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Letouzé · Alex Pentland · Patrick Vinck

Received: date / Accepted: date

Abstract The combination of increased availability of large amounts of fine-
grained human behavioral data and advances in machine learning is presiding
over a growing reliance on algorithms to address complex societal problems.
Algorithmic decision-making processes might lead to more objective and thus
potentially fairer decisions than those made by humans who may be influenced
by greed, prejudice, fatigue, or hunger. However, algorithmic decision-making
has been criticized for its potential to enhance discrimination, information and
power asymmetry, and opacity. In this paper we provide an overview of avail-
able technical solutions to enhance fairness, accountability and transparency
in algorithmic decision-making. We also highlight the criticality and urgency
to engage multi-disciplinary teams of researchers, practitioners, policy makers
and citizens to co-develop, deploy and evaluate in the real-world algorithmic
decision-making processes designed to maximize fairness and transparency. In
doing so, we describe the Open Algortihms (OPAL) project as a step towards
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realizing the vision of a world where data and algorithms are used as lenses
and levers in support of democracy and development.

Keywords algorithmic decision-making · algorithmic transparency · fairness ·
accountability · social good

1 Introduction

Today’s vast and unprecedented availability of large-scale human behavioral
data is profoundly changing the world we live in. Massive streams of data are
available to train algorithms which, combined with increased analytical and
technical capabilities, are enabling researchers, companies, governments and
other public sector actors to resort to data-driven machine learning-based al-
gorithms to tackle complex problems [26,67]. Many decisions with significant
individual and societal implications previously made by humans alone –often
by experts– are now made or assisted by algorithms, including hiring [12],
lending [34], policing [66], criminal sentencing [5], and stock trading [33]. Data-
driven algorithmic decision making may enhance overall government efficiency
and public service delivery, by optimizing bureacucratic processes, providing
real-time feedback and predicting outcomes [62]. In a recent book with the
evocative and provocative title “Technocracy in America”, international rela-
tions expert Parag Khanna argued that a data-driven direct technocracy is
a superior alternative to today’s (alleged) representative democracy, because
it may dynamically capture the specific needs of the people while avoiding
the distortions of elected representatives and corrupt middlemen [35]. Human
decision making has often shown significant limitations and extreme bias in
public policy, resulting in inefficient and/or unjust processes and outcomes [2,
23,57,65]. The turn towards data-driven algorithms can be seen as a reflection
of a demand for greater objectivity, evidence-based decision-making, and a
better understanding of our individual and collective behaviors and needs.

At the same time, scholars and activists have pointed to a range of social,
ethical and legal issues associated with algorithmic decision-making, including
bias and discrimination [4,63], and lack of transparency and accountability
[15,47,70,69]. For example, Barocas and Selbst [4] showed that the use of al-
gorithmic decision making processes could result in disproportionate adverse
outcomes for disadvantaged groups, in ways suggestive of discrimination. Al-
gorithmic decisions can reproduce and magnify patterns of discrimination, due
to decision makers’ prejudices [46], or reflect the biases present in the society
[46]. A recent study by ProPublica of the COMPAS Recidivism Algorithm
(an algorithm used to inform criminal sentencing decisions by predicting re-
cidivism) found that the algorithm was significantly more likely to label black
defendants than white defendants, despite similar overall rates of prediction
accuracy between the two groups [3]. Along this line, a nominee for the Na-
tional Book Award, Cathy O’Neil’s book, “Weapons of Math Destruction”,
details several case studies on harms and risks to public accountability asso-
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ciated with big data-driven algorithmic decision-making, particularly in the
areas of criminal justice and education [45].

In 2014, the White House released a report titled “Big Data: Seizing op-
portunities, preserving values” [50] highlighting the discriminatory potential
of Big Data, including how it could undermine longstanding civil rights protec-
tions governing the use of personal information for credit, education, health,
safety, employment, etc. For example, data-driven algorithmic decisions about
applicants for jobs, schools or credit may be affected by hidden biases that
tend to flag individuals from particular demographic groups as unfavorable
for such opportunities. Such outcomes can be self-reinforcing, since systemat-
ically reducing individuals’ access to credit, employment and education will
worsen their situation, and play against them in future applications. For this
reason, a subsequent White House report called for “equal opportunity by de-
sign” as a guiding principle in those domains [43]. Furthermore, the White
House Office of Science and Technology Policy, in partnership with Microsoft
Research and others, has co-hosted several public symposiums on the impacts
and challenges of algorithms and Artificial Intelligence, specifically relating to
social inequality, labor, healthcare and ethics.1

At the heart of the matter is the fact that technology outpaces policy in
most cases; here, governance mechanisms of algorithms have not kept pace
with technological development. Several researchers have recently argued that
current control frameworks are not adequate for situations in which a poten-
tially unfair or incorrect decision is made by a computer [4].

Fortunately, there is increasing awareness of the detrimental effects of
discriminatory biases and opacity of some data-driven algorithmic decision-
making systems, and of the need to reduce or eliminate them. A number
of research and advocacy initiatives are worth noting, including the Data
Transparency Lab2, a “community of technologists, researchers, policymakers
and industry representatives working to advance online personal data trans-
parency through research and design”, and the DARPA Explainable Artificial
Intelligence (XAI) project3. A tutorial on the subject was held at the 2016
ACM Knowledge and Data Discovery conference [27]. Researchers from New
York University’s Information Law Institute –such as Helen Nissenbaum and
Solon Barocas– and Microsoft Research –such as Kate Crawford and Tarleton
Gillespie– have held several workshops and conferences these past few years on
the ethical and legal challenges related to algorithmic governance and decision-
making.4. Lepri et al. [38] recently discussed the need for social good decision-
making algorithms (i.e. algorithms strongly influencing decision-making and
resource optimization of public goods, such as public health, safety, access to
finance and fair employment) to provide transparency and accountability, to
only use personal information –created, owned and controlled by individuals–

1 https://www.whitehouse.gov/blog/2016/05/03/preparing-future-artificial-intelligence
2 http://www.datatransparencylab.org/
3 http://www.darpa.mil/program/explainable-artificial-intelligence
4 http://www.law.nyu.edu/centers/ili/algorithmsconference
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with explicit consent, to ensure that privacy is preserved when data is ana-
lyzed in aggregated and anonymized form, and to be tested and evaluated in
context by means of living lab approaches involving citizens.

In this paper, we focus on two of the main risks (namely, discrimination
and lack of transparency) posed by data-driven predictive models leading to
decisions that impact the daily lives of millions of people. There are additional
challenges that we do not discuss in this paper. For example, issues relating
to data ownership, privacy, informed consent and limited understanding (lit-
eracy) about algorithms’ abilities and resulting risks among the general public
are not discussed here. Instead, focusing on discrimination and lack of trans-
parency, we provide the readers with a review of recent attempts at making
algorithmic decision-making more fair and accountable, highlighting the merits
and the limitations of these approaches. Finally, we turn to the description of
a recent project, called Open Algorithms (OPAL), whose goal is to enable the
design, implementation and monitoring of development policies and programs,
accountability of government actions, and citizen engagement while leveraging
the availability of large scale human behavioral data in a privacy-preserving
and predictable manner.

2 Discriminatory effects of algorithmic decision-making

From a legal perspective, Tobler [64] described discrimination as “the appli-
cation of different rules or practices to comparable situations, or of the same
rule or practice to different situations”. Later, Barocas and Selbst [4] argued
that discrimination may be an artifact of the data collection and analysis
process itself. More specifically, even with the best intentions, data-driven al-
gorithmic decision-making can lead to discriminatory practices and outcomes:
algorithmic decision procedures can reproduce existing patterns of discrimi-
nation, inherit the prejudice of prior decision makers, or simply reflect the
widespread biases that persist in society [17]. Some have argued it could ex-
acerbate prevailing inequalities by suggesting that historically disadvantaged
groups actually deserve less favorable treatment [45].

Algorithmic discrimination may arise from different sources. First, input
data into algorithmic decisions may be poorly weighted, leading to disparate
impact. For example, as a form of indirect discrimination, overemphasis of
zip code within predictive policing algorithms can lead to the association of
low-income African-American neighborhoods with areas of crime and as a
result, the application of specific targeting based on group membership [14].
Second, discrimination can occur from the decision to use an algorithm itself.
Categorization can be considered as a form of direct discrimination, whereby
algorithms are used for disparate treatment [19]. Third, algorithms can lead to
discrimination as a result of the misuse of certain models in different contexts
[10]. Fourth, in a form of feedback loop, biased training data can be used both
as evidence for the use of algorithms and as proof of their effectiveness [10].
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The use of algorithmic data-driven decision processes may also result in
individuals being denied opportunities based not on their own action but on
the actions of others with whom they share some characteristics. For exam-
ple, some credit card companies have lowered a customer’s credit limit, not
based on the customer’s payment history, but rather based on analysis of
other customers with a poor repayment history that had shopped at the same
establishments where the customer had shopped [51].

These are both old and new risks. There is ample evidence of detrimental
impacts of current non-algorithmic approaches to access to finance, employ-
ment, and housing. Backgrounds checks for example are widely used in those
procedures, with people’s knowledge and consent. But hundreds of thousands
of people have been treated unfairly as a result of mistakes (for instance,
misidentification) in the procedures used by external companies to perform
background checks5. On the one hand, the occurence of such trivial procedu-
ral mistakes may be bound to decrease once performed through data-driven
methodologies. But the effort required to identify the causes of unfair and
discriminative outcomes can be expected to be exponentially larger, as expo-
nentially more complex will be the black-box models employed to assist in
the decision-making process. But it also means that should such methodolo-
gies not be transparent in their inner workings, the effects are likely to stay
though with different roots.

This scenario thus highlights particularly well the need for machine learning
models featuring transparency (understood as openness and communication
of both the data being analyzed and the mechanisms underlying the models),
accountability (understood as the assumption of accepting the responsibility
for actions and decisions) and fairness (understood as the lack of discrimination
or bias in the decisions).

3 Techniques to prevent algorithmic discrimination and maximize
fairness

A simple way to try to maximize fairness –understood as the lack of bias and
discrimination– in machine learning is precluding the use of sensitive attributes
[9,31,60,4]. For example, if we want a race-blind or a gender-blind decision-
making process we may exclude these attributes (i.e. race, gender, etc.) from
the process. However, this solution has several technical problems. First, the
excluded attributes can often be implicit in non-excluded ones [48,56,70]. For
example, when race is excluded as a criterion for granting or not a loan, some
implicit information can be present in the individual’s zip code, given that zip
code may be a good proxy for race [60,41]. An additional problem with the
blindness approach was identified by Dwork et al. [20]: a learning decision rule
can select the opposite of what is intended. Consider the example provided by
Dwork et al. [20]: in a certain culture S the most talented students tend to

5 http://www.chicagotribune.com/business/ct-background-check-penalties-1030-biz-
20151029-story.html
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study engineering and science whereas the less talented study finance. How-
ever, in another culture C the trend is reversed such that the most talented
students are encouraged to study finance and the less talented are guided to-
wards engineering and science. An organization from culture C ignorant of
these cultural differences, may select candidates for “economics”, potentially
selecting the wrong candidates from culture S even while maintaining parity.
This is an example of a suboptimal outcome in a “fairness through blindness”
approach as the errors are due to ignoring cultural membership.

In the last few years, several researchers have proposed different techni-
cal definitions of fairness in machine learning, most of which formalize some
notion of group fairness [9,32,71,22]. One of the most used notions is statisti-
cal parity, which requires that an equal fraction of each group should receive
each possible outcome [9,32,71,22]. Recent papers have also considered ap-
proximate relaxations of statistical parity, motivated by the formulation of
disparate impact in the U.S. legal code [22,68]. Work in these directions has
also developed learning algorithms that penalize violations of statistical parity
[9,32].

However, as pointed out by Dwork et al. [20], the group fairness often fails
at both accurate learning and actual fairness. The case of lending can be used
as an example to make the point: if two groups have different proportions
of individuals who are able to pay back their loans, the algorithm’s accuracy
will suffer when constrained to predict an equal proportions of paybacks for
the two groups. Moreover, group fairness definitions do not guarantee that a
creditworthy individual from one group has an equal probability of receiving
a loan as a similarly creditworthy individual from the other group.

To overcome these limitations, Dwork et al. [20] argued that technical defi-
nitions of fairness should focus on individual fairness. More precisely, they pro-
posed a framework based on a task-specific externally defined similarity metric
between individuals. The goal of this metric is to achieve fairness through the
principle that similar people should be treated in a similar way: thus, any two
individuals who are similar with respect to a given task should be classified in
a similar way [20]. The technical definition of similarity between individuals,
proposed by Dwork et al. [20], resembles partly the notion of strict equality of
opportunity proposed by the political scientist John Roemer [54,55]. For Roe-
mer, strict equality of opportunity is achieved when people, irrespectively of
circumstances beyond their control, have the same ability to achieve advantage
through their free choices.

Following Dwork et al. [20], Joseph et al. [30] have recently proposed a spe-
cific definition of individual fairness that can be considered as a mathematical
formalization of the Rawlsian principle of “fair equality of opportunity” [52].
This principle affirms that those individuals, “who are at the same level of
talent and have the same willingness of using it, should have the same per-
spectives of success regardless their initial place in the social system” (e.g.
income, race, etc.) [52]. Thus, this principle is stronger than a “formal equal-
ity of opportunity”: Rawls, indeed, argued that an individual should not only
have the right to opportunities, but also should have an effective equal chance
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as another individual of similar natural abilities. In their proposed approach,
Joseph et al. [30] include a notion of fairness in a sequential decision-making
framework called contextual bandits in the machine learning literature. Their
notion of fairness requires that at every step the learning algorithm never fa-
vors applicants whose attributes are lower than the ones of another applicant.
Hence, their aim is to design a machine learning algorithm that would (prov-
ably) converge to an optimal decision while being (provably) fair at every step.
They show that learning algorithms can be proven to be fair in such a way that
the cost (from the perspective of rate of convergence to an optimal decision)
of adding fairness to the algorithm is small.

In a recent work, Hardt et al. [29] proposed a fairness measure, based on a
similar notion of equality of opportunity, that tries to achieve two important
objectives. First, to overcome the main conceptual shortcomings of statistical
parity as a fairness notion. Second, to build higher accuracy classifiers, in line
with the central goal of supervised machine learning. To this end, they pro-
posed a criterion for discrimination against a specified sensitive attribute in
supervised learning, where the goal is to predict some target based on available
features. Assuming the availability of data about the predictor, the target, and
the membership in the protected group, they showed how to optimally adjust
any learned predictor so as to remove discrimination according to their def-
inition. The proposed framework also changes incentives by shifting the cost
of poor classification from disadvantaged groups to the decision maker, who
can respond by improving the classification accuracy. They illustrate their ap-
proach and compare different fairness measures in the case of FICO scores
with the protected attribute of race, i.e. they build machine learning models
that aim to predict a credit risk from a number of attributes with race be-
ing a protected attribute. In their conclusions, they highlight that with their
framework it is possible to measure unfairness rather than to prove fairness
and emphasize the importance of having access to reliable target variables,
which is not always the case in practical scenarios.

Another interesting result is the one discussed by Kleinberg et al. [36].
In their paper, they formalized three fairness conditions that constitute the
heart of the debates about discrimination in machine learning. Moreover, they
proved that, except in highly constrained special cases, there is no method that
can satisfy these three conditions simultaneously. Specifically, a first condition
–known as calibration within groups in the literature– is that the probability es-
timates provided by the decision-making algorithms should be well-calibrated:
for example, if the algorithm identifies a set of people as having probabil-
ity z of constituting positive instances, then approximately a z fraction of
this set should be positive instances [24]. In addition, this condition should
be valid when applied separately in each group: if we think of potential dif-
ferences between an outcome z for Afro-Americans and Asians, this means
that a z fraction of men and z fraction of women assigned a probability z
should possess the property in question. A second condition focuses on the
people who constitute positive instances: the average score received by those
people should be the same in each group. This represents a balance for the
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positive class: indeed a violation of this condition would mean that people
who are positive instances in one group receive consistently lower probability
estimates than people constituting positive instances in another group. Let
resort to the case study investigated by ProPublica where one of the concerns
raised was that white defendants who went on to commit future crimes were
assigned risk scores corresponding to lower probability estimates in aggregate.
This is an example of a violation of the balance for the positive class condi-
tion. A similar condition holds with respect to negative instances, which is
called balance for the negative class. In short, these balance conditions can
be considered as generalizations of the notions that both groups should have
equal false negative and false positive rates. The authors outline a few lines
of future research, including the fact that there might be use cases where the
cost of false positives differs greatly from the cost of false negatives and thus
it should be taken into account. In line with this approach, Chouldechova
[13] and Corbett-Davies et al. [16] consider conditions close to the balance for
negative and positive classes together with a form of calibration adapted to
binary predictions. The calibration requires that for all people given a positive
label, the same fraction of people in each group should truly be part of the
positive class. Interestingly, they show that no classification rule can satisfy
the required constraints. Finally, a paper by Friedler et al. [25] defines two
axiomatic properties of feature generation and shows that no mechanism can
be fair under these two properties.

The results obtained by Kleinberg et al. [36], Choudechova [13], and Corbett-
Davies et al. [16] highlight that it is not enough to simply demand algorithmic
fairness. We may need to investigate deeply and critically each problem and
determine which notion of fairness is considered to be the most relevant and
meaningful for that particular problem. Critically, what constitutes fairness
changes according to different worldviews: for example, the philosopher Robert
Nozick in his book “Anarchy, State, and Utopia” [44] proposed a libertarian
alternative view where he is concerned that eliminating discrimination biases,
present in society, may create new harms to new groups of people. Instead,
Dworkin’s egalitarian view of fairness [21] is based on the principle of equality
of resources.

For this reason, we feel the urgency to extablish a call for action putting
together researchers from different fields –including law, ethics, political philos-
ophy and machine learning– to devise, evaluate and validate in the real-world
alternative fairness metrics for different tasks. In addition to this empirical
research, we believe it will be necessary to propose a modeling framework –
supported by empirical evidence– that would assist practitioners and policy
makers in making decisions aided by algorithms that are maximally fair.

4 Information asymmetry and lack of transparency

The mandate for accountable algorithms in government and corporations’
decision-making tools is fundamental in both validating their utility toward
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the public interest as well as redressing potential harms generated by these
algorithms.

Transparency, which refers to the understandability of a specific model, can
be a mechanism that facilitates accountability. More specifically, transparency
can be considered at the level of the entire model, at the level of individual
components (e.g. parameters), and at the level of a particular training algo-
rithm. In the strictest sense, a model is transparent if a person can contemplate
the entire model at once. Thus, models should be characterized by low com-
putational complexity. A second and less strict notion of transparency might
be that each part of the model (e.g. each input, parameter, and computation)
admits an intuitive explanation [40]. A final notion of transparency might ap-
ply at the level of the algorithm, even without the ability to simulate an entire
model or to intuit the meaning of its components.

However, the ability to access and analyze behavioral data about customers
and citizens on an unprecedented scale gives corporations and governments
powerful means to reach and influence segments of the population through
targeted marketing campaigns and social control strategies. In particular, we
are witnessing an information asymmetry situation where a powerful few have
access and use resources and tools that the majority do not have access to,
thus leading to an –or exacerbating the existing– asymmetry of power between
the state and big companies on one side and the people on the other side [1],
conceptualized as a “new digital divide” [7]. In addition, the nature and use of
various data-driven algorithms for social good, as well as the lack of compu-
tational or data literacy among citizens [6], makes algorithmic transparency
difficult to generalize and accountability difficult to assess [47].

Burrell [8] has provided a useful framework to characterize three differ-
ent types of opacity in algorithmic decision-making: (1) intentional opacity,
whose objective is the protection of the intellectual property of the inventors
of the algorithms. This type of opacity could be mitigated with legislation that
would force decision-makers towards the use of open source systems. The new
General Data Protection Regulations (GDPR) in the EU with a “right to an
explanation” starting in 2018 is an example of such legislation6. But powerful
commercial and governmental interests will make it difficult to eliminate inten-
tional opacity; (2) illiterate opacity, due to the fact that the vast majority of
people lack the technical skills to understand the underpinnings of algorithms
and machine learning models built from data. This kind of opacity might be
attenuated with stronger education programs in computational thinking and
“algorithmic literacy” and by enabling independent experts to advise those af-
fected by algorithmic decision-making; and (3) intrinsic opacity, which arises
by the nature of certain machine learning methods that are difficult to inter-
pret (e.g. deep learning models). This opacity is well known in the machine
learning community (usually referred to as the interpretability problem). The

6 Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April
2016 on the protection of natural persons with regard to the processing of personal data
and on the free movement of such data, and repealing Directive 95/46/EC (General Data
Protection Regulation)
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main approach to combat this type of opacity requires using alternative ma-
chine learning models that are easy to interpret by humans, despite the fact
that they might yield lower accuracy than black-box non-interpretable models.

5 Techniques to improve transparency and accountability

As previously described, algorithmic decision-making might lack transparency.
A simple solution to this limitation would consist of asking for transparency
and openness of the algorithm’s source code as well as inputs and ouputs that
are used to make relevant algorithmic decisions. However, transparency alone
is not sufficient to provide accountability in all cases. First of all, it is often
necessary to keep secret certain elements of an algorithimic decision policy,
the way how the policy is implemented, the key inputs, or the outcome. This
is a way to help prevent strategic gaming of the system. Furthemore, when the
decision being regulated is a commercial one –such as a bank decision to give
a loan–, a legitimate business interest in protecting proprietary information or
algorithms may be incompatible with full transparency. Again, an algorithmic
decision-making system may use as input or may create as output sensitive
data that should be not shared to protect business interests, privacy, etc. In
some domains, such as finance and healthcare, disclosure may be limited by
regulations.

A strategy for verifying and making transparent the behavior of an algo-
rithmic decision-making process is auditing. An auditing strategy deals with
the decision process as a black box, whose inputs and outputs are visible, while
inner workings are not [59]. However, several researchers have shown that a
black-box evaluation of decision processes and systems is the least powerful
of a set of available methods for understanding their behaviors [18]. Datta
et al. [18] study the opacity (i.e. lack of transparency) of web-based ads by
means of their AdFisher tool. They ran several experiments to investigate the
transparency provided by Google’s Ad Settings. In particular, they analyze
if visiting webpages related to a certain interest would lead to a change in
the ads shown that is not captured in the settings. They found instances of
opacity as they encountered cases where there were significant differences in
the ads shown to different profiles while their tool failed to show any type of
profiling. They attribute the instances of opacity to remarketing or to other
causes related to the complexity of Google’s massive, automated advertising
system. The authors advocate –as we do– for additional research to create
machine learning algorithms that automatically provide transparency to the
users.

Furthermore, some algorithmic decision-making processes aim to deter-
mine variables that are not measurable in a direct way, for example the risk of
credit default. For this reason, these values are computed by means of proxy
variables such as the consumer’s credit history, the consumer’s income, some
consumer’s personal characteristics or even their mobile phone usage patterns
[58]. Consumers able to understand these processes would be tempted to con-
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trol the proxy variables [45]. Thus, secrecy discourages consumers’ strategic
behaviors and prevents violations of legal restrictions on disclosure of data.
In a recent paper, Hardt et al. [28] have proposed adversarial methods for de-
signing algorithmic decision-making processes that remain robust in the face of
gaming. Moreover, for algorithmic decision processes involving some element
of randomness, the full transparency of the source code, inputs, operating en-
vironment, and results does not exclude the possibility that the process may
produce unpredictable results. Finally, systems that change over time cannot
be fully understood through transparency alone. For example, online machine
learning algorithms can update their model for predictions after each decision,
which increases the complexity of a strategy to ensure transparency in the
decision-making process.

Ultimately, we need accountability in decision-making algorithms such that
there is clarity regarding who holds the responsibility of the decisions made by
them or with algorithmic support. Transparency is generally thought as a key
enabler of accountability. However, transparency and auditing do not neces-
sarily suffice for accountability. In fact, in a recent paper Kroll et al. [37] have
introduced computational methods able to provide accountability even when
some information is kept hidden. The authors used advanced techniques to
allow the governance of secret algorithmic decision-making processes: specifi-
cally, software verification (i.e. a set of techniques for proving mathematically
that a piece of software has certain properties), cryptographic commitments
(i.e. equivalents of sealed documents held by a third party or in a safe place),
zero-knowledge proofs (i.e. cryptographic tools that allow a decision maker,
as part of a cryptographic commitment, to prove that the decision policy that
was actually used has a certain property, but without revealing either how the
property is known or what the decision policy is), and fair random choices
(i.e. a technique allowing software that makes random choices to be fully re-
producible). These methods can guarantee that both the input data and the
software that analyzes such data satisfy the requirements for procedural reg-
ularity, even when they are kept secret.

Another approach to provide transparency in algorithmic decision-making
entails providing explanations regarding the processes that lead to the deci-
sions such that they are interpretable by humans. In a recent work, Ribeiro
et al. [53] proposed to (i) provide explanations for individual predictions as a
solution to the so-called “trusting a prediction” problem, and (ii) select mul-
tiple such predictions and explanations as a solution to the so-called “trusting
the model” problem. Specifically, they proposed LIME, a novel technique that
explains the predictions of any classifier by learning an interpretable model
locally around the prediction. They also proposed a method to explain models
by showing representative individual predictions and their explanations in a
non-redundant way. In the paper, they showed the value of these explanations
by means of experiments, both simulated and with human subjects, on several
scenarios, such as (i) deciding if one should trust a prediction, (ii) identifying
a classifier that should not be trusted, and (iii) choosing between different
classification models, etc.
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A recent challenging contribution by Lipton [39] examined the motivations
underlying the raising interest in interpretability, finding them to be diverse
and sometimes discordant. In general, the desire for an interpretation suggests
that predictions alone are not sufficient, thus implying a discrepancy between
the real-world objectives of machine learning researchers and practictioners
and the simple objectives optimized by most machine learning models.

However, the concept of interpretability is often vaguely defined. The learn-
ing model’s properties that enable or that compromise interpretability broadly
fall into two categories. The first one relates to transparency, that is how does
the model work. The second one consists of post-hoc interpretations, that is
what else can the model tell.

As distinct notion of interpretability, post-hoc interpretations consist of
explanations that need not elucidate the exact process by which models work.
These interpretations include natural language explanations [42], visualiza-
tions of learned representations or models (e.g. saliency maps in deep neural
nets [61]), and explanations by example (e.g. a tumor is classified as malignant
because to the model it looks like these other tumors) [11]. One advantage of
this concept of interpretability is that we can interpret opaque models after-
the-fact, without sacrificing predictive performance.

Algorithmic decision-making processes have the potential to lead to fairer
and more objective decisions, grounded in data that are representative of the
community where the decisions apply. However, as explained in the previous
sections, algorithmic decision-making might lead to discrimination, informa-
tion asymmetry and lack of transparency. Hence, we believe that it is not only
important but also urgent to engage multi-disciplinary teams of researchers,
practitioners and policy makers to propose, implement and evaluate in the
real-world algorithmic decision-making processes that are designed to maxi-
mize their fairness and transparency.

In the next section, we describe one of such proposals, the OPAL project.

6 The OPAL project

The Open Algorithms (OPAL) project7, is a multi-partner socio-technological
platform led by Data-Pop Alliance, Imperial College London, the MIT Media
Lab, Orange S.A., and the World Economic Forum, that aims to leverage pri-
vate sector data for public good purposes by “sending the code to the data”
in a privacy preserving, predictable, participatory, scalable and sustainable
manner. The project came out of the recognition that accessing data held by
private companies –including Call Detail Records (CDRs) collected by telecom
operators for billing purposes, and banking data– for research and policy pur-
poses has been a conundrum. To date for example, CDRs have been accessed
and analyzed either internally, or externally through ad-hoc data challenges
or through bilateral arrangements with a limited number of groups under

7 http://opalproject.org/



Fair, transparent and accountable algorithmic decision-making processes 13

Non-Disclosure Agreements. These types of engagements have offered ample
evidence of the promise and demand, but they do not scale nor address some
of the most critical challenges discussed above.

Building on the lessons of the past, OPAL is a key milestone towards a
vision where data is at the heart of societal development around the globe,
by providing a far better picture of human conditions to official statisticians,
policy makers, planners, businesses leaders, and citizens, while enabling greater
inclusion and inputs of all members of societies on the kinds and uses of
analyses performed on data about themselves. As such, OPAL will reflect
and foster the double objective to turn Big Data on its head and “save it from
itself” [49].

OPAL’s first core feature is technological: the platform allows sending
queries (i.e. running algorithms) on the partner companies’ servers, behind
their firewalls, and not the other way around, so that raw data are never
exposed to theft and misuse. The second one is socio-political: it involves co-
designing the algorithms so that they are not only open but also serve local
needs and respect local standards. For example, a key idea of OPAL is that
algorithms should be verified by experts, policy makers, citizens to be as free
as possible from biases and unintended side effects such as discrimination. To
this end, OPAL makes use of vetting the algorithms that are permitted to
run on a given data-set within a specific data repository. Once an algorithm
has been vetted, it becomes a template that is digitally signed by the issuers
(e.g. expert themselves, public institutions, representatives of the communities
that will be affected by algorithmic decisions, etc.). This template algorithm
can be shared among a group of entities (e.g. within a consortium) or even
be published on a public site. Note that this vetting does not guarantee the
quality of the output, which is a function of the quality of the input data.

The OPAL model of moving the algorithm to the data and of using vetting
allows a data repository to choose whether or not it is willing to accept a sub-
mitted OPAL algorithm (query). If the data repository accepts a given vetted
algorithm, it also has the option to impose additional filtering on the resulting
data prior to being returned as answer to the querier (e.g. defining the degree
of personal information within a given answer). Moreover, each repository can
introduce machine learning algorithms as additional mechanisms to protect
privacy. Such algorithms allow a repository to detect if multiple accesses from
the same entity may result in compromising Personal Identifiable Information
(PII).

Finally, blockchain technology can be used to capture and log both vetted-
queries and safe-answers, thus providing a mechanism to support post-event
audit and accountability. One easy way would be for the querier to compute a
cryptographic hash of the query sent, and for the data repository to compute
the hash of the response. In addition, the technology may be used by data
owners when they want to monetize their data, including the ability to link
money and data flows, or micro-payments with small transaction costs.

OPAL is currently being deployed through pilots in Senegal and Colombia,
where it has been endorsed by and benefits from the support of their National
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Statistical Offices and major local telecom operators. Local engagement and
empowerment will be central to the development of OPAL: needs, feedback
and priorities have been collected and identified through local workshops and
discussions, and their results will feed into the design of future algorithms.
These algorithms will be fully open, therefore subject to public scrutiny and
redress. A local advisory board is being set up to provide guidance and over-
sight to the project. In addition, trainings and dialogues will be organized
around the project to foster its use and diffusion as well as local capacities
and awareness more broadly. OPAL aims to be deployed in 2 more countries
by the end of 2018.

Initiatives such as OPAL have the potential to enable more human-centric
accountable and transparent data-driven decision-making and governance, by
involving a wide range of stakeholders in and through their design and im-
plementation. Note, however, that OPAL does not fully address the issues of
algorithmic fairness and transparency. It does not address internal uses of data
and potentially discriminatory behavior by corporations. It does not advance
an open data agenda, which may be unrealistic when working with corporate-
owned data carrying high competititve value and posing severe privacy risks.
It also does not in itself enable control for bias in the data itself.

Despite these limitations, we believe that OPAL will provide an avenue
for an array of users, from official statisticians to community organizers, to
openly query data and have those queries and results examined through a
fairness and anti-discrimination lens. It is an important concrete step towards
a world where data and algorithms can be leveraged through participatory
processes for societal development and democracy around the globe.

7 Conclusions

We live in an unprecedented historic moment where the availability of vast
amounts of human behavioral data, combined with advances in machine learn-
ing are enabling us to tackle complex problems through algorithmic decision-
making. The opportunities to have positive social impact through fairer and
more transparent decisions are paramount. However, algorithmic decision-
making processes might lead to discrimination, information asymmetry and
lack of transparency.

In this paper we have provided an overview of both existing limitations
and proposed solutions regarding fairness, accountability and transparency in
algorithmic decision-making. We have highlighted open challenges that would
still need to be addressed and have described the OPAL project as an ex-
emplary effort that aims to maximize algorithmic fairness and transparency
to support decision-making for social good. We would like to emphazise the
importance and the urgency to engage multi-disciplinary teams of researchers,
practitioners and policy makers to propose, implement and evaluate in the
real-world algorithmic decision-making processes that are designed to maxi-
mize their fairness and transparency.
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The opportunity to significantly improve the processes leading to decisions
that affect millions of lives is huge. As researchers and citizens we believe that
we should not miss on this opportunity. Hence, we would like to encourage the
larger community –e.g. researchers, practitioners, policy makers– in a variety
of fields –e.g. computer science, sociology, economics, ethics, law– to join forces
so we can address today’s limitations in data-driven decision-making and con-
tribute to fairer and more transparent decisions with clear accountability and
significant positive impact.
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