
1

Creating a Cliché Library for Social Applications

by

Maryam Archie

S.B., Computer Science and Engineering, MIT, 2018

Submitted to the

Department of Electrical Engineering and Computer Science

in Partial Fulfilment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

June 2019

© 2019 Massachusetts Institute of Technology. All rights reserved.

Author: ___

 Department of Electrical Engineering and Computer Science
May 24, 2019

Certified by: ___

 Daniel Jackson, Professor, Thesis Supervisor
May 24, 2019

Accepted by: ___

 Katrina LaCurts, Chair, Master of Engineering Thesis Committee

2

3

Creating a Cliché Library for Social Applications

by

Maryam Archie

Submitted to the Department of Electrical Engineering and Computer Science on

May 24, 2019

in Partial Fulfilment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

Déjà Vu is a platform for the end-user development of web applications. It reduces the
complexity of web development by encapsulating common functionality across the
web into a library of clichés. Users select clichés that represent core concepts in their
application, specify various configuration variables and include actions that add the
desired functionality to their application.

This thesis focuses on creating a cliché library for social applications (e.g.
planning events, crowd-sourcing opinions, etc.). The catalogue of clichés and their
actions were evaluated by replicating student projects from an undergraduate web
development course. Most of the core functionality was replicated for each sample.
The applications built with Déjà Vu will also serve as a reference and/ or starting
point for future application developers.

Thesis Supervisor: Daniel Jackson

Title: Professor

4

5

Acknowledgements

I am very thankful for all of the advice, feedback and support from Santiago Perez De
Rosso and Professor Daniel Jackson during my time spent on Déjà Vu. I would also
like to thank my other collaborators, Ma Czarina Lao and Barry McNamara, for their
useful feedback and coffee breaks together. Lastly, I would like to express my
gratitude to my friends and family for their endless support on this journey.

6

7

Table of Contents

Abstract ... 3

Acknowledgements .. 5

List of Figures ... 11

List of Tables ... 15

Chapter One: Introduction ... 17

1.1. Summary of Contributions ... 18

1.2. Thesis Overview ... 19

Chapter Two: An Overview of Déjà Vu .. 21

2.1. What is a Cliché? ... 21

2.2. The Cliché Library .. 22

2.3. Building Applications.. 23

2.4. Example: SweetSpots .. 23

2.4.1. Identifying Clichés to use in an Application .. 28

2.4.2. Configuring the Application ... 30

2.4.3. Adding App Actions to the Application ... 32

2.4.4. Creating a Resource (Spot) .. 33

2.4.5. Displaying the Resources (Spots) .. 36

8

2.4.6. Styling the Application ... 38

Chapter Three: Augmenting the Cliché Library ... 43

3.1. Identifying and Designing New Clichés ... 45

3.2. Implementing New Clichés ... 47

3.2.1. Defining the schema .. 48

3.2.2. Implementing the server-side code .. 50

3.2.3. Designing the UI components ... 50

3.3. Adding Actions to Existing Clichés .. 52

Chapter Four: Social Application Experiments .. 53

4.1. MapMIT .. 53

4.2. Rendezvous... 54

4.3. Potluck .. 55

4.4. LiveScorecard .. 56

4.5. Phoenix ... 57

Chapter Five: Experience ... 59

5.1. Designing and Implementing Clichés ... 59

5.2. Reusing Clichés in Different Contexts .. 60

5.3. Incrementing Functionality in Applications .. 62

Chapter Six: Related Work ... 65

9

Chapter Seven: Conclusion .. 71

References .. 73

Appendix A ... 75

A.1. The Server-Side Code for the Label Cliché ... 75

A.2. show-labels Cliché Action ... 81

10

11

List of Figures

Figure 1: The registration page for SweetSpots. ... 24

Figure 2: The main page for viewing and adding Spots in SweetSpots. 24

Figure 3: The Add a Spot form in SweetSpots. ... 25

Figure 4: Filtering Spots in SweetSpots. ... 25

Figure 5: The details page for a Spot in SweetSpots. ... 26

Figure 6: The user profile page in SweetSpots. ... 27

Figure 7: The Spot author's view of the Spot details page. ... 27

Figure 8: The configuration file (dvconfig.json) for SweetSpots. This file specifies

which clichés will be used in the application and maps URL paths to page app actions

for easier navigation. ... 31

Figure 9: The HTML code for the main app action in SweetSpots. 33

Figure 10: The HTML code necessary for the add-a-spot-form action. The atoms

created by each cliché action in the transaction are “bound” to each other by the ID

generated by the dv.gen-id action. .. 35

Figure 11: Users can see spots that they created using the authorization.show-

resources cliché action and replacing the default show-resource action to show more

information about the Spots. .. 37

Figure 12: The show-spot app action shows the name and average rating of the Spot,

given an ID. .. 38

12

Figure 13: SweetSpots’ main stylesheet includes imports from external UI

frameworks.. 39

Figure 14: The HTML code used to render the navigation bar in SweetSpots. DV's

navbar theme styling will be applied to it because it follows certain rules, e.g. every

element inside of the <nav> tags must have the navbar-item class. 41

Figure 15: The conceptual design of the Label concept. .. 46

Figure 16: From left to right, when a user clicks the "Attach Labels" button in the

rendered UI component, a request is sent to the cliché server and a query/mutation

resolver is called depending on the GraphQL schema. Upon success, the database

returns the value requested by the cliché action and updates the UI component

accordingly. .. 47

Figure 17: The schema for the Label cliché. The Label type represent atoms in the

Label database collection. The inputs of the query and mutation types are specified to

indicate what the server is expecting. ... 49

Figure 18: The login, events and group pages in MapMIT. ... 54

Figure 19: Creating and viewing an event in Rendezvous. ... 55

Figure 20: Creating a new party with Potluck; Adding registered members to a party's

guest list. ... 56

Figure 21: Climbers must login with both a competition and a climber code; Hosts,

climbers and spectators can view the leaderboard of a competition. 57

13

Figure 22: A user’s profile page including their personal information, topics of

interest and availability for the week; Alice and Ben indicated interest in each other

and are now connected. .. 58

Figure 23: With BuddyPress, adding concepts like groups and chat are as easy as

checking a box in WordPress' setting page. Image downloaded from https://scripts-

cdn.softpedia.com/screenshots/BuddyPress_1.png in April 2019. 67

Figure 24: The server-side code that interfaces with the database for the Label cliche.

 .. 79

Figure 25: The HTML code for the show-labels cliché action. Users can replace the

show-label action with another cliché or app action. ... 81

Figure 26: The TypeScript file for the show-labels cliché action. Users can declare

inputs and outputs to the cliché action in addition to those for the requests to the

server. .. 83

14

15

List of Tables

Table 1: A list of all the clichés and their purposes in Deja Vu's cliché library 22

Table 2: A list of the clichés used to replicate SweetSpots and the concepts and

scenarios that they support. .. 29

Table 3: The cliché catalog contains 18 clichés, each with a set of related actions. The

cliché and action names highlighted in bold were introduced during research for this

thesis. ... 44

Table 4: The clichés used to build the social applications. .. 62

16

17

Chapter One:
Introduction

Déjà Vu is a new programming paradigm that aims to make web development easier

for non-developers. It exploits Jackson’s conceptual theory [1] by identifying concepts

commonly found in web applications (e.g. a comment on a post on Facebook1 or a

comment as a review for a product on Amazon2) and “translating” them into re-

usable components known as clichés. Users can create complex web apps by choosing

and combining cliché actions from a carefully curated cliché library in an HTML file.

Déjà Vu’s cliché library provides users with the means to create complex web

applications. For example, Déjà Vu simplifies the creation of applications for planning

of social events and organization of groups by using at least the Event and Group

clichés. These can be combined with any of the other clichés in the library to obtain

the desired functionality. For example, an event can be bound to a location and thus,

can be displayed on a map using the Geolocation cliché.

The research conducted for this thesis supplements the cliché library with

new clichés and actions to support the development of social applications. This builds

off the existing Déjà Vu platform, which abstracts the difficulties of web development

1 Facebook. https://www.facebook.com/
2 Amazon. https://www.amazon.com/

https://www.facebook.com/
https://www.amazon.com/

18

from the average user. At the inception of this project, the cliché library already

contained various clichés and actions.

 This work is important to the success of Déjà Vu because it makes possible

apps that were impossible before. The updated cliché library will empower

individuals (including novices) to create more complex applications that bring all

desired functionality into one application as opposed to using multiple applications

(e.g. email, polls and maps) to organize social events. Even though these

augmentations were made to support specific scenarios in social applications, they

can be used to create different types of applications. For example, the Schedule cliché

could be used in a productivity application to plan meetings in the office, and the

Passkey cliché could be used to grant students access to some restricted class

material. In addition, the sample applications built as a part of this thesis serve as a

guide or a stepping stone for building new applications with Déjà Vu, and their

stylesheets could be reused in other applications.

1.1. Summary of Contributions

The following summarizes the contributions made to the Déjà Vu project:

• New clichés were added to the library to enable specific scenarios in some

sample applications. For example, we had to create the Match cliché to

replicate functionality in a sample application that required individuals to

indicate interest in each other before being matched together.

19

• The cliché library was further augmented by complementing existing clichés

with new actions. For example, to edit viewing permissions of a given

resource, we added the add-viewer, remove-viewer, and add-remove-

viewer actions to the Authorization cliché.

• We replicated the core functionality and styling of six sample social

applications using the augmented cliché library. These included applications

that allowed users to plan social gatherings and sporting events, invite people

to events, aggregate opinions about places and topics and help individuals

meet others with similar interests, availability and location. We used this

experience to evaluate Déjà Vu and our new cliché extensions.

1.2. Thesis Overview

The rest of the thesis is structured as below:

• Chapter 2 gives a brief overview of the Déjà Vu platform and explains how an

application, called SweetSpots, can be implemented with it.

• Chapter 3 discusses how clichés and actions are added to the library.

• Chapter 4 describes the other social applications that were built with Déjà Vu

and highlights interesting use cases of clichés and actions in the applications.

• Chapter 5 reflects upon the project and the research experience

• Chapter 6 explores other bodies of work and explains what sets Déjà Vu apart

from them.

• Chapter 7 summarizes the body of research presented in this thesis.

20

21

Chapter Two:
An Overview of De ja Vu

The Déjà Vu platform consists of many parts to make it easier for individuals to create

applications. Clichés and their actions are important for displaying data and

interacting with it. They come together to form a cliché library, from which users can

select clichés to add functionality to their applications. We describe this process with

an example in Section 2.4.

2.1. What is a Cliché?

A cliché is a collection of actions with a common purpose. For example, the purpose of

the Authentication cliché is to verify a user’s identity with actions such as registering

or logging in a user. Each action generally is accompanied by a user interface element

that displays data to the user after fetching it from the server or accepts user input

and sends it to the server for storage and processing. Thus, each cliché represents a

vertical slice of the web application, abstracting implementation details from the

user. A powerful feature of Déjà Vu is its compositional mechanism: actions can

contain other actions and can be replaced by another action. This added flexibility

allows users to customize and extend the functionality of their application. Creating a

new cliché and adding actions to an existing one will be discussed in Chapter 3.

22

2.2. The Cliché Library

Together, these clichés form the cliché library which lists the purposes and actions of

each cliché. With this library, users can quickly build applications because they do not

have to worry about defining schemas, creating database tables and other server-side

functionality. Table 1 shows the state of the library3 as of May, 2019.

Cliché Purpose

Allocator Distribute resources among consumers

Authentication Verify a user’s identity with a username and password

Authorization Control access to resources

Comment Express an opinion or reaction in writing

Event Schedule events

Follow Receive updates from sources

Geolocation Locate points of interest

Group Manage users in aggregate

Label Categorize items to be found later

Match Connect users after attempting to match with each other

Passkey Verify a user’s identity with a code

Property Describe an object with properties that have values

Ranking Rank items

Rating Crowdsource evaluation of items

Schedule Find times to meet

Scoring Keeps track of scores

Task Keep track of pieces of work to be done

Transfer Move resources between accounts

Table 1: A list of all the clichés and their purposes in Deja Vu's cliché library

3 We expect the library to evolve as we develop more apps.

23

2.3. Building Applications

In Déjà Vu, all of these parts come together to help the user create applications. To

build an application, the user first selects clichés from the cliché library and defines

them in a configuration file. The user then creates app actions, either as pages or

modular components, to structure the application. For example, a user can create an

action that contains multiple cliché actions to modify data in an application. They can

also create app actions to display application data using actions from various clichés.

In addition, users can style their applications by writing custom CSS, using a Déjà Vu

theme or using any popular CSS framework.

2.4. Example: SweetSpots

SweetSpots is a social application that allows users to map, filter and review points of

interest on campus. Dubbed the “Yelp for Public Spaces”, SweetSpots crowd-sources

information about various locations and facilities around the MIT campus through

posts, reviews, comments and voting. Users earn reputation for each Spot that they

have posted, review that they have written for a Spot and vote that they have

received for any of their reviews.

Let us walk through a scenario where a user, Alice, wants to submit the water

fountain in McCormick Hall as a “sweet spot” on campus after which another user,

Ben, favorites and reviews it:

a) Alice navigates to SweetSpots’ registration page and makes an account with

the username “alice”.

24

Figure 1: The registration page for SweetSpots.

b) Alice is redirected to the main page with a map that displays crowd-sourced

Spots, and searches for “McCormick Hall” in the map, opening the “Add a spot”

form.

Figure 2: The main page for viewing and adding Spots in SweetSpots.

25

c) Alice fills out the rest of the information for the Spot and submits it.

Figure 3: The Add a Spot form in SweetSpots.

d) Ben logs in with his account and searches for water fountains on campus.

Figure 4: Filtering Spots in SweetSpots.

26

e) After visiting the water fountain suggested by Alice, Ben upvotes her review of

the Spot and writes his own review for the Spot. He also favorites the Alice’s

Spot for future reference.

Figure 5: The details page for a Spot in SweetSpots.

f) When Ben looks at his profile, he can see the Spots that he has already

reviewed and favorited. After creating a Spot himself, his reputation score is 1.

27

Figure 6: The user profile page in SweetSpots.

g) Looking back at her Spots, Alice sees that Ben has reviewed her water fountain

spot. She can also see both of their reputation scores and vote on Ben’s review,

but not hers.

Figure 7: The Spot author's view of the Spot details page.

28

2.4.1. Identifying Clichés to use in an Application

Conceptual design plays an integral role in developing applications with Déjà Vu. It

encourages you to identify the core concepts of your application and how they

interact with each other. These concepts can then be mapped to clichés to achieve the

desired behaviors.

 We identified several concepts in SweetSpots: Spots, Reputation, Categories,

Reviews and Ratings. A Spot encapsulates information about a point of interest,

including its name, location, and a classification (or Category). Each spot is reviewed

at least once and each Review includes not only the author’s opinion, but also a

Rating. These Spots help people find nearby and greatly favored areas on the MIT

campus. To reward users for submitting Spots and helpful Reviews, users are given

Reputation.

In Table 2, we mapped these application concepts to ten instances of clichés

and give examples of scenarios that they enable. The Authentication and

Authorization clichés are used to handle user accounts and manage access to certain

Spots. The Geolocation cliché is used to display Spots on the map and allow the user

click on the map to autofill the coordinates and name of the Spot in the the “Add a

spot” form. The Label cliché most aligns with the Category concept as they both

classify items for faster lookup. We used the Comment cliché for Reviews because

they are both used to express a user’s opinion. The Rating cliché is used to rate a Spot

and the Property cliché is used to record the floor information of a Spot. Since we

29

want to allow users to bookmark (or favorite) Spots for future reference, we include

the Follow cliché. Lastly, the Scoring cliché is used to keep track of a user’s reputation

and the scores of individual reviews.

Cliché App Concept Supported Scenarios

Authentication User Alice makes an account; Ben logs in to his

account

Authorization Spots In the posted spots column of the profile page,

Ben only sees Spots that he created

Geolocation Spots

(location)

Alice uses the map to identify a location to

anchor the Spot; Ben sees previously created

Spots on the map

Label Category Alice tags the Spot as a “water fountain”; Ben

searches for Spots matching the “water

fountain” category

Comment Review Alice gives the Spot a review saying that it is

“So cool and refreshing!”; Ben also reviews the

Spot saying that it is “Refreshing”

Rating Rating Alice gives the Spot a 5-star rating to reflect

the Spot’s high quality

Property Spots (floor) Alice indicates that the Spot is on the 1st floor

of McCormick Hall

Follow Spots

(favorite)

Ben favorites the Alice’s Spot; Ben sees his

favorited spots on his profile page

Scoring Reputation;

Review (score)

Alice earns reputation for posting a Spot; Ben

upvotes Alice’s review, contributing the score

of her review and her reputation.

Table 2: A list of the clichés used to replicate SweetSpots and the concepts and scenarios that they
support.

 Given its ability to store free-form text, we could have used the Property cliché

for Reviews instead of the Comment cliché. However, the purpose of the Review is to

share the user’s opinion about a Spot, which aligns with the more specific objective of

30

the Comment cliché (express an opinion or reaction in words) than that of the

Property cliché (describe an object with properties that have values).

The Scoring cliché is actually used twice in the SweetSpots application to keep

track of a review’s score (sum of upvotes and downvotes) as well as a user’s

reputation (sum of number of posted spots and the sum of the scores of their

reviews). We will discuss how to avoid name collisions and set configuration

variables for other clichés (e.g. Geolocation and Property) in the next section.

2.4.2. Configuring the Application

Once the relevant clichés have been identified, we must configure the application to

use them. This is done by defining a configuration file (dvconfig.json) and listing

the clichés to be used in the application. In this file, we can also map application pages

to different routes for easier navigation (Figure 8: lines 32 – 39).

 Some clichés require extra configuration. For example, if we wanted to use the

Leaflet Maps API with the Geolocation cliché in SweetSpots, we would have to set the

“mapType” key in the config object of the Geolocation cliché to “leaflet”. This is shown

in Figure 8: lines 8 – 10. Since we are using the Property cliché to specify the floor

location of a Spot, we need to define the schema as shown in Figure 8: lines 19 – 27.

Lastly, we seed the Label database (Figure 8: lines 13 – 16) with categories such as

“bathroom”, “nap space” and “water fountain” to provide category suggestions when

the user is creating a Spot.

31

{ 1
 "name": "sweetspots", 2
 "usedCliches": { 3
 "authentication": {}, 4
 "authorization": {}, 5
 "comment": {}, 6
 "rating": {}, 7
 "geolocation": { 8
 "config": {"mapType": "leaflet" } 9
 }, 10
 "follow": {}, 11
 "label": { 12
 "config": { 13
 "initialLabelIds": ["bathroom", "nap space", "water fountain", "study 14
space"] 15
 } 16
 }, 17
 "property": { 18
 "config": { 19
 "schema": { 20
 "title": "SpotDetails", 21
 "type": "object", 22
 "properties": { 23
 "floor": { "type": "string" } 24
 } 25
 } 26
 } 27
 }, 28
 "reputation": { "name": "scoring" }, 29
 "reviewscore": { "name": "scoring" } 30
 }, 31
 "routes": [32
 { "path": "login", "action": "login" }, 33
 { "path": "main", "action": "main" }, 34
 { "path": "profile", "action": "show-user-profile" }, 35
 { "path": "register", "action": "register" }, 36
 { "path": "spot-details", "action": "show-spot-details" }, 37
 { "path": "", "action": "main" } 38
] 39
} 40

Figure 8: The configuration file (dvconfig.json) for SweetSpots. This file specifies which clichés will

be used in the application and maps URL paths to page app actions for easier navigation.

Although we can have multiple instances of a single cliché in an application, it

is important to alias them to avoid name collisions in the platform. Since we have two

instances of the Scoring cliché (one to track review scores and the other to track a

32

user’s reputation), we alias one as “reputation” and “reviewscore” (Figure 8: lines 29

– 30). This not only prevents the collision problem, but also describes what they are

used for.

2.4.3. Adding App Actions to the Application

Applications built with Déjà Vu are structured into pages, modular app components

and cliché actions. Pages and app components are known as app actions and help

organize the flow of the application. Déjà Vu is able to distinguish between cliché and

app actions since the HTML content of app actions must begin and end with

dv.action tags, and specify the action’s name. The following discusses what is

necessary to create the main view page of the SweetSpots application.

 To create the sweetspots.main app action shown in Figure 9, we must first

create a directory (“main”) containing an HTML (“main.html”) and CSS

(“main.css”) file. Before adding content to the HTML file, we indicate that main is an

app action to Déjà Vu by enclosing the content of the HTML file with <dv.action

name=“main”></dv.action> tags. Now, we can include other app and cliché actions

inside of the sweetspots.main action. Assuming we that we have already made a

navbar action, we can include it in the main page as shown in Figure 9: line 2. The

interactive map is also added to the page using the display-map action of the

Geolocation cliché (Figure 9: Line 19); with one line of HTML, the user can view Spots

on the map and also use the map to select locations when creating a Spot. In the

original application, the “Add a spot” form would only be displayed to the user if they

33

were signed in and the user clicked the map. We can support this behavior using

dv.if conditional statements. To determine whether a user is signed in, we can

check the output of the navbar like accessing fields in an object

(sweetspots.navbar.loggedInUserId). If this value is undefined or null, i.e. no

one is signed in, we will show a message asking the user to sign in. Otherwise, the

form will appear.

<dv.action name="main"> 1
 <sweetspots. navbar /> 2
 3
 <div id="left-main-div"> 4
 <dv.if condition=sweetspots.navbar.loggedInUserId> 5
 <dv.if condition=geolocation.display-map.newMarker> 6
 <sweetspots.add-a-spot-form 7
 loggedInUserId=sweetspots.navbar.loggedInUserId 8
 marker=geolocation.display-map.newMarker/> 9
 </dv.if> 10
 </dv.if> 11
 12
 <dv.if condition=!sweetspots.navbar.loggedInUserId> 13
 To use this feature, please sign in or register. 14
 </dv.if> 15
 </div> 16
 17
 <div id="map-div"> 18
 <geolocation.display-map id="mainMapId" showDirectionsControl=false /> 19
 </div> 20
</dv.action> 21

Figure 9: The HTML code for the main app action in SweetSpots.

2.4.4. Creating a Resource (Spot)

One of the most common behaviors in applications is to create some resource. In

SweetSpots, users create Spots, helping others find ideal locations that fit their needs.

However, recall from Section 2.4.1 that creating a Spot requires actions from multiple

clichés. Since these actions should be executed simultaneously, they are wrapped

34

inside of dv.tx element tags. To ensure that the atoms created in the cliché

collections all refer to the same Spot, we include a dv.gen-id action tag inside of the

dv.tx tags and use its output (dv.gen-id.id) as ID inputs for the cliché actions. For

example, the label.attach-labels action uses the dv.gen-id.id value as the

itemId input (Figure 10: line 14) since Spots are Items in the data model of the Label

cliché. The targetId input of the rating.rate-target action uses the value from

dv.gen-id.id because the user (source) is rating the spot (target). All functionality

necessary for creating a Spot is encapsulated in the add-a-spot-form app action as

shown in Figure 10, and is used in the main app action (Figure 9: lines 7 – 9).

 When Alice or Ben looks at the Add a Spot form on the main page (as in Figure

2), they see seven fields corresponding to actions from five clichés –

geolocation.create-marker, label.attach-labels, property.create-

object, rating.rate-target and comment.create-comment (Figure 10: lines 7 –

24). The create-marker action contains three input fields while the other four cliché

actions each have one. To ensure that the creation of a Spot contributes to the user’s

reputation, we also include the reputation.create-score action. Since this is a

side effect of creating a Spot, it is hidden from the user using the hidden=true

attribute. Similarly, the follow.create-publisher, authorization.create-

resource and authentication.authenticate actions are necessary for favoriting

spots, allowing users to see only spots that they created and verifying that the logged-

in user is the one that sends the request to the server, but do not need to visible to the

user.

35

<dv.action name="add-a-spot-form"> 1
 <h2 id="add-a-spot">Add a spot:</h2> 2
 <dv.link href="/">< Back to home</dv.link> 3
 <dv.tx> 4
 <dv.gen-id /> 5
 <dv.status savedText="New spot saved"/> 6
 <geolocation.create-marker id=dv.gen-id.id 7
 title=$marker?.title 8
 latitude=$marker?.latitude 9
 longitude=$marker?.longitude 10
 mapId="mainMapId" 11
 titleLabel="Name" 12
 showOptionToSubmit=false /> 13
 <label.attach-labels itemId=dv.gen-id.id 14
 inputLabel="Category" 15
 showOptionToSubmit=false /> 16
 <property.create-object id=dv.gen-id.id 17
 showOptionToSubmit=false /> 18
 <p>Review</p> 19
 <rating.rate-target sourceId=$loggedInUserId targetId=dv.gen-id.id 20
 execOnClick=false /> 21
 <comment.create-comment authorId=$loggedInUserId targetId=dv.gen-id.id 22
 inputLabel="" 23
 showOptionToSubmit=false /> 24
 <reputation.create-score sourceId=$loggedInUserId 25
 targetId=$loggedInUserId 26
 value=1 27
 hidden=true /> 28
 <follow.create-publisher id=dv.gen-id.id 29
 showOptionToSubmit=false hidden=true /> 30
 <authorization.create-resource id=dv.gen-id.id 31
 ownerId=$loggedInUserId hidden=true /> 32
 <authentication.authenticate id=$loggedInUserId hidden=true /> 33
 <dv.button class="btn btn-primary">Submit spot</dv.button> 34
 <dv.callback defaultHref="/profile" onExecSuccess=true hidden=true /> 35
 </dv.tx> 36
</dv.action> 37

Figure 10: The HTML code necessary for the add-a-spot-form action. The atoms created by each cliché

action in the transaction are “bound” to each other by the ID generated by the dv.gen-id action.

 We can also modify the default presentation of the cliché actions. For example,

the original SweetSpots application did not have any placeholders in the review input

element, but the default placeholder of the input field of the create-comment action

is “Write your comment”. To replace the placeholder, we put an empty string as the

36

value to the inputLabel input as shown in Figure 10: line 23. Similarly, most cliché

actions that modify state have a submit button, but when combined with other cliché

actions, we want to hide the individual submit buttons. This is done by setting the

showOptionToSubmit input to false and including a dv.button element to execute

all of the actions in between the dv.tx tags (e.g. Figure 10: line 13).

 Upon a success, a confirmation message can be shown to the user before being

redirected to another page. In SweetSpots, the user sees the “New spot created!”

message after a spot was successfully created because the dv.status tag is also

included inside of the dv.tx tags (Figure 10: line 6). To redirect a user to another

page upon success, the dv.callback action is nested inside of the dv.tx tags,

specifying the new location with the defaultHref input as shown in Figure 10: line

35.

2.4.5. Displaying the Resources (Spots)

Once we have created a resource, we should be able to view them using one or more

show- cliché actions. In Figure 6, a user could see a list of spots that they created,

reviewed and favorited on their profile page. This section explains how we enable the

Spot viewing functionality in SweetSpots; in particular, we show how to only display

Spots authored by the logged in user.

 We could use a show- action from any one of the eight clichés used to in the

creation of a Spot. However, these show- actions will list all Spots created, not just the

ones created by the logged in user. To filter the Spots by author, we can use the show-

37

resources action of the Authorization cliché, ensuring to set the createdBy input as

the ID of the logged in user. At this point, the user will see a list of Spot IDs and author

IDs. This is because the show-resources action uses the show-resource action by

default which only displays information stored in Authorization’s resource collection.

However, we want to show the name of the Spot, a link to its details page, its average

rating and the number of times it was rated and reviewed.

<dv.action name="show-user-profile-details"> 1
 <div class="container"> 2
 ... 3
 4
 <h3>Posted Spots</h3> 5
 <authorization.show-resources createdBy=$loggedInUserId 6
 noResourcesText="You haven't created any spots yet." 7
 showResource=<sweetspots.show-spot id=$id /> /> 8
 9
 ... 10
 </div> 11
</dv.action> 12
 13

Figure 11: Users can see spots that they created using the authorization.show-resources cliché action
and replacing the default show-resource action to show more information about the Spots.

 To do this, we replace the default show-resource action that the show-

resources action uses to render the individual elements with an app action called

show-spot. This is shown in Figure 11: line 8, where the show-spot action will use

the ID that the show-resources action initially passes to the show-resource action.

Using this ID (signified as an input by $id), the cliché actions inside of the show-spot

action can load the relevant information. For example, the geolocation.show-

marker action uses the $id input to load the name of the Spot (Figure 12: line 4) and

38

the rating.show-average-rating cliché action uses it to load the average rating of

the target that is associated with the Spot (Figure 12: lines 14 and 18).

<dv.action name="show-spot"> 1
 <h4> 2
 <geolocation.show-marker class="inline-block" 3
 id=$id 4
 showId=false 5
 showLatLong=false 6
 showMapId=false /> | 7
 <dv.link href="/spot-details" params={ id: $id } class="inline-block"> 8
 Details 9
 </dv.link> 10
 </h4> 11
 <p>Average Rating: 12
 <rating.show-average-rating class="inline-block" 13
 targetId=$id 14
 showStars=false 15
 showNumRatings=false /> 16

 17
 <rating.show-average-rating targetId=$id showValue=false /> 18
 </p> 19
</dv.action> 20

Figure 12: The show-spot app action shows the name and average rating of the Spot, given an ID.

2.4.6. Styling the Application

Users can style applications built with Déjà Vu by writing their own CSS rules, using

themes or using third party UI component libraries.

Writing Custom CSS

This method of styling applications is the most powerful because it can override

previous rules from stylesheet imports. Custom CSS, for example, allows us to modify

the colors, position and size of HTML elements in an application.

39

Employing Third-Party Frameworks

When we build our clichés, we sometimes use external libraries that require styling

that they package and distribute as CSS files. Most of our cliché actions use Angular

Material and Bootstrap components and thus, we require users to import these

stylesheets in their application’s main stylesheet (styles.css). Since we are using

the Rating and Geolocation clichés in SweetSpots, we also need to import stylesheets

from external libraries4. These imports are shown in Figure 13.

/* Default */ 1
@import "~@angular/material/prebuilt-themes/indigo-pink.css"; 2
@import "~bootstrap/dist/css/bootstrap.min.css"; 3
 4
/* Rating */ 5
@import "~css-star-rating/dist/css/star-rating.min.css"; 6
 7
/* Geolocation */ 8
@import "~leaflet/dist/leaflet.css"; 9
@import "~leaflet-routing-machine/dist/leaflet-routing-machine.css"; 10
@import "~leaflet-control-geocoder/dist/Control.Geocoder.css"; 11

Figure 13: SweetSpots’ main stylesheet includes imports from external UI frameworks.

Using Pre-Defined Themes

To help users style their applications and transfer the stylings from one app to

another, we proposed developing a series of themes for common app components,

e.g. navigation bars, login pages, register pages and profile pages. This involved

creating style sheets with special identifiers for use in applications.

4 Currently, users have to read the cliché documentation to figure out what stylesheets (if any) they
need to import. In future iterations of Déjà Vu, we intend to make it easier to import necessary
stylesheets by either packaging them with the cliché or creating a master spreadsheet with all styles
necessary for the clichés to work.

40

We made a prototype for navigation bars which typically include the title of

the app, section names, the name of the signed in user and a sign out button. To use

the theme, the user needs to import it into the application’s main stylesheet

(styles.css) and use the structure shown in Figure 14 to render the SweetSpots

navigation bar. The navigation bar’s contents must be wrapped in a <nav> element

with the navbar class. Each navigation item, e.g. links and buttons, in the navigation

bar is defined with the navbar-item class. These navbar-items must be wrapped

inside of a div or ul element with the navbar-items-list class.

41

<dv.action name="navbar" loggedInUserId$=authentication.logged-in.user.id 1
 searchResults$=label.search-items-by-labels.searchResultItems> 2
 3
 ... 4
 5
 <nav class="navbar navbar-light"> 6
 <div class="navbar-items"> 7
 <div class="navbar-item navbar-header"> 8
 <dv.link class="sweet-spots-heading" href="/main"> 9
 Sweet Spots 10
 </dv.link> 11
 </div> 12
 13
 <div class="navbar-item navbar-left search"> 14
 <label.search-items-by-labels hidden=!$showSearch /> 15
 </div> 16
 17
 <dv.if condition=authentication.logged-in.user> 18
 <div class="navbar-item navbar-right"> 19
 <div class="btn-toolbar toolbar"> 20
 <dv.tx> 21
 <authentication.sign-out class="navbar-signout" 22
 buttonLabel="Logout"/> 23
 <dv.link href="/login" hidden=true /> 24
 </dv.tx> 25
 26
 <dv.link href="/profile" 27
 class="mat-button btn btn-info profile-btn"> 28
 My Profile 29
 </dv.link> 30
 </div> 31
 </div> 32
 <div class="navbar-item navbar-right"> 33
 Hello, 34
 <authentication.show-user class="inline" 35
 user=authentication.logged-in.user 36
 showId=false />! 37
 38
 </div> 39
 </dv.if> 40
 41
 ... 42
 </div> 43
 </nav> 44
</dv.action> 45

Figure 14: The HTML code used to render the navigation bar in SweetSpots. DV's navbar theme styling

will be applied to it because it follows certain rules, e.g. every element inside of the <nav> tags must
have the navbar-item class.

42

43

Chapter Three:
Augmenting the Cliche Library

The cliché library is an integral part of Déjà Vu because it provides out-of-the-box

functionality and ready-to-use components complete with a user interface wired up

to a server for processing and fetching data. Since one of the main goals of this project

was to support the development of social applications, it was very important to

augment the existing cliché library with some new clichés and actions. These

modifications are highlighted in Table 3. This chapter lists our contributions to the

library and describes the process of adding clichés and actions to the library.

Cliché Actions
Allocator Create Allocation, Delete Resource, Edit Consumer, Show

Consumer
Authentication Authenticate, Change Password, Choose User, Logged In, Register

User, Show User, Show Users, Show User Count, Sign In, Sign Out
Authorization Add/Remove Viewer, Add Viewer, Can Edit, Can View, Create

Resource, Delete Resource, Remove Viewer, Show Owner, Show
Resource, Show Resources (filter by creator), Show Resource
Count

Comment Create Comment, Delete Comment, Edit Comment, Show
Comment (given an object, an ID or target and author IDs),
Show Comments, Show Comment Count

Event Choose and Show Series, Create Event, Create Series, Create
Weekly Series, Delete Event, Show Event, Show Events (filter by
date), Show Event Count

Follow Create Message, Create Publisher, Edit Message, Follow/ Unfollow,
Show Follower, Show Followers, Show Follower Count, Show
Message, Show Messages, Show Message Count, Show Publisher,
Show Publishers, Show Publisher Count

44

Geolocation Create Marker, Delete Marker, Display Map (now supports
Leaflet + Google maps), Get Current Location, Show Marker (by
ID), Show Markers (filter by radius), Show Marker Count

Group Add to Group, Choose Group, Create Group, Delete Group, Input
Member, Join/ Leave, Show Group, Show Groups (filter by
member), Show Group Count, Show Member, Show Members,
Show Member Count, Stage

Label5 Attach Labels, Create Label, Search Items by Labels, Show
Item, Show Items, Show Item Count, Show Label, Show Labels,
Show Label Count

Match Attempt Match, Create Match, Delete Match, Show Attempt,
Show Attempts, Show Match, Show Matches, Withdraw
Attempt

Passkey Create Passkey, Logged In, Show Passkey, Sign In, Sign Out,
Validate

Property Choose Object, Create Object, Create Objects, Create Property,
Object Autocomplete, Show Object, Show Objects, Show URL

Ranking Create Ranking, Show Fractional Ranking, Show Ranking, Show
Rankings, Show Target

Rating Delete Rating, Delete Ratings, Rate Target, Show Average Rating,
Show Rating, Show Rating Count, Show Ratings by Target

Schedule Create Schedule, Delete Schedule, Show All Availability, Show
Next Availability, Show Schedule, Show Slot, Show Slots,
Update Schedule

Scoring Create Score, Delete Score, Delete Scores, Show Score, Show
Target (of a score), Show Targets by Score (of a source), Update
Score

Task Approve Task, Claim Task, Complete Task, Create Due Date, Create
Task, Create Task for Assignees, Input Assignee, Show
Assignee, Show Task, Show Tasks, Show Task Count, Stage,
Update Task

Transfer Add to Balance, Create Item Count, Create Transfer, Input Amount,
Input Item Counts, Input Money, Show Amount, Show Balance,
Show Item Count, Show Item Counts, Show Transfer, Show
Transfers

Table 3: The cliché catalog contains 18 clichés, each with a set of related actions. The cliché and action

names highlighted in bold were introduced during research for this thesis.

5 Some code for the label cliché existed before my joining this project. However, I had to reimplement it
and add new actions.

45

3.1. Identifying and Designing New Clichés

As applications were built with Déjà Vu, we sometimes discovered that there wasn’t a

cliché in the library that supported a scenario in an application. In SweetSpots, users

should be able to add Category tags to Spots, but at the time of its development with

Déjà Vu, there was no cliché that allowed users to do so. Since many applications use

the concept of a label (e.g. labels in Gmail6, product types in Amazon, hashtags in

Twitter7), we considered adding it to the catalog. However, before implementing a

new cliché, we must ensure it meets a set of standard cliché design criteria.

 A cliché must be motivated by a purpose, unique to those that already exist in

the catalog. Its data model must be simple, yet rich enough to build applications.

Lastly, actions in a cliché collectively must help achieve a cliché’s purpose.

Let us consider the conceptual design of the Label concept, shown in Figure

15, that we will use to create our cliché. The purpose of the Label concept is to

categorize items for easier lookup. The data model (or structure) of the Label

concepts consists of two collections: Labels and Items. A Label can be mapped to zero

or more Items, while an Item must have at least one Label. The behavior of the Label

concept describes actions that the user can take in relation to Labels and Items. An

example of a behavior of the Label concept is addLabelsToItem. If the item hasn’t

6 Gmail. http://mail.google.com/mail/
7 Twitter. https://twitter.com/

http://mail.google.com/mail/
https://twitter.com/

46

already been tagged by any of the input labels to the addLabelsToItem behavior, the

item is added to the items collection of all labels that meet this criterion.

Title: Label

Purpose: Categorize items for easier lookup

Structure:

Behavior:
addLabelsToItem(labels: Label[], item: Item): Boolean

requires: item not in label.items

effects: ∀ l: Label in labels, l.items += item

removeLabelFromItem(label: Label, item: Item): Boolean

requires: item in label.items

effects: label.items -= item

deleteItem(item: Item): Boolean

requires: item in l.items for some l: Label

effects: ∀ l: Label, l.items -= item

searchItemsByLabels(labels: Label[]): Item[]

effects: { i: Item | label in i.labels }

Tactic:

If you add a label l to an item i, and later search for label l without removing the label

from i in the meantime, then the result of the search will include i.

Figure 15: The conceptual design of the Label concept.

47

3.2. Implementing New Clichés

Once the design has been finalized, the cliché can be implemented. Using Déjà Vu’s

CLI, we can generate necessary configuration files, boilerplate code for the schema

and server, and create-, show-, update- and delete- actions for the concept that

the cliché represents. Typically, this is not enough to support all of the necessary

actions for the cliché but it is a good starting ground. Next steps include:

a) Designing the schema

b) Implementing the server-side code

c) Designing the UI components

Figure 16 shows how these files interact together when a user a interacts with the UI

component of a cliché action.

Figure 16: From left to right, when a user clicks the "Attach Labels" button in the rendered UI
component, a request is sent to the cliché server and a query/mutation resolver is called depending on
the GraphQL schema. Upon success, the database returns the value requested by the cliché action and

updates the UI component accordingly.

48

3.2.1. Defining the schema

The first step in implementing a cliché is the design of the API that is used to send

requests to and responses from cliché server and its action components respectively.

The data model and specifications from the conceptual design of the cliché easily

translates to a schema and queries and mutations with GraphQL8. Figure 17 shows

the GraphQL schema for the Label cliché. To describe the data that can be fetched

from the database, we define a Label object type like in lines 2 – 5 in Figure 17. This

Label object type has two fields: a non-nullable ID and an array of IDs representing

items that have that label.

The specifications translate to the Query and Mutation object types in the

schema. To fetch a single label with scalar ID value, we include label(id: ID!):

Label in the Query object type. For queries and mutations that require a more

complex object as a parameter, we need to define input types, which are very similar

to regular object types. For example, the input of the addLabelsToItem mutation is

of the AddLabelsToItemInput type that must contain a non-nullable item ID and an

array of non-nullable label IDs.

8 GraphQL. https://graphql.org/

https://graphql.org/

49

type Label { 1
 id: ID! 2
 itemIds: [ID] 3
} 4
 5
If no labels are provided, all items will be returned. 6
Otherwise, only items with all specified labels will be returned. 7
input ItemsInput { 8
 labelIds: [ID] 9
} 10
 11
If no itemId provided, all labels will be returned. 12
Otherwise, only labels of the given item will be returned. 13
input LabelsInput { 14
 itemId: ID 15
} 16
 17
input AddLabelsToItemInput { 18
 itemId: ID! 19
 labelIds: [ID!] 20
} 21
 22
input RemoveLabelFromItemInput { 23
 itemId: ID! 24
 labelId: ID! 25
} 26
 27
type Query { 28
 label(id: ID!): Label 29
 labels(input: LabelsInput!): [Label] 30
 labelCount(input: LabelsInput!): Int 31
 items(input: ItemsInput!): [ID] 32
 itemCount(input: ItemsInput!): Int 33
} 34
 35
type Mutation { 36
 createLabel(id: ID!): Label 37
 addLabelsToItem(input: AddLabelsToItemInput!): Boolean 38
 removeLabelFromItem(input: RemoveLabelFromItemInput!): Boolean 39
 deleteLabel(id: ID!): Boolean 40
} 41

Figure 17: The schema for the Label cliché. The Label type represent atoms in the Label database
collection. The inputs of the query and mutation types are specified to indicate what the server is

expecting.

50

3.2.2. Implementing the server-side code

The code that executes these queries and mutations with the MongoDB database lives

in the server file. In this file, we can not only create indices for faster lookup, but also

impose constraints (e.g. label IDs must be unique and labels can only have unique

item IDs) in the non-relational database. The server-side code for the Label cliché can

be found in Appendix A.1.

3.2.3. Designing the UI components

For each query and mutation in our GraphQL schema, there must be a client-facing UI

component. Like Angular components, the code for the cliché actions are separated

into HTML, TypeScript and CSS files.

HTML File

The HTML file contains the layout of the cliché action. Actions that mutate state are

often presented as forms, while those that display state only show values that are not

undefined. When designing actions like show-labels, it is important to use the child

component (e.g. show-label) so that they can easily be replaced in applications if

necessary.

CSS File

This is where cliché action-specific styling, e.g. setting the color of the success

message to be green, is defined.

51

TypeScript File

The inputs and outputs of a cliché action are listed in its TypeScript file, in addition to

the code responsible for sending requests to and receiving responses from the cliché

server. Code that is run when a transaction is executed lives inside of the

dvOnExec() function. Similarly, code that is run on evaluation is written in the

dvOnEval() function.

The pre-generated create-label, show-label and delete-label actions

were updated based on the desired behavior and new cliché actions, e.g. add-

labels-to-item and show-labels, were generated using the CLI. The update-

label action was removed from the cliché library because one should not be able to

edit a label. If the Label object type contained both ID and name values, then it would

make sense to have an update-label action.

 Consider the show-labels action. In the TypeScript file, we define inputs for

filtering the labels by item ID, modifying the message when there are no labels and

replacing the default show-label action. Since we want to be able to use the show-

label action in show-labels, we defined a public anchor variable showLabels that is

necessary for the dv-include action in the HTML code. An output variable

loadedLabels is also defined so that users can access this value and use it as input

into another cliché or app action. Once the component loads and a connection is made

with the cliché server, it executes the code inside of the dvOnEval block (Figure 26:

lines 69 - 86). This sends a GET requires to the server with the inputs to the action

52

and the desired format of the response. Once the labels are loaded, the component is

re-rendered and the contents of the labels, i.e. IDs and item IDs, are displayed in the

browser. The HTML and TypeScript code for show-labels can be found in Appendix

A.2.

3.3. Adding Actions to Existing Clichés

 Sometimes, we have all of the clichés necessary to build a certain application, but

they are missing some actions needed to replicate all of the functionality of the

application of interest. For example, to support the scenario in SweetSpots where

Alice deletes the spot, we needed to add missing delete actions to clichés, e.g.

delete-marker in the Geolocation cliché.

 The process for adding an action to an existing cliché is similar to

implementing cliché actions upon cliché creation. The cliché developer uses the CLI to

generate the files for the new action. These files, in addition to the schema and server

code, must be edited to deliver the desired behavior.

53

Chapter Four:
Social Application Experiments

To evaluate the cliché library’s ability to create social applications, we re-created six

sample social-media applications, including SweetSpots. These applications were

selected from the top twelve final projects of a popular undergraduate web

development course at MIT. The teaching assistants, who are not associated with this

project, identified these projects as the best in the class because of the clever

manipulation of data, usage of APIs and UI/ UX. In this chapter, we will describe the

sample social applications that were built with Déjà Vu and give examples that

highlight the power of the Déjà Vu platform.

4.1. MapMIT

MapMIT, shown in Figure 18, displays on-campus events in a map, so that students

can see publicized events. Users can create events and restrict visibility to certain

groups of people. Users are also offered the option to join/ leave events. To replicate

its core functionality, we used the Authentication, Authorization, Event, Geolocation,

Group and Property clichés. Modelling an event as a group in the Group cliché

allowed us to restrict visibility of events to groups of individuals. This was done by

checking to see if the logged in user was a member of the group that was associated

with the event.

54

Figure 18: The login, events and group pages in MapMIT.

4.2. Rendezvous

Rendezvous is an event coordinator and explorer for MIT students while they are off-

campus. It helps MIT students foster connections with other students during their

time away from MIT. Users can create events and see a list of nearby events in their

feed or on the map as shown in Figure 19. Unlike other applications that used the

Geolocation cliché, Rendezvous was the first to restrict the locations to a 50-mile

radius of the user’s current location. Thus, we added a new input “radius” to the

geolocation.display-map action to filter markers within “radius” miles. If the

“radius” input is left undefined, the geolocation.display-map action loads all of

the markers for that map. As we continued to build applications, this modification

proved beneficial. For example, Phoenix uses proximity as one of the criteria to

suggest matches to users.

55

Figure 19: Creating and viewing an event in Rendezvous.

4.3. Potluck

Potluck is a party planning application to better organize party details, such as

location, host information, guest lists and supplies. Hosts can list supplies necessary

for the party and guests can indicate the quantity of items that they are willing to

contribute. The Transfer cliché was used with a dv.stage action to support the

scenario where users queue items that they would like to claim, as shown in Figure

20.

56

Figure 20: Creating a new party with Potluck; Adding registered members to a party's guest list.

4.4. LiveScorecard

With LiveScorecard (Figure 21), individuals can host climbing competitions and allow

participants to log their scores so that others can see the leader board in real-time.

This application featured a unique authentication system, such that climbers required

a competition code and climber code to sign in and log their scores, and spectators

could only view the leader board if they had the code for the competition. This

necessitated the creation of the Passkey cliché in which a user’s passkey served both

as an identifier and password.

57

Figure 21: Climbers must login with both a competition and a climber code; Hosts, climbers and
spectators can view the leaderboard of a competition.

4.5. Phoenix

Phoenix connects people afflicted with depression if they share similar interests, are

located within each other’s comfort range and have overlapping availabilities.

However, users are only connected if they indicate interest in each other (as in dating

apps like Tinder9). Thus, we had to create a Match cliché to support this scenario

(Figure 22: right). Similarly, we had to create a Schedule cliché (Figure 22: left) so

that users could indicate their availability and then determine if there were any

overlaps amongst the availabilities of all registered users.

9 Tinder. https://tinder.com/

https://tinder.com/

58

Figure 22: A user’s profile page including their personal information, topics of interest and availability
for the week; Alice and Ben indicated interest in each other and are now connected.

4.6. SweetSpots

SweetSpots crowdsources and aggregates opinions about points of interest around

the MIT campus. The SweetSpots application is discussed in greater detail in Section

2.4.

59

Chapter Five: Experience

This chapter summarizes our experience augmenting the cliché library and building

applications using Déjà Vu.

5.1. Designing and Implementing Clichés

The following describes our experience designing and implementing new clichés for

the catalog.

As described in Section 3.1, designing new clichés can be quite challenging.

Interestingly, it took more time to design new clichés than to implement them. This

often involved many conversations, whiteboard discussions and design revisions.

Although it may have seemed overwhelming at times, we valued the importance of

this process because we wanted to ensure that there was no overlapping functionality

with an existing cliché.

 In general, it is good practice to follow some standard when implementing

user interfaces. However, as both a cliché and application developer, the importance

of standardization became even more apparent. For example, when an individual

implements a cliché, it is common to include create-, update-, delete- and show-

actions. In addition, there are usually two show- actions – one to display a single item

and another to display multiple. It has also become common practice to ensure that

the action that displays multiple items uses the one that displays only one item. There

60

is also a pattern for the inputs and outputs of the cliché actions. Inputs usually involve

resource identifiers (e.g. id) and presentation modifiers (e.g. showOptionToSubmit),

and outputs should be of the form “loadedResource”. Thus, when the end-user

builds application, they can rely on this standardization to build their applications

quickly without constantly having to reference the documentation.

5.2. Reusing Clichés in Different Contexts

One of the most powerful features of Déjà Vu is the ability to use the same clichés to

support different scenarios across multiple applications. Table 4 provides a

breakdown of the clichés used in each sample social application built with Déjà Vu.

 Over half of the social applications used the Event cliché to help schedule

events, but the cliché wasn’t explicitly mapped to an event concept in all applications.

For example, LiveScorecard models an event in the Event cliché as a competition so

that we can indicate start and end times for climbing competitions. In MapMIT, the

Event cliché is used in the more traditional sense, i.e. it is used to plan events for

social gatherings.

 In four of the six applications, the Group cliché is used to organize members

into groups so that they can be handled collectively. Potluck uses this cliché to

support guest list functionality. LiveScorecard, on the other hand, uses three

instances of the Group cliché to manage hosts, climbers and climbs separately in a

competition.

61

 The Label cliché was typically used in most applications to classify items for

quicker lookup. In SweetSpots, Spots are given categories so that users can narrow

their search for a “sweet spot”. The Label cliché is used in the Phoenix application so

that users can indicate topics that they would like to discuss with others. Matches are

suggested to users based on an overlap of users’ interests. Although the concepts in

the applications, categories and topics, have different names, they aim to achieve a

similar goal.

 Our last example of cliché reuse involves the Scoring cliché in LiveScorecard

and SweetSpots. It is used to keep track of the points logged by climbers in

LiveScorecard. SweetSpots uses two instances of the Scoring cliché to keep track of

the number of upvotes of a review and to keep track of a user’s reputation.

 Some clichés however, e.g. Match and Schedule, are only used once. This is

understandable given the different goals of the applications. It is also possible that the

students envisioned additional functionality, e.g. matching based on location in

Rendezvous, to their applications, but were constrained by the time allotted for the

final projects.

62

 MapMIT Rendezvous LiveScorecard Potluck Phoenix SweetSpots

Authentication 1 1 1 1 1 1

Authorization 1 1 1 1 1 1

Comment 0 1 0 0 1 1

Event 1 1 1 1 0 0

Follow 0 0 0 0 0 1

Geolocation 1 1 0 0 1 1

Group 1 1 3 1 0 0

Label 0 1 2 0 1 1

Match 1

Passkey 0 0 2 0 0 0

Property 1 2 3 2 2 1

Ranking 0 0 0 0 0 0

Rating 0 0 0 0 0 1

Schedule 0 0 0 0 1 0

Scoring 0 0 2 0 0 2

Task 0 0 1 0 0 0

Transfer 0 0 0 1 0 0

Total 6 8 7 5 8 8

Total Instances 6 9 13 6 9 8

Table 4: The clichés used to build the social applications.

5.3. Incrementing Functionality in Applications

Without Déjà Vu, adding new concepts to an application requires the developer to

design a new schema and API, and create new front-end components. Sometimes, the

developer has to modify the application’s architecture to support some new

63

functionality. With Déjà Vu, incrementing functionality of applications is as easy as

adding the desired cliché concept to the application’s dvconfig.json file.

 For example, the Phoenix application was built in two stages – without and

with the Schedule cliché. Initially, the Schedule cliché did not exist in the library, so

we replicated parts of the application unrelated to scheduling. Once the Schedule

cliché was designed and implemented, we added it to the Phoenix application by

including it in the usedCliches object in the configuration file and added the

necessary cliché actions to the relevant app actions.

64

65

Chapter Six:
Related Work

Déjà Vu is not the only platform seeking to make it easier for individuals to design

and build social web applications. Content Management Systems and research

projects, such as Chorus [2] and the Ur/Web People Organizer [3], have all attempted

to solve this problem with varying degrees of success (in terms of ease of use,

richness of library components and adoption).

Content Management Systems, like WordPress10 and Drupal Cloud11, are widely

used to publish content on the web due to the ease of use of WYSIWYG builders.

Popular social applications built with WordPress, e.g. blogs by major tech companies

such as Glassdoor12, Yelp13 and Facebook14 [4], are built by experienced individuals,

often using plugins such as Shortcake15 and BuddyPress16 [5]. Figure 23 shows an

example of how common functionality in social applications are added to WordPress

sites. Similarly, individuals and organizations have used Drupal Cloud to create social

applications like Pinterest17 [6] [7] and Global Dev Hub18 [8]. Social applications built

10 WordPress. https://wordpress.org/
11 Drupal Cloud. https://www.drupal.org/
12 Glassdoor. https://www.glassdoor.com/blog/
13 Yelp. https://blog.yelp.com/
14 Facebook. https://newsroom.fb.com/
15 Shortcake (Shortcode UI). https://wordpress.org/plugins/shortcode-ui/
16 BuddyPress. https://wordpress.org/plugins/buddypress/
17 Pinterest. https://www.pinterest.com/
18 GlobalDevHub. https://www.globaldevhub.org/

https://wordpress.org/
https://www.drupal.org/
https://www.glassdoor.com/blog/
https://blog.yelp.com/
https://newsroom.fb.com/
https://wordpress.org/plugins/shortcode-ui/
https://wordpress.org/plugins/buddypress/
https://www.pinterest.com/
https://www.globaldevhub.org/

66

on top of Drupal tend to use similar modules, e.g. Open Social project19, which

provides features such as user profiles, groups, events, notifications and chat [9].

However, the problem of sharing information among plugins still arises, forcing users

to write additional code, look for a plugin with the desired functionality or abandon

the idea. Déjà Vu features a composition mechanism that sets it apart from Content

Management Systems.

For example, in SweetSpots, users accrued “reputation” based on the number of

posts and comments they made, as well as the number of times users favorited their

post and number of votes they received on their comments. Since the posts and

comments are separate entities, there is no easy way to keep track of these scores in

WordPress or Drupal Cloud. This problem is easily solved by Déjà Vu. Clichés and

actions in Déjà Vu can communicate with each other with its unique binding

mechanism, allowing a single item to be mapped to multiple clichés. With Déjà Vu, the

user can keep track of a user’s “reputation” using the Property, Comment and Scoring

clichés, such that when an update is made to a post or comment, the user’s reputation

is updated.

19 Open Social. https://www.drupal.org/project/social

https://www.drupal.org/project/social

67

Figure 23: With BuddyPress, adding concepts like groups and chat are as easy as checking a
box in WordPress' setting page. Image downloaded from

https://scripts-cdn.softpedia.com/screenshots/BuddyPress_1.png in April 2019.

Like WordPress, the Chorus project20 enables users to create applications with a

WYSIWIG builder [2]. It also introduced the idea of social datatypes, i.e. components

that can be put together to facilitate common conversational patterns. In the designer

20 Chorus. http://www.chorus-home.org

http://www.chorus-home.org/

68

mode, the user can select a combination of these social datatypes - lists, polls, forms,

choices and/or primitive values (or atoms) - to create the desired interface for their

audience. Although these social datatypes can be joined to form components in

Chorus’ Collaborative Document, Chorus still lacks a compositional mechanism for

combining the functionality of individual datatypes into a more complicated one.

The Ur/Web programming model [10] was developed at MIT to facilitate the

creation of modern, secure and dynamic web applications. It is a statically typed

functional programming language that can be compiled to more popular web-specific

languages supported by browsers. Using this model, the Ur/ Web People Organizer

(UPO) platform [3] was created to simplify the creation of applications for organizing

people and events, i.e. it is focused on a different niche (productivity) than the social

niche explored in this thesis.

Although the user can select UI components from a library in UPO, they are

responsible for specifying the data model and writing a combination of Ur (similar to

ML and Haskell), XML and SQL-like database queries. These components either bind

to the user-defined data model or maintain their own state. With Déjà Vu, these

implementation details are abstracted away from the user. To build an application,

the user only has to write HTML and CSS. In addition, the user does not have to worry

about defining any data models for their application since state is maintained by the

individual clichés themselves. Lastly, widgets in UPO are more aligned with basic

input and output structures (e.g. input – generic user input, editGrid – an editable

69

grid, row – a row in a table) and application-specific functionality (e.g. finalGrades –

displays the finals grades of students in a class) than concepts motivated by a

purpose.

70

71

Chapter Seven:
Conclusion

This thesis provides an overview of the Déjà Vu platform and describes our

contributions to its cliché library and evaluation. The research conducted as part of

this thesis is important for making the catalog more robust, allowing people to create

complex social applications much faster with Déjà Vu than from scratch. Using the

SweetSpots example, we explained how applications are built with Déjà Vu and

described the process of augmenting the cliché library. Upon reflection, there were

many successes as well as areas of improvement for this project, and Déjà Vu as a

whole.

 The Déjà Vu platform significantly reduces the time to build an application

from scratch. Each student sample project represented four 6-person weeks-worth of

work while we re-created each within a week. We hope that our building a suite of

sample applications will provide inspiration for users and help reduce the time taken

to build apps of similar caliber even further.

The conceptual design of an application before implementation is an

important part of application development. As a part of the student final projects,

they had to identify and define the main concepts in their applications. Since they

were already defined, there was a clear mapping of concepts to clichés in the catalog.

72

The cliché catalog is not yet complete. For example, we think that Search/

Filter, Log and Recommendation clichés would be helpful additions to the catalog.

However, after briefly reviewing the final project presentations of the Fall 2018

iteration of the same undergraduate web development course, we believe that our

catalog is robust enough to replicate the core functionality of at least the social

applications that were presented.

Overall, I am grateful for the opportunity to collaborate on this project and

firmly believe that it is a powerful tool that can help people create not only social

applications, but also other types of applications. I am in awe of what we are able to

achieve with Déjà Vu today and am excited to see how it evolves.

73

References

[1] D. Jackson, "A new modularity for software," November 2018. [Online].
Available: http://people.csail.mit.edu/dnj/talks/splash18/splash-talk-2018-no-
builds.pdf. [Accessed 3 December 2018].

[2] J. L. Chen, Chorus: End User Programming of Social Applications, Cambridge:
Massachusetts Institute of Technology, Department of Electrical Engineering
and Computer Science., 2017.

[3] A. Chlipala, "The Ur/Web People Organizer," 2015. [Online]. Available:
http://upo.csail.mit.edu/. [Accessed 6 December 2018].

[4] WPBeginner, "40+ Most Notable Big Name Brands that are Using WordPress," 8
March 2019. [Online]. Available: https://www.wpbeginner.com/showcase/40-
most-notable-big-name-brands-that-are-using-wordpress/. [Accessed 19 May
2019].

[5] WordPress, "Case Studies - Enterprise WordPress hosting, support, and
consulting - WordPress VIP," WordPress, 2018. [Online]. Available:
https://vip.wordpress.com/case-studies. [Accessed 26 December 2018].

[6] Drupal, "Pinterest | Drupal.org," [Online]. Available:
https://www.drupal.org/pinterest. [Accessed 20 May 2019].

[7] A. Stone, "Pinterest for Business | Drupal.org," 31 October 2017. [Online].
Available: https://www.drupal.org/case-study/pinterest-for-business.
[Accessed 20 May 2019].

[8] GoalGorilla, "GlobalDevHub, an Open Social platform for the United Nations," 5
April 2017. [Online]. Available: https://www.drupal.org/case-
study/globaldevhub-an-open-social-platform-for-the-united-nations. [Accessed
20 May 2019].

[9] GoalGorilla, "Open Social, a Community and Extranet Solution," Drupal, 23 June
2016. [Online]. Available: https://www.drupal.org/case-study/open-social-a-
community-and-extranet-solution. [Accessed 16 December 2018].

[10] A. Chlipala, "Ur/Web: A Simple Model for Programming the Web,"
Communications of the ACM, vol. 59, no. 8, 2016.

74

75

Appendix A

A.1. The Server-Side Code for the Label Cliché

import { 1
 ActionRequestTable, ClicheDb, ClicheServer, ClicheServerBuilder, 2
 Collection, Config, Context, EMPTY_CONTEXT, getReturnFields 3
} from '@deja-vu/cliche-server'; 4
import { IResolvers } from 'graphql-tools'; 5
import * as _ from 'lodash'; 6
import { 7
 AddLabelsToItemInput, ItemsInput, LabelDoc, LabelsInput 8
} from './schema'; 9
 10
import { v4 as uuid } from 'uuid'; 11
 12
interface LabelConfig extends Config { 13
 initialLabelIds: string[]; 14
} 15
 16
function standardizeLabel(id: string): string { 17
 return id.trim() 18
 .toLowerCase(); 19
} 20
 21
const actionRequestTable: ActionRequestTable = { 22
 'attach-labels': (extraInfo) => ` 23
 mutation AttachLabels($input: AddLabelsToItemInput!) { 24
 addLabelsToItem(input: $input) ${getReturnFields(extraInfo)} 25
 } 26
 `, 27
 'create-label': (extraInfo) => ` 28
 mutation CreateLabel($id: ID!) { 29
 createLabel(id: $id) ${getReturnFields(extraInfo)} 30
 } 31
 `, 32
 'search-items-by-labels': (extraInfo) => { 33
 switch (extraInfo.action) { 34
 case 'items': 35
 return ` 36
 query SearchItemsByLabel($input: ItemsInput!) { 37
 items(input: $input) ${getReturnFields(extraInfo)} 38
 } 39
 `; 40
 case 'labels': 41
 return ` 42
 query SearchItemsByLabel($input: LabelsInput!) { 43
 labels(input: $input) ${getReturnFields(extraInfo)} 44
 } 45
 `; 46

76

 default: 47
 throw new Error('Need to specify extraInfo.action'); 48
 } 49
 }, 50
 'show-items': (extraInfo) => ` 51
 query ShowItems($input: ItemsInput!) { 52
 items(input: $input) ${getReturnFields(extraInfo)} 53
 } 54
 `, 55
 'show-item-count': (extraInfo) => ` 56
 query ShowItemCount($input: ItemsInput!) { 57
 itemCount(input: $input) ${getReturnFields(extraInfo)} 58
 } 59
 `, 60
 'show-labels': (extraInfo) => ` 61
 query ShowLabels($input: LabelsInput!) { 62
 labels(input: $input) ${getReturnFields(extraInfo)} 63
 } 64
 `, 65
 'show-label-count': (extraInfo) => ` 66
 query ShowLabelCount($input: LabelsInput!) { 67
 labelCount(input: $input) ${getReturnFields(extraInfo)} 68
 } 69
 ` 70
}; 71
 72
function getLabelFilter(input: LabelsInput) { 73
 const filter = { pending: { $exists: false } }; 74
 if (!_.isNil(input) && !_.isNil(input.itemId)) { 75
 // Labels of an item 76
 filter['itemIds'] = input.itemId; 77
 } 78
 79
 return filter; 80
} 81
 82
function getItemAggregationPipeline(input: ItemsInput, getCount = false) { 83
 const matchQuery = {}; 84
 const groupQuery = { _id: 0, itemIds: { $push: '$itemIds' } }; 85
 const reduceOperator = {}; 86
 let initialValue; 87
 88
 if (!_.isNil(input) && !_.isNil(input.labelIds)) { 89
 // Items matching all labelIds 90
 const standardizedLabelIds = _.map(input.labelIds, standardizeLabel); 91
 matchQuery['id'] = { $in: standardizedLabelIds }; 92
 matchQuery['pending'] = { $exists: false }; 93
 groupQuery['initialSet'] = { $first: '$itemIds' }; 94
 initialValue = '$initialSet'; 95
 reduceOperator['$setIntersection'] = ['$$value', '$$this']; 96
 } else { 97
 // No label filter 98
 initialValue = []; 99
 reduceOperator['$setUnion'] = ['$$value', '$$this']; 100
 } 101

77

 102
 const pipeline: any = [103
 { $match: matchQuery }, 104
 { 105
 $group: groupQuery 106
 }, 107
 { 108
 $project: { 109
 itemIds: { 110
 $reduce: { 111
 input: '$itemIds', 112
 initialValue: initialValue, 113
 in: reduceOperator 114
 } 115
 } 116
 } 117
 } 118
]; 119
 120
 if (getCount) { 121
 pipeline.push({ $project: { count: { $size: '$itemIds' } } }); 122
 } 123
 124
 return pipeline; 125
} 126
 127
function resolvers(db: ClicheDb, _config: LabelConfig): IResolvers { 128
 const labels: Collection<LabelDoc> = db.collection('labels'); 129
 130
 return { 131
 Query: { 132
 label: async (_root, { id }) => 133
 await labels.findOne({ id: standardizeLabel(id) }), 134
 135
 items: async (_root, { input }: { input: ItemsInput }) => { 136
 const res = await labels 137
 .aggregate(getItemAggregationPipeline(input)) 138
 .toArray(); 139
 140
 return res[0] ? res[0].itemIds : []; 141
 }, 142
 143
 itemCount: async (_root, { input }: { input: ItemsInput }) => { 144
 const res = await labels 145
 .aggregate(getItemAggregationPipeline(input, true)) 146
 .next(); 147
 148
 return res ? res['count'] : 0; 149
 }, 150
 151
 labels: async (_root, { input }: { input: LabelsInput }) => { 152
 return await labels.find(getLabelFilter(input)); 153
 }, 154
 155
 labelCount: (_root, { input }: { input: LabelsInput }) => { 156

78

 return labels.countDocuments(getLabelFilter(input)); 157
 } 158
 }, 159
 160
 Label: { 161
 id: (label: LabelDoc) => label.id, 162
 itemIds: (label: LabelDoc) => label.itemIds 163
 }, 164
 165
 Mutation: { 166
 addLabelsToItem: async (167
 _root, { input }: { input: AddLabelsToItemInput }, 168
 context: Context) => { 169
 const labelIds = _.map(input.labelIds, standardizeLabel); 170
 const updateOp = { $push: { itemIds: input.itemId } }; 171
 const errors = await Promise.all(_.map(labelIds, async (id) => { 172
 try { 173
 // cannot use updateMany because we need to upsert labels 174
 await labels.updateOne(context, { id }, updateOp, { upsert: true }); 175
 176
 return undefined; 177
 } catch (err) { 178
 console.error(err); 179
 180
 return err; 181
 } 182
 })); 183
 if (errors.filter((err) => !!err).length === 0) { 184
 return true; 185
 } 186
 const errMsg = _.reduce(errors, (prev, curr, index) => { 187
 if (!curr) { 188
 return prev; 189
 } 190
 const delimiter = index ? ', ' : ''; 191
 192
 return `${prev}${delimiter}${labelIds[index]}`; 193
 }, 'Could not add the following labels to the item: '); 194
 throw new Error(errMsg); 195
 }, 196
 197
 createLabel: async (_root, { id }, context: Context) => { 198
 const labelId = id ? standardizeLabel(id) : uuid(); 199
 const newLabel: LabelDoc = { id: labelId }; 200
 201
 return await labels.insertOne(context, newLabel); 202
 } 203
 } 204
 }; 205
} 206
 207
const labelCliche: ClicheServer = new ClicheServerBuilder('label') 208
 .initDb(async (db: ClicheDb, config: LabelConfig): Promise<any> => { 209
 const labels: Collection<LabelDoc> = db.collection('labels'); 210
 await labels.createIndex({ id: 1 }, { unique: true, sparse: true }); 211

79

 await labels.createIndex({ id: 1, itemIds: 1 }, { unique: true }); 212
 if (!_.isEmpty(config.initialLabelIds)) { 213
 return labels.insertMany(EMPTY_CONTEXT, 214
 _.map(config.initialLabelIds, (id) => ({ id: id }))); 215
 } 216
 217
 return Promise.resolve(); 218
 }) 219
 .actionRequestTable(actionRequestTable) 220
 .resolvers(resolvers) 221
 .build(); 222
 223
labelCliche.start(); 224

Figure 24: The server-side code that interfaces with the database for the Label cliche.

80

81

A.2. show-labels Cliché Action

<ul *ngIf="_labels && _labels.length > 0" class="list-group"> 1
 <li *ngFor="let label of _labels" class="list-group-item"> 2
 <dv-include 3
 [action]="showLabel" 4
 default-showLabel="{ tag: label-show-label }" 5
 [inputs]="{label: label}" 6
 [parent]="showLabels"> 7
 </dv-include> 8
 9
 10
 11
<div *ngIf="!_labels || _labels.length === 0"> 12
 {{noLabelsToShowText}} 13
</div> 14

Figure 25: The HTML code for the show-labels cliché action. Users can replace the show-label action

with another cliché or app action.

import { 1
 AfterViewInit, Component, ElementRef, EventEmitter, Inject, Input, OnChanges, 2
 OnInit, Output, Type 3
} from '@angular/core'; 4
import { 5
 Action, GatewayService, GatewayServiceFactory, OnEval, RunService 6
} from '@deja-vu/core'; 7
import * as _ from 'lodash'; 8
 9
import { ShowLabelComponent } from '../show-label/show-label.component'; 10
 11
import { API_PATH } from '../label.config'; 12
import { Label } from '../shared/label.model'; 13
 14
interface LabelsRes { 15
 data: { labels: Label[] }; 16
 errors: { message: string }[]; 17
} 18
 19
@Component({ 20
 selector: 'label-show-labels', 21
 templateUrl: './show-labels.component.html', 22
 styleUrls: ['./show-labels.component.css'] 23
}) 24
export class ShowLabelsComponent implements AfterViewInit, OnEval, OnInit, 25
 OnChanges { 26
 // Fetch rules 27
 @Input() itemId: string | undefined; 28
 29
 // Presentation inputs 30

82

 @Input() noLabelsToShowText = 'No labels to show'; 31
 32
 @Input() showLabel: Action = { 33
 type: <Type<Component>>ShowLabelComponent 34
 }; 35
 36
 @Output() labels = new EventEmitter<Label[]>(); 37
 38
 _labels: Label[] = []; 39
 40
 showLabels; 41
 private gs: GatewayService; 42
 43
 constructor(44
 private elem: ElementRef, private gsf: GatewayServiceFactory, 45
 private rs: RunService, @Inject(API_PATH) private apiPath) { 46
 this.showLabels = this; 47
 } 48
 49
 ngOnInit() { 50
 this.gs = this.gsf.for(this. elem); 51
 this.rs.register(this.elem, this); 52
 } 53
 54
 ngAfterViewInit() { 55
 this.load(); 56
 } 57
 58
 ngOnChanges() { 59
 this.load(); 60
 } 61
 62
 load() { 63
 if (this.canEval()) { 64
 this.rs.eval(this.elem); 65
 } 66
 } 67
 68
 async dvOnEval(): Promise<void> { 69
 if (this.canEval()) { 70
 this.gs.get<LabelsRes>(this.apiPath, { 71
 params: { 72
 inputs: JSON.stringify({ 73
 input: { 74
 itemId: this.itemId 75
 } 76
 }), 77
 extraInfo: { returnFields: 'id' } 78
 } 79
 }) 80
 .subscribe((res) => { 81
 this._labels = res.data.labels; 82
 this.labels.emit(this._labels); 83
 }); 84
 } 85

83

 } 86
 87
 private canEval(): boolean { 88
 return !!(this.gs); 89
 } 90
} 91

Figure 26: The TypeScript file for the show-labels cliché action. Users can declare inputs and outputs to

the cliché action in addition to those for the requests to the server.

