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Abstract

In this paper, we develop procedures to construct simultaneous confidence bands for p potentially 

infinite-dimensional parameters after model selection for general moment condition models where 

p is potentially much larger than the sample size of available data, n. This allows us to cover 

settings with functional response data where each of the p parameters is a function. The procedure 

is based on the construction of score functions that satisfy Neyman orthogonality condition 

approximately. The proposed simultaneous confidence bands rely on uniform central limit 

theorems for high-dimensional vectors (and not on Donsker arguments as we allow for p ≫ n). To 

construct the bands, we employ a multiplier bootstrap procedure which is computationally 

efficient as it only involves resampling the estimated score functions (and does not require 

resolving the high-dimensional optimization problems). We formally apply the general theory to 

inference on regression coefficient process in the distribution regression model with a logistic link, 

where two implementations are analyzed in detail. Simulations and an application to real data are 

provided to help illustrate the applicability of the results.
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1. Introduction.

High-dimensional models have become increasingly popular in the last two decades. Much 

research has been conducted on estimation of these models. However, inference about 

parameters in these models is much less understood, although the literature on inference is 

growing quickly; see the list of references below. In this paper, we construct simultaneous 

confidence bands for many functional parameters parameters in a very general framework of 

moment condition models, where each parameter itself can be an infinite-dimensional 

object, and the number of such parameters can be much larger than the sample size of 

available data. Our paper builds upon [11], where simultaneous confidence bands have been 

constructed for many scalar parameters in a high-dimensional sparse z-estimation 

framework.

As a substantive application, we apply our general results to provide simultaneous 

confidence bands for parameters in a logistic regression model with functional response data

EP Yu D, X = Λ D′θu + X′βu , u ∈ 𝒰, (1.1)

where D = D1, …, Dp ′ is a p-vector of covariates whose effects are of interest, X = (X1,

…,Xp)′ is a p-vector of controls, Λ:ℝ ℝ is the logistic link function, 𝒰 = [0, 1] is a set of 

indices and for each u ∈ 𝒰, Yu = 1 Y ≤ (1 − u)y + uy  for some constants y ≤ y and the 

response variable Y, θu1 = θu1, …, θup ′ is a vector of target parameters and βu = (βu1,

…,βup)′ is a vector of nuisance parameters. Here, both p and p are allowed to be potentially 

much larger than the sample size n, and we have p functional target parameters θu j u ∈ 𝒰

and p functional nuisance parameters βu j u ∈ 𝒰. This example is important because it 

demonstrates that our methods can be used for inference about the whole distribution of the 

response variable Y given D and X in a high-dimensional setting, and not only about some 

particular features of it such as mean or median. This model is called a distribution 

regression model in [22] and a conditional transformation model in [26], who argue that the 

model provides a rich class of models for conditional distributions, and offers a useful 

generalization of traditional proportional hazard models as well as a useful alternative to 

quantile regression. We develop inference methods to construct simultaneous confidence 

bands for many functional parameters of this model in Section 3.

Toward this goal, our contributions include to effectively estimate a continuum of high-

dimensional nuisance parameters, allow for approximately sparse models, control sparse 

eigenvalues of a continuum of random matrices, establish an approximate linearization for a 

collection of “orthogonalized” (or “de-biased”) estimators and establish the validity of a 

multiplier bootstrap for the construction of confidence bands for the many functional 

parameters of interest based on these estimators. In particular, these contributions build upon 

but go much beyond [11] (Corollary 4), which considers the special case of many scalar 

parameters in a z-estimation framework, and beyond [19] (Theorem 5.1), where 

simultaneous confidence bands are constructed via multiplier bootstrap for any large 
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collection of approximately linear scalar estimator n θ j − θ j = n−1∑ j = 1
p ψ j + rn j, j = 1,

…,p, where the ℓ∞-norm of rn is oP(1/ log p).

Our general results refer to the problem of estimating the set of parameters θu j u ∈ 𝒰, j ∈ [p]
in the moment condition model,

Ep ψu j W , θu j, ηu j = 0, u ∈ 𝒰, j ∈ [p], (1.2)

where W is a random element that takes values in a measurable space 𝒲, 𝒜𝒲  according to 

a probability measure P, 𝒰 ⊂ ℝ
du and [p]: = 1, …, p  are sets of indices, and for each u ∈ 𝒰

and j ∈ [p], ψuj is a known score function, θuj is a scalar parameter of interest and ηuj is a 

potentially high-dimensional (or infinite-dimensional) nuisance parameter. Assuming that a 

random sample of size n, W i i = 1
n , from the distribution of W is available together with 

suitable estimators ηu j of ηuj, we aim to construct simultaneous confidence bands for 

θu j u ∈ 𝒰, j ∈ [p] that are valid uniformly over a large class of probability measures P, say 

𝒫n. Specifically, for each u ∈ 𝒰 and j ∈ [p], we construct an appropriate estimator θu j of θuj 

along with an estimator of the standard deviation of n θu j − θu j , σu j, such that

 PP θu j −
cασu j

n
≤ θu j ≤ θu j +

cασu j
n

, ∀u ∈ 𝒰, j ∈ [p] 1 − α, (1.3)

uniformly over P ∈ 𝒫n, where α ∈ (0, 1) and cα is an appropriate critical value, which we 

choose to construct using a multiplier bootstrap method. The left- and the right-hand sides of 

the inequalities inside the probability statement (1.3) then can be used as bounds in 

simultaneous confidence bands for θuj’s. In this paper, we are particularly interested in the 

case when p is potentially much larger than n and 𝒰 is an uncountable subset of ℝ
du, so that 

for each j ∈ [p], θu j u ∈ 𝒰 is an infinite-dimensional (i.e., functional) parameter.

In the presence of high-dimensional nuisance parameters, construction of valid confidence 

bands is delicate. Dealing with high-dimensional parameters requires relying upon 

regularization that leads to lack of asymptotic linearization of the estimators of target 

parameters since regularized estimators of nuisance parameters suffer from a substantial bias 

and this bias spreads into the estimators of the target parameters. This lack of asymptotic 

linearization in turn typically translates into severe distortions in coverage probability of the 

confidence bands constructed by traditional techniques that are based on perfect model 

selection; see [30–32, 40]. To deal with this problem, we assume that the score functions ψuj 

are constructed to satisfy a near-orthogonality condition that makes them immune to first-

order changes in the value of the nuisance parameter, namely
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∂r EP ψu j W , θu j, ηu j + rη r = 0 ≈ 0, u ∈ 𝒰, j ∈ [p], (1.4)

for all η in an appropriate set where ∂r denotes the derivative with respect to r. We shall often 

refer to this condition as Neyman orthogonality, since in lowdimensional parametric settings 

the orthogonality property originates in the work of Neyman on the C(α) test in the 50s. In 

Section 2 below, we describe a few general methods for constructing the score functions ψuj 

obeying the Neyman orthogonality condition.

The Neyman orthogonality condition (1.4) is important because it helps to make sure that 

the bias from the estimators of the high-dimensional nuisance parameters does not spread 

into the estimators of the target parameters. In particular, under (1.4), it follows that

EP, W ψu j W , θu j, ηu j ≈ 0, u ∈ 𝒰, j ∈ [p],

at least up to the first order, where the index W in EP,W [·] means that the expectation is 

taken over W only. This makes the estimators of the target parameters θuj immune to the 

bias in the estimators ηu j, which in turn improves their statistical properties and opens up the 

possibilities for valid inference.

As the framework (1.2) covers a broad variety of applications, it is instructive to revisit the 

logistic regression model with functional response data (1.1). To construct score functions 

ψuj that satisfy both the moment conditions (1.2) and the Neyman orthogonality condition 

(1.4) in this example, for u ∈ 𝒰 and j ∈ [p], define a (p + p − 1)-vector of additional nuisance 

parameters

γu
j = arg min

γ ∈ ℝp + p − 1
EP f u

2 D j − X jγ 2 , (1.5)

where X j = D[p]\ j′ , X′ , D[p]\ j = D1, …, D j − 1, D j + 1, …, Dp ′, and

f u
2 = f u

2(D, X) =  VarP Yu D, X . (1.6)

Then, denoting W = (Y,D,X) and splitting θu into θuj and 

θu[p]\ j = θu1, …, θu j − 1, θu j + 1, …, θu[p]′ ′, we set

ψu j W , θu j, ηu j = Yu − Λ D jθu j + X jβu
j D j − X jγu

j ,
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where ηu j = βu
j , γu

j  and βu
j = θu[p]\ j′ , βu′ ′. It is straightforward to see that these score 

functions ψuj satisfy the moment conditions (1.2) and to see that they also satisfy the 

Neyman orthogonality condition (1.4), observe that

∂β EP ψu j W , θu j, β, γu
j

β = βu
j = − EP f u

2 D j − X jγu
j X j ′ = 0,

∂γ EP ψu j W , θu j, βu
j , γ

γ = yii
j = − EP Yu − Λ D′θu + X′βu X j ′ = 0,

where the first line by definition of f u
2 and γu

j  since VarP (Yu | D, X) = Λ′ (D′ θu + X′ βu), 

and the second by (1.1). Because of this orthogonality condition, we can exploit the moment 

conditions (1.2) to construct regular, n-consistent, estimators of θuj even if nonregular, 

regularized or post-regularized, estimators of ηu j = βu
j , γu

j  are used to cope with high-

dimensionality. Using these regular estimators of θuj, we then can construct valid confidence 

bands (1.3).

Our general approach to construct simultaneous confidence bands, which is developed in 

Section 2, can be described as follows. First, we construct the moment conditions (1.2) that 

satisfy the Neyman orthogonality condition (1.4), and use these moment conditions to 

construct estimators θu j of θuj for all u ∈ 𝒰  and j ∈ [p]. Second, under appropriate regularity 

conditions, we establish a Bahadur representation for θu j’s. Third, employing the Bahadur 

representation, we are able to derive a suitable Gaussian approximation for the distribution 

of θu j’s. Importantly, the Gaussian approximation is possible even if both p and the 

dimension of the index set 𝒰, du, are allowed to grow with n, and p asymptotically remains 

much larger than n. Finally, from the Gaussian approximation, we construct simultaneous 

confidence bands using a multiplier bootstrap method. Here, the Gaussian and bootstrap 

approximations are constructed by applying the results on highdimensional central limit and 

bootstrap theorems established in [16–21] by verifying the conditions there.

Although regularity conditions underlying our approach can be verified for many models 

defined by moment conditions, for illustration purposes, we explicitly verify these 

conditions for the logistic regression model with functional response data (1.1) in Section 3. 

We also note that the regularity conditions, in particular those related to the entropy of the 

nuisance parameter estimators, can be substantially relaxed if we use sample splitting, so 

that the nuisance parameters and parameters of interest are estimated on separate samples; 

see [15]. In addition, we examine the performance of the proposed procedures in a Monte 

Carlo simulation study and provide an example based on real data in Section 5. Moreover, in 

the Supplementary Material [5], we discuss the construction of simultaneous confidence 

bands based on a double-selection estimator. This estimator does not require to explicitly 

construct the score functions satisfying the Neyman orthogonality condition but nonetheless 

is first-order equivalent to the estimator based on such functions.
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We also develop new results for ℓ1-penalized M-estimators in Section 4 to handle functional 

data and criterion functions that depend on nuisance functions for which only estimates are 

available building on ideas in [3,4,12] (for brevity of the paper, generic results are deferred 

to Supplementary Material, and Section 4 only contains results that are relevant for the 

logistic regression model studied in Section 3). Specifically, we develop a method to select 

penalty parameters for these estimators and extend the existing theory to cover functional 

data to achieve rates of convergence and sparsity guarantees that hold uniformly over u ∈ 𝒰. 

The ability to allow both for functional data and for nuisance functions is crucial in the 

implementation and in theoretical analysis of the methods proposed in this paper.

Orthogonality conditions like that in (1.4) have played an important role in statistics and 

econometrics. In low-dimensional settings, a similar condition was used by Neyman in [37] 

and [38] while in semiparametric models the orthogonality conditions were used in [1, 35, 

36, 41] and [33]. In high-dimensional settings, [7] and [2] were the first to use the 

orthogonality condition (1.4) in a linear instrumental variables model with many 

instruments. Related ideas have also been used in the literature to construct confidence 

bands in high-dimensional linear models, generalized linear models and other nonlinear 

models; see [6, 8–11, 13, 27,28,43, 46, 47] and [39], where we can interpret each procedure 

as implicitly or explicitly constructing and solving an approximately Neyman-orthogonal 

estimating equation. We contribute to this quickly growing literature by providing 

procedures to construct simultaneous confidence bands for many infinite-dimensional 
parameters identified by moment conditions.

Throughout the paper, we use the standard notation from the empirical process theory. In 

particular, we use 𝔼n to denote the expectation with respect to the empirical measure 

associated with the data W i i = 1
n , and we use 𝔾n to denote the empirical process n 𝔼n − EP . 

More details about the notation are given in the Supplementary Material.

2. Confidence regions for function-valued parameters based on moment 

conditions.

2.1. Generic construction of confidence regions.

In this section, we state our results under high-level conditions. In the next section, we will 

apply these results to construct simultaneous confidence bands for many infinite-

dimensional parameters in the logistic regression model with functional response data.

Recall that we are interested in constructing simultaneous confidence bands for a set of 

target parameters θu j u ∈ 𝒰, j ∈ [p] where for each u ∈ 𝒰 ⊂ ℝ
du and j ∈ [p] = 1, …, p , the 

parameter θuj satisfies the moment condition (1.2) with ηuj being a potentially high-

dimensional (or infinite-dimensional) nuisance parameter. Assume that θuj ∈ Θuj, a finite or 

infinite interval in ℝ , and that ηuj ∈ Tuj, a convex set in a normed space equipped with a 

norm ∥ · ∥e. We allow 𝒰 to be a possibly uncountable set of indices, and p to be potentially 

large.
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We assume that a random sample W i i = 1
n  from the distribution of W is available for 

constructing the confidence bands. We also assume that for each u ∈ 𝒰 and j ∈ [p] , the 

nuisance parameter ηuj can be estimated by ηu j using the same data W i i = 1
n . In the next 

section, we discuss examples where ηu j’s are based on Lasso or Post-Lasso methods 

(although other modern regularization and postregularization methods can be applied). Our 

confidence bands will be based on the estimators θu j of θuj that are for each u ∈ 𝒰  and 

j ∈ [p] defined as approximate ϵn-solutions in Θuj to sample analogs of the moment 

conditions (1.2), that is,

sup
u ∈ 𝒰, j ∈ [p]

𝔼n ψu j W , θu j, ηu j − inf
θ ∈ Θu j

𝔼n ψu j W , θ, ηu j ≤ ϵn, (2.1)

where ϵn = o(δnn−1/2) for all n ≥ 1 and some sequence (δn)n≥1 of positive constants 

converging to zero.

To motivate the construction of the confidence bands based on the estimators θu j, we first 

study distributional properties of these estimators. To do that, we will employ the following 

regularity conditions. Let C0 be a strictly positive (and finite) constant, and for each u ∈ 𝒰
and j ∈ [p], let 𝒯u j be some subset of Tuj, whose properties are specified below in 

assumptions. In particular, we will choose the sets 𝒯u j so that, on the one hand, their 

complexity does not grow too fast with n but, on the other hand, for each u ∈ 𝒰 and j ∈ [p], 
the estimator ηu j takes values in 𝒯u j with high probability. As discussed before, we rely on 

the following nearorthogonality condition.

DEFINITION 2.1 (Near-orthogonality condition). For each u ∈ 𝒰 and j ∈ [p], we say that 

ψuj obeys the near-orthogonality condition with respect to 𝒯u j ⊂ Tu j if the following 

conditions hold: The Gateaux derivative map

Du, j, r η − ηu j : = ∂r EP ψu j W , θu j, ηu j + r η − ηu j r = r

exists for all r ∈ [0, 1) and η ∈ 𝒯u j and (nearly) vanishes at r = 0, namely,

Du, j, 0 η − ηu j ≤ C0δnn−1/2, (2.2)

for all η ∈ 𝒯u j.

At the end of this section, we describe several methods to obtain score functions ψuj that 

obey the near-orthogonality condition. Together these methods cover a wide variety of 

applications.
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Let ω and c0 be some strictly positive (and finite) constants, and let n0 ≥ 3 be some positive 

integer. Also, let (B1n)n≥1 and (B2n)n≥1 be some sequences of positive constants, possibly 

growing to infinity, where B1n ≥ 1 for all n ≥ 1. In addition, denote

𝒮n: = EP sup
u ∈ 𝒰, j ∈ [p]

n𝔼n ψu j W , θu j, ηu j ,

Ju j: = ∂θ EP ψu j W , θ, ηu j θ = θu j
.

(2.3)

The quantity 𝒮n measures how rich the process ψu j ⋅ , θu j, ηu j :u ∈ 𝒰, j ∈ [p]  is. The 

quantity Juj measures the degree of identifiability of θuj by the moment condition (1.2). In 

many applications, it is bounded in absolute value from above and away from zero. Finally, 

let 𝒫n be a set of probability measures P of possible distributions of W on the measurable 

space 𝒲, 𝒜𝒲 .

We collect our main conditions on the score functions ψuj and the true values of the target 

parameters θuj in the following assumption.

ASSUMPTION 2.1 (Moment condition problem). For all n ≥ n0, P ∈ 𝒫n, u ∈ 𝒰, and j ∈ [p], the 

following conditions hold: (i) The true parameter value θuj obeys (1.2), and Θuj contains a 

ball of radius C0n−1/2𝒮n log n centered at θuj. (ii) The map (θ,η) ↦ EP[ψuj(W,θ,η)] is twice 

continuously Gateaux-differentiable on Θu j × 𝒯u j. (iii) The score function ψuj obeys the 

nearorthogonality condition given in Definition 2.1 for the set 𝒯u j ⊂ Tu j. (iv) For all θ ∈ 

Θuj, |EP[ψuj(W,θ,ηuj)]| ≥ 2−1|Juj(θ - θuj)| ∧ c0, where Juj satisfies c0 ≤ |Juj | ≤ C0. (v) For all r 
∈ [0, 1), θ ∈ Θuj, and η ∈ Tuj:

a. EP ψu j(W , θ, η) − ψu j W , θu j, ηu j
2 ≤ C0 θ − θu j ∨ η − ηu j e

ω
,

b. ∂rEP ψu j W , θ, ηu j + r η − ηu j ≤ B1n η − ηu j e
,

c. ∂r
2EP ψu j W , θu j + r θ − θu j , ηu j + r η − ηu j ≤ B2n θ − θu j

2 ∨ η − ηu j e

2
.

Assumption 2.1 is mild and standard in moment condition problems. Assumption 2.1 (i) 

requires θuj to be sufficiently separated from the boundary of Θuj. Assumption 2.1(ii) 

requires that the functions (θ,η) ↦ EP[ψuj(W,θ,η)] are smooth. It is a mild condition 

because it does not require smoothness of the functions (θ, η) ↦ ψuj(W,θ,η). Assumption 

2.1(iii) is our key condition and is discussed above. Assumption 2.1(iv) implies sufficient 

identifiability of θuj. In particular, it implies that the equation EP[ψuj(W,θ,ηuj)] = 0 has only 

one solution θ = θuj. If this equation has multiple solutions, Assumption 2.1(iv) implies that 

the set Θuj is restricted enough so that there is only one solution in Θuj. Assumption 2.1(v-a) 

means that the functions (θ, η) ↦ ψuj(W,θ,η) mapping Θuj × Tuj into L2(P) are Lipschitz-

continuous at (θ, η) = (θuj,ηuj) with Lipschitz order ω/2. In most applications, we can set ω 
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= 2. Assumptions 2.1(v-b,v-c) impose smoothness bounds on the functions (θ, η) ↦ 
EP[ψuj(W,θ,η)].

Next, we state our conditions related to the estimators ηu j. Let (Δn)n≥1 and (τn)n≥1 be some 

sequences of positive constants converging to zero. Also, let (an)n≥1, (vn)n≥1, and (Kn)n≥1 be 

some sequences of positive constants, possibly growing to infinity, where an ≥ n ∨ Kn and vn 

≥ 1 for all n ≥ 1. Finally, let q ≥ 2 be some constant.

ASSUMPTION 2.2 (Estimation of nuisance parameters). For all n ≥ n0 and P ∈ 𝒫n, the 

following conditions hold: (i) With probability at least 1 − Δn, we have ηu j ∈ 𝒯u j for all 

u ∈ 𝒰 and j ∈ [p]. (ii) For all u ∈ 𝒰, j ∈ [p], and η ∈ 𝒯u j, ∥η − ηuj ∥e ≤ τn. (iii) For all u ∈ 𝒰

and j ∈ [p], we have ηu j ∈ 𝒯u j. (iv) The function class 

ℱ1 = ψu j( ⋅ , θ, η):u ∈ 𝒰, j ∈ [p], θ ∈ Θu j, η ∈ 𝒯u j  is suitably measurable and its uniform 

entropy numbers obey

sup
Q

log N ϵ F1 Q, 2, ℱ1, ⋅
Q, 2 ≤ vn log an/ϵ  for all 0 < ϵ ≤ 1, (2.4)

where F1 is a measurable envelope for ℱ1 that satisfies ∥F1∥P,q ≤ Kn. (v) For all f ∈ ℱ1, we 

have c0 ≤ ∥ f ∥P,2 ≤ C0. (vi) The complexity characteristics an and vn satisfy:

a. vn log an/n 1/2 ≤ C0τn,

b. B1nτn + 𝒮n log n/ n ω/2 vn log an
1/2 + n−1/2 + 1/qvnKn log an ≤ C0δn,

c. n1/2B1n
2 B2nτn

2 ≤ C0δn.

Assumption 2.2 provides sufficient conditions for the estimation of the nuisance parameters 

ηu j u ∈ 𝒰, j ∈ [p]. Assumption 2.2 (i) requires that the set 𝒯u j is large enough so that 

ηu j ∈ 𝒯u j with high probability. Assumptions 2.2 (i,ii) together require that the estimator ηu j

converges to ηuj with the rate τn. This rate should be fast enough so that Assumptions 2.2(vi-

b,vi-c) are satisfied. Assumption 2.2(iv) gives a bound on the complexity of the set 𝒯u j

expressed via uniform entropy numbers, and Assumptions 2.2(vi-a,vi-b) require that the set 

𝒯u j is small enough so that its complexity does not grow too fast. Assumption 2.2(v) 

requires that the functions (θ, η) ↦ ψuj(W,θ,η) are scaled properly. Suitable measurability 

of ℱ1, required in Assumption 2.2(iv), is a mild condition that is satisfied in most practical 

cases; see the Supplementary Material and [25] for clarifications. Overall, Assumption 2.2 

shows the trade-off in the choice of the sets 𝒯u j: setting 𝒯u j large, on the one hand, makes it 

easy to satisfy Assumption 2.2(i) but, on the other hand, yields large values of an and vn in 

Assumption 2.2(iv) making it difficult to satisfy Assumption 2.2(vi).
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We stress that the class ℱ1 does not need to be Donsker because its uniform entropy 

numbers are allowed to increase with n. This is important because allowing for non-Donsker 

classes is necessary to deal with high-dimensional nuisance parameters. Note also that our 

conditions are very different from the conditions imposed in various settings with 

nonparametrically estimated nuisance functions; see, for example, [44, 45] and [29].

In addition, we emphasize that the conditions stated in Assumption 2.2 are sufficient for our 

results for the general model (1.2) but can often be relaxed if the structure of the functions 

ψuj(W,θ,η) is known. For example, it is possible to relax Assumption 2.2(vi) if the functions 

ψuj(W,θ,η) are linear in θ, which happens in the linear regression model with θ being the 

coefficient on the covariate of interest; see [9]. Moreover, it is possible to relax the entropy 

condition (2.4) of Assumption 2.2 by relying upon sample splitting, where part of the data is 

used to estimate ηuj, and the other part is used to estimate θuj given an estimate ηu j of ηuj; 

see [2] and [15]. By swapping the role of two parts, and averaging the resulting two 

estimators, we do not incur any efficiency losses.

The following theorem is our first main result in this paper.

THEOREM 2.1 (Uniform Bahadur representation). Under Assumptions 2.1 and 2.2, for an 

estimator θu j u ∈ 𝒰, j ∈ [p] that obeys (2.1), we have

nσu j
−1 θu j − θu j = 𝔾nψu j + OP δn (2.5)

in ℓ∞(𝒰 × [p]) uniformly over P ∈ 𝒫n, where ψu j( ⋅ ): = − σu j
−1Ju j

−1ψu j ⋅ , θu j, ηu j  and 

σu j
2 : = Ju j

−2EP ψu j
2 W , θu j, ηu j .

COMMENT 2.1 (On the proof ofTheorem 2.1). To prove this theorem, we use the following 

identity:

nEP, W ψu j W , θu j, ηu j − ψu j W , θu j, ηu j = − n𝔼n ψu j W , θu j, ηu j (2.6)

+ n𝔼n ψu j W , θu j, ηu j + 𝔾nψu j W , θu j, ηu j − 𝔾nψu j W , θu j, ηu j . (2.7)

Here, the term on the right-hand side of (2.6) is the main term on the right-hand side of 

(2.5), up to a normalization (σuj Juj)−l. Also, we show that the first term in (2.7) is OP (δn) 

since θu j satisfies (2.1). Moreover, using arather standard theory of Z-estimators, we show 

that θu j − θu j = OP B1nτn . This in turn allows us to show with the help of empirical process 

arguments that the difference of the last two terms in (2.7) is OP (δn) as well. (In [15], we 

also point out that this difference is OP (δn) under much weaker entropy conditions than 
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those in Assumption 2.2 if ηu j and θu j are obtained using separate samples.) Thus, it remains 

to show that the left-hand side of (2.6) is equal to the left-hand side of (2.5) up to an 

approximation error OP (δn) and up to a normalization (σui juj)−1. To do so, we use second-

order Taylor’s expansion of the function

f (r) = nEP, W ψu j W , θu j + r θu j − θu j , ηu j + r ηu j − ηu j

at r = 1 around r = 0. This gives

nEP, W ψu j W , θu j, ηu j − ψu j W , θu j, ηu j
= f (1) − f (0)

= nJu j θu j − θu j + nDu, j, 0 ηu j − ηu j + n f ″(r)/2

for some r ∈ (0, 1). Here, n f ″(r) = OP δn  follows from Assumptions 2.1 and 2.2 and the key 

near-orthogonality condition also allows us to show that nDu, j, 0 ηu j − ηu j = OP δn . 

Without this condition, the term nDu, j, 0 ηu j − ηu j  would give first-order bias and lead to 

slower-than- n rate of convergence of the estimator θu j. Finally, again using the empirical 

process arguments, we can show that all the bounds including the term OP (δn) hold 

uniformly over u ∈ 𝒰 and j ∈ [p].

COMMENT 2.2 (On uniformity in u in Theorem 2.1). When the functions 

u nσu j
−1 θu j − θu j − 𝔾nψu j are Lipschitz-continuous, one can use a simple discretization 

argument to conclude that the approximation in (2.5) holds uniformly over (u, j) ∈ 𝒰 × [p] as 

long as we can show that it holds for each (u, j) ∈ 𝒰 × [p]. However, in many applications, 

including the distribution regression model discussed in Section 3, this function is actually 

not continuous, and the location of jumps depends on the data. Therefore, we have to rely on 

a more complicated argument to establish uniformity in u in the bound (2.5).

The uniform Bahadur representation derived in Theorem 2.1 is useful for the construction of 

simultaneous confidence bands for θu j u ∈ 𝒰, j ∈ [p] as in (1.3). For this purpose, we apply 

new high-dimensional central limit and bootstrap theorems that have been recently 

developed in a sequence of papers [16, 18–20] and [21]. To apply these theorems, we make 

use of the following regularity condition.

Let δn n ≥ 1 be a sequence of positive constants converging to zero. Also, let (ϱn)n≥1, 

ϱn n ≥ 1, (An)n≥1, An n ≥ 1, and (Ln)n≥1 be some sequences of positive constants, possibly 

growing to infinity, where ϱn ≥ 1, An ≥ n, and An ≥ n for all n ≥ 1. In addition, from now on, 

we assume that q > 4. Denote by ψu j( ⋅ ): = − σu j
−1J u j

−1ψu j ⋅ , θu j, ηu j  an estimator of ψu j( ⋅ ), 

with J u j and σu j being suitable estimators of Juj and σuj.
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ASSUMPTION 2.3 (Additional score regularity). For all n ≥ n0 and P ∈ 𝒫n, the following 

conditions hold: (i) The function class ℱ0 = ψu j( ⋅ ):u ∈ 𝒰, j ∈ [p]  is suitably measurable 

and its uniform entropy numbers obey

sup
Q

log N ϵ F0 Q, 2, ℱ0, ⋅
Q, 2 ≤ ϱnlog An/ϵ  for all 0 < ϵ ≤ 1,

where F0 is a measurable envelope for ℱ0 that satisfies ∥F0∥P,q ≤ Ln. (ii) For all f ∈ ℱ0 and 

k = 3,4, we have EP | f (W)|k ≤ C0Ln
k − 2. (iii) The function class 

ℱ0 = ψu j( ⋅ ) − ψu j( ⋅ ):u ∈ 𝒰, j ∈ [p]  satisfies with probability 

1 − Δn: log N ϵ, ℱ0, ⋅ ℙn, 2 ≤ ϱnlog An/ϵ  for all 0 < ϵ ≤ 1 and f ℙn, 2 ≤ δn for all f ∈ ℱ0.

This assumption is technical, and its verification in applications is rather standard. For the 

Gaussian approximation result below, we actually only need the first and the second part of 

this assumption. The third part will be needed for establishing validity of the simultaneous 

confidence bands based on the multiplier bootstrap procedure. As a side note, observe that 

Assumption 2.3 allows to bound 𝒮n defined in (2.3) and used in Assumptions 2.1 and 2.2; 

see Appendix G of the Supplementary Material.

Next, let 𝒩u j u ∈ 𝒰, j ∈ [p] denote a tight zero-mean Gaussian process indexed by 𝒰 × [p]

with covariance operator given by EP ψu j(W)ψu′ j′(W)  for u, u′ ∈ 𝒰 and j, j′ ∈ [p]. We have 

the following corollary of Theorem 2.1, which is our second main result in this paper.

COROLLARY 2.1 (Gaussian approximation). Suppose that Assumptions 2.1, 2.2 and 2.3(i,ii) 

hold. In addition, suppose that thefollowing growth conditions are satisfied: 

δn
2ϱnlog An = o(1), Ln

2/7ϱnlog An = o n1/7  and Ln
2/3ϱnlog An = o n1/3 − 2/(3q) . Then

sup
t ∈ ℝ

PP  sup
u ∈ 𝒰, j ∈ [p]

nσu j
−1 θu j − θu j ≤ t −  PP  sup

u ∈ 𝒰, j ∈ [p]
𝒩u j ≤ t = o(1)

uniformly over P ∈ 𝒫n.

Based on Corollary 2.1, we are now able to construct simultaneous confidence bands for 

θuj’s as in (1.3). In particular, we will use the Gaussian multiplier bootstrap method 

employing the estimates ψu j of ψu j. To describe the method, define the process

𝒢 = 𝒢u j u ∈ 𝒰, j ∈ [p] = 1
n ∑

i = 1

n
ξiψu j W i

u ∈ 𝒰, j ∈ [p]
, (2.8)
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where ξi i = 1
n  are independent standard normal random variables which are independent 

from the data W i i = 1
n . Then the multiplier bootstrap critical value cα is defined as the (1 − 

α) quantile of the conditional distribution of supu ∈ 𝒰, j ∈ [p] 𝒢u j  given the data W i i = 1
n . To 

prove validity of this critical value for the construction of simultaneous confidence bands of 

the form (1.3), we will impose the following additional assumption. Let (εn)n≥1 be a 

sequence of positive constants converging to zero.

ASSUMPTION 2.4 (Variation estimation). For all n ≥ n0 and P ∈ 𝒫n,

PP  sup
u ∈ 𝒰, j ∈ [p]

σu j
σu j

− 1 > εn ≤ Δn .

The following corollary establishing validity of the multiplier bootstrap critical value ca for 

the simultaneous confidence bands construction is our third main result in this paper.

COROLLARY 2.2 (Simultaneous confidence bands). Suppose that Assumptions 2.1–2.4 hold. In 

addition, suppose that the growth conditions of Corollary 2.1 hold. Finally, suppose that εn 

ϱn log An = o(1), and δn
2ϱnϱn log An ⋅ log An = o 1 . Then (1.3) holds uniformly over 

P ∈ 𝒫n.

COMMENT 2.3 (Confidence bands based on other bootstrap schemes). Results in [24] suggest 

that the conditions of Corollary 2.2 can be somewhat relaxed if, instead of using the 

Gaussian weights in the multiplier bootstrap method, we use Mammen’s weights as in [34] 

or if we use the empirical bootstrap instead of the multiplier bootstrap. Since the results in 

[24] apply only to high-dimensional random vectors and do not apply to infinite-dimensional 

random processes, we leave a formal discussion of the results under these alternative 

bootstrap schemes to future work.

2.2. Construction of score functions satisfying the orthogonality condition.

Here, we discuss several methods for generating orthogonal scores in a wide variety of 

settings, including the classical Neyman’s construction. In what follows, since the argument 

applies to each u and j, it is convenient to omit the indices u and j and also to use the 

subscript 0 to indicate the true values of the parameters. For simplicity, we also focus the 

discussion on the exactly orthogonal case. With these simplifications, we can restate the 

orthogonality condition as follows: we say that the score ψ obeys the Neyman orthogonality 

condition with respect to η0 ∈ 𝒯 if the following conditions hold: The Gateaux derivative 

map

Dr η − η0 : = ∂r EP[ψ W , θ0, η0 + r η − η0 r = r

exists for all r ∈ [0, 1) and η ∈ 𝒯 and vanishes at r = 0, namely,
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Du, j, 0 η − η0 = 0, (2.9)

for all η ∈ 𝒯.

(1) Orthogonal scores for likelihood problems with finite-dimensional nuisance parameters. 

In likelihood settings with finite-dimensional parameters, the construction of orthogonal 

equations was proposed by Neyman [37] who used them in construction of his celebrated 

C(α)-statistic.1

To describe the construction, suppose that the log-likelihood function associated to 

observation W is (θ, β) ↦ ℓ(W, θ, β), where θ ∈ Θ ⊂ ℝd is the target parameter and 

β ∈ T ⊂ ℝ
p0 is the nuisance parameter. Under regularity conditions, the true parameter 

values θ0 and β0 obey

EP ∂θℓ W , θ0, β0 = 0, EP ∂βℓ W , θ0, β0 = 0. (2.10)

Now consider the new score function

ψ(W , θ, η) = ∂θℓ(W , θ, β) − μ∂βℓ(W , θ, β), (2.11)

where the nuisance parameter is

η = β′,  vec (μ)′ ′ ∈ T × 𝒟 ⊂ ℝp, p = p0 + dp0,

μ is the d × p0 orthogonalization parameter matrix whose true value μ0 solves the equation

Jθβ − μJββ = 0  i.e., μ0 = JθβJββ
−1 ,

And

J =
Jθθ Jθβ
Jβθ Jββ

= ∂ θ′, β′ EP ∂ θ′, β′ ′ℓ(W , θ, β)
θ = θ0; β = β0

.

1Note that the C(α)-statistic, or the orthogonal score statistic, had been explicitly used for testing (and also for setting up estimation) 
in high-dimensional sparse models in [11] and in [39], where it is referred to as the decorrelated score statistic. The discussion of 
Neyman’s construction here draws on [23]. Note also that our results cover other types of orthogonal score statistics as well, which 
allows us to cover much broader classes of models; see, for example, the discussion of conditional moment models with infinite-
dimensional nuisance parameters below.
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Provided that μ0 is well defined, we have by (2.10) that EP[ψ(W, θ0,η0)] = 0, where 

η0 = β0′ ,  vec  μ0 ′ ′. Moreover, it is trivial to verify that under standard regularity conditions 

the score function ψ obeys the near orthogonality condition (2.2) exactly (i.e., with C0 = 0), 

that is,

∂ηEP ψ W , θ0, η
η = η0

= 0.

Note that in this example, μ0 not only creates the necessary orthogonality but also creates the 

efficient score for inference on the main parameter θ, as emphasized by Neyman.

(2) Orthogonal scores for likelihood problems with infinite-dimensional nuisance 
parameters. The Neyman’s construction can be extended to semi-parametric models, where 

the nuisance parameter β is a function. In this case, the original score functions (θ, β) ↦ ∂θℓ
(W, θ, β) corresponding to the log-likelihood function (θ, β) ↦ ℓ(W, θ, β) associated to 

observation W can be transformed into efficient score functions ψ that obey the exact 

orthogonality condition (2.9) by projecting the original score functions onto the 

orthocomplement of the tangent space induced by the nuisance parameter β; see Chapter 25 

of [44] for a detailed description of this construction. Note that the projection may create 

additional nuisance parameters, so that the new nuisance parameter η could be of larger 

dimension than β. Other relevant references include [9, 29, 45] and [11]. The approach is 

related to Neyman’s construction in the sense that the score ψ arising in this model is 

actually the Neyman’s score arising in a one-dimensional least favorable parametric 

subfamily, [42]; see Chapter 25 of [44] for details.

(3) Orthogonal scores for conditional moment problems with infinite-dimensional nuisance 
parameters. Next, consider a conditional moment restrictions framework studied by 

Chamberlain [14]. To define the framework, let W, D and V be random vectors in ℝ
dW, ℝ

dD

and ℝ
dV, respectively, with D and V being subvectors of W, so that dD + dV ≤ dW. Also, let 

θ ∈ Θ ⊂ ℝ
dθ be a finite-dimensional parameter whose true value θ0 is of interest, and let 

h:ℝ
dV ℝ

dh be a vectorvalued functional nuisance parameter, with the true value being 

h0:ℝ
dV ℝ

dh. The conditional moment restrictions framework assumes that θ0 and h0 

satisfy the following equation:

EP m W , θ0, h0(V) D, V = 0, (2.12)

where m:ℝ
dW × ℝ

dθ × ℝ
dh ℝ

dm is some known function. This framework is of interest 

because it covers an extremely rich variety of models, without having to explicitly rely on 

the likelihood formulation. For example, it covers the partial linear model
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Y = Dθ0 + h0(V) + U,  EP [U D, V] = 0, (2.13)

where Y is a scalar dependent random variable, D is a scalar independent treatment random 

variable, V is a vector of control random variables and U is a scalar unobservable noise 

random variable. Indeed, (2.13) implies (2.12) by setting W = (Y, D,V′)′ and m(W, θ, h) = 
Y − Dθ − h.

Here, we would like to build a (generalized) score function (θ, η) ↦ ψ(W, θ, η) for 

estimating θ0, the true value of parameter θ, where η is a new nuisance parameter with true 

value η0, that obeys the near orthogonality condition (2.2). There are many ways to do so 

but one particularly useful way is the following. Consider the functional parameters 

Σ:ℝ
dD + dV ℝ

dm × dm and φ:ℝ
dD + dV ℝ

dθ × dm whose true values are given by

Σ0(D, V) = EP m W , θ0, h0(V) m W , θ0, h0(V) ′ D, V ,

φ0(D, V) = A0(D, V) − Γ0(D, V)G0(V) ′,

where

A0(D, V) = ∂θ′ EP m W , θ, h0(V) D, V θ = θ0
,

Γ0(D, V) = ∂h′ EP m W , θ0, h D, V h = h0(V) ,

G0(V) = EP Γ0(D, V)′Σ0(D, V)−1Γ0(D, V) V
−1 × EP Γ0(D, V)′Σ0(D, V)−1A0(D, V) V .

Then set η = (h, φ, Σ) and η0 = (h0,φ0,Σ0), and define the score function:

ψ(W , θ, η) = φ(D, V)
"instrument"

Σ(D, V)−1

 weight 
m(W , θ, h(V))

 residual 
.

It is rather straightforward to verify that under mild regularity conditions, the score function 

ψ satisfies the moment condition, EP[ψ(W, θ0,η0)] = 0, and in addition, the orthogonality 

condition:

∂ηEP ψ W , θ0, η
η = η0

= 0.

Note that this construction gives the efficient score function ψ that yields an estimator of θ0 

achieving the semiparametric efficiency bound, as calculated by Chamberlain [14].

3. Application to logistic regression model with functional response data.

In this section, we apply our main results to a logistic regression model with functional 

response data described in the Introduction.

Belloni et al. Page 16

Ann Stat. Author manuscript; available in PMC 2019 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.1. Model.

We consider a response variable Y ∈ ℝ that induces a functional response Yu u ∈ 𝒰 by 

Yu = 1 Y ≤ (1 − u)y + uy  for a set of indices 𝒰 = [0, 1] and some constants y ≤ y. We are 

interested in the dependence of this functional response on a p-vector of covariates, 

D = D1, …, Dp ′ ∈ ℝp, controlling for a p-vector of additional covariates 

X = X1, …, X p ′ ∈ ℝp. We allow both p and p to be (much) larger than the sample size of 

available data, n.

For each u ∈ 𝒰, we assume that Yu satisfies the generalized linear model with the logistic 

link function

EP Yu D, X = Λ D′θu + X′βu + ru, (3.1)

where θu1 = θu1, …, θup ′ is a vector of parameters that are of interest, βu = (βu1,…,βup)′ is 

a vector of nuisance parameters, ru = ru(D, X) is an approximation error, Λ:ℝ ℝ is the 

logistic link function defined by

Λ(t) = exp(t)
1 + exp(t) , t ∈ ℝ,

and P ∈ 𝒫n is the distribution of the triple W = (Y,D,X). As in the previous section, we 

construct simultaneous confidence bands for the parameters θu j u ∈ 𝒰, j ∈ [p] based on a 

random sample W i i = 1
n = Y i, Di, Xi i = 1

n  from the distribution of W = (Y, D,X).

3.2. Orthogonal score functions.

Before setting up score functions that satisfy both the moment conditions (1.2) and the 

orthogonality condition (1.4), observe that “naive” score functions that follow directly from 

the model (3.1),

mu j W , θu j, θu[p]\ j, βu, ru = Yu − Λ D jθ + X j θu[p]\ j′ , βu′ ′ − ru D j,

where X j = D[p]\ j′ , X′ , satisfy the moment conditions EP[muj(W,θuj)] = 0 but violate the 

orthogonality condition (1.4) [with muj replacing ψuj and ηu j = θu[p]\ j, βu, ru ]. To satisfy the 

orthogonality condition (1.4), we proceed using an approach from Section 2.2 as in the 

Introduction. Specifically, for each u ∈ 𝒰 and j ∈ [p] , define the (p + p − 1)-vector of 

additional nuisance parameters γu
j  by (1.5) where f u

2 = f u
2(D, X) is defined in (1.6). Thus, by 

the first-order condition of (1.5), the nuisance parameters γu
j  satisfy
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f uD j = f uX jγu
j + vu

j, EP f uX jvu
j = 0. (3.2)

Also, denote βu
j = θu[p]\ j′ , βu′ ′. Then we set

ψu j W , θu j, ηu j = Yu − Λ D jθu j + X jβu
j − ru D j − X jγu

j ,

where the nuisance parameter is ηu j = ru, βu
j , γu

j . As we formally demonstrate in the proof of 

Theorem 3.1 below, this function satisfies the near-orthogonality condition (1.4).

3.3. Estimation using orthogonal score functions.

Next, we discuss estimation of ηuj’s and θuj’s. First, we assume that the approximation error 

ru = ru (D, X) is asymptotically negligible, so that it can be estimated by 𝒪 = 𝒪(D, X), the 

identically zero function of D and X. Second, for γu
j , we consider an estimator γ u

j defined as 

a post-regularization weighted least squares estimator corresponding to the problem (1.5). 

Third, for βu
j , we consider a plug-in estimator βu

j = θ u[p]\ j′ , βu′ , where θ u and βu are suitable 

estimators of θu and βu. In particular, we assume that θ u and βu are post-regularization 

maximum likelihood estimators corresponding to the log-likelihood function (θ, β) ↦ −Mu 

(W, θ, β) where

Mu(W , θ, β) = − 1 Yu = 1 log Λ D′θ + X′β + 1 Yu = 0 log 1 − Λ D′θ + X′β . (3.3)

The details of the estimators θ u, βu and γ u
j  are given in Algorithm 1 below. The results in 

this paper can also be easily extended to the case where θ u, βu and γ u
j  are replaced by 

penalized maximum likelihood estimators θu and βu and penalized weighted least squares 

estimator γu
j , respectively.

Then our estimator of ηuj is ηu j = 𝒪, βu
j , γ u

j . Substituting this estimator into the score 

function ψuj gives

ψu j W , θu j, ηu j = Yu − Λ D jθu j + X jβu
j D j − X jγ u

j , (3.4)

which, using the sample analog (2.1) of the moment conditions (1.2), gives the following 

estimator of θuj:
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θu j ∈ arg inf
θ ∈ Θu j

𝔼n ψu j W , θ, ηu j . (3.5)

The algorithm is summarized as follows.

ALGORITHM 1. For each u ∈ 𝒰 and j ∈ [p]:

Step 1. Run post-ℓ1-penalized logistic estimator (4.2) of Yu on D and X to compute 

θ u, βu .

Step 2. Define the weights f u
2 = f u

2(D, X) = Λ′ D′θ u + X′βu .

Step 3. Run the Post-Lasso estimator (4.5) of f uD j to compute γ u
j .

Step 4. Compute βu
j = θ u[p]\ j′ , βu′ ′.

Step 5. Solve (3.5) with ψu j W , θ, ηu j  defined in (3.4) to compute θu j.

3.4. Regularity conditions.

Next, we specify our regularity conditions. For all u ∈ 𝒰 and j ∈ [p], denote Zu
j = D j − X jγu

j. 

Also, denote an = p ∨ p ∨ n. Let q, c1 and C1 be some strictly positive (and finite) constants 

where q > 4. Moreover, let (δn)n≥1 and (Δn)n≥1 be some sequences of positive constants 

converging to zero. Finally, let (Mn,1)n≥1 and (Mn,2)n≥1 be some sequences of positive 

constants, possibly growing to infinity, where Mn,1 ≥ 1 and Mn,2 ≥ 1 for all n.

ASSUMPTION 3.1 (Parameters). For all u ∈ 𝒰, we have θu + βu + max j ∈ [p] γu
j ≤ C1 and 

max j ∈ [p] supθ ∈ Θu j
θ ≤ C1. In addition, for all u1, u2 ∈ 𝒰, we have 

θu2
− θu1

+ βu2
− βu1

≤ C1 u2 − u1 . Finally, for all u ∈ 𝒰 and j ∈ [p], Θuj contains a ball 

of radius (log log n) (log an) 3/2/n1/2 centered at θuj.

ASSUMPTION 3.2 (Sparsity). There exist s = sn and γu
j , u ∈ 𝒰 and j ∈ [p], such that for all 

u ∈ 𝒰, βu 0 + θu 0 + max j ∈ [p] γu
j

0 ≤ sn and 

max j ∈ [p] γu
j − γu

j + sn
−1/2 γu

j − γu
j

1 ≤ C1 sn log an/n 1/2.

ASSUMPTION 3.3 (Distribution of Y). The conditional pdf of Y given (D, X) is bounded by C1.

Assumptions 3.1–3.3 are mild and standard in the literature. In particular, Assumption 3.1 

requires the parameter spaces Θuj to be bounded, and also requires that for each u ∈ 𝒰 and 

j ∈ [p], the parameter θuj to be sufficiently separated from the boundaries of the parameter 

space Θuj. Assumption 3.2 requires approximate sparsity of the model (3.1). Note that in 
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Assumption 3.2, given that γu
j’s exist, we can and will assume without loss of generality that 

γu
j = γuT

j  for some T ⊂ 1, …, p + p − 1  with |T| ≤ sn, where T = Tu
j  is allowed to depend on u 

and j. Here, the (p + p − 1)-vector γuT
j  is defined from γu

j  by keeping all components of γu
j  that 

are in T and setting all other components to be zero. Assumption 3.3 can be relaxed at the 

expense of more technicalities.

ASSUMPTION 3.4 (Covariates). For all u ∈ 𝒰, the following inequalities hold: (i) 

inf ξ = 1EP f u
2 D′, X′ ξ 2 ≥ c1, (ii) min j, k EP f u

2Zu
jXk

j 2 ∧ EP f u
2D jXk

j 2 ≥ c1, and (iii) 

max j, kEP Zu
jXk

j 3 1/3
log1/2an ≤ δnn1/6. In addition, we have that (iv) 

sup ξ = 1EP D′, X′ ξ 4 ≤ C1, (v) Mn, 1 ≥ EP supu ∈ 𝒰, j ∈ [p] Zu
j 2q 1/(2q)

 (vi) 

Mn, 1
2 sn log an ≤ δnn1/2 − 1/q, (vii) Mn, 2 ≥ EP D ∞ ∨ X ∞

2q 1/(2q)
, (viii) 

Mn, 2
2 sn log 1/2an ≤ δnn1/2 − 1/q and (ix) Mn, 1

2 Mn, 2
4 sn ≤ δnn1 − 3/q.

This assumption requires that there is no multicollinearity between covariates in vectors D 
and X. In addition, it requires that the constants y and y are chosen so that the probabilities 

of Y < y and Y > y are both nonvanishing since otherwise we would have 

E f u
2 = E VarP Yu |D, X  vanishing either for u = 0 or u = 1 violating Assumption 3.4(i). 

Intuitively, sending y and y to the left and to the right tails of the distribution of Y, 

respectively, would blow up the variance of the estimators θu j, given by σu j
2  in Theorem 2.1, 

and leading eventually to the estimators with slower-than- n rate of convergence. Although 

our results could be extended to allow for the case where y and y are sent to the tails of the 

distribution of Y slowly, we skip this extension for the sake of clarity. Moreover, 

Assumption 3.4 imposes constraints on various moments of covariates. Since these 

constraints might be difficult to grasp, at the end of this section, in Corollary 3.3, we provide 

an example for which these constraints simplify into easily interpretable conditions.

ASSUMPTION 3.5 (Approximation error). For all u ∈ 𝒰, we have (i) 

sup ξ = 1EP ru
2 D′, X′ ξ 2 ≤ C1EP ru

2 , (ii) EP ru
2 ≤ C1sn log an/n, (iii) 

max j ∈ [p] EP ruZu
j ≤ δnn−1/2, and (iv) ru(D, X) ≤ f u

2(D, X)/4 almost surely. In addition, with 

probability 1 − Δn, (v) supu ∈ 𝒰, j ∈ [p] 𝔼n ruZu
j / f u

2 + 𝔼n ru
2/ f u

6 ≤ C1sn log an/n.

This assumption requires the approximation error ru = ru(D, X) to be sufficiently small. 

Under Assumption 3.4, the first condition of Assumption 3.5 holds if the approximation 

error is such that ru
2 ≤ CEP ru

2  almost surely for some constant C.
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3.5. Formal results.

Under specified assumptions, our estimators θu j satisfy the following uniform Bahadur 

representation theorem.

THEOREM 3. 1 (Uniform Bahadur representation for logistic model). Suppose that 
Assumptions 3.1–3.5 hold for all P ∈ 𝒫n. In addition, suppose that the following growth 

condition holds: δn
2 log an = o(1). Then for the estimators θu j satisfying (3.5), we have

nσu j
−1 θu j − θu j = 𝔾nψu j + OP δn (3.6)

in ℓ∞(𝒰 × [p]), uniformly over P ∈ 𝒫n, where ψu j(W): = − σu j
−1Ju j

−1ψu j W , θu j, ηu j , 

σu j
2 : = EP Ju j

−2ψu j
2 W , θu j, ηu j , and Juj is defined in (2.3).

This theorem allows us to establish a Gaussian approximation result for the supremum of the 

process nσu j
−1 θu j − θu j :u ∈ 𝒰, j ∈ [p] :

COROLLARY 3.1 (Gaussian approximation for logistic model). Suppose that Assumptions 3.1–

3.5 hold for all P ∈ 𝒫n. In addition, suppose that the following growth conditions hold: 

δn
2 log an = o(1), Mn, 1

2/7 log an = o n1/7  and Mn, 1
2/3 log an = o n1/3 − 2/(3q) . Then

sup
t ∈ ℝ

PP  sup
u ∈ 𝒰, j ∈ [p]

nσu j
−1 θu j − θu j ≤ t −  PP  sup

u ∈ 𝒰, j ∈ [p]
𝒩u j ≤ t = o(1)

uniformly over P ∈ 𝒫n, where 𝒩u j u ∈ 𝒰, j ∈ [p] is a tight zero-mean Gaussian process 

indexed by 𝒰 × [p] with the covariance given by EP ψu j(W)ψu′ j′(W)  for u, u′ ∈ 𝒰 and j, 

j, j′ ∈ [p].

Based on this corollary, we are now able to construct simultaneous confidence bands for the 

parameters θuj. Observe that

Ju j = − EP Λ′ D jθu j + X jβu
j D j D j − X jγu

j , u ∈ 𝒰, j ∈ [p],

and so it can be estimated by

J u j = − 𝔼n Λ′ D jθ u j + X jβu
j D j D j − X jγ u

j , u ∈ 𝒰, j ∈ [p] .

In addition, σu j
2 = EP Ju j

−2ψu j
2 W , θu j, ηu j , and so it can be estimated by
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σu j
2 = 𝔼n J u j

−2ψu j
2 W , θ u j, ηu j , u ∈ 𝒰, j ∈ [p] .

Moreover, as in Section 2, define ψu j(W) = − σu j
−1J u j

−1ψu j W , θu j, ηu j , and let cα be the (1 – 

α) quantile of the conditional distribution of supu ∈ 𝒰, j ∈ [p] 𝒢u j  given the data W i i = 1
n

where the process 𝒢 = 𝒢u j u ∈ 𝒰, j ∈ [p] is defined in (2.8). Then we have the following.

COROLLARY 3.2 (Simultaneous confidence bands for logistic model). Suppose that 
Assumptions 3.1–3.5 hold for all P ∈ 𝒫n. In addition, suppose that the following growth 

conditions hold: δn
2 log an = o(1), Mn, 1

2/7 log an = o n1/7 , Mn, 1
2/3 log an = o n1/3 − 2/(3q)  and sn 

log3 an = o(n). Then (1.3) holds uniformly over P ∈ 𝒫n.

To conclude this section, we provide an example for which conditions of Corollary 3.2 are 

easy to interpret. Recall that an = n ∨ p ∨ p.

COROLLARY 3.3 (Uniform confidence bands for logistic regression model under simple 

conditions). Suppose that Assumptions 3.1–3.3, 3.4(i,ii,iv) and 3.5(i,ii,iv,v) hold for q > 4for 

all P ∈ 𝒫n. In addition, suppose that EP D ∞ ∨ X ∞
2q 1/(2q) ≤ C1 and 

supu ∈ 𝒰, j ∈ [p] γu
j

1 ≤ C1. Moreover, suppose that the following growth conditions hold: 

log7 an /n = o(1), sn
2 log 3an/n1 − 2/q = o(1) and supu ∈ 𝒰, j ∈ [p] EP ruZu

J = o n log an
−1/2 . 

Then (1.3) holds uniformly over P ∈ 𝒫n.

COMMENT 3.1 (Estimation of variance). When constructing the confidence bands based on 

(1.3), we find in simulations that it is beneficial to replace the estimators σu j
2  of σu j

2  by max 

σu j
2 , Σu j

2  where Σu j
2 = 𝔼n f u

2 D − X jγ u
j 2

 is an alternative consistent estimator of σu j
2 .

COMMENT 3.2 (Alternative implementations, double selection). We note that the theory 

developed here is applicable for different estimators that construct the new score function 

with the desired orthogonality condition implicitly. For example, the double selection idea 

yields an implementation of an estimator that is first-order equivalent to the estimator based 

on the score function. The algorithm yielding the double selection estimator is as follows.

ALGORITHM 2. For each u ∈ 𝒰 and j ∈ [p]:

Step 1′. Run post-ℓ1-penalized logistic estimator (4.2) of Yu on D and X to compute 

θ u, βu .

Step 2′. Define the weights f u
2 = f u

2(D, X) = Λ′ Di′θ u + Xi′βu .

Step 3′. Run the Lasso estimator (4.4) of f uD j on f uX to compute γu
j .
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Step 4′. Run logistic regression of Yu on Dj and all the selected variables in Steps 1′ 
and 3′ to compute θu j.

As mentioned by a referee, it is surprising that the double selection procedure has uniform 

validity. The use of the additional variables selected in Step 3′, through the first-order 

conditions of the optimization problem, induces the necessary nearorthogonality condition. 

We refer to the Supplementary Material for a more detailed discussion.

COMMENT 3.3 (Alternative implementations, one-step correction). Another implementation 

for which the theory developed here applies is to replace Step 5 in Algorithm 1 with a one-

step procedure. This relates to the debiasing procedure proposed in [43] to the case when the 

set 𝒰 is a singleton. In this case, instead of minimizing the criterion (3.5) in Step 5, the 

method makes a full Newton step from the initial estimate,

Step 5″. Compute θu j = θu j − J u j
−1𝔼n ψu j W , θu j, ηu j .

The theory developed here directly apply to those estimators as well.

COMMENT 3.4 (Extension to other approximately sparse generalized linear models). 

Inspecting the proofs of Theorem 3.1 and Corollaries 3.1–3.3 reveal that these results can be 

extended with minor modifications to cover other approximately sparse generalized linear 

models. For example, the results can be extended to cover the model (3.1) where we use the 

probit link function instead of the logit link function Λ.

4. ℓ1-Penalized M-estimators: Nuisance functions and functional data.

In this section, we define the estimators θ u, βu and γ u
j , which were used in the previous 

section, and study their properties. We consider the same setting as that in the previous 

section. The results in this section rely upon a set of new results for ℓ1-penalized M-

estimators with functional data presented in Appendix M of the Supplementary Material.

4.1. ℓ1-Penalized logistic regression for functional response data: Asymptotic properties.

Here, we consider the generalized linear model with the logistic link function and functional 

response data (3.1). As explained in the previous section, we assume that θ u and βu are post-

regularization maximum likelihood estimators of θu and βu corresponding to the log-

likelihood function Mu(W, θ, β) =Mu(Yu, D, X, θ, ß) defined in (3.3). To define these 

estimators, let θu and βu be ℓl-penalized maximum likelihood (logistic regression) estimators

θu, βu ∈ argmin
θ, β

𝔼n Mu Yu, D, X, θ, β + λ
n Ψu θ′, β′ ′

1
, (4.1)

where λ is a penalty level and Ψu a diagonal matrix of penalty loadings. We choose 

parameters λ and Ψu according to Algorithm 3 described below. Using the ℓ1 - penalized 

estimators θu and βu, we then define post-regularization estimators θ u and βu by
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θ u, βu ∈ argmin
θ

𝔼n Mu Yu, D, X, θ, β :  supp (θ, β) ⊆  supp  θu, βu . (4.2)

We derive the rate of convergence and sparsity properties of θ u and βu as well as of θu and 

βu in Theorem 4.1 below. Recall that an = n ∨ p ∨ p.

ALGORITHM 3 (Penalty level and loadings for logistic regression). Choose γ ∈ [1/n, 1/log n] 

and c > 1 (in practice, we set c = 1.1 and γ = 0.1/log n). Define 

λ = c nΦ−1 1 − γ / 2(p + p)Nn  with Nn = n. To select Ψu, choose a constant m ≥ 0 as an 

upper bound on the number of loops and proceed as follows: (0) Let X = D′, X′ ′, m = 0 and 

initialize l uk, 0 = 1
2 𝔼n Xk

2 1/2
 for k ∈ p + p . (1) Compute θu, βu  and θ u, βu  based on 

Ψuu = diag l uk, m, k ∈ [p + p] . (2) Set l uk, m + 1: = 𝔼n Xk
2 Yu − Λ D′θ u + X′βu

2 1/2
. (3) If 

m ≥ m, report the current value of Ψuu and stop; otherwise set m ← m + 1 and go to step (1).

THEOREM 4.1 (Rates and sparsity for functional response under logistic link). Suppose that 
Assumptions 3.1–3.5 hold for all P ∈ 𝒫n. In addition, suppose that the penalty level λ and 

the matrices of penalty loadings Ψuu are chosen according to Algorithm 3. Moreover, 

suppose that the following growth condition holds: δn
2 log an = o(1). Then there exists a 

constant C such that uniformly over all P ∈ 𝒫n with probability 1 − o(1),

sup
u ∈ 𝒰

θu − θu + βu − βu ≤ C
sn log an

n ,

sup
u ∈ 𝒰

θu − θu 1 + βu − βu 1 ≤ C
sn
2 log an

n ,

and the estimators θu and βu are uniformly sparse: supu ∈ 𝒰 θu 0 + βu 0 ≤ Csn. Also, 

uniformly overall P ∈ 𝒫n, with probability 1 − o(1),

sup
u ∈ 𝒰

θ u − θu + βu − βu ≤ C
sn log an

n ,

sup
u ∈ 𝒰

θ u − θu 1 + βu − βu 1 ≤ C
sn
2 log an

n .

4.2. Lasso with estimated weights: Asymptotic properties.

Here, we consider the weighted linear model (3.2) for u ∈ 𝒰 and j ∈ [p]. Using the 

parameter γu
j  appearing in Assumption 3.2, it will be convenient to rewrite this model as
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f uD j = f uX jγu
j + f uru j + vu

j , EP f uX jvu
j = 0, (4.3)

where ru j = X j γu
j − γu

j  is an approximation error, which is asymptotically negligible under 

Assumption 3.2. As explained in the previous section, we assume that γ u
j is a post-

regularization weighted least squares estimator of γu
j  (or γu

j). To define this estimator, let γu
j

be an ℓ1-penalized (weighted Lasso) estimator

γu
j ∈ arg min

γ

1
2𝔼n f u

2 D j − X jγ 2 + λ
n Ψu jγ 1

, (4.4)

where λ and Ψuu j are the associated penalty level and the diagonal matrix of penalty 

loadings specified below in Algorithm 4 and where f u
2’s are estimated weights. As in 

Algorithm 1 in the previous section, we set f u
2 = f u

2(D, X) = Λ′ D′θ u + X′βu . Using γu
j , we 

define a post-regularized weighted least squares estimator:

γ u
j ∈ arg min

γ

1
2𝔼n f u

2 D j − X jγ 2 : supp(γ) ⊆ supp γu
j . (4.5)

We derive the rate of convergence and sparsity properties of γ u
j as well as of γu

j  in Theorem 

4.2 below.

ALGORITHM 4 (Penalty level and loadings for weighted Lasso). Choose γ ∈ [1/n, 1/log n] and 

c > 1 (in practice, we set c = 1.1 and γ = 0.1/log n). Define λ = c nΦ−1 1 − γ / 2(p + p)Nn

with Nn = pp2n2. To select Ψuu j, choose a constant m ≥ 1 as an upper bound on the number 

of loops and proceed as follows: (0) Set m = 0 and 

l u jk, 0 = max1 ≤ i ≤ n f uiXi
j

∞ 𝔼n f u
2D j

2 1/2
. (1) Compute γu

j and γ u
j  based on 

Ψu j =  diag  l u jk, m, k ∈ p + p − 1 . (2) Set l u jk, m + 1: = 𝔼n f u
4 D j − X jγ u

j 2
Xk

j 2 1/2
. (3) 

If m ≥ m, report the current value of Ψuu j and stop; otherwise set m ← m + 1 and go to step 

(1).

THEOREM 4.2 (Rates and sparsity for Lasso with estimated weights). Suppose that 
Assumptions 3.1–3.5 hold for all P ∈ 𝒫n. In addition, suppose that the penalty level λ and 

the matrices of penalty loadings Ψu j are chosen according to Algorithm 4. Moreover, 

suppose that the following growth condition holds: δn
2 log an = o(1). Then there exists a 

constant C such that uniformly over all P ∈ 𝒫n with probability 1 − o(1),
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max
j ∈ [p]

sup
u ∈ 𝒰

γu
j − γu

j ≤ C
sn log an

n , max
j ∈ [p]

sup
u ∈ 𝒰

γu
j − γu

j

1
≤ C

sn
2 log an

n ,

and the estimator γu
j  is uniformly sparse, max j ∈ [p]supu ∈ 𝒰 γu

j
0 ≤ Csn. Also, uniformly 

over all P ∈ 𝒫n, with probability 1 − o(1),

max
j ∈ [p]

sup
u ∈ 𝒰

γ u
j − γu

j ≤ C
sn log an

n , max
j ∈ [p]

sup
u ∈ 𝒰

γ u
j − γu

j
1 ≤ C

sn
2 log an

n .

5. Monte Carlo simulations.

Here, we investigate the finite sample properties of the proposed estimators and the 

associated confidence regions. We report only the performance of the estimator based on the 

double selection procedure due to space constraints and note that it is very similar to the 

performance of the estimator based on score functions with near-orthogonality property. We 

will compare the proposed procedure with the traditional estimator that refits the model 

selected by the corresponding ℓ1-penalized M-estimator (naive post-selection estimator).

We consider a logistic regression model with functional response data where the response 

Yu = 1{y ≤ u} for u ∈ 𝒰 a compact set. We specify two different designs: (1) a location 

model, y = x′ β0 + ξ, where ξ is distributed as a logistic random variable, the first 

component of x is the intercept and the other p − 1 components are distributed as N (0, Σ) 

with Έk,j = |0.5||k−j|; (2) a location-shift model, y = {(x′ β0 + ξ)/x′ϑ0}3, where ξ is 

distributed as alogistic random variable, xj = |wj| where w is a p-vector distributed as N (0, 

Σ) with Σk,j = |0.5||k−j|, and ϑ0 has nonnegative components. Such specification implies that 

for each u ∈ 𝒰:

Design1: θu = u(1,0,…,0)′ − β0 and Design 2: θu = u1/3ϑ0 − β0. In our simulations, we will 

consider n = 500 and p = 2000. For the location model (Design 1), we will consider two 

different choices for β0: (i)β0 j
(i) = 2/ j2 for j =1,…,p, and (ii) β0 j

(ii) = (1/2)/ j − 3.5 2 for j > 1 

with the intercept coefficient β0 j
(ii) = − 10. [These choices ensure maxj>1 |β0j | = 2 and that y 

is around zero in Design 2(ii).] We set ϑ0 = 1
8 (1, 1, 1, 1, 0, 0, …, 0, 0, 1, 1, 1, 1)′. For Design 1, we 

have 𝒰 = 1, 2.5  and for Design 2 we have 𝒰 = −0.5, 0.5 . The results are based on 500 

replications (the bootstrap procedure is performed 5000 times for each replication).

We report the (empirical) rejection frequencies for confidence regions with 95% nominal 

coverage, so that 0.05 is the target rejection frequency. We report the rejection frequencies 

for the proposed estimator and the post-naive selection estimator. Table 1 presents the 

performance of the methods when applied to construct a confidence interval for a single 

parameter (p = 1 and 𝒰 is a singleton). Since the setting is not symmetric, we investigate the 

performance for different components. Specifically, we consider {u} × {j} for j = 1,…, 5. 
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First, consider the location model (Design 1). The difference between the performance of the 

naive estimator for Design 1(i) and 1(ii) highlights its fragile performance which is highly 

dependent on the unknown parameters. We can see from Table 1 that in Design 1(i) the 

Naive method achieve (pointwise) rejection frequencies up to 0.162 when the nominal level 

is 0.05. In Design 1(ii), it can be as high as 0.886. We also note that it is important to look at 

the performance of each component and avoid averaging across components (large j 
components are essentially not in the model, indeed for j > 50 we obtain rejection 

frequencies very close to 0.05 regardless of the model selection procedure). In contrast, the 

proposed estimator exhibits a much more robust behavior. For Design 1(i), the rejection 

frequencies are between 0.040 and 0.062 while for Design 1(ii) the rejection frequencies of 

the proposed estimator are between 0.040 and 0.056.

Table 2 presents the performance for simultaneous confidence bands of the form 

θ u j −  cv σu j, θ u j +  cv σu j  for u ∈ 𝒰 × [p]  where θ u j is a point estimate, σu j is an estimate 

of the pointwise standard deviation and cv is a critical value that accounts for the uniform 

estimation. For the point estimate, we consider the proposed estimator and the post-naive 

selection estimator which have estimates of standard deviation. We consider two critical 

values: from the multiplier bootstrap (MB) procedure and the Bonferroni (BF) correction 

(which we expect to be conservative). For each of the four different designs [1(i), 1(ii), 2(i) 

and 2(ii) described above], we consider four different choices of 𝒰 × [p]. Table 2 displays 

rejection frequencies for confidence regions with 95% nominal coverage (and again 0.05 

would be the ideal performance). The simulation results confirms the differences between 

the performance of the methods and overall the proposed procedure is closer to the nominal 

value of 0.05. The proposed estimator performed within a factor of two to the nominal value 

in 10 out of the 16 designs considered (and 13 out 16 within a factor of three). The post-

naive selection estimator performed within a factor of two only in 3 out of the 16 designs 

when using the multiplier bootstrap as critical value (7 out of 16 within a factor of three) and 

similarly with the Bonferroni correction as the critical value.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

APPENDIX A:: PROOFS FOR SECTION 2

In this appendix, we use C to denote a strictly positive constant that is independent of n and 

P ∈ 𝒫n. The value of C may change at each appearance. Also, the notation an ≲ bn means 

that an ≤ Cbn for all n and some C. The notation an ≳ bn means that bn ≲ an. Moreover, the 

notation an = o(1) means that there exists a sequence (bn)n ≥ 1 of positive numbers such that 

(i) |an| ≤ bn for all n, (ii) bn is independent of P ∈ 𝒫n for all n and (iii) bn → 0 as n → ∞. 

Finally, the notation an = Op(bn) means that for all ϵ > 0, there exists C such that Pp(an > 
Cbn) ≤ 1 - ϵ for all n. Using this notation allows us to avoid repeating “uniformly over 

P ∈ 𝒫n“ many times in the proofs of Theorem 2.1 and Corollaries 2.1 and 2.2. Throughout 

this appendix, we assume that n ≥ n0.
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Proof of Theorem 2.1.

We split the proof into five steps.

Step 1. (Preliminary rate result). We claim that with probability 1 − o(1), 

supu ∈ 𝒰, j ∈ [p] θu j − θu j ≲ B1nτn. To show that, note that by definition of θu j, we have for 

each u ∈ 𝒰 and j ∈ [p],

𝔼n ψu j W , θu j, ηu j ≤ inf
θ ∈ Θu j

𝔼n ψu j W , θ, ηu j + ϵn,

which implies via the triangle inequality that uniformly over u ∈ 𝒰 and j ∈ [p], with 

probability 1 − o(1),

EP ψu j W , θ, ηu j θ = θu j
≤ ϵn + 2I1 + 2I2 ≲ B1nτn, (A.1)

where

I1: = sup
u ∈ 𝒰, j ∈ [p], θ ∈ Θu j

𝔼n ψu j W , θ, ηu j − 𝔼n ψu j W , θ, ηu j ≲ B1nτn,

I2: = sup
u ∈ 𝒰, j ∈ [p], θ ∈ Θu j

𝔼n ψu j W , θ, ηu j − EP ψu j W , θ, θu j ≲ τn,

and the bounds on I1 and I2 are derived in Step 2 [note also that ∊n = o(τn) by construction of 

the estimator and Assumption 2.2(vi)]. Since by Assumption 2.1(iv), 2−1 Ju j θu j − θu j ∧ c0

does not exceed the left-hand side of (A.1), infu ∈ 𝒰, j ∈ [p] Ju j ≳ 1, and by Assumption 

2.2(vi), B1nτn = o(1), we conclude that

sup
u ∈ 𝒰, j ∈ [p]

θu j − θu j ≲ inf
u ∈ 𝒰, j ∈ [p]

Ju j

−1
B1nτn ≲ B1nτn, (A.2)

with probability 1 − o(1) yielding the claim of this step.

Step 2. (Bounds on I1 and I2). We claim that with probability 1 − o(1), I1 ≲ B1nτn and I2 < 

τn. To show these relations, observe that with probability 1 − o(1), we have I1 ≤ 2I1a + I1b 

and I2 ≤ I1a, where

I1a: = sup
u ∈ 𝒰, j ∈ [p], θ ∈ Θu j, η ∈ 𝒯u j

𝔼n ψu j(W , θ, η) − EP ψu j(W , θ, η) ,

I1b: = sup
u ∈ 𝒰, j ∈ p , θ ∈ Θu j, η ∈ 𝒯u j

EP ψu j(W , θ, η) − EP ψu j W , θ, ηu j .
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To bound I1b, we employ Taylor’s expansion:

I1b ≤ sup
u ∈ 𝒰, j ∈ [p], θ ∈ Θu j, η ∈ 𝒯u j, r ∈ [0, 1)

∂rEP ψu j W , θ, ηu j + r η − ηu j

≤ B1n sup
u ∈ 𝒰, j ∈ [p], η ∈ 𝒯u j

η − ηu j
e

≤ B1nτn,

by Assumptions 2.1(v) and 2.2(ii).

To bound I1a, we apply the maximal inequality of Lemma P.2 to the class ℱ1 defined in 

Assumption 2.2 to conclude that with probability 1 − o(1),

I1a ≲ n−1/2 vn log an + n−1/2 + 1/qvnKn log an . (A.3)

Here, we used: log supQN ϵ F1 Q, 2, ℱ1, ⋅
Q, 2 ≤ vn log an/ϵ  for all 0 < ∊ ≤ 1 with ‖F1‖P,q ≤ 

Kn by Assumption 2.2(iv); sup f ∈ ℱ1
f

P, 2
2 ≤ C0 by Assumption 2.2(v); an ≥ n ∨ Kn and vn 

≥ 1 by the choice of an and vn. In turn, the right-hand side of (A.3) is bounded from above 

by O(τn) by Assumption 2.2(vi) since vn log an/n 1/2 ≲ τn and

n−1/2n−1/2 + 1/qvnKn log an ≲ n−1/2δn ≲ n−1/2 ≲ τn .

Combining presented bounds gives the claim of this step.

Step 3. (Linearization). Here, we prove the claim of the theorem. Fix u ∈ 𝒰 and j ∈ [p] . By 

definition of θu j, we have

n 𝔼n ψu j W , θu j, ηu j ≤ inf
θ ∈ Θu j

n 𝔼n ψu j W , θ, ηu j + ϵn n . (A.4)

Also, for any θ ∊ Θuj and η ∈ 𝒯u j, we have

n𝔼n ψu j(W , θ, η) = n𝔼n ψu j W , θu j, ηu j − 𝔾nψu j W , θu j, ηu j
− n EP ψu j W , θu j, ηu j − EP ψu j(W , θ, η) + 𝔾nψu j(W , θ, η) .

(A.5)

Moreover, by Taylor’s expansion of the function r ↦ EP [ψuj(W, θuj + r(θ − θuj), ηuj + r(η 
− ηuj))],
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EP ψu j(W , θ, η) − EP ψu j W , θu j, ηu j = Ju j θ − θu j + Du, j, 0 η − ηu j

+ 2−1∂r
2EP W , θu j + r θ − θu j , ηu j + r η − ηu j r = r

(A.6)

for some r ∈ 0, 1 . Substituting this equality into (A.5), taking θ = θu j and η = ηu j, and using 

(A.4) gives

n 𝔼n ψu j W , θu j, ηu j + Ju j θu j − θu j + Du, j, 0 ηu j − ηu j ≤ ϵn n

+ inf
θ ∈ Θu j

n 𝔼n ψu j W , θ, ηu j + II1(u, j) + II2(u, j) ,

(A.7)

where

II1(u, j): = n sup
r ∈ [0, 1)

∂r
2EP ψu j W , θu j + r θ − θu j , ηu j + r η − ηu j ,

II2(u, j): = 𝔾n ψu j(W , θ, η) − ψu j W , θu j, ηu j

with θ = θu j and η = ηu j. It will be shown in Step 4 that

sup
u ∈ U, j ∈ [p]

II1(u, j) + II2(u, j) = OP δn . (A.8)

In addition, it will be shown in Step 5 that

sup
u ∈ 𝒰, j ∈ [p]

inf
θ ∈ Θu j

n 𝔼n ψu j W , θ, ηu j = OP δn . (A.9)

Moreover, ϵn n = o δn  by construction of the estimator. Therefore, the expression in (A.7) is 

OP(δn). Also, supu ∈ 𝒰, j ∈ [p] Du, j, 0 ηu j − ηu j = OP δnn−1/2  by the near-orthogonality 

condition since ηu j ∈ 𝒯u j for all u ∈ 𝒰 and j ∈ [p] with probability 1 — o(1) by Assumption 

2.2(i). Therefore, Assumption 2.1(iv) gives

sup
u ∈ 𝒰, j ∈ [p]

Ju j
−1 n𝔼n ψu j W , θu j, ηu j + n θu j − θu j = OP δn .

The asserted claim now follows by dividing both parts of the display above by σuj (under the 

supremum on the left-hand side) and noting that σuj is bounded below from zero uniformly 

over u ∈ 𝒰 and j ∈ [p] by Assumptions 2.2(iii) and 2.2(v).
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Step 4. [Bounds on II1(u, j) and II2(u, j)]. Here, we prove (A.8). First, with probability 1 − 

o(1),

sup
u ∈ 𝒰, j ∈ [p]

II1(u, j) ≤ nB2n sup
u ∈ 𝒰, j ∈ [p]

θu j − θu j

2
∨ ηu j − ηu j

e

2 ≲ nB1n
2 B2nτn

2 ≲ δn,

where the first inequality follows from Assumptions 2.1(v) and 2.2(i), the second from Step 

1 and Assumptions 2.2(ii) and 2.2(vi) and the third from Assumption 2.2(vi).

Second, we have with probability 1 − o(1) that supu ∈ 𝒰, j ∈ [p] II2(u, j) ≲ sup f ∈ ℱ2
𝔾n( f ) , 

where

ℱ2 = ψu j( ⋅ , θ, η) − ψu j ⋅ , θu j, ηu j :u ∈ 𝒰, j ∈ [p], η ∈ 𝒯u j, θ − θu j ≤ CB1nτn

for sufficiently large constant C. To bound sup f ∈ ℱ2
𝔾n( f ) , we applyLemmaP.2. Observe 

that

sup
f ∈ ℱ2

f

P, 2

2

≤ sup
u ∈ 𝒰, j ∈ [p], θ − CB1nτn, η ∈ 𝒯u j

EP ψu j(W , θ, η) − ψu j W , θu j, ηu j
2

≤ sup
u ∈ 𝒰, j ∈ [p], θ − CB1nτn, η ∈ 𝒯u j

C0 θ − θu j ∨ η − ηu j e
ω

≲ B1nτn
ω,

where we used Assumption 2.1(v) and Assumption 2.2(ii). Also, observe that (B1n τn)ω/2 ≥ n
−ω/4 by Assumption 2.2(vi) since B1n ≥ 1. Therefore, an application of Lemma P.2 with an 

envelope F2 = 2F1 and σ = (CB1n τn)ω/2 for sufficiently large constant C gives with 

probability 1 − o(1),

sup
f ∈ ℱ2

𝔾n( f ) ≲ B1nτn
ω/2 vn log an + n−1/2 + 1/qvnKn log an, (A.10)

since sup f ∈ ℱ2
f ≤ 2sup f ∈ ℱ1

f ≤ 2F1 and ‖F1‖P,q ≤ Kn by Assumption 2.2(iv) and

log sup
Q

N ϵ F2 Q, 2, ℱ2, ⋅
Q, 2 ≲ vn log an/ϵ  for all 0 < ϵ ≤ 1

by Lemma O.1 because ℱ2 ⊂ ℱ1 − ℱ1 for ℱ1 defined in Assumption 2.2(iv). The claim of 

this step now follows from an application of Assumption 2.2(vi) to bound the right-hand side 

of (A.10).
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Step 5. Here, we prove (A.9). For all u ∈ 𝒰 and j ∈ [p], let θu j = θu j − Ju j
−1𝔼n ψu j W , θu j, ηu j . 

Then supu ∈ 𝒰, j ∈ [p] θu j − θu j = OP 𝒮n/ n  since 

𝒮n = EP supu ∈ 𝒰, j ∈ [p] n𝔼n ψu j Wu j, θu j, ηu j  and Juj is bounded in absolute value below 

from zero uniformly over u ∈ 𝒰 and j ∈ [p] by Assumption 2.1(iv). Therefore, θu j ∈ Θu j for 

all u ∈ 𝒰 and j ∈ [p] with probability 1 − o(1) by Assumption 2.1(i). Hence, with the same 

probability, for all u ∈ 𝒰 and j ∈ [p],

inf
θ ∈ Θu j

n 𝔼n ψu j W , θ, ηu j ≤ n 𝔼n ψu j W , θu j, ηu j ,

and so it suffices to show that

sup
u ∈ 𝒰, j ∈ [p]

n 𝔼n ψu j W , θu j, ηu j = OP δn . (A.11)

To prove (A.11), for given u ∈ 𝒰 and j ∈ [p], substitute θ = θu j and η = ηu j into (A.5) and use 

Taylor’s expansion in (A.6). This gives

n 𝔼n ψu j W , θu j, ηu j ≤ II1(u, j) + II2(u, j) + n 𝔼n ψu j W , θu j, ηu j + Ju j θu j − θu j
+ Du, j, 0 ηu j − ηu j ,

where II1 u, j  and II2 u, j  are defined as II1 (u, j) and II2(u, j) in Step 3 but with θu j replaced 

by θu j. Then, given that supu ∈ 𝒰, j ∈ [p] θu j − θu j ≲ 𝒮n log n/ n with probability 1 − o(1), the 

argument in Step 4 shows that

sup
u ∈ 𝒰, j ∈ [p]

II1(u, j) + II2(u, j) = OP δn .

In addition, 𝔼n ψu j W , θu j, ηu j + Ju j θu j − θu j = 0 by the definition of θu j and 

supu ∈ 𝒰, j ∈ [p] Du, j, 0 ηu j − ηu j = OP δnn−1/2  by the near-orthogonality condition. 

Combining these bounds gives (A.11), so that the claim of this step follows, and completes 

the proof of the theorem.

APPENDIX B:: REMAINING PROOFS FOR SECTION 2

See the Supplementary Material.

APPENDIX C:: PROOFS FOR SECTIONS 3 AND 4

See the Supplementary Material.
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Table 1

We report the pointwise rejection frequencies of each method for (pointwise) confidence intervals for each j ∈ 
{1,…, 5}. For Design 1, we used 𝒰 = 1  and for Design 2, we used 𝒰 = 0.5 . The results are based on 500 

replications

p = 2000, n = 500 Rejection frequencies for j ∈{1,…, 5}

Design Method j = 1 j = 2 j = 3 j = 4 j = 5

1(i) Proposed 0.042 0.040 0.062 0.050 0.044

Naive 0.100 0.098 0.108 0.108 0.162

1(ii) Proposed 0.044 0.040 0.054 0.056 0.056

Naive 0.038 0.030 0.070 0.886 0.698

2(i) Proposed 0.046 0.054 0.044 0.052 0.054

Naive 0.046 0.050 0.038 0.070 0.054

2(ii) Proposed 0.092 0.074 0.034 0.088 0.082

Naive 0.034 0.972 0.182 0.312 0.916
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Table 2

We report the rejection frequencies of each method for the (uniform) confidence bands for 𝒰 × p. The 

proposed estimator computes the critical value based on the multiplier bootstrap procedure. For the naive post-

selection estimator, we report the results for two choices of critical values, one choice based on the multiplier 

bootstrap (MB) and another based on Bonferroni (BF) correction. The results are based on 500 replications

p = 2000, n = 500 Uniform over 𝒰 × p

Design Method [1,2.5] × {1} {1} × [10] [1,2.5] × [10] {1} × [1000]

1(i) Proposed 0.054 0.036 0.048 0.040

Naive (MB) 0.126 0.136 0.172 0.032

Naive (BF) 0.014 0.124 0.026 0.032

1(ii) Propose 0.270 0.036 0.032 0.142

Naive (MB) 0.014 0.802 0.934 0.404

Naive (BF) 0.000 0.802 0.718 0.376

Design Method [−0.5, 0.5] × {1} {0.5} × [10] [−0.5,0.5] × [10] {0.5} × [1000]

2(i) Proposed 0.364 0.038 0.052 0.062

Naive (MB) 0.116 0.040 0.022 0.048

Naive (BF) 0.018 0.038 0.000 0.046

2(ii) Proposed 0.140 0.090 0.408 0.084

Naive (MB) 0.002 0.946 0.996 0.362

Naive (BF) 0.000 0.946 0.944 0.298
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