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Abstract: Ultrafast electrically driven nanoscale light sources are critical components in 
nanophotonics. Compound semiconductor-based light sources for the nanophotonic platforms 
have been extensively investigated over the past decades. However, monolithic ultrafast light 
sources with a small footprint remain a challenge. Here, we demonstrate electrically driven 
ultrafast graphene light emitters that achieve light pulse generation with up to 10 GHz bandwidth, 
across a broad spectral range from the visible to the near-infrared. The fast response results from 
ultrafast charge carrier dynamics in graphene, and weak electron-acoustic phonon-mediated 
coupling between the electronic and lattice degrees of freedom. We also find that encapsulating 
graphene with hexagonal boron nitride (hBN) layers strongly modifies the emission spectrum by 
changing the local optical density of states, thus providing up to 460 % enhancement compared 
to the grey-body thermal radiation for a broad peak centered at 720 nm. Furthermore, the hBN 
encapsulation layers permit stable and bright visible thermal radiation with electronic 
temperatures up to 2,000 K under ambient conditions, as well as efficient ultrafast electronic 
cooling via near-field coupling to hybrid polaritonic modes. These high-speed graphene light 
emitters provide a promising path for on-chip light sources for optical communications and other 
optoelectronic applications. 
  
  



Intense research over the past decades has focused on the development of high bandwidth 

photonics for inter-/intra-chip connections and other applications, with a specific aim at 

nanophotonic building blocks such as waveguides, optical modulators, and photodetectors. 

However, on-chip light sources, particularly monolithic nanoscale light sources with direct high-

speed modulation, have remained challenging 1. Due to its unique electronic and optical 

properties, graphene has emerged as a promising material for optoelectronic applications, 

including as ultrafast and broadband photodetectors 2,3, optical modulators 4,5, plasmonics 6-8 and 

nonlinear photonic devices 9. Previous graphene devices have shown the feasibility of ultrafast 

signal processing and frequency conversion functionalities required for photonic integrated 

circuits 9,10.  

Graphene’s high thermal stability, low heat capacity, and ultrafast opto-electronic 

properties 3,11 suggest that it could function as an unusual fast and efficient thermal light emitter. 

Early efforts showed infrared light emission from SiO2-supported graphene, with temperatures 

limited to ~ 1,100 K 12-14 due to dielectric degradation at high temperature 15 and significant hot 

carrier cooling to the substrate. We recently demonstrated thermal light emission in the visible 

range from electrically biased suspended graphene 16 which achieves temperature up to ~ 2,800 

K. However, to achieve rapid cooling required for fast modulation and to integrate such devices 

into photonic platforms, a substrate-supported device design is needed. Moreover, little is known 

about the possible modulation rate of graphene thermal emitters. 

Here, we demonstrate electrically driven ultrafast thermal light emitters based on hBN-

encapsulated graphene. The hBN allows roughly 60% larger current density than for SiO2-

supported graphene due to its larger optical phonon energy 17 and, at the same time, provides 

excellent encapsulation. As a result, our devices achieve electron temperatures up to 2,000 K and 



produce broadband emission extending up to the visible range. Our studies further indicate 

device lifetimes of years in vacuum and good stability even under ambient conditions. The 

thermal emission spectrum is strongly modified by the hBN dielectric optical cavity 5,18, which 

provides 460% enhancement for a broad peak centered at 720 nm compared to the grey-body 

thermal radiation. Analysis of thermal transport in the devices shows that the hBN effectively 

spreads heat over the micron scale, and that the dominant thermal transport pathway is vertical, 

with good agreement between models and the measured power consumption and temperature 

profile. Independent measurements of electron and acoustic phonon temperatures indicate that 

the electrons can be ~30% hotter than the acoustic phonons at high bias due to weak electron-

acoustic phonon coupling 11,19. Studies of the light emission under radiofrequency and pulsed 

excitation show continuous modulation at 3 GHz and emission pulses of 92 ps full width at half 

maximum (FWHM). This observation is consistent with a model in which electrons are strongly 

coupled to hybrid plasmon-phonon polaritonic modes at the graphene-hBN interface, but out of 

equilibrium with the acoustic phonons. 

To fabricate the graphene light emitters, hBN/graphene/hBN heterostructures were first 

assembled by a van der Waals dry pick-up method using exfoliated monolayer graphene and 

exfoliated hBN flakes with 10-20 nm thickness and transferred to a SiO2 (285 nm)/Si substrate, 

as shown in Fig. 1A. Electrical contacts were formed by etching the assembled heterostructure 

and depositing metal (Cr/Pd/Au) on the exposed edge 20. The resulting graphene heterostructure 

exhibits mobility near the intrinsic acoustic phonon scattering limit at room temperature 20. The 

atomically clean interface reduces extrinsic effects 21,22 such as surface roughness, defects and 

charged impurities. This permits investigation of intrinsic electro-thermal properties, including 



thermal radiation, energy dissipation, and ultrafast dynamics of hot electrons in the disorder-free 

graphene system.  

Under high electric fields (F) up to ~ 6.6 V/µm and zero back gate voltage (VBG), these 

devices achieve current density (J) up to ~ 4.0 ´ 108 A/cm2. This high current density is due both 

to the high stability of the hBN and its high optical phonon energy, as will be explored further 

below. At high current density, we observe remarkably bright visible light emission from these 

micron-scale structures - even observable by the naked eye, as shown in Fig. 1C. The emission is 

seen across the channel region and increases in intensity with F as shown in Figs. 1D and 1E (see 

Supporting Information Movie Clips).  

Because stability is essential for practical applications, we tested the long-term 

performance of the graphene light emitter under high electric field (F = 4.2 V/µm) and high 

current density (J ~ 3.4	×	10( A/cm2) under ~ 10-5 Torr vacuum. These measurements showed 

no significant degradation of emission intensity and electrical current over a test period of ~ 106 

seconds as shown in Fig. 1F, suggesting a device lifetime (defined by 50% degradation in 

current) exceeding 4 years. This result attests to the remarkable stability of both the hBN 

encapsulation 23,24 and edge contacts even under high electric field, current density, and 

temperature. Important for practical applications, we also observed visible light emission under 

ambient conditions: the best devices showed stable operation in air for several days, and it is 

likely that improved encapsulation will extend this lifetime. 

Figure 2A shows the spectrum of the emitted light for a range of applied electric fields 

(or electric powers) under vacuum conditions. The spectrum extends from the visible to near-

infrared (400 ~ 1,600 nm), with an emission peak around 720 nm and a flat response in the near-

infrared (> 1,000 nm) from several graphene light emitters. The spectrum is unchanged for 



emission in air (Fig. 2B).  The strong emission peak at 720 nm from the hBN encapsulated 

graphene light emitter can be attributed to the formation of a dielectric optical cavity by the hBN 

layers (refractive index n = 2.2), and the resulting tailoring of thermal radiation by the modified 

local optical density of states 25. The intensity of thermal radiation from graphene at a given 

angle 𝜃 , defined with respect to the normal to graphene surface, was calculated using the 

generalized Kirchoff’s law 26,  

𝐼+,- 𝜔, 𝜃, 𝑇0 = 𝑎+,- 𝜔, 𝜃, 𝑇0 𝐼+,3 𝜔, 𝑇0 , 

where	𝑎+,- 𝜔, 𝜃, 𝑇0  is a spectral directional absorptivity (emissivity) of the graphene layer in 

the stack for a given polarization of electromagnetic wave 𝛼 = 𝑇𝐸, 𝑇𝑀 , 𝜔  is frequency, 

𝐼+,3 𝜔, 𝑇0 = 𝜔7Θ(𝜔, 𝑇0)/8𝜋>𝑐7 is the intensity of blackbody radiation for a single polarization, 

Θ 𝜔 = ℏ𝜔/(exp	(ℏ𝜔/𝑘E𝑇0) − 1), ℏ is the reduced Planck’s constant, kB is the Boltzmann’s 

constant, and Te is the electron temperature, which is used as a fitting parameter. The 

absorptivity (emissivity) of the graphene was calculated analytically by solving Maxwell’s 

equations for a plane wave incident on the hBN/graphene/hBN on SiO2/Si substrate. This 

analysis reproduces the data well (solid lines in Fig. 2B) and implies Te = 1,980 K for F = 5.0 

V/µm. The radiation enhancement due to the hBN layers reaches 460 % at the 720 nm peak, 

relative to graphene grey-body thermal radiation at same Te 25 as detailed in Supporting 

Information. We note that a flat response in the near-infrared (> 1,000 nm) is attributed to the 

Pauli blocking reduce absorptivity (emissivity) of graphene at high Te with increased Fermi 

energy.  

Figure 2C shows that the derived Te increases roughly linearly with applied electrical 

power density (𝑃0 ), indicating that the dominant heat transfer mechanism is by conducting 

through the substrate rather than radiation. Consistent with this observation, dividing the total 



output optical power (Pr) across all wavelength based on the Stefan-Boltzmann law by 𝑃0, we 

find an radiation efficiency 𝜂	~	3.45×10KL (see Supporting Information). This is smaller than 

obtained for suspended graphene, but can be improved by optical and thermal engineering. 

To gain insight into the thermal transport processes that determine the efficiency, lateral 

extent, and dynamics of the light emission, we measured both the electronic and vibrational 

(acoustic phonon) temperature of the light emitters. To provide a second measurement of Te in 

addition to that obtained by fitting the radiation spectra (Fig. 2B), we analyzed the high-bias 

electrical transport behavior. The I-V behavior for different values of the VBG (Fig. 3A) showed 

current saturation 16,17,27 under modest electrical fields (F > 0.5 V/µm) for VBG > 20 V. This 

saturation can be attributed to efficient backscattering of electrons by emission of strongly 

coupled optical phonons when the optical phonon activation length 𝐿N(∝ ℏ𝛺 𝐹, where ℏ𝛺 is the 

optical phonon energy) 28 becomes smaller than the acoustic phonon scattering length Lap, which 

approaches 1	µm in a hBN encapsulated graphene at room temperature 20. In this regime, hot 

electrons in graphene can emit optical phonons in both the graphene and the hBN (ℏ𝛺 ~ 150-200 

meV). 𝐿N approaches 500 nm at F > 0.3-0.4 V/µm, consistent with the observed onset of current 

saturation. In SiO2–supported devices, hot electrons can emit SiO2 optical phonons with lower 

energy (ℏ𝛺RSTU ~ 60-80 meV), resulting in a lower current density (Figure S4). This highlights 

the importance of the hBN for achieving efficient visible light emission. Moreover, consistent 

with optical studies which show electron-optical phonon scattering on a sub-100 fs time scale3, 

this result indicates that  electrons are strongly coupled with optical phonon modes of the 

graphene and hBN. 

We measured Te by plotting sheet conductance (𝜎) against VBG for different values of F 

(Fig. 3B). For F < 3.3 V/µm, 𝜎 is clearly modulated by VBG, while above 4 V/µm, 𝜎 is nearly 



independent of VBG. This reduction in gate modulation is due to the interplay between 

electrostatically induced charge carriers 𝑛X ∝ 𝑉EZ  and thermally generated charge carriers, 𝑛[\ ∝

𝑇07  16,29,30. Since 𝜎 ∝ 𝑛[][𝑒𝜇,  where 𝑛[][ = 𝑛[\ + 𝑛X  and 𝑒  is the electron charge, the gate 

modulation effect becomes small when 𝑛[\  >> 𝑛X . Using 𝜇 ∝ 𝑇0
Ka  for the temperature-

dependent mobility, where 𝛽 = 2.5 is obtained from a numerical self-consistent heat transport 

model, and using Te as an adjustable parameter, we performed numerical calculations of the 

graphene self-heating that show good agreement with the measured data (Fig. 3B, solid lines) 

(see Supporting Information for details). The derived values of Te are close to those obtained 

from fitting the radiation spectrum (Fig. 2B). 

We next measured Tap of graphene and hBN by Raman spectroscopy: the graphene G 

mode and the hBN E2g mode shift downward with increasing Tap due to anharmonic phonon 

coupling 31 (see Supporting Information for detail). Figure 3C shows the variation of these 

modes up to F =3.7 V/µm, above which the visible radiation background interfered with the 

measurement. The derived temperatures, together with the electronic temperature derived above, 

are shown in Fig. 3D. Tap of the graphene and hBN are nearly equal, but fall below Te at high 

bias. Thus, these measurements indicate that Te is out of equilibrium with Tap due to the energy 

relaxation bottleneck, which has been seen to follow 𝑇0 = 𝑇cd + 𝛼(𝑇cd − 𝑇e), where 𝛼 is a non-

equilibrium temperature coefficient and T0 is the ambient temperature 16,29,30. Based on the 

measured Te and Tap in the hBN encapsulated graphene heterostructure, we find 𝛼 ~ 0.45-0.77. 

This result is consistent with ultrafast spectroscopic studies which have revealed that hot 

electrons thermalize rapidly through strong electron-electron and electron-optical phonon 

scattering 3,11,19,  but more slowly with acoustic phonons 11,19,29. In addition, previous 

measurements have indicated that electron and acoustic phonon temperatures can be out of 



equilibrium under high electrical bias 16,19.  However, given the uncertainty in calibration of the 

Raman shift rates with temperature and possible confounding effects such as substrate thermal 

expansion, this result alone is not sufficient to definitively establish the disequilibrium between 

Te and Tap. 

Because heat dissipation occurs primarily through transport of acoustic phonons, we used 

the measured lattice temperature (Tap ~ 1,250-1,450 K, which corresponds to Te ~ 2,000 K) to 

calculate the total thermal resistance 𝑅[\to the substrate by 𝑇cd − 𝑇e = 𝑅[\𝑃029. This calculation 

yields 𝑅[\ ~ 10,650-11,480 K/W, which matches reasonably well with a simple model in which 

heat flow is dominated by vertical transport through the hBN and SiO2 to the Si substrate 32 (See 

Supporting Information and Table S1). This analysis show that 𝑅[\  is dominated by thermal 

resistance of SiO2 layer (~ 8,000 K/W, for 285 nm thickness).  

We also calculated the Te distribution in the hBN encapsulated graphene light emitter 

based on the non-equilibrium temperature coefficient 𝛼 and heat diffusion equation of Tap (see 

Supporting Information). Combining the vertical thermal transport results above with the lateral 

thermal conductivity of the hBN allows calculation of the lateral thermal diffusion (healing) 

length (LH ~ 1.3 µm), which is similar to the observed size of the bright emission seen in Fig. 1E. 

Fig. 3E plots the resulting Te distribution along the graphene light emitter for various values of F. 

In all cases, the cooling to the substrate keeps Te near the metal electrodes below ~ 600 K, 

explaining the high stability of the devices. The expected thermal radiation intensity profile 

based on the modeled temperature distribution is shown in Fig. 3F, in good agreement with the 

measured optical intensity profile (Fig. 3F inset, and Supporting Information). This analysis 

suggests how to optimize the device design by thermal engineering of the vertical thermal 

conductivity and lateral device dimensions.    



The small size and low heat capacity of the graphene emitter presents an opportunity for 

ultrafast thermal emission modulation. Moreover, measurement of the dynamics of light 

modulation under fast pulses may provide insight into the carrier dynamics and offer another 

means to examine whether electron and phonon populations are out of equilibrium under high 

bias. Moreover, recent studies 33,34 also suggest that direct electronic cooling into hBN can be 

mediated by efficient near-field heat transfer due to the hybrid plasmon-phonon polaritonic mode 

at highly localized graphene/hBN interface 34. Therefore, we examined the ultrafast response of a 

device fabricated on a quartz substrate, which reduces parasitic capacitance and enables 

electrical driving at GHz frequencies with DC offset bias (VDC) (Fig. 4) (the device exhibits 

identical steady state radiation as observed above for the SiO2/Si substrate-mounted devices). As 

a first test, the emission time trace in Fig. 4B shows on-off modulation with near-perfect contrast 

when device is driven with a continuous 3 GHz signal. For an even shorter pulse duration 

(FWHM 80 ps, peak to peak 2V with VDC =1.6V), the output light pulse width is only broadened 

to 92 ps (FWHM), which corresponding to above 10 GHz bandwidth as shown in Fig. 4C. This 

response is many orders of magnitude faster than conventional thermal radiation sources based 

on bulk materials, for which modulation speed has been limited to ~ 100 Hz 35.  

This observed ultrafast response may arise from the small size and thermal mass of the 

graphene, since vertical thermal diffusion can occur over sub-ns timescales for nm-scale 

structures. More intriguingly, if electrons are out of equilibrium with the acoustic phonons as 

indicated in Fig. 3, this high speed may be due to ultrafast cooling from Te to Tap, which should 

be sufficient to modulate the output intensity by direct electronic cooling mediated with near-

field heat transfer via hybrid plasmon-phonon polaritonic mode at graphene/hBN interfaces.  



The simple heat transfer model shown in the inset of Fig. 4C allows us to quantify the 

transient cooling behavior. In this model, we assume that the hot graphene electrons are strongly 

coupled to and in equilibrium with the optical phonons of graphene and the top few layers of the 

hBN 19,34. These optical phonons are connected to the acoustic phonon bath by thermal 

conductance  𝛤h   and to the environment by 𝛤e  36. 𝛤h  can be derived from non-equilibrium 

temperature (Te ~ 2,000 K, Tap ~ 1,000-1,280 K) under steady state measurements shown in Fig. 

3D:  𝑇0 − 𝑇cd ≈ 𝑃/𝛤h	36, with 𝛤h  ~	6.0 − 8.4	MWm-2K-1, which is consistent with theory 37. The 

fast cooling time constants (𝜏l) of graphene light emitter was estimated by fitting based on the 

𝐼 ∝ exp	[−ℏ𝜔d0cn/𝑘E(𝑇e + 𝑑𝑇𝑒𝑥𝑝(−𝑡/𝜏l)], where ℏ𝜔d0cn is the maximum spectral sensitivity 

of avalanche photodetector (corresponding to the 550 nm),  𝑇e is offset temperature controlled by 

DC offset bias, and 𝑑𝑇 is modulated temperature by RF pulses. Based on the fitting of time-

resolved light pulse output from graphene with 𝑇e (300-700 K) and 𝑑𝑇 (20-200 k) parameters, 

we obtained 𝜏l~ 120-900 ps (see Supporting Information). Estimated 𝜏l allow us to determine 

the heat capacity of the electron/optical phonon system, 𝐶u = 𝜏l𝛤h = 0.72 − 6.63	×	10K>	Jm-2K-

1. This value is 104 times larger than the electronic heat capacity of graphene (see Supporting 

Information), confirming the assumption that optical phonons are in equilibrium with the 

electrons. We find that the magnitude of CT corresponds to the optical phonons in graphene in 

addition to 0.3-3.6 nm of the surrounding hBN 38,39. This view is consistent with theoretical 

predictions for hybrid modes that are highly localized at the graphene-hBN interface 33,34. 

This work establishes that hBN-encapsulated graphene provides visible light emission 

with high stability and a modulation rate speed several orders of magnitude faster than 

conventional thermal emitters. Our quantitative model predicts that the exceptional speed likely 

arises because hot electrons are strongly coupled to optical phonons and hybrid plasmon-



hyperbolic phonon polariton modes in hBN, but weakly coupled to acoustic phonons, resulting in 

disequilibrium between the two populations, though the dynamics of this process need to be 

studied in more detail. We found that the emission spectrum is strongly modified by a tailored 

density of optical modes in the hBN slab; this modification may be engineered to sharply reshape 

the emission spectrum by coupling the hBN encapsulated graphene to an optical cavity. 

Furthermore, making use of a tunable energy relaxation pathway for the graphene light emitter, 

such as tunneling structures 40, could allow an even faster light modulation rate beyond the speed 

limits explored here. Finally, we note that graphene thermal emitters employ the same basic 

device architecture as demonstrated previously for ultrafast photodetectors and electro-optic 

modulators 2,5,8. Thus, one graphene-hBN heterostructure device could serve three essential 

electro-optic device functions, which could enable flexible and reconfigurable electro-optic 

applications in future photonic system architectures.  
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Fig. 1. Ultrafast hBN encapsulated graphene thermal light emitter. (A) The device consists 
of a monolayer graphene encapsulated on top and bottom by hBN; it has a one-dimensional edge 
contact to the drain and source contact (see inset). (B) Current density (J) as a function of applied 
electric field (F) for an emitter with channel length of 5 µm and width of 3 µm (see inset with 
scale bar of 6 µm).  (C) Optical images show bright visible light emission from a microscale (3 
µm - 8 µm) individual graphene light emitter under applied electric field (F = 6 V/µm). (D to E) 
The graphene surface uniformly emits across the entire graphene/hBN heterostructures (3 µm – 6 
µm) (D) and radiation intensity increase by the applied electric field (E). (Scale bar of 6 µm). (F) 
Long-term stability of graphene light emitter under vacuum. The current density (J) of graphene 
light emitter under constant electric field (F = 4.2 V/µm) was measured during 106 seconds (over 
270 hours), showing negligible variation in current density and light emission intensity. Inset 
shows the optical images. (Scale bar of 6 µm). 
 
 



 
Fig. 2. Radiation spectrum of graphene light emitter under vacuum and air. (A) Measured 
radiation spectrum of graphene light emitter (scatter) under vacuum with various F and electric 
power. We find an emission peak at the around 718 nm and a flat response at the near infrared 
range for high F values. Inset shows the optical image of visible light emission under F = 5.0 
V/µm. (Scale bar is 6 µm). (B) Measured radiation spectrum of graphene light emitter (scatter) 
under air and calculated thermal radiation (solid line) based on the estimated electron 
temperature and grey-body thermal radiation by Plank’s law with strong light-matter interaction. 
Inset shows the optical image of visible light emission under F = 4.3 V/µm. (Scale bar is 6 µm). 
(C)  Te as a function of Pe under air (red square). Solid line is a linear fit to the data. 
 



 
Fig. 3. Electronic and lattice temperatures in the graphene light emitter. (A) Current as 
function of applied electric field (F) for various gate voltage (VBG). Above the critical electric 
field (F > 4 V/µm), current levels are not changed by VBG. (B) Sheet conductance (s) 
modulation by VBG of graphene heterostructure for various F. The electron temperature (Te) is 
estimated based on a simulation of thermally generated charge carriers by F. Experimental data 



(scatter) and simulation (solid line) of s agree well. (C) Raman spectroscopy of graphene/hBN 
heterostructure to estimate the lattice temperature (Tap). Raman peak shift of the hBN E2g and 
graphene G modes as a function of F. (D) Decoupling of electron and lattice temperature in 
graphene light emitters. Values of Te are calculated from the emission spectrum (orange triangles) 
and s modulation (green circles), and Tap of graphene (blue squares) and hBN (red squares) are 
estimated from the Raman peak shift. The black dashed line is fitting of Tap and the shaded 
region is obtained for non-equilibrium temperature coefficients 𝛼  ~ 0.45-0.77. (E to F) 
Calculated Te profile of the graphene light emitter for various values of F (arrows indicate the 
edge of metal electrodes). (F) Calculated radiation intensity profile for various values of F based 
on the temperature profile and the Stefan-Boltzmann law. (Inset, measured optical intensity 
profile (scatter) and Gaussian fitting (solid line) based on the optical images of Fig. 1E.) 
  



 

 
Fig. 4. Generation of ultrafast light pulses by the electric control. (A) Schematic of the 
electrically driven ultrafast graphene light emitter. The temporal profile of the light pulses are 
recorded by time correlated single-photon counting. (B) Emission profiles (lower panel) for 
pulsed electrical excitation (upper panel). The emission profile follws the electrical drive at the 
indicated frequency of ~ 3GHz. (C) Generation of ultrafast (92 ps) light pulses from the 
graphene light emitter (blue solid line) for an 80 ps electrical drive pulse, corresponding to a 
bandwidth of 10 GHz. According to the transit temperature and thermal radiation exponential fit 
(red solid lines). Insets, (Left) schematic of energy relaxation of graphene. The red block 
corresponds to quasi-equilibrium of electrons of in graphene and the strongly coupled optical 
phonons of the graphene/hBN by hybrid polaritonic modes under electrical excitation. 
Subsequently, the heat flows to the acoustic phonons and the substrate. (Right) Temporal profile 
of the 80 ps electrical drive pulse.  


