Creating a Cliché Library for Social Applications

by
Maryam Archie

S.B., Computer Science and Engineering, MIT, 2018

Submitted to the
Department of Electrical Engineering and Computer Science
in Partial Fulfilment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science
at the
Massachusetts Institute of Technology
June 2019

© 2019 Massachusetts Institute of Technology. All rights reserved.

Author:
Department of Electrical Engineering and Computer Science
May 24, 2019
Certified by:
Daniel Jackson, Professor, Thesis Supervisor
May 24, 2019
Accepted by:

Katrina LaCurts, Chair, Master of Engineering Thesis Committee

Creating a Cliché Library for Social Applications
by
Maryam Archie
Submitted to the Department of Electrical Engineering and Computer Science on
May 24, 2019
in Partial Fulfilment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

Déja Vu is a platform for the end-user development of web applications. It reduces the
complexity of web development by encapsulating common functionality across the
web into a library of clichés. Users select clichés that represent core concepts in their
application, specify various configuration variables and include actions that add the
desired functionality to their application.

This thesis focuses on creating a cliché library for social applications (e.g.
planning events, crowd-sourcing opinions, etc.). The catalogue of clichés and their
actions were evaluated by replicating student projects from an undergraduate web
development course. Most of the core functionality was replicated for each sample.
The applications built with Déja Vu will also serve as a reference and/ or starting
point for future application developers.

Thesis Supervisor: Daniel Jackson

Title: Professor

Acknowledgements

[am very thankful for all of the advice, feedback and support from Santiago Perez De
Rosso and Professor Daniel Jackson during my time spent on Déja Vu. I would also
like to thank my other collaborators, Ma Czarina Lao and Barry McNamara, for their
useful feedback and coffee breaks together. Lastly, [would like to express my
gratitude to my friends and family for their endless support on this journey.

Table of Contents

ADSTTACE vt 3
ACKNOWIEAZGEIMENTES ...t 5
B 0 T TN 11
5 ES] 0 0 1= o) TP 15
Chapter One: INTroOdUCHION ... 17
1.1. Summary of CONtIIDULIONS w..cuiveeriereerirsies s 18
1.2, THESIS OVETVIEW ..ovueeieesirssrsessesses s sssss s ssss s sssss s sesssssssssssssssssans 19
Chapter Two: An Overview Of Déja V... sessssssssssssssssssssssssses 21
2.1. What iS @ CLICHAY ...t 21
2.2. The ClICh€ LiDIary ...seesnesnesnesnesssns 22
2.3. Building APPliCAtiONS. ... reereereereereeresressessessessessessessessessessessessessessessesssssesssssesssssesssssessessessssnes 23
2.4, EXample: SWEELSPOLS ..o sssss s s ssssssses 23
2.4.1. Identifying Clichés to use in an Application ..o 28
2.4.2. Configuring the APPliCation ... sesnees 30
2.4.3. Adding App Actions to the APPliCation ... rereesesseesesseesesseees 32
2.4.4. Creating a RESOUICE (SPOL) cuverereererreererreererseesesseesessessesssssesssssesssssesssssesssssesssssesssssessssnes 33
2.4.5. Displaying the ReSOUICES (SPOLS) ...currererrerrernemrsressssssessesssessessesssessssssessesssessssssens 36

2.4.6. Styling the APPliCAtiON ... 38

Chapter Three: Augmenting the Clich€ LiDrary.......eeesessessessesseeees 43
3.1. Identifying and Designing NeW CliChEScoverenrenseneenerneeseesessessesseessessesssesseses 45
3.2. Implementing NEeW ClICRES ... sssssssssssssssssaes 47

3.2.1. Defining the SChema.......cns s 48
3.2.2. Implementing the server-side CoOde.........m 50
3.2.3. Designing the Ul COMPONENTScovreurirnemirnsnis s ssssesssssssssssssssssssssses 50
3.3. Adding Actions to EXiSting CLIChES ... 52

Chapter Four: Social Application EXperiments........cueneminesssssssssssssssesseses 53
4.1 MAPMIT oo 53
L 2 16 (=7 A0 U E P 54
4.3, POLIUCK sttt 55
T B N Yal0) Yo) o 56
T o (0 T<) o . 57

Chapter FivVe: EXPETIEIICE ... sssssssssssssssssssssssssssssssssssssssessssssssssssssssssens 59
5.1. Designing and Implementing CliChES ... sessessenseens 59
5.2. Reusing Clichés in Different CONTEXLScovmererreererneeneeneenessessessessesssssesssssessessessessesssenes 60
5.3. Incrementing Functionality in AppliCationsc.unreneeneeneeneeneenesseesessessesseesessessesseenes 62

Chapter Six: Related WOTK ... ssss s sssssse s sssssssssssssssssaes 65

Chapter Seven: CONCIUSION ...ttt 71

S (=) (=) (=TSPTSRO 73
APPENAIX At R 75
A.1. The Server-Side Code for the Label Cliché ... 75
A.2. show-1abels CliCh@ ACLION ... 81

10

List of Figures

Figure 1: The registration page for SWeetSpOots. ... 24
Figure 2: The main page for viewing and adding Spots in SweetSpots........c.cccuuveereereens 24
Figure 3: The Add a Spot form in SWeetSPOLS. ... ssesssessssssessesaes 25
Figure 4: Filtering Spots in SWeEetSPOLS. ..o sessessesees 25
Figure 5: The details page for a Spot in SWeetSpOts. ... 26
Figure 6: The user profile page in SWEetSPOLS. ... 27
Figure 7: The Spot author's view of the Spot details page.c.ccorrererenerenenenereseenennens 27

Figure 8: The configuration file (dvconfig. json) for SweetSpots. This file specifies
which clichés will be used in the application and maps URL paths to page app actions
FEO) Q=1 (=) ol 4 N0 F U (0) o VAR 31
Figure 9: The HTML code for the main app action in SweetSpots.ccocmneerirneeniesennns 33
Figure 10: The HTML code necessary for the add-a-spot-form action. The atoms
created by each cliché action in the transaction are “bound” to each other by the ID
generated by the dv.gen-id aCtioN.......nin s 35
Figure 11: Users can see spots that they created using the authorization.show-
resources cliché action and replacing the default show-resource action to show more
information about the SPOLS. ... ——————— 37
Figure 12: The show-spot app action shows the name and average rating of the Spot,

GIVEN AN ID. oo ———————————————— 38

11

Figure 13: SweetSpots’ main stylesheet includes imports from external Ul

AN EWOTKS. ..ttt s bbb 39
Figure 14: The HTML code used to render the navigation bar in SweetSpots. DV's
navbar theme styling will be applied to it because it follows certain rules, e.g. every
element inside of the <nav> tags must have the navbar-itemclass........nennes 41
Figure 15: The conceptual design of the Label concept. ... 46
Figure 16: From left to right, when a user clicks the "Attach Labels" button in the
rendered Ul component, a request is sent to the cliché server and a query/mutation
resolver is called depending on the GraphQL schema. Upon success, the database
returns the value requested by the cliché action and updates the Ul component

L0100 102 T 47
Figure 17: The schema for the Label cliché. The Label type represent atoms in the

Label database collection. The inputs of the query and mutation types are specified to

indicate what the Server is eXpecting.......oneninrese s 49
Figure 18: The login, events and group pages in MapMIT. ... 54
Figure 19: Creating and viewing an event in Rendezvous.ccoovnnneneneneeneenesneenennens 55

Figure 20: Creating a new party with Potluck; Adding registered members to a party's
o LE] T PO 56
Figure 21: Climbers must login with both a competition and a climber code; Hosts,

climbers and spectators can view the leaderboard of a competition.cccurecrrrierennen. 57

12

Figure 22: A user’s profile page including their personal information, topics of
interest and availability for the week; Alice and Ben indicated interest in each other
aANd are NOW CONMECTEA. ..cuiueureureereereerearesressessessessessessessessessessesses s ssesses s es s s s s s s s sns e snes 58
Figure 23: With BuddyPress, adding concepts like groups and chat are as easy as
checking a box in WordPress' setting page. Image downloaded from https://scripts-
cdn.softpedia.com/screenshots/BuddyPress_1.png in April 2019.cccocrrveererneereereennes 67

Figure 24: The server-side code that interfaces with the database for the Label cliche.

.. 79
Figure 25: The HTML code for the show-labels cliché action. Users can replace the
show-label action with another cliché or app action.———— 81
Figure 26: The TypeScript file for the show-labels cliché action. Users can declare
inputs and outputs to the cliché action in addition to those for the requests to the
T 2] 01 <) (T 83

13

14

List of Tables

Table 1: A list of all the clichés and their purposes in Deja Vu's cliché library 22
Table 2: A list of the clichés used to replicate SweetSpots and the concepts and
SCeNArios that they SUPPOTT....c s snaneas 29
Table 3: The cliché catalog contains 18 clichés, each with a set of related actions. The
cliché and action names highlighted in bold were introduced during research for this

L 0 T=TS) (OO OO 44

Table 4: The clichés used to build the social applications.........u——. 62

15

16

Chapter One:
Introduction

Déja Vu is a new programming paradigm that aims to make web development easier
for non-developers. It exploits Jackson’s conceptual theory [1] by identifying concepts
commonly found in web applications (e.g. a comment on a post on Facebook! or a
comment as a review for a product on Amazon?) and “translating” them into re-
usable components known as clichés. Users can create complex web apps by choosing

and combining cliché actions from a carefully curated cliché library in an HTML file.

Déja Vu’'s cliché library provides users with the means to create complex web
applications. For example, Déja Vu simplifies the creation of applications for planning
of social events and organization of groups by using at least the Event and Group
clichés. These can be combined with any of the other clichés in the library to obtain
the desired functionality. For example, an event can be bound to a location and thus,

can be displayed on a map using the Geolocation cliché.

The research conducted for this thesis supplements the cliché library with
new clichés and actions to support the development of social applications. This builds

off the existing Déja Vu platform, which abstracts the difficulties of web development

1 Facebook. https://www.facebook.com/
2 Amazon. https://www.amazon.com/
17

https://www.facebook.com/
https://www.amazon.com/

from the average user. At the inception of this project, the cliché library already

contained various clichés and actions.

This work is important to the success of Déja Vu because it makes possible
apps that were impossible before. The updated cliché library will empower
individuals (including novices) to create more complex applications that bring all
desired functionality into one application as opposed to using multiple applications
(e.g. emalil, polls and maps) to organize social events. Even though these
augmentations were made to support specific scenarios in social applications, they
can be used to create different types of applications. For example, the Schedule cliché
could be used in a productivity application to plan meetings in the office, and the
Passkey cliché could be used to grant students access to some restricted class
material. In addition, the sample applications built as a part of this thesis serve as a
guide or a stepping stone for building new applications with Déja Vu, and their

stylesheets could be reused in other applications.
1.1. Summary of Contributions
The following summarizes the contributions made to the Déja Vu project:

e New clichés were added to the library to enable specific scenarios in some
sample applications. For example, we had to create the Match cliché to
replicate functionality in a sample application that required individuals to

indicate interest in each other before being matched together.

18

e The cliché library was further augmented by complementing existing clichés
with new actions. For example, to edit viewing permissions of a given
resource, we added the add-viewer, remove-viewer, and add-remove-
viewer actions to the Authorization cliché.

e We replicated the core functionality and styling of six sample social
applications using the augmented cliché library. These included applications
that allowed users to plan social gatherings and sporting events, invite people
to events, aggregate opinions about places and topics and help individuals
meet others with similar interests, availability and location. We used this

experience to evaluate Déja Vu and our new cliché extensions.

1.2. Thesis Overview

The rest of the thesis is structured as below:

e Chapter 2 gives a brief overview of the Déja Vu platform and explains how an
application, called SweetSpots, can be implemented with it.

e Chapter 3 discusses how clichés and actions are added to the library.

e Chapter 4 describes the other social applications that were built with Déja Vu
and highlights interesting use cases of clichés and actions in the applications.

e Chapter 5 reflects upon the project and the research experience

e Chapter 6 explores other bodies of work and explains what sets Déja Vu apart
from them.

e Chapter 7 summarizes the body of research presented in this thesis.

19

20

Chapter Two:
An Overview of Déja Vu

The Déja Vu platform consists of many parts to make it easier for individuals to create
applications. Clichés and their actions are important for displaying data and
interacting with it. They come together to form a cliché library, from which users can
select clichés to add functionality to their applications. We describe this process with

an example in Section 2.4.

2.1. What is a Cliché?

A cliché is a collection of actions with a common purpose. For example, the purpose of
the Authentication cliché is to verify a user’s identity with actions such as registering
or logging in a user. Each action generally is accompanied by a user interface element
that displays data to the user after fetching it from the server or accepts user input
and sends it to the server for storage and processing. Thus, each cliché represents a
vertical slice of the web application, abstracting implementation details from the

user. A powerful feature of Déja Vu is its compositional mechanism: actions can
contain other actions and can be replaced by another action. This added flexibility
allows users to customize and extend the functionality of their application. Creating a

new cliché and adding actions to an existing one will be discussed in Chapter 3.

21

2.2. The Cliché Library

Together, these clichés form the cliché library which lists the purposes and actions of
each cliché. With this library, users can quickly build applications because they do not
have to worry about defining schemas, creating database tables and other server-side

functionality. Table 1 shows the state of the library?3 as of May, 2019.

Cliché Purpose

Allocator Distribute resources among consumers
Authentication Verify a user’s identity with a username and password
Authorization Control access to resources

Comment Express an opinion or reaction in writing

Event Schedule events

Follow Receive updates from sources

Geolocation Locate points of interest

Group Manage users in aggregate

Label Categorize items to be found later

Match Connect users after attempting to match with each other
Passkey Verify a user’s identity with a code

Property Describe an object with properties that have values
Ranking Rank items

Rating Crowdsource evaluation of items

Schedule Find times to meet

Scoring Keeps track of scores

Task Keep track of pieces of work to be done

Transfer Move resources between accounts

Table 1: A list of all the clichés and their purposes in Deja Vu's cliché library

3 We expect the library to evolve as we develop more apps.

22

2.3. Building Applications

In Déja Vu, all of these parts come together to help the user create applications. To
build an application, the user first selects clichés from the cliché library and defines
them in a configuration file. The user then creates app actions, either as pages or
modular components, to structure the application. For example, a user can create an
action that contains multiple cliché actions to modify data in an application. They can
also create app actions to display application data using actions from various clichés.
In addition, users can style their applications by writing custom CSS, using a Déja Vu

theme or using any popular CSS framework.

2.4. Example: SweetSpots

SweetSpots is a social application that allows users to map, filter and review points of
interest on campus. Dubbed the “Yelp for Public Spaces”, SweetSpots crowd-sources
information about various locations and facilities around the MIT campus through
posts, reviews, comments and voting. Users earn reputation for each Spot that they
have posted, review that they have written for a Spot and vote that they have

received for any of their reviews.

Let us walk through a scenario where a user, Alice, wants to submit the water
fountain in McCormick Hall as a “sweet spot” on campus after which another user,

Ben, favorites and reviews it:

a) Alice navigates to SweetSpots’ registration page and makes an account with

the username “alice”.
23

Welcome to Sweet
Spots!

Username *

alice

Password *

Register User

Back to Login page

Figure 1: The registration page for SweetSpots.

b) Alice is redirected to the main page with a map that displays crowd-sourced

Spots, and searches for “McCormick Hall” in the map, opening the “Add a spot”

form.

My Profile Hello, alice !

Sweet Spots

Add a spot:

Q McCormick Hal|
! McCormick Hall Forbes Avenue
15213 Pittsburgh

ewtoune v 3 2 ‘
L 4 g / " £ L
£ / il 3
Pennsyivania USA . L : = X tomis. fFin-s
L 3 S = J
| West Wisconsin Avenue 1530 i Phoer 610 S Sfﬂ:n — g 1]
53233 Milwaukee ! ot 2 e - el
i 5 1 T A3
| o o] 5
u
2 v

Wisconsin USA

McCormick Hall Wester Avenue
. % 12210 Albany
(Click on the map!) | New York USA
+| McCormick Hall Memorial Drive
02238 Cambridge
Massachusetts USA

| McCormick Hall
18510 Scranton
1 Pennsylvania USA
it l— —
Srodiom P G ——a y
> & P b Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA

Figure 2: The main page for viewing and adding Spots in SweetSpots.

24

c) Alice fills out the rest of the information for the Spot and submits it.

Sweet Spats - Logout MyProfle Hello, alice !

Add a spot: |
< Back to home [a i Y
McCormick Hall, Memorial Drive, Cambridgepc £y A
& | McCormick Hai Memorial Drve i >
S % 02238 Cambridge v \
stitude * 6 Massachusetts USA o
4235717425 R— D=y
-71.0847535433517 e’ % .
- X - e
el o % - ,.-9“"“ o
Category & el g e > o
- A B o) oiee el
‘water fountain 3 - - e 50*’?""”‘”
Z B = i
B = > L
1 s = 2 Loafiet | Map data © OpenSireethap contributors, CC-BY-SA
Review

ook ek ok

So cool and refreshing|

Figure 3: The Add a Spot form in SweetSpots.

d) Ben logs in with his account and searches for water fountains on campus.

Sweet Spots m Logout MyProfile . Hello, ben !

Top Spots

[~ 1

McCormick Hall, Memorial Drive,
Cambridgeport, Cambridge,
Middlesex County, Y?g
Massachusetts, 02238, USA >
| Details o)

e
Category: ‘

water fountain > =

Soutof 5

iz
£1
\

Leaflet | Map data © OpenStreetMap contributors, CC-BY-S

Figure 4: Filtering Spots in SweetSpots.

25

e) After visiting the water fountain suggested by Alice, Ben upvotes her review of
the Spot and writes his own review for the Spot. He also favorites the Alice’s

Spot for future reference.

Sweet Spots Logout MyProfle . Hello, ben |
McCormick Hall, Memorial Reviews
Drive, Cambridgeport, oot
Cambridge, Middlesex * So cool and refreshing! *
County, Massachusetts, Ll e
02238, USA vprote

- Write a review:
1L 8 8.8 &
Sa_ Refreshing!|
4;2 o y
e

Leatlet | Map data © OpenStrestMap contributors, CC-BY-SA
Average Rating: 5 out of 5
Location:

Latitude: 42.35717425
Longitude: -71.0947535433517

Created on: Coming Soon

Figure 5: The details page for a Spot in SweetSpots.

f) When Ben looks at his profile, he can see the Spots that he has already

reviewed and favorited. After creating a Spot himself, his reputation score is 1.

26

Sweet Spots Logout MyProfiie . Hello, ben !
ben's Profile (Current Rep: 1)

Posted Spots Your Reviews Favorite Spots
Barker Library, Infinite McCormick Hall, Memorial McCormick Hall, Memorial
Corridor, Central Square, Drive, Cambridgeport, Drive, Cambridgeport,
Cambridge, Middlesex Cambridge, Middlesex Cambridge, Middlesex
County, Massachusetts, County, Massachusetts, County, Massachusetts,
02238, USA 02238, USA 02238, USA
| Details | Details | Details
Average Rating: 1 out of 5 28 8 & 1
1vote

Refreshing!

Barker Library, Infinite
Corridor, Central Square,
Cambridge, Middlesex
County, Massachusetts,
02238, USA
| Details

vy

Avoid at all costs!

Figure 6: The user profile page in SweetSpots.

g) Looking back at her Spots, Alice sees that Ben has reviewed her water fountain
spot. She can also see both of their reputation scores and vote on Ben’s review,

but not hers.

Sweet Spots Logout MyProfile Hello, alice !
McCormick Hall, Memorial Reviews
Drive, Cambridgeport, oot
Cambridge, Middlesex 50 cool and rereshing!*
County, Massachusetts, By acs | Prome Reer 2
02238' USA Rating: 5outof 5
" ' b4 _,,»;‘) 4 * Refreshing! *

By ben | Profile | Rep: 1

i
3 Upvote
Downvote
»
-
==
Charfes R

AZA

Loati | Map Gt © OperSrethiap contrasrs, CC-BY-SA
Average Rating: 5 out of 5
Location:

Latitude: 42.35717425
Longitude: -71.0947535433517

Created on: Coming Soon

Figure 7: The Spot author's view of the Spot details page.

27

2.4.1. Identifying Clichés to use in an Application

Conceptual design plays an integral role in developing applications with Déja Vu. It
encourages you to identify the core concepts of your application and how they
interact with each other. These concepts can then be mapped to clichés to achieve the

desired behaviors.

We identified several concepts in SweetSpots: Spots, Reputation, Categories,
Reviews and Ratings. A Spot encapsulates information about a point of interest,
including its name, location, and a classification (or Category). Each spot is reviewed
at least once and each Review includes not only the author’s opinion, but also a
Rating. These Spots help people find nearby and greatly favored areas on the MIT
campus. To reward users for submitting Spots and helpful Reviews, users are given

Reputation.

In Table 2, we mapped these application concepts to ten instances of clichés
and give examples of scenarios that they enable. The Authentication and
Authorization clichés are used to handle user accounts and manage access to certain
Spots. The Geolocation cliché is used to display Spots on the map and allow the user
click on the map to autofill the coordinates and name of the Spot in the the “Add a
spot” form. The Label cliché most aligns with the Category concept as they both
classify items for faster lookup. We used the Comment cliché for Reviews because
they are both used to express a user’s opinion. The Rating cliché is used to rate a Spot

and the Property cliché is used to record the floor information of a Spot. Since we

28

want to allow users to bookmark (or favorite) Spots for future reference, we include

the Follow cliché. Lastly, the Scoring cliché is used to keep track of a user’s reputation

and the scores of individual reviews.

Cliché App Concept Supported Scenarios
Authentication | User Alice makes an account; Ben logs in to his
account
Authorization | Spots In the posted spots column of the profile page,
Ben only sees Spots that he created
Geolocation Spots Alice uses the map to identify a location to
(location) anchor the Spot; Ben sees previously created
Spots on the map
Label Category Alice tags the Spot as a “water fountain”; Ben
searches for Spots matching the “water
fountain” category
Comment Review Alice gives the Spot a review saying that it is
“So cool and refreshing!”; Ben also reviews the
Spot saying that it is “Refreshing”
Rating Rating Alice gives the Spot a 5-star rating to reflect
the Spot’s high quality
Property Spots (floor) Alice indicates that the Spot is on the 1st floor
of McCormick Hall
Follow Spots Ben favorites the Alice’s Spot; Ben sees his
(favorite) favorited spots on his profile page
Scoring Reputation; Alice earns reputation for posting a Spot; Ben
Review (score) | upvotes Alice’s review, contributing the score
of her review and her reputation.

Table 2: A list of the clichés used to replicate SweetSpots and the concepts and scenarios that they
support.

Given its ability to store free-form text, we could have used the Property cliché
for Reviews instead of the Comment cliché. However, the purpose of the Review is to

share the user’s opinion about a Spot, which aligns with the more specific objective of

29

the Comment cliché (express an opinion or reaction in words) than that of the

Property cliché (describe an object with properties that have values).

The Scoring cliché is actually used twice in the SweetSpots application to keep
track of a review’s score (sum of upvotes and downvotes) as well as a user’s
reputation (sum of number of posted spots and the sum of the scores of their
reviews). We will discuss how to avoid name collisions and set configuration

variables for other clichés (e.g. Geolocation and Property) in the next section.

2.4.2. Configuring the Application

Once the relevant clichés have been identified, we must configure the application to
use them. This is done by defining a configuration file (dvconfig. json) and listing
the clichés to be used in the application. In this file, we can also map application pages

to different routes for easier navigation (Figure 8: lines 32 - 39).

Some clichés require extra configuration. For example, if we wanted to use the
Leaflet Maps API with the Geolocation cliché in SweetSpots, we would have to set the
“mapType” key in the config object of the Geolocation cliché to “leaflet”. This is shown
in Figure 8: lines 8 - 10. Since we are using the Property cliché to specify the floor
location of a Spot, we need to define the schema as shown in Figure 8: lines 19 - 27.
Lastly, we seed the Label database (Figure 8: lines 13 - 16) with categories such as

“bathroom”, “nap space” and “water fountain” to provide category suggestions when

the user is creating a Spot.

30

Y S e g Sh ey
QOO NOUIBERWNROOVONOUTIDRWN -

WRNDNDNNNDNDNDNDN
CORONANUTIHAWN -

BHWWWwWwwwwuww
COONOUTDHWN -

{

"name": "sweetspots",
"usedCliches": {
"authentication": {},
"authorization": {},
"comment": {},
"rating": {},
"geolocation": {
"config": {"mapType": "leaflet" }
¥
"follow": {},
"label": {
"config": {
"initiallabelIds": ["bathroom", "nap space”, "water fountain"”, "study
space"]
}
s
"property": {
"config": {
"schema": {
"title": "SpotDetails",
"type": "object",
"properties": {
"floor": { "type": "string" }
}
}
}
s
"reputation”: { "name": "scoring" },
"reviewscore": { "name": "scoring" }
¥
"routes": [
"path": "login", "action": "login" },
"path": "main", "action": "main" },
"path": "profile", "action": "show-user-profile" },
"path": "register", "action": "register" },
"path": "spot-details"”, "action": "show-spot-details” },
"path": "", "action": "main" }

Fatn Wt Wante Wante Wante Wantn

]
¥

Figure 8: The configuration file (dvconfig. json) for SweetSpots. This file specifies which clichés will
be used in the application and maps URL paths to page app actions for easier navigation.

Although we can have multiple instances of a single cliché in an application, it
is important to alias them to avoid name collisions in the platform. Since we have two

instances of the Scoring cliché (one to track review scores and the other to track a

31

user’s reputation), we alias one as “reputation” and “reviewscore” (Figure 8: lines 29
- 30). This not only prevents the collision problem, but also describes what they are

used for.

2.4.3. Adding App Actions to the Application

Applications built with Déja Vu are structured into pages, modular app components
and cliché actions. Pages and app components are known as app actions and help
organize the flow of the application. Déja Vu is able to distinguish between cliché and
app actions since the HTML content of app actions must begin and end with
dv.action tags, and specify the action’s name. The following discusses what is

necessary to create the main view page of the SweetSpots application.

To create the sweetspots.main app action shown in Figure 9, we must first
create a directory (“main”) containing an HTML (“main.html”) and CSS
(“main.css”) file. Before adding content to the HTML file, we indicate that main is an
app action to Déja Vu by enclosing the content of the HTML file with <dv.action
name=“main”></dv.action> tags. Now, we can include other app and cliché actions
inside of the sweetspots.main action. Assuming we that we have already made a
navbar action, we can include it in the main page as shown in Figure 9: line 2. The
interactive map is also added to the page using the display-map action of the
Geolocation cliché (Figure 9: Line 19); with one line of HTML, the user can view Spots
on the map and also use the map to select locations when creating a Spot. In the

original application, the “Add a spot” form would only be displayed to the user if they

32

OCONOUITARWN -

were signed in and the user clicked the map. We can support this behavior using
dv.if conditional statements. To determine whether a user is signed in, we can
check the output of the navbar like accessing fields in an object
(sweetspots.navbar.loggedInUserId). If this value is undefined or null, i.e. no
one is signed in, we will show a message asking the user to sign in. Otherwise, the

form will appear.

<dv.action name="main">
<sweetspots. navbar />

<div id="left-main-div">
<dv.if condition=sweetspots.navbar.loggedInUserId>
<dv.if condition=geolocation.display-map.newMarker>
<sweetspots.add-a-spot-form
loggedInUserId=sweetspots.navbar.loggedInUserId
marker=geolocation.display-map.newMarker/>
</dv.if>
</dv.if>

<dv.if condition=!sweetspots.navbar.loggedInUserId>
To use this feature, please sign in or register.
</dv.if>
</div>

<div id="map-div">
<geolocation.display-map id="mainMapId" showDirectionsControl=false />
</div>
</dv.action>

Figure 9: The HTML code for the main app action in SweetSpots.

2.4.4. Creating a Resource (Spot)

One of the most common behaviors in applications is to create some resource. In
SweetSpots, users create Spots, helping others find ideal locations that fit their needs.
However, recall from Section 2.4.1 that creating a Spot requires actions from multiple

clichés. Since these actions should be executed simultaneously, they are wrapped
33

inside of dv.tx element tags. To ensure that the atoms created in the cliché
collections all refer to the same Spot, we include a dv.gen-1id action tag inside of the
dv.tx tags and use its output (dv.gen-id. id) as ID inputs for the cliché actions. For
example, the 1label.attach-1labels action uses the dv.gen-id.id value as the
itemId input (Figure 10: line 14) since Spots are Items in the data model of the Label
cliché. The targetId input of the rating.rate-target action uses the value from
dv.gen-id. id because the user (source) is rating the spot (target). All functionality
necessary for creating a Spot is encapsulated in the add-a-spot-form app action as

shown in Figure 10, and is used in the main app action (Figure 9: lines 7 - 9).

When Alice or Ben looks at the Add a Spot form on the main page (as in Figure
2), they see seven fields corresponding to actions from five clichés -
geolocation.create-marker, label.attach-labels, property.create-
object, rating.rate-target and comment.create-comment (Figure 10: lines 7 -
24). The create-marker action contains three input fields while the other four cliché
actions each have one. To ensure that the creation of a Spot contributes to the user’s
reputation, we also include the reputation.create-score action. Since this is a
side effect of creating a Spot, it is hidden from the user using the hidden=true
attribute. Similarly, the follow.create-publisher, authorization.create-
resource and authentication.authenticate actions are necessary for favoriting
spots, allowing users to see only spots that they created and verifying that the logged-
in user is the one that sends the request to the server, but do not need to visible to the

user.
34

Y S e g Sh ey
QOO NOUIBERWNROOVONOUTIDRWN -

WRNDNDNNNDNDNDNDN
CORONANUTIHAWN -

WL w
W=

ww
GRS

w W
N O

<dv.action name="add-a-spot-form">
<h2 id="add-a-spot">Add a spot:</h2>
<dv.link href="/">&1t; Back to home</dv.link>
<dv.tx>
<dv.gen-id />
<dv.status savedText="New spot saved"/>
<geolocation.create-marker id=dv.gen-id.id
title=$marker?.title
latitude=$marker?.latitude
longitude=$marker?.longitude
mapId="mainMapId"
titleLabel="Name"
showOptionToSubmit=false />
<label.attach-labels itemId=dv.gen-id.id
inputLabel="Category"
showOptionToSubmit=false />
<property.create-object id=dv.gen-id.id
showOptionToSubmit=false />
<p>Review</p>
<rating.rate-target sourceId=$loggedInUserId targetId=dv.gen-id.id
execOnClick=false />
<comment.create-comment authorId=$loggedInUserId targetId=dv.gen-id.id
inputLabel=""
showOptionToSubmit=false />
<reputation.create-score sourceId=$loggedInUserId
targetId=$loggedInUserId
value=1
hidden=true />
<follow.create-publisher id=dv.gen-id.id
showOptionToSubmit=false hidden=true />
<authorization.create-resource id=dv.gen-id.id
ownerId=$loggedInUserId hidden=true />
<authentication.authenticate id=$loggedInUserId hidden=true />
<dv.button class="btn btn-primary">Submit spot</dv.button>
<dv.callback defaultHref="/profile" onExecSuccess=true hidden=true />
</dv.tx>
</dv.action>

Figure 10: The HTML code necessary for the add-a-spot-form action. The atoms created by each cliché
action in the transaction are “bound” to each other by the ID generated by the dv.gen-id action.

We can also modify the default presentation of the cliché actions. For example,
the original SweetSpots application did not have any placeholders in the review input
element, but the default placeholder of the input field of the create-comment action

is “Write your comment”. To replace the placeholder, we put an empty string as the

35

value to the inputLabel input as shown in Figure 10: line 23. Similarly, most cliché
actions that modify state have a submit button, but when combined with other cliché
actions, we want to hide the individual submit buttons. This is done by setting the
showOptionToSubmit input to false and including a dv. button element to execute

all of the actions in between the dv.tx tags (e.g. Figure 10: line 13).

Upon a success, a confirmation message can be shown to the user before being
redirected to another page. In SweetSpots, the user sees the “New spot created!”
message after a spot was successfully created because the dv.status tagis also
included inside of the dv . tx tags (Figure 10: line 6). To redirect a user to another
page upon success, the dv.callback action is nested inside of the dv.tx tags,
specifying the new location with the defaultHref input as shown in Figure 10: line

35.

2.4.5. Displaying the Resources (Spots)

Once we have created a resource, we should be able to view them using one or more
show- cliché actions. In Figure 6, a user could see a list of spots that they created,
reviewed and favorited on their profile page. This section explains how we enable the
Spot viewing functionality in SweetSpots; in particular, we show how to only display

Spots authored by the logged in user.

We could use a show- action from any one of the eight clichés used to in the
creation of a Spot. However, these show- actions will list all Spots created, not just the

ones created by the logged in user. To filter the Spots by author, we can use the show-

36

OO UTHAWN =

resources action of the Authorization cliché, ensuring to set the createdBy input as
the ID of the logged in user. At this point, the user will see a list of Spot IDs and author
IDs. This is because the show-resources action uses the show-resource action by

default which only displays information stored in Authorization’s resource collection.

However, we want to show the name of the Spot, a link to its details page, its average

rating and the number of times it was rated and reviewed.

<dv.action name="show-user-profile-details">
<div class="container">

<h3>Posted Spots</h3>

<authorization.show-resources createdBy=$loggedInUserId
noResourcesText="You haven't created any spots yet."
showResource=<sweetspots.show-spot id=$id /> />

</div>
</dv.action>

Figure 11: Users can see spots that they created using the authorization.show-resources cliché action
and replacing the default show-resource action to show more information about the Spots.

To do this, we replace the default show-resource action that the show-
resources action uses to render the individual elements with an app action called
show-spot. This is shown in Figure 11: line 8, where the show-spot action will use
the ID that the show-resources action initially passes to the show-resource action.
Using this ID (signified as an input by $id), the cliché actions inside of the show-spot
action can load the relevant information. For example, the geolocation.show-

marker action uses the $id input to load the name of the Spot (Figure 12: line 4) and

37

[Y = J S g e g SR Y
QOO NOUTRARWNROOUONOUTES WN -

the rating.show-average-rating cliché action uses it to load the average rating of

the target that is associated with the Spot (Figure 12: lines 14 and 18).

<dv.action name="show-spot">
<h4>
<geolocation.show-marker class="inline-block"
id=$id
showId=false
showLatLong=false
showMapId=false /> |
<dv.link href="/spot-details" params={ id: $id } class="inline-block">
Details
</dv.1link>
</h4>
<p>Average Rating:
<rating.show-average-rating class="inline-block"
targetId=%$id
showStars=false
showNumRatings=false />

<rating.show-average-rating targetId=$id showValue=false />
</p>
</dv.action>

Figure 12: The show-spot app action shows the name and average rating of the Spot, given an ID.

2.4.6. Styling the Application

Users can style applications built with Déja Vu by writing their own CSS rules, using

themes or using third party Ul component libraries.
Writing Custom CSS

This method of styling applications is the most powerful because it can override
previous rules from stylesheet imports. Custom CSS, for example, allows us to modify

the colors, position and size of HTML elements in an application.

38

Employing Third-Party Frameworks

When we build our clichés, we sometimes use external libraries that require styling
that they package and distribute as CSS files. Most of our cliché actions use Angular
Material and Bootstrap components and thus, we require users to import these
stylesheets in their application’s main stylesheet (styles.css). Since we are using
the Rating and Geolocation clichés in SweetSpots, we also need to import stylesheets

from external libraries*. These imports are shown in Figure 13.

RPOVOVONOUIBRWN R

=

/* Default */
@import "~@angular/material/prebuilt-themes/indigo-pink.css";
@import "~bootstrap/dist/css/bootstrap.min.css";

/* Rating */
@import "~css-star-rating/dist/css/star-rating.min.css";

/* Geolocation */

@import "~leaflet/dist/leaflet.css”;

@import "~leaflet-routing-machine/dist/leaflet-routing-machine.css";
@import "~leaflet-control-geocoder/dist/Control.Geocoder.css";

Figure 13: SweetSpots’ main stylesheet includes imports from external Ul frameworks.

Using Pre-Defined Themes

To help users style their applications and transfer the stylings from one app to
another, we proposed developing a series of themes for common app components,
e.g. navigation bars, login pages, register pages and profile pages. This involved

creating style sheets with special identifiers for use in applications.

4 Currently, users have to read the cliché documentation to figure out what stylesheets (if any) they
need to import. In future iterations of Déja Vu, we intend to make it easier to import necessary
stylesheets by either packaging them with the cliché or creating a master spreadsheet with all styles
necessary for the clichés to work.

39

We made a prototype for navigation bars which typically include the title of
the app, section names, the name of the signed in user and a sign out button. To use
the theme, the user needs to import it into the application’s main stylesheet
(styles.css) and use the structure shown in Figure 14 to render the SweetSpots
navigation bar. The navigation bar’s contents must be wrapped in a <nav> element
with the navbar class. Each navigation item, e.g. links and buttons, in the navigation
bar is defined with the navbar-item class. These navbar-items must be wrapped

inside of a div or ul element with the navbar-items-1ist class.

40

Y S e g Sh ey
QOO NOUIBERWNROOVONOUTIDRWN -

WRNDNDNNNDNDNDNDN
CORONANUTIHAWN -

WwWwww
U WN =

wWwWwww
oo\ o)l

NN
L wWNER O

<dv.action name="navbar" loggedInUserId$=authentication.logged-in.user.id

searchResults$=1abel.search-items-by-labels.searchResultItems>

<nav class="navbar navbar-light">
<div class="navbar-items">
<div class="navbar-item navbar-header">
<dv.link class="sweet-spots-heading" href="/main">
Sweet Spots
</dv.link>
</div>

<div class="navbar-item navbar-left search">
<label.search-items-by-labels hidden=!$showSearch />
</div>

<dv.if condition=authentication.logged-in.user>
<div class="navbar-item navbar-right">
<div class="btn-toolbar toolbar">
<dv.tx>
<authentication.sign-out class="navbar-signout”
buttonLabel="Logout"/>
<dv.link href="/login" hidden=true />
</dv.tx>

<dv.link href="/profile"
class="mat-button btn btn-info profile-btn">
My Profile
</dv.link>
</div>
</div>
<div class="navbar-item navbar-right">
Hello,
<authentication.show-user class="inline"
user=authentication.logged-in.user
showId=false />!

</div>
</dv.if>

</div>
</nav>
</dv.action>

Figure 14: The HTML code used to render the navigation bar in SweetSpots. DV's navbar theme styling
will be applied to it because it follows certain rules, e.g. every element inside of the <nav> tags must

have the navbar-item class.

41

42

Chapter Three:
Augmenting the Cliché Library

The cliché library is an integral part of Déja Vu because it provides out-of-the-box
functionality and ready-to-use components complete with a user interface wired up
to a server for processing and fetching data. Since one of the main goals of this project
was to support the development of social applications, it was very important to
augment the existing cliché library with some new clichés and actions. These
modifications are highlighted in Table 3. This chapter lists our contributions to the

library and describes the process of adding clichés and actions to the library.

Cliché Actions
Allocator Create Allocation, Delete Resource, Edit Consumer, Show
Consumer

Authentication | Authenticate, Change Password, Choose User, Logged In, Register
User, Show User, Show Users, Show User Count, Sign In, Sign Out
Authorization | Add/Remove Viewer, Add Viewer, Can Edit, Can View, Create
Resource, Delete Resource, Remove Viewer, Show Owner, Show
Resource, Show Resources (filter by creator), Show Resource
Count

Comment Create Comment, Delete Comment, Edit Comment, Show
Comment (given an object, an ID or target and author IDs),
Show Comments, Show Comment Count

Event Choose and Show Series, Create Event, Create Series, Create
Weekly Series, Delete Event, Show Event, Show Events (filter by
date), Show Event Count

Follow Create Message, Create Publisher, Edit Message, Follow/ Unfollow,
Show Follower, Show Followers, Show Follower Count, Show
Message, Show Messages, Show Message Count, Show Publisher,
Show Publishers, Show Publisher Count

43

Geolocation Create Marker, Delete Marker, Display Map (now supports
Leaflet + Google maps), Get Current Location, Show Marker (by
ID), Show Markers (filter by radius), Show Marker Count

Group Add to Group, Choose Group, Create Group, Delete Group, Input
Member, Join/ Leave, Show Group, Show Groups (filter by
member), Show Group Count, Show Member, Show Members,
Show Member Count, Stage

Label> Attach Labels, Create Label, Search Items by Labels, Show
Item, Show Items, Show Item Count, Show Label, Show Labels,
Show Label Count

Match Attempt Match, Create Match, Delete Match, Show Attempt,
Show Attempts, Show Match, Show Matches, Withdraw
Attempt

Passkey Create Passkey, Logged In, Show Passkey, Sign In, Sign Out,
Validate

Property Choose Object, Create Object, Create Objects, Create Property,
Object Autocomplete, Show Object, Show Objects, Show URL

Ranking Create Ranking, Show Fractional Ranking, Show Ranking, Show
Rankings, Show Target

Rating Delete Rating, Delete Ratings, Rate Target, Show Average Rating,
Show Rating, Show Rating Count, Show Ratings by Target

Schedule Create Schedule, Delete Schedule, Show All Availability, Show
Next Availability, Show Schedule, Show Slot, Show Slots,
Update Schedule

Scoring Create Score, Delete Score, Delete Scores, Show Score, Show
Target (of a score), Show Targets by Score (of a source), Update
Score

Task Approve Task, Claim Task, Complete Task, Create Due Date, Create
Task, Create Task for Assignees, Input Assignee, Show
Assignee, Show Task, Show Tasks, Show Task Count, Stage,
Update Task

Transfer Add to Balance, Create Item Count, Create Transfer, Input Amount,
Input [tem Counts, Input Money, Show Amount, Show Balance,
Show Item Count, Show Item Counts, Show Transfer, Show
Transfers

Table 3: The cliché catalog contains 18 clichés, each with a set of related actions. The cliché and action
names highlighted in bold were introduced during research for this thesis.

5 Some code for the label cliché existed before my joining this project. However, I had to reimplement it
and add new actions.

44

3.1. Identifying and Designing New Clichés

As applications were built with Déja Vu, we sometimes discovered that there wasn’t a
cliché in the library that supported a scenario in an application. In SweetSpots, users
should be able to add Category tags to Spots, but at the time of its development with
Déja Vu, there was no cliché that allowed users to do so. Since many applications use
the concept of a label (e.g. labels in Gmail®, product types in Amazon, hashtags in
Twitter?), we considered adding it to the catalog. However, before implementing a

new cliché, we must ensure it meets a set of standard cliché design criteria.

A cliché must be motivated by a purpose, unique to those that already exist in
the catalog. Its data model must be simple, yet rich enough to build applications.

Lastly, actions in a cliché collectively must help achieve a cliché’s purpose.

Let us consider the conceptual design of the Label concept, shown in Figure
15, that we will use to create our cliché. The purpose of the Label concept is to
categorize items for easier lookup. The data model (or structure) of the Label
concepts consists of two collections: Labels and Items. A Label can be mapped to zero
or more Items, while an Item must have at least one Label. The behavior of the Label
concept describes actions that the user can take in relation to Labels and Items. An

example of a behavior of the Label conceptis addLabelsToItem. If the item hasn’t

6 Gmail. http://mail.google.com/mail/
7 Twitter. https://twitter.com/
45

http://mail.google.com/mail/
https://twitter.com/

already been tagged by any of the input labels to the addLabelsToItem behavior, the

item is added to the items collection of all labels that meet this criterion.

Title: Label

Purpose: Categorize items for easier lookup

Structure:
Behavior:

addLabelsToltem(labels: Label[], item: Item): Boolean
requires: item not in label.items

effects: V 1: Label in labels, Litems += item

removeLabelFromItem(label: Label, item: [tem): Boolean
requires: item in label.items

effects: label.items -= item

deleteltem(item: Item): Boolean
requires: item in Litems for some 1: Label

effects: V I: Label, Litems -= item

searchltemsByLabels(labels: Label[]): Item[]

effects: {i: Item | label in i.labels }

Tactic:

If you add a label 1 to an item i, and later search for label | without removing the label
from i in the meantime, then the result of the search will include i.

Figure 15: The conceptual design of the Label concept.

46

3.2. Implementing New Clichés

Once the design has been finalized, the cliché can be implemented. Using Déja Vu's
CLI, we can generate necessary configuration files, boilerplate code for the schema
and server, and create-, show-, update- and delete- actions for the concept that
the cliché represents. Typically, this is not enough to support all of the necessary

actions for the cliché but it is a good starting ground. Next steps include:

a) Designing the schema
b) Implementing the server-side code

c) Designing the Ul components

Figure 16 shows how these files interact together when a user a interacts with the Ul

component of a cliché action.

“Attach eval/ exec query/ read/ write
Attach label food to item pizza | Labels” request mutation access
_ TS a ,| Schema Server | 3¢C€ss

e e st | e s —

show data/ | requested | 777 | response response
message return
values

Figure 16: From left to right, when a user clicks the "Attach Labels" button in the rendered Ul
component, a request is sent to the cliché server and a query/mutation resolver is called depending on
the GraphQL schema. Upon success, the database returns the value requested by the cliché action and

updates the Ul component accordingly.

47

3.2.1. Defining the schema

The first step in implementing a cliché is the design of the API that is used to send
requests to and responses from cliché server and its action components respectively.
The data model and specifications from the conceptual design of the cliché easily
translates to a schema and queries and mutations with GraphQLS8. Figure 17 shows
the GraphQL schema for the Label cliché. To describe the data that can be fetched
from the database, we define a Label object type like in lines 2 - 5 in Figure 17. This
Label object type has two fields: a non-nullable ID and an array of IDs representing

items that have that label.

The specifications translate to the Query and Mutation object types in the
schema. To fetch a single label with scalar ID value, we include 1label(id: ID!):
Label in the Query object type. For queries and mutations that require a more
complex object as a parameter, we need to define input types, which are very similar
to regular object types. For example, the input of the addLabelsToItem mutation is
of the AddLabelsToItemInput type that must contain a non-nullable item ID and an

array of non-nullable label IDs.

8 GraphQL. https://graphql.org/
48

https://graphql.org/

Y S e g Sh ey
QOO NOUIBERWNROOVONOUTIDRWN -

WRNDNDNNNDNDNDNDN
CORONANUTIHAWN -

BAWWWWWwWwwww
RPOOVWONOUITARWNE

type Label {
id: ID!
itemIds: [ID]
}

If no labels are provided, all items will be returned.
Otherwise, only items with all specified labels will be returned.
input ItemsInput {

labelIds: [ID]

}

If no itemId provided, all labels will be returned.
Otherwise, only labels of the given item will be returned.
input LabelsInput {

itemId: ID

}

input AddLabelsToItemInput {
itemId: ID!
labelIds: [ID!]

}

input RemovelabelFromItemInput {
itemId: ID!
labelId: ID!

}

type Query {
label(id: ID!): Label
labels(input: LabelsInput!): [Label]
labelCount(input: LabelsInput!): Int
items(input: ItemsInput!): [ID]
itemCount(input: ItemsInput!): Int

}

type Mutation {
createLabel(id: ID!): Label
addLabelsToItem(input: AddLabelsToItemInput!): Boolean
removeLabelFromItem(input: RemovelLabelFromItemInput!): Boolean
deletelLabel(id: ID!): Boolean

}

Figure 17: The schema for the Label cliché. The Label type represent atoms in the Label database
collection. The inputs of the query and mutation types are specified to indicate what the server is

expecting.

49

3.2.2. Implementing the server-side code

The code that executes these queries and mutations with the MongoDB database lives
in the server file. In this file, we can not only create indices for faster lookup, but also
impose constraints (e.g. label IDs must be unique and labels can only have unique
item IDs) in the non-relational database. The server-side code for the Label cliché can

be found in Appendix A.1.

3.2.3. Designing the Ul components

For each query and mutation in our GraphQL schema, there must be a client-facing Ul
component. Like Angular components, the code for the cliché actions are separated

into HTML, TypeScript and CSS files.
HTML File

The HTML file contains the layout of the cliché action. Actions that mutate state are
often presented as forms, while those that display state only show values that are not
undefined. When designing actions like show-1abels, it is important to use the child
component (e.g. show-1abel) so that they can easily be replaced in applications if

necessary.
CSS File

This is where cliché action-specific styling, e.g. setting the color of the success

message to be green, is defined.

50

TypeScript File

The inputs and outputs of a cliché action are listed in its TypeScript file, in addition to
the code responsible for sending requests to and receiving responses from the cliché
server. Code that is run when a transaction is executed lives inside of the

dvOnExec () function. Similarly, code that is run on evaluation is written in the

dvOnEval() function.

The pre-generated create-1label, show-1abel and delete-1label actions
were updated based on the desired behavior and new cliché actions, e.g. add -
labels-to-itemand show-1labels, were generated using the CLI. The update-
label action was removed from the cliché library because one should not be able to
edit a label. If the Label object type contained both ID and name values, then it would

make sense to have an update-1label action.

Consider the show-1abels action. In the TypeScript file, we define inputs for
filtering the labels by item ID, modifying the message when there are no labels and
replacing the default show-label action. Since we want to be able to use the show-
label action in show-1abels, we defined a public anchor variable showLabels that is
necessary for the dv-include action in the HTML code. An output variable
loadedLabels is also defined so that users can access this value and use it as input
into another cliché or app action. Once the component loads and a connection is made
with the cliché server, it executes the code inside of the dvOnEval block (Figure 26:
lines 69 - 86). This sends a GET requires to the server with the inputs to the action

51

and the desired format of the response. Once the labels are loaded, the component is
re-rendered and the contents of the labels, i.e. IDs and item IDs, are displayed in the
browser. The HTML and TypeScript code for show-1abels can be found in Appendix

A2.

3.3. Adding Actions to Existing Clichés

Sometimes, we have all of the clichés necessary to build a certain application, but
they are missing some actions needed to replicate all of the functionality of the
application of interest. For example, to support the scenario in SweetSpots where
Alice deletes the spot, we needed to add missing delete actions to clichés, e.g.

delete-marker in the Geolocation cliché.

The process for adding an action to an existing cliché is similar to
implementing cliché actions upon cliché creation. The cliché developer uses the CLI to
generate the files for the new action. These files, in addition to the schema and server

code, must be edited to deliver the desired behavior.

52

Chapter Four:
Social Application Experiments

To evaluate the cliché library’s ability to create social applications, we re-created six
sample social-media applications, including SweetSpots. These applications were
selected from the top twelve final projects of a popular undergraduate web
development course at MIT. The teaching assistants, who are not associated with this
project, identified these projects as the best in the class because of the clever
manipulation of data, usage of APIs and UI/ UX. In this chapter, we will describe the
sample social applications that were built with Déja Vu and give examples that

highlight the power of the Déja Vu platform.

4.1. MapMIT

MapMIT, shown in Figure 18, displays on-campus events in a map, so that students
can see publicized events. Users can create events and restrict visibility to certain
groups of people. Users are also offered the option to join/ leave events. To replicate
its core functionality, we used the Authentication, Authorization, Event, Geolocation,
Group and Property clichés. Modelling an event as a group in the Group cliché
allowed us to restrict visibility of events to groups of individuals. This was done by
checking to see if the logged in user was a member of the group that was associated

with the event.

53

mapMIT
]
‘ e

My Events Groups | Own Groups I'm In

Post Grad Event Post Grad Event Post Grad Event

Loavo Group
Host: alice alice

Description: Colebrate graduating!

Time: Fri Jun 7, 2019 2:00 PM - 5:00 PM
Location: Post Grad Event

Room Number: wis Add User
Location Description: Kresge Auditorium -

e

Leave Group

None
alice

ben

Figure 18: The login, events and group pages in MapMIT.

4.2. Rendezvous

Rendezvous is an event coordinator and explorer for MIT students while they are off-
campus. It helps MIT students foster connections with other students during their
time away from MIT. Users can create events and see a list of nearby events in their
feed or on the map as shown in Figure 19. Unlike other applications that used the
Geolocation cliché, Rendezvous was the first to restrict the locations to a 50-mile
radius of the user’s current location. Thus, we added a new input “radius” to the
geolocation.display-map action to filter markers within “radius” miles. If the
“radius” input is left undefined, the geolocation.display-map action loads all of
the markers for that map. As we continued to build applications, this modification
proved beneficial. For example, Phoenix uses proximity as one of the criteria to

suggest matches to users.

54

vvvvvvvvvv

MIT @ Disney

EVENTS

AllEvents

MIT @ Disney
Goto event detail

Attendees 1

Figure 19: Creating and viewing an event in Rendezvous.

4.3. Potluck

Potluck is a party planning application to better organize party details, such as
location, host information, guest lists and supplies. Hosts can list supplies necessary
for the party and guests can indicate the quantity of items that they are willing to
contribute. The Transfer cliché was used with a dv. stage action to support the

scenario where users queue items that they would like to claim, as shown in Figure

20.

55

€ Backto Your Parties.

Create a New Party

Graa Party 52272019] £ alice SignOut

G7 Lounge 10:00 AM

2 Grad Part;
Smron - Your Parties Y
Combmine o oman Srare019 Cl (3 Date: Wed May 22, 2019 10:00 AM - 2:00 PM
Invited List Supply List

No member tem Quantity Unit

parkling 4 bottles

Add Supply

Create Party

Figure 20: Creating a new party with Potluck; Adding registered members to a party's guest list.

4.4. LiveScorecard

With LiveScorecard (Figure 21), individuals can host climbing competitions and allow
participants to log their scores so that others can see the leader board in real-time.
This application featured a unique authentication system, such that climbers required
a competition code and climber code to sign in and log their scores, and spectators
could only view the leader board if they had the code for the competition. This
necessitated the creation of the Passkey cliché in which a user’s passkey served both

as an identifier and password.

56

ben bitdiddle

Welcome to Live ScoreCard

carlos santana

Figure 21: Climbers must login with both a competition and a climber code; Hosts, climbers and
spectators can view the leaderboard of a competition.

4.5. Phoenix

Phoenix connects people afflicted with depression if they share similar interests, are
located within each other’s comfort range and have overlapping availabilities.
However, users are only connected if they indicate interest in each other (as in dating
apps like Tinder?). Thus, we had to create a Match cliché to support this scenario
(Figure 22: right). Similarly, we had to create a Schedule cliché (Figure 22: left) so
that users could indicate their availability and then determine if there were any

overlaps amongst the availabilities of all registered users.

9 Tinder. https://tinder.com/
57

https://tinder.com/

Availability About alice

BB venno CEEEEEE | ey

We're looking for new connections for you!
y

- odm e we ™ w N -*' Your Connections
o
w00 [About ben - / want to help someone
o = Topk () ben s topkcs of nterest
B Already Chosen Topics roviry
L] - peres —
oo | e - i
Dashboard ‘ o Dashboard
Personal e ol | Personal S———
Journal o | Journal
FAQ w0 —Q w0 eomeO w0 FAQ Your Suggestions
| -0
a0 T | e
o ‘
v

Figure 22: A user’s profile page including their personal information, topics of interest and availability
for the week; Alice and Ben indicated interest in each other and are now connected.

4.6. SweetSpots

SweetSpots crowdsources and aggregates opinions about points of interest around

the MIT campus. The SweetSpots application is discussed in greater detail in Section

2.4

58

Chapter Five: Experience

This chapter summarizes our experience augmenting the cliché library and building

applications using Déja Vu.

5.1. Designing and Implementing Clichés

The following describes our experience designing and implementing new clichés for

the catalog.

As described in Section 3.1, designing new clichés can be quite challenging.
Interestingly, it took more time to design new clichés than to implement them. This
often involved many conversations, whiteboard discussions and design revisions.
Although it may have seemed overwhelming at times, we valued the importance of
this process because we wanted to ensure that there was no overlapping functionality

with an existing cliché.

In general, it is good practice to follow some standard when implementing
user interfaces. However, as both a cliché and application developer, the importance
of standardization became even more apparent. For example, when an individual
implements a cliché, it is common to include create-, update-, delete- and show-
actions. In addition, there are usually two show- actions - one to display a single item
and another to display multiple. It has also become common practice to ensure that

the action that displays multiple items uses the one that displays only one item. There

59

is also a pattern for the inputs and outputs of the cliché actions. Inputs usually involve
resource identifiers (e.g. id) and presentation modifiers (e.g. showOptionToSubmit),
and outputs should be of the form “loadedResource”. Thus, when the end-user
builds application, they can rely on this standardization to build their applications

quickly without constantly having to reference the documentation.

5.2. Reusing Clichés in Different Contexts

One of the most powerful features of Déja Vu is the ability to use the same clichés to
support different scenarios across multiple applications. Table 4 provides a

breakdown of the clichés used in each sample social application built with Déja Vu.

Over half of the social applications used the Event cliché to help schedule
events, but the cliché wasn’t explicitly mapped to an event concept in all applications.
For example, LiveScorecard models an event in the Event cliché as a competition so
that we can indicate start and end times for climbing competitions. In MapMIT, the
Event cliché is used in the more traditional sense, i.e. it is used to plan events for

social gatherings.

In four of the six applications, the Group cliché is used to organize members
into groups so that they can be handled collectively. Potluck uses this cliché to
support guest list functionality. LiveScorecard, on the other hand, uses three
instances of the Group cliché to manage hosts, climbers and climbs separately in a

competition.

60

The Label cliché was typically used in most applications to classify items for
quicker lookup. In SweetSpots, Spots are given categories so that users can narrow
their search for a “sweet spot”. The Label cliché is used in the Phoenix application so
that users can indicate topics that they would like to discuss with others. Matches are
suggested to users based on an overlap of users’ interests. Although the concepts in
the applications, categories and topics, have different names, they aim to achieve a

similar goal.

Our last example of cliché reuse involves the Scoring cliché in LiveScorecard
and SweetSpots. [t is used to keep track of the points logged by climbers in
LiveScorecard. SweetSpots uses two instances of the Scoring cliché to keep track of

the number of upvotes of a review and to keep track of a user’s reputation.

Some clichés however, e.g. Match and Schedule, are only used once. This is
understandable given the different goals of the applications. It is also possible that the
students envisioned additional functionality, e.g. matching based on location in
Rendezvous, to their applications, but were constrained by the time allotted for the

final projects.

61

MapMIT | Rendezvous | LiveScorecard | Potluck Phoenix SweetSpots
Authentication 1 1 1
Authorization 1 1 1
Comment 1 1
Event 1 1
Follow 1
Geolocation 1 1
Group
Label 1
Match
Passkey
Property 1
Ranking
Rating 1
Schedule
Task 1
Transfer
Total 8 7 8
Total Instances 9 13 8

Table 4: The clichés used to build the social applications.

5.3. Incrementing Functionality in Applications

Without Déja Vu, adding new concepts to an application requires the developer to

design a new schema and AP], and create new front-end components. Sometimes, the

developer has to modify the application’s architecture to support some new

62

functionality. With Déja Vu, incrementing functionality of applications is as easy as

adding the desired cliché concept to the application’s dvconfig. json file.

For example, the Phoenix application was built in two stages - without and
with the Schedule cliché. Initially, the Schedule cliché did not exist in the library, so
we replicated parts of the application unrelated to scheduling. Once the Schedule
cliché was designed and implemented, we added it to the Phoenix application by
including it in the usedCliches object in the configuration file and added the

necessary cliché actions to the relevant app actions.

63

64

Chapter Six:
Related Work

Déja Vu is not the only platform seeking to make it easier for individuals to design
and build social web applications. Content Management Systems and research
projects, such as Chorus [2] and the Ur/Web People Organizer [3], have all attempted
to solve this problem with varying degrees of success (in terms of ease of use,

richness of library components and adoption).

Content Management Systems, like WordPress1? and Drupal Cloud!?, are widely
used to publish content on the web due to the ease of use of WYSIWYG builders.
Popular social applications built with WordPress, e.g. blogs by major tech companies
such as Glassdoor!?, Yelp13 and Facebook!# [4], are built by experienced individuals,
often using plugins such as Shortcake!> and BuddyPress!¢ [5]. Figure 23 shows an
example of how common functionality in social applications are added to WordPress
sites. Similarly, individuals and organizations have used Drupal Cloud to create social

applications like Pinterest!” [6] [7] and Global Dev Hub8 [8]. Social applications built

10 WordPress. https://wordpress.org/

11 Drupal Cloud. https://www.drupal.org/

12 Glassdoor. https://www.glassdoor.com/blog/

13 Yelp. https://blog.yelp.com

14 Facebook. https://newsroom.fb.com/

15 Shortcake (Shortcode UI). https://wordpress.org/plugins/shortcode-ui
16 BuddyPress. https://wordpress.org/plugins/buddypress/

17 Pinterest. https://www.pinterest.com/

18 GlobalDevHub. https://www.globaldevhub.org/

65

https://wordpress.org/
https://www.drupal.org/
https://www.glassdoor.com/blog/
https://blog.yelp.com/
https://newsroom.fb.com/
https://wordpress.org/plugins/shortcode-ui/
https://wordpress.org/plugins/buddypress/
https://www.pinterest.com/
https://www.globaldevhub.org/

on top of Drupal tend to use similar modules, e.g. Open Social project!?, which
provides features such as user profiles, groups, events, notifications and chat [9].
However, the problem of sharing information among plugins still arises, forcing users
to write additional code, look for a plugin with the desired functionality or abandon
the idea. Déja Vu features a composition mechanism that sets it apart from Content

Management Systems.

For example, in SweetSpots, users accrued “reputation” based on the number of
posts and comments they made, as well as the number of times users favorited their
post and number of votes they received on their comments. Since the posts and
comments are separate entities, there is no easy way to keep track of these scores in
WordPress or Drupal Cloud. This problem is easily solved by Déja Vu. Clichés and
actions in Déja Vu can communicate with each other with its unique binding
mechanism, allowing a single item to be mapped to multiple clichés. With Déja Vu, the
user can keep track of a user’s “reputation” using the Property, Comment and Scoring
clichés, such that when an update is made to a post or comment, the user’s reputation

is updated.

19 Open Social. https://www.drupal.org/project/social

66

https://www.drupal.org/project/social

P14 New oftpedia [5]
Help
@ Dashboard Components ~ Pages Settings
b g All | Active | Inactive | Must-Use | Retired
B3 Media Companent Description
¥ B Extended Profiles Customize your community with fully editable profile fields that allow your
users to describe themselves.
Comme
Activity =] Account Settings Allow your users to modify their account and notification settings directly from
within their profiles.
Groups
I ¥ 4} Friend Connections Let your users make connections so they can track the activity of others and
Appeal
PI focus on the people they care about the most.
¥ (3 Private Messaging Allow your users to talk to each other directly and in private. Not just limited to
one-on-one discussions, messages can be sent between any number of
Tools members.
Seftings
¥ W Activity Streams Global. personal. and group activity streams with threaded commenting, direct
posting, favoriting, and @mentions, all with full RSS feed and email notification
support.
& ® Notifications Motify members of relevant activity with a toolbar bubble and/or via email, and
allow them to customize their notification settings.
& & User Groups Groups allow your users to organize themselves into specific public, private or
hidden sections with separate activity streams and member listings.
] @ Site Tracking Record activity for new posts and comments from your site.
BuddyPress Core It's what makes time-traval BuddyPress possible!
Community Members Everything in a BuddyPress community revolves around its members.
Component Description
Save Settings
ting with WordPress. Version 3.8

Figure 23: With BuddyPress, adding concepts like groups and chat are as easy as checking a
box in WordPress' setting page. Image downloaded from
https://scripts-cdn.softpedia.com/screenshots/BuddyPress_1.png in April 2019.

Like WordPress, the Chorus project2? enables users to create applications with a
WYSIWIG builder [2]. It also introduced the idea of social datatypes, i.e. components

that can be put together to facilitate common conversational patterns. In the designer

20 Chorus. http://www.chorus-home.org
67

http://www.chorus-home.org/

mode, the user can select a combination of these social datatypes - lists, polls, forms,
choices and/or primitive values (or atoms) - to create the desired interface for their
audience. Although these social datatypes can be joined to form components in
Chorus’ Collaborative Document, Chorus still lacks a compositional mechanism for

combining the functionality of individual datatypes into a more complicated one.

The Ur/Web programming model [10] was developed at MIT to facilitate the
creation of modern, secure and dynamic web applications. It is a statically typed
functional programming language that can be compiled to more popular web-specific
languages supported by browsers. Using this model, the Ur/ Web People Organizer
(UPO) platform [3] was created to simplify the creation of applications for organizing
people and events, i.e. it is focused on a different niche (productivity) than the social

niche explored in this thesis.

Although the user can select Ul components from a library in UPO, they are
responsible for specifying the data model and writing a combination of Ur (similar to
ML and Haskell), XML and SQL-like database queries. These components either bind
to the user-defined data model or maintain their own state. With Déja Vu, these
implementation details are abstracted away from the user. To build an application,
the user only has to write HTML and CSS. In addition, the user does not have to worry
about defining any data models for their application since state is maintained by the
individual clichés themselves. Lastly, widgets in UPO are more aligned with basic

input and output structures (e.g. input — generic user input, editGrid - an editable

68

grid, row - a row in a table) and application-specific functionality (e.g. finalGrades -
displays the finals grades of students in a class) than concepts motivated by a

purpose.

69

70

Chapter Seven:
Conclusion

This thesis provides an overview of the Déja Vu platform and describes our
contributions to its cliché library and evaluation. The research conducted as part of
this thesis is important for making the catalog more robust, allowing people to create
complex social applications much faster with Déja Vu than from scratch. Using the
SweetSpots example, we explained how applications are built with Déja Vu and
described the process of augmenting the cliché library. Upon reflection, there were
many successes as well as areas of improvement for this project, and Déja Vu as a

whole.

The Déja Vu platform significantly reduces the time to build an application
from scratch. Each student sample project represented four 6-person weeks-worth of
work while we re-created each within a week. We hope that our building a suite of
sample applications will provide inspiration for users and help reduce the time taken

to build apps of similar caliber even further.

The conceptual design of an application before implementation is an
important part of application development. As a part of the student final projects,
they had to identify and define the main concepts in their applications. Since they

were already defined, there was a clear mapping of concepts to clichés in the catalog.

71

The cliché catalog is not yet complete. For example, we think that Search/
Filter, Log and Recommendation clichés would be helpful additions to the catalog.
However, after briefly reviewing the final project presentations of the Fall 2018
iteration of the same undergraduate web development course, we believe that our
catalog is robust enough to replicate the core functionality of at least the social

applications that were presented.

Overall, I am grateful for the opportunity to collaborate on this project and
firmly believe that it is a powerful tool that can help people create not only social
applications, but also other types of applications. [am in awe of what we are able to

achieve with Déja Vu today and am excited to see how it evolves.

72

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

8]

[9]

D. Jackson, "A new modularity for software,”" November 2018. [Online].
Available: http://people.csail. mit.edu/dnj/talks/splash18/splash-talk-2018-no-
builds.pdf. [Accessed 3 December 2018].

J. L. Chen, Chorus: End User Programming of Social Applications, Cambridge:
Massachusetts Institute of Technology, Department of Electrical Engineering
and Computer Science., 2017.

A. Chlipala, "The Ur/Web People Organizer," 2015. [Online]. Available:
http://upo.csail.mit.edu/. [Accessed 6 December 2018].

WPBeginner, "40+ Most Notable Big Name Brands that are Using WordPress," 8
March 2019. [Online]. Available: https://www.wpbeginner.com/showcase/40-
most-notable-big-name-brands-that-are-using-wordpress/. [Accessed 19 May
2019].

WordPress, "Case Studies - Enterprise WordPress hosting, support, and
consulting - WordPress VIP," WordPress, 2018. [Online]. Available:
https://vip.wordpress.com/case-studies. [Accessed 26 December 2018].

Drupal, "Pinterest | Drupal.org,”" [Online]. Available:
https://www.drupal.org/pinterest. [Accessed 20 May 2019].

A. Stone, "Pinterest for Business | Drupal.org,” 31 October 2017. [Online].
Available: https://www.drupal.org/case-study/pinterest-for-business.
[Accessed 20 May 2019].

GoalGorilla, "GlobalDevHub, an Open Social platform for the United Nations," 5
April 2017. [Online]. Available: https://www.drupal.org/case-
study/globaldevhub-an-open-social-platform-for-the-united-nations. [Accessed
20 May 2019].

GoalGorilla, "Open Social, a Community and Extranet Solution," Drupal, 23 June
2016. [Online]. Available: https://www.drupal.org/case-study/open-social-a-
community-and-extranet-solution. [Accessed 16 December 2018].

[10] A. Chlipala, "Ur/Web: A Simple Model for Programming the Web,"

Communications of the ACM, vol. 59, no. 8, 2016.

73

74

N o T g S g G SR
QOO NOUITRARWNRFROOUONOUITDARWN -

NN NN
B WN -

WNDNDNDNDN
SOOI U

wWww
WN =

WWwWwwww
OO\ ULD

DD LS D
NI WNERO

Appendix A

A.1. The Server-Side Code for the Label Cliché

import {
ActionRequestTable, ClicheDb, ClicheServer, ClicheServerBuilder,
Collection, Config, Context, EMPTY_CONTEXT, getReturnFields

} from '@deja-vu/cliche-server';

import { IResolvers } from 'graphql-tools’;

import * as _ from 'lodash';

import {
AddLabelsToItemInput, ItemsInput, LabelDoc, LabelsInput

} from './schema’;

import { v4 as uuid } from 'uuid’;

interface LabelConfig extends Config {
initiallLabellds: string[];
}

function standardizelLabel(id: string): string {
return id.trim()
.toLowerCase();

}

const actionRequestTable: ActionRequestTable = {
'attach-labels': (extraInfo) => °
mutation AttachLabels($input: AddLabelsToItemInput!) {
addLabelsToItem(input: $input) ${getReturnFields(extralnfo)}
}

'create-label': (extraInfo) => °
mutation CreatelLabel($id: ID!) {
createLabel(id: $id) ${getReturnFields(extraInfo)}
}

J
'search-items-by-labels': (extraInfo) => {
switch (extralInfo.action) {
case 'items':
return °
query SearchItemsByLabel($input: ItemsInput!) {
items(input: $input) ${getReturnFields(extralInfo)}

}

B
case 'labels':
return °
query SearchItemsBylLabel($input: LabelsInput!) {
labels(input: $input) ${getReturnFields(extraInfo)}

}

)

75

47 default:
48 throw new Error('Need to specify extraInfo.action');
49 }
50 }s
51 'show-items': (extralnfo) => °
52 query ShowItems($input: ItemsInput!) {
53 items(input: $input) ${getReturnFields(extraInfo)}
54 }
55 Y,
56 'show-item-count': (extralnfo) => °
57 query ShowItemCount($input: ItemsInput!) {
58 itemCount(input: $input) ${getReturnFields(extralInfo)}
59 }
60 Y,
61 'show-labels': (extraInfo) => °
62 query ShowLabels($input: LabelsInput!) {
63 labels(input: $input) ${getReturnFields(extraInfo)}
64 }
65 Y,
66 'show-label-count': (extraInfo) => °
67 query ShowLabelCount($input: LabelsInput!) {
68 labelCount(input: $input) ${getReturnFields(extralnfo)}
69 }
70 :
71 |3;
72
73 |function getLabelFilter(input: LabelsInput) {
74 const filter = { pending: { $exists: false } };
75 if (!_.isNil(input) && ! .isNil(input.itemId)) {
76 // Labels of an item
77 filter['itemIds'] = input.itemld;
78 }
79
80 return filter;
81 |}
82
83 function getItemAggregationPipeline(input: ItemsInput, getCount = false) {
84 const matchQuery = {};
85 const groupQuery = { _id: @, itemIds: { $push: '$itemIds' } };
86 const reduceOperator = {};
87 let initialvalue;
88
89 if (! _.isNil(input) && ! .isNil(input.labellIds)) {
90 // Items matching all labellds
91 const standardizedLabellds = _.map(input.labellds, standardizelabel);
92 matchQuery['id'] = { $in: standardizedLabelIds };
93 matchQuery['pending'] = { $exists: false };
94 groupQuery['initialSet'] = { $first: '$itemIds' };
95 initialvalue = '$initialSet’;
96 reduceOperator['$setIntersection’'] = ['$$value’, '$$this'];
97 } else {
98 // No label filter
99 initialvalue = [];
100 reduceOperator['$setUnion’'] = ['$$value', '$$this'];
101 }

76

102

103 const pipeline: any = [

104 { $match: matchQuery 1},

105 {

106 $group: groupQuery

107 3,

108 {

109 $project: {

110 itemIds: {

111 $reduce: {

112 input: '$itemIds’,

113 initialvalue: initialvalue,

114 in: reduceOperator

115 }

116 }

117 }

118 }

119 1;

120

121 if (getCount) {

122 pipeline.push({ $project: { count: { $size: '$itemIds' } } });
123 }

124

125 return pipeline;

126 |}

127

128 |function resolvers(db: ClicheDb, _config: LabelConfig): IResolvers {
129 const labels: Collection<LabelDoc> = db.collection('labels');
130

131 return {

132 Query: {

133 label: async (_root, { id }) =>

13%- await labels.findOne({ id: standardizelabel(id) }),

13

136 items: async (_root, { input }: { input: ItemsInput }) => {
137 const res = await labels

138 .aggregate(getItemAggregationPipeline(input))

139 .toArray();

140

141 return res[@] ? res[@].itemIds : [];

142 1,

143

144 itemCount: async (_root, { input }: { input: ItemsInput }) => {
145 const res = await labels

146 .aggregate(getItemAggregationPipeline(input, true))
147 .next();

148

149 return res ? res['count'] : O;

150 1,

151

152 labels: async (_root, { input }: { input: LabelsInput }) => {
153 return await labels.find(getlLabelFilter(input));

154 1,

155

156 labelCount: (_root, { input }: { input: LabelsInput }) => {

77

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

return labels.countDocuments(getLabelFilter(input));

}
}s
Label: {
id: (label: LabelDoc) => label.id,
itemIds: (label: LabelDoc) => label.itemIds
}s
Mutation: {
addLabelsToItem: async (
_root, { input }: { input: AddLabelsToItemInput },
context: Context) => {
const labellds = _.map(input.labelIlds, standardizelLabel);
const updateOp = { $push: { itemIds: input.itemId } };
const errors = await Promise.all(_.map(labellds, async (id) => {
try {
// cannot use updateMany because we need to upsert labels
await labels.updateOne(context, { id }, updateOp, { upsert: true });
return undefined;
} catch (err) {
console.error(err);
return err;
}
0);
if (errors.filter((err) => !lerr).length === 0) {
return true;
}
const errMsg = _.reduce(errors, (prev, curr, index) => {
if (lcurr) {
return prev;
}
const delimiter = index ? ', ' : '';
return ~${prev}${delimiter}${labelIds[index]}";
}, 'Could not add the following labels to the item: ');
throw new Error(errMsg);
¥
createLabel: async (_root, { id }, context: Context) => {
const labelId = id ? standardizelLabel(id) : uuid();
const newlLabel: LabelDoc = { id: labelld };
return await labels.insertOne(context, newlLabel);
}
}
}s

}

const labelCliche: ClicheServer = new ClicheServerBuilder('label')
.initDb(async (db: ClicheDb, config: LabelConfig): Promise<any> => {
const labels: Collection<LabelDoc> = db.collection('labels");
await labels.createIndex({ id: 1 }, { unique: true, sparse: true });

78

212
213
214
215
216
217
218
219
220
221
222
223
224

await labels.createIndex({ id: 1, itemIds: 1 }, { unique: true });
if (!_.isEmpty(config.initiallabelIds)) {
return labels.insertMany(EMPTY_CONTEXT,
_.map(config.initiallLabelIds, (id) => ({ id: id })));
}

return Promise.resolve();

)

.actionRequestTable(actionRequestTable)
.resolvers(resolvers)
.build();

labelCliche.start();

Figure 24: The server-side code that interfaces with the database for the Label cliche.

79

80

=
B WNRFROOVONAUTRWN -

OCONOUTHARWN -

A.2. show-labels Cliché Action

<ul *ngIf="_labels & & _labels.length > 0" class="1list-group">
<1li *ngFor="let label of _labels" class="list-group-item">
<dv-include
[action]="showLabel"
default-showlLabel="{ tag: label-show-label }"
[inputs]="{1label: label}"
[parent]="showLabels">
</dv-include>

</1i>

<div *ngIf="! labels || _labels.length === @">
{{noLabelsToShowText}}

</div>

Figure 25: The HTML code for the show-labels cliché action. Users can replace the show-label action
with another cliché or app action.

import {
AfterViewInit, Component, ElementRef, EventEmitter, Inject, Input, OnChanges,
OnInit, Output, Type

} from '@angular/core’;

import {
Action, GatewayService, GatewayServiceFactory, OnEval, RunService

} from '@deja-vu/core’;

import * as _ from 'lodash’;

import { ShowLabelComponent } from '../show-label/show-label.component’;

import { API_PATH } from '../label.config';
import { Label } from '../shared/label.model’;

interface LabelsRes {
data: { labels: Label[] };
errors: { message: string }[];

}

@Component ({
selector: 'label-show-labels',
templateUrl: './show-labels.component.html’,
styleUrls: ['./show-labels.component.css"']
b
export class ShowLabelsComponent implements AfterViewInit, OnEval, OnInit,
OnChanges {
// Fetch rules
@Input() itemId: string | undefined;

// Presentation inputs

81

@Input() noLabelsToShowText = 'No labels to show';

@Input() showLabel: Action = {
type: <Type<Component>>ShowLabelComponent

}s

@0output() labels

new EventEmitter<Label[]>();

_labels: Label[] [1;
showlLabels;
private gs: GatewayService;

constructor(
private elem: ElementRef, private gsf: GatewayServiceFactory,
private rs: RunService, @Inject(API_PATH) private apiPath) {
this.showlLabels = this;

}

ngOnInit() {
this.gs = this.gsf.for(this. elem);
this.rs.register(this.elem, this);

}

ngAfterViewInit() {
this.load();

}

ngOnChanges() {
this.load();

}

load() {
if (this.cankval()) {
this.rs.eval(this.elem);
b
}

async dvOnEval(): Promise<void> {
if (this.cankEval()) {
this.gs.get<LabelsRes>(this.apiPath, {

params: {
inputs: JSON.stringify({
input: {
itemId: this.itemId
}
3
extraInfo: { returnFields: 'id' }
}
)

.subscribe((res) => {
this._labels = res.data.labels;
this.labels.emit(this._labels);

s

82

86
87
88
89
90
91

}

private canEval(): boolean {
return !!(this.gs);
}
}

Figure 26: The TypeScript file for the show-labels cliché action. Users can declare inputs and outputs to
the cliché action in addition to those for the requests to the server.

83

