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Abstract

A NTICIPATED growth of sub-sea technologies for security, infrastructure inspection,
and exploration, motivates a deeper understanding of underwater navigation in

proximity to a submerged target surface. Common examples range from water tanks in
nuclear reactors, submerged oil rig infrastructure, to ship hulls with hidden compartments
and threats. We propose EVIE (Ellipsoidal Vehicle for Inspection and Exploration): a
water jet propelled, football sized ellipsoidal Unmanned Underwater Vehicle (UUV) with
a flattened base to house necessary sensors needed for surface inspections. The UUV is
designed - both in terms of its shape and propulsion - for gliding on submerged surfaces
for volumetric inspection, in addition to motion in free stream motion for visual inspections.
This thesis research explores the ground effect hydrodynamics due to the motion of a body
near a surface. We demonstrate the formation of a thin fluid bed layer between the surfaces
which enables smooth motion even on rough surfaces. The proposed robot eliminates the
need for wheels or suction. Use of ground effect fluid dynamics is common in aerial and
land vehicles but is almost unexplored for underwater applications. We focus exploiting
this phenomenon in real world applications, developing a prototype model to maintain
precise distances with reduced actuator control. We explore both parasitic (induced by
lateral motion) and explicitly induced (adding a impinging bottom jet) hydrodynamic
effects.

We find the force is not only non linear, it is not monotonic and has multiple equilibria. As
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the body approaches the surface it first experiences repulsion (enhanced thrust) due to an
upwash effect - similar to vertical take off and landing (VTOL) vehicles which can hover
at reduced thrust. This transitions to a suction force at small distances from a Venturi
effect. At still smaller distances there is again a repulsion due to choking flow between the
body and the surface.

Given the complexity of the force, and considering the hydrodynamic drag is non linear as
well, traditional linearization fails to capture the system behavior and is at best constrained
to a small region around the equilibrium. Instead, we use a higher dimensional, data driven
approach for modeling. The underlying hypothesis is that dynamical systems behave
linearly when recast in a suitable higher dimensional space. State variables are augmented
by adding auxiliary variables that sufficiently inform the nonlinear dynamics of the system.
We demonstrate a novel and a powerful method of individual estimation of each of the state
dependent non linearities by integrating a state estimator into the augmented system. The
estimator only uses measured, original states to estimate the non linear forces. The method
is extremely robust: even though the approximated state transition model has significant
inaccuracies, we prove guaranteed convergence of the unobserved states.

This doctoral thesis encompasses three unique contribution: design and development of
a prototype micro UUV platform for testing surface inspection methods; invention and
application of a unique underwater phenomenon to the UUV; and establishing a novel
mathematical approach for robust estimation of complex non linear elements using a
linearized, high dimensional data driven model. The research presented opens a whole
new door of opportunities and provides a new perspective for the design of next generation
subsea vehicles and technology.

Thesis Supervisor: Harry Asada, PhD
Title: Ford Professor of Engineering, Department of Mechanical Engineering, MIT
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Chapter 1

Introduction

1.1 Inspection of Submerged Structures

Anticipated growth in subsea operations and water based infrastructures [1] demands a

thorough understanding of operations in such environments, in particular for remote inspection

and maintenance. At present inspection mostly relies on human divers or tethered equipments,

including Remotely Operated Vehicles (ROVs)[2],[3]. Considerable work is being done to

develop autonomous underwater vehicles (AUVs) for subsea inspections[4] and mostly to

minimize human involvement in these tasks. However, as a literature search reveals, most

of these robots are large, expensive, often tethered, and made for operation in unobstructed

environment such as in the free ocean. There is a need for inspection of cluttered or

enclosed environment. Examples include: boiling water reactor (BWR) of nuclear power

plants, a cluttered environment with strict inspection protocols and schedules; ship propellors,

which need to be viewed from many angles; and inland aquaculture farms, where large or

tethered equipment disrupt the operation. In many cases the currently standard visual

inspection is insufficient, and more sophisticated methods are required to reveal internal

defects [5]. For example, internal hairline cracks on weld seams of a BWR tank [6]

in a nuclear power plant facility can lead to radiation leakages. Ship hull inspection
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[7] is another task which requires more than just visual inspection. For port security,

a combination of methods for inspecting ship hulls using visual, sonar or on contact

scanning equipments (ultrasound, electromagnetic etc) are areas of immense interest to

prevent smuggling of contrabands including weapons (biological, chemical, or nuclear)[8],

[9] in hidden cavities along the body or around the propeller [10]. For instance the US

Navy's anti-terrorism Marine mammal program [11] deployed dolphins for stealth, with

biological ultrasound, to find hidden threats in ship hulls or mines. But such a program is

not easily scalable across all the nation's harbors and sea ports.

Cavities, as well as internal cracks and other defects, can be detected with a variety

of high fidelity Non Destructive Testing (NDT) techniques: ultrasonic testing (UT)[12],

eddy current testing (EDT)[13], and laser based imaging [14]. UT is commonly used

by placing the sensor in direct contact with the target surface for higher resolution and

power efficiency. But deployment for usage of these on submerged infrastructure involve

expensive AUVs or bulky tethered ROVs or tethered sensors which can get snagged,

are cost prohibitive, and non-optimal for a complex environment. Therefore new areas

of innovation in cost effective and scalable technologies for underwater infrastructure

monitoring, maintenance and security is gaining momentum.

1.2 Challenges and Functional Requirements

Having provided many instances of submerged infrastructure inspection, we narrow down

to some the challenges common to many of them. The work we present is a continuation

of research started at the d'Arbeloff Robotics Lab, Department of Mechanical Engineering

at MIT [15]. Our focus is to develop inspection robots for cluttered environment, with a

BWR being our specific test case.
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Key requirements are:

1. Maneuver in cluttered, complex environments

2. Robust to collisions

3. Access areas - nozzles, weld seams, or narrow channels - that are unreachable by

towed sensors or tethered ROVs

4. High fidelity subsurface internal structure inspection in addition to visual, implying

the ability to move in close proximity to a submerged surface

5. Overcome surface roughness and maintain controlled distance for steady mapping

of target areas

6. Quick and efficient method since inspection downtime is expensive

The last requirement calls for an automated or robotic solution with minimal human

interference.

A big challenge of on-contact scan of a submerged surface is that, in most cases, the

surface is rough and motion on the surface is impeded by friction. This can by addressed

by maintaining a small, controlled fluid gap. For UT inspection, efficient signal transfer is

achieved by placing the sensor at an odd multiple of quarter wavelength, where reflection

from the surface adds in phase at the transducer [16]. However, the thickness of this fluid

layer is crucial. Figure (1-1) illustrates the resonance for a non-contact sensor. For a

300KHz UT transducer, wavelength 4mm in water (c, = 1500m/s), the transducer needs

to stay at n x 1 mm from the surface, where n is an odd integer. Shifting the sensor

from quarter to half wavelength cancels the pressure building up process, leading to weak

subsurface transmission (Figure 1-lb). This affect motivated investigating an inspection
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vehicle that can glide across a surface using a intermediate fluid buffer to overcome the

roughness. We explored how to transition from a multi-DOF, free stream robot to one that

can also scan a surface maintaining a steady and precisely controlled gap. An obvious

solution is a tight feedback loop to regulate the gap. However, such a brute force method

requires fast, powerful actuators. This may not be feasible; at best it is a power-hungry

solution. Therefore we explore an alternative approach that exploits natural hydrodynamic

effects of the fluid flow between the vehicle and the inspection surface, i.e. we exploit

the so-called "ground effects" to create a self stabilization mechanism. A thin fluid film

between solid surfaces - lubrication - is widely studied in tribology to facilitate smooth

motion[ 17]. However, a deeper understanding is necessary if the goal is to not just smooth

the motion but maintain stable thickness fluid layer at all times. In the subsequent chapters

of the thesis we will explore the ground effect phenomenon in the context of underwater

surfaces [18] .

1.3 Literature Review

Different type of robots are being used for underwater structure inspection[ 19]. At present

submerged surface inspection robots are large and complex, mostly tethered, and use

visual inspection methods. For volumetric inspections, similarly complex tethered robots

with various combinations of wheels, magnets, and suction are used [20] [21]. The control

effort required in such configurations is high, and lack of autonomy makes the process

tedious. Most are tethered and have propellers or other appendages which can lead to

snagging in a cluttered environment. Other robots involved in ship hull [22]or weld seam

inspection or maintenance are usually wheeled crawlers, often using magnets to ensure

contact. Based on the challenges of the application and the functional requirements a novel

design of a underwater robot - the Omni Submersible [15] - was developed at d'Arbeloff
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Figure 1-1: Top: Schematic illustration coherent wave behavior at quarter wave gap.
Bottom: Transmission efficiency vs distance assuming 90% reflection (10% transmission)
at the test surface, and 100% re-absorption at the transducer when placed at quarter
wavelength distance
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Lab, MIT. It is completely smooth, spheroidal in shape, and jet propelled via multiple exit

ports for multi DOF motion, high maneuverability, and robustness to collisions. However,

for thorough volumetric inspection, in particular for internal cracks and damages, we need

a design that is appropriate for motion on, or at very close proximity to submerged target

surfaces. The dynamical and quantitative modeling involved for such a system is quite

complex. Motion near submerged surface gives rise to non linear hydrodynamic forces

which can be either stabilizing or destabilizing. Very little work has been done in this

regard. Particularly hydrodynamic ground effect force [18] which is in some respect

similar to aerodynamic ground effect utilized by race cars, can be exploited for near

surface motion benefits. Though a fair amount of work has been done in land [23] and

little literature is available for underwater effects except that for modeling certain fishes

[24] [26] focussing on oscillatory motion of the non rigid bodies.

1.4 Novel Invention: A Micro UUV and Associated Dynamical
Modeling for Utilizing Hydrodynamic Ground Effect

To develop efficient surface scanning robots, a thorough understanding of motion in close

proximity to submerged surfaces in necessary. This would enable us to get insights to the

unique surface effects and hydrodynamic properties that can be taken into consideration

for a goal oriented design.

To address high fidelity sub surface imaging, we developed EVIE (Ellipsoidal Vehicle

for Inspection and Exploration)[27] : a spheroidal, multiple jet robot like the Omni Submersibles,

but with a flat bottom to enable gliding on surfaces. Figure (1-2) shows Omni(right) and

EVIE (right). To allow extra payload capacity for NDT sensors such as an UT array,

EVIE is larger than it's predecessor, about the size of a football. Jet configuration has been
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modified to optimize multi-DOF motion. A bottom outlet has been added to allow forming

a fluid bed layer for smooth gliding on rough surfaces. To isolate and study the properties

of the fluid bed, our research prototype focussed on movement on a horizontal surfaces in a

turbulence free environment. The system exploits hydrodynamic ground effect to actively

or passively maintain a stable equilibrium in it's distance from the ground. . Longitudinal

motion along the surfaces induces natural hydrodynamic surface effects that causes the

body to have a fluid layer below it. When pushed upward it experiences a strong downward

(suction) force, referred to as the Venturi effect, which brings it back to the equilibrium.

When it is pushed downwards it experiences an upward (repulsive) force, again pushing

it back to the equilibrium. The equilibrium thickness of the fluid bed layer caused by

longitudinal motion depends on the design parameters as well as velocity of motion.

However for practical applications we want direct control on the size of the fluid bed layer.

The bottom, center jet outlet provides an active method of controlling the fluid bed. The

interaction of the bottom jet with the submerged ground surface demonstrated a stronger

suction force (Venturi) as well as a positive force or additional thrust at larger distance

(upwash) - an effect also observed in vertical take off and landing (VTOL) vehicles. This

jet induced additional thrust force can be used for reduced power motions over submerged

surfaces, including sea floors. Motion in proximity of submerged surfaces, is severely

under explored. The use of active or induced ground effect hydrodynamics in underwater

vehicles in this way has never been done previously and opens up a whole new area of

research and innovation for the next generation of subsea technologies.

The hydrodynamic forces in the vicinity of a surface are highly nonlinear, with multiple

extrema. In order to exploit this phenomenon we have to integrate it with the system's

dynamical model. For system analysis and control purposes linear state space models are

usually preferred. However, traditional linearization fails to capture most of the system's
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Figure 1-2: Left: Omni Submersible [15] Right: EVIE

non linear behavior and is localized to a small region around the equilibrium. So, we

propose an alternative method of modeling: we establish a mathematical basis for data

driven estimation of multiple state dependent nonlinear elements. The starting point is

the augmentation the non linear elements as additional or 'auxiliary states' to convert

the problem to a linear model in a higher dimensional space. A large sample of data

is collected covering the anticipated range of operation of the robot. We use Principal

Component Analysis (PCA) [28] to form a linearized model in the higher dimensional

space. We then implement a state observer to estimate the auxiliary variables (i.e. the non

linear elements) and compensate for them using a simple controller. We also analyze the

stability and robustness of the data driven model which has the potential to be extended

to other complex non linear systems. Among the advantages of this approach is that

an analytic description of the system dynamics is not required: the model can be built

exclusively from the collected data, whether CFD simulation or real experimental data.

1.5 Key Contributions

The research described in this thesis has three unique areas of contribution:

1. Concept Vehicle Design. An spheroidal underwater surface scanning robot was

developed with a flat bottom that uses hydrodynamic ground effect for motion on

32



L
Figure 1-3: A picture demonstrating a concept case of weld seam inspection of a BWR
tank with a micro UUV moving on the submerged surface

Figure 1-4: Subsea pipeline inspection by a micro UUV
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submerged surfaces.

2. Demonstration of Underwater Ground Effect Hydrodynamics Demonstrated the occurrence

and application of natural (from lateral motion) and jet induced hydrodynamic ground

effect. Validated via computational fluid dynamics (CFD) simulation as well as

experiments

3. Data Driven Dynamical Modeling and Estimation. Developed a novel data driven

approach of representing the highly non linear system as a linear model in a higher

dimensional space and a method for estimating the individual non linear elements.

This linear model enables us to capture a wider range of operational region.

1.6 Thesis Overview

The research presented in the thesis will focus on the above three contributions within the

scope of the application. We will present the vehicle design and use it as an example for

a submerged infrastructure monitoring vehicle using ground effect hydrodynamics. We

discuss natural and jet induced ground effect hydrodynamics. The focus of the work is

in the application of the phenomenon in regard to design and control of a robotic vehicle;

therefore we refrain from scientific analysis at molecular or material science level. We

restrict ourselves to observation and application in a tangible engineering system.

In Chapter 2 we will discuss the design transition from the Omni Submersible to a

prototype with a flat bottom and a bottom center jet to enable fluid bed formation. We will

explain the choice of key design parameters particularly with respect to vehicle control

and specific task. We will also talk about different components onboard and general

performance and how such a concept vehicle may be used in real world applications.
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We then move to discuss an overview on the vehicle dynamics. This will be done in two

parts. In Chapter 3, we talk about the different forces that comes into play during motion

on a submerged surface, including the hydrodynamic ground effect. This is quite different

from free stream motion. We demonstrate some simplified closed loop vehicle control on

a smooth 2D plane. This chapter forms the foundation for understanding how we will later

integrate the non linear forces into the system model.

In Chapter 4, we elaborate on the observation of the natural Hydrodynamic Ground Effect

and how it could be exploited for smooth vehicle control. We demonstrate it both through

CFD simulations as well as experiments.

Chapter 5 We show jet induced hydrodynamic ground effect for active control of the fluid

bed to enable smooth motion on the submerged structures. We also demonstrate the same

with both simulations and experiments.

In Chapter 6 we return to dynamical modeling and discuss a new data driven approach

for developing linear models which enables us to capture more of the non linear behaviors

of the system.

Chapter 7 We explain how estimation of the individual non linear forces can be done based

on the data driven model to simplify the feedback control applied for precise distance

maintenance.

Chapter 8 is summarizes our work and lays down the foundation for further work in this

area.
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Chapter 2

Robot Design

2.1 Introduction

The chapter focuses on the control configured design of EVIE: Ellipsoidal Vehicle for

Inspection and Exploration. EVIE is a compact ellipsoidal underwater robot that uses

hydrodynamic ground effect for smooth motion on submerged surfaces. As discussed

in Chapter 1, this robot is inspired by its predecessor, the Omni Submersible [15], in

its spheroidal shape. Both differ in shape, size and propulsion method from what is

commercially available for industrial use. They are smooth, ellipsoidal, streamlined, and

appendage free, with EVIE having a flat bottom to house sensors that need to be in contact

with target surfaces. The flat bottom is well suited to compact NDT sensors like linear

array UT modules.

Motion on a submerged surface is very different from free stream or a practically boundless

fluid. We start with a review of comparable underwater robots for volumetric inspection

and point out the deficits that are being addressed by our research. Some of these have been

already addressed in Chapter 1. Next we discuss the choice of various design parameters

based on the challenges of motion on a submerged surface. Finally we present the final

prototype robot design with onboard electronics and computer that is capable of moving
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on a horizontal submerged surface.

2.2 Literature Review

A variety of underwater robots have been developed for submerged infrastructure monitoring [31],

but there remains a need for advanced research to enable thorough inspection of underwater

structures for defects undetectable by just visual inspection. Volumetric inspection in

places like a BWR vessel is extremely challenging due to the complexity of internal

structures. We divide these inspection robots into two groups: those which do only visual

non-contact inspection; and those which also do on contact or other volumetric inspection,

i.e. sub-surface scanning [5] [32]. Vessel examinations - at least in case of power plants

- are scheduled during normal refueling shutdowns. It is essential to use fast, efficient

methods to avoid unplanned outages costing millions of dollars.

In terms of small compact spherical robots ODIN [33] robot from University of Hawaii

is an example that uses several external propellers. The BFFAUV [34] design developed by

Licht and Triantafyllou is untethered, capable of multi DOF motions, and highly maneuverable

using flapping foils. Although this robot is very agile and capable of multi-DOF motion,

it is mostly meant for visual inspection in free stream water and is not ideal for a surface

scanning design. Some of the advanced robotic solutions for volumetric inspection are

as follows. The AIRIS 21 [20] with a maximum dimension of 21 in. is an example of

a tethered underwater robot for on contact, subsurface ultrasonic inspection for cracks in

reactors. It uses propeller based propulsion to reach the surface, and vacuum to remain on

the surface while it moves with wheels. This method of movement is advanced and unique;

but the system is not agile, while the tether and external appendages increases chances of

snagging, collisions, and breaking. There are other robots equipped with manipulators.

For example URSULA [35] is an underwater robotic system to inspect the welds in the
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reactor of a nuclear power plant weighing about 900 lbs. URSULA uses suction cups to

latch itself on the wall and then use it's scanning head to go around weld seams.

For surface inspection we developed EVIE, retaining Omni's smooth ellipsoidal shape but

with flat bottom. Both use jet propulsion instead of propellers which protrude out of the

body, are non ideal for high precision maneuvering through non linearities like dead zones,

and suffer from variable time response and asymmetric performances. More discussion

can be found in [36].

Assuming UT research would progress alongside, EVIE [27] would be capable of housing

a compact linear phased array as shown in the vehicle concept design. This would allow

line contact, as shown in Figure (2-2), around a pipe for example. Submerged surfaces -

even in such enclosed facilities - may have various rough patches that causes friction in

an on contact scanning motion. Since our robot is not equipped with wheels, we needed a

method of smooth gliding motion over surfaces. Such motion is enabled by a natural fluid

bed, i.e. a thin layer of water between the surface and the bottom of the robot, formed UUV

the relative motion along the surface. We found active control of the fluid bed thickness

helps move on a rough surface. So in our second iteration, we form a fluid bed layer by

pushing water through a center bottom outlet. This water buffer layer smoothens out the

roughness but also instills a natural hydrodynamic stability on the top of the fluid bed layer

due to the relative flow caused by this active jet. Our robot exploits this hydrodynamic

ground effect phenomenon for inspection of submerged surfaces. Use of this ground effect

to maintain a precise gap without using complex actuators or active suction is explored

extensively in the upcoming chapters. Exploiting near surface hydrodynamics to facilitate

motion has never before been done for UUVs and, except for studies of fish locomotion,

is an under explored concept.
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2.3 Conceptual Vehicle Design

The vehicle was designed based on the functional requirements and challenges presented

in Chapter 1. The D' Arbeloff Lab at MIT developed a 5 DOF hydrodynamically unstable,

highly maneuverable ellipsoidal robot called the Omni Submersible. The key focus of this

robot was its unique propulsion system. The robot used Coanda Valves [36] to function

with an under actuated water jet propulsion system, Omni was meant primarily for visual

inspection.

The next prototype is the center of this work. The requirement was to transition the design

to enable volumetric inspection. Since cracks are often internal, surface examination

becomes indispensable. Therefore, the goal was to extend the research to an underwater

robot that, besides visual inspection, could carry out surface examination by being in

contact with the surface. Of course this required design and functional changes which

in turn changed the dynamical modeling for the new system for the new task. Figure (1)

shows the Omni Submersible and EVIE.

Figure 2-1: Omni Submersible [15] (left) and EVIE (right)

The new robot, EVIE (Ellipsoidal Vehicle for Inspection and Exploration), has a flat base

and can house ultrasonic phased array sensors as well as carry localization sensors for

positioning the defects. The task requires the electronics move to the bottom of the robot,
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Figure 2-2: Left: Concept design with a phased array sensor (bottom), localization sensors
and a camera mounted Right: Movement on a curved surface. Flat bottom housing a linear
phased array ensured a line contact even on the curved surface

and the various propulsion jets of EVIE are angled to render stability. The prototype

is substantially larger to house different electronics. The propulsion is still done with

jets. Ports could share pumps via Coanda valves, as in Omni. But since propulsion and

multi-DOF motion are no longer the focus for this work, for simplicity we assume each

jet is controlled independently. For the most efficient design, we will be integrating the

features of the two prototypes. A center bottom jet allows formation of fluid bed layer

for movement on rough surfaces or for hovering near target surface at reduced thrust. A

conceptual design in Figure (2-2) shows the robot having acoustic sensors for localization

and a phased array sensor on it's base which ensures a line contact for crack inspection.

Our current EVIE is a 7x8 inch ellipsoid. Size can be adjusted to accommodate electronics

and sensors, though smaller has better maneuverability. The design can have as many as

8 jets (JI - J8) as shown in Figure (2-3) for motion purpose. Figure (2-3) shows the

propulsion jets are angled for control purposes. The jets are placed on the upper half of

the robot which is porous and water filled and are powered by submersible centrifugal

pumps. The lower portion is water sealed and houses the electronics and the ballasts. The

upper shell is printed using a Stratasys Dimensions FDM 3D printer [37] and the lower
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- which houses the electronics - is 3D printed using a SLA printer, since SLA parts are

waterproof. A single center bottom jet forms the fluid bed.

( A 
J5

J2 Z J6 X

y
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J1,J2 

J,J4

J7J X

N Z/

Figure 2-3: Robots with all jets

J3 and J4 are bidirectional jets that control the up-down motion of the robot. They are also

angled, at an angle a. This is to allow for pitch control.

Inspection surfaces will not always be horizontal. Prior work at d'arbeloff lab has focussed

on methods of shifting the center of gravity [38]; we shall not reiterate that here. For

simplicity and clarity, we shall speak of the surface being inspected as horizontal with the

robot on top. It is to be understood that other geometries can be accommodated using prior

work from d'Arbeloff lab.

Ideally for testing the robot on a horizontal surface, we want the center of gravity of the
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Figure 2-4: Choice of flat versus ellipsoidal base for motion on a surface

robot to be below the center of buoyancy. This was attained by ballast at the bottom of the

robot. This ensured a buoyancy righting moment. However, since the jets are in the upper

part, they create an undesirable thrust induced pitching moment. This is counteracted by

making the propulsion outlets angled at # such that the jet vectors approximately pass

through the CG of the system. The choice of jet angles is explained in more details in the

next chapter where we discuss the system dynamics and the forces acting on it.

A substantial amount of work on shape analysis has been done previously, including the

optimal aspect ratio for controllability. Based on that work an aspect ratio (ratio of the

major and minor ellipsoid axis) of 1.4 was chosen, but with one flat surface, the rationale

for which is illustrated in in Figure 2-4. [39]

2.4 Onboard components

For remote or autonomous functioning of EVIE we equip it with needed electronics,

propulsion system, onboard computing, and localization sensors. For propulsion we used

centrifugal pump with symmetric impellers and custom output nozzles as used in Omni

Submersible.The onboard computer and other electronics are kept in the bottom chamber.
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DOF J1 J2 J3 J4J5 J8
+u /tVt
-u _ _ _ _~ V

+v V _ /
- //

-w

+q
-q
+r Vt V
-r VtV

Table 2.1: Map of jets dominating for various degrees
be used for movement along a specific axis.

of freedom, i.e. the ones that would

Jet Angles F F J F
JI #,,y cosycos sinycos#P sin#P

J2 cosycos# -sin ycos sin#

J5 -cosycos# sinycos# sin#

J6 : - cosycos3 -sin ycos# sin#
J3 a sina cosa

J4 -sin a cos a

J7 sin a - cos a

J8 -sina -cosa

Table 2.2: Angular terms contributing to forces. Note here all forces are given, whereas
table 2.1 shows only dominant contributors. For instance, J3 and J7 produce positive F
but would be an inefficient mode of propulsion compared to JI and J2.
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This is not ideal in that the air filled side naturally flips to the top, but for the scope of the

research - test and movement on the horizontal tank surface - this was the most optimal

choice. Ballast near the bottom of the robot corrects the problem.

Communication is over low frequency radio that has sufficiently low attenuation in deionized

water such as in BWR tanks. This gives the option for remote control or sending simple

way point behavior. For localization, we used an IMU with integrated Kalman filter.

Relative positioning from surfaces using pulsing lasers was also explored in our research

lab [40]. The other interesting work done was development of a sensor module for measuring

the thickness of fluid bed layer [41]. The different components developed in association

of this micro UUV that would allow this research to transition into a practical application.

However, EVIE is used here to demonstrate the novelty of exploiting non linear hydrodynamic

surface (ground) effects on UUVs to benefit inspection tasks or other near surface motions.

Henceforth the emphasis will be more on the application rather than the design of it.

2.5 Experimental Designs

The major portion of the thesis will focus on ground effect hydrodynamics, and for this we

perform two kinds of tests. One set in a tow tank where we tow the vehicle on a flat surface

to determine the effect of natural hydrodynamics due to longitudinal motion. The other

using an active jet to understand the effect of single jet impinging hydrodynamic motion.

For this the experimental vehicle design was fairly simple. We used the same shape, and

mounted a submersible centrifugal pump inside that would create the bottom impinging

jet. Height control would be done using the jets on the top. The system was restrained

to perform only 1-DOF motion. The simplified vehicle design is shown in Figure (5-4).

Many variation of the design for creating fluid bed and regulating the flow underbody

was also performed[42]. More extensive work is to be done for design optimization for
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practical application.

Direction of
motion (w)

Figure 2-5: Robot with a vertical impinging jet which will be used in in the subsequent
chapters to study the effect of thrust induced hydrodynamic effects and active control of
fluid bed layer. Note we will use a constant set value of the bottom jet for forming the
fluid bed, where as height control is done separately by the top jets (u denotes the control
force)

2.6 Conclusion

We presented the design of a novel underwater robot for surface inspection. The robot

slides with its shell in contact with the surface, allowing for a variety of inspection tools

(optical, magnetic, acoustic). The body has no appendages and communication is wireless,

making it ideal for confined spaces. The appendage-free design is hydrodynamically

unstable and relies on a control system to achieve stability.

The unique geometry of EVIE along with a bottom jet creates new opportunities to use

surface effects as an integral part of the control system. Subsequent work will incorporate

ground effects, as well as additional states of the robot. The single bottom jet was a

preliminary design to validate the use of fluid film. This can be extended to multiple

bottom jets with different type of control, where jet interaction can facilitate ground effect
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hydrodynamics for both stability and reduced power hovering at constant distances.

To simplify our experiments with contact forces, EVIE as presented here has a low CG;

to operate on anything other than a horizontal surface, it must run the pumps continuously

and at high power. Future versions of EVIE will dynamically shift the CG to minimize the

power consumed by pumps.

In subsequent chapters this design will be used for study and demonstration of non linear

hydrodynamic surface effects.
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Chapter 3

Overview of System Dynamics and
Forces on the Body

3.1 Introduction

Forces on a body moving in free stream are well known. This chapter introduces the

various forces that come into play when moving in contact with, or in near proximity

to, a submerged surface. We can broadly divide the forces as the thrust forces, contact

forces, hydrodynamic forces, the body forces. Thrust is produced by the jet propulsion

and allows the robot to have surge, sway and heave. The vehicle designed includes pitch

control; roll dynamics is not included.

When the body lands on a submerged surface, contact forces - normal force and and the

frictional force - arise. Hydrodynamic forces and moments include the Munk moment,

hydrodynamic drag, and the ground effect. Body force would include the weight and

inertia. These forces introduce varying degrees of complexity, so we discuss how these

enter the equations of motion of this specific robot, and which of these must be taken into

account.

The body shape gives rise to what is called the Munk Moment [29] where a streamlined

body tends to rotate so the long axis is perpendicular to the direction of the flow. This
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occurs both in free stream as well as while moving on a surface. Unique to on contact

motion, asymmetric friction on the surface can also lead to torque and has to be counteracted.

We introduce preliminary control techniques for a 2D plane and validate it on a horizontal

submerged plane.

Highly non linear hydrodynamic ground effect forces add a new level of complexity in the

system modeling. This will be introduced briefly in this chapter and explored in depth in

subsequent chapters.

This chapter gives the complete overview of the dynamics of the system; hereafter we

shift from that aspect to focus on investigating the non linear forces in depth. However,

the simplifications in the problem statement in the upcoming chapters derive from the

mathematics explained here and therefore this lays the foundation for understanding the

dynamical system behavior as a whole.

3.2 Forces on the System

Forces acting on the system can be broadly classified as follows.

1. Input Forces

" Thrust caused by propulsion jets for moving surge, sway and heave motion

" Thrust caused by center bottom impinging jet. The main function of this jet is

forming fluid layer to smooth surface; but at larger heights, this jet can be used

for additional upward thrust combined with fountain upwash.

2. Contact Forces

* Friction

" Normal Forces
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3. Hydrodynamic Forces

" Hydrodynamic Drag (linear or non linear)

* Munk Moment

* Hydrodynamic Ground or Surface Effects

4. External Forces

* External Disturbances including turbulence and sudden perturbations

" Controlled perturbations or external inputs to study system response

We will now describe each of them and explain how they affect our design choices. We

will not be taking turbulence or other external forces into account.

3.2.1 Input Forces

As explained previously, to avoid problems of snagging and directional limitations of

external appendages we use jet actions for propulsion. Fluid jets exit through nozzles

which are angled appropriately based on constraints discussed later in this chapter. Thrust

forces are produced by the submersible micro pumps housed inside the robot.The angled

jets produces two different thrust components for movement along a plane which help

either in surge (longitudinal) or sway (lateral) motion.

Assume independent control over each of the jets J1, J2, J5, J6, with corresponding forces

Fi. See figure 3-1. Jets J3, and J4 can be made bidirectional and do not need independent

control. The bottom center impinging jet is controlled independently and denoted by Jj,

the corresponding force as Fj. External perturbation forces can be denoted by uexi.

The nozzle angle y is a trade off between the thrust force in u versus v. In cases where

surface scanning requires considerable lateral motions, like performing C-scans, the angle
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should be chosen such that both components of the thrust get comparable weights. Here

we mostly demonstrate longitudinal motion, u is taken as the dominant velocity, and y is

selected to be just large enough to counteract the Munk moment. Angle P is associated

with a third component: the sinp component of the thrust helps prevent thrust induced

pitching while moving on a horizontal plane.

The x, y, and zcomponents of the forces and moments acting on the body are summarized

as follows.

Jet forces:

F=(F4-F3)sina+ (Fl -F5+F2-F6)cosycosP

F =(F +F5-F2-F6)sinycos (3.1)

Fz = (F3+F4)cos a+(F+F2+F5+F6) sin P3+Fj

Jet Moments

Mx =(Fl I+ F5 - F2 - F6) sin PLtv + (FI +F5 - F2 - F6) sinycos Ltw

MY=(F3 -

+(Fl +

F4) cos aLPU + (F3 - F4) sin aLpw + (Fl + F2 - F5 - F6) sin fLtu

F2 - F5 - F6) cos P cos yLtw

Mz -(-Fl -F6+F2+F5)cosycos PLtv+ (-Fl -F6+F2+F5)sinycosLtm

(3.2)
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Figure 3-1: Top and Side View of EVIE-2. Arrows indicate the jet direction
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For small y, velocity u and F are dominant over v and Fy.

3.2.2 Contact Forces

Contact forces introduce a discrete change in vehicle dynamics as it transitions between

the states shown in figure 3-2: free floating (state 0); contacting across surface (our desired

condition, state 1), and point contact when pitching nose up or nose down (states 2 and

3). We develop generalized equations that are valid for all cases: setting the normal force,

N = 0 is equivalent to placing the robot in a boundless fluid. On the surface, the normal

force is not fixed. In state 1 (flat), the magnitude and location of the normal force varies

with velocity; in states 2 and 3 the normal force also varies with pitch angle (due to

hydrodynamic lift) as well as pitch rate (since the CG moves as pitch changes).

N N

Figure 3-2: Transitional states of the Robot

The other possible states of the robot are roll, and roll and pitch combined. Neither roll

nor pitch is beneficial during inspection. But the pitching moment is lIx larger than the

roll moment because IvI < u. Furthermore, we intend a future prototype will have pitch

control to climb over obstacles. Therefore, in this prototype we include pitch, but not roll.

The flat bottom of the robot is sufficient to counteract small roll forces.

Friction is the other contact force that is highly non linear and coupled with the normal

force. Friction models in a hydrodynamic environment can be quite complex [43],[44].

At the low speeds required for inspection, transition between static and dynamic friction,

like Stribeck effect [45], need to be considered. Depending upon the velocity of the robot
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and surface roughness, a thin layer of fluid between the contacting surfaces can cause

viscous friction. Our robot has weight minus buoyancy of approximately 0. IN; taking the

coefficient of friction as 10% friction force is on the order of 0.01 N compared to jet forces

of order 0.1N. Friction is large enough to merit inclusion, but not so large as to warrant

detailed analysis. We assume the moving robot has a kinematic friction force of ikN. For

the research discussed here static friction is not used: we will work with a moving robot.

Note, however, friction coefficient may approach 100% on rusty or concrete surfaces. The

control system technically must be able to handle such cases without a priori knowledge

of the surface.

3.2.3 Hydrodynamic Forces and Moments

The main hydrodynamic forces and moments that can influence the robot are the drag,

Munk moment and the hydrodynamic ground effect [29]. Hydrodynamic drag is quadratic

for high Reynolds number, as in our case; but at low velocities it is linear in nature. The

other prominent highly non linear force is the hydrodynamic ground effect- that is the

forces on the body due to the presence of the ground.

Munk Moment

The term X,,,, YIl and ZWI are hydrodynamic coefficients that account for the different

lateral and longitudinal forces acting on the body. The dominant velocity of the robot is

along u; hydrodynamic moments associated with motion in u are accounted for by Mulul.

The Munk Moment is a destabilizing moment. In the absence of pitch, the Munk moment

is exclusively in the xy plane and is given by

2
Mm = -(Yo --Xe)U2 sin 2( (3.3)

2
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where 4 is the sideslip angle. In our case, with zero pitch and still water, u = U cos 4 and

v = U sin 4 so

Mm = (Y - X,)(U sin {)(U cos4)
(3.4)

= CmmUV

where Cmm = (Y - Xv). Therefore Munk moment enters both the pitch and the yaw

equations of motions. Below are the equation of motion for the robot, which is assumed

to move predominantly in x.

Umn

Figure 3-3: Munk Moment, Reference to figure [39]

Hydrodynamic Ground Effect

The hydrodynamic coefficients given above are constant for a body in an unbounded fluid.

Near a surface the values will depend upon the distance to the ground and the angle relative

to the ground. This is generally part of the ground effect: non linear forces that depend

on, and affect, the motion of the body. The potential benefit of the ground was a discovery

while simulating the body moving with a small fixed distance over the surface to avoid

surface roughness. The simulation showed a restoring force to a fixed distance from the

surface. The phenomenon was then confirmed with experiment. Subsequent chapters will
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discuss how to maintain and utilize this behavior for 2D motion. But in this chapter, we

assume either free-stream or true contact with the surface and show the necessity of the

fluid bed.

3.2.4 Simplified Equation of Motions, neglecting roll and ground effect
hydrodynamics (no bottom jet)

Below are given the generalized equations of motions for our non linear model of the

robot. Note the equation for 6 is derived from the requirement 4 = 0.

d = (F -(mg-Fb)sin6+Nsin6 -XuIu| -ykN- -m(qw-rv))
(m - X'j) V

1 v

v = ( F - Y,vv| - pkN- - mru)
(m-YV) V

1 w
-= (F+(mg-Fb-N)cos0-Zww -kN-+mqu)

(M - Z+-) t

15 = - sec 2 O(qsin 0 + rcos 0)6 - tan 0(4sin 0 + f cos 0)
1U

(Iy- Mq ) (My - pkN -Lnw + NL,, sin 6 - FbLb sin 6 - Mqq qIq|

r ='~~ -N Mz - Nrlr|rlr+Cmmuv)
(Izz - Nt )

r
cos 6

X =ucos 6 +v(- sin yf) + w(cos ( sin Vsin 6 - cos ysin yf)

Y =u cos 6 sin yf+ v cos 6 cos V/sin yV) + w(cos 6 sin Vsin 6 - cos yfsin yV)

Z =wcos 6

(3.5)

In state I - contact with a surface, without pitch or roll - we have Z = = 6 = 0 and the
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remaining equations simplify further.

1u
I= (Fx - Xu1,.u| -- kN-+mrv)

(m-X) V

1
I = (F - Yvlvlvlv| - pkN- - mru)

(M - Y) V

(Mz -Nrlr|r+Cmmuv) 3.6
(IZZ - N..) Z r )

1V=r

X =ucos y -v sin V/

Y =usin y+ vcos y

For quantitative analysis we calculate the hydrodynamic coefficients using published formulas

for ellipsoids. These formulas measure moments around the geometric center, whereas we

wish to do so around an off-center CG. In particular, Mulul is zero if the CG is at the

geometric center, but would not be so for us. We approximate the torque from as the

drag force in x, Xulululul, times the distance from the CG to the geometric center, Lcgw.

We varied Mulul as Xulu Lcgw to 2Xulu|Lcgw in our simulations, and for the desirable (non

pitched case) it doesn't make a difference.

3.3 Technical Challenges of Moving on a Plane

There are many technical challenges of moving on or near a submerged surface for inspection.

For a flat bottomed UUV like EVIE moving only using water jets, surface roughness is a

big concern. This can hinder surface scanning, cause the robot to pitch or yaw from

getting stuck on a patch of rough area. Maintaining close contact at all times is extremely

necessary for thorough UT inspection.

In our research we break the study of the robot into three discrete states as shown in Figure

(3-2). State 1 is the desired state: the robot moving on a horizontal plane, maintaining
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contact with the ground at all times. States 2 and 3 are undesired states that the robot can

enter into due to different non ideal situations. In this part of our research we will elaborate

on the first case, that is the robot is moving on a horizontal surface and constrained to the

XY plane. To find the necessary conditions to be satisfied to have the desirable state, we

need to find the conditions that would cause the robot to enter state 2 or 3.

3.3.1 Choice of Jet Angles

Based on previous work [39] we see how the jet angles affect the controllability of the

system depending upon the pole zero dynamics. For e.g straight jets would make the

corresponding linearized system uncontrollable due to the pole zero cancellation, outward

jet causes non minimal phase issues which makes the robot first turn in the opposite

direction when control is applied, whereas inward jet renders the system controllable and

is therefore the ideal choice Figure (3-4). When moving on a plane, the specific angle

chosen depends on two issues. First, hydrodynamic Munk moment causing yaw torque.

Second, asymmetric friction - more on one side than the other - can cause the robot to turn.

We need enough leeway to allow the robot to make sufficient correction to perturbation in

yaw angle.

3.3.2 Choice of Jet Angle: y

If the robots had straight jets with no angle it would be uncontrollable in free stream,

while on a plane it would only be able to correct against Munk moment for sideslip angle

e < 60. Assuming simple surface friction on stainless steel and other inspection metals, the

maximum frictional (asymmetric) was assumed to be 0.5N: 50gm net weight (underwater)

and pI - 1. Choice of y is a trade off between the propulsion C< cos y. and yawing toque

cc sin y. We found from the curve below that a y = 350 suffices to stabilize against both

frictional torque and Munk moment.
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Figure 3-4: Choice of inward versus outward angles- based on the pole zero locations of
the dynamical system [15]
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Figure 3-5: Choice of jet angle based on surface friction
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Figure 3-6: Choice of y that satisfies both

3.4 Linearized dynamics constrained to XY plane

Assume we satisfy the constraints discussed and take the robot as moving only in the XY

plane. The robot has no velocity in z, no pitch, and no roll, i.e. 2 = 6 = = 0. We are

hence looking at the states u, v, r, V.

Take as for our trim state the robot is on the surface and moving with a velocity U, =

.35m/s in the x direction. All the other states are zero: v = r = Yi=O. To complete our trim

state conditions we need to find the input forces at the trim state which are Fl, F2, F5 and

F6 that will satisfy x = f(x, u) = 0.

The normal force in this case is

N=mg - F + Fzcos(0) - Fxsin(6) (3.7)

Note this is valid only for a constant pitch angle.

We could have divided the system into the lateral and longitudinal states, but for a robot

constrained to the ground this was not necessary. Further, we would like to control the

heading angle, as well as speed. Hence we choose the 4 state variables u, v, r, Vf. The

59

Fx and Yawing Torque vs y
0.5 10.1

04 Max F0  yawlfl Torque
F'rce inE

Z10.31 0 .0 Z

u Worse case tion Torque
. 1 0 0.02

% 10 20 30s 40 50 60 70 80 9



generalized linearized state space model is given by

Au -2XouvU 0 0 0 AuSx

v 0 -IykNTF -mUc 0 Av

Ar 0 CmnMUC 0 0 Ar
Sr

A 0 0 1 0 A Y
(3.8)

1 0 0 - -
F

0 1 0
0 0 1 Fy

Mz
0 0 0 -

3.5 Control Design

The system is modeled considering predominant motion in surge. This open loop plant is

inherently unstable due to the associated Munk moment which depends on the difference

of the added mass in x and y. For longitudinal motion, sway yaw dynamics gives rise

to a positive eigenvalue that contributes to instability of the system as seen in figure 3-7.

The instability is triggered by turning jet 2 off for 50 ms. As shown in figure 3-14 the

controller was successfully able to stabilize it. Data is from the on-board IMU with an

integrated Kalman filter to remove noise.

To have a good control authority on a robot requires a good design. For example, the open

loop behavior of EVIE- 1, with # = y= 0, gave rise to a pitch angle. This was investigated

through our simulations and we were able to reproduce the effect. For = 0 the propulsion

jets had considerable moment arm along z, causing a nose down pitch. Further, the Munk

moment caused the circular motion as seen in Figure (3-8) at a constant but small pitch

angle. The robot never moved forward but stayed stuck in place.

The open loop poles of the system are shown in Figure (3-4). As Fy c< sin y, if y = 0 it
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Figure 3-7: Open loop system showing instability due to Munk Moment (motion in circles)

on a 2D plane underwater
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Figure 3-8: Constant pitch angle when P is zero, combined with yawing
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can be seen, there is no control over v: the model is uncontrollable. Larger y would render

more control over v and yaw, but it reduces the thrust in u. As the desired velocity is

primarily u, we chose as our compromise y = 300.

To stabilize the robot on a horizontal surface, simple controllers like LQR or PID can be

used to mitigate against undesirable yawing moments. Note the control system for the

full hybrid model would involve a much more complex control algorithm which takes into

account the switching between the different states. Such concepts have been discussed, and

in future research, integrating the control algorithms for different states will be necessary.

For the simulation, we assume the robot has independent control over all jets and has a full

state feedback system. A LQR controller was designed for simulation purpose. As shown

before, F or F or Mz are combinations of various jets. We map back to the combination

to get individual jet forces. The LQR controller result is shown in Figure (3-9)

0.1

0.7

0.6-

0.5'A

0.3

0.2

2 0.11

0-

0 5 10 is
t(sec)

Figure 3-9: Closed loop control using LQR on linear model. Figure (a) shows the linear
model control. Figure (b) shows the use of the controller on the non linear model

For our current prototype with only a yaw angle feedback we designed a PD controller (like

in the Omni Submersible [46] which corrects for instability due to the Munk Moment.

This can be represented as:
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d
dt

where y'd is the desired yaw or heading angle, and K1 and K2 are derivative and proportional

gains.

3.6 Hardware Implementation and Experimental Results

We started with two initial prototypes. EVIE-l was a simple demonstration of a surface

following underwater robot. It had two pressure jets and four propulsion jets. None of

the jets were angled. The design didn't allow much scope for a closed loop control and as

discussed was uncontrollable.

We performed experiments on EVIE- 1 by making it slightly heavier than neutral buoyancy

and putting it on a horizontal surface under water. When jets JI and J2 were turned on to

propel the robot in u, the robot instead of going forward suffered a nose down pitch and

went in circles as seen in the simulation in figure 3-8. In figure 3-11 one sees the small 6

angle of the robot as it yaws.

EVIE- 1 had jets that come out straight and therefore the length of moment arm in z to the

CG gave rise to a nose down moment. The frictional force also contributed to the pitch

down moment. The velocity u being small, the drag couldn't compensate for this. The

Munk moment, combined with accidental sideslip perturbation, resulted in a constant yaw

rate and the robot going in the circles as shown in Figure (3-11).

EVIE-2 has two kinds of jets: propulsion and pressure. As explained in the design

concepts, to avoid pitching from propulsion jets, the angle # was introduced to eliminate

thrust induced pitching moment due to the low position of the CG.

Even though thrust induced pitching was eliminated, open loop system was still unstable

due to the Munk Moment. We used a simple PD controller to stabilize it and maintain
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Figure 3-10: EVIE- 1. 4 pumps in the submersible part. Straight jets. Water sealed part
contains electronics including IMU and localization sensors

Figure 3-11: Nose down pitching moment exhibited by prototype I of EVIE

-A

Figure 3-12: EVIE-2 with angled jets
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a heading angle. Figure(3-13) shows the open and closed loop response, with the robot

moving straight on contact with a low friction surface (glass tank).

To test the validity of the controller, a disturbance was injected to the system by forcing jet

2 to remain off for 50ms As shown in Figure (3-14) the controller was successfully able

to stabilize it. Data is from the on-board IMU with an integrated Kalman filter to remove

noise.

XY Trajetory: Experimantal Data

-0.14-

-0. Y15 0.2 0.25 0.3 0.35
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Figure 3-13: Experimental data on open(blue) and closed(red) loop trajectory
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As seen, for a low friction case, a simple PD controller is able to control the heading

angle successfully. For high friction, one should note the Munk moment would face a

breaking torque that would substantially reduce the yaw rate. Experiments with different

friction models are yet to be done. Next as we shall see, a bottom jet was integrated with

this design to allow the fluid bed layer formation and use the benefits of ground effect

hydrodynamics for motion near a surface.

3.7 Conclusion

This chapter expanded d'Arbeloff Lab's unique hydrodynamically unstable underwater

robot from operating only in free steam to also moving in contact with a surface. Detailed

modeling and analysis has been presented based on the simulation of the full non linear

model. Control techniques for stabilization have been discussed. Initial experimental

results for yaw stabilization has been shown, though full state feedback controller is under

development.

The limitation of this work comes from the complexity of hydrodynamic effects near a

surface, i.e. hydrodynamic ground effect. We found that minimal surface roughness can

impede smooth motion. And the near surface behavior was highly non linear. Thus a lot

of dynamics remained unmodeled. Later chapters explicitly study ground effects and how

to integrate it in the dynamical model.
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Chapter 4

The Natural Hydrodynamic Ground
Effect

4.1 Introduction

In this chapter we turn to the core invention associated with this thesis: hydrodynamic

ground effect. We show how near surface hydrodynamics can lead to self stabilizing

behavior at a precise gap from a submerged target surface. The underlying principles come

from lubrication theory and the Venturi Effect which combine to a zero force - F(z) = 0

- at a particular gap to the surface. If the gap is decreased, the force is positive, pushing

the body away; while at larger gaps, the force is negative and pulls the body back - that

is, dF(z)/dz < 0. Thus we have a stable equilibrium. The equilibrium position can be

controlled by jets which add to or subtract from Fz.

We further show this force in z can be a result of the relative motion between the surfaces,

i.e due to longitudinal motion of the robot with respect to a surface and the resultant flow

field. This is conceptually similar to air bearing sliders on hard disk drives. It can also be

generated by a downward jet to more explicitly generate a flow field, allowing the body

to hover at a fixed distance. Ground effect force is found to be primarily a function of the

ratio E of the characteristic body length and the distance from the ground. Limitations in
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the restoring force are considered in the stability analysis included in this chapter.

This self stabilization method opens a whole new door for near-contact subsurface inspection

of underwater structures by autonomous vehicles as well as precision distance maintenance

in underwater environment. In this chapter we introduce the concept of natural hydrodynamic

ground effect and a general understanding through simulation and experimental results in

associated with EVIE. Subsequent chapters continue into control algorithms to deal with

this highly beneficial, but also highly non-linear, force.

4.2 Literature Review

EVIE was tested in the acrylic tank with the tank floor smooth and with deliberate roughness.

On-contact surface scanning can be slow if the surface is not smooth. It has been found

that even minimal surface roughness decreases velocity by over 30% when compared

to free stream; while tacky material (Vaseline) results in a significant speed fluctuation.

Therefore, non-contact inspection is desirable. It that would provide faster and more

reliable inspection without being disturbed by the surface roughness and its varying properties.

Both for port security and maintenance of reactors, high speed inspection is extremely

advantageous. As explained in introduction, our goal is to stay at distances from target

surfaces such that we could still do high fidelity subsurface scanning[ 16] .

Some well known applications using the fluid flow effects in the vicinity of the ground, and

their relation to our work, are worth mentioning here. Fluid forces on the body due to the

presence of ground depends on the characteristic gap ratio, e = h/c, where h is the distance

of the surface from the ground and c is the chord length of the body. A Formula 1 race car

uses the fact that at e ~ 0.1 the body experiences a suction (Venturi) force which enables

greater acceleration. However, for e < 0.08 it was found that boundary layers merge and

instead a lift force occurs [49],[23]. Another well known example is the wing in ground
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effect (WIG) vehicles [50] where lift is enhanced by the water surface underneath.

However, for self stabilization, instead of a constant down (car) or up (WIG) force, our goal

is a zero force region with a steep gradient. A more relevant example is the air bearing

slider mechanism for hard disk drive (HDD) [48]. Figure 4-1 (credit [47], B. Thornton and

DavidB Bogy) shows a graph of how the Z force varies in a slider as the gap h is changed.

The graph shows the slider has a stable region at 2nm, where F = 0. Greater than 2nm, the

slider experiences a suction force to bring it back to the stable point. When h is less than

2nm, slider experiences a lift force to push it up to the stable point. HDD calculations are

complicated by the distance scale. At the < l0nm fly height of a modern HDD, the gap is

comparable to the mean free path of molecules in air. Navier-Stokes must be modified to

incorporate intermolecular terms.In this chapter we will explore the possibility of imitating

the qualitative behavior of HDD slider in a macro scale in an underwater environment for

self stabilization of autonomous robots for surface inspection.

(a) 10 (b)
120 __

.- no Stable Unstable

S30 0 Stable

0
30 Total Force wlvdw

-60 --- 1-,- - Static Force Balance

0 5 10
Minimum FH lnm] 0 5 10

Minimum FH [ni

Figure 4-1: Stability curve: F versus gap for a HDD slider [47]

We have previously discussed existing solutions for submerged surface inspections. These

robots are generally large and propelled by powerful actuators. The proposed ground-effect

approach will provide an effective alternative to those existing robots. It is expected that

we can build a compact, untethered robot that can maneuver across rough surfaces and
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scan them with higher speed.

4.3 Theory

Ground effect is the change of fluid field around the body due to the presence of an external

surface, whether or not that surface is the ground. Depending on the shape, geometry and

most importantly the characteristic gap ratio e = h/c, a body moving near the vicinity of

an external surface experiences lift, suction or can even be self stabilized. For simplicity,

we can define three regions in the flow field near the surface underwater:

a) Region extremely close to the surface: Flow in this region is most effectively understood

through the interaction of the boundary layers [53].

b) Region close to the surface but greater than the boundary layer thickness. There is

a flow channel between the body and the surface. Flow in this region is governed

by a combination Bernoulli's effect and enhanced by Couette Flow [55]. Increased

velocity in this channel leads to low pressure (suction) which is called the Venturi

Effect.

c) Region further from the surface where the effect of the ground becomes less pronounced

and the the flow transitions into the unbounded medium.

The robot EVIE is an ellipsoid with a flattened base. An analytical expression of 3D fluid

flow around the body is not feasible. Hence we will try get a general understanding of the

phenomenon using common 2D flow examples.

4.3.1 Boundary Layer Effect

When the body is extremely close to the surface, lift forces experienced can have explanation

through many theories. Assuming the robot started moving with perfect contact, at steady
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state a layer of thin film is developed underneath it on which the robot rests while continuing

its longitudinal motion. For gap sizes of 2mm, we can use the well known lubrication

theory which deals with interaction of boundary layers as two surfaces move in relative

motion. Flow here is highly viscous and the reduced Reynolds number is given by E2Re.

For simplicity a small region just above the base of the robot to its bottom, can be modeled

as a inclined slider of variable height fixed over a moving surface as shown in the Figure

(4-2)

Note, the picture is exaggerated.

Consider a stationary slider (inclined plane) over a surface. Fluid motion is primarily

in in x and is given as v, = u(z). The governing equations are 2D Navier-Stokes for

incompressible flow,
dp d2u (4.1)
dx jz2

and Reynold's equation for lubrication theory:

d h'dp dh (4.2)
dx dx dx

where u = U is the fluid velocity at z = 0 (surface) and u = 0 at z = h(x) on the static

bottom surface of the wedge (no slip conditions), 17 h(x) and p(x) are viscosity, height and

pressure, respectively.

Let h(O) = hi at point A (x = 0) and h(L) = h, at B. The pressure expression for the

inclined plane is given by,

P(x) = 61U i I-I I-1(4.3)
hi lho -I1 (hi + h, ) (h hi ho hi

The inlet pressure is P at x=0 (point A). From the above equation, the maximum pressure

PO occurs at for h = ho (point B). This flow then feeds the region from B to C with constant

h(O < x < L) = ho. This middle region can be treated as parallel plates with a linear drop

71



AB: Wedge
BC: Parallel Plates
CD: Mirrored Wedge
P: Ambient pressure

EVIE P.: Pressure at B

10 -------

Figure 4-2: Simplification of fluid flow through the gap between EVIE and the surface in
2D explaining lift force in the boundary layers

in pressure along x. From C to D, we have another wedge (mirror of the frontal wedge)

leading to pressure of P at D. Since the pressure at any point of the body is at or above the

ambient (inlet) pressure, there is a net positive lift force FL

It is not certain that the above is the best way of explaining the lift- because the net force

is a result of multiple effects. A qualitative way of understanding the lift phenomenon is

to notice the boundary layers interaction at extremely small gaps leading to choking flow.

There are theories exploring what is known as the near wall lift forces[56]. For small

particles translating in a linear shear flow field near a infinite wall, a theory was proposed

by Saffman for explaining inertial lift forces on them. The theory was constrained to only

low Reynolds number flow and mainly for tiny particles. Cherukat and Mclaughlin later

showed the application of the theory to rigid spheres and explained its validity for gap

sizes smaller than the radius of the sphere [57]. However, the mathematical analysis for

such a phenomenon, particularly for the shape of EVIE in the water while definitely worth

pursuing, is more complex and beyond the scope of this research.
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Note, in addition to the lift, there is an increase in the net drag due to the viscous friction

between the boundary layers moving against each other in the gap.

4.3.2 Venturi Effect

In the region above the combined thickness of the boundary layers (consider the flow

inviscid), still at a small gap from the surface, flow can be considered as coming into a

pipe with a narrow neck, as shown in Figure(4-3). The diameter starts at h1 , reduces to

h2 , and then expands back tohI, From Bernoulli's equation, we know this would cause a

increase in velocity in the narrow section, leading to a reduced pressure or a suction force

F,. This is also called the Venturi effect, widely used in race cars and can be expressed

from Bernoulli's equation:

AP = p/2(v 2v ) (4.4)

The boundary layers enhance the effect as the moving ground drags fluid into the gap

(Couette flow).

4.3.3 Equilibrium

The two opposing forces described above vary in strength as the gap is varied, with the lift

force fading faster than the Venturi force. In between the small distances with net lift, and

larger distances a net suction, there is a balance point where the forces in z zero out. The

Here, FL = Fv. The total ground effect force at any instant is given by Fg =F + FL.

4.3.4 Limitations

The description given here is very much simplified and the flow is way more complex. In

reality there is no distinct transition between the flow regions, rather one dominates the

other. Leakage (significant vy) invalidate 2D modeling. The inclined plane assumes a very
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EVIE

Figure 4-3: Simplification of fluid flow through the gap between EVIE and the surface in
2D explaining venturi suction

small angle, whereas the angle variation is much steeper for the robot. We also ignored

vortices and wake fields at the trailing edge. Moreover, Bernoulli's principle is stated

strictly for an inviscid flow whereas we work in a transitional domain.Hence, though the

2D modeling gives a qualitative explanation, a full flow characteristic is better understood

through simulation.

4.4 Simulation

To explore how the fluid flow affect the robot, we simulated the flow around EVIE using

standard CFX, the standard static CFD software from ANSYS[54] .For our robot moving

at 0.5m/sec, the Reynolds number is Re - 40,000, based on which we chose the ke

turbulent flow model. A fine (high density) mesh was used in the gap region; the remainder

of the volume was meshed using standard, default settings. Mesh quality was tested by

increasing mesh density until doubling the density (node count) resulted in < 10% change
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in lift and drag forces. Buoyancy was not included.

From the simulation results we identified our three regimes:

1. E < 0.01 as region (a) with positive lift force

2. 0.01 < e < 0.3 as region (b) with negative lift force

3. e > 0.3, as region(c) where the effect of ground is no more pronounced

VRLOCMT PfiWE8U

IW404.000

- 4t

a High Velocity
Low Pressu b

(Venturi Effect)

- C

Figure 4-4: (a)Velocity(left) and (b) Pressure (right) distribution between the bottom of
EVIE and the surface for u=0.5m/sec and h=5mm

Figure (4-5) shows the simulation result for the robot moving at a velocity of 0.5m/sec at

various gap lengths. The curve characteristics look very similar to Figure4- 1. Extremely

close to the surface, below 2mm (region a) there is a lift force on the body. The body
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stabilizes at 2mm, where all the forces balance. Above 2mm (region b) the Venturi force

pulls the robot towards the ground. There is a second equilibrium point around 50mm,

however this is unstable (positive slope). Above 50mm there is again a net lift force which

extends out to large distances as the body smoothly transition to free stream behavior.
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Figure 4-5: Shows the three regimes: (a) h/c < 0.01 (b) 0.01 < h/c < 0.3 (c)0.01 < h/c <
0.3 and how F acts in each for EVIE moving longitudinally at 0.5m/sec

The transition from region (a) - Fz > 0 (lift) - to (b) - F > 0 (suction) - occurs near 2mm

where F = 0. The negative slope at this point makes this a stable equilibrium: a positive z

displacement results in Fz < 0 while a negative displacement results in F > 0, i.e. the robot

is brought back to the F = 0 point. Whereas at the F = 0 point at - 50mm, a positive

z results in a positive F, pushing the robot even further away; and similarly for negative
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z. The disappearance of the forces at 2mm, combined with a high gradient (high restoring

force) is an exciting observation since this allows the body to be stabilized at such small

gaps using hydrodynamics alone.

Figure (4-4) which is a simulation at 5mm, shows the flow and pressure patterns. The high

velocity under the robot causes a drop in pressure. Note leakage of flow along y causes

the flow velocity magnitude to die away fast before reaching the exit. This uneven flow

and pressure distribution causes a higher pressure at the back than the front leading to a

nose down pitching moment. Zero pitch can be achieved through design of the underbody

as well as through active control through the pressure jets. However, for this chapter, we

limit our discussion to the stabilization of F only.

Figure (4-6) shows the CFD simulations for runs at 1mm, 1.5mm, 2mm, 2.5mm, 5mm

and 6.5 mm at velocities from 0.4m/sec to I m/sec. The lift force are seen to go as v2 , as

expected for turbulent flow. Drag forces (not shown) also vary as v2 . We can therefore use

velocity-independent drag and lift coefficients in place of forces vs velocity.

CL =2 z CD 2 F (4.5)
PV 2SxY PV2Syz

where: p is the density of water; area Sxy is the cross section at the horizontal midplane;

and area Syz is the cross section in the yz plane

SXY r -ac , Syz= -C (4.6)
4 4

with c = 203.2mm and a = 152mm.

4.5 Stability Analysis

Although the robot is stable at its equilibrium point, we need to consider the maximum

perturbation in z that it can tolerate.
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Figure 4-6: CFD Results for F at various gaps sizes and velocities ranging from 0.1 m/sec
to Im/sec

The maximum upward force at 0.5m/sec is 0.65N compared to mass is 2.2kg for a force to

mass ratio of F/m = 0.3m/s 2 or 0.03g, where g = 9.8m/s 2 is gravitational acceleration.

Since we wish to work near the point where lift force is zero, an equally important term is

the restoring force, slope of force vs gap. At lm/sec this is

d F
dz = -220N/m (4.7)
dh

Modeling this as a spring-mass system with k = dF/dh, we get a resonant frequency of

O = V/k/m = 8.8rad/sec + f = 1.4Hz (4.8)

Therefore, at 0.5m/sec and a gap of 2mm, an external perturbation imparting kinetic energy

ImV2 will cause the robot to move by a distance h' where the potential energy 1 kh'2 equals2 Z yadsac weeteeeg 2

the imparted kinetic energy. In the absense of control jets, if

1mv > -kh2 + |VZ| > wh (4.9)
2 2
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EVIE will touch bottom. For h = 2mm this is 0.0 18m/sec.
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Figure 4-7: System response for a perturbation of 1mm from equilibrium

We consider next what happens as the size of EVIE is adjusted. For this, we scale all

dimensions of EVIE by a constant of - and 2 to compare with the standard (1 x) size.

Figure 8 shows the force vs gap for velocity of 0.5m/sec. The gap, h, is expressed in terms

of e and force as the dimensionless lift coefficient (equation 4.5). We find CL is a function

of E but nearly independent of size and velocity. Deviation at higher velocities and size

may correspond to a transition from laminar to turbulent flow through the gap.

With this finding, we can consider we want a generalized expression if EVIE is scaled by

a factor a while keeping the speed v, and distance parameter e constant. Let -indicate

nominal (a = 1) values.

F _1 (F\
- - (4.10)

m a m

h = ah (4.11)

k = ak (4.12)

m =a3in- (4.13)
1 ~

C>= - CO (4.14)a
a)h= Wh (4.15)
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Thus the force to mass ratio degrades as size increases. However, the maximum velocity

perturbation, IvzI < coh, is independent of size if the gap is scaled as well. Furthermore, the

resonant frequency goes down for larger sizes, allowing more time for the control system

to respond.

We note that the approximation used in the above conclusion breaks down as Reynolds

number rises and flow transitions to turbulent through the gap. Up to 2 x, we find forces

and slopes increase with sizes, indicating higher stability for larger robots. We should

strongly emphasize these results require the gap is scaled up as well: a 2 x EVIE is as or

more stable at a 2mm gap compared to a 1 x EVIE at 1mm gap.

0.4 1/2x
0.3 - -0.5 m/s +S1x
0.2 --A 2x
0.1

0.0

-0.1 0 3 0 5

-0.2
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Figure 4-8: Lift coefficient for 0.5m/sec (top) and lm/sec and for lx, 2x, and 1/2x sizes
of the robot. The curves shows the coefficient is mostly independent of size and velocity
and strongly depends on the characteristic gap, E = h/c
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4.6 Experimental Results

Figure 4-9: Experimental Setup at MIT's tow tank. (a) 16 ft long table (b) Robot moving

at 2mm gap over the table (c) Suspension to the carriage

Preliminary experiments were carried out at MIT's I00ft long tow tank. The setup is shown

in Figure (4-9). The experimental setup included a 16ft x 3ft polycarbonate table on an

aluminum support frame with leveling capability along the edges. The biggest challenge

was attaining sub-millimeter precision on the 16ft table standing on an uneven ground

underwater to conduct the measurement. Simple things like temperature of the water could

cause small fluctuations of the table elevation. Sub-millimeter shims were placed along

the table length to get precision leveling. After an extensive effort a precision of 0.3mm

was achieved across the length.

The robot was suspended with a hollow steel rod from a ATI force and torque sensor. We

ran various tests at gaps of 1mm, 1.5mm, 2mm, 5mm and 6.5mm from the table, as well as

in the free stream. Speeds varied from 0. 1m/sec to Im/sec, plus stationary. We analyzed

both the drag and lift forces and compare with CFD.

Note matching experiment and simulation for fluid behavior in a boundary layer is extremely
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challenging, particularly for a large set up like this. Hence, for our initial experiments, we

focus more on qualitative behavior across different gaps than a quantitative match.

The robot was started several feet away from the table. After acceleration to the desired

velocity, there remained a region of free stream travel. To reduce sensitivity to sensor

errors, we consider only the difference in force between free stream and over the table,

using the free stream data taken just prior to overlapping the table; thus the "ACC". When

comparing to simulation, free stream forces are subtracted for the CFD data as well.

-1mm Fit -- 2mm Fit -Smir Fit

-mm it - 1.mm + 1mm
2 * 2mm - 5mm * 6mm

--1.mm lit

-1 0

-2

-3
Vslocty (m/s)

Figure 4-10: Experimental Data for lift force F from tow tank with error bars

Figure(4-10 )shows data points from varying velocity and gap, overlaid with a quadratic

fit for force versus velocity. Though there are several sources of error, for simplicity we
consider only the dominant one: the sensor measurement accuracy. This is independent

of velocity and gap. Therefore, a single error estimate was made by taking multiple runs
with identical settings. This is shown as error bars on the 1mm gap data. To avoid clutter,
error bar is not shown on the other data.

The most prominent feature is the lift at 1mm gap, particularly at 1 m/sec velocity. Forces

are quite small at 1.5mm for all velocities. Above 1.5mm, negative lift (Venturi effect)
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occurs. Over 6mm, this negative force starts fading out.

Figure(4- 11) shows the drag data (points) overlaid with a quadratic fit.
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Figure 4-11: Experimental Data for drag force F from tow tank

We turn next to comparison with simulation. For this we use lift and drag coefficients

taken from the quadratic fits to force versus velocity. In the Figure (4-12) and Figure (4-13)

we overlay lift and drag coefficients from simulation and data. There is good qualitative

match, with both exhibiting similar transition from lift at low gap and suction at high gap.

There remains a 20% in quantitative match. The CFD simulations cannot completely

imitate the experimental conditions, nor can the experiment reproduce the idealized condition

assumed in the CFD. To set the scale for how serious this is, consider that a 10% change

in velocity would give a 20% change in force. As we progress to more advanced design

issues, we will look at improving the simulation, in particular whether applying the ke

model throughout is appropriate. However, to the accuracy of the present apparatus, the

agreement is excellent.
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35

Figure 4-12: Comparisons of Lift Coefficients calculated from CFD and experimental data
here
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Figure 4-13: Comparison of Drag Coefficients calculated from CFD and experimental data
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4.7 Design Effects

In this section we analyze how the variation of the underbody design affect the stability

we have discussed so far. Thorough underbody design manipulation for faster acceleration

is commonly seen in race cars. We make simple transitions from an ellipsoidal base to

rectangular one and extend further with inclusion of protrusions on the base. The simple

design translation explicitly demonstrate how flow dynamics and stability changes with

minimal design variations and what parameters are of importance for achieving desired

behaviors. The results are based mostly on simulations with the goal of using the same to

decide on the correct experiments required to validate the observed phenomenons.

4.7.1 Simulation Setup

In this section we explain the simulation set up and the various runs will will perform.

As before using ANSYS for simulation, we study the ground effect dynamics as we make

simple transitional changes to the underbody design based on intuition and observation of

the flow [58] The different designs of the bottom are shown in the Figure (4-14) and are

described as

a) Elliptical base

b) Square with tapered edges

c) Elliptical front with rectangular sides and back edge with tapered edges Rectangular

front and back

d) Item (b), with protrusion (two sizes tested) at the back

e) Item (c), with protrusion (two sizes tested) at the back
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de

Figure 4-14: Different simple transitional designs of the base. Protrusion is shown
sub-figure (f)

The explanation for the choices is done in details in the next section. But for simplicity,

elliptical base comes from the original prototype. The first modification to a base with

a rectangular back end, was motivated to capture more of the streamline flow along the

direction of motion. We therefore borrow from race cars which typically uses a elliptical

front and square back. We chose the dimensions of the rectangle to maximize the area

while being (almost) contained within the original ellipse. The 3D model was then sliced

by arcs to form the rectangular base. The arcs meet the rectangle and are tangent to the

ellipsoid at the midplane; see Figure (4-15). For the elliptical front, only the sides and

back are sliced, while for the rectangular front and back all four sides are sliced.

It is to be noted the base area changes through these operations. Design comparison via

non-dimensional variables, which naturally would use this base area, is not pursued here

since we are concerned with the overall performance and stability of the robot rather than

exclusively the behavior of the base.
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~ 82 - 100.2

Figure 4-15: From perfect ellipsoid to a flat base and transitioning to a rectangular base

4.7.2 Simulation Results

Figure (4-16) shows the absolute lift, pitch and drag forces on the current vehicle as a

function of gap lengths. As discussed in the section on forces and moments, at gaps far

from surfaces, ~ 20mm and above, considered as free stream, the body experiences an

almost constant torque and lift. However, as one can see, in the near surface proximity the

torque doesn't zero out as we vary gap.

This pitching moment on the body at a gap of 5mm can be for example explained easily

by looking at the pressure distribution on the bottom surface as in Figure (4-4b). It is

obvious the suction pressure at the frontal edge is much more greater than the posterior

edge. The suction pressure is caused by the high velocity, and is termed as the Venturi

effect. However the non uniformity of this effect can be contributed to the fact that the

flow is not 2D and the elliptical base causes a flow loss due to dissipation from the sides.

The velocity of the flow suffers considerable reduction at the back, leading to weaker

Venturi suction. This pressure gradient between the front nose and the back edge causes a

nose down pitching moment.

A more relevant plot is shown in Figure (4-18). Convention followed here is that counterclockwise

torque and angles are taken as positive. It is seen that a stabilizing behavior is noticed

between 3 - 4' (nose down). Beyond 40 the robot nose touches the bottom. We see that
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Figure 4-16: Gap versus lift, drag and pitching moment. Note the red line showing the
lift dynamics has a stable equilibrium at 1mm, and the venturi suction to bring it back to
equilibrium acts unto 5mm. The green line indicates a non zero for torque (nose down at
5mm). The blue line shows drag, which is higher when robot is closer to the ground.)

the slope of the curve in this region is negative- which means the body can be stabilized

here. Note by stable, we mean a negative slope. The jets will be required to provide

a constant torque to reach this condition, but perturbations are self-correcting. However,

there is no stabilizing behavior in the nose-up orientation. Below 20 of nose down pitching,

and for all nose up pitching angles, the slope is positive; thus a perturbation would not

return to a stable point.

This brings us to understand what is the desirable characteristic we would like to see in

the robot. Ideally, we would want the robot base to be parallel to the inspection surface.

Of course sensor can be made parallel in other ways as well, but the simplest and ideal

design would be to achieve a zero torque at a zero pitching angle. Intuitively that means

the pressure distribution should be entirely uniform across the base or the variation at the

front and back edge should somehow nullify each other resulting in a zero torque at zero
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pitching moment.

To explore if this is achievable we made simple transitional design changes to the robot's

base. First we went from an elliptical base to a partially rectangular base to get more

uniform flow as in Figure (4-14), as with a race car. This turned out not to have much

improvement besides a reduction in drag due to the reduction of the base area. For

completeness we simulated a symmetrical base, with rectangular front and back . The

result to note here is there is no stabilizing behavior in either nose down or nose up as seen

in Figure (4-19). Note, some random scatter points from CFD has not been excluded.

Next, inspired again by underbody design in race cars to manipulate pressure distribution,

we added a bump or protrusion toward the rear of the robot, shown in in Figure (4-14 -d,e,

f). The reduced cross section results in a high velocity region in the back to balance the

one in the front and is mostly analogous the flow through a pipe with varying cross section

(except there is mass dissipation).

Since drag is less with rectangular sides and back, and fully rectangular, we introduced

protrusions in these two designs. A 1mm bump had little effect, but increasing the protrusion

to 2mm height revealed unique results seen in the Figure (4-19) . For the square base, the

protrusion creates a stabilizing region between -3 and -4', but no stabilizing region for

a nose down pitching moment. The protrusion for the elliptical rectangular sides and back

led to a somewhat symmetric stabilizing behavior for nose up and nose down orientation.

The restoring torque in nose up orientation is weaker than for the nose down, and we do

not achieve stability at zero pitch. However, the negative-slope region at +3' to +4'

can be utilized. A robot traveling at nominally zero pitch, if perturbed, may experience

uncontrolled motion up to 3 to 40; but at that point it can stabilized.

The ideal condition - zero torque at zero pitch, and negative slope for torque versus pitch

at zero pitch - maybe be possible with a protrusion design and placement not studied in

this chapter. However, the basic stabilization mechanism can be understood from this

89



study. When the robot is around 4' nose down, it is essentially in the region (a) where the

front nose experiences a lift force trying to cause the robot to nose up. When the robot is

perturbed such that it's nose is 2.5 mm above, it is in region (b) where Venturi suction takes

place pulling the nose back down. The rear perturbation creates a similar phenomenon in

the back for nose-up pitch.A nose down orientation under CFD simulation condition is

shown in Figure (4-17).
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SFin l Rwt0)
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Figure 4-17: Flow behavior (velocity profile shown) around a nosedown orientation of
robot

Finally we look briefly at lift and drag characteristics as in Figure (4-20) and Figure

(4-21).The square base was observed to have the lowest shear drag, whereas the protrusion

has the maximum drag force. A stronger propulsion system could overcome the increased

drag forces. However, we intend to first explore smoothing the transition from the flat

region to the protrusion to reduce drag. Stability in lift dynamics occurs for all designs

in the same sense as for torque and pitch: The lift force is not zero, but has a negative

gradient with gap. With a steady force from the jets, a perturbation that moves the robot
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Figure 4-18: Pitch vs. Torque for elliptical base. Red plot shows the difference between
the free stream and the ground effect. Green is free stream behavior, and blue is the
behavior in the proximity of ground
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Figure 4-19: Pitch and Torque comparison for all kinds of bases. Note purple plot -with
elliptical front, rectangular sides and back, and a 2mm protrusion have a negative slope
indicating stabilizable behavior in both nose up and nose down orientation.
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closer (farther) to the surface results in less (more) suction from ground effect and the

robot moves back to its nominal position. We note the design with the best pitch stability

rectangular sides and back, 2mm protrusion has the weakest restoring force.

Uft vs Gap at Pitch.0

. Gapinmm

Figure 4-20: Lift versus gap for various base designs. Note the one optimal for pitch
stability, that is the elliptical front with square sides, and protrusion - doesn't give the best
lift stability characteristics (purple plot). The elliptical base with square sides and minimal
protrusion of 1 mm (red), or the symmetric square base (green) performs the best though
they are not really optimal for pitch stability
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Drag vs Gap at Pitdt.0
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Figure 4-21: Drag versus Gap for various base designs. Square base was observed to have
the lowest shear drag, whereas the protrusion has the maximum drag force.

4.8 Conclusion

Ultrasound and eddy currents are widely used for subsurface inspection of underwater

structures. Currently, robotic testing requires the robot be in contact with the surface to

be tested. Particularly on a rough surface, contact reduces the speed with which such

inspections can be performed, which in turn limits the applicability of these techniques.

For instance, it is not currently possible to examine a large number of boats and ships in

a port for threat detection in a practical way. Having low cost small untethered vehicles,

like EVIE that can perform fast scans would be an ideal solution.

This chapter described a novel method to stabilize our micro UUV EVIE using hydrodynamic

forces to maintain a small, precise gap. Combining the lift force from choking flow at

extremely small gap with the Venturi suction a stable equilibrium point is achieved at

few millimeters height which allows the robot to move on a fluid bed created by natural

hydrodynamics. This enables faster movement on rough surfaces. Analogies of this

phenomenon has been discussed and behavioral similarity has been found with that of hard
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disk drives which occurs at micrometer and milligram scale. Although the fluid dynamics

is quite different, we have demonstrated a similar self-stabilization phenomenon in water

at the scale of millimeters and kilograms.

Hydrodynamic simulation of the concept has been presented and compared with initial

experimental results for longitudinal motion. The process have been evaluated for different

parameters, and a stability analysis was performed. Note, effect in turbulent flow was not

studied and only calm water is considered. It is obvious for practical practical applications

relying solely on natural hydrodynamics will not be adequate, and we might need a more

active method of controlling the fluid bed height. Though initial research showed the

possibility of stability in lift dynamics, stabilizing pitching moment was not intuitively

expected. Further simulations brought forward new insights and possibilities in design

optimization utilizing near surface stabilizing phenomenon. A specific option is a mostly

flat rectangular base but with a bump (protrusion) near the rear; this was shown to achieve

a degree of stability not possible with active controls alone. Zero torque at zero pitch

angle has not been yet achieved, but stabilizing behavior in both nose up and nose down

orientation of the robot confirms the existence of a geometry to satisfy this ideal orientation.

Further work is needed to optimize the design for reduced drag and a narrower window

of pitch. However, for our research we shall use the preliminary design (flat base) in the

upcoming chapter to demonstrate ground effect and how to integrate the same with vehicle

dynamics.
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Chapter 5

Jet Induced Hydrodynamic Ground
Effect

5.1 Introduction

In the previous chapter we discussed the phenomenon of the natural hydrodynamic ground

effect (passive hydrodynamics). We found that to truly exploit the phenomenon in real

applications, we need to have some level of active control on utilizing this resultant non

linear force for the purpose of near surface maneuvering. This means we might want to

actively change the stabilization height or thickness of the fluid bed. It could also mean

detecting the nature of the surface based on the resultant non linear force experienced

by the body. For example ground effect force experienced on a rough surface would be

different than on a perfectly smooth surface. Active control would be essential in real

environments where water is not entirely calm and some level of turbulence would be

existing. In this chapter we explore and analyze an active control via the use of a single

bottom jet that enables hovering and sliding over underwater surfaces. By sliding, we mean

smooth motion using a fluid bed layer. And hovering implies reduced thrust near surface

motion (few body lengths) over a region of interest. Such motion has applications to both

visual and volumetric ("on contact") inspection methods of underwater surfaces: pipelines,
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oil rig infrastructure, ships, or even fore stealth detection of threats like underwater mines.

Examples of applications that uses similar methods of using fluids for enabling smooth

motion are air hockey, where disks move on a film of air (sliding); and hovercraft which

uses a air-cushion at a higher pressure than ambient contained within what is called a

"skirt". And, then there is vertical/short takeoff and landing (V/STOL) vehicles which

experiences additional thrust (upwash) in proximity to the ground. The common feature

is using the fluid between the body and an external surface to generate forces. The

phenomenon though widely known in the context of motion over land and water surface,

with air as the fluid, but has not been utilized for underwater motion. In our research we

exploit the fluid flow between a submerged surface and a robot with a single active thrust

jet coming out of the bottom. A lot of work has been done on single and double jets

impinging on the ground for V/STOL, particularly for NASA, but no analogous studies

exist on how a water jet affects the dynamics of an underwater drone moving near submerged

surfaces. Results from simulations and initial experiments show unique phenomena of

multiple equilibria points at various heights from the ground. For a fixed thrust force we

demonstrate two stable regions: in extremely close proximity, when the robot rests on a

thin fluid film which enables it to glide; and another with the robot a body length or more

away. Stability at close proximity is relevant to volumetric inspection methods such as

ultrasonic testing. A larger gap has application in visual imaging, where an additional

upward force (upwash effect) due to the impinging jet allows the robot to hover at fixed

distances from the target surface at reduced thrust. The upwash effect is more prominent

for multiple impinging jets. We explain the observation and understanding of the jet

impingement phenomenon through CFD simulations and experimental data and discuss

exploiting this effect for practical application using micro UUVs like EVIE. In an actual

inspection mission, passive and active ground effect will be coupled to give the combined

force and determine the thickness of the fluid bed layer. The modeling of the coupling of

97



the vertical and horizontal motion is beyond the scope of the current research.

5.2 Literature Review

In the previous chapter we investigated ground effects from longitudinal motion. Results

are summarized in Force vs. Ground Effect curve - a strong negative (suction) force is

seen at small gaps (less than half the body length). This results in a stable equilibrium

at ~ 2mm and therefore a formation of a thin layer of fluid bed on which the body can

glide smoothly. But as discussed, fluid bed created by passive hydrodynamic effects might

not be sufficient for actual applications. In this chapter we extend the work to explore an

impinging jet to create a controlled fluid bed layer. Constraining the robot to motion only

in z, we study how the ground effect created by the impinging jet influences the net z force

and the resultant vertical motion of the body. We find similar force vs distance behavior

at small gaps behavioral curve, but also a new phenomenon at larger gaps suitable for

hovering under reduced thrust.

There are a few analogies to this model which are worth discussing. For the first stable

point, at small gaps (h/c << 1) a good analogy is the hydrostatic bearing where an external

pressure supply (pump) is used to continuously force the fluid through an orifice to create

a lubrication film. More broadly speaking, from theoretical analysis perspective this is

perhaps best understood from the concept of incompressible radial flow between two

parallel plates through a center inlet. The effect seen due to the flow in the gap, in terms

of real world applications, can be compared to VTOL vehicles.

We notice, if EVIE is made negatively buoyant, it will attain equilibrium in free-stream

at an optimal jet thrust (created by the bottom jet), Fopt, which cancels out the net weight

under water. For any thrust force FT < Fopt the body will sink. In our experiments using

a negatively buoyant system with a single bottom impinging jet, we find that as we lower
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the thrust force, the body begins to sink towards the ground as expected, but then stabilizes

at a new point - close to the ground (- one body length) even though the thrust force is

slightly lesser than needed to balance the body's weight. This was observed to be even

more prominent when two impinging jets were used. As we lower the jet force further, the

body sinks to a new equilibrium further closer to the ground. This is due to an 'upwash'

effect which creates an additional thrust from the interaction of the impinging bottom jet(s)

with the floor. The characteristic force curve due to impinging jet can be related to that

seen in a vertical take off and landing vehicle with a single jet impinging on the ground

[62]- however, at a very different Reynolds number. In a VTOL, the impinging thrust force

creates suction pressure at close proximity and added lift at a further distance away. In our

research, we demonstrate these behaviors through simple experiments and analyze them

using CFD simulations. Complex analytical modeling of such flows have been done for

fluid flow in parallel plates and ground effects on VTOL flights, but is beyond the scope

of the chapter. Our use of CFD is primarily for visualization as a means of achieving a

more intuitive understanding of the velocity and pressure distributions in our experimental

domain. The "Fg vs. H" Curve for the jet impinging robot is shown in Figure (5-1) - and

it is similar in characteristics and shape to that obtained due to longitudinal motion and

natural hydrodynamic effects shown in Figure (4-5) .

5.3 Basic Design

The basic design has been explained in Chapter 2. Different experiments were performed

to understand the impinging jet effect. The prototype of EVIE was used with a single 5mm

diameter cylindrical nozzle centered at the bottom. A simple centrifugal pump powered at

0-12V is mounted inside and the flow passes through a short (15mm) tube to the nozzle.

The pump effective working region is 3-12V with a maximum heard pressure of 60kPa at

99



Figure 5-1: Hydrodynamic Force Fg caused by a single jet from the center bottom of the
robot impinging the ground

12V. In free stream the jet can produces thrust between 0.0007N (at 3V) and ~ 0.036N (at

12V). Our robot has a net submersed weight of 3gf (gram force) or .03N.

Thus there is a unique setting where with jet thrust exactly balances weight: FT = Fopt, the

equilibrium condition for depths far from a surface. Small increase in thrust jet and the

robot rises; small decrease and it sinks.

The presence of a surface alters the flow pattern and forces. Our analysis, confirmed by

experiment, show two stable equilibrium points for a given thrust force. The first one at

close ground proximity and the other at a further distance from the surface which can be

varied by the jet setting. There is also one unstable equilibrium point which is of lesser

interest.

100

Regions: Fg vs. H Curve

region 1 I

(h<l$.02'

0.015 -

LL 0.01 -

0.005 Stable h=[0.22 1.2]
X: Equilibrium X: r0Y: 2.956e-05,

i 2 . 0.4 0.6 0.8 1 1.2 1.4

-0.005 - I Unstable Equilibrium Height(m)
reglbn 2

-.1h=(dO0.22)-0.01

-0.015 -

-0.02 -

-Fp(mln), h=0.07



Direction of
motion (w)

Figure 5-2: Block schematic showing a single bottom jet robot

5.4 Theory

As shown in Fig 5-5, the jet flow through the bottom creates three different regions of

interest which are dominated by three different kind of fluid flow. For understanding the

effect of the flow near the ground, the key parameters to consider are: the ratio of the

height from the ground to the UUV's characteristic length, e = h/D, where h is the height,

and D is the characteristic body length (diameter of the bottom); the ratio of the gap to

nozzle sizej = h/d, where d is the nozzle diameter, the ratio of the volume flow to vh

where v is the kinetic viscosity of water . The three regions of interest are described as

below and shown in the Fig :

" Region 1, Pressure Build Up. When the robot's flat bottom is in contact with the

surface, the thrust jet results in pressure building up to lift the body and releasing

the flow by creating a thin fluid bed. The radial flow here is laminar in nature unless

the Reynolds number is very high at the nozzle exit.

" Region 2, Ground Effect Induced Lift Loss. At gaps past Region 1, the primary

jet creates what is called the "wall jets" - flows parallel to the surfaces - radiating
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outward and creating a low pressure region under the body, resulting in a strong

suckdown.

* Region 3, Upwash. At larger gaps the impinging jet can interact with its flow along

the wall (wall jet) creating an upwash effect that leads to an additional positive lift.

This is prominent when there is multiple impinging bottom jets, where the upwash

results from a phenomenon known as the fountain effect. The upwash effect is

suppressed at close proximity to the ground as the flow shifts to radial.

5.4.1 Region 1

Region (1) is dominated by "pressure build up" inside the nozzle. When in contact with the

wall, the flow is blocked by the surface obstruction. At a particular pressure for a given

opening size, the built up pressure at the nozzle exit p1 leads to a pressure differential

with that at the outer edge of the body P2 (ambient) leading to a radial flow. The flow

underneath the body creates sufficient force in Z to lift the body by a height ho resulting

in a radial flow between the body and the wall. This flow at very small gaps is laminar in

nature, and the analytical model for representing the same is similar to that of a hydrostatic

bearing. A pressure drop in the radial direction due to shear stress may be observed. For

extreme small distances in this region, inertia and turbulent terms are neglected and this

kind of flow can be modeled as a laminar flow. The governing equations and principles

are based on Navier-Stoke equations for radial flow between parallel plates and for low

Reynolds number can be found [51], [52].

du dp dd2
pu- =-[ ]+ [ ](5.1)

dr dr dy2

d =(ru) 0 continuity (5.2)
d r
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If the exit jet from the nozzle is extremely high, the flow underneath in the gap could be

entirely turbulent in nature.

5.4.2 Region 2

Though at close proximity to the ground one might expect additional lift when thinking

in terms of an aircraft, in this particular configuration, the reverse is witnessed. It has

been found negative pressure and strong suckdown (negative lift) forces dominate as

h/D increases. The suckdown at small 17 can be understood as the jets entraining and

accelerating fluid beneath the body, resulting in reduced pressure. This is clearly seen in

the simulation section through flow visualizations. The phenomenon was studied extensively

in fluid dynamics, and in the context of VTOLs by Stewart and Kuhn (1983) [64] where

single jet impingement induced lift loss is a matter of concern. The VTOL studies points

out ) = h/D - the ratio of the proximity to the ground (h) , the nozzle diameter (D) and

the flow volume Q/vh as some of the the key parameters.

An active jet of water impinging on a submerged ground surface affects the net lift force

on the body. The flow now transitions to the turbulent regime.For 77 < 0.3 outward

flow remains attached to the body leading to small ground vortices in the gap. The

strength of the ground vortices decreases with increased height; at a limiting height hv

the ground vortex disappears and the pressure goes to zero. VTOL studies identified

the nozzle pressure ratio (NPR) - the ratio between the jet stagnation pressure and the

ambient pressure - as another important parameter. The NPR gives the jet thrust and

flow rate relationships. Other parameters that affect induced lift (positive or negative)

are jet structure, jet impingement angle to the ground, shape of the outer edge of the

model, ground plane size relative to the model, as well as the size of the test chamber and

obstructions above or near the model [63]. Effects of these additional parameters should

be done in future research.
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5.4.3 Region 3

Impinging jets can also lead to a positive lift from upwash effect: jets rising upward after

striking the ground. The fountain upwash, is more commonly invoked for multi jets,

though additional positive lift may also observed in single jets, perhaps due to interaction

with the wall jets (cross flow). Stewart and Kuhn [64] found that for direct thrust circular

jet configuration like in our model, ground effect initially induces a favorable (increased)

lift out that increases rapidly as the body approaches the ground. However, closer to the

ground and for low velocity, the fountain upwash overcame by the suckdown. The upwash

effect does reduce some of induced lift loses from the suckdown at the transitional region.

Lift losses for VTOLs is a complex phenomenon and has been studied in various research.

In Figure 5-3 [65] the percentage lift loss with height from ground is plotted. Note the

other common term used is the out of ground effect lift loss, which we won't explore as

such in this chapter. The basic equations used to describe the net jet induced lift loses

AL/T in the proximity of the ground can be given as:

AL L L
- = -+(5.3)

T T _, T_

where [AL/T], is the lift loss due to suckdown and [AL/T]f is the lift increment due to

fountain effect, with lift (L) normalized to thrust force (T).

5.5 F Model

In our research so far, we have demonstrated and analyzed the hydrodynamic ground

effect phenomenon - the different force regions- and their implications mainly through

experiments and simulation. We have observed the effects of changing parameters like

size or area of the body or noted how the flow changes by varying the underbody design

104



i
C,

I5=
.9'

10

8

6

4

2

0
4 3 2 1 0 1

Jet lift loss, %

Figure 5-3: This graph by Antonio Filippone [61] shows ground induced lift loses for
fixed and rotary wing aircrafts with varying heights from ground. As one can see the
region 2 of maximum loss occurs at pretty close proximity to the ground (4m), and then
is compensated somewhat by a positive lift force, likely from fountain effect. The out of
ground effect lift loss is also shown as a constant.
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Figure 5-4: A block schematic showing the different effects of the ground. The wall jets,
ground vortex and fountain upwash phenomenon are shown here that leads to negative or
positive lif
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Figure 5-5: This is the general lift force trend found for our underwater robot. We broadly
divided into 3 regions, (1) Pressure build up and leading to a large lift force (2) Suckdown
or jet induced lift loss region (3) Fountain upwash or positive lift region. Note for low
velocities the suckdown extends beyond the upwash.

[59]. In this chapter, now take a deeper dive into modeling the system -particularly keeping

in mind the need for an onboard control system. Some of the parameters taken into account

for the modeling should be the characteristic gap, size and scale of the object, the height

from the ground, the flow rate, velocity of the body, surface roughness among others.

From previous research presented, it was shown that the non dimensional lift force is

dependent solely on the characteristic height, that is e = h/c where h is the height from

the ground and c is the chord length of the body. It is observed that the ground force can

be represented as a function of height and the thrust force FT. The thrust force FT goes

quadratically as the velocity of the jet w1 as well as the pump control voltage V (direct

control variable). That is,

Fg = f(h)f(V) = f(h)f(FT) = f(h)f(wj) (5.4)
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We know, the FT can be represented as-

FT = thewe - 1howo + (Pe - po)Ae (5.5)

where rh is the mass flow rate, and subscript e and o denote parameters at entrance and

outlet of the nozzle. Again, the mass flow rate which is related to velocity as

W= (5.6)
pA

The CFD data of Fg overlays perfectly as we scale by ~ - taking away the dependency
j

on flowrate (or voltage or velocity). So, the height dependency is given by the curve shown.

We can say that,

Fg = f(FT)f(h) = q2 f(h) (5.7)

The curve in Figure (5-6) shows Fg(h) = l1/q 2F(g)- which gives us a clear idea of how

the force depends on the height at a given FT and - as expected -is highly non linear.

The overlaying of the experimental data was not that clean since there are many other

real parameters that affected the experiment came into play. This is seen in the Figure

5-7. Although it doesn't overlay, the force is scaled down to a factor of ~ 10. The result

could still be used for an initial estimation for Fg when applying an estimation theory for

determining Fg.

5.6 Simulation Results

Since lubrication theory is relatively well understood, for simulation we restrict ourselves

to a turbulent flow model emulating the VTOL in an underwater environment. The model

is set up using CFX, the standard static CFD software from ANSYS[54]. Turbulence is
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Figure 5-7: Left: Shows the experimental Fg for all different voltages Right : Shows

Fg/f(V) to see the sole effect of distance. Unlike the CFD results, the curves do not
overlay due to unaccounted factors in the experiment.
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handled by the k - e model. The mesh was generated using "Proximity and Curvature" for

the advanced size function, resulting in a dense mesh around the robot bottom, particularly

when close to a surface. The pump is represented by an inlet at the top of a pipe, with the

inlet flow rate set to match the measured properties of the pump.

Figure 5-8 shows the the suckdown phenomenon for a flow rate corresponding to full

power (1 2V) at gap size 100mm and 20mm respectively. We see the expected downward

flow under the body; and, for small gaps, a low pressure region underneath the body

formed by the ground vortex. The plots are in logarithmic scale to cover the large range of

velocity and pressure.

Figure 5-9 shows how lift force varies with gap heights for different inlet pressures. Recall

the stable condition

W = T +[AL]f+[ AL]s (5.8)

As described above, at small gaps the suckdown or negative lift Ls, is strong compared

to the positive lift due to fountain upwash, Lf, and there is reduced lift or even a net

downward force. However for a single jet L, drops rapidly with distance, Lf less rapidly,

resulting in an enhanced lift for larger gaps. As the gap is made still larger, this lift

enhancement also fades. Thus we get two stable conditions. First, very small gaps: the

suckdown pulls the robot to the surface. (Note actual contact does not occur, but the

thin-film regime is not properly modeled.) Second, thrust plus upwash, minus a weakened

suckdown, balances the weight of the robot. Upward perturbation of distance decreases Lf

contribution, while downward perturbation increases Lj; thus this is a stable equilibrium.

Note Figure 5-9 includes a correction for varying cable length (for pump power) immersed

in the water. The rigidity of the cable is however not included in our model. Thus,

although we have qualitative agreement with our measurement - a stable equilibrium at a

distance which varies with pump power - we do not have (and cannot expect) quantitative
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Figure 5-9: Lift force versus gap heights as the pump voltage is varied (therefore the flow
rates) for a negatively buoyant robot with a net weight underwater =.03N

and turbulent flow at the larger gaps. For really understanding the flow in the channel- that

is the bottom of the robot and the floor- we use just a elliptical plate with a center hole and

an impinging jet.

For our studies with a vertical jet and a stationary robot (representing a hovering vehicle),

we use the gap between the body and the floor as the characteristic distance. We recognize

this is valid only if the gap is small compared to the body size; the Re at large gaps cannot

be taken seriously and are not included in our Reynolds number plots.

For velocity, we use the average at the outer edge of the plate. This is simply Q/A where

A is the exit area and Q is the volumetric flow rate. Using A = hX, where X is the plate

circumference and hA is the gap, we get

Re=Qh Q (5.9)
vA vX

The results for the small gap region (which is of most interest to us) upto 50mm using

the above model is shown as below, which has a better match to small gap experimental
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Figure 5-8: Flow visualizations demonstrating lift reduction or suckdown phenomenon.

(a) Flow entrainment at 100mm, and full power thrust (b) Flow entrainment at 20mm gap
height(c) Pressure distribution at 20mm across the gap (d) Pressure distribution showing
low pressure on the bottom surface of the robot

agreement on the stable distance and corresponding voltage.

The upwash can be made more clear by understanding the difference of flow between the

free stream and a closed bottom. This is shown in the Figure 5-10. This is done at a gap

height of 300mm. As one can see the upwash, which then changes direction and escapes

out of the edges of the undersurfaces giving rise to the additional lift. The large reflection

(red arrow) colinear with the jet is an artifact of the very high velocity associated with the

jet, and a slight broadening of the jet in the presence of a surface. The combination results

in a very large Av at the core of the jet.

We found the k - e model gave a good behavioral match to our observation, from a

quantitative perspective for predicting the stable equilibrium it was quite off. We therefore

redid the model by using the k - w SST model to capture the laminar flow at small gaps
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Figure 5-10: Flow visualization for Lift Increment due to Fountain upwash

results.

A2

Figure 5-11: Flow in the jet impinging channel- that is between the bottom of the robot
and the ground

5.7 Experimental set up

Two types of experiments were performed. First, we address whether the robot has multiple

stable points as predicted by CFD. After confirming the CFD prediction, we proceeded to

measuring forces.
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Figure 5-12: Experimental set up in lab showing the robot resting and hovering in a 5ft
deep tank

5.7.1 Stable Points

In the first round of experiments, a robot with a net weight of 3gf (0.03N) was placed on

the floor of a tank in 0.6m (2ft) of water. Being heavier than water, the body stayed in

contact. When the bottom jet was powered at 3 volts, the robot still stayed in contact. As

we raised the voltage, we observed a tendency to rock; we interpret that as being due to

imperfect mating of the two surfaces. The fluid oozes out of the nozzle and forms a film

below the robot. This was evident when the robot was lightly tapped. With the jet off, the

robot would barely move; whereas with the jet powered, the robot moved smoothly and

for considerable distance. It was simple demonstration of lubrication theory, except the

lubrication fluid and the medium of propagation are both water.

Next the robot was attached to a force sensor and suspended above the floor of a 1.5m

(5ft) deep tank. An ultrasonic range finder was used to measure the distance between the

robot and the floor. At 1.4m (4.5ft) above the floor, and with the pump powered at IOV,

the jet's thrust balanced the weight of the robot, i.e. the force sensor read zero. To check
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Figure 5-13: F verus gap for distances upto 100mm using the SST model. The zero cut
off for the stable equilibrium matches experimental observatqwing few mm thickness of
fluid bed layer. The upwash effect is however somewhat undermined in this model.

if we were already dominated by ground effects, we lowered the robot to 1.2m (4ft) depth

while keeping the pump powered at 1OV. It maintained a neutral equilibrium at that height

as well, indicating the ground was not a dominant factor.

However at lm (3.5ft) the body experienced an upward force pushing it back up to 1.2m

(4ft). We put the robot at 1.4m (4.5ft) again and decreased the voltage to 8V; the robots

started sinking, as expected, but stabilized at ~ Im (3.5ft). As we decreased the voltage the

robot sank to a new stable point. This was observed down to 4V, where the robot stabilized

at - 0.6m (2ft) from the surface. At 3V, the robot sank to the floor. These measurements

were repeated over 5 runs. Stable point versus pump voltage is shown in Figure (5-16).

The free stream thrust at each voltage can be calculated from the pump flow versus voltage

characteristics (measured separately), from which we can deduce the upwash force at each

stable point. The upwash force, normalized to thrust, as a function of gap is shown in

Figure (5-17).

Our range finder could not measure distances < 500mm and could not be used except in
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Figure 5-14: This is showing the F versus gap for various inlet pressures (and therefore
flow rates) at smaller gaps

the upwash dominant region. However, our observations are in agreement with our CFD

analysis, where the suction forces dominate over fountain upwash at small distances. The

strong suction force could be demonstrated easily even when the robot is balanced by

the jet at 9V. When a moving plate (or a hand) passes underneath the robot, the robot is

instantly attracted toward and follows that surface, both in depth and laterally.

5.7.2 Lift Force

Our second set of measurements used a single point 1 OOg micro load cell to measure force.

The device is intended for use in sensitive, high precision weight scales and was well suited

to the force range we anticipated. To constrain the robot to 1-dimensional, vertical-only

motion in response to the jet, while still measuring forces in z, we used a low friction slide.

One half of the slide was attached to beam which in turn attached to the water tank. The

other half attached to the robot body via a rigid, vertical rod. A clamp between the rod

and the slide allowed the robot depth to be adjusted: First the robot and slide were placed
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Figure 5-15: This is showing the Reynolds number versus gap for various inlet pressures
(and therefore flow rates) at smaller gaps

at their desired positions, then the clamp was tightened. The buoyancy of the system was

adjusted by adding or removing polystyrene foam until the robot, plus rod and (half) the

slider, were a little more than neutrally buoyant: nominally, 50g upward force to place it

in the mid-range of our load cell. The load cell was then brought in contact with the part

of the slider connected to the robot. Finally, the height of the robot was checked and, if

necessary, adjusted.

Our load cell is a 4-element device configured as a Wheatstone bridge to minimize sensitivity

to off-axis forces. The load cell was read out with a commercial Wheatstone bridge

interface board with amplification, digitization, and a USB interface. We chose to read

data at 5Hz and average over ~ 20 seconds for each height and voltage setting. Since

the buoyancy deliberately non-zero, but not precisely known, for each height setting we

started with a pedestal, i.e. pump-off, measurement. This pedestal was subtracted from all

subsequent measurements to separate jet-related forces from simple buoyancy.

The measurements are presented in Figure (5-19). Although the precision of the load cell
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Figure 5-16: Height of stabilization, in mm, versus voltage. Error bars indicate the
accuracy of our measurement device (vertical) and resolution of our power supply.

is excellent, there are many other potential sources of error in this setup. To quantify the

accuracy of our data, after completing our measurements we retook a subset of the data.

The two sets of data were found to have a 0.015 RMS deviation. To better understand

the source of the errors, for the second set of data we retook pump-off data at the end

of the measurements in addition to at the start. The deviation is is a measure of the

system hysteresis which we attribute to friction, primarily in the slide. We found the

pedestal measurements had 0.013 RMS discrepancy, essentially identical to the pump-on

data. Based on these measurements we assert that our errors are dominated by friction.

Since friction is unaffected by the jet and height settings, we assign a constant error to all

data points.

For both experiment and CFD run - we simplify to using a elliptical plate of quarter

inch thickness with a center outlet, since our interest is mostly about the hydrodynamics

occurring at the bottom of this plate. For most of the work presented here, the upper body

effect is not explored. The dependency on scale was explored. It was found that the ground

force Fg(h) c< A oc L2 where A is the area of the body and L is the length.
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Figure 5-17: Upwash versus height is plotted as measured from the experiment.

The next parameter of interest was surface roughness. In a lab experiment, we used a rough

mat with roughness factor Er=-~.008, where 3 r is the height of the surface roughness and

c is the nozzle diameter. Intuitively one might think surface surface leads to turbulence

in the flow, thereby would decrease the suction or Venturi effect. It was seen from the

experiments that in fact the suction became stronger at smaller gaps but decreased at larger

gaps.This is because rough surfaces causes local vortices leading to increase in suction, or

pressure drop dominant when closer to the surface. The setup is shown in Figure 5-20 and

a comparison example with the given mat and just glass surface is shown in Figure 5-21.

To measure the forces, we conducted an experiment constraining the body to only one

degree of motion (Z) and used a single point 100g micro load cell. Sensors used are two

kinds- a precision distance sensor and a larger distance sensor (ultrasonic distance with .05

mm accuracy). The force sensor is a 100gm micro load cell. Repeatability and hysteresis

for this sensor is ~ .005N = 1 / 100 of the force measured. Setup shown in Figure 5-18. The

sensor data is further filtered to get a precise estimation of the distance from the ground.

Effects of other submerged portion subtracted out through subtraction of the value at no
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Figure 5-18: Left: Schematic showing experimental setup with elliptical plate. Right Top:
Setup for Distance Measurement. The white plate moves with respect to the ultrasound
sensor along with the elliptical plate. When the body touches the ground, the white plate
is the furthest from the sensor (taken as positive distance). Right bottom: Pump mounted
on elliptical plate resting at equilibrium

load (no pump). Error sources came from the friction in the slider, sensor measurements,

limitations in reproducibility of the setup and inaccuracy in the system measurement.

As mentioned, instead of using the whole robot, we used elliptical plates cut into the

shapes of robot's bottom. We looked into the effect of a sudden external force on the

system with different buoyancy conditions pushing it all the way to the ground. The set up

is shown in Figure 5-18. A ultrasound distance sensor was used in the arrangement shown

to measure distance. Note, negative distance implies away from the ground as measured

by the sensor.The system response is given byFigure (5-22).

5.8 Conclusion

The conceptual design presented in this chapter opens up a whole new method of traversing

underwater surfaces. Extending work done for air as the fluid medium, we developed a

simple prototype to allow hovering and gliding underwater using single jet impingement

on the ground. Our analysis of the dynamics of this configuration show it can be understood
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Figure 5-20: Experimental Setup for Roughness Test
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Figure 5-22: (a) An force of 5N given. Very damped system, stabilizes right away on
the fluid film (b)Body made slightly more buoyant- note the body bounces on the other
side of the equilibrium into the venturi region and is sucked back to stability (c) Body
is made even more buoyant - experiences lesser venturi force - oscillations representing
possible lateral vibrations (d)Further increase in buoyancy shows for the same force - the
body escapes the venturi region and passes through the unstable equilibrium to free stream
region- flat section. (max distance allowed in the experiment)
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Table 5.1: Fg dependency on Robot Parameters

ocd 2

Size where 7r(d/2)2 is the bottom area

Height and Size ~ e = h/d
Body Lateral velocity c x2 2

Downward Jet velocity < w2

Sharper, deeper dip at
low h for rough surface

as a cross between traditional lubrication theory at small gaps, and upwash at larger gaps.

With the body close to the ground, flow out of the nozzle oozes across the bottom surface,

forming a thin film which enables smooth sliding motion: traditional lubrication theory.

It may however be debated if the flow of this fluid film is turbulent or laminar and there

remains work to be done on radial turbulent flow through parallel disk. As distance to

the ground is increased, initially ground induced lift losses dominate: the body pulls

back to reduce the gap, i.e. this is a stable equilibrium point. As the gap is increased

further, lift enhancement from upwash pushes the body away. This phenomenon fades

as distance is increased still further. This behavior, well matched to those of VTOL

aircraft hovering near the ground, creates another stable equilibrium point. Preliminary

experiments confirmed the existence of the phenomenon with clear demonstration of suction,

upwash, and stable equilibrium points. Empirical results are qualitatively and quantitatively

confirmed by different types of CFD analysis (different models used). Future work should

focus on improving both the apparatus - eliminating the tether for power - and the simulation

: capturing incorporating thin film modeling and the transition to turbulent flow accurately

in a single model.
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Chapter 7

Data Driven Linear Model of UUV with

Augmented States

In Chapter 3 we demonstrated simple control of a robot on a smooth horizontal plane

without explicitly accounting for ground effects. Subsequent chapters presented experimental

observations and CFD simulations of the hydrodynamic ground force, Fg, and an analysis

on how the force affects the system at various regions of operation, given by < (h, w) near

the target surface of inspection. To take advantage of these hydrodynamic phenomenon

in a real application, we need a control system which incorporates the ground effect; and

this in turn requires a suitable system dynamical model. We start by noting the complexity

of Fg vs H curve: highly non-linear, with multiple equilibrium points. The problem is

not amenable to analytic solution. Further, CFD simulations are computationally intensive

and, while sufficient to guide the design, are not robust enough to directly build the model.

In the absence of a well defined analytical model, we apply a data-driven approach. In

order to study the results in detail, we use a large number of simulated data samples that

sufficiently covers the entire
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operational region; however, the method is suitable for use on real data as well.

Our goal is to develop a demonstrably stable and robust control system. We require

a method where accurate state estimation is possible despite modeling errors, such as

unaccounted variables affecting system dynamics. Traditional linearization by tangent

line approximation fails in such cases. Therefore we propose to apply a new and novel

approach: we recast the non-linear system to a higher dimensional space with "auxiliary"

state variables where the system becomes linear. (A simple example is y = x2 , which

is non-linear in [y,x] space but becomes linear in [y,x,x 2] space.) This method allows

us to form a nominal state matrix which is combined with a state estimator for optimal

estimation of the non linear elements. A simple robust controller can be then designed to

compensate for these non linearities based on on-line estimation.

The non linear forces we will consider are drag and hydrodynamic ground effect forces,

Fd and Fg respectively. In the 1-dimensional system we will work with, estimating just

the total force FT, would suffice in many cases. Separate estimate of Fd and Fg is more

challenging, but opens up a number of options. First, it more readily generalizes to a

real-life, 3-dimensional problem. Our goal is to ensure for inspection purpose we are using

the hydrodynamic ground effect to our benefit to maintain the close proximity without

costly actuator control effort. In reality, the amount of suction needed would depend on

many external factors that are not known a-priori, like surface roughness, turbulence and

others. The single impinging jet flow rate must be therefore be controlled accordingly to

ensure correct amount of suction and fluid bed layer thickness. Therefore it is necessary to

estimate the suction experienced by body and how the jet impingement must be controlled

to generate the correct force. However, recall venturi suction results in coupling between

motion parallel to a surface and force perpendicular to the surface in presence of an

impinging bottom jet as we saw in Chapter 4 and 5; there is no analogous coupling for the

124



drag force. Thus, in the more realistic case of 3-dimension motion, separately modeling

Fg and Fd would be required. Second, as we found earlier, the ground effect depends on

the smoothness of the surface. Thus, an independent estimate of Fg is a measure of the

surface. Besides being potentially valuable information in itself, it allows higher-level

logic to select among a range of models for the one most applicable to the circumstance.

This is illustrated in Figure (7-1) and Figure (7-2). It is to be noted, for the scope of our

problem, we will assume a fixed impinging jet denoted by uj which remains constant in

the problem. The

The concept of state estimator for a data driven linear model and feedback control

will be explored in Chapter 7. In this chapter we will briefly present some background

on existing data driven methods of system modeling, limitation of traditional linearization

methods, and then turn to the use of Principal Component Analysis (PCA)[28] for forming

a linearized model. We discuss the performance based on the covariance matrix, order of

truncation of the latent variables, sampling processes, number of auxiliary variables, and

region of operation. The method described in the chapter forms a critical part of the

doctoral thesis contribution and opens a entirely new approach of data driven dynamical

system modeling and control to capture non linear system behavior and estimation of

individual non linearities which cannot be done by traditional linear approximation techniques.

7.1 Literature Review

Data-driven techniques are increasingly important as a vast amount of data is becoming

available at low cost [66]. Various systems working in the field are now monitored 24/7.

Field data uploaded to a cloud environment are analyzed for providing better maintenance

and efficient services. Construction machines, for example, have been monitored for

predicting the life span of key components, so that replacement parts can be ordered in
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Figure 7-1: Multi-DOF Coupled Motion

The actual robot will move in multi-DOF and has coupling in the non linear forces. For example,
while moving in longitudinal motion on the inspection surface it also has the bottom jet for

forming fluid bed turned on. Total ground effect forces along (z) axis therefore are the net result of
both the passive and active (or jet induced) forces. The drag force along (z) axis however is very

small since there is no significant motion along (z) . Therefore separate force estimation is useful.

advance. As instrumentation and communication technology grows further, more detailed

and richer variety of data will be available from the field. Yet, the challenge is to find a way

to extract useful information, develop new services and improved products by exploiting

the data. Cloud computing also generates a vast amount of data through advanced simulation.

Detailed computational models have been available for many complex machines and systems.

Yet, potentials of valuable data have not yet fully been explored and exploited.

For the control community, emerging data technology will open up a new opportunity

to augment its core methodology with a data-centered methodology. The challenge is to

extract critical information from the vast data that is required for control design. Such data

may include signals beyond the standard input-output data, and may contain information

more than state variables. For complex non linear systems like ours, the question is which

set of variables sufficiently informs the dynamics of the system and are useful for control.
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Figure 7-2: High Level System diagram: Roughness Identification

Using estimated ground force to in turn predict the surface roughness and identify the right
dynamical model for the operation. Roughness of target surface will not be known with accuracy
prior. However, it will be studied and modeled and the information will be loaded on the system's

computer.
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Here, we address how we can find informative variables for a class of unknown nonlinear

dynamical systems, and how we can reduce them to a state equation in the space that is

useful for system analysis and control synthesis.

There are different statistical data fitting methods for constructing a linear model but

they are often not optimal when dealing with large amount of data. Though the example

in this and the next chapter would be a simplified second order system. These can either

measured or simulated. It is easier to establish the foundational framework of a method

using simulation data to encompass a wide range of scenarios and then move to actual

system data. For large data spaces, we explored are the well known"Principal Component

Analysis" (PCA) and a more newer technique: "Subspace Identification Methods" also

known as "4SID methods" (Subspace State Space Systems IDentification) [71]. These

are alternative to the usual regression methods like ARX or ARMAX and are based on

concepts of geometric projections and linear algebra. They are robust techniques (can be

implemented with robust methods like QR and SVD factorizations), have same computation

complexity for both SISO and MIMO system and are guided by only one parameter:

system order (to what high dimensional space you would like to transform the model to).

However, the underlying math being extremely complex, it generates a black box model

from which it is very difficult to grasp how various dynamical parameters are reflected into

the model, and how tuning them changes it. We did some initial work using this method,

but majority of the work and ultimate results uses the PCA method.

The PCA approach uses what we call the "latent variables" denoted by "z" [72].

Latent variables are variables which are not observed but rather inferred through some

transformation and are key to dimensionality reduction while retaining system information

to the required resolution. "Latent space" or "z-space" can be viewed as a rotation of

the original state variables defined by the system's modal matrix. It is an unambiguous,

reversible mapping from one space to another: - when no truncation is involved, no
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information is lost (or added) in the process, and conclusions drawn in one are readily

transferable to the other.

Using a Latent Variable technique combined with physical modeling theory, two salient

features and properties have been explored. One is a systematic method for finding a

complete set of variables that can sufficiently inform the system's nonlinear dynamics.

Independent state variables are augmented by adding auxiliary variables that are needed

for describing constitutive laws of individual components, which may be nonlinear. The

other major result is that the nonlinear dynamical system in the augmented space can

be represented as a linear equation. The class of nonlinear dynamical systems behaves

linearly when it is recast in the high-dimensional space derived from the augmented state

space that is sufficiently informing. While the resultant latent state equation is linear,

complex nonlinearities are embedded in the compact model, leading to precise and global

linearization of nonlinear dynamics.

New approach to the data drive method using bond graph theory [67] has been explored

in [68],[69].This chapter extends the approach to both autonomous nonlinear systems

to non-autonomous, nonlinear systems for our UUV [70] . A data matrix is formed by

collecting samples of a set of sufficiently informing variables. It will be shown that a class

of nonlinear dynamical systems can be exactly linearized and represented as Differential

Algebraic Equations (DAE) in augmented state space. A causal linear state equation is

also derived from the data matrix, which approximates the nonlinear dynamics precisely.

The richness of data matrices is evaluated in terms of matrix rank, which is upper-bounded

due to the structure of the nonlinear dynamics. Though the method is proposed for general

application, we demonstrate it through our complex non linear 2 "d order UUV model with

a single impinging bottom jet and moving on a single axis.

The power of data driven modeling in capturing non linearity can be once for all

explained in terms of a non linear spring through the Figure (7-3). When a non linear
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spring is modeled using solely traditional method like Taylor series, one can notice that

depending on the line fit, it is possible to miss out on most of non linearity. On the other

hand, statistical modeling method often capture the more of the non linear behavior based

on the population of the data samples in the non linear area. Having more data samples in

the non linear region will force the trend line to pass through that.

An important question that comes up in the high dimensional linear representation

of the system is: redundancy. The original system is second order, is a higher dimension

space linear model then essentially rank deficit? The answer is no. The higher dimensional

model is not formed from a traditional Jacobian matrix. We will explain this with the well

known mass spring damper system example.

Non Linear Sprina

Fails to capture the F(x)

Traditional Method of Modeling relevant non linear
character TS

-M d _ If F ;+

-Use Taylor Series (TS) expansion for linearization around a
equilibrium

Statistical Method of Modeling

- - - ~

(a)

F(x)

-

- Use data samples 1
- Do a linear fit on the data to get a linear expression ' . .I. Statistical method

for the non linear entity . - can approximate
a larger region of

(b) non linearity

Figure 7-3: Explanation of why data driven modeling helps to capture non linearities that
traditional modeling cannot through the case of a non linear spring.More data samples of

the non linear behavior help to form a trend line that capture those non linearity better
than in a traditional Taylor Series method
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For example, let in a mass spring damper system, F be the spring or restoring force

and Fb is the damping force respectively. We know, states of a system are not unique. So,

if the forces were linear, adding them to the second order model would be redundant since

the states and the linearly dependent forces are interchangeable. That is there is an exact

reversible relationship between them- one can be derived from the other in the state space

model. Let k be the spring constant , x is the elongation and u be the external force.

mA +b c+kx = 0;

F = -kx -+ linear relation (7.1)

Fb = bi -+ linear relation

Non linear Model:

Fs = f(x, Fs, Fb, u...) linearizing s J(
(7.2)

Fb = f(x, Fs, Fb,u...) linearizing -- Jb

But if F and Fb were highly non linear function, the Jacobians wouldn't capture all

of the non linearity. In addition, if there may be uncertainty in the non linear function

representation relating the state variables and the forces. The Jacobian Js and Jb do not

contain all the information required for estimating states from the non linear forces or vice

versa.Therefore the following equations are not reversible anymore- and here the addition

of the non linear forces as auxiliary states in the high dimensional linear model helps to

enrich it.
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7.2 The System Model

Hydrodynamic force on a body in motion in the vicinity of a submerged surface is substantially

different from motion in the free stream and is under-explored. The Fg(h) curve in

Figure (??) is unique and challenging to model - particularly due to the presence of two

distinct equilibria- one stable at very small distance and one unstable at a comparatively

larger distance. The system dynamics is characterized by complex non linearities which

are non monotonic in nature. Traditional linearization techniques using a tangent line

approximation and Jacobian matrix though preferable captures very limited operational

area (less than 3%) at extremely low velocities which we will demonstrate as below.

Control jets u

Direction of
motion (w) Impinging Jet control uj. Assume constant, and u

m as the only control effort.

ground
wall effen vortices

Impingement zone

Figure 7-4: Vertical Motion of EVIE with Single Impinging Jet

The non linear equation of the single axis vertical motion of the jet impinging robot as

shown in the Figure (7-4) as described in Chapter 5 is given by:

Vw>= -[(mg-Fb)+Fg(uj,h)+F+Fj+u]
sz (7.3)

h=w (7.4)

where, Fd, the drag force (if considered quadratic) is given by Fd = Zwww2 , and w is the
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vertical velocity of the robot. The impinging bottom jet at a particular flow rate (or control

input uj) gives rise to two kinds of forces: the constant thrust force F and a ground effect

force Fg(h). Far from the ground - in the freestream- at a height Hfs, we have Fg(h) = 0.

Therefore, for a fixed u1 we can treat Fj merely as a bias or offset and there's no need to

include the same in our equations going forward.

The non linear terms - Fg and Fd - are major constrains to linearize the above equations

for constructing typical state space linear model. For traditional linearization we need a

physical equation of the system. Since we do not have the same for Fg (h, uj), we fit it to a

parabolic curve to the simulation data of Fg and h that covers up to the upper bound of the

venturi or "suckdown" region or the second equilibrium. The fit given by equation (7.6) is

shown in Figure( 7-5) which is then linearized.

F9 vs h

0.006 -

0.004

0.002

i .000-
S-0.1 0
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-0.004
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-0.008

!O 00. . .6 07 08 . .

h(m)

0.1 . 0.3

Region of Interest I----------------

Figure 7-5: Parabolic Fit in the region of Interest (Venturi Suckdown)
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Fg (h, uj) = uj[ah2 +h+ y]

where a, P, y are the fit parameters.

For a robot like EVIE with given shape and size moving on a surface of given roughness,

and with a particular impinging jet control input Uj (which is the input at the stable

equilibrium condition), we have Fg solely as a function of h. Total force in (z)

F = Uj[ah 2 +Ph+y] +Zwwwwl+ u] (7.6)

So now the equation (7.3) can be expanded by substituting for Fg

w =-[(mg-Fb)+uj[ah2 +h+ y] +Zwwww|+u (7.7)

In the region of the operation, the drag function is complex: linear at very small

velocities, transitioning to quadratic at larger velocities, and ideally with a fifth order

polynomial splice between the two. This is shown in Figure (7-6).

In equation (7.7) , uj is the thrust control for the bottom impinging jet that regulates

the thrust force Fj and goes quadratic as jet velocity wj. The actual control input is given

by u.

If we use the quadratic drag model, as before- the linearized parametric model is given

by- [, [Zwwwe Ue(2hea+1) w
+ SZ U (7.8)

h 1 0 h -0

where the subscript 'e' denotes the value at the equilibrium.

Let us now consider the equilibrium position. We mentioned that Ue = Uj here.We

shift our Fg vs. h curve for convenience, such that now Fg = 0 passes through h = 0. The
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Figure 7-6: Drag Types- (a) Linear - augmented state Fd linearly dependent on w.
(b) Quadratic - Fd quadratically dependent on w. (c) Mixed - linear for Re< 1, quadratic
for Re>1000, 5 'h order polynomial for smooth transition between the two. (d) Comparison
of quadratic and mixed drag at low velocity; note the small linear term for w -- 0 results
in more realistic damping of perturbations after many seconds.

fluid bed layer therefore occurs at negative values of h. Hence the states at the equilibrium

conditions are given by we = Ov/sec, h = Om. When the values are substituted in the

Jacobian matrix of the state space model, the damping term disappears leading to the

failure of the linear model.

w 0 UjP W
+ sz U (7.9)

h 1 0 h 0

The second alternative is a hybrid linear model - also known as the 'equivalent linear

model', where we apriori have an estimate of the range of velocities the body can attain,

and we use the average RMS value of the velocity and that accounts for the damping. This

basically uses either simulation or experimental data to get the estimate and is therefore a

hybrid between a linear and a data driven model.

Ew Zwwwrms UjP
+ Sz (7.10)

h 1 0 0
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The performance is seen in the Figure 7-7. The linear model (blue) shows no damping,

the modified linear or pseudo linear model (red) shows a smooth convergence to equilibrium

and the non linear model (black) simulation shows damped oscillations and eventual stabilization

at equilibrium. As you can see the hybrid model however fails to predict at the positive

slope region. We will come back to linear model comparisons later in the chapter, but the

limitations are clear enough from this section to transition from a hybrid to a fully data

driven technique.

V08011.CO

;01
'04I

4:

3D -m ~~ WN m o.M-au"

Figure 7-7: Blue: Linear model Red: Modified Linear Black:
results. Left: Velocity Right: Height

Non linear ODE simulation

7.3 Data Driven Model for UUV

Our goal is a linearization model that captures the dynamics of a non linear system more

accurately, and over a wider operating region, that is possible with the standard Taylor

series expansion into a linear Jacobian matrix.

Most real systems are non-linear in nature. Standard linearization methods function

well only over a narrow region and small perturbations. This limits the range over which

136

a / ' ) , ) , 'o ............ ................. .........

-10

-W

-30
0 02 04 0.6 0.4

t

I I I I I I i
I I I

I I

t
1.2



the controller can be applied. An example would be a car engine. When the engine is

pushed towards the boundaries of its operation, problems such as knocking and misfiring

occur. The need to capture a greater part of the system dynamics and allow a control

method satisfying the boundary constrains robustly is therefore very much needed.

As seen in the previous section, the same problems applies for our robot approaching

a target surface with non linear forces acting on it. The unique and challenging features

of this highly non linear Fg vs. h Curve shown in Figure (7-5) is the presence of multiple

equilibria (one stable, one unstable and one neutral at far distance) and no simple, well

established physical model. Compounding the complexity is the need to include a non

linear drag force. Thus system dynamics are non linear and even non-monotonic in nature

and therefore might demand the use of non linear control. Yet for real applications, a

simple robust feedback control compensating non linearities that can be easily integrated

with a linear dynamical model has a large advantages; whereas, as we noticed in the

previous section, traditional linearization fails to capture most of the system's critical

behavior in the operational region. Hence we investigated methodologies to develop a

linear model that sufficiently informs us of the system over a wide region of interest.

Given there is no simple linear model to capture non linearities, we explore directly

incorporating data - experimental or CFD simulation - to build a linear model that is

capable of capturing nonlinearities. This is done by augmenting the state variables with

"auxiliary variables" associated with the non linearities in the output vector. As mentioned

before, we chose to use PCA as being more intuitive, and therefore more robust.

A natural question to ask is: why do data driven methods make sense now, whereas

linear methods have been used extensively in the past? This system is complex - but many

systems, past and present, are as ore more complex. The reasoning can be summarized as

follows.
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" Increased focus on autonomous systems which must tolerate a wider range of conditions

without human intervention

" Development of a wide range of economical, fast sensors to collect information

previously unavailable

* Availability of memory and computing power to collect and process large bodies of

data

" Related to the above, development of "Big Data" algorithms we can learn from

* Advances on the CFD front and other simulation platforms allowing more reliable

modeling of complex systems

The underlying hypothesis in the data driven approach is that dynamical systems behave

linearly when recast in a suitable higher dimensional space. State variables are augmented

by adding auxiliary variables that sufficiently inform the nonlinear dynamics of the system.

We start with a data matrix containing a large number of samples in the augmented state

space. This is then analyzed to extract latent variables that in turn predict state transitions

in the latent space. There are many ways to determine the so called auxiliary variables.

One way is through a physical system representation via a Bond Graph where the connective

structure of networked elements is known, but the constitutive laws of individual elements,

which may be nonlinear, are unknown. Or in absence of a good understanding of the

physical model or a systematic methodology to derive it, auxiliary variables can be chosen

as polynomial representations of various orders. We use Principal Component Analysis

(PCA) to compute the latent variables. The latent variables are used to generate an exact

linearization of the Differential Algebraic Equation (DAE) in the augmented state space.

The resultant matrices are then used to get approximate linear state space model in the true

(non-augmented) state space.

138



Before we begin with our simplified example, the following point must be understood.

The focus of this thesis is a thorough understanding of estimators for multiple non linear

forces. To this end we use a single degree of freedom and only two measured variables -

w and h - from which we estimate two auxiliary variables: Fg and Fd. With this minimalist

data set, we do not benefit from the data handling capability of PCA. Direct linear fitting

methods are well understood and easily applied. In fact the overall approach here would

work with any conventional fitting technique.

As we expand the system for multi DOF motion, with number of non linearities

increasing as there are more and more coupled forces, and environmental factors like

turbulence that enter the model, there is a increasing need for more and more data in

order to model those complex non linearities. The power of PCA enters when we expand

the number of measurements, i.e. sensors. As noted previously, the availability of low

cost sensors makes it cost effective to use more than the minimal number of sensors. An

example is velocity sensors distributed around the surface of the robot, each giving a local

water velocity measurement. Each measures a linear combination of u, v, w depending on

the sensor location. PCA is well suited to extracting the relevant information from such an

array of data. The example problem in the thesis is to demonstrate the overall approach,

which is fairly complex by itself, and therefore has been kept simple to a second order

system model.

7.3.1 Theory

Let x E 91n be the original state variables. let ( C 91"1 be the auxiliary state variables

formed by non linear elements. The auxiliary variables are chosen such that the original

state variables are linear in the auxiliary variable space. However, from a more theoretical

background, it can be derived from a bond graph approach mentioned in [68]. The combined
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the Augmented State Vector is

X Ci9lxl) l=nl+nn1  (7.11)

Dynamic transition of the system is represented by by (, input u C 91', and the time

derivative of the state, i E 9V'. Thus

U

= 91(r+2l) (7.12)

sufficiently informs the entire system.

Let 77117 2-.--N be N samples of these sufficiently informing variables. Concatenating

these we can form a data matrix:

X = (7112-- -. -- N) E9(r+21)xN (7.13)

For us

U

W

h

Fg

7 = Fd (7-

Fd
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PCA depends on the loading or weight vectors as discussed earlier. For a meaningful

comparison of eigenvalues the PCA needs mean centered and "dimensionally homogeneous"

input. For most data cases, including ours, this does not hold hold true for the raw input.

The most standard solution is to offset and normalize the data

XPCA = Xraw - x (7.15)
ax

where yx and ax are the mean and standard deviation, respectively, of x. We will discuss

later the impact of the offset affects results.

The structure of the data matrix X fed to the PCA is as follows.

uO UI U2 ...UN
X = X X1 X2 -. XN 1(r+21 (7.16)

LXO X1 X2 ... XN

where it is understood that the variables in X are mean-centered and normalized to unit

width, the exception being where we explicitly consider the impact of the offsets. It is

important to ensure that there is sufficient training samples such that the system has been

excited in all possible operational region of interests.

The interrelationships between the elements of 77 will be summarized by the covariance

matrix

C = XXTE (r+2) x (r+21) (717)
N

C contains the variance (diagonal) and covariance (off-diaganol) associated with the variables.

Note due to our choice of normalization, the diagonal elements of C are 1.
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Since C a square, symmetric matrix, we can apply eignevalue decomposition

C = MDMT (7.18)

where the Modal matrix M is an orthogonal matrix containing the eigenvectors of C, and

D is a diagonal matrix containing the eigenvalues. For systems with a long r7 vector, C

is likely to be rank-deficient since there might be at least one or more one exact linear

relationship (e.g. h = w). Therefore it will have one or more zero eigenvalues. The

examples in the result section will illustrate the same. Assume the eignevalues are sorted

in descending order, and truncated such that

D = diag(.i, ... A,) 
(.9(7.19)

Al > A2 > .... > Arn > 0

with m < (r + 21). Let T E 9t(r+2l) x be the truncated orthonormal matrix with eigenvectors

associated with zero eigenvalues dropped; note T is not square. Our formulation sets an

upper bound on m, but we may choose to the truncate at any order at or below this bound.

We will revisit the impact of truncation order during analysis of results.

The orthonormal matrix T now can be decomposed into three blocks associated with

u , ., and X, respectively.

U

T= V U C 9rxn, V E 9Xm, W E 9l Xm (7.20)

W o

In our case, r = I1,1 = 4. Transforming q by T yields the principal componenets, which
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we can break into three terms

z = T77 C 91mxI

UTu+VTik+ WTi

u Uz

x = Vz

xL Wz

Substituting (7.21) in (7.24)

for the non linear system

gives an exact linear Differential Algebraic Equation (DAE)

(I-WWT) 4,=WVTx+WUTu (7.25)

We note each row of W is a complete row of T. If we apply no truncation in T - i.e., T

is a square, orthonormal matrix - WTW = I based on the orthonormality condition of T.

However, since a column of W is a partial column of T, WWT # I.

7.3.2 Approximated State Equations

Method 1

Equation (7.25) can be written as:

X = (I_ WWT)#I(WVTx+WUTu) (7.26)
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Using, Wi = (I - WWT)# where # denoted pseudo inverse, equation (7.26) can be written

in the familiar linear state space form as

M 
=A+ Bu

A =w WV' (7.27)

B = WWU'

Note the use of a pseudo inverse (indicated by #) is necassary since (I - WWT) is not

of full rank. Further, for some choices of truncation order, it may be singular e.g. for

m = 1, W is a square matrix and

WTW = I ->WWT = I _ I -WW T =0 (7.28)

Thus the pseudo inverse does not entirely eliminate the issue of inverting I - WWT.

However, it is important to know this is an exact linearization where the error is bounded

by the error due to pseudo inversion of W. We need to consider the optimal truncation

order in applying (7.26) and also determine if a correction or method can be applied for

the inversion error.

Method 2

To avoid ambiguity from the inversion of (I - WWT), an alternative derivation is given

here. Let E E 9 (l+r)x1 be the combined vector of augmented and state variables

E = [u (7.29)
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Let

U
S = (7.30)

Using these with equations (7.22) and (7.23)

E = Sz zi = S"E (7.31)

Note S is not a square matrix, and E does not contain information about derivatives. Thus

zi does not fully represent z of equation (7.21) although we will still have m latent variables

in Z1 . We cannot obtain all the variables in X from this equation. The issue analogous to

before: the dimension of z is greater than u and i combined, hence we cannot recover

all the original information (excluding cases where they are strictly linear). What we left

out in E are the derivatives since in a state transition matrix, derivatives are computed

based on previous states and are not known in advance. However, we can get approximate

derivatives as follows. To get the entire

zi = Ai.+Byu (7.32)

where

S = B, A,] (7.33)

where Bv and Av are the parts of S# associated with the input and the state variables,

respectively. Replacing z with zi in equation (7.24)

x= Wzi (7.34)
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Substituting zi from (7.32)

X =ii+ u (7.35)

where

A =WAv
(7.36)

P =W Bv

This equations gives us the well familiarized linear model of the state space form.

As with method 1, with no truncation applied to the square matrix M or T, this will

produce unreliable results since WVT and WUT will be singular or close to singular

based on properties of orthogonal matrices. We expect with a large enough data matrix,

correlations between original state variables and the non linear auxiliary variables are

captured sufficiently for an approximate system representation. We will use this model

as a nominal or a base reference and then apply estimation techniques using a linear state

observer (discussed in the next chapter) to incorporate non linearities. These non linearities

can be then be used to develop a simplified control system.

The theoretical order of truncation can be adopted from [68]. It is given by

O = n+2nni +r (7.37)

The generalized system where the original state variables are measured and the non

linear elements are estimated can be can be represented as follows:

. ( Ax Ag x Bu
Xx ) + U (7.38)

where y is the output vector- which is measured, e is the error between the estimated
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and measured states; and L is the state observer gain to guarantee asymptotic stability in

the region of operation. This is discussed in details in Chapter 7.

7.4 Practical Application to an UUV

We now apply the above methodology to our non linear single jet impinging robot system

performing vertical motion towards or away from the ground. The specific application

we will study is the micro UUV maintaining a constant height he while traversing an

inspection surface. Control of he, the fluid bed thickness, is critical to certain inspection

methods such as ultrasound. We will operate at the stable equilibrium point where forces

are balanced. The UUV when perturbed can either move towards the ground, or away from

it. While it is in a region where Fg (ground effect force) dominates, passive hydrodynamics

will bring it back to its equilibrium position; however, it suffer a damped oscillation around

the equilibrium. If however the body is perturbed into the unstable region (beyond the

minima), it must be brought back to back to it's position. In both cases, a fast acting

control system is required to quickly stabilize the UUV. Recovery speed is crucial for

many inspection tasks to avoid losing knowledge of position on the target surface.

As described previously, the non linear dynamics results in a unique and challenging

for modeling problem for analytical or data driven method. To summarize the complications:

1. highly non linear, non monotonic force

2. multiple equilibria (one stable, one unstable)

3. no well defined physical model for the phenomenon

We will use the data driven model of the previous section to represent the system dynamics

over the entire operational region and estimate the non linear forces in order to develop a

simplified control system.
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7.4.1 Auxiliary variables for UUV model

As mentioned earlier, the auxiliary variables can be determined either via Bond Graph

representation of the physical system, or by choosing functions of the state variables

(higher order polynomials, for example) where linear combination are expected to reproduce

non linear forces through a linear model. However, such additions result in an apparently

meaningless augmented state in the linear model: it may work, but the terms have no clear

physical interpretation. This is not a prohibitive disadvantage; indeed, the results can be

recast into another state space where physical interpretation is possible. As shown in [68]

the two non linear elements would be our auxiliary variables. Another way to look at it

is, we chose to develop our model using the non linear forces, Fg and Fd, as such that the

original state variables are represented linearly in the non linear space.

We have three objectives.

1. Derive an approximate linear state space model.

2. Estimate the non linear forces

3. Use the results of (2) in a simple controller

We begin with the underlying equation for the system

w2 W

=A +Bu (7.39)
g Fg

Pd Fd

The-accents indicate the state transition matrix corresponding to the augmented system (i).

And A is the data driven approximated value of the A nominal or analytic matrix derived
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directly from the non linear equation, and is exact to the non linear equation. The nominal

A matrix is a state dependent matrix as seen in equation (7.42) in a higher dimensional

space for the original second order system. Let us now explain how we derive this.

Assume a fixed downward jet u1 and robot velocity small compared to the jet velocity,

Fg is strictly a function of h while Fd is strictly a function of w. The robot is operating in

the region 4 (h, w). With this, we can analytically derive the A matrix

V (Fg - Fd +U)/Sz

h w

dFg dh dFg
dh dtdh

dFddw dFd dFgI
Fd dwdt - -Fd+u) (7.40)Fd dw dt dw dw Sz (F +U

which we can put in Jacobian form

W 0 0 1 1 wSz SzSz

h 1 0 0 0 h 0

g 0  0 0 Fg 0

d 0 0 1 dFd ldF F dFd
Sz dw Sz dw Fd dw Sz_

Suppose we can only measure the original state variables, then

1 0 0 0
C = 1 (7.42)

0 1 0 0

When the parametric model is represented in a Jacobian form, a few things is noticed.

We see 3 and 4 of A are state dependent. They change at every operation point in 4 (h, w).

We also note, that row 1 and row 4 of the non linear matrix are collinear at any point
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in < when represented in such a parametric form and therefore brings us back to the

question of redundancy as we introduced using the non linear spring example. The model

in the parametric form is an approximate and simplified representation and is non linear,

so traditional Jacobian method is not the best choice here. While good to keep in mind for

a reference, concepts of observability, controllability for non linear model is different than

that of a linear model. For our data driven model, we do not use any parametric model

to compute the traditional Jacobian but avail the elements in the matrix directly from the

data. To summarize,

The state derivatives in the linear model are given by

k = Axx +A (7.43)

And the linearized relation between the state variables and the non linear auxiliary variables

(non linear forces) are given as:

4 = + JXU+ CO (7.44)

Then we have,

iAxx +A(Jxx + J 4u+ Co) (7.45)

For our data driven model, ideally we shouldn't use any parametric model to compute

the traditional Jacobian like in equation (7.42) but avail the elements in the matrix directly

from the data as in:

(Jx, Ju, o) = arg min E[I - x 2 ] (7.46)

Equation (7.43) doesn't contain all the information about the non linearity- it gives

an idea of the variation in the state variables as forces are varied. Adding the auxiliary
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variables in the augmented system gives an additional perspective- essentially looking

at the variation in the forces as the states are varied. The linearized relationship is not

reversible for such highly non linear systems, rather they are complimentary. However,

(7.42) is useful to have some approximated understanding of the system dynamics and

interrelationships between different variables and for comparison at a particular operating

point.

As seen in Figure (7-8), dFg/dh is too non linear and is not even of constant sign over

the operational region, being negative at the low h region (slope(1)), switching to positive

at higher h (slope (2)), before dropping to negative again (slope (3)) beyond about a meter

from the surface. Note also Pg is proportional to w but has no direct h dependence. This

has implications in the covariance matrix, discussed next.

dF/dh versus h - (CFD data)

FL
0.07 .25 .5 1.0 1.25 1.5

Figure 7-8: dFg/dh shown as a function of h which is highly nonlinear. For control, the
critical region is from .07m to .45m though we train unto 1.2m. Note the first slope

change at minima at h = .07.
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7.4.2 Data Generation

Our starting point is experimental data, e.g. the time response show in Figure (7-9).

From this we establish a CFD (Computational Fluid Dynamics) model which matches our

experiments, as shown earlier. It is computationally unrealistic to use the full CFD model

to generate a large body of data: it is simply too slow. Therefore, we use the CFD results

to create a simplified model in MATLAB. The MATLAB program implements Fg(h) as

a lookup table from the CFD results with cubic spline interpolation. Fd(w) is based

previously measured drag versus velocity. MATLAB's Ordinary Differential Equation

(ODE) solver is used to determine the trajectory of the vehicle, i.e. h and w versus time,

given forces Fg (h), Fd(w), u(t).

Stable fthwon
"lM.. * ron Stable equi~brium

Nie ground Stable equilbrium

Water

Stable equibrium C

Stable

Figure 7-9: An Expertimental Setup (left) from which the force response is generated
(right)

We use this MATLAB simulation to generate training data - used through the PCA to

get state transition matrices - as well as test data. Recall each column of X contains the

nine elements of the augmented state vector 77 which represent a column of the sample
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data matrix X. Elements of r7 are enumerated below.

1 : u

2: w 3: h 4 :Fg 5: Fd

6: vw 7: h 8 :g 9 :d

Next X is reduced to a covariance matrix.

'
3 UU 0 UW ... uyFd

XXT _ WU OTWW ... CWid
C GA.47

N

"d U Ud W ... ~dd

where N is the number of samples in X.

We use two types of training data from which to create X.

* Method 1: Grid This is the simpler case. We select the independent variables u, w,

and h independently to populate a fixed region of the u, w, h space. We then analyze

Fg, Fd, and the derivatives algebraically, e.g. we use Pg = d w with dFg/dh gotten

as a numeric derivative from the tabulated data. Because instantaneous derivatives

are used, results can be directly compared to classic linearization via a Jacobian.

However, several real and relevant correlations are not captured in the covariance,

as we shall explain below.

" Method 2: Time Evolution. As with the Grid method, we select initial values

from a grid, but we run the simulation for a significant span of time: 10 seconds.

An entry is made in X array every 0.1 seconds, resulting in 100 entries for each

initial condition. Time Evolution better captures correlations inherent to the system

dynamics. It is also more suited to real, experimental data which by it's nature
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evolves with time. However, results are very different the classic Jacobian, making

comparison to traditional linearization difficult.

For each, we study the affect range. We have also looked at the affect of data density:

within any given range, and for either method, how the number data points changes the

simulation. We took the expedient of generating data at high density and confirming that

using 1/4 of the data gave equivalent results. (The use of 1/4 is tied to specifics of the

code: it is simpler to reject half each in w and h.)

In addition to training data, we generate test data to validate the model. Test data is

like the time-evolution training data, except it runs for hundreds of seconds and is not used

to form the linear model. Figure (7-10) shows an example phase plot - height h versus

velocity w - for test data and training data. Note in Figure (7-10b), with time the body

has tendency to prefer certain areas more than others -as evident by the density variation -

which follows the bimodal behavior of the non linear Fg curve. The test path (red) happens

to follow this region here.

We wrote a software to enable creating unto 4 million data points in the operational

region. The approximated7A matrix developed depends on many things:

1. Training types- grid or time evolved simulation (there are option to choose sub types

in those)

2. Training Region

3. Subtraining region for specific problem

4. Constrains, and other specifications of parameters and variables

5. Number of auxiliary variables - if using individual forces or total force as a single

variable
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04 4

-0.25 00 -0.01 -0.00 O 0 0000 001 0016 002 0020

GRID SIMS

Figure 7-10: Left show grid type training and right shows time simulation type training.
The red line shows the test path. Notice due to time evolution, there is a natural tendency

of a time dependent system to reach steady behavior in a certain region. This region
therefore is more densely populated than the other. The correlation might seem pseudo

and not represented in a instantaneous equation, yet is important in the physical
understanding of the system

The software works in generating a large data file in the region specified, which then

can be used with different procedure to generate the state transition model. It has capabilities

of using different offsets, adding new auxiliary variables as well as use a state estimator

along with the model.

7.4.3 Covariance Matrix

Though we rely on data for modeling, we also emphasize an intuitive understanding of

each step, even if only qualitative. Without this, we cannot say under what conditions our

methodology works, and where it might fail. Therefore, here we analyze the expected

elements in the covariance matrix based on our physical understanding of the system

dynamics.

We start with the Grid data because it is amenable to analytic calculations. As a

byproduct, we demonstrate it's problems and why we prefer the Time Evolution data.
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In this method, since u, w, h are each chosen independently, they are statistically independent.

Further, functions of h - such as Fg, dFg/dh - are independent of w and functions of w such

as Fd, dFd/dw. Since the covariance of independent variables is zero, and using Pg = wdg

SFd
Pd = wPd, we get the following. (Note this is a symmetric matrix, we list only one of the

two elements.)

" cw= 0 - w is independent of u

* = 0 -zz h is independent of u

* auFg = 0 <= Fg depends only on h, which is independent of u

" UuFd= 0 Fd depends only on w, which is independent of u

" a = 0 h =w is independent of h

" au F =0 e$Fg depends only on h and w, both of which are independent of u

" Cwh 0 # h is independent of w

* GwFg = 0 t Fg depends only on h, and h is independent of w

" Gwh= 1 = h = w

* GhF = 0 e Fd depends only on w, which is independent of h

" *hh = 0 - h = w is independent of h

" qFg Fd = 0 = Fd depends only on w, while Fg depends only on h

" *Fgh = 0 h h = w is independent of h, and Fg depends only on h

Two additional terms can be shown to be zero if the mean value of w - - is zero.
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* hg~= (Fg W =0

Looking through the above list, we see that dependencies which are intuitively present are

not captured by the covariance. For instance, it seems intuitively clear that Fg > 0 would

tend to go with w > 0 - but in the grid method, there is no correlation between the two.

Though it is seen that along with an appropriate estimator a model generated using grid

works quite well, particularly cause its well understood and certain spurious computation

errors can be identified and corrected, from state derivative and long term prediction using

simply the state transition matrix- the system cannot do any reliable estimate of the non

linear forces.Unfortunately, time evolved data does not have the simplicity required for

analytic calculations. From derivative prediction it often yields better results, especially

when compared to grid method. Along with an estimator though the particular model may

provide very good non linear force estimate, it is highly sensitive to small perturbation in

its elements or even to regions of sampling. Regional dependency for the net estimation

of Fg and Fd is however shown in the next chapter as here we focus mostly on the fidelity

of the state derivative prediction model.

7.5 Results and Analysis

In this section we will present the performance of the model in the three regions shown in

Figure (7-11). We compare the two data generation models described earlier, as well as

the region over which we operate and train. We systematically go through how we apply

the theory previously described in this chapter to achieve an optimal linear model for our

problem.
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The regions in Figure (7-11) are defined by the sign of Fg (h). Two of these regions we

further sub-divide based on the sign of dFg/dh.

" Region 1: h <O,Fg >0

" Region 2: h > 0, Fg < 0

- Region 2a: dFg/dh < 0

- Region 2b: dFg/dh > 0

" Region 3: h > 0, Fg > 0

- Region 3a: dFg/dh > 0

- Region 3b: dFg/dh < 0

Regions: Fg vs. H Curve

region
(h .02 I

0.015

C-
0.01

I region 3
0.005 Stable h=[0.22 1.2]

X: qEquilibrium X: 0.22
Y: 2.956e-05

0 0.4 0.6 0.8 1 1.2 1.4

-0.005 2 Unstable Equilibrium Height(m)
reglOn 2

-0.01 h=[0 0.22f

-0.015

-0.02

--- F,(min), h=0.07

Figure 7-11: Force Regions in the Fg vs h curve
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We use a sample space X of size 9 x 50000 points. We will show results using two

cases: (a) linear drag and non linear ground force i.e. n, = 1=.(b) both drag and ground

force are non linear nn = 2. From equation (7.37) 0 = nj + 2 nni + r we see which for a

1 non linear element (like linear drag and non linear ground force) comes out as 5, and

for two non linear elements it is 7. This is verified quantitatively through RMS error

analysis of the simulation data as well (see Figure (7-20). Another way to understand this

is as follows. We have two linear relationships in the covariance matrix C: h = w and

S= 1/(Sz) (Fg - Fd + u). Therefore, the rank of C should be 7 for perfect reproduction

in the latent variable (LV) space. However, for most velocities in our operational range,

a line is a reasonable approximation to Fd(w); thus an order of 6 might suffice and in the

6 th order sufficient relationship of Fd and w is captured already. Figure (7-13a) shows

the eigenvalues of the covariance matrix C. We find a large drop from the 6 'h to the

7th eigenvalue signifying that 6 latent variables are sufficient. Figure (7-13) shows how

many relevant LVs are needed for the system representation. In figure (7-13d) - we see

the original latent variables in Z = T T and Z1 = SE differ since the derivatives are

not included in e. Figure (7-20) shows the RMS error of the estimate for various orders

of truncation. Figure (7-21) uses poles of A to shows how stability changes with order

of truncation. The anomaly at certain orders reflect singularities arising from pseudo

inversions. There is a balance between avoiding large erroneous matrices from pseudo

inversion versus performing at lower orders where we do not have enough information to

reproduce the system.

Let us first generate the model using the grid method. The Covariance Matrix is as

follows for a system with in ear drag and non linear ground force for example was found

to be:
C=

1.0000 -0.000-7 0.0018 -0.0000 -0.0007 0.3888 0.0067 -0.0013 0.3888
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-0.0007

0.0018

-0.0000

-0.0007

0.3888

-0.0007

-0.0013

0.3888

1.0000

-0.0000

-0.0000

1.0000

-0.8436

1.0000

0.0018

-0.8436

-0.0000

1.0000

0.3361

-0.0000

0.1253

-0.0000

-0.0167

0.1253

-0.0000

0.3361

1.0000

0.0000

0.3709

-0.0000

-0.0151

0.3709

1.0000

-0.0000

0.0000

1.0000

-0.8436

1.0000

0.0018

-0.8436

-0.8436

0.1253

0.3709

-0.8436

1.0000

-0.8436

-0.0032

1.0000

0.9999

0.0024

0.0070

0.9999

-0.8381

0.9999

0.0018

-0.8381

0.0018

-0.0167

-0.0151

0.0018

-0.0032

0.0018

1.0000

-0.0032

-0.8436

0.1253

0.3709

-0.8436

1.0000

-0.8436

-0.0032

1.0000

The eigenvalues of C are X

4. 6901

1.4913

1.1239

0.9986

0. 6960

0.0000

0.0000

0.0000

0. 0000

The truncation order of 5 is evident both via the eigen values and the figures below.

5

4 --

0
1 2 3 4 5 6 7 8 9

Order i

Figure 7-12: Singular Values of the system with only one non linear element Fg

The sub blocks of T are
U =

-0.0928 0.2940 -0.8408 0.0523 -0.2191
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Figure 7-13: Log Plot of Singular Values of the system with only one non linear element
Fg

0.4428

-0.0383

-0.0918

0.4428

W =

-0.4435

0.4428

0.0020

-0.4435

0.2048

0.5427

0.6517

0.2048

0.1830

0.2048

-0.0393

0.1830

-0.1209

0.3855

0.2442

-0.1209

-0.1342

-0.1209

-0.0712

-0.1342

-0.0005

-0.0409

-0.0483

-0.0005

-0.0016

-0.0005

-0.9966

-0.0016

0.0637

-0.7444

0.6087

0.0637

0.0870

0.0637

-0.0109

0.0870

So, we now have the approximated state transition matrix as:

-0.1556 0.0000 0.2490 -0.1245

0.4922 0.0000 -0.0000 0.3938

0.0005 -0.0000 -0.0008 0.0004

-0.1945 0.0000 0.3112 -0.1556

161

(7.48)



The analytic form has first two rows constant and given by:

A(first two rows)
0 0 0.2529 -0.2529

1 0 0 0

The highlighted elements basically represent the inverse of the associated mass. Due

to the linear relationship with drag, the confusion in the split - of A is not unexpected.
Since for linear drag Fd = Zww and vi is essentially force per unit mass, has its estimation
is split with both w and Zwww. Similar for h = w estimation- split between w and Zww.
The result from simulation didn't show this splitting but the numbers there are much more
of a blackbox to compare with the original model. Nevertheless with an appropriate state
observer, the above model still estimates each of the forces quite well as will be seen in
the next chapter. And we also have,
B=

0.2492

-0.0000

0.0200

-0.0000

and we expect

B(first two rows) =

0 .2582

0

Now for two non linear forces, we get the following.

The correlations between the different variables in r7 from our data samples taken over

the entire operational region for the time evolved method Figure(7-17) respectively. Note

the correlations in method (2) that do not show up in method (1). However, the resultant

matrices from method 1 is readily understood since the grid method follows the physical
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Figure 7-14: Singular Values of the system with two non linear elements Fg and Fd
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Figure 7-15: Log of Singular Values of the system with two non linear elements Fg and Fd
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model in equation (18) more accurately. A sample A and B from grid data:

0.0000 -0.0000 0.2529 -0.2529

1.0000 0.0000 0.0003 -0.0003 =
A 0.411 0.013 -.026 0.275 B= [0.2528 0.0003 -0.0042 0.3778]

0.0411 -0.0013 -0.0236 0.0275

0.8737 0.0001 0.3760 -1.3748

we see (highlighted elements above) 1/Sz = 0.2529 between Vi to Fg,Fd, u; h = w. For

comparison, training with time evolved data yields

4.0987 -0.0109 -0.1338 -5.2921

1.1599 -0.0004 -0.0026 -0.2089 F

0.2634 -0.0007 0.0085 -0.3632 L

6.3350 -0.0159 -0.5655 -7.6784

None of the elements have physically interpretable values. (Both examples come from

training for 0 < h < im, jwj < 0.03m/s.)

Observed Correlations in an Unforced System

We will first try to get an intuitive and physical understanding of this regional dependency

of the ground effect force. For purpose of inspection, the goal is a precisely controlled

height as the body moves across the target surface. Therefore, we focus on behavior

relevant to staying at, or returning to, the stable equilibrium point.

Imagine an unforced system with constant jet force Fj stationary at the stable equilibrium

i.e. h = 0, w = 0 where all forces are balanced. Due to some perturbation, it is displaced

to, say, h = .04m where it comes to a momentary halt. Starting at h = .04, w = 0, the body

gets sucked by the Venturi effect back to the equilibrium. Therefore, the velocity here is
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negative. Conversely, if it was pushed down towards the target surface, i.e. into Region 1,

the force is repulsive (positive), again pushing the robot back toward the equilibrium. The

Figure (7-16) system shows this phenomenon, the arrows along the trajectory showing the

direction of motion if the body started at those initial conditions.

Using analogous reasoning for the other regions, we expect the following for the signs

of the various elements of 77 as mentioned in the table.

Region 1 Region 2a Region 2b Region 3
w + - - +
h - + + +

Fg + - - +
Fd - + + -

_ _ + + _

dfg/dh - - + +

Table 7.1: Unforced System Sign Relationships in an Undriven System. Sign relationships
between variables in the operation region 0 (h, w) of the Fg vs. H curve.The initial
condition is set as [ w=O, h=H] where H is varied along the curve till 0.5m. This
demonstrates the natural behavior of the body under the effect of the complex non linear
force. The sign correlations are captured more distinctively in time evolving simulations
which helps to establish causal relationships between variables not obvious in the grid
method

External perturbation or initial velocity may cause the body move in a manner inconsistent

with this table and the A matrix may not reflect the unforced behavior. We minimize this by

using maximum RMS value of the excitation input a, < Fg (as in example 2 earlier), and

for the time-evolved data, starting at rest, i.e. w(t = 0) = 0, but allowing w to change over

time. The latter is, of course, not an option for grid data where there is no evolution over

time. Resulting corrolation plots are shown in Figures (??)and (7-17). Note in particular

that for the grid data, Pg (middle row of plots) shows no corrolation with h or Fg, whereas
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Figure 7-16: Observed Correlations in the iefprent regions of the "Fg vs. H" curve of an
unforced system

The figure shows the signs of different variables when starts at 3 different initial points. Top:
Initial [h = 0.25, w = 0] - body experiences positive Fg, positive w and positive Pg along this

trajectory. Middle: [h=0.1, w=O], Fg, w both remain negative here till h = 0 though Fg changes
signs. Bottom, [h=-0.03, w=0], Fg, w positive, Fg is negative.



there is a correlation in the time evolved data.

0.0101 .:

100 00, 10

0.017 1 00 0.0 0.01 0.01

005 005 0.3 005 0.0

0 006 0 0

002 0 D02 O.0 -0.0 0 0.05 0 0.2 0.4 0.5 -0.0-0 .02 0 0.02 .05 0 0.05

Figure 7-17: Example of Correlation plots for time-evolved data using 0 < h < lm and
CwA < .O3m/s

It can be said, more data is does not always mean better prediction. Or, exciting the

entire entire operational region equally and sufficiently may not always be ideal. Biasing

region or tweaking the excitation input may be necessary depending on the estimation

goal. In our case, that was to ensure we capture the non linear effect prominently. Two

kinds of phase space plot for biased and high density sample space are shown in Figure

(7-18).

7.6 Unforced System Response

Example 1

In our first example, we use grid training data with 500,000 entries uniformly populating

-0.03 <h < 1.3m and wc <o0.3. For this example, the generated data used excitation
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Tine evolved data - Biased

1.4- 1.4

1.2 1,2

1 1

o.a 0.8

. 0.6 -r 0.6

0.4 0.4

0.2 0.2

0 . e

-0.2 .0.
4.03 -0.02 -0.01 0 0.01 0.02 0.03 4.03

W (mIS)
-0.02 -U.01 0 0.01

W (mIs)

Figure 7-18: Left: Biased Data exciting only in the non linear ground effect region Right:
High Density Data that has equally filled the entire operational space. Performance of the

biased data space for non linear auxiliary state derivative estimation was found to be better
than the high density sample space for the given initial conditions of the unforced system.
The system trajectory is shown in red

input u as a Gaussian pink noise with width . Mean values were subtracted in the PCA,

i.e. the PCA used mean-centered data. For two non linear elements we use a 6th order

truncation as explained previously. For the test, we start in region 2b: initial point [h =

0. im, w = Om/sec] and no external force. The slope dfg/dh is positive but the body

experiences a negative ground force and, in the absence of external forces, is drawn to

the negative slope region (2a) where it is hydrodynamically stable and settles into the

equilibrium due to hydrodynamic damping. The damped oscillation is well reproduced.

However, (??d) shows an offset in FAd. The standard i = Ax + Bu assures i -> 0 for

u = 0,x -+ 0. But mean-centering in the PCA changes this to

x -x= A(x -)+ B(u - ii) (7.50)
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Thus the estimation of Pd can - and in this case, does - have an offset. The offset

is due to approximation or modeling error or introduction of spurious elements due to

computational error. We talk about it elaborately in Chapter 7. Such errors are more

readily identified in the models generated using the grid method than the time evolved

model due to its black box nature.

Positive Slope Region

Our primary focus is the equilibrium at h = 0, i.e. region 2a of figure (7-16). However, we

need to be able to return to this region if perturbed. In region 2b, natural hydrodynamic

suction will return the body to region 2a, but we would like to make that as rapid and

smooth as possible. From region 3, the body must be actively forced back to region 2b.

7.7 Limitations and Variations of the model

This chapter described and tested a method of creating a linearized state transition matrix

for a highly complex non linear dynamical system. The key limitations and observations

to keep in mind are as follows

1. The process for gathering amd using data samples may have large impact on the

results

" Correlations which develop over time can contribute important information,

i.e. the length of each data sample(or simulation run) is relevant.

" The range of data used for training may need to be limited to the most critical

region of operation
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Figure 7-19: Example 1: Body starting at h=O.lm, with no external force. We plot the first
100 seconds time derivative
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RMS Error at Different Orders of Truncation & in
different Training and Test Regions.
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Figure 7-20: RMS Error of state derivatives at Different Orders of Truncation for a system
with 2 non linear elements: From theory, we calculated the required order to be 7. Note
6th and 7th order seems to be optimal truncation order for minimizing the net RMS error
of the augmented state vector and from computation, 6th was sufficient for the system.
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2. Though an exact linearization method is proposed, it suffers limitations from and

rank deficiency and the need for a pseudo inverse. A correct truncation order and an

optimal correction must be determined to minimize this problem.

3. Increasing the number of auxiliary variables can improve modeling. We illustrated

this below using dFg/dh as a potential additional auxiliary variable to better estimate

4. A-priori knowledge of the system - in our case, for example, that Fg is a function

only of h - can be used to estimate and correct for biases.

5. Multiple complex non linear forces make the problem much more challenging. For

many practical purpose of control, we only need total force, which greatly simplifies

the problem.

Point 3 above is illustrated here. The foremost challenge in obtaining Fg is that the

dependence of P9 on h is not well represented in the resultant A matrix. This is somewhat

improved by using time evolved data, but the relationship as captured by the covariance

remains weak.

The problem here is that Fg = gw, i.e. is the product of a function of only h with a

function of onlyu w. Thus it does not have a strong corrolation with either, and particularly

not with h. One solution to this would be to estimate dFg/dh instead of Fg, and similarly

dFd/dw instead of Pd

w
dF hd (G (7.51)
d Fd F
dw F

\Fd)
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w

. F g + B (7.52)
(h Fg

\Fd)

We can get F and G using the same data driven PCA method described. Then we can

construct a linear model with the state transition matrix.

F(1,:) -- -- w

= d + [B] u (7.53)
g Fg 0 0 0 Fg

Fd 0 0 d Fda d d Fd. .-S, dw Sz dWW_

We find this performs somewhat better than the previous method. As written, we end up

with an A matrix dependent on dFg/dh, dFd/dw, which changes with time as the body

moves - that is, with a time-dependent system. Instead, we would need to be incorporate

dFg/dh, dFd/dw as additional auxiliary variables. Alternatively, we can add higher order

polynomials, e.g. implement Fg as in eq (7.6)

Fg(h) =uj[ah2 +Ph+y] +Zwwwl+ uj]

7.8 Conclusion

This chapter described a novel method of data driven formulation of a linear model for non

linear systems. We used simulation data for our tests, but the methodology is well suited

to use with experimental data. We applied the method to a body under the influence of

ground effect forces resulting in a multi equilibria dynamical system. We have extensively
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discussed how the performance depends on sampling method, definition of the covariance

matrix, and truncation of latent variables. We encountered and explored limitations in

forming a pseudo inverse. Despite these limitations we demonstrated results superiot

to traditional TS, especially in cases where no analytic representation of the system is

available.

In the next chapter we will start with this model as a nominal system, augment it

with a state observer, and develop a robust control technique with online estimation and

correction of the nonlinear forces. In this chapter, to study the capabilities of the algorithm,

we retained two non linear forces. However, the controller cares only about the total force

compensation. Non linear forces can be summed and estimated as a single non linear

force, greatly simplifying the observer and controller.
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Chapter 8

Estimator Design and Analysis

8.1 Introduction

In Chapter 6 we proposed a new method of forming a data driven linear state space

model and showed its application in our multi equilibria, non linear dynamical system.

However the true effectiveness of this model is demonstrated only when integrated with

a state estimator. For non linear auxiliary state variables, the linear model has limitations

in making long term predictions due to accumulation of errors in derivative estimates.

Previous research has been done on estimation of a single, lumped non linearity. Some

work has been done in estimating independent perturbations; such problem formulations

are seen in disturbance rejections and systems suffering sudden dynamical changes. Different

fields deal with the problem with their own approach - e.g. using Model Predictive Control

(MPC), Fault Tolerant Control (FTC), or Adaptive Control [73], [74],[75].

Our problem is unique in a few ways. The non linearities are state dependent and an

a priori accurate model of the physical system is unknown. So the nominal linearized

model is developed using a data driven method. Unlike some of the other methods, we
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establish the dynamics between these non linear elements and the state variables. The

original linearized model (i.e., the state transition matrix) is constant: it does not change

during the operation. We estimate the non linearity and compensate for it at every step via

our control input.

The work presented here demonstrates an appropriate state observer for a data driven

linearized model which gives us a precise estimate of multiple non linear forces. Essentially,

we develop a much more unique and powerful tool than is currently available to separately

estimate multiple non linear elements acting on a dynamical system. The simplified linear

model from Chapter 6 is used as the starting point to design an estimator for non linear

forces. Assuming we can measure the original state variables (with negligible error), we

focus on the estimation of individual auxiliary variables with no direct measurement. The

nominal state transition matrix derived from our data driven method, if chosen appropriately,

provides the relationship of non linear forces with each other as well with state variables.

Inaccuracies are corrected by a state estimator using deviation between predicted and

measured state variables.

We will use the covariance and PCA method described earlier. This cannot fully

represent the non linearities. The nature of the errors depends on the choice of auxiliary

variables, the offset around which the covariance is measured, and the choice of training

data. There is further the choice of how to propagate errors: (1) using estimated state

and auxiliary variables from the linear model; or (2) using measured state variables and

estimated non linear forces for state update and the estimated state variables from the

linear model for error propagation. We will use the method (2) .The choice does not

substantively modify the observer, the formulation of which is similar to that of a reduced

order observer, except that the non linear forces are not fully independent states.

We show the design of the estimator both in the original augmented space as well as in

the the latent variable (LV) or z space. The original and auxiliary states are rotated to form
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LV space; linear combination of the original and auxiliary states occur in each element of

LV space, and a reduced number of variables in LV space can fully capture the behavior

of the system. LV space is particularly useful when a large amount of data and multiple

non linearities necessitate dimensionality reduction. For the simple second order system,

that is not the case. None the less, the general procedure for designing an observer in LV

space is covered, both to assist in future generalization of this work, and as an alternative

perspective on error propagation and convergence of the original and auxiliary states.

Convergence criterion for the observer is discussed. Online estimation of auxiliary

variables are then used in an adaptive controller to compensate for non linearities and

ensure the system can be controlled against external perturbations. We note rotation does

not alter the norm of vectors, therefor stability in z space assures stability in original

augmented space, and similarly for convergence. The entire closed loop system with an

estimator based on the data driven model is shown in the Figure (8-1).

The novelty of the method lies in the fact that even an inaccurate or uncertain state

matrix derived from data, with little knowledge of the true physical model, is sufficient

for intrinsic robustness in terms of stability and performance. Though the method will

been explained for a simple system with two non linear forces, its true effectiveness is

demonstrated when considering large amounts of data and a system with multiple non

linearities. This is where dimensionality reduction capability of PCA surpasses other data

fitting techniques.

Though PCA or other methods may give us a state transition matrix which when

augmented with a state estimator can give us satisfactory estimations of the unknown non

linearities, an important requirement is to have some means of evaluating the goodness of

the model. Since our intent is a model which can cover a wide range of conditions with

multiple non linearities, traditional robustness analysis with a well defined nominal or

reference requires modification. One approach is that the true non linear model is taken as
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the nominal which is represented as a state dependent varying matrix; a second approach

is to consider an already derived data driven matrix as the nominal and analyze sensitivity

to uncertainties in its elements. The last part of the chapter lays down some observation

based hypotheses and metrics for evaluation of a data driven model to ensure asymptotic

stability and convergence when used along with an estimator.

The mathematical tools used in the chapter for developing the estimator are along the

lines of traditional state observer model [76] with a slight deviation in the approach of error

propagation and state updates. This data driven linearization approach, integrated with a

state observer in the latent variable space, is a simplified yet powerful approach to dealing

with a dynamical system with multiple non linearities and modeling uncertainties. This

chapter is the culmination of this doctoral research thesis which revolves around control

of a micro UUV subject to complex, poorly understood, non linear hydrodynamic force.

8.2 Auxiliary State Estimator Theory

In Chapter 6 we saw an augmented state space model in a higher dimensional space is

given by

x Ax A x Bu

((A x JD Ju (8.1)

where x E Sn" is the original state variables, ( E n91",,I is the auxiliary state variables

containing the non linear elements, u E 91' is the input vector, y E 91P is the output vector,

and . E 91' where n = n1 + nn.

The analytic form is a parametrically varying non linear matrix in 0 (h, w) since the
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for non linear forces
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non linear derivatives are state dependent. In a practical application, the original state

variables, x, are measured. So we assume we know the true value of x but have no direct

measurement of auxiliary state variables (the non linear forces in our case). Thus x is called

the available signal, ( the unavailable signal, and the output matrix Cx is not full rank. In

our particular application, the augmented state space system has 4 state variables of which

only two - height (h) and velocity (w) - can be measured and are thus available; while

the ground effect force Fg and drag force Fd cannot be measured and are unavailable. Our

goal is to estimate the unavailable signals from the available ones using a robust estimation

technique. We see that Ax x is associated with available signal x and Ag with the

JXJ (JI
unavailable signal (. In case of the micro UUV, we have

w Fg

h) F (8.2)

w

h
x =

Fg (8.3)

Fd

The analytical constant part of the system model (the corresponding states are measured

or known) is

80 0
= x+ Sz S + SzU (8.4)

(h) (1 0) (0 0 (0)
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The analytical parameter varying part of the system model is

Fg dF -

Pd 0 0 )
( Fd I dFd)

Szdw Sz dw/
dFdIU
dw/)

which can be written as

=Ax+A+B xu

A= Jxx+Jx +JUU

A full state estimator model can be constructed as follows

.x = A x(t ) + Eu (t) + Le

e (t) =. x(t ) - X^(t ) = x(t ) - X^(t )

((t) = (t - 1) + A (t)

0 0 1sz
J1 0 0

Jx

JX 2 1

z

I
sz

0

Jx12 J1 J 12

JX22 J 21 J22

Wm

hm

Fg

$d

(8.5)

(8.6)

(8.7)

(8.8)

(8.9)

(8.10)

(8.11)

(8.12)

where xm = (Wmhm) are the measured values of the states such that wm(t) = w(t)
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and hm(t) = h(t). Therefore the error propagation through x is the contribution of the

approximated Jx and J .

Note ^ denotes estimated variables, and - denotes the linearized approximated matrix

(or matrix sub blocks) from the data driven method. L E Rlxl1 is the estimator gain and

e(t) C Snli is the error.

Estimator convergence is guaranteed if (A, Cx) is observable. The approximated data

driven matrix derived at the appropriate truncation order is observable, enabling individual

estimation of the non linear forces.

For an overall understanding and simple implementation, the full state estimator described

is suffice. However, given we measure the actual states, we do not need a 4th order

system for estimation. The following equations illustrate a reduced form of the estimator

or auxiliary state observer.

From the original equations defined in (8.6) we get

x - Axx - Bu = A (8.13)

where, Ax and A are known. The left hand side represents the available signal; the right

hand side is associated with the signal to be estimated.

The equation for the derivatives of the non linear forces is given by (8.7) which can be

therefore be represented as

=fx + f + fuu + Error Driver (8.14)

i.e. a sum of the approximated derivative and the error driver.
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The error driver is given as,

Error Driver = L (A -A)= Ax - Bu - A) (8.15)

Here, (i - Axx - Buu) represents the available part and & is estimated using this from

the data driven model.

From (8.14) the derivative of the estimated signal can be written as

(8.16)

The error in the non linear element estimation is given by

e (t) = ((t) (t) (8.17)

and the estimated derivative of x by

. = Axx +A (8.18)

This error is propagated through the error in the "estimated" x given by X^ and is solely

due to the error in estimation of ( given by (

ex(t ) = WxO - ,0))
(8.19)
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The error derivative can be represented as:

e x(t = 040t - 40t))

= (Axx(t)+ A g (t)) - (Axx(t)+ A (0) (8.20)

= A - e4 (t )- t)

For each time step of At, the error relationship can therefore be given as

ex(t)= fxdt
at (8.21)

=A - Ae4-

The error dynamics is given by

eg (t) = (J4 - LgA- )e4 (t) (8.22)

The estimator converges if (J - LA - ) has negative eigen values (i.e. is asymptotically

stable). Note, if we lack accurate a priori A, or A 4 , we would use the approximated values

AX and A4- derived from the data driven method.

Now input u is introduced and the closed loop controller is defined as

u = -Kxx - Kg (8.23)

where the gain Kx is chosen such that Re (k (Ax - BxKx)) < 0 and K is a scaling factor,

usually chosen as 1.
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8.3 Estimator Design in Latent Variable Space

We now describe the estimator design in latent space which is useful for large amount of

data and multiple non linearities. Assuming we now have a linear model, to estimate ( we

transform the augmented state space model to latent variable space

z = TT X
(8.24)

z=VTx+WT4

where T is the orthonormal (modal) matrix which comes from the sample space Xz given

by

XZ _ _1 _ _ _ N (8.25)

(superscript denotes sample number) via the covariance matrix Cz

Cz = XX = T] Az [T'=] Az [VT WT] (8.26)

V and W are the blocks of T associated with x and (, respectively; and Az is a diagonal

matrix of eigenvalues of the covariance matrix. We have TT = I = TTT. The reverse

transformation gives

x = Vz (8.27)

( = Wz (8.28)

Using (8.6), (8.7), (8.27) and (8.28) we obtain the state equation (of the general form

. Ax + Bu) in the z-space which is derived as follows:
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=VT(Axx +A g + Bxu) + WT ( jsx C+Bu(XX j +B4 - u) (8.29)

(VT Ax + wTJX)VZ + (VT A + wTJ4 -)WZ + (VTBX + WT B)u

- where the sub-blocks (Ax, A4-, Bu, Jx, J, B ) may be derived from data driven method,

or could be state dependent matrices. In our problem, assume we are using the blocks from

the approximated data driven linear model.

Equation (8.29) can be written in compact form as

t = Azz + Bzu 
(.0(8.30)

Yz = Czz

where yz is the output vector corresponding to the latent space state transition model, Cz is

the output matrix, and

A (V Ax +WTJX)V + (VTA - +J - C)W

Bz = VTBx +WT B (8.31)

We form an observer from (8.30) using an estimator gain given by Lz and with e

(yz - -z) as the estimation error in z space

Azz +Bu+ Lze = Azz+Bu+ Lz(yz -z) (8.32)
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This can be further written as -

S=Azz + Bzu + Lzez = Azz + Bzu + LzCz z Z (8.33)

But we do not have a direct measure of error in the z space. The available error

measurement is ex = x - X which must then be made equal to Cz (z - Z) = Czez. Therefore,

from (8.27), we can write Cz V. Representing the estimator in (8.32) in a mixed space

of x and z we have

X=Vz

z = Az7 +Bzu+ L L(x -(.
(8.34)

=Azz+Bzu+LzV(z-Z)

= (Az - LzV)Z- + Bzu+ Lzx

From this, the non linear elements can be predicted individually as follows:

(= F = W2 (8.35)
Fd

Note the x that multiplies the observer gain L in equation (8.37) is the true measurement

from the non linear model. For convergence of the observer estimates we need to find a

gain L such that Re (X (Az - LzV)) < 0 - i.e., eigenvalues of (Az - LzCz) must be negative

- and Bzu + Lx is bounded, i.e. II(Bzu + Lzx) < a for V a and 1. 11 is a Euclidean norm.

This is done by ensuring (Az, V) is observable and (Ax,Bx) is controllable.

Starting with equation for the estimated latent variable given by,
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Z=V x+W

- and the estimated auxiliary variables as

= Wz+ We

where q is the estimation error in 4, we can rewrite (8.36) as

Z=VTx+WT

V=VTx+WT +WTeq

We can write ^ as solely dependent on z and error in (

Z z+We q

and the derivative -

Z =+WTeq
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Multiplying by V from the left on both sides of (8.39) and using (8.27) and (8.28)

V =VV z+VWTe-

,i-x+VWTeq

X_ -^= -VW Te (8.41)

ex = -VWTe

e V = WT e

The equation (8.41) shows the error relationships in latent space. Error in estimation

of original states comes entirely from the error in the the auxiliary variable estimates.

Therefore we need to form the error dynamics equation in the auxiliary variable space

which in turn will be derived from the latent variables. Assuming input is unaffected or

zero, we have t = Azz and using (8.40) and (8.41), we have

= Az2 + Lz(x - )

T =VAzZ - LZVW

t + WT =Azz+AzW T eq - LzVWTeq

WTq = (AZ - LzV)WT e (8.42)

WWTq = W(Az - LzV)WTeq

eg =W(AZ - LzV)W T eq

The equation for error dynamics of ( in the mixed space is given by

g =W(Az - LzV )W T eq (8.43)
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For asymptotic stability, we solve for = 0 i.e.

t-oo

Using (8.34) and (8.43), the observer dynamics purely in latent space can be given as

follows:

[Z] (Az - LV)WT 0 ez (8.44)

Z LV Az Z

where ez = z - Z is the estimation error in the latent space.The estimated auxiliary variables

are now given by ( W2 as in (8.28).

Though our goal is to apply the control input in the original second order non linear

system, for complete understanding of the closed loop output feedback compensation in

the latent space, we have the controller in z space derived as

u = -Kxx - K

u = -Kx(Vz) - Kg (W2) (8.45)

u = -KxV (2 +ez) - Kg (W2)

u = -(KxV + K W) - KxVez

The control gain in z space can be given as u = -Kzz = -Kz(Z + ez). If the controller

gains Kz are chosen such that the matrix (Az -BzKz) is Hurwitz, then 2 will also be bounded

in the region of operation. Since both (Az - BzKz) and (Az - LzCz) are designed to have

eigenvalues with negative real parts the closed loop system is both asymptotically and

BIBO stable.
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8.4 Error Analysis

There are broadly two error sources: one due to modeling, the other due to prediction

or estimation. The error associated with the linearized data driven model alone and not

contributed due to prediction method, are called modeling error. In other words it is the

error in linearization of the original non linear equations and approximation of the state

matrices A and , from the system's data. Modeling error therefore can be contributed by:

1. Truncation order and neglected non linearities

2. Sampling method using the grid type platform versus time evolving simulation

3. Region 0 (h, w) used for modeling

4. Density of the data

5. Numerical computation errors

6. Unmodeled dynamics

To illustrate the error and how model improvement reduces such error, for simplicity,

let us use an undriven system. That is, u=O. If the analytical augmented state transition

matrix is A(h, w) and the approximated data driven constant linear model is given by A

, then the modeling error (as expressed through state derivatives) at any time t can be

expressed as follows:

Ak(t) = 2A(t)- A(t) = AAk(t) (8.46)

Since the actual A(h, w) is state dependent and therefore varies with h and w, the error

is also state dependent and varies in 0 (h, w). It is not entirely clear how to compare the
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analytic non linear model with the approximated data driven model. Elemental comparison

may not make sense here since the J, and J are trying to approximate the non linear state

dependent variables like F and 4 and that is hard using a single number. So, the

occurrence of non zero elements in the matrix elements which are zero in the analytic

non linear matrix model to somehow bring in the effects of non linearities might not be

surprising. It is therefore not trivial to infer that the non zero elements in the data driven

model are errors because of the corresponding zero elements in the analytic model. The

matrices obtained from grid based method gives a form which is however easier to compare

with the analytic version where as time based simulation looks more like a blackbox

model. We will demonstrate this with our examples application in the next section.

8.5 Results: Micro UUV application

Let us apply the estimator on our model of the micro UUV derived in Chapter 6 in (7.5).

Assume only the original state variables - h, w - are being measured. We use the linear

model obtained from the grid method. Data driven models obtained from a grid often

underperform in long term derivative prediction, as shown in Chapter 6. However, as far

as the constant part of the model goes, it bears closer resemblance to the analytic model.

We will show that even with a relatively inaccurate or sub optimal model, estimations of

non linear forces can be done using the state observer. We choose therefore to emphasize

ease of interpretation.

In Figure (8-2), we start with an initial condition of h = 0, w = 0 and the matrix is given

by 7.5, and no external force is applied, i.e. u = 0. The body is in the positive Fg region,

therefore experiences a positive force. The estimator tracks the position as shown and the

estimation converges in the original state variables as well as the non linear forces, and the

the latent variable space.
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In Figure (8-3), we show the error convergence in the original state variables, the non

linear forces Fg and Fd, and the long term error convergence in latent variable space. Note

in the equation the total force is Fg - Fd; as a result, the error being equal, they cancel

perfectly ensuring faster convergence in the total force than that of the individual forces.
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Figure 8-3: Results showing error convergence in (A) estimation of non linear forces Fg
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Figure 8-4: Feedback Compensation using both estimator and closed loop control, with
u(t) = -Kx(t) - F - Pg
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8.5.1 Error Analysis

Let us now discuss the various kinds of modeling and prediction error as applies to our

problem. We saw in Chapter 6, based on the net RMS error of the state derivatives one

could choose the truncation order. Here we revisit the concept, and see how truncation

order affects the prediction and estimation of the auxiliary state variables. We next compare

the data driven model against the analytical model and apply various numerical corrections

to the elements. We also explore how sampling region affects the modeling of the state

transition matrix, and thereby the estimation of the non linear elements. Finally, we also,

show that convergence in the estimation of non linear elements is faster if true value of the

original states are used, instead of estimated values.

8.5.2 Truncation Error

As shown in Chapter 6, the ideal order of truncation for two non linear elements was found

to be 7, though 6 seemed to work fine as well. We find in Figure (8-5), that estimation error

is slightly higher at 7 than in 6. At order 4, and 5 as we already have seen, the model faces

problem due to pseudo-inversion. In Figure (8-6),we use linear drag, and therefore there

is only one non linear element and as discussed in Chapter 6, it has least modeling error

for 5th order truncation. The prediction error is also found to be the least for this order.

The matrix model at with two non linear elements at 6th order (optimizing between

modeling and truncation error) is given as:
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The subparts are
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Corresponding blocks from the analytical model (A) would be

0 0 1/Sz -1/Sz I1/Sz
Ax = A g = Bu =

L 0 L L 0
(8.50)
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d* 0 0 0 0
Jx 1 I dFd J_ (8.51)

. .. z w Sz_ _S dw

8.5.3 Linearization Error

Having chosen the model, let us now compare the data driven one with the actual one in

Figure (8-7). The bold number in the approximated matrix indicate the positions where

the corresponding elements are zero in analytic version. We already corrected for the first

two rows i.e. Ax and A in the previous results in matrix (2) . But the elements in Jx that

has coefficients for h would give rise to fictitious forces as shown in Figure (??). Cause,

here the h is going to a steady state of 1.5m instead of 0. So a coefficient corresponding

to this would yield a non zero value in force derivatives- therefore giving a contribution

to the net force. The correction (P3), i.e. zeroing out all the elements corresponding to h

helped to remove the fictitious force due to it's contribution and ensure convergence.

In the picture below we show the various steps of corrections.

Note the correct way of correction -if we already know that the state variables are

measured- is to take that in account during the formation of the linear model either by

placing constraints or only by fitting J, and J using the common regressor method.

As we corrected all the h coefficients, the bias got removed and convergence in total

force is seen pretty fast since the errors of the two non linear forces cancel out each

other quite early. There is an overshoot in estimation of individual non linear forces

which can be corrected by tuning the gain L. When all the positions that have zero in

the nominal were corrected to match the nominal (theoretical) as in matrix (4)- while a

faster dead on convergence was observed, the non linear forces underperformed. Trying to

increase the L leads to some improvement - but high gain leads to lot of ringing. Complex

conjugates poles can be used to smoothen that. One cannot indefinitely increase the gain,
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Figure 8-7: Comparison with theoretical matrix structure (1) is the original data driven
matrix, as is (2) is the matrix with first and second row - A, and A corrected. (3) is
the matrix with all the coefficients of h replaced by 0. (4) Zeroes are placed in location
following the theoretical model
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Figure 8-8: Left: RMS error in net FT prediction due to modeling. X axis denotes the
matrix index. Right: Modeling versus Prediction error
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the bounds of L, are availed SVD analysis. This is shown in the figure below- (a) showing

h coefficients corrected, (b) Substitute all locations that are zero in the theoretical matrix

as zero (c) With maximum gain L before system becomes unstable.
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Figure 8-9: Implementations of corrections and system response (a) h values set to zero (b)
All positions zero in nominal are made zero in the data model as in (4) (c)High estimator
gain using matrix (4). Contour tracking is poor even at high complex gains

8.5.4 Error based on Sampling Region

Next we show how the error varies with sampling region chosen.

This is shown in the Figure (8- 10) and Figure(??). It is seen that grid method generates

models which are very robust across most of the operational region 0 (h, w). This is also

because the corrections are applied easily to the grid method. The error increases for

including the negative values of h. We see that h = 0 to h = 1.2 is an appropriate choice

for sampling region and enables a large area for operation of the linear model.

In contrast however, time evolving simulation method is very sensitive to regional

changes as we can see in the Figure (??) if no correction is applied. As we mentioned

before, the matrix obtained from this method can often be a blackbox and therefore comparison
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may not be easy.
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method when no correction to the data driven matrix is applied

8.5.5 Prediction Model Error

In Figure (8-12) we show the difference of results when using the estimated states (if Ax

and A were not known and were estimated) for both state update and error propagation,

versus using true state for state updates and estimated states for error propagation. Note

the Method (2) has a faster convergence since it is not propagating errors in estimated

states, whose values are measured in any case.
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8.6 Robustness, Performance and Convergence Analysis

Given any nominal stable (in terms of estimator dynamics) state transition matrix, we can

define a numerical perturbation bound. Let AO denote the data driven nominal matrix in

the augmented space- i.e. that is, AO = (A - LCx) has negative eigen values (or estimator

dynamics is closed loop stable). The most basic approach of robustness is asking: How

much perturbation f(i, t) can this nominal matrix withstand and still be stable? That is,

for an observer equation - we ask if-

A- =o(t) + f (', t) (8.52)

-what are the bounds on the uncertainty I f(k, t) such that the system (Ao + f)X still

converges asymptotically? Here z is the estimated value of k and L is the observer gain.

The above equation comes represents a general nominal matrix with uncertainty. We can

approach this in two ways. We can use the parametrically varying matrix A as nominal

or we can use the stable form of a certain matrix obtained from data driven method AO =

(A - LxCx) to be the nominal. In the second case, this matrix is the one derived in previous

section based on error analysis. We then show much uncertainty can be associated with

this particular A matrix and the designed estimator dynamics still converges. One way

to look at it, if the elements could change based on modeling errors, how much variation

could the closed loop model take and still be stable?

The simplest bound y we can define using a Lyapunov function is given by:

Pf1 amin(Q)lfl< = y(Q (8.53)
|x| Umax(P)

where P is the solution of the Lyapunov equation PAO + A0 P + 2Q = 0. For a norm
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bounded unstructured perturbation, where the element distribution are not known, the

norm is given by the spectral norm of the perturbation matrix and the bound is called

the Patel-Toda bound. In this case, the maximum value of the bound is for Q = I

I < = p (8.54)
||x|| Gmax(P)

For the matrix we obtained using grid type simulation method, (7.5), we have y, =

0.005 Note, Umax(P) is the maximum singular value of P. We see that our bound also

satisfies Patel Toda requirement that p, is in turn bounded by the stability degree, a,

of the stable system A 0 . That is,

1
pp = < -Max 9i(Axo)] = -as= -(-I) = 1 (8.55)

GmaxP

-where -as is a positive scalar and Max 9[Xi(Axo)] = -1

Now, let us utilize more information about the matrix we have. One could assume

uncertainty is restricted only to rows for estimating the non linear elements since the true

state variables are measured. Then, using concepts from structured perturbation, one could

define elemental bounds. This is formulated as following:

Let U, be the matrix to denote the perturbation or uncertainty structure. That is, the

elements with utj = 1 denote the elements of A with perturbation.

0 0 0 0

Un =) (8.56)

The Patel Toda elemental bound is given by yp-AP = = 0.0008. Using the structural
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information, we can define the Yedavalli bound pey = which has a higher value

and is given by pEy = .0013.

Concept of what robustness bounds for a data driven linearized matrix stands for is

still fairlyunexplored, but one can say that given the data driven matrix A we can establish

bounds to get an estimate of numerical variations in the elements that our close loop

estimator dynamics will be able to tolerate and ensure convergence.

8.7 Convergence at Steady State

We already showed the criterion for convergence based on the estimator dynamics. However,

since even the concept of observability matrix for a data driven system model is yet to get

a more meaningful perspective, it is worthwhile to explore other convergence criterions.

Comparing non linear observability metrics with a linear model is not beneficial. However,

if one must follow the numeric bounds to guarantee asymptotic convergence as described

in previous section, it may rule out a large number of our results where we observe

convergence. The bounds are highly conservative for our purpose.

The idea of reference nominal is somewhat ambiguous when the nominal matrix is

derived from a different training regions and has little resemblance with the theoretical

matrix. Secondly, though fast convergence was noticed, the undershoot was severe in

using matrix (P4) in Figure (8-7). Here, we define a simple but sufficient steady state

convergence criterion using a bit more of system information, i.e. a situation where state

variables are measured and known and the convergence is only needed for the non linear

forces.

-ss = 0 (8.57)
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wss 0

s = hss hss (8.58)
Fg,, 0

LFg,,- L 0

The reason of showing steady state convergence is simple. We know the variable values

at these points. In Figure (8-13) if the system is perturbed and results at (1), (2), (3) or (4),

without feedback control, it will either go to a steady state at h = 1.2m or at h = 0 and at

either of these two heights, w, Fg, Fd goes to zero.

Unforced System starting at initial points will end up in a steady state at one of the equilibria
with time.
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Figure 8-13: EE

Let us again start with the matrix model as in (P3).

.Z Ax A2 x Bu+ _U
Jfx Jg u
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Since x is measured, convergence of x is not an issue. We therefore focus on the behavior

of 4. Based on our estimator formula, for state update we use the true value of x.

= Jxx+ J 4 (8.60)

Since x in (8.60) is measured, we can take it to be correct. Therefore, at steady state

h = w = 0; and in an unforced system u = 0. We assume one correction explicit correction

to account for physical knowledge of the system: all elements multiplying h are zero, i.e.

Aih = 0 Vi (8.61)

Therefore,

That is, we use the matrix (P3)

previous section (remove fictitious

simplify (8.59)

J(A= _ (8.62)
JX21 0

in Figure (8-7): the reasons being already explained in

forces). At steady state of the true system, we can then

JxXSSx+ -

\\1x1 0 W = 0

Ix, 0hss
(8.63)

This is in the general form of the equation X MX.Therefore a sufficient condition for

(8.59) to converge is that J has negative eigenvalues and the h terms in Jx are zero. Let us

look again at equation (8.60) without any corrections to ix i.e. now we go back to matrix

(P2). We still assume unforced system (u = 0) and steady state, i.e. x = constant -- x.. At
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this point of operation, we want:

(8.64)
fxxss +g C 0

If there exists a (2 such that

i (= XXSS (8.65)

then (8.60) can be rewritten as

(8.66)

which will converge if f has negative eigenvalues - but to (o rather than to zero.

Given a data driven matrix asymptotic convergence is guaranteed if J is asymptotically

stable, and elements of h is 0. If elements of h are not zero, model may converge to some

fictitious force contributed by h which is not otherwise being compensated. In either case,

convergence of total force is guaranteed.

8.7.1 Closed Loop Convergence

Closed Loop Estimator Convergence follows directly from the reduced order observer rule

for asymptotic stability. However, for the steady state criterion discussed, which is another

way of looking for a goodness factor, there is no change when using with closed loop. The

system is easier to represent with a full state feedback but with error propagation and state

update procedure as described before. This is because, the error is passed only to correct
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Jx, and therefore has no effect on J directly. However, the column of h is no longer zero

in the closed loop system. So, convergence occur according to (8.65)

8.7.2 Bounds

Given J has negative eigenvalues, then how much uncertainty can J have and still be

stable? The robustness measure is therefore directly on the J . For a stable open or a

stable closed loop system, we can now use the different bounds and use the one with the

best upper bound.

For open loop or full state observer, the Patel Toda bound, we have in this case, Yp&

1ma (P ) = 0.1 as the elemental bound on J-. Note this is a much higher bound than

obtained previously for the entire matrix.

For Yedavalli bound, uncertainty is considered in each element of J . The bound is

given by pEy = = 0.13 which is somewhat higher that Patel Toda bound.
UmaxhlPiUnls

8.8 Other Observervations

1)Improved Robustness- It was observed that J- being uniformly negative definite

(UND) makes the system more robust in terms of uncertainty bounds. For UND, the

following holds true.

< -#1I < 0 (8.67)
2

2)Performance ratio yp: We found the ratio of J and Jx gave an insight to the system

performance. Increasing cause damping or undershoot with faster convergence and decreasing

it cause overshoot. Jx showed opposite behaviors.

y = 1(8.68)
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We vary iy by varying J and results are shown in Figure (??), Figure (??), Figure(??).

3) Bounds for Control: For closed loop control, let us assume the total uncertainty

associated with non linear forces is bounded by I Al . For perfect cancellation of the non

linear forces ( in the dynamical equations, we must have therefore

( - K (I+IJAll) = 0 (8.69)

HAll = 1/K (K4 - l)ll(ll (8.70)

8.9 Control

8.10 Conclusion

In this chapter we concluded our thesis by demonstrating a novel method of accurately

estimating multiple non linear forces acting on a system. The methodology started with a

data driven PCA with an augmented state space. This yielded an approximate linear model.

The result of the PCA was used to build a reduced order estimator to create a data driven

augmented state model. Stability and convergence was established and validated in latent

variable space, and we showed this translates to the original space. Further, metrics for

understanding the robustness and global convergence of the data model was established.

At each step, this powerful new approach was validated using a simulation of our micro

UUV. Simulation has the ever present advantage over real data that the "true" results are

known precisely, and we can quickly change model parameters for more extensive testing:

varying drag models, ground force functions, and so on - only a subset of which have been

presented here.

Our testing on simulated data should not be taken as a limitation of the method. The

214



* - La)

0 a md W

I

k* , 1'b W.P..A~e Ms raw

.(b). - -

-IW

Gap, 1fF
t.
0*~

St.
0 5D tOD 1M b 29D 300

Figure 8-14: Initial h=0.25m, w=Om/sec (a) Control Force(red) and External Perturbation
(blue) (b) Height (c) Velocity (d) Fg est (green) (e) Fd estimation (green) (f) Phase Space
region (robust) (2) Total Force Estimation for the input to the right. (3) Corresponding
height and Fg vs. h curve ? (height with open and closed loop.) (4) Total Force
with persistent excitation. If you use a linear estimator, add another second disturbance
estimator.

215

P ip M

(c)

..L9 Pum. d 51C M a..Uff

0 to "D0 iso no no0



data driven PCA approach is designed for, and ideally suited to, real-world issues as

combining data from a large number of sensors. The PCA naturally sorts and condenses

this information. We look broadening the application of this method to more complex

non linear dynamical systems where understanding of poorly modeled individual non

linearities is a subject of interest.
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Chapter 9

Conclusion

This doctoral thesis presented tools for design and development of a novel micro UUV

for submerged infrastructures. It encompasses three rigorous contributions: (1) design;

(2) utilization of fundamental science in robotic application; and (3) development of new

mathematical approach which are the foundations for the development of a fully functional

underwater robotic system.

The novelty in the design is the introduction of a flattened bottom on an otherwise fully

ellipsoidal shape. To the classic free stream behavior we added forces arising from motion

in contact with a surface: normal force and friction. We adapted the robot design to be

controllable in the presense of these highly non linear forces.

The flat bottom, initially introduced for improved contact with a target surface, also has

unusual hydrodynamics. Motion along the surface results in a fluid bed between the robot

and the surface, and low friction - lubricated - motion. An additional jet on the bottom

surface to explicitly control this fluid layer allows precise control of the gap between the

robot and the target surface. Utilization of near surface hydrodynamics is entirely new for

UUVs. We investigated via experiment and simulation how passive and actively induced
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hydrodynamic ground effect gives rise to a stable equilibrium; and we demonstrated how

this phenomenon can be exploited for smooth scanning of rough surfaces.

Finally, to deal with the complexity of forces arising from on contact or near contact

motion, a powerful new modeling method was proposed. The method is data driven and

requires little or no a priori analytic understanding of the system. It is well suited for a

wide range of complex dynamical systems, including the UUV which is the focus of the

thesis. The result is a linearized model in a higher dimensional space where non linearities

are represented as auxiliary variables. An observer is used for estimation of these state

dependent auxiliary variables. The method is ideally suited for processing the output from

a large numbers of sensors and the correspondingly large data volume. This contribution is

extremely important in the current age where with low cost sensors and computing permits

high fidelity modeling of complex or poorly understood systems. We show even in the

absence of accurate modeling, large amount of data and embedded correlations can be

utilized to establish dynamics between various states of the system and estimate unknown

variables which have no direct measurements.

9.1 Impact

Robot

With the growth of sub sea technologies and other water based industries, small low cost

underwater UUVs will play a significant and expanding role in inspection and monitoring,

whether for security, maintenance, or exploration. The work in this doctoral thesis lays the

fundamental building blocks towards a future where these underwater drones play a role

similar to UAVs (aerial drones) do today.

Monitoring crowded sea ports with large and small ships would require methods that
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do not interfere with vehicle traffic. Large UUVs or tethered ROVs are not practical

options, whereas low cost micro UUVs as describes here can operate in large number

to scan ship hulls and monitor the port area. Hull surfaces are not smooth; but utilizing the

hydrodynamic ground effect investigated in this research, fast smooth scanning would be

possible.

Appendage free robots such as described here are essential to fast and efficient inspection

in a cluttered environment, of which BWR inspection is a classic case. There are similar

needs are in other enclosed facilities, water pipelines and such.

For sea bed mapping missions, taking advantage of upwash from impinging jets - as

described in this thesis - can result in reduced thrust and enable longer mission times.

We note the hydrodynamic ground effect is really not limited to application underwater.

The underlying features can be exploited in any fluid where such relative motion of surfaces

is involved. The methods applied here for fluid bed development and gap control could

be generalized further. Such application range from precision positioning in biological

system to hydraulic systems and oil pipelines.

Modeling

From the perspective of quantitative modeling we live in the age of "big data": cheap

sensors which can be used in large numbers; fast, high density computing capable of

generating high fidelity simulation, and of processing these large volumes of data. What

is lacking is human resources to develop in depth, analytic understanding. What is needed

is algorithms to model of complex systems without human intervention.

The method outlined here for unknown variable estimation is a novel and extremely

powerful approach to deducing a simple linear model with convergence in estimation

guaranteed over the entire operational non linear region. We demonstrated how complex
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non linear systems can be recast as high dimensional linear models. Establishing dynamical

relationships between state variables, and using appropriate state estimators, one can estimate

the unknown and unmeasured state dependent variables.

Though statistical estimation methods such as PCA are widely being exploited in

different fields, in control theory using analytical models and performing traditional linearization

approach has so far been the norm. We demonstrate a new way of representing the state

space model and define an estimator analogous to a traditional state observer for estimation

of unknown non linearities. We also investigate and try to analyze concepts of stability

and goodness metrics for models derived using system data where traditional concepts of

observability and controllability might not be very ideal fit. Convergence, robustness and

error analysis are shown along with how uncertainties occur in s

9.2 Future Work

The work presented here does separately studied passive (from lateral motion) and active

(from jet) ground effect; in reality, of course, both would occur simultaneously. The two

phenomenon need to be merged into a single model.

Turbulence modeling in our simulation is rudimentary. In particular, upwash stability

needs to be studied. A more extensive research effort is required to make this aspect

realistic.

There are multiple ways of generating the data driven matrix, each with advantages

and disadvantages. Means of selection an optimal training window and sample needs to

be defined. Other means of including non linearities - such as varying (state dependent)

matrices should also be explored.

The robot design is, of course, a research prototype. Its geometry, in particular size,

for various potential missions and corresponding payloads needs to be explored.
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Appendix A: Nomenclature

Variables

xIyIz
xyz

U, V, W

pqr

a

#3

7
in

sz
SI

Ixx, IVy, Izz

-Xii, -YV , -Zll

-Kp

-M4

-XUUI -YVV , -Z,,

Description

Inertial Frame (World)

body centric reference frame

surge, sway, heave, i.e. body centric x, y, z velocities

Euler angles (World) - roll, pitch and yaw angle.

body centric roll, pitch and yaw rate

angles of jets F3, F4 from the z axis

angles of jets Fl, F2, F5, F6 in the xy plane

angles of jets Fl, F2, F5, F6 projected to the xy plane

Mass of the vehicle

Reduced mass

Centroidal moment of inertia about x,y, z

Added mass in x,y, z

Added inertia associated with rotation about x axis

Added inertia associated with rotation about y axis

Added inertia associated with rotation about z axis

Drag coefficient associated with u (surge), v (sway),
and w (heave)
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Units

m

m

m/s

radians

radians/s

radians

radians

radians

kg

kg

kg m2

kg

kg

kg

kg



-Kpp, -Mqq, -Nrr

Cmm

CL

Uc

Fx,1 Fy,1 Fz

FT

MX, M ,z

Fd

Fg

I-k

N

Fb

Fj

N

h

Drag moment associated with p (rotation about x), q
(rotation around y), and r (rotation around z)

Munk moment in the xy plane

Lift coefficient

Free Stream velocity

Net jet forces in the x, y, z

Thurst force (Ch. 5), total force (Ch. 6)

Net moment (torque)in x, y, z

Drag Force

Force due to Hydrodynamic Ground Effect

Coefficient of dynamic friction

Normal reaction force (when in contact)

Buoyant Force

acceleration due to gravity

Jet Force

Coefficient of static friction

Normal force

gap between vehicle and ground

Variables specific to Estimation and Control.

fit parameters

Region of operation (phase space)in h, w

State variables

Latent Variables

Auxiliary variables

Augmented variables (x and ( combined)
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m/s

N

N

J

N

N

none

N

N

m/s 2

N

N

m

a,# y

p(h, w)

x

z



u Control variable

X Array of i

C Covariance of i

M Modal matrix, eigenvalues of C

T Truncated M

U, V, W subsets of AT corresponding to control, state, and auxiliary variables

A, B state transition matrices

S Combined A and B

A (), JO A matrixs, divided into segments corresponding to available (state) and
unavailable (latent) variables

z transformed to latent variable space

e() Estimation error

ui Control variable for a specific jet

sometimes taken as equivalent to exit velocity

Uext External perturbation

L Estimator gain
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