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NONSMOOTH DIFFERENTIAL-ALGEBRAIC EQUATIONS

Paul I. Barton ∗1 and Peter G. Stechlinski1
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Abstract

A nonsmooth modeling paradigm for dynamic simulation and optimization of process operations is advo-

cated. Nonsmooth differential-algebraic equations (DAEs) naturally model a wide range of physical sys-

tems encountered in chemical engineering conventionally viewed as exhibiting hybrid continuous/discrete

behavior. Due to recent advancements in nonsmooth analysis, nonsmooth DAEs now have a suitable

foundational theory regarding well-posedness and sensitivity analysis for use in, for example, dynamic

optimization. Moreover, the theory is computationally relevant, allowing for implementations of numerical

methods which scale efficiently for large-scale problems. State-of-the-art modeling efforts and challenges

for process operations displaying hybrid behavior (e.g., hybrid automata) are highlighted as motivation

for the nonsmooth DAEs approach.
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Introduction

A variety of operational problems require dynamic sim-

ulation and optimization (e.g., for safety, quality, and

economic reasons) and exhibit a mixture of continu-

ous and discrete phenomena (Barton and Lee, 2004;

Barton et al., 2006). Examples displaying such hy-

brid behavior include campaign continuous pharmaceu-

tical manufacturing (Sahlodin and Barton, 2015), where

“discrete” phenomena include start-up/shut-down pro-

cedures, thermodynamic phase changes, and safety de-

vices; dynamic flux balance analysis (DFBA) modeling

of microbial consortia (Höffner and Barton, 2014), where

“discrete” phenomena are present because the optimal

value of a linear program as a function of the constraint

right-hand sides is not smooth; among others (Barton

and Lee, 2002). Current prevalent modeling paradigms

advocated for these applications (e.g., hybrid automata,

complementarity systems, etc.) can exhibit pathological

behaviors that are difficult to exclude a priori and lack

in theoretical results needed to guarantee existence and

uniqueness of solutions and their regularity with respect

to parametric variation.

∗To whom all correspondence should be addressed

pib@mit.edu

The purpose of this article is to promote a non-

smooth DAE modeling approach, which captures the

physical behavior of many chemical engineering systems

and regularizes the mathematical properties of the mod-

els. Moreover, recent progress (Stechlinski and Barton,

2016a, In Press) has laid a strong theoretical foundation

and, thanks to an extension of the vector forward mode

of automatic differentiation (Khan and Barton, 2015),

the approach is computationally tractable. System mod-

els that fit into the nonsmooth DAEs framework include

those process operations outlined above. A very simple

flash process is used to illustrate the challenges involved

in the hybrid automaton framework, followed by a non-

smooth DAE reformulation of the same problem.

Current Modeling Approaches and Challenges

Hybrid dynamic systems combine continuous and dis-

crete dynamics and include a number of formalisms

with varying degrees of abstraction (see Goebel et al.

(2009); Cortes (2012); Schumacher (2004) for general

overviews). Within this general framework, a hybrid

automaton (Lygeros et al., 1999; Barton and Lee, 2002;

Lygeros et al., 2003) is a representation applicable to a

wide class of hybrid systems. It can be viewed as a di-



rected graph whose vertices represent continuous mode

dynamics (e.g., using ODEs or DAEs) and whose edges

represent transitions between modes. Using reachabil-

ity theory, (Lygeros et al., 2003) established existence

and uniqueness of executions of a hybrid automaton (see

Theorem III.1); a nonblocking deterministic hybrid au-

tomaton accepts a unique infinite execution, given an

initial set-up. Such an execution may be Zeno in nature

(i.e., it takes an infinite number of discrete transitions in

finite time). Zeno executions raise concerns both con-

ceptually (e.g., analysis techniques such as Lyapunov

methods) and computationally (e.g., possible inefficient

and inaccurate simulations).

Often a consequence of modeling abstractions, the

presence of Zeno executions in physical problems neces-

sitate a remodeling of the problem or a generalized solu-

tion notion (e.g., Goebel et al. (2004)). Regularization

is a possible resolution (Johansson et al., 1999), but can

require intuitive knowledge of the problem on a case-

by-case basis and may lead to non-unique extensions.

For example, see Section 4.1 in (Johansson et al., 1999),

where the authors use a temporal regularization (i.e.,

adding delay between switch times) and spatial regular-

ization (i.e., adding a minimum deviation in continuous

state variables for switching to occur) of a water tank

problem to lead to two distinctly different extensions of

the unique hybrid automaton execution.

Detailed examples of physical problems modeled as

hybrid automata can be found in the following works:

the design of a safe changeover operation with nonre-

turn valves characterizing three distinct flow regimes

(i.e., zero flow, laminar/turbulent, and choked) (Bar-

ton et al., 2000; Barton and Lee, 2002); a water tank

system and the classical bouncing ball example (Johans-

son et al., 1999); and a rocking block model for rocking

and toppling motion of rigid bodies during earthquakes

(Lygeros et al., 2003).

Here, a very simple flash process is used to illustrate

the hybrid automaton approach, as well as the nons-

mooth DAE approach in the sequel. Consider the bal-

loon depicted in Figure 1. The dynamic model is given

by the following system of equations for a single species

(e.g., water) that is held at a constant pressure P :

Ḣ(t) = hA(Tout − T (t)), (1a)

M = ML(t) +MV (t), (1b)

H(t) = MhV (t)−ML(t)∆hvap(T (t)), (1c)

hV (t) =

∫ T (t)

T ref

Cp(s)ds. (1d)
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Figure 1. A balloon with an external heat source and

one species distributed between liquid and vapor phases.

The heat duty at time t, Q̇(t), satisfies Q̇(t) = hA(Tout−
T (t)).

The enthalpy of the system at time t, H(t), changes

in time according to Eq. (1a), and Tout is the ambi-

ent temperature outside the balloon (a parameter of the

model). Since there is no material flow into or out of

the closed system, the total hold-up M is constant in

time (the liquid and vapor phase hold-ups are functions

of time ML(t) and MV (t), respectively).

The governing dynamics can be completed by con-

sidering the saturation pressure, P sat(T ), which is equal

to the pressure P of the system whenever both vapor

and liquid phases are present:

Liquid-only: MV = 0,ML > 0, P ≥ P sat(T ), (2)

Two-phase: MV ,ML > 0, P = P sat(T ), (3)

Vapor-only: MV > 0,ML = 0, P ≤ P sat(T ). (4)

The basic features of a hybrid automaton are presented

in the context of this physical problem, adopted from

the formulations in (Galán et al., 1999; Barton and Lee,

2002). Considering the dynamics of the balloon system

on a finite time horizon [t0, tf ] ⊂ R with t0 < tf , a

hybrid automaton model of this problem is described

with the following characteristics: there are nm = 3

modes in this model, indexed by the set M := {1, 2, 3}
(corresponding to liquid-only, two-phase, and vapor-

only in Eqns. (2)–(4)). The state variables, parameters,

and governing equations are outlined above; each mode

m ∈ M is characterized by (1), its corresponding alge-

braic equation (i.e., (2) or (3) or (4)), and a set of initial

conditions.

The possible transitions, and possible successor

modes, can be described as follows: the liquid-only and

vapor-only regimes can only transition to the two-phase

regime while the two-phase regime can transition to

either liquid-only or vapor-only regimes. Each mode
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Figure 2. A hybrid automaton representation of the bal-

loon problem: Mode 1 (liquid-only), Mode 2 (two-phase),

and Mode 3 (vapor-only).

m ∈ M has an associated set of logical transition con-

ditions, any of which becoming true initiates a switch

between modes. Mode 1 has one transition condition,

P = P sat(T ), corresponding to a switch to Mode 2.

Mode 2 has two transitions conditions, MV = 0 and

ML = 0, corresponding to switches to Modes 1 and 3,

respectively.

Furnished by the thermodynamic phase changes, an

execution (simulation) comprises a sequence of ne ∈
N ∪ {+∞} epochs (or switching intervals), denoted by

{[τ1, τ ′1], . . . , [τne
, τ ′ne

]}, where [τi, τ
′
i ] ⊂ [t0, tf ] for all i.

The hybrid time trajectory is finite (i.e., ne < +∞)

if there are finite number of phase changes or infinite

(ne = +∞) otherwise. There also exists a hybrid mode

trajectory, associated with the hybrid time sequence, of

modes visited. Lastly, the transition functions, which

dictate how the continuous state variables evolve at

switching times, are state continuity in this case. The

hybrid automaton associated with (1) and (2)–(4) is il-

lustrated in Figure 2.

Initialized in the subcooled liquid-only regime, a typ-

ical transient of the physical system may be as fol-

lows: the system transitions to the two-phase regime

at the bubble point where t = τ ′1 and MV (τ ′1) =

P −P sat(T (τ ′1)). Throughout the two-phase regime, the

constant pressure is equal to the saturation pressure and

the continuous dynamics continue until the dew point is

reached at t = τ ′2 where P − P sat(T (τ ′2)) = ML(τ ′2). At

this point, the system transitions to and remains in the

superheated vapor-only regime.

This expected behavior does not match up with the

execution of the hybrid automaton model (i.e., Figure

2): in the transition from Mode 1 to Mode 2 at t = τ ′1,

continuity of state variables imply that at the begin-

ning of the next epoch (i.e., in the two-phase regime)

MV (τ2) = 0, ML(τ2) = M , and P = P sat(T (τ2)).

The logical transition condition MV (τ2) = 0 is true;

the system instantaneously disengages Mode 2 and re-

engages Mode 1 (τ ′2 = τ2 = τ ′1). P = P sat(T (τ ′2))

still holds, dictating again a mode change from 1 to

2. This behavior repeats itself ad infinitum to gener-

ate the hybrid mode sequence {1, 2, 1, 2, . . .} (the vapor-

only regime is never reached) and hybrid time sequence

{[t0, τ ′1], [τ ′1, τ
′
1], [τ ′1, τ

′
1], . . .} with τne = τ ′1 < tf and

ne = +∞. This is called a deadlock situation, defined

roughly as the absense of motion (i.e., “stalling”) in fi-

nite time, as a result of a chattering Zeno execution

(as opposed to a genuine Zeno execution (Abate et al.,

2009)). Clearly this pathological behavior is an unphys-

ical representation of the physical problem, caused by

the hybrid automaton model formulation.

The design and optimization of numerous process

operations can be solved as open loop optimal control

problems, but this relies on existence, uniqueness, and

numerical solution of parametric sensitivities of the em-

bedded dynamic system (Barton and Lee, 2002). A

comprehensive theory has been developed for describing

forward sensitivity functions of hybrid automata mod-

els, which provably exist and are unique (Galán et al.,

1999). Efficient simulation algorithms and software for

simultaneous computation of state and sensitivity tra-

jectories of hybrid automata are in an advanced stage of

development.

The sensitivity results in (Galán et al., 1999) are sub-

ject to the restriction that the sequence of modes visited

by a hybrid automaton execution is unchanged by para-

metric variation. The theory is silent when paramet-

ric perturbations cause variations in the hybrid mode

sequence, which is a major limitation since most physi-

cal systems experience transitions whose mode sequence

depends on the values of the parameters (e.g., phase

changes as in the balloon system) and cannot be deter-

mined a priori (Barton and Lee, 2002). Hence, the sen-

sitivity analysis of (Galán et al., 1999) is applicable to

certain executions of hybrid automata by recasting the

problem as a multi-stage problem (i.e., with the number

of epochs and mode sequence fixed). However, for many

operational problems, it is desirable to address situa-

tions where the mode sequence changes as a function of



parameters (Barton and Lee, 2004).

Nonsmooth Differential-Algebraic Equations:

Theory and Implications

Considering again the model (1), the collection of dis-

junctive constraints MV (t) = 0

ML(t) > 0

P ≥ P sat(T (t))

Y
 MV (t) > 0

ML(t) > 0

P = P sat(T (t))

Y
 MV (t) > 0

ML(t) = 0

P ≤ P sat(T (t))


captures the physical behavior described above, unlike

the hybrid automaton modeling framework. Include in-

stead the following nonsmooth algebraic equation:

0 = mid
(
MV (t), P − P sat(T (t)),−ML(t)

)
, (5)

where the mid function selects the middle value of its

three arguments. This representation is equivalent to

the disjunctive constraints above and is a form of con-

tinuous disjunction in which two relations hold simul-

taneously at the boundary between regions of behavior.

Indeed, this is a correct and compact mathematical de-

scription of the physical behavior. Representation of the

same physical behavior with the semantics of a hybrid

automaton is difficult and problematic.

Equation (5) enforces different algebraic constraints

based on the phase regime in the balloon model as fol-

lows: if there is only a liquid phase present at time t

then MV (t) = 0. In this case, the first argument in the

mid function is zero and the third argument is negative.

Furthermore, P ≥ P sat(T (t)) yields that the middle ar-

gument is nonnegative. Hence, (5) enforces the algebraic

constraint MV (t) = 0 (i.e., the liquid-only regime). If

there is no liquid phase present at time t then ML(t) = 0

so that MV (t) = M and, by similar arguments, the mid

function selects the third argument in this case (i.e., (5)

enforces ML(t) = 0 representing the vapor-only regime).

Lastly, if both phases are present, then P = P sat(T (t))

holds and the second argument in the mid function eval-

uates to zero. Since 0 < MV (t),ML(t) < M in the two-

phase regime, the first and third arguments are positive

and negative, respectively, and the mid function selects

the second argument.

This approach models dynamic transitions between

the three phase regimes (i.e., vapor-only, liquid-only,

and two-phase) in a continuous, nonsmooth manner and

does not exhibit the pathological Zeno behavior dis-

played by the hybrid automaton model. Equations (1)

and (5) fit into the framework of a nonsmooth (semi-

explicit) DAE system, formally given by the following

system:

ẋ(t,p) = f(t,p,x(t,p),y(t,p)), (6a)

0ny = g(t,p,x(t,p),y(t,p)), (6b)

x(t0,p) = f0(p), (6c)

where t is the independent variable, p is a vector of the

problem parameters, and (x,y) are the differential and

algebraic state variables, respectively.

Well-posedness results for (6), when the participating

functions are not necessarily continuously differentiable,

are completely detailed in (Stechlinski and Barton, In

Press); existence, uniqueness, continuation and para-

metric dependence (i.e., continuous and Lipschitzian) of

“regular” solutions is resolved. Regularity here trans-

lates to a notion of generalized differentiation index 1,

which is local along a solution trajectory and can be

verified a priori in a global manner. This corresponds

to the classical differentiation index 1 notion when g is

smooth, i.e.,

∂g

∂y
(t,p,x(t,p),y(t,p))

being nonsingular for all t ∈ [t0, tf ] and p = p0 (a ref-

erence parameter value).

A suitable theory (Stechlinski and Barton, 2016a)

for calculating sensitivity information for (6) has re-

cently been developed thanks to the introduction and

established properties of the lexicographic directional

(LD-)derivative (Khan and Barton, 2015). Crucially,

the LD-derivative satisfies sharp calculus rules (i.e., the

chain rule), an implicit function theorem which describes

derivative information (Khan and Barton, In Press), and

is practically computable, making it the ideal general-

ized derivative object for analyzing nonsmooth DAEs.

This theory is applicable when the participating

functions f , f0, and g are lexicographically smooth (L-

smooth) (Nesterov, 2005) with respect to parameters

and state variables. Roughly, L-smooth functions are

locally Lipschitz continuous and have well-defined high-

order directional derivatives. The class of L-smooth

functions includes continuously differentiable functions,

convex functions, piecewise differentiable functions, all

compositions of L-smooth functions, integrals of L-

smooth functions, and more.

Given a regular solution (x,y) of (6) on [t0, tf ] as-

sociated with the reference parameter value p0, (x,y)

is L-smooth with respect to parameters near p0 and

forward sensitivity functions can be furnished from the

unique solution of an auxiliary nonsmooth DAE system



(see Eqn. (6) in Stechlinski and Barton (2016a)). Im-

portantly, this result does not appeal to the notion of

mode sequences, and applies regardless of changes in the

number and/or order of nonsmooth points encountered

along a solution.

More specifically, this auxiliary DAE system solu-

tion describes a generalized derivative element related

to the parametric sensitivities of the differential vari-

ables x and algebraic variables y, respectively, which is

computationally relevant in nonsmooth equation-solving

and optimization methods. If the nonsmooth DAE is

embedded into a nonsmooth optimization problem, e.g.,

inf
p∈P

Φ(p) ≡ φ(tf ,p,x(tf ,p),y(t,p)),

then, according to (Stechlinski and Barton, 2016b), the

auxiliary nonsmooth DAE solution can be used in a lin-

ear equation solve to furnish an element of the general-

ized gradient of Φ at p0 for use in, for example, a bundle

method (Lukšan and Vlček, 1998).

The DFBA models discussed in the introduction and

other flash processes (Sahlodin et al., 2016) can be mod-

eled using (6) via a similar nonsmooth formulation.

Moreover, in many instances nonsmooth DAEs correctly

capture the “continuous/discrete” phenomena prevalent

in a variety of chemical process models, in contrast to

some efforts in the literature using more typical hybrid

systems frameworks. Indeed, the authors have been sur-

prised how the nonsmooth paradigm fundamentally al-

ters their approach to formulating dynamic models. In

general, the governing dynamics of process operations

problems can involve both nonsmooth and discrete phe-

nomena, for which a distinction has not always been

made in the past (e.g., the balloon problem exhibits

nonsmoothness due to phase changes with continuity in

state variables and governing equations, but no true dis-

crete phenomena).

Conclusions

The modeling approach advocated here is appropriate

for many operational processes of interest for a number

of reasons: (i) pathological behaviors emanating from

modeling abstractions are avoided; (ii) the model is well-

posed mathematically; (iii) the framework now possesses

a suitable sensitivity theory which characterizes compu-

tationally relevant derivative information; and (iv) the

paradigm is amenable to numerical solution for accurate

dynamic simluation and optimization in a tractable way

thanks to the development of a vector forward mode

of automatic differentiation (Khan and Barton, 2015).

Mixed complementarity system formulations used for

dynamic optimization of chemical process models (e.g.,

Raghunathan et al. (2004)) are a special case of nons-

mooth DAEs because any complementarity system (see,

e.g., Heemels et al. (2000); Schumacher (2004); Pang

and Shen (2007)) can be recast as a nonsmooth DAE

system using any suitable nonlinear complementarity

problem (NCP) function. Other possible hybrid systems

formalisms (e.g., Filippov systems under Filippov-style

assumptions (Filippov, 1988; Cortes, 2012)) currently

do not possess a suitable sensitivity theory and can also

exhibit unpredictable pathological behaviors. Differen-

tial variational inequalities (DVIs) (Pang and Stewart,

2008), which unify a number of classes of dynamic prob-

lems (including complementarity systems), can be ex-

pressed as a class of nonsmooth DAEs by casting the

variational inequality as nonsmooth equations (via the

natural or normal maps).

Multi-stage systems with generalized index 1 semi-

explicit nonsmooth DAEs are inherently well-behaved.

Practical dynamic simulation, sensitivity analysis and

optimization methods can be developed on this basis

as simulation technology in this area is mature. All

the necessary theoretical tools are in place, e.g., global

equivalence of nonsmooth DAEs and nonsmooth ODEs

(Stechlinski and Barton, In Press), for an extension of

these results to “high-index” nonsmooth DAE systems

with special structures, analyzing switching behavior of

nonsmooth DAEs with piecewise smooth participating

functions for use in developing efficient numerical meth-

ods, and adjoint sensitivities for large numbers of param-

eters (i.e., extending the method of adjoints for multi-

stage systems in Ruban (1997)). Extending the theoret-

ical treatment to infinite-dimensional spaces for closed

loop problems to obtain optimal feedback control laws

is another possible direction of future work.
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