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Abstract

Optical CDMA is being proposed as a suitable multiaccess technique to take advantage of the large

bandwidth available in single-mode fiber-optic communications. In a CDMA system the communication

link is shared by a number of users, each of which has a unique address code called signature. Recently

an all-optical CDMA system based upon encoding and decoding coherent ultrashort light pulses was

introduced. An important factor in the performance of the CDMA system is the peak intensity of the

encoded signals. We consider using random signatures for the phase encoding of the light pulses in

this system and prove that they result in a fairly low peak intensity of the signals. In particular, we

obtain an upper bound on the probability that the peak intensity of the encoded signal is greater than

some value. This bound is strictly better than previously reported bounds and decreases exponentially

with the length of the signatures. We also find a lower bound on the maximum number of "minimally

interfering" signatures (or, to be more accurate, A-separated signatures, which will be defined) of

length No that can be designed. Assuming that the communication is reliable if and only if any pair

of signatures in the system is A-separated, a notion of capacity is defined and a lower bound on it is

found.

1 Research supported by Bellcore, by NSF under Grant NSF-ECS-8519058 and by ARO under Grant

DAALO3-86-K-0171.

2 Laboratory for Information and Decision Systems, M.I.T, Cambridge, Mass. 02139.
3 Bell Communications Research, 445 South Street, Morristown, N.J.



1. Introduction

1. INTRODUCTION

Optical CDMA is being proposed as a suitable multiaccess technique to take advantage of

the large bandwidth available in single-mode fiber-optic communications. In a CDMA system

the communication link is shared by a number of users, each of which is given a unique address

code called signature. If a transmitter wants to communicate with some receiver then the

receiver has to know the signature used by the transmitter. If user I puts something on the

channel which is not destined for user m then under certain orthogonality conditions on the

signatures of I and m, the receiver of m is going to perceive this signal as a low intensity noise.

In order to have small interference between different communication pairs, the address codes

of the users have to be designed so that they are "minimally interfering". The choice of the

signatures is one of the main issues in the design of a CDMA system and several possibilities

have been proposed in the litterature (e.g. Optical Orthogonal Codes in [CSW89]). In this

paper we argue that random signatures can also have good performance.

We call two signatures A-separated (or minimally interfering) if when a transmitter uses one

of them in order to CDMA encode a signal and the receiver uses the other one to decode it,

then the peak intensity of the (interference) signal at the output of the decoder is smaller

than some value AVXP, where Po is the peak intensity of the signals used and A << 1. We

assume that the noise and the number of users in the system is such that the communication

is "reliable" if and only if any two user signatures are A-separated. In general the value of the

parameter A which is adequate decreases with the intensity of the noise and the number of

users in the system. However, in our model we will treat A as a known parameter and we will

find a lower bound on the maximum number of A-separated signatures which can be designed.

Given the constraint that the communication is reliable only when any pair of user signatures

are A-separated, it makes sense to define the notion of a maximum transmission rate per user

on the channel, which we call A-capacity. For given A, we find a lower bound on this capacity.

Note here that we do not have to assume any particular probabilistic characteristics for the

noise of the channel and its intensity, or any model for the number of users present on the

system. These factors are hidden in the parameter A.

The CDMA system that we analyze is illustrated in Figure 1. The transmitter consists of

a bandlimited signal source that generates a train of ultrashort light pulses. Each ultra-short

light pulse has duration tc and the time interval between two pulses is Tb seconds. The pulse

is multiplied by 0 or 1 depending on the data bit (ON-OFF Keying). If the data bit is a 0
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1. Introduction

no energy is transmitted. If the data bit is a 1, then the ultrashort pulse is sent to to the

spectral-phase encoder which adds a determinate phase shift to each spectral component of the

ultrashort pulse. This is accompliced by passing the pulse through an optical encoder composed

of a pair of diffraction gratings with a phase mask inserted between them. The ultra-short pulse

is decomposed into its spectral components when passing through the first diffraction grating.

The phase mask introduces a phase shift into each spectral component; these phase shifts are

in general different for each spectral component. The vector of phase shifts introduced by a

particular user is the signature of the user. Following the phase mask, there is a second grating

which reassembles the spectral components into a single optical beam, which is transmitted

on the channel. When a pseudorandom set of spectral phase shifts is selected, spectral phase

coding spreads the ultrashort pulse into a longer, lower intensity pseudonoise burst ([SHW90]).
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Figure 1: The communication system.

The receiver is assumed to be a correlation decoder. The optical decoder is similar to the

optical encoder with the difference that the decoder's phase mask is the conjugate of that of the

encoder, that is the phase shifts introduced by the decoder are the opposite of those introduced

at the encoder. A decoder with this property is said to be matched to the encoder. Then

assuming no noise in the channel, the phase shifts introduced at the encoder are removed at
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the decoder and the initial ultra-short light pulse is recovered. On the other hand, if the phase

mask of the decoder is not the conjugate of the one of the encoder (thus the encoder and the

decoder are not matched), the phase shifts are rearranged but not removed and a low intensity

pseudonoise burst is generated at the output of the decoder. A threshold device detects data

corresponding to intense, properly decoded pulses and rejects low intensity, improperly decoded

pseudonoise bursts.

It is important to note here that in the system described above the encoding and the decoding

takes place in the optical domain. It is well known that, with current technology, the real

bottleneck in fiber-optic communications is the slow electronic components. An advantage of

the system under investigation is that it is in its largest part optical and, thus, unnecessary

photon to electron and electron to photon conversions are avoided.

In optical CDMA we want to design the signatures of the users so that if the transmitter

and the receiver use phase masks that correspond to different signatures, the peak of the (inter-

ference) signal at the output of the decoder is small. We consider generating these signatures

randomly. By using Chernoff's bound we prove that the peak ,,, of the interference signal at

the output of decoder m due to the transmission of a one by user I is greater than some value

AX/P- with a probability that goes to 0 exponentially as the length No of the signatures goes

to infinity. Randomly generated signatures have also been examined in the past in the work of

[HaS89], but the bounds found there were weaker than the bounds which we will present. The

upper bound on the maximum number of A-separated signatures of length No which we also

derive, and the lower bound on the A-capacity have not been considered in the past in a CDMA

context and constitute a new way of looking at the performance of such a system. These results

are reminiscent, in a different context, of the work of [Roo68] and [HSGB90] (these authors

related the capacity of a channel to its impulse response).

The organization of the paper is the following. In Section 2 we present the mathematical

model that corresponds to the optical CDMA system under investigation. In Section 3 we

prove the upper bound on the probability that the peak intensity of the interference signal at

receiver m due to transmissions of user I is above some value. In Section 4 we prove the lower

bound on the maximum number of A-separated signals of length No that can be designed,and

we find the lower bound on the A-capacity. Finally, in the appendices we resolve some technical

issues that arised in the other sections.
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2. Mathematical Model

2. MATHEMATICAL MODEL

In this section we give the mathematical model that describes the communication system.

We assume that the ultra-short light pulses correspond to an ideal rectangular spectrum of

bandwidth W. Thus, in the time domain the light pulses are given by

a(t) = V sinc ( t). (2)

The peak intensity of an ultrashort light pulse is Po and its duration is tc ¢ 2. Pulses of this

form have also been used in the experiments reported in [WHS88].

The encoding described in Figure 1 is taking place in the frequency domain. The signal

bandwidth is divided into No = 2N + 1 equal chips, each of length

W
B--

N0

The spectral components in the interval [nB, (n + 1)B), n = -N,..., N experience, when

passing through the phase masks, a phase shift of e/jn, where

(={n}n=-N

is the signature of the transmitter. In the time domain the encoded signal is the product

G(t) V(t, 4),

where

V(t,~ - 1 NV(t lo E exp{-j(nBt + On)}, (3)

and

G(t) = V-T sinc ( t)

Since G(t) varies much slower in time than V(t, ), it can be viewed as the envelope of the

encoded signal.

When the receiver is matched to the transmitter then the signal at the output of the decoder

is

G(t) No E exp{-jnBt}. (4)
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The peak of (4) occurs for t = 0 and is equal to v/Ti. Assume now that the encoder I and the

decoder m use phase masks that correspond to two different signatures TI and o", respectively.

'lhen the output of the decoder at the absense of other users or noise is equal to

D,,(t) = G(t)V(t,1' - m ) = G(t)V- Z exp(-j(nBt + -"')
n-N

When encoder I and decoder m are unmatched, Dim(t) is an interference signal and we would

like it to be small at all possible sample times. We are interested in this signal being small at all

possible sample times, and not only at a particular time, because in our system the transmitter

and the receiver are not synchronized. The supremum of DIm(t) for t E [-B, B] is the peak of

the mutual interference signal between I and m and is defined as

DIm = IiDim(t)lloo = sup Dim(t),

where [1 Ifc denotes the supremum norm. Ideally, we would like to assign the signatures so

that 'im, is minimized for every pair of users (1, m). Unfortunately, this has been an intractable

task so far. In what follows we are going to look at randomly generated signatures (codes). We

assume that the 1, components, n = -N, ... N, are independent and identically distributed

random variables, and are equal to 0 or 7r with probability 1/2. We are especially interested in

the probability that the peak Dl,, of the interference signal, for I 0 m, is greater than AV/-P

for some A < 1, that is

Pr(Dim > A-) = Pr (4: jIG(t) V(t,· -m)Io >_ Ax I) (5)

Since IIG(t)II,- = o we get that

Pr(DI, > AviPo) < Pr (O: IIV(tT'- "|)II. > A)

Let

b= (4l_- ) mod (27r),

where mod is to be interpreted componentwise. Since the components qn and the On$, n =

-N,..., N are i.i.d. and equal to 0 or 7r with probability 1/2, the ,n's, are also i.i.d. with the

same probability distribution. Then

Pr(DI, >_ AV/J) < Pr (q': IlV(t,)llooj > A).

Note that when random coding is used, the probability in (5) is the same with the probability

that the peak of the signal at the output of the encoder of some user is greater that AVXPo. Thus,

whenever we talk about VDIm we can view it as either referring to the peak of the interference

signal, or to the peak of the encoded signal (both have the same probability distribution).

In the next section we use Chernoff's bound to find an upper bound on (5).
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3. A PROBABILISTIC UPPER BOUND ON THE PEAK OF THE ENCODED SIGNALS

In this section we obtain an upper bound on the probability that the peak D,m is larger than

some value AVio, with A < 1 (note that Im,,, < AVx-F always). We define

R, = cos(nt + 'n)

and

H, = sin(nt + q,).

We also define

R No 1 RN
n=-N

and
N

n=-N

Then clearly (3) can be rewritten as

V(t, 4) = R + jH.

Consider a particular sample time t, E [- , B]. We will first find a bound on the probability

that at time t, the magnitude IV(t,,)lj is greater than A. This bound will be later used to

bound the probability that IV(t,)l _< A for all t. It is easy to see that

Pr (0: IV(t,7)l > A) = Pr(R 2 + H2 > A2) <

<Pr (IRI > + Pr (IHI > Ax) (6)

In Appendix 1 we prove, by using the Chernoff bound, that

Pr ( ': V(ts,,)I > A) < 4 exp (s ) [cosh )] (7)

Inequality (7) is true for all positive values of s. The right side of (7) is minimized by chosing

s = Notanhl (2) = In (X+ xA) (8)

when A < v/'2. (For A > v/2 the right hand side of (7) is minimized for s = oo. In this case

the right hand side of (7) becomes zero which agrees with the fact that the peak of IV(t, )l
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3. A Probabilistic Upper Bound on the Peak of the Encoded signals

cannot be more than xV/; in fact it is always less than 1). By substituting (8) into (7) we get

after some calculations, described in Appendix 2, that

Pr (': IV(t.,)l >_ A) < 4- e-oE, (9)

where

E=E(A) = 2312 In + - In 2A2) (10)
23/2 2-A-A 2

It is interesting to look at the exponent E as a function of A. Straightforward calculation gives

6E 1 V2/ + A

6 = 23/2 ln -n A

By evaluating the second derivative of E with respect to A, it can also be seen that E(A) is

an increasing convex function. It rises slowly at the neighborhood of zero (for A = 0 we have

E = 0) and its inclination increases rapidly with A. Figure 2 illustrates E as a function of A.

0.30.3- ., . . . . . | . -,

0.2 I E(1)

0.1 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 2: The (negative of) the exponent E(A) as a function of A.

If we write the logarithms at the right hand side of (9) as sums of powers of A we obtain

0 1 A2k A2 A4

E-- = k(k-1) 2k+1 4 + 48 +' ' (11)
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3. A Probabilistic Upper Bound on the Peak of the Encoded signals

By comparing equations (9) and (11) with the upper bound found in [HaS89], we see that the

two bounds are close when A is very small (and No not too large) so that the powers of A

greater than 2 can be ignored. The correponding bound found in [HaS89] (equation (9) there)

was decreasing exponentially with the exponent being -No' -2. Thus, the upper bound found

here is tighter than the bound in [SaH89] by a factor of

exp (No Z k - =1 exp (.( )'( =2 k(k - I) 2k+1 )8 + 40 + )

Our analysis so far has focused on the magnitude IV(t,, )lI at some particular sample time

ti. We are interested, however, in this magnitude being small at all the possible sample times

or, else, in the probability that the supremum norm IlV(t,q)l1,o is less than A. As we have

already mentioned this requirement comes from the fact that the beginning of times t = 0 is

neither common nor known for all users. In order to account for this we consider kNo equally

spaced points tj, j = 1,..., kNo in the interval [-, T ], where T = 2. It is proved in [HaJ89]

that if k > 4 then the following implication holds

k
IV,(tj,) < A V j = 1,..., kNo IlIV(t,)I1. k -- -A.

Therefore,

Pr' [:[V(t,)lloo < A) > Pr ( kV(t,)l< -k-X, i= 1,. jkNo),

or

Pr (': jIV(t,5)11o > A) < Pr V(tj,7)l > k -rA, for some j =1,..., kNo) . (12)

By applying the union bound we find that

r Iv(J)l > k A, for some j = 1,..., kNo < kNoPr I(t)l > k A (13)

for p E {0, 1}. The role of p in the previous expression is to ensure that the right hand side is

always less than or equal to 1 as a probability function should be (when the expression in the

outer parenthesis is greater than 1 we select p = 0, otherwise we select p = 1). By combining

(12), (13) and equation (9) with A replaced by kX we then get

Pr (: IV(t,7)lloo > A) < (4kNo exp (-VoE( k A))) Vp E {0, 1} (14)

where E(A) is given by (10) or (11). The upper bound in (14) decreases almost exponentially

with the length of the signatures No. This bound can have a number of possible applications.

In the next section we use it to find a lower bound on the maximum number of A-separated (or

"minimally interfering") signals that can be designed for a given length No of the signatures.

We also define the A-capacity of the CDMA system and find a lower bound on it.
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3. A Lower Bound on the Maximum Number of A-separated Signals

3. A LOWER BOUND ON THE MAXIMUM NUMBER OF A-SEPARATED SIGNALS

We call two signatures k' and 7m A-separated (or. sometimes, "minimally interfering") if

and only if they satisfy the following relation

JIV(t, -7)llJ > A.

Thus, if the signatures of user I and m are A-separated then the peak of their mutual interference

signal is less than Av'/P (this is why such signatures are also called "minimally interfering").

Naturally, a set of signatures is called A-separated if every two signatures in it are A-separated.

Let M(No) be the maximum number of A-separated signatures of length No and consider the

space X = {0, 7r}No of all possible signatures s. On this space we can define (for the discrete

topology) a counting measure p. Then p(X) = 2No, and for each subset A of X we have

!M(A) = 2No Pr(q: · E A).

For each q0 E X we define the set

B(0 0) = { E X': |IV(t, - 0)ollo > A}-

We call such a region a "sphere" centered at ~0, although it is not a sphere in the usual sense,

because IIV(t, )11oo is not a metric with respect to q. Then it can be seen that the measure of

!(B()o)) is

p(B(Oo)) = 2No Pr (': IIV(t, - 0)llo > A),

or, by using (14),

fM(B(0O)) < 2No (4kNo exp -jVoE(k A)) ) , p E {0,1}. (15)

Let now S = {~o, ,ls} be a maximal set of A-separated signatures in the space X,

where ]SI is the cardinality of S. Since S is a maximal set, all the points in X belong to a set

B(q+,) for some i E {1, 2,..., ISI}; therefore

X = UslB(,).

Note that the sets B(,i) are not necessarily disjoint. However, from the subadditivity of the

counting measure p we get that

Is'

2No = p(X) =: P (U 1~slB(+)) < Z (B(7,)) 
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3. A Lower Bound on the Maximum Number of A-separated Signals

Using (15), the last equation becomes

si > (4k'N *exp ( k ,) k Vp C 9,1}.

Since S is a maximal set we get that the maximum number M(No) of A-separated signatures

of length No satisfies

M(No) > SI > (4k- *exp (NoE(k rA) ) , Vp E {0,1}.

This relation shows that the maximum number of A-separated signatures ("good" signatures)

grows almost exponentially with the length No of the signatures.

Assume now that we have a specific number U of active users in the system (which can cause

interference to each other) and that the noise has some particular but unknown characteristics.

These two factors (noise and number of users) determine a particular maximum value of the

parameter A which is adequate for reliable communication (we keep U constant because the

adequate value of A changes in general with U). In other words, for our model, if any two user

signatures are A-separated then the noise and the interference of other users is not enough to

cause an error (or, alternatively, the probability of an error is sufficiently small). We define

the A-capacity C per user as the maximum reliable transmission rate per user that can be

achieved under the previous conditions. Then we claim that as No tends to infinity the com-

munication link can sustain a transmission rate of C bits per user, per tc seconds with reliable

communication guaranteed, where C satisfies

C> lim log2M(N0) E (k
- -oo No k

The transmission rate at the right hand side of the previous inequality can be achieved in the

following way. WVe assign the M(Nlo) A-separated signatures to the users so that each of them

is given roughly M(No)/U signatures which can be used to represent 1 + M(NVo)/U different

symbols (thus we do not limit ourselves in ON-OFF Keying any more). Then the total number

of bits (from all users) that can be reliably transmitted on the link per t¢ seconds is

Ulog2(1 + M(No)/U)
No

For fixed U and No large enough the previous expression assymptotically tends to

ulog2 M(No)
1No

. .



Appendix 1

When we allow NVo to go to infinity (this corresponds to the case where we have maximum

reliable transmission rate with infinite delay at the decoder) we obtain that the maximum

transmission rate C per user satisfies

C > E (k-r A- )

The total (for all users) capacity of the link is UC(A) bits per t, seconds for any fixed U and

A. Note also that in general the value of the parameter A decreases as the number of users U

increases.

APPENDIX 1

In this appendix we prove equation (7).

Equation (6) can be rewritten as

Pr (;: JV(t, )jA) <

<Pr(R> A +Pr H> )PrH > R <- ) + Pr(H <- A (15)

Let 'R(s) be the characteristic function of R, that is

·R(S) = eR,

where the bar denotes expectation. By applying Chernoff's bound ([Gal68]) we get that

Pr (R> A) < exp (-v A R(l ),

for sl > O and

Pr (R•<-A) < exp (i) DR(s2),

for s2 < O0. By substituting si = -s2 = s we obtain

Pr (R> ) + Pr R <-A) < exp (- (qbR(s) + 4R(-s)), (16)

for all s > 0. A similar relation holds for H:

Pr (H > A) + Pr H < - ) < exp -A (IH(s) + sH(-s)), (17)

12



References

for all s > 0. Since the 0n's are i.i.d. and equal to 0 or 7r with probability 1/2, we have that

the characteristic function of R is

4nR(s) = e' -R = exp ( n=-N

II exp (2+exp (2 (No S )) = cosh s cos nt(18)2_ TO } 2 y oSn r=-1N No (18)

Similarly we find that

~H(s) =e'= e J= 1IH cosh N0 (19)
n=-N ( (19)

With the use of (16)-(19), (15) is transformed to (20):

Pr (: IIV(t,¢)1I > A) <

/ sA 0 / N s+ cos n Ns sin nt
21/2 =-N No n=-N No

Since cosh < cosh ( cosh (' s nt < cosh ( ) and No = 2N +1 we get that

Pr ( V(t,)l > A) < 4 exp ,(- ) [cosh (N) )
for every s > 0 This proves equation (7). Q.E.D.

APPENDIX 2

In this Appendix we give the intermediate steps through which equation (9) when substituted

into (8) gives (10) and (11). By inspection of these formulas one can see that it is enough to

prove that

cosh (ln ( +A))=exp (ln (22A2))

This is true because

cosh 1 In v2 v+A

= 2 ( ) X2)/ =exp (1 n ( 2 2))

Q.E.D.
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