice f(n) = (11/7)n − 1.3 ensures that

f(n) = f(ak)f(bk) + 1.3f(ak) + 1.3f(bk) + 0.39 > f(ak)f(bk) + 0.17f(ak) + 1.36,

whence |χ(g)|/χ(1) ≤ f(n)q−n/3, completing the induction step of the proof. The last

statement then follows, since f(n) < qn/12 when q ≥ 227 and χ(1) < qn
2/2.

3.4. Unipotent elements in general linear groups.

Theorem 3.3. There is a function g : N → N such that the following statement holds.
For any n ≥ 2, any prime power q, ` = 0 or any prime not dividing q, any irreducible
`-Brauer character ϕ of G := GLn(q), and any unipotent element 1 6= u ∈ G,

|ϕ(u)| ≤ g(n) · ϕ(1)
n−2
n−1 .

Proof Note that the statement holds when n = 2 (choosing g(2) = 1) as in this case we
have |ϕ(u)| ≤ 1. So in what follows we may assume n ≥ 3.

Recall the partial order ≤ on the set of unipotent classes of G = GLn(Fq): xG ≤ yG

precisely when xG ⊆ yG , and we consider G = GF for a suitable Frobenius endomorphism
F . Note that the unipotent classes in G are parametrized by partitions of n. We will prove
by induction using the partial order ≤ that, if u is parametrized by a partition λ ` n then

|ϕ(g)| ≤ gλ(n) · ϕ(1)
n−2
n−1

for some positive constant gλ(n) depending only on λ. Then the statement follows by
taking

g(n) := max
λ`n

gλ(n).
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Observe that u is a Richardson unipotent element, that is, we can find an F -stable
parabolic subgroup P with unipotent radical U such that uG ∩ U is an open dense subset
of U that forms a single P-orbit. Indeed, as shown in [21, §5.5], if µ = (µ1, . . . , µl) ` n is the
conjugate partition associated to λ, then one can just take P to be the standard parabolic
subgroup generated by the upper-triangular Borel subgroup together with matrices in
the block-diagonal form, with block sizes µ1 × µ1, . . . , µl × µl. Furthermore, CG(u) is
connected (as G = GLn(Fq)), of dimension equal to dimP − dimU , and contained in P,
see [5, Corollary 5.2.2]. Since uG ∩ U is a single P-orbit and CG(u) = CG(u)◦ = CP(u)
is connected, by the Lang-Steinberg theorem, uG ∩U contains an F -stable element u′, i.e.
u′ ∈ uG ∩ U for U := UF . The connectedness of CG(u) implies by the Lang-Steinberg
theorem that u, u′ ∈ uG ∩ U are G-conjugate. Replacing u by u′, we may assume that
u ∈ uG ∩ U . Then, again applying the Lang-Steinberg theorem, we see that any element
w ∈ uG ∩ U can be written as huh−1 for some h ∈ P := PF . Conversely, the P -orbit of u
is contained in uG ∩ U . Thus uG ∩ U is a single P -orbit, and so

|uG ∩ U | = [P : C],

where C := CP (u) = CP(u)F = CG(u)F . The structure of CG(u) is given in [34, Theorem
3.1]. As dim CG(u) = dimP − dimU , there is a constant A(n) depending only on n such
that

|uG ∩ U | ≥ 2

3
|U | (3.16)

for all q ≥ A(n) and all λ ` n. By taking g(n) large enough, say

g(n) ≥ max
q′=pr<A(n)

{
|ψ(w)|
ψ(1)

n−2
n−1

| 1 6= w ∈ GLn(q′), w unipotent, ψ ∈ IBr`(GLn(q′))

}
,

(3.17)
we may assume that the condition q ≥ A(n) is indeed satisfied.

Let 1 6= v ∈ U r uG be labeled by ν ` n. Then

v ∈ U = uG ∩ U ,

and so vG ≤ uG . In particular, if uG is minimal with respect to ≤, then no such v exists.
If uG is not minimal, then by the induction hypothesis applied to vG we have

|ϕ(v)| ≤ gν(n) · ϕ(1)
n−2
n−1 (3.18)

for some positive constant gν(n) depending only on ν. We will let g′λ(n) be the largest
among all gν(n) when ν runs over the partitions for all such v.

Let ρ := ∗RGL (ϕ), where L is a Levi subgroup of P . Then

ρ(1) = [ϕU , 1U ]U =
1

|U |

ϕ(1) +
∑

16=v∈UruG
ϕ(v) +

∑
w∈uG∩U

ϕ(w)

 ,

and so

|uG ∩ U | · |ϕ(u)| ≤ |U |ρ(1) +
∑

1 6=v∈UruG
|ϕ(v)|+ ϕ(1).

It now follows from (3.16) and (3.18) that

|ϕ(u)| ≤ 3

2
ρ(1) +

1

2
g′λ(n)ϕ(1)

n−2
n−1 +

3

2|U |
ϕ(1).

The proof of Theorem 1.4 and the bound α ≤ n−2
n−1 in Proposition 4.3 imply that

ρ(1) ≤ h(n)ϕ(1)
n−2
n−1 .
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On the other hand, |U | ≥ qn−1 and ϕ(1) < qn
2/2, whence for n ≥ 4 we have

ϕ(1)

|U |
< ϕ(1)

n−2
n−1 .

The same conclusion holds for n = 3 since ϕ(1) < q4 in this case. Hence the statement
follows for u by taking

gλ(n) :=
3

2
h(n) +

1

2
g′λ(n) +

3

2
.

3.5. Special linear groups.

Proposition 3.4. Let n ≥ 3 and let F be an algebraically closed field of characteristic `,
where either ` = 0 or ` - q. Let V be an irreducible FGLn(q)-module which is reducible
over SLn(q). Then one of the following holds:

(i) dim(V ) > q(n2+n)/4(q − 1).
(ii) n = 3 and dim(V ) ≥ (q − 1)(q2 − 1).
(iii) n = 4 and dim(V ) ≥ (q − 1)(q2 − 1)(q3 − 1).

(iv) 2|n, and dim(V ) =
∏n/2
j=1(q2j−1−1) or

∏n/2
j=1(qn/2+j−1)/(qj−1). Furthermore, V is

as described in [25, Proposition 5.10(ii), (iii)], and VSLn(q) is a sum of two irreducible
constituents.

Proof Repeat the same proof of [25, Proposition 5.10], but for all n.

3.6. Proof of Theorem 1.5. (i) In this proof, let G := GLn(q) = GF in the notation of
§2, and let S := [G,G]. Write g = su = us with s ∈ G semisimple and u ∈ G unipotent.
By Theorem 1.4 and Proposition 4.3, we may assume that there is no split Levi subgroup
L of G such that CG(s) ≤ LF , equivalently, CG(s) ∼= GLn/k(q

k) for some k|n. For a fixed
n, by choosing h(n) large enough (similarly to the choice (3.17) of g(n)), we may assume
that q ≥ 227. Hence, we are done by Theorems 3.2 (when k > 1) and 3.3 (when k = 1) if
H = G.

From now on we will assume that H = S, and let χ̃ ∈ Irr(G) be lying above χ. Applying
the result for G, we are done if χ = χ̃|S . Hence, we may assume that χ̃|S is reducible, and
so either

χ(1) ≥ χ̃(1)/[G : S] > q(n2+n)/4 (3.19)

or case (iv) of Proposition 3.4 holds for a CG-module V affording χ̃. Since

1

2

n/2∏
j=1

(q2j−1 − 1) > qn
2/4(1−

n/2∑
j=1

q1−2j)/2 > q(n2−1)/4

when 2|n and q ≥ 227, we now have that

χ(1) > q(n2−1)/4. (3.20)

Assume in addition that gS = gG. By Clifford’s theorem we may write χ̃|S =
∑t

i=1 χ
xi

for some elements xi ∈ G. Since gS = gG, gxi is S-conjugate to g and so χxi(g) = χ(g).
It follows that

|χ(g)|/χ(1) = |
t∑
i=1

χxi(g)|/tχ(1) = |χ̃(g)|/χ̃(1),

and so we are done again. So we may assume that gS 6= gG.

(ii) Here we consider the case k > 1, and recall that u is a unipotent element in
CG(s) = GLn/k(q

k). Note that detF
qk

maps CG(s) onto F×
qk

, and the norm map F×
qk
→ F×q

is surjective. It follows that sG = sS . Hence, our assumption gG 6= gS implies that u 6= 1.
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It is well known that the centralizer of any non-central element in GLm(q) has order at

most qm
2−2m+2. It follows that

|CG(g)| = |CCG(s)(u)| ≤ qn2/k−2n+2k ≤ qn2/2−2n+4,

whence |χ(g)| ≤ |CG(g)|1/2 ≤ qn2/4−n+2. Together with (3.20), this implies

|χ(g)| < χ(1)1−1/2n.

(iii) Now we consider the case k = 1, i.e. s ∈ Z(G), and prove the stronger bound that

|χ(g)| ≤ h(n)χ(1)
n−2
n−1 . (3.21)

Without loss of generality we may assume that g = u. Let ri denote the number of Jordan
blocks of size i in the Jordan canonical form of u for each i ≥ 1; in particular,

∑
i iri = n.

It is easy to see that gG = gS if gcd(i | ri ≥ 1) = 1. So the assumption gG 6= gS implies

gcd(i | ri ≥ 1) > 1, (3.22)

in particular, r1 = 0. We claim (for n ≥ 5) that either

|CG(g)| ≤ q(n2−3n+6)/2 (3.23)

or g has type J
n/2
2 (i.e. r2 = n/2). Indeed, by [34, Theorem 3.1] we have that |CG(g)| < qN ,

where

N :=
∑
i

ir2
i + 2

∑
i<j

irirj . (3.24)

Now, if r2 = 0, then 3N ≤ (
∑

i iri)
2 = n2 and so (3.23) holds for n ≥ 6. If r2 = 0

and n = 5, then (3.22) implies that r5 = 1, again yielding (3.23). Suppose now that
n/2 > r := r2 > 0, whence r3 = 0 by (3.22) and n− 2r = t :=

∑
j≥4 jrj ≥ 4. Then

N = 2r2 + 4r
∑
j≥4

rj +
∑
j≥4

jr2
j + 2

∑
4≤j<j′

jrjrj′ ≤ 2r2 + rt+ t2/4 ≤ (n2 − 4n+ 8)/2.

In the case of (3.23), |χ(g)| ≤ q(n2−3n+6)/4 and so (3.21) holds because of (3.20).

It remains to consider the case g = J
n/2
2 . Let W = Fnq = 〈e1, . . . , en〉Fq denote the

natural module for G, with g(e1) = e1. Here, |CG(g)| < qn
2/2 by (3.24), whence

|χ(g)| ≤ qn2/4. (3.25)

Suppose first that

χ(1) > q(n−1)(n−2)/2. (3.26)

If n ≥ 8, then (3.25) and (3.26) immediately imply (3.21). In the remaining case we have
n = 6. An application of Clifford’s theorem to the normal subgroup SL6(q)Z(GL6(q)) of
GL6(q) yields 2 ≤ χ̃(1)/χ(1) ≤ 6. In particular, in the case of Proposition 3.4(iv) we have

χ(1) ≤ (q4 − 1)(q5 − 1)(q6 − 1)

2(q − 1)(q2 − 1)(q3 − 1)
< q10,

contrary to (3.26). Thus Proposition 3.4(i) must hold, whence

χ(1) ≥ 1

6
q21/2(q − 1) ≥ q45/4

(for q ≥ 1301, which can be guaranteed by taking h(6) large enough). The latter, together
with (3.25), implies (3.21).

It remains to consider the case where (3.26) does not hold. Let χ be afforded by a
CS-module V and let P := StabS(〈e1〉Fq) = UL. We decompose the P -module V as
CV (U)⊕ [U, V ] and let γ, respectively δ, denote the P -character of CV (U), respectively of
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[U, V ]. In particular, γ = ∗RSL(χ), and so, arguing as in part (ii) of the proof of Theorem
1.4 we get

|γ(g)| ≤ γ(1) ≤ f(n)χ(1)
n−2
n−1 (3.27)

(for some function f : N→ N). Next, we decompose

[U, V ] =
∑

1U 6=λ∈Irr(U)

Vλ,

as a direct sum of U -eigenspaces, which are transitively permuted by L ∼= GLn−1(q).

Note that g has prime order p|q, and it acts on Irr(U) r {1U} with exactly qn/2 − 1 fixed
points. Certainly, the trace of g in its action on

∑
λ∈O Vλ for any nontrivial g-orbit O on

Irr(U) r {1U} is zero. Since χ(1) ≤ q(n−1)(n−2)/2, we have that

|δ(g)| ≤ (qn/2 − 1) dim(Vλ) = (qn/2 − 1) · dim([U, V ])

qn−1 − 1
<

χ(1)

qn/2−1
≤ χ(1)

n−2
n−1 .

Together with (3.27), this completes the proof.

The above proof yields the following analogue of Theorem 3.3:

Corollary 3.5. Let S := SLn(q) ≤ G := GLn(q), and let u ∈ G be any nontrivial
unipotent element. Assume that either ` = 0, or ` - q and uG = uS. Then for any
ϕ ∈ IBr`(S),

|ϕ(u)| ≤ g(n) · ϕ(1)
n−2
n−1 .

Remark 3.6. For any ε > 0, it seems possible to improve the term qn/3 in Theorem 3.2
to qn/(2+ε) at the price of using much bigger f(n), as well as a much bigger lower bound
on q. As a consequence, one could perhaps improve the exponent 1 − 1/2n in Theorem
1.5 to 1− 1/((1 + ε)n). But we did not try to pursue it.

4. Bounds for the constant α(L): Proof of Theorems 1.6, 1.7 and 1.10

For the proof of Theorem 1.6, it is convenient to handle the classical types SL, Sp
and SO separately. As in the theorem, let K be an algebraically closed field of good
characteristic. Note that by the defnition of α(L), this value does not depend on the
isogeny type of G.

4.1. Case G = GLn(K) or SLn(K). To prove Theorem 1.6 in this case we use the following
lemma, which transfers attention from unipotent to semisimple elements in the analysis
of α(L). Denote by Ji a unipotent i × i Jordan block matrix, and by

∑
i J

ni
i the matrix

in SLn(K) with ni diagonal blocks Ji for each i, where n =
∑
ini.

Lemma 4.1. Let u =
∑

i J
ni
i be a unipotent element of GLn(K) where n =

∑
ini. Let

λj (j ∈ N) be distinct scalars in K×, and for each i let Di = diag(λ1, λ2, . . . , λi). Define

s :=
∑
i

Dni
i ∈ GLn(K).

Then dim CGLn(K)(u) = dim CGLn(K)(s).

Proof Observe that

dim CGLn(K)(s) =
(∑

i≥1 ni

)2
+
(∑

i≥2 ni

)2
+ · · ·

=
∑

i in
2
i + 2

∑
i<j ininj

which is equal to dim CGLn(K)(u) by [34, 3.1].

For a subgroup X of GLn(K), define Xss to be the set of semisimple elements of X.
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Corollary 4.2. If n ≥ 2 and L is a Levi subgroup of G = GLn(K) or SLn(K), then

α(L) ≤ maxs∈LssrZ(G)
dim sL

dim sG
.

Proof We have L = G ∩
∏r
j=1GLaj (K), where

∑r
j=1 aj = n. Let u ∈ Lunip, so that

u =
r∑
j=1

∑
i

J
nij
i ,

where
∑

i inij = aj . The condition u 6= 1 means that there are some i ≥ 2 and j ≥ 1

such that nij > 0. If we define s =
∑r

j=1

∑
iD

nij
i , where Di is as in the statement of

Lemma 4.1 (and the scalars λj are chosen so that s has determinant 1 in the case where
G = SLn(K)), then s /∈ Z(G). Now Lemma 4.1 shows that dim CL(u) = dim CL(s) and
dim CG(u) = dim CG(s).

Proof of Theorem 1.6 for GLn(K), SLn(K)

We prove the theorem for G = GLn(K) and point out the small adjustment needed for
SLn(K) at the end of the proof. Let L be a Levi subgroup of G. Adopting an obvious
notational convention we take

L = GLa(K)×GLb(K)× · · · ×GLz(K).

Write Vn = Va⊕Vb⊕· · ·⊕Vz for the corresponding direct sum decomposition of Vn = Kn.

In view of Corollary 4.2, it suffices to prove that

maxs∈LssrZ(G)
dim sL

dim sG
≤ 1

2

(
1 +

dimL
dimG

)
. (4.1)

Let s be a semisimple element of L, and let λ1, . . . , λk be the distinct eigenvalues of s
on Vn. Write

s|Va = diag (λ
(a1)
1 , . . . , λ

(ak)
k ), . . . , s|Vz = diag (λ

(z1)
1 , . . . , λ

(zk)
k ),

where
∑k

i=1 ai = a, and so on (superscripts denote multiplicities). Then

CG(s) = GLa1+b1+...(K)× · · · ×GLak+bk+...(K),

CL(s) =
k∏
i=1

GLai(K)×
k∏
i=1

GLbi(K)× · · · .

To prove (4.1) we need to show

1

2

dimG − dimL
dimG

≤ dim sG − dim sL

dim sG
. (4.2)

Now
1

2

dimG − dimL
dimG

=
ab+ ac+ bc+ . . .

(a+ b+ . . .)2
,

while
dim sG − dim sL

dim sG
=

∑
i 6=j(aibj + aicj + bicj + . . .)∑

i<j(ai + bi + · · · )(aj + bj + · · · )
.

Hence (4.2) is equivalent to the inequality

(
∑
ai
∑
bi +

∑
ai
∑
ci +

∑
bi
∑
ci + · · · ) ·

(∑
i<j(ai + bi + · · · )(aj + bj + · · · )

)
≤ (
∑
ai +

∑
bi + · · · )2 ·

∑
i 6=j(aibj + aicj + bicj + · · · ).

(4.3)
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Now observe that all the terms on the left hand side of this inequality appear with at most
the same multiplicity on the right hand side. Hence (4.3) holds, and the proof is complete
for G = GLn(K).

For the case where G = SLn(K), we need to prove the inequality (4.3) with the first

term on the right hand side replaced by (
∑
ai +

∑
bi + · · · )2−1. This remains true, since

the terms on the right hand side but not the left hand side of (4.3) include
∑

i 6=j(a
3
i bj +

a3
i cj + b3i cj + · · · ), which is at least

∑
i 6=j(aibj + aicj + bicj + · · · ) ≥ 1.

We also deduce the following general bound, which was used in the proof of Theorem
3.3 and also in Example 2.8.

Proposition 4.3. If L is a Levi subgroup of G = GLn(K), then α(L) ≤ n−2
n−1 , with equality

if and only if L = GLn−1(K)×GL1(K).

Proof Choose maximal a ≤ n
2 such that L ≤ GLa(K)×GLn−a(K). By Theorem 1.6 for

GLn(K), proved above, we have

α(L) ≤ 1

2

(
1 +

dimL
dimG

)
≤ 1

2

(
1 +

a2 + (n− a)2

n2

)
.

One checks that the right hand side is less than n−2
n−1 for n ≥ 2a, except in the following

cases:

(a) a = 1, in which case L = GL1(K)×GLn−1(K) (by the maximal choice of a);
(b) a = 2, n ≤ 5.

In case (b) we compute the values of α(L) and find that α(L) ≤ 1
2 < n−2

n−1 (note that

n ≥ 2a = 4 in this case).

Hence it remains to consider case (a). We claim that in this case, α(L) = n−2
n−1 . Let u

be a nontrivial unipotent element of L, and write u =
∑
Jnii , where

∑
ini = n. Then u

projects to the element Jn1−1
1 +

∑
i≥2 J

ni
i in the factor GLn−1(K) of L, so by [34, 3.1], we

have

dim CG(u) =
∑
in2
i + 2

∑
i<j ininj ,

dim CL(u) = 1 + (n1 − 1)2 +
∑

i≥2 in
2
i + 2(n1 − 1)

∑
j≥2 nj + 2

∑
2≤i<j ininj .

Defining s := dim[V, u] = n−
∑
ni, it follows that

(dimG − dimL)− (dim CG(u)− dim CL(u)) = 2s.

Next observe that
dimuL

dimuG
≤ n−2

n−1 ⇔ (n− 1) ((dimG − dimL)− (dim CG(u)− dim CL(u))) ≥ dimuG

⇔ 2(n− 1)s ≥ dimuG .

By [35, 3.4(i)] and its proof, we have dimuG ≤ s(2n−s), so the above inequality holds when

s ≥ 2. Finally, when s = 1 we have u = J2 + Jn−2
1 , and we calculate that dimuL

dimuG
= n−2

n−1 .

Hence α(L) = n−2
n−1 in case (1), and the proof is complete.

4.2. Symplectic groups. Now we prove Theorem 1.6 for symplectic groups. We revert
to Lie-theoretic notation, so assume that

G = Cn = Sp2n(K) = Sp(V ),

where V = V2n(K) is the natural module for G and n ≥ 2.

Let L be a Levi subgroup of G, so that L′ = Cn−r ×
∏
Ari ≤ Cn−r × Ar−1, where

1 ≤ r ≤ n. The first lemma deals with the case where r = n.

Lemma 4.4. If L ≤ An−1T1, then α(L) ≤ 1
2 .
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Proof Assume L ≤ An−1T1 = GLn, and let u be a nontrivial unipotent element of L.
Write u =

∑
Jnii ∈ SLn, where

∑
ini = n. As an element of G = Sp2n, u has Jordan

form
∑
J2ni
i . Hence by [34, 3.1],

dim CGLn(u) =
∑
in2
i + 2

∑
i<j ininj := cu,

dim CG(u) = 2
∑
in2
i + 4

∑
i<j ininj +

∑
i odd ni.

So dim CG(u) = 2cu + su, where su =
∑

i odd ni. It follows that

dimuL

dimuG
≤ dimuGLn

dimuG
≤ n2 − cu

2n2 + n− 2cu − su
≤ 1

2
,

and the conclusion follows.

Lemma 4.5. If L = Cn−rTr, then α(L) ≤ 1
2

(
1 + dimL

dimG
)
.

Proof Let u be a nontrivial unipotent element of L′ = Cn−r = Sp2n−2r, and write
u =

∑
Jnii with

∑
ini = 2n − 2r. In G = Sp2n, u has Jordan form Jn1+2r

1 +
∑

i≥2 J
ni
i .

Using [34, 3.1], we find that

dim CL(u)− dim CG(u) = 2r
∑

ni + 2r2. (4.4)

As in [35, p.509], define

s := dim[V, u] = 2n− 2r −
∑

ni.

Then (4.4) implies that dimuG − dimuL = 2rs. It also follows from [35, 3.4] and its proof
that

dimuG ≤ 1

2
s(4n− s+ 1). (4.5)

Now observe that

dimuL

dimuG
≤ 1

2

(
1 + dimL

dimG
)
⇔ dimuG ≤ 2 dimG(dimuG−uL)

dimG−dimL
⇔ dimuG ≤ 2s(2n2+n)

2n−r .

Clearly (4.5) implies that the last inequality holds, and so we are done.

Lemma 4.6. Suppose L′ ≤ Cn−r×Ar−1 ≤ Cn−r×Cr < G with r > 1, and let u = u1u2 ∈ L
be a unipotent element with u1 ∈ Cn−r, u2 ∈ Ar−1 < Cr. Then

dimuG ≥ dimuG1 + dimuCr2 .

Proof Let u1 =
∑
Jaii ∈ Cn−r and u2 =

∑
Jbii ∈ Ar−1, where

∑
iai = 2n − 2r,∑

ibi = r. Then

u1 = Ja1+2r
1 +

∑
i≥2 J

ai
i ∈ G = Sp2n,

u2 =
∑
J2bi
i ∈ Cr, and

u =
∑
Jai+2bi
i ∈ G.

Now using [34, 3.1], we compute that

dim CG(u1) + dim CCr(u2)− dim CG(u)
= 2r2 + r + 2r

∑
ai − 2

∑
iaibi − 2

∑
i<j i(aibj + ajbi)

= 2r2 + r + 2
(

(
∑
ai)(

∑
ibi)−

∑
iaibi −

∑
i<j i(aibj + ajbi)

)
≥ 2r2 + r
= dimCr,

and the result follows.

Proof of Theorem 1.6 for G = Cn
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Let L be a Levi subgroup of G, so L′ = Cn−r ×
∏
Ari ≤ Cn−r × Ar−1 ≤ Cn−r × Cr,

where 1 ≤ r ≤ n. Let u = u1u2 be a nontrivial unipotent element of L, where u1 ∈ Cn−r,
u2 ∈ Ar−1. Using Lemma 4.6, we have

dimuL

dimuG
≤ dimu

Cn−r
1 + dimu

Ar−1

2

dimuG1 + dimuCr2

. (4.6)

Also Lemmas 4.4 and 4.5 imply that

dimuAr−1

dimuCr
≤ 1

2
, and

dimuCn−r

dimuG
≤ 1

2

(
1 +

dimCn−rTr
dimG

)
.

Hence (4.6) implies that

dimuL

dimuG
≤ 1

2

(
1 +

dimCn−rTr
dimG

)
≤ 1

2

(
1 +

dimL
dimG

)
.

This completes the proof of Theorem 1.6 for G = Cn.

4.3. Orthogonal groups. We complete the proof of Theorem 1.6 by handling the or-
thogonal groups. The proof for G = Bn = SO2n+1(K) is very similar to that for G = Cn:
one shows that Lemmas 4.4–4.6 also hold in the Bn case (with L = Bn−rTr in Lemma 4.5
and L′ ≤ Bn−r ×Ar−1 ≤ Bn−r ×Dr in Lemma 4.6), and the theorem follows. Things are
a little different in the Dn case, so assume now that

G = Dn = SO2n(K) = SO(V ) (n ≥ 4).

Let L be a Levi subgroup of G. Then L′ = Dn−r ×
∏
Ari ≤ Dn−r × Ar−1, where

1 ≤ r ≤ n and r 6= n− 1.

Lemma 4.7. Suppose L′ ≤ An−1 and L′ 6= An−1. Then α(L) ≤ 1
2 .

Proof By assumption, L ≤ GLa×GLb where a+ b = n and a, b ≥ 1. Let u = u1u2 ∈ L,
where u1 =

∑
Jaii ∈ GLa and u1 =

∑
Jbii ∈ GLb (so

∑
iai = a,

∑
ibi = b). Then

u =
∑
J2ai+2bi
i ∈ G. By [34, 3.1],

dim CL(u) =
∑

ia2
i +

∑
ib2i + 2

∑
iaiaj + 2

∑
ibibj =: cu,

and

dim CG(u) = 2
∑
i(ai + bi)

2 + 4
∑

i<j i(ai + bi)(aj + bj)−
∑

i odd(ai + bi)

= 2cu + 4
∑
iaibi + 4

∑
i<j i(aibj + ajbi)−

∑
i odd(ai + bi).

Then dimuL = a2 + b2 − cu, while

dimuG = 2(a+ b)2 − (a+ b)− (2cu + 4
∑

iaibi + 4
∑
i<j

i(aibj + ajbi)−
∑
i odd

(ai + bi)).

To prove the lemma we need to show that dimuG ≥ 2(a2 + b2 − cu). Using the equations∑
iai = a,

∑
ibi = b, this amounts to showing that

4
∑

(i2 − i)aibi + 4
∑
i<j

i(j − 1)(aibj + ajbi) +
∑
i odd

(ai + bi) ≥
∑

iai +
∑

jbj . (4.7)

Consider a term kak + lbl on the right hand side, with ak, bl 6= 0. If k = l = 1 this occurs
in the sum

∑
i odd(ai + bi); if k = l ≥ 2 it is less then or equal to the term 4(k2 − k)akbk

on the left hand side; and if k < l or l < k, it is at most 4k(l − 1)akbl or 4l(k − 1)akbl,
respectively. Hence the inequality (4.7) holds, completing the proof of the lemma.

The proofs of the next two lemmas are very similar to those of Lemmas 4.5 and 4.6.

Lemma 4.8. If L = Dn−rTr, then α(L) ≤ 1
2

(
1 + dimL

dimG
)
.
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Lemma 4.9. Suppose L′ ≤ Dn−r × Ar−1 ≤ Dn−r × Dr < G with r > 1, and let u =
u1u2 ∈ L be a unipotent element with u1 ∈ Dn−r, u2 ∈ Ar−1 < Dr. Then

dimuG ≥ dimuG1 + dimuDr2 .

Let L′ = Dn−r × L1 ≤ Dn−r × Ar−1, where L1 =
∏
Ari ≤ Ar−1. If either L1 <

Ar−1 or r = 1, then Theorem 1.6 follows from Lemmas 4.7–4.9 just as in the argument
following (4.6) for the case where G = Cn. Hence it remains to handle the case where
L′ = Dn−r × Ar−1 with 2 ≤ r ≤ n, r 6= n − 1. We deal with this case in the next two
lemmas.

Lemma 4.10. Suppose L′ = Dn−r ×Ar−1 with r ≥ 3. Then α(L) ≤ 1
2

(
1 + dimL

dimG
)
.

Proof Let u = u1u2 be a unipotent element of L, where u1 ∈ Dn−r, u2 ∈ Ar−1 < Dr.
We will show that

dimu
Ar−1

2

dimuDr2

≤ 1

2

(
1 +

dimL
dimG

)
. (4.8)

Given this, the lemma follows, since by Lemma 4.9 we have

dimuL

dimuG
≤ dimu

Dn−r
1 + dimu

Ar−1

2

dimuG1 + dimuDr2

,

and this is at most 1
2

(
1 + dimL

dimG
)

by Lemma 4.8 and (4.8).

It remains to establish (4.8). Let u2 =
∑
Jaii ∈ Ar−1 = SLr, so that u2 has Jordan

form
∑
J2ai
i in Dr. Then

dim CGLr(u2) =
∑
ia2
i + 2

∑
i<j iaiaj ,

dim CDr(u2) = 2
∑
ia2
i + 4

∑
i<j iaiaj −

∑
i odd ai.

Write s2 :=
∑

i odd ai. Then

dimu
Ar−1

2

dimuDr2

=
1

2
(1 +

r − s2

dimuDr2

),

so to prove (4.8) it suffices to show

r − s2

dimuDr2

≤ dimL
dimG

=
2(n− r)2 − (n− r) + r2

2n2 − n
. (4.9)

It is straightforward to see that the right hand side of (4.9) is at least 1
3 , so (4.9) holds if

dimuDr2 ≥ 3(r − s2). The minimum value of dimuDr2 occurs when u2 = J2 + Jr−2
1 ∈ SLr,

in which case dimuDr2 = 4r − 6. This shows that (4.9) holds when r ≥ 6.

It remains to establish (4.9) for r = 3, 4, 5. For r = 5, the possibilities for u2 ∈ SLr are
as follows:

u2 ∈ SL5 J2 + J3
1 J2

2 + J1 J3 + J2
1 J3 + J2 J4 + J1 J5

dimuD5
2 14 20 26 28 32 36

s2 3 1 3 1 1 1

For all these possibilities (4.9) holds. The arguments for r = 3, 4 are similar.

Lemma 4.11. Suppose L′ = Dn−2 ×A1. Then α(L) ≤ 1
2

(
1 + dimL

dimG
)
.

Proof Let u = u1u2 ∈ L with u1 =
∑
Jnii ∈ Dn−2 (so

∑
ini = 2n− 4) and u2 ∈ A1. If

u2 = 1 then the conclusion follows from Lemma 4.8, so assume u2 6= 1. Then dimuA1
2 = 2

and u = Jn2+2
2 +

∑
i 6=2 J

ni
i ∈ G = Dn. By [34, 3.1],

dim CL(u) = 1
2

∑
in2
i +

∑
i<j ininj −

1
2

∑
i odd ni + 2,

dim CG(u) = 1
2

∑
in2
i +

∑
i<j ininj −

1
2

∑
i odd ni + 2n1 + 4

∑
i≥2 ni + 4.
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Define s := dim[V, u] = 2n−
∑
ni − 2. Then

dimuG − dimuL = 4s+ 2n1 − 8.

Also [35, 3.4] gives dimuG ≤ 1
2s(4n − s + 1). Hence we see that the desired inequality

dimuL

dimuG
≤ 1

2

(
1 + dimL

dimG
)

is equivalent to the following

1

2
s(4n− s+ 1) ≤ (2n2 − n)(4s+ 2n1 − 8)

4n− 7
. (4.10)

Now 2n− 4 =
∑
ini ≥ 2

∑
i≥2 ni, and hence

s = 2n− 2− n1 −
∑
i≥2

ni ≥ 2n− 2− n1 − (n− 2) = n− n1.

It follows that 4s+ 2n1 ≥ 2n+ 2s, and hence (4.10) holds provided

1

2
s(4n− s+ 1) ≤ (2n2 − n)(2n+ 2s− 8)

4n− 7
,

which is true for all s when n ≥ 5. Finally, when n = 4 the conclusion of the lemma is
easily checked directly. This completes the proof.

This completes the proof of Theorem 1.6.

4.4. Exceptional groups: Proof of Theorem 1.7. Let G be a simple algebraic group
of exceptional type in good characteristic. In principle one can check Theorem 1.7 by
going through all possible Levi subgroups L of G, in each case listing all the unipotent
class representatives u in L and using Theorem 3.1 and Tables 22.1.1–5 of [34] to write
down the dimensions of uL and uG . In fact, this is precisely what we do for the Levi
subgroups listed in Table 1, and for the remaining ones (labelled “rest” in Table 1) we
need a short argument.

We will give the proof of Theorem 1.7 just for G = E7 and leave the other entirely
similar cases to the reader. First suppose that the Levi subgroup L is one of those listed
for G = E7 in Table 1. In each case we adopt the above procedure of listing unipotent
representatives u in L and calculating dimuL and dimuG . We illustrate below with the
case L′ = D6, listing in the first row the Jordan form of u on the 12-dimensional module
for L′ and in the second row the class of u in G as in [34, Table 22.1.2]:

u in D6 (22, 18) (3, 19) (24, 14) (26) (26)′ (3, 22, 15) (3, 24, 1)
u in E7 A1 A2

1 A2
1 (A3

1)(1) (A3
1)(2) (A3

1)(2) A4
1

dimuL 18 20 28 30 30 32 36
dimuG 34 52 52 54 64 64 70

(3, 2, 16) (32, 22, 12) (33, 13) (34) (42, 14) (5, 17) (42, 22) (42, 22)′

A2 A2A1 A2A
2
1 A2

2 A3 A3 (A3A1)(1) (A3A1)(2)

34 40 42 44 44 36 46 46
66 76 82 84 84 84 86 92

(5, 22, 13) (42, 3, 1) (5, 32, 1) (52, 12) (62) (62)′ (7, 15) (5, 3, 14)
(A3A1)(1) A3A

2
1 A3A2 A4 (A5)(1) (A5)(2) D4 D4(a1)

44 48 50 52 54 54 48 46
86 94 98 100 102 108 96 94

(7, 22, 1) (5, 3, 22) (9, 13) (7, 3, 12) (11, 1) (9, 3, ) (7, 5)
D4A1 D4(a1)A1 D5 D5(a1) D6 D6(a1) D6(a2)

52 48 56 54 60 58 56
102 96 112 106 118 114 110
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To compute the information in the tables, we list the possible Jordan forms for unipotent
elements u of D6, and in each case find a Levi subgroup of D6 in which u is contained
as a regular element; this Levi subgroup then gives the label of u as an element of E7

in Table 22.1.2 of [34]. For cases where all the Jordan blocks have even size – namely
the Jordan forms (26), (42, 22) and (62) – there are two D6-classes (see [34, 3.11]), and
the corresponding E7-classes can be worked out by computing the dimension of CL(E7)(u)
using the restriction L(E7) ↓ D6 (see [34, 11.8]), where L(E7) denotes the Lie algebraa of
G = E7.

Inspecting the tables above, we see that the maximum value of dimuL

dimuG
is equal to 30

54 ,

and is attained when u has Jordan form (26) in D6 and is in the class (A3
1)(1) of E7. Hence

for L′ = D6 we have α(L) = 5
9 , as in Table 1 of Theorem 1.7.

Now suppose L is not one of the Levi subgroups listed for G = E7 in Table 1 (i.e. L
does not have a factor E6, Dr or Ar (r ≥ 3). Then dimL ≤ dimA2A2A1T2 = 21.

Let u be a nontrivial unipotent element in L, and assume for a contradiction that

dimuL

dimuG
>

1

6
.

Now dimuL ≤ dimL − 7 ≤ 14, and hence dimuG < 84. It then follows from Table 22.1.2
of [34] that u is in one of the following E7-classes :

A1, A
2
1, (A

3
1)(1), (A3

1)(2), A4
1, A2, A2A1, A2A

2
1.

For these classes the maximum possible value of dimuL occurs for L′ = A2A2A1 or A4
1,

and is as follows:

u A1 A2
1 (A3

1)(1) (A3
1)(2) A4

1 A2 A2A1 A2A
2
1

max dim uL, 4 8 − 10 − 6 10 12
L′ = A2A2A1

max dim uL, 2 4 6 6 8 − − −
L′ = A4

1

dimuG 34 52 54 64 70 66 76 82

In all cases we see that dimuL

dimuG
< 1

6 , which is a contradiction. This completes the proof of
Theorem 1.7 for G = E7.

4.5. Proof of Corollary 1.8 and Theorem 1.9. The proof of Corollary 1.8 is immedi-
ate, since

1− 1

2

dim yG

dimG
=

1

2

(
1 +

dim CG(y)

dimG

)
=

1

2

(
1 +

dimL
dimG

)
,

and the right hand side above is at least α(L) by Theorems 1.6 and 1.7.

To prove Theorem 1.9, note that χ(1) ≥ qr/3 by [26]. Also, CG(g) ≤ CG(y) = L, so by

Theorem 1.1 and the inequality α(L) ≤ 1− 1
2

dim yG

dimG obtained above, we have

|χ(g)| ≤ f(r)χ(1)1− 1
2

dim yG
dimG .

Hence it suffices to prove that γr ≥ cs, where γ := (dim yG)/(2 dimG) and s := supp(y).
Define a := 1 if G = SLn and a := 1/2 otherwise.

Lemma 3.4 of [35] relates the support of elements of prime order in G with the size
of their conjugacy class. The proof of this lemma only uses the fact that these elements
are semisimple or unipotent. Since y ∈ Z(L) is semisimple, the lemma applies and shows
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in particular that |yG| ≥ c′qans, where c′ > 0 is an absolute constant. This implies that
dim yG ≥ ans, and so

γr ≥ ans

2 dimG
r =

anr

2 dimG
s = cs,

as needed.

4.6. Bounds for GLn: proof of Theorem 1.10 and Corollary 1.11. Let K an alge-
braically closed field of characteristic p, and let L = GLn1(K) × · · · × GLnm(K), so that
the Levi subgroup L in Theorem 1.10 can be viewed as LF for a suitable Frobenius en-
domorphism F . Fix n pairwise distinct elements λ1, . . . , λn ∈ K×. The statements follow
from Theorem 1.1 if ni0 = 1, so we will assume that ni0 ≥ 2.

Any unipotent element u ∈ L can be written as diag(u1, . . . , um), where ui ∈ Li :=
GLni(K) is unipotent. Write ui = Jbi1 ⊕ . . .⊕ Jbiri for a partition νi := (bi1 ≥ bi2 ≥ . . . ≥
biri ≥ 1) of ni, and define

si := diag(λ1, λ2, . . . , λbi1 , λ1, λ2, . . . , λbi2 , . . . , λ1, λ2, . . . , λbiri ) ∈ Li

Note that if aij is the multiplicity of λj as an eigenvalue of si, then (ai1 ≥ ai2 ≥ . . . ≥
ain ≥ 0) is the partition of ni conjugate to νi. Now Lemma 4.1 shows that

dimuLii = dim sLii = n2
i −

n∑
j=1

a2
ij .

Similarly, setting s := diag(s1, . . . , sm) ∈ L, we then get

dimuG = dim sG = n2 −
n∑
j=1

(

m∑
i=1

aij)
2.

Note that u 6= 1 precisely when max1≤i≤m ai2 > 0. Thus α(L) = β(n1, . . . , nm). Now
Theorem 1.10 follows immediately from Theorem 1.1 and Theorem 4.13(i) below,

Note by the Cauchy-Schwartz inequality that (
∑m

i=1 aij)
2 ≤ m

∑m
i=1 a

2
ij for each j, with

equality attained exactly when a1j = a2j = . . . = amj . Setting ∆ :=
∑

i,j a
2
ij , we have

β(n1, . . . , nm) ≤ max
∆

(
∑m

i=1 n
2
i )−∆

n2 −m∆
. (4.11)

Now suppose ni = n/m for i = 1, . . . ,m. Then
∑m

i=1 n
2
i /n

2 = 1/m, and so (4.11) implies
that β(n1, . . . , nm) ≤ 1/m. In fact equality holds if we choose a1j = a2j = . . . = amj for
all j. Thus Corollary 1.11 follows.

In what follows, for any partitions α = (a1 ≥ a2 ≥ . . . ≥ an ≥ 0) ` A and β = (b1 ≥
b2 ≥ . . . ≥ bn ≥ 0) ` B of A,B ≥ 1 we set

g(α) := A2−
n∑
i=1

a2
i , h(α) :=

g(α)

A
, α+β := (a1+b1, a2+b2, . . . , an+bn) ` (A+B). (4.12)

Lemma 4.12. Let α = (a1 ≥ a2 ≥ . . . ≥ an ≥ 0) ` A and β = (b1 ≥ b2 ≥ . . . ≥ bn ≥ 0) `
B be two partitions of A,B ≥ 1. Then h(α) + h(β) ≤ h(α+ β).

Proof We need to show that

A2 −
∑n

i=1 a
2
i

A
+
B2 −

∑n
i=1 b

2
i

B
≤

(A+B)2 −
∑n

i=1(ai + bi)
2

A+B
,
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equivalently, Γ ≥ 0, where

Γ := AB
∑
i 6=j

(ai + bi)(aj + bj)− (A+B)(B
∑
i 6=j

aiaj +A
∑
i 6=j

bibj)

= AB
∑
i 6=j

(aibj + ajbi)− (B2
∑
i 6=j

aiaj +A2
∑
i 6=j

bibj)

= AB(2AB − 2
∑
i

aibi)−B2(A2 −
∑
i

a2
i )−A2(B2 −

∑
i

b2i )

= B2
∑
i

a2
i +A2

∑
i

b2i − 2AB
∑
i

aibi.

By the Cauchy-Schwarz inequality,

2AB
∑
i

aibi ≤ 2 ·B(
∑
i

a2
i )

1/2 ·A(
∑
i

b2i )
1/2 ≤ B2

∑
i

a2
i +A2

∑
i

b2i ,

and the claim follows.

Theorem 4.13. In the notation of Theorem 1.10, assume that

n1 = n2 = . . . = nt > nt+1 ≥ . . . ≥ nm ≥ 1.

Then the following statements hold.

(i) n1/n ≥ β(n1, . . . , nm) ≥ (n1 − 1)/(n− t).
(ii) If m = 2, then β(n1, n2) = (n1 − 1)/(n− t). Moreover, if

1 6= u = diag(u1, u2) ∈ GLn1(q)×GLn2(q) = L

is a unipotent element, then (dimuL)/(dimuG) = α(L) precisely when one of the
following conditions holds.
(a) n1 = n2, and u1 and u2 have the same Jordan canonical form.
(b) n1 > n2, u1 is a transvection and u2 = 1.
(c) n1 = n2 + 1, and the sizes of Jordan blocks for u1 and u2 are

c1 ≥ . . . ≥ cj−1 ≥ cj ≥ cj+1 ≥ . . . ≥ cs, c1 ≥ . . . ≥ cj−1 ≥ cj − 1 ≥ cj+1 ≥ . . . ≥ cs,
respectively.

Proof (i) To prove the lower bound for β(n1, . . . , nm), we choose (ai1, . . . , ain) to be
(n1− 1, 1, 0, . . . , 0) if 1 ≤ i ≤ t and (ni, 0, . . . , 0) otherwise. To prove the upper bound, for
1 ≤ i ≤ m consider the partition αi := (ai1, ai2, . . . , ain) ` ni. By Lemma 4.12 we have

m∑
i=1

g(αi)

ni
= h(α1) + h(α2) + . . .+ h(αm) ≤ h(

m∑
i=1

αi) =
g(
∑m

i=1 αi)

n
(4.13)

in the notation of (4.12). Note that the condition max1≤i≤m ai2 > 0 ensures that g(
∑m

i=1 αi) >
0. Since n1 = max1≤i≤m ni, (4.13) now implies that

β(n1, n2, . . . , nm) =

∑m
i=1 g(αi)

g(
∑m

i=1 αi)
≤
n1(
∑m

i=1 g(αi)/ni)

g(
∑m

i=1 αi)
≤ n1

n
.

(ii) We may assume A := n1 > B := n2 by Corollary 1.11 and its proof. To ease the
notation, also write

(a11, a12, . . . , ain) = (a1, a2, . . . , an), (a21, a22, . . . , a2n) = (b1, b2, . . . , bn).

Then we need to show that∑
1≤i 6=j≤n(aiaj + bibj)∑

1≤i 6=j≤n(ai + bi)(aj + bj)
≤ A− 1

A+B − 1
,
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equivalently, Σ ≥ 0, where

Σ := (A− 1)
∑
i 6=j

(ai + bi)(aj + bj)− (A+B − 1)
∑
i 6=j

(aiaj + bibj)

= (A− 1)
∑
i 6=j

(aibj + ajbi)−B
∑
i 6=j

(aiaj + bibj)

= (A− 1)(2AB − 2
∑
i

aibi)−B(A2 +B2 −
∑
i

a2
i −

∑
i

b2i )

= B(A2 − 2A−B2) +B(
∑
i

a2
i +

∑
i

b2i )− 2(A− 1)
∑
i

aibi

= B(A2 − 2A−B2) +B
∑
i

(ai − bi)2 − 2(A− 1−B)
∑
i

aibi

= (A− 1−B)((A− 1 +B)B − 2
∑
i

aibi) +B(
∑
i

(ai − bi)2 − 1)

= (A− 1−B)(
∑
i

(A− 1 +B − 2ai)bi) +B(
∑
i

(ai − bi)2 − 1).

Note that the condition A ≥ B + 1 implies that
∑

i(ai − bi)2 ≥ 1, with equality attained
exactly when

A = B + 1, (a1, a2, . . . , an) = (b1, . . . , bi−1, bi + 1, bi+1, . . . , bn). (4.14)

First we consider the case when A − 1 + B ≥ 2ai for all i. As B ≥ 1, we see that
Σ ≥ 0, with equality attained exactly when (4.14) holds, which means the corresponding
unipotent element satisfies (c).

Suppose now that A− 1 + B ≤ 2ai − 1 for some i. Then ai ≥
∑

j 6=i aj + B. As B ≥ 1
and a1 ≥ a2 ≥ . . . ≥ an, this can happen only for one index i, and this index i is 1, and so

a1 ≥ A′ +B, (4.15)

where A′ :=
∑

j≥2 aj . In particular, A− 1 +B ≥ 2aj for all j ≥ 2. Now by (4.15) we have

Σ′ :=(A− 1−B)((A− 1 + b1)b1 − 2a1b1) + b1(a1 − b1)2

= b1((A− 1−B)(b1 − 1 +A′ − a1) + (a1 − b1)2)

= b1((a1 − b1)(A′ − 1) + (A′ − 1−B′)(b1 − 1 +A′ − a1))

= b1((a1 − b1)B′ + (A′ − 1)2 −B′(A′ − 1))

= b1((a1 −A′ − b1 + 1)B′ + (A′ − 1)2) ≥ 0,

with equality exactly when

B′ :=
∑
j≥2

bj = 0, A′ = 1. (4.16)

It follows that, if
∑

j≥2(aj−bj)2 ≥ 1, then Σ ≥ 0, with equality exactly when (4.16) holds,

which means the corresponding unipotent element satisfies (b).

Assume finally that
∑

j≥2(aj − bj)2 ≤ 0. Then aj = bj for all j ≥ 2 and A′ = B′. As

max(a2, b2) > 0, we must have A′ = B′ ≥ 1, and so by (4.15)

Σ′ = b1((a1 − b1 − 1)A′ + 1) ≥ 2b1,

yielding Σ ≥ b1 ≥ 1.

We note that Theorem 4.13(i) was inspired by some correspondence with M. Fraczyk
who is studying the situation in Theorem 1.10 using different methods.
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5. Random walks

In this section we prove Theorems 1.12–1.15 concerning random walks and covering
numbers.

Proof of Theorem 1.12

Suppose G is a simple algebraic group of rank r in good characteristic, and G = G(q) =
GF is a finite quasisimple group over Fq. Let y ∈ G be such that CG(y) ≤ L = LF for a
split Levi subgroup L of G. Write C = yG, and let h be the Coxeter number of G.

For a real number s, define

ζG(s) =
∑

χ∈Irr(G)

χ(1)−s. (5.1)

We will need the following result, which is [38, Theorem 1.1].

Lemma 5.1. If s > 2
h , then ζG(s)→ 1 as q →∞.

We first prove part I(a) of Theorem 1.12 together with the first statement of part (II)
(the C6 = G statement). We will prove the mixing time assertions later.

Let t be a positive integer. By a well-known result (see [2, Chapter 1, 10.1]), for g ∈ G
the number of ways of writing g as a product of t conjugates of y is

N(g) =
|C|t

|G|
∑

χ∈Irr(G)

χ(y)tχ(g−1)

χ(1)t−1
.

Define P t(g) = N(g)
|C|t , the probability that a random product of t conjugates of y is equal

to g, and let U(g) = 1
|G| , the uniform probability distribution on G. Then

|P t(g)− U(g)| ≤ 1

|G|
∑

χ(1)>1

(
|χ(y)|
χ(1)

)t
χ(1)2. (5.2)

Define

||P t − U ||∞ = |G|maxg∈G|P t(g)− U(g)|.

Write α = α(L). Then Theorem 1.1 gives |χ(y)|
χ(1) ≤ f(r)χ(1)α−1, and so (5.2) implies

||P t − U ||∞ ≤ f(r)t
∑

χ(1)>1 χ(1)t(α−1)+2

= f(r)t
(
ζG (t(1− α)− 2)− 1

)
.

By Lemma 5.1, ζG(t(1− α)− 2)− 1→ 0 as q →∞ provided

t(1− α)− 2 >
2

h
. (5.3)

If G is of exceptional type G2, F4, E6, E7 or E8, then 2
h is 1

3 , 1
6 , 1

6 , 1
9 or 1

15 respectively,
and Theorem 1.7 shows that (5.3) holds in all cases, provided t ≥ 6. This proves the first
statement of Theorem 1.12(II).

Now suppose G is of classical type. Then α ≤ 1
2(1+ dimL

dimG ) by Theorem 1.6. This implies

that (5.3) holds provided t > (4 + 4
h) dimG

dimG−dimL , proving Theorem 1.12(I)(a).

We now prove the assertions on mixing times in Theorem 1.12. For these we use the
Diaconis–Shashahani bound [6]:

(||P t − U ||1)2 ≤
∑

χ∈Irr(G),χ 6=1

(
|χ(y)|
χ(1)

)2t

χ(1)2. (5.4)
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As above, Theorem 1.1 shows that the right hand side of (5.4) is less than
f(r)2t

(
ζG(2t(1− α)− 2)− 1

)
, and hence tends to 0 as q →∞ provided 2t(1−α)−2 > 2

h .
Using Theorems 1.7 and 1.6, we now see as before that this inequality holds provided t ≥ 3
when G is of exceptional type, and provided t > (2 + 2

h) dimG
dimG−dimL when G is classical.

This proves the mixing time assertions, completing the proof of Theorem 1.12.

Proof of Theorem 1.15

This is very similar to the previous proof, using Corollary 3.5 instead of Theorem 1.1.
Let G = SLn(q) and let u ∈ G be a non-identity unipotent element. Let t ∈ N, and for
g ∈ G let P t(g) be the probability that a random product of t conjugates of u is equal to
g, and U(g) = 1

|G| . As in (5.2),

|P t(g)− U(g)| ≤ 1

|G|
∑

χ∈Irr(G),χ(1)>1

(
|χ(u)|
χ(1)

)t
χ(1)2.

By Corollary 3.5, |χ(u)|
χ(1) ≤ g(n)χ(1)−

1
n−1 for χ ∈ Irr(G), and hence

||P t − U ||∞ ≤ g(n)t
∑

χ(1)>1 χ(1)−
t

n−1
+2

= g(n)t
(
ζG( t

n−1 − 2)− 1
)
.

By Lemma 5.1, ζG( t
n−1−2)−1→ 0 as q →∞ provided t

n−1−2 > 2
n , which holds provided

t > 2n. This proves part (i) of Theorem 1.15. Part (ii) is proved in the same way, using
the bound (5.4).

Corollaries 1.13 and 1.14

Corollary 1.13 follows immediately from Theorem 1.12(I)(b). Corollary 1.14 is proved
exactly as above, using Theorem 1.5.

Next, we use some well-known observations to justify the remarks made after the state-
ment of Theorem 1.12.

Lemma 5.2. (i) Let G be a finite group, and let S be a generating subset of G that
satisfies |SN | < |G|(1− 1/e) for some integer N ≥ 1. Then the mixing time T (G,S)
of the random walk on the Cayley graph corresponding to S is at least N + 1.

(ii) Let G = SLn(q) with n ≥ 2 and S = yG with y = diag(µIn−1, λ), where µ, λ ∈ F×q
and µ 6= λ. Then T (G, y) ≥ n.

Proof (i) Define P (g) to be 1/|S| if g ∈ S and 0 otherwise, and let U(g) = 1/|G| for all
g ∈ G. Consider any 1 ≤ k ≤ N . Note that |Sk| ≤ |Sk+1| and so |Sk| ≤ |SN |, whence

||P k − U ||1 ≥
∑

g∈GrSk
|P k(g)− U(g)| =

∑
g∈GrSk

|U(g)| ≥ |Gr Sk|
|G|

> 1/e.

It follows that T (G,S) ≥ N + 1.

(ii) Note that (yG)n−1 is contained in X, the set of elements x ∈ G that have eigenvalue
µ on V = Fnq . Now if we fix 0 6= v ∈ V and let Y := {x ∈ G | x(v) = µv}, then it is easy
to see that |NG(Y )|/|Y | ≥ q − 1 ≥ 2. Hence,

|X| = | ∪g∈G gY g−1| ≤ |Y | · [G : NG(Y )] ≤ |G|/2.

Now we can apply (i) to S := yG.
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We conclude with a proof of our last theorem, connecting the mixing times of random
walks on classical groups with the support of certain elements.

Proof of Theorem 1.17

Set s := supp(y). Then CG(g) ≤ CG(y) = L. Theorem 1.12 I(b) gives

T (G, g) ≤ d(2 +
2

h
)

dimG
dimG − dimL

e

for large q. Now, dimG − dimL = dimG − dim CG(y) = dim yG ≥ ans as shown in the
proof of Theorem 1.9. This yields

T (G, g) ≤ d(2 +
2

h
)
dimG
ans

e.

Let c = c(G) be as in Theorem 1.9. Then we have dimG
an = r

c = r′. We obtain

T (G, g) ≤ d(2 +
2

h
)r′/se,

proving the first assertion.

It remains to prove the lower bound on T (G, y). By (1.3) we have

T (G, y) ≥ log |G|+ log(1− e−1)

log |yG|
&|G|

dimG
dim yG

.

It follows from [35, 3.4] and its proof that, for y semisimple, we have |yG| ≤ 2ans. Hence
dim yG ≤ 2ans, which, combined with the inequality above, implies

T (G, y) &|G|
dimG
2ans

≥ dimG
2an

/s =
1

2
r′/s,

as required.
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[10] F.G. Frobenius, Über Gruppencharaktere, Sitzber. Preuss. Akad. Wiss. (1896), 985-1021;
reprinted in ‘Gesammelte Abhandlungen’, Vol. 3 (Springer, Heidelberg, 1968), pp. 1–37.

[11] M. Geck, On the average values of the irreducible characters of finite groups of Lie type on
geometric unipotent classes, Doc. Math. 1 (1996), 293–317.
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