Development of a Simulation-Based Platform for
Autonomous Vehicle Algorithm Validation
by
Rohan Bandopadhay Banerjee

S.B., Electrical Engineering & Computer Science, Massachusetts
Institute of Technology (2018)

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2019

(© Massachusetts Institute of Technology 2019. All rights reserved.

AUthor .o
Department of Electrical Engineering and Computer Science
May 24, 2019

Certified Dy . ..o
Daniela Rus

Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by . ..o
Katrina LaCurts
Chair, Master of Engineering Thesis Committee






Development of a Simulation-Based Platform for

Autonomous Vehicle Algorithm Validation
by
Rohan Bandopadhay Banerjee

Submitted to the Department of Electrical Engineering and Computer Science
on May 24, 2019, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

Developing robust algorithms for autonomous driving typically requires extensive val-
idation and testing with physical hardware platforms and increasingly requires large
amounts of diverse training data. The physical cost of these hardware platforms
makes field testing prohibitive, and the cost of collecting training data limits the
size and diversity of this data. Autonomous driving simulation is a promising solu-
tion to address both of these challenges because it eliminates the need for a physical
testing environment and because it offers environments that are configurable and
diverse. However, most autonomous driving simulators are not fully useful for al-
gorithm validation because they lack full integration with fundamental autonomous
driving capabilities and because their sensor data is limited in functionality. In this
work, we develop and present a simulation-based platform for testing and validation
of autonomous driving algorithms that combines an open-source autonomous driving
simulator (CARLA) with our existing autonomous driving codebase. Specifically, we
describe our software contributions to this platform, including simulated propriocep-
tive sensors and ground-truth LIDAR road information, and we demonstrate how we
used the platform to validate both fundamental autonomous driving capabilities and a
point-to-point navigation algorithm in simulation. We also describe how our platform
was used to both develop and validate an approach to dynamic obstacle avoidance,
a new capability in our codebase. Our platform is a capable tool for both validation
and development of autonomous driving algorithms, although open directions remain
in the areas of simulator sensor realism and runtime efficiency.
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Chapter 1

Introduction

Modern autonomous vehicle software systems are composed of a large number of in-
terdependent components, including modules for perception and sensing, high-level
planning and decision making, and low-level control. One instance of such a system
is our existing autonomous vehicle framework, which incorporates many of the fun-
damental components of autonomous driving into a single codebase. This codebase
is implemented in a modular fashion using the open-source ROS framework [35] and
is shared across three distinct hardware platforms: a full-scale Toyota Prius [28],
an autonomous wheelchair, and a 1/10-scale RACECAR [25] vehicle platform. The
overarching goal of such systems is to interpret sensor data from the vehicle along
with any necessary external information about the environment in which the vehicle
is situated, to make a high-level decision about the future behavior of the vehicle,
and to determine the low-level control output necessary to achieve this behavior.

As autonomous driving systems have grown larger in scale and are applied to
more complex domains, it has become increasingly difficult to rely on hardware plat-
forms alone for testing and validating autonomous driving algorithms. Therefore,
researchers and engineers working on the development of autonomous vehicle sys-
tems have turned to simulation as a software alternative to hardware testing. A
simulator is a software-based environment that contains models for relevant physical
components and for the environments in which they reside. An autonomous vehicle

simulator will typically include realistic physics models for the agents in the simula-
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tion, the ability to construct rich and realistic road environments, and the ability to
simulate the sensory inputs that would be present on an actual autonomous vehicle.
Typical simulation environments will include static objects such as buildings and road
features, as well as dynamic objects such as pedestrians and other vehicles. Such a
simulator typically includes motion models for the dynamic objects that enable them
to traverse the environment and interact with other static and dynamic objects in a

realistic way.

A full-fidelity autonomous vehicle simulator with the aforementioned capabilities
would be beneficial to autonomous driving research for a number of reasons. Such
a platform would allow for the collection of data from a much larger set of environ-
mental configurations compared to the real world, allowing more control over how
much data comes from specific configurations. Such a platform would also allow re-
searchers to prototype algorithms in a safe manner, without incurring the risk of colli-
sions with obstacles or environmental features. For instance, simulators would benefit
exploration-based planning algorithms such as RRT* [21] because they would enable
a greater exploration of corner cases that might otherwise lead to collisions. Because
simulators are not limited by the cost of hardware platforms, multi-vehicle interac-
tion becomes more feasible, opening up the possibility of developing and validating
cooperative algorithms. Finally, an autonomous driving simulator could potentially
allow algorithms to be implemented and tested at speeds that are much faster than
real-time, which would also allow for large-scale collection of diverse data that could

be used to much more quickly train learning-based algorithms.

The difficulties in developing effective simulators that can prototype and validate
algorithms are manifold. The first gap in simulator efficacy relates to the realism
of their simulated data. The quality of simulated perception data hinges upon both
the quality of the rendering engine used to generate camera and LIDAR data, and
the textures of the physical models that constitute the environment. A more realis-
tic simulator will typically require a larger computational burden, both in terms of
time and rendering hardware (such as GPU and graphics driver capabilities), which

may negatively impact the latency of the simulator system. The issue is that if the
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simulated data comes from a significantly different distribution than the real-world
data, then perception-based algorithms that are trained on the simulated data will
not necessarily generalize to the real world. The quantity and diversity of vehicle data
is particularly important for learning-based approaches to autonomous driving to be
effective, which includes approaches that apply machine learning models to particular
sub-modules (such as perception and planning) as well as fully end-to-end algorithms
[5].

Another challenge to developing an effective simulator lies in optimizing the com-
putation time required to model the dynamics of the agents in the world, produce
realistic sensor data, and keep track of the states of all of the agents in the simulator.
Without a significant speed difference between simulated and real-world dynamics,
it becomes more difficult for simulation to achieve the benefits of scale that are the-
oretically possible with a fully software-based platform. An additional challenge of
simulation that is particularly relevant to obstacle avoidance is in developing realistic
models for the dynamic agents in the simulation. Programming behavior for these
dynamic agents that respects traffic conventions and other vehicles can be as difficult
as the problem of general autonomous driving, albeit without the problem of percep-
tion (because the ground-truth positions and velocities of all agents are known in the

simulator).

The core problem that we seek to address in this work is that of leveraging sim-
ulation to more effectively develop and validate perception-dependent autonomous
driving algorithms. While there exist simulators [50, 3] that allow for the develop-
ment and validation of planning and control algorithms, these simulators typically
lack the 3D rendering required to generate perception data. And although there are
open-source simulators [22, 44, 10] that offer simulated perceptual sensor data, these
simulators are typically structured as open-loop configurations that may not include

modules that can generate control outputs in response to the perception data.

To our knowledge, none of the existing public autonomous driving simulators are
integrated with an autonomous driving stack that includes capabilities such as lo-

calization, planning, perception, and control, even though some of these simulators
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provide the capability for users to interface their own code through ROS. An in-
tegrated platform with built-in fundamental autonomous driving capabilities would
enable robotics researchers to focus on developing higher-level autonomous driving
algorithms without the need to re-implement these capabilities. Another existing
limitation with most simulators lies in the quality and efficiency of 3D LIDAR, simu-
lation. To highlight a few of these deficiencies, simulated 3D LIDAR sensors typically
do not include ground-truth semantic segmentation information (as is typically the
case for simulated camera data), they are typically unrealistic because of texture
limitations of the underlying physics engine, and they often run much slower than
real-time because of the cost of the ray trace operations used to produce the sensor
data. All of these factors limit the potential for autonomous driving simulators to be
useful tools for the testing and validation of autonomous vehicle algorithms, and for

simulators to aid in the development of new algorithms.

Our approach is to develop a full-loop platform that merges an existing open-
source simulator with an autonomous driving software stack capable of processing
perceptual and vehicle measurement data and generating vehicle control commands.
Our platform enables us to take algorithms that have been developed for use on
physical autonomy platforms and validate them in simulation. Rather than focus on
performance optimization of the simulator or on the realism of the simulated data,
our approach focuses on closing the loop by building up the basic functionality of
both the simulator and our own software stack. We do this by making engineering
contributions to the simulator that include adding novel sensors and augmenting
data from the existing sensors. The motivation for developing a full-loop architecture
in this way is to emulate the existing interaction between our autonomous driving
codebase, which determines how to control the vehicle given perception data, the
physical vehicle, which receives control commands and and produces perception data,
and the surrounding environment, which includes all other agents and static features
in the world. Our goal is for the simulator to encapsulate the responsibilities of the
physical vehicle and the environment in a way that seamlessly allows the simulator

to interface with our codebase, as illustrated in Figure 1-1.
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Figure 1-1: Architecture comparison between our autonomous driving codebase and
the physical vehicle (left) and our proposed simulation-based platform (right), il-
lustrating the interactions between the codebase, ego-vehicle, and the surrounding
environment in each configuration.

Even though our platform does not address the issue of simulated data realism, we
do augment the existing 3D LIDAR sensor with ground-truth road segmentation in-
formation, which makes our platform more effective for validating LIDAR-dependent
perception algorithms. In particular, the road segmentation can act not only as an
emulator for trained road segmentation models, but also as a source of training data
for learning-based road segmentation algorithms that does not require manual anno-
tation. Our platform can also leverage the ground-truth position information from the
simulator to provide more accurate translational accuracy benchmarks of navigation
algorithms. The fact that the simulator provides a reliable ground truth contrasts
with the quality of the Oxford GPS sensor data used to provide ground-truth position
information for our vehicle platforms, which is highly dependent on the quality of the
GPS satellite reception (and is often not consistent across testing instances). Finally,
our approach offers the ability to develop obstacle avoidance methods on a platform
that shares the same software infrastructure as our hardware platforms but lacks the
risks that are associated with high-speed collisions.

The current iteration of this platform is limited to controlling one vehicle with our
autonomous driving codebase, although the autonomous driving simulator involved

in our platform is capable of supporting multiple independent agents. Our platform is
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not currently capable of large-scale testing, as we cannot currently run tests at faster-
than-real-time speeds due to the computational burden of rendering the exterocep-
tive sensors. However, our full-loop software simulation platform enables automated
testing by providing more control over the initial conditions of experiments and by
avoiding the costs involved with running real-world experiments on our autonomous
platforms, such as the risk of collisions and energy resource constraints. Finally, we
do not address the challenge of developing realistic models for the other vehicles in
the environment. Instead, we leverage the existing baseline models provided by the

simulator, which are sufficient for the experiments conducted in this work.

1.1 Contributions

In this work, we develop a simulation-based platform that aims to be an effective sub-
stitute for our hardware platforms. We build this platform by developing a complete
sensor suite whose data is both realistic and annotated with useful ground-truth in-
formation, and by incorporating the capability to process the same control commands
that our vehicles would normally receive. The platform that we have developed aims
to be a useful tool not only for autonomous vehicle algorithm validation and data
collection, but also for algorithm development. We choose to build our platform on
top of the CARLA simulator, which we will describe in Chapter 3, because it provides
a ROS interface and multiple simulated perception sensors, including multi-channel
LIDAR, that are fundamental for integration with the perception and navigation
algorithms in our autonomous driving codebase.

This thesis makes the following contributions:

e We build an integrated platform that allows for the testing and validation of au-
tonomous vehicle algorithms in simulation by merging our existing autonomous
vehicle platform with an open-source autonomous driving simulator (CARLA),
and we demonstrate that this platform is capable of simulation and validation
of three fundamental components of autonomous driving: EKF-based proprio-

ceptive localization, pure pursuit control, and RRT* path planning.
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e We extend the platform by incorporating ground-truth road segmentation infor-
mation into the existing LIDAR sensor module in CARLA, and we use this to
validate MapLite, a full-stack autonomous navigation framework, in simulation.
We also describe our contribution to the MapLite framework that incorporates

vehicle stopping behavior at road intersections.

e Finally, we use CARLA as a validation platform for extending the existing dy-
namic safety zone module in our autonomous vehicle platform to avoid dynamic
obstacles by incorporating a proportional distance controller that maintains a

safe following distance when driving in traffic.

1.2 Thesis Outline

This thesis is organized as follows. In Chapter 2, we discuss related work in the areas
of autonomous vehicle algorithm validation and simulation. Chapter 3 introduces the
core of our simulation-based platform and demonstrates our use of the platform to
validate three fundamental autonomous driving algorithms. Chapter 4 describes how
we extended our platform to validate a point-to-point navigation platform, MapLite,
in simulation. Chapter 5 presents another extension of the core platform to develop
and validate an approach to avoiding dynamic obstacles in the environment. Finally,
Chapter 6 summarizes the capabilities and limitations of our platform and suggests

possible directions for future work.
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Chapter 2

Related Work

Below we discuss prior work in autonomous driving algorithm testing and valida-
tion, autonomous driving simulation, and the application of simulators to validate

autonomous driving algorithms.

2.1 Algorithm Testing and Validation

2.1.1 Data-Centric Approaches

One way in which researchers test their algorithms is to rely on existing open-source
datasets. A number of these datasets exist for training perception algorithms, which
include visual [52, 7] and LIDAR [2, 17] datasets that are annotated using a com-
bination of human and automated annotation methods, and multi-modal datasets
[15, 18] that include both camera and LIDAR data. One issue with relying on a
fixed dataset is that one is limited to the scenarios that are incorporated within the
dataset. Although one could simply augment the dataset with newly collected data,
replicating the exact hardware configuration used to create the original dataset can
be challenging. Even though the visual datasets include a large number of different
weather and scene configurations, they are mainly limited to paved roads in subur-
ban or urban settings. Another issue is that a fixed dataset has a fixed proportion

of scenarios that reflects the conditions in which the data was collected. However, it
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might be useful to train an algorithm on a large amount of data from scenarios that
are under-represented in real-world driving but have a disproportionate impact on
the performance of the vehicle - for instance, construction zones or inclement weather

conditions.

Another approach to generating large datasets is to build models that can produce
synthesized data, given only a training dataset that represents a subsample of the
true data distribution. Such approaches may use learning-based generative models
to synthesize new visual data [37, 47, 19] or point cloud data [49, 24], or may use a
combination of classical computer vision and learning to synthesize perturbed data
in an online fashion [51, 1]. While these approaches certainly reduce the effort of
data collection and provide realistic data that allows autonomous driving agents to
learn and generalize, they are still restricted by the scenarios that are present in the
training dataset. For instance, even if such a generative model is trained to learn the
distribution of images from urban driving, it may be difficult to draw samples that
come from a particular type of junction (e.g. a 4-way intersection) if these are not
represented in the training dataset. This means that one cannot easily synthesize
scenarios with differing topologies or obstacle configurations, which may be crucial

for assessing the robustness of a particular algorithm.

Our platform does not rely on an existing perception data repository because it
uses the rendering capabilities of the simulator to produce camera and LIDAR data
from an underlying 3D representation of the world. It is therefore capable of over-
coming some of the limitations of a fixed or synthesized dataset by incorporating
differing environmental configurations and underrepresented scenarios into the sim-
ulated world. However, the realism of the simulated data from our platform is not
currently comparable to that which exists in the datasets that are based on real-world
data. Additionally, the semantic complexity of the simulated environment depends
on the size and diversity of the 3D models included in the simulator, which can

exacerbate the gap between data generated by our platform and real-world data.
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2.1.2 Hardware-Centric Approaches

One can get around the issue of testing algorithms on a full-sized vehicle platform
by instead using smaller-scale platforms that still have the same sensor suite and
control algorithms as the full platform. The RACECAR platform [25] is a small-
scale vehicle platform that has LIDAR and camera sensors and is capable of running
algorithms implemented in ROS. There also exist controlled platforms consisting of
a large number of miniature robots [31, 30] that serve as a means for researchers
to prototype and test their algorithms. Some of these robotic platforms [54] also
include simulation environments that can be used to train or validate algorithms,
although the visual fidelity of these simulators is limited. These systems facilitate
testing cooperative algorithms that involve large numbers of vehicles in a controlled
environment, whereas testing such algorithms on full-sized vehicles would be more
costly and would require a much larger testing environment. Using these platforms
may also allow for code sharing between full-sized vehicles and the miniature robotic
platforms. Although these systems partially address the cost of hardware by providing
a shared, remotely accessible pool of hardware resources, the cost of purchasing a full
fleet of these vehicles can still be significant. Additionally, constructing environments
that are suitable for these vehicles but also transferable to full-scale environments
can be challenging. Our approach is currently limited to validating algorithms on
a single independently-controlled vehicle, but the CARLA simulator that we use in
our platform is capable of modeling multiple vehicles and pedestrians that operate

according to limited motion models.

2.2 Simulation Platforms

Visual simulators such as DeepDrive [36] and the Udacity self-driving car simulator
[45] focus on the simulation of multiple camera views that can provide RGB and
depth information. Although these simulators provide rich camera information, they
are typically limited to modeling a single autonomous agent and do not include other

sensor modalities, such as LIDAR, that are useful for autonomous driving. Multi-
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agent control simulators such as TORCS [50] have primarily been applied to problems
in reinforcement learning and imitation learning. Although these simulators provide
the ability to control multiple agents and learn policies that take vehicle interactions
into account, their focus on planning and control means that one cannot test the
full range of autonomous driving algorithms that require upstream modules (such as
perception and sensing). To fill in this gap between perception-centric simulators
and control-centric simulators, a number of full-stack simulators, including Gazebo
Citysim [22], Microsoft AirSim [41], and CARLA [10], include elements of percep-
tion, planning, and control. These simulators are better suited for integration with
existing robotics software stacks because of their ROS integration and sensor suites
that include both camera and multi-channel LIDAR. Because our platform aims to
interface with our autonomous driving software codebase, and because our focus is on
developing and validating perception-dependent algorithms, we chose to incorporate

the CARLA simulator into our platform.

A prior version of our autonomous vehicle framework [28] incorporated the Drake
simulator [44], which was capable of producing simulated sensor data - both pro-
prioceptive (vehicle odometry) and exteroceptive (2D LIDAR scans) - and receiving
control commands from our autonomous driving codebase. However, one of the main
limitations of this simulator was that its perception suite was limited to 2D LIDAR.
The simulator was also only capable of simulating the behavior of the ego-vehicle,
without any capability to simulate the dynamics of other autonomous agents. Al-
though our platform only allows for one independently-controlled vehicle, we can still
model external agents such as vehicles and pedestrians, and we are able to develop
and validate a larger class of algorithms compared to our prior work. This includes
perception algorithms that require camera or 3D LIDAR data, as well as planning

algorithms that involve interactions with other agents.
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2.3 Simulation-based Validation

Simulators that are built on top of video game engines have been used to benchmark
and synthesize training data for a number of vision and LIDAR-based perception
algorithms, including object detection [48, 20] and target tracking [27], and SLAM
[42].  Although these simulators do provide realistically-rendered visual data, the
quality of simulated LIDAR data is dependent on the quality of the textures associated
with the 3D models in the simulation and does not necessarily reflect sources of
uncertainty that are present in true LIDAR data. The main limitation with these
approaches is that they use simulators in an open-loop fashion, where the simulator
is used only as a data generation mechanism, rather than a closed-loop configuration
where the simulator produces data that is influenced by external control inputs. Our
platform is not only capable of data generation but is also capable of validating
full-loop autonomous driving pipelines that include perception algorithms as well as

planning and control algorithms that produce control outputs to the vehicle.

Simulators have also been used to provide ground-truth semantic segmentation in-
formation [39, 38, 40], although these approaches have typically been limited to visual
data. Our simulation-based platform provides binary ground-truth road segmenta-
tion of 3D LIDAR that directly accesses semantic information from the underlying

simulator.

Simulators have been used for training end-to-end algorithms that produce vehi-
cle control outputs directly from sensor data, including for imitation learning [6, 4]
and also for validation of modular pipelines that combine perception, planning, and
control [10]. Our work is similar to the latter category in that we focus on validat-
ing perception-dependent algorithms that produce control outputs, although we do
not explicitly validate any learning-based end-to-end approaches in our work. Other
approaches leverage hardware-in-the-loop simulation for autonomous driving [9], in
which a full-loop simulation combines software models and hardware components to
provide control and sensor data. Our approach does not rely on any explicit vehicle

hardware other than the resources that are needed to support the simulator and the

27



algorithms in the autonomous driving codebase - namely, a laptop computer with a

GPU for rendering sensor data.
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Chapter 3

Validation of Fundamental

Autonomous Driving Capabilities

with CARLA

In this chapter, we describe the development of a simulation-based platform for au-
tonomous vehicle algorithm testing and validation that combines the CARLA sim-
ulator with our existing autonomous vehicle codebase. We begin by describing the
core components of the CARLA simulator. We then describe our contributions to
the CARLA simulator to integrate the simulator with our autonomous vehicle code-
base. Finally, we use the platform to demonstrate and validate three fundamental
autonomous driving algorithms in our autonomous driving codebase: EKF-based lo-

calization, pure pursuit control, and RRT* path planning.

3.1 CARLA Overview

CARLA [10] is an open-source autonomous driving simulator that allows for the
simulation of an autonomous ground vehicle in a simulated environment. It is built as
a plugin to the Unreal Engine [11], an open-source video game engine, and leverages
the features of this engine to simulate the physics of the vehicle and to generate

simulated sensor data, including camera and LIDAR. CARLA is also able to model
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the behavior of other agents in the environment, such as other vehicles, pedestrians,

and motorcyclists.

3.1.1 CARLA Architecture

CARLA is structured as a client-server architecture, where a central server exchanges
information with one or more clients via a TCP connection. The CARLA server
models the dynamics of the world (including that of the ego-vehicle and the other
agents in the environment) and produces vehicle measurement and sensor data. A
connecting CARLA client receives this measurement and sensor data and can send
control commands to the server to change the state of the ego-vehicle. The CARLA
client is also responsible for initializing the ego-vehicle in the CARLA environment
and for setting the configuration of each sensor.

The CARLA codebase includes a special CARLA client called the CARLA-ROS
bridge, which functions as an interface between the CARLA server and any ROS-
compatible software framework. The CARLA-ROS bridge uses the CARLA client
libraries to receive measurement and sensor data from the CARLA server, and pub-
lishes this data in a ROS-compatible format. Additionally, the bridge can subscribe
to ROS control messages and use the CARLA client libraries to send this control
information to the CARLA server. Figure 3-1 shows the relationship between the
server, CARLA-ROS bridge, and the rest of our autonomous driving codebase, which
is implemented using ROS.

3.1.2 CARLA Sensor Data

CARLA supports multiple sensor modalities, such as camera and multi-channel LI-
DAR, but we exclusively use the single-channel 2D LIDAR for the experiments in
this section. The current implementation of LIDAR in CARLA generates individual
ray traces for each LIDAR channel at constant angular increments to produce the full
LIDAR point cloud. This cloud is represented as an unordered collection of points in

R3, with points given in the local coordinate frame of the vehicle.
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Figure 3-1: System diagram of relationship between CARLA server, CARLA-ROS
bridge, and autonomous vehicle codebase.

3.1.3 CARLA Control

CARLA also enables external control of the ego-vehicle, in the form of unitless, nor-
malized throttle and steer data that can be directly sent to the CARLA server.
Because our autonomous driving codebase produces ROS commands in the form of
steer (rad) and speed (m/s) values, we incorporated a module in the CARLA-ROS
bridge to convert the ROS steer and speed values into CARLA throttle and steer data
by applying proportional gains to both values. We note that applying a proportional
gain to the ROS steer value (a velocity) to produce the CARLA throttle value (an
acceleration) does not enable the CARLA vehicle to maintain the commanded veloc-
ity over time, and that a PID controller would be a more robust solution to calculate
the desired acceleration (as exists in the development version of the CARLA-ROS
bridge).

3.2 EKF-Based Localization

The first capability that we demonstrate with CARLA is localization, which allows
our ego-vehicle to determine its pose in the world. We choose to use the existing
Extended Kalman Filter (EKF') localization algorithm [26] in our autonomous driving
codebase, which fuses information from three proprioceptive sensors - GPS, IMU, and
wheel encoders - to produce a vehicle pose estimate. The EKF provides this pose

estimate as a coordinate transformation between two coordinate frames: the map
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frame, which is a coordinate frame that is fixed at the initial position of the vehicle,
and the base_link frame, which is a coordinate frame attached to the middle of the
rear axle of the vehicle.

We first implemented a GPS sensor that simulates the true Oxford GPS sensor
used on the Prius autonomous testing vehicle. To do so, we used the ground truth
position of the vehicle with respect to a fixed global frame that is provided by CARLA.

Additionally, we implemented a simulated IMU sensor which provides the orienta-
tion, angular velocity, and translational acceleration of the vehicle. The node accesses
orientation directly from the ground truth vehicle pose, and accesses the acceleration
from the CARLA ego-vehicle measurement information. The angular velocity 0 is
calculated by differentiating the estimated yaw angle at each time-step and is given
by
G 0=

At
where 6; is the yaw angle at time ¢ and At is the simulation time-step.

Finally, we implemented a simulated wheel encoder sensor that provides the trans-
lational velocity of the vehicle in the x and y directions. The forward (z) speed is
accessed directly from the CARLA ego-vehicle measurement information, and the

tangential (y) speed is set to 0 because we assume that the vehicle does not slip.

Table 3.1 describes the inputs to the EKF provided by the three sensors.

H Sensor  Fields H
GPS T,y
IMU 0,0

Encoder z,y

Y

Table 3.1: Correspondence between sensors and EKF state inputs.

3.2.1 Sensitivity to Proprioceptive Sensors

We now use CARLA to assess the sensitivity of EKF-based localization to the three

proprioceptive sensors that we developed in the previous section. In order to de-
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termine how important each sensor is to maintaining an accurate pose estimate, we
choose to assess the localization accuracy of the vehicle with different combinations
of sensors. Because the EKF requires at least one source of position information and
one source of orientation information in order to produce a valid pose estimate, we
always include the IMU, which is the sensor that provides orientation information,
and we include different combinations of the GPS and encoder sensors.

For our particular experiment, we measure how well the vehicle is able to maintain
an accurate pose estimate while traversing a straight route in the Town02 CARLA
environment. First, we record the ground-truth vehicle poses along this path by
recording the output of the GPS sensor with no added noise (which simply transforms
the ego vehicle transform into a GPS position). For each sensor combination, we then
record the vehicle poses produced by the EKF as the vehicle traverses the path.

To model our prior uncertainty estimates for the sensors, we chose a yaw angle
velocity covariance value of o, = 0.004 and an x-velocity covariance value of 02 = 1.0.
All of the covariance values for the GPS message were set to 0, indicating that the
GPS provides full ground-truth position.

We selected two representative translational and rotational accuracy metrics to
evaluate different aspects of the localization accuracy for each sensor combination.
Let Py = {p(j)}j-v:gtl be the collection of poses that form the ground-truth path and
Py = {.r(j)}j-v:dl be the collection of poses that form the driven path. The metrics we

used were:

1. Mean translational error:

1
Eirans = Fd Z ||I(l) - x;t,i“?
=1

*

where z7, ;

is the closest point in the ground-truth path to z

2. Mean yaw angle error:

1
Eyaw = ﬁd ; ’W(i) - w;t,i
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Figure 3-2: Mean translational error.

*
where wy, ;

is the yaw angle of the closest point in the ground-truth path to z;

Figures 3-2 and 3-3 show results for each of the two described metrics for three
different sensor combinations: all three sensors (GPS, encoder, and IMU), just the
GPS and IMU, and just the encoder and IMU. We conducted 3 repeated trials for each
sensor configuration. We observe that using the GPS alone yields a lower translational
error compared to the encoder alone, and that using all three sensors actually leads
to an error that falls in between the former two error values. This difference is
presumably due to the integration error that the EKF incurs when it infers the vehicle
pose (z and y) from the discrete velocity estimates (& and y) that come from the
encoder. The yaw angle error values appear to suggest that using all three sensors
results in the lowest error, and again that the GPS is marginally better than the
encoder. This may suggest that both position (GPS) and velocity (encoder) data are
needed to provide an accurate orientation estimate for the vehicle, although we note
that the absolute magnitude of yaw angle error for all three sensor combinations is

small (on the order of 107 rad).
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Figure 3-3: Yaw angle error.

3.3 Path Following Using a Pure Pursuit Controller

We now describe how we integrated the pure pursuit controller in our autonomous
driving codebase with CARLA, both to demonstrate that the CARLA vehicle could
autonomously follow a path in simulation and to validate its performance in simula-

tion.

Pure pursuit [8] is a control algorithm which enables an agent to follow a pre-
defined path. The algorithm takes as an input the path and the current pose of
the vehicle relative to the path, and determines the arc of curvature that the vehicle
should traverse in order to follow the path. The implementation of the pure pursuit
algorithm in our codebase generates a planned path that follows this arc of curvature

as well as the steering angle necessary to follow this arc.

Figure 3-4 shows the composition of our system with both the EKF and the pure
pursuit controller connected to CARLA. In order to create this system, we provided
the pose estimate from the EKF to the pure pursuit controller, along with a pre-

determined path. The pure pursuit controller generates both a path for the vehicle
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Figure 3-4: Block diagram showing the composition of the CARLA system integrated
with the pure pursuit controller. Orange indicates modules that are existing compo-
nents of our autonomous driving system, blue indicates modules that exist in CARLA,
and red indicates our contributions to CARLA.

to follow and the necessary steering angle to follow this path, and it provides this
steering angle to an existing speed controller (not shown in Figure 3-4) that calculates
the desired speed for the vehicle to follow. These data are received by the CARLA-
ROS bridge and are converted into CARLA control messages that are sent to the
CARLA server to control the ego-vehicle.

3.3.1 Pure Pursuit Demonstration

Our demonstration of path following using pure pursuit in CARLA involved following
a path in the built-in CARLA TownO1 suburban environment, shown in Figure 3-5.

This environment consists of single-lane roads separated by double yellow lines, which
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Figure 3-5: Overhead view of CARLA Town01 environment.

are laid out in a rectangular grid, and includes suburban features such as buildings,
houses, and driveways.

The demonstration path consists of a straight road segment followed by a right
turn from start location 31 to start location 49, as shown in Figure 3-6. To gener-
ate this path, we drove the CARLA vehicle along the path and recorded the simu-
lated GPS position of the vehicle at a frequency of 10 Hz along the path. We then
demonstrated that the CARLA vehicle could follow this path using the pure pursuit
controller using only its estimated position and orientation from the GPS, IMU, and

wheel encoder. Figure 3-9 shows a visualization of the vehicle following the path.

3.3.2 Pure Pursuit Performance in CARLA

We use our simulation-based platform to validate the performance of the pure pursuit
control algorithm in CARLA. We focus on investigating the sensitivity of the pure
pursuit algorithm to its lookahead distance parameter, which controls the radius
from the current position of the vehicle that pure pursuit uses to compute the desired
steering command.

We first measure the accuracy sensitivity by using the mean translational error

metric described in section 3.2 to quantify the discrepancy between the path driven by
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Figure 3-6: CARLA TownO1 roadmap with start and end positions of the path indi-
cated. Start and end position numbers are references to the internal position IDs of
the TownO1 map.
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Figure 3-7: Mean translational error between vehicle path and pure pursuit goal path
as a function of lookahead radius.

the simulated vehicle and the reference path that the vehicle is trying to follow. Figure
3-7 shows the mean translational error as a function of the pure pursuit lookahead

distance, after conducting 3 trials for each lookahead radius parameter setting.

Our expectation was that a smaller lookahead radius would lead the vehicle to
oscillate about the reference path but also follow the reference path more closely,
leading to a lower overall translational error. In contrast, increasing the lookahead
radius would lead the vehicle to traverse the path with fewer oscillations but would
also lead to a more gradual convergence to the reference path and to turn undershoot-
ing, leading to a higher overall translational error. We observe that increasing the
lookahead radius leads to an increased translational error, suggesting that the effect of
the gradual convergence dominated the effect of fewer oscillations. It is also possible
that we would observe an increase in translational error if we were to decrease the
lookahead radius beyond the minimum value tested (3 m), depending on the limits

of the steering ability of the vehicle.

We then focus on the sensitivity of the time taken to drive the complete path. Fig-
ure 3-8 shows the average time taken across 3 trials for each setting of the lookahead

radius. We observe that the time required to traverse the path generally decreases as
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Figure 3-8: Mean simulated time to complete the pure pursuit path as a function of
lookahead radius.
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Figure 3-9: RViz visualization of the CARLA vehicle following the challenge path.
Reference path is shown in green, and pure pursuit goal path is shown in blue. Also
shown are the a third-person view of the CARLA vehicle (upper right) and a first-
person simulated camera view from the front of the vehicle (lower right).
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a function of this radius. The most plausible hypothesis for this outcome is that the
driven path corresponding to a lower lookahead radius contains an increased number
of oscillations. Because the speed controller generates a speed that is inversely pro-
portional to the steering angle of the vehicle, driven paths that contain oscillations
are traversed in a longer amount of time. In addition, it is possible that the overall
distance traveled is lower for a higher lookahead radius, which could result from both
the decreased oscillations of the pure pursuit controller and the vehicle undershooting
the turn. It is also interesting to note that increasing the lookahead radius decreases

the uncertainty in the time required to traverse the path.

3.4 Static Obstacle Avoidance Using RRT* Path

Planning

Finally, we demonstrate that a path-planning algorithm can successfully be integrated
with CARLA to avoid static obstacles. For our demonstration, we use the RRT*
planning algorithm [21], which is a planning algorithm that determines a feasible
path for an agent to follow based on the kinematic constraints of the vehicle and the
external features of the environment, such as obstacles. RRT* works by growing a
tree outwards from the start point of the vehicle by randomly sampling points from
the feasible space and connecting them to the tree based on the constraints of the

vehicle.

The specific implementation that we tested comes from OMPL [43], an open-
source motion planning library written in C++. We demonstrate that the RRT*
planner can take 2D simulated LIDAR data from CARLA, a reference path, and the
estimated current pose of the vehicle to enable the simulated vehicle to plan and
navigate a path that successfully avoids static obstacles. Figure 3-10 illustrates the
fundamental components of the RRT* planning module. The RRT* planner first
requires a costmap to be generated, which is a map that associates costs with each

point in space in a neighborhood of the current position of the vehicle. This costmap
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Figure 3-10: Block diagram of RRT* system components.

is built by overlaying multiple layers that depend on a combination of local sensor data
and global information about the environment. In particular, the costmap generates
an initial segmentation of the surroundings into drivable regions by marking all points
that are a certain distance from the reference path as drivable. It also uses the 2D
LIDAR to implicitly detect static obstacles and mark the regions that the 2D LIDAR
hits as obstacles.

Figure 3-11 shows how the RRT* nodes interface with the CARLA-ROS bridge

and with the localization and control modules described in the previous section.

3.4.1 RRT* Demonstration

We first demonstrate our successful integration of CARLA with the RRT* planner by
guiding the vehicle to avoid three parked cars in a minimal environment consisting
of a straight, single-lane road segment separated by a double yellow line. Figure 3-12
shows a rendering of this environment with three parked cars located in the right

lane, along with a visualization of the costmap and RRT* nodes.

We initialized the vehicle in the right lane, and our goal was to show that the
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Figure 3-11: Block diagram showing the composition of the CARLA system integrated
with RRT* path planning. Orange indicates modules that are existing components
of our autonomous driving system, blue indicates modules that exist in CARLA, and
red indicates our contributions to CARLA.
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Simulation Step: 100 ms

Figure 3-12: RViz visualization of the CARLA vehicle avoiding static obstacles in
CARLA-RRT* demonstration, with reference path (yellow) and costmap (pink and
blue). Upper right shows an overhead view of two-lane road environment, lower right
shows first-person camera view from ego-vehicle.

vehicle could avoid these static obstacles by temporarily switching into the left lane
when necessary. In order to guide the vehicle to stay in the right lane by default,
we provided a reference path that corresponded to the middle of the right lane. We
generated this reference path by driving the vehicle down this lane and recording the
GPS position of the vehicle at 10 Hz, in a similar manner to what was done for the

pure pursuit demonstration in section 3.3.2.

3.4.2 RRT* Performance Assessment

Our first experiment to validate the ability of RRT* to avoid static obstacles in
CARLA measured the minimum distance between the CARLA vehicle and the static
obstacles as it traversed through the minimal CARLA environment. For each trial, we
recorded the path driven by the CARLA vehicle, consisting of a successive collection
of vehicle pose estimates (derived from the map to base_link transform produced by
the EKF). We extracted the ground truth positions of the static obstacles from the
Unreal Editor. We defined the minimum distance between the path and the static
obstacles to be the minimum distance between any point on the path and any of the

2D rectangular bounding boxes of the vehicles.
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Figure 3-13: Visualization of one challenge path (blue), reference path (orange), and
bounding boxes of static obstacles.

After conducting 5 repeated trials of the vehicle navigating through the static
obstacle field, we found that the minimum distance from the CARLA vehicle to the
static obstacles was 1.52 £ 0.12 m, and the time taken to complete the challenge was
53.96 £ 1.39 s. The average speed of the vehicle while traversing the challenge route
was 2.24 £ 0.14 m/s.

Figure 3-13 shows a typical vehicle path, the reference path, and the bounding
boxes of the parked cars.

In order to show that CARLA can be used to validate a characteristic of RRT*
that would be difficult to assess in the physical world, we assessed the reactivity of
the RRT* planner. To do so, we created an environment similar to the one used in
the demonstration, which instead had a single static vehicle parked on the road. We
then measured the minimum distance from the ego-vehicle to the static vehicle as it
traversed the environment, for a range of maximum velocities ! and starting positions
of the ego-vehicle relative to the parked car. Our goal was to assess how sensitive

this distance would be to both the velocity and start position. Figure 3-14 shows the

!Because the commanded velocity value is converted into an acceleration value for controlling
the CARLA vehicle, as described in section 3.1, the maximum velocity parameter is effectively a
maximum acceleration parameter for the CARLA vehicle.
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Figure 3-14: RRT* reactivity plot.

results of the experiment for 3 different initial distances and 3 different maximum
speed values. We note that an increased initial distance is generally associated with
an increased minimum distance from the static vehicle, which is plausible because this
increased distance may cause the vehicle to plan a route around the vehicle further
in advance. We also note that an increased maximum speed value leads to decreased
distances to the static vehicle, which is also plausible because the increased speed

limits the ability of the controller to avoid obstacles.
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Chapter 4

Validation of MapLite Driving
Framework in CARLA

In the previous chapter we demonstrated that we could develop CARLA to be a
useful tool for validating fundamental autonomous driving capabilities that are core
elements of any autonomous driving system. However, one of our primary goals is
to develop CARLA into a platform for testing and validating autonomous driving
research algorithms.

We chose to use the MapLite autonomous navigation framework as a case study
for validating an autonomous vehicle research algorithm in simulation. We begin by
describing the fundamental components of the MapLite navigation framework. Next,
we detail the integrated system that includes CARLA and the MapLite framework.
Finally, we demonstrate that CARLA can be used to validate the performance of
MapLite by presenting results that assess the consistency of MapLite and its differ-

ential performance on straight road segments and intersections.

4.1 MapLite Overview

MapLite [29] is an autonomous navigation framework which enables an autonomous
vehicle to navigate through a road environment, given only local sensor data and a

sparse topological map of the road network. The abstract formulation of the frame-
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work decomposes the navigation problem into three problems: localizing the vehicle
on the road network, determining a route in the topological map from the current
vehicle position to a destination, and traversing an edge of the road network. The
instantiation of the original MapLite algorithm [29] focused primarily on the edge
traversal problem, which consisted of a road segmentation module that detected the
road boundaries and a trajectory generation module that would then determine a fea-
sible trajectory for the vehicle to drive in free space. However, this instantiation of the
MapLite algorithm was not able to navigate on road segments that included intersec-
tions, and it was also not equipped to handle point-to-point autonomous navigation
because it did not explicitly process the full OSM map.

This motivated the next iteration of the MapLite algorithm, which consists of three
core components, shown in Figure 4-1. The first component is the road segmentation
module, which classifies the points in an incoming 3D LIDAR point cloud that belong
to the drivable road surface. The model used for road segmentation can be any
supervised classifier, such as an SVM or a CNN, that can be trained on LIDAR data to
provide these pointwise LIDAR road labels. This pointwise road determination is then
processed by the map warping module, which deforms the global topological map to
be locally metrically accurate based on the drivable road surface. The deformation is
performed using a non-linear optimization that determines the optimal transformation
of the base topological map that matches the local road information provided by the
road segmentation module. Once the topological map has been warped, it is used
by the route planner module to determine a path from the current position of the
vehicle to an arbitrary destination pose in the space of the graph. The route planner
uses Dijkstra’s algorithm to find the shortest-cost path from the source node to the

destination node.

4.2 MapLite - CARLA Integration

In this section, we describe the contributions that we made to both CARLA and

MaplLite in order to build an integrated platform that allows for the validation of
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Figure 4-1: Block diagram of MapLite system with road segmentation, map warping,
and route planner modules.

MaplLite in simulation.

4.2.1 CARLA contributions

Our first contribution to CARLA was to incorporate ground-truth LIDAR road seg-
mentation information into the existing CARLA LIDAR module. We extracted the
road identities of the individual ray traces that compose the CARLA LIDAR by ac-
cessing a built-in feature of the CARLA server that tags every object in the CARLA
environment with its semantic identity. We then modified the LIDAR message types
in the CARLA server, the CARLA Python client API, and the CARLA-ROS bridge
to accept a new field that contained binary road classifications for each point.

As an ancillary contribution to make the format of the CARLA LIDAR data
more realistic, we added fields for both the ring ID and the intensity (the latter
being a dummy value because the CARLA LIDAR ray traces do not return intensity
information about the objects that they hit). We also assigned 0-range values to the
LIDAR returns that were out-of-range rather than excluding them from the point
cloud altogether in order to match the data format of real-world LIDAR sensors.

Our second contribution to CARLA consisted of converting the existing topologi-
cal map from the CARLA environment, which included directed edges corresponding
to both sides of the road, into an undirected topological map that contained a single

edge for each distinct road segment in the graph. We implemented this conversion
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in order to make the CARLA topological map consistent with the undirected Open
Street Map graphs. Our conversion algorithm, which takes as input a graph G and a

distance tolerance € and produces a condensed graph, is presented below:

function CONDENSEGRAPH(G, ¢)
while there are nodes to condense in G do
for node n in G do
C' = GETCLOSENODES(n, ¢)
if |C| > 0 then
COMBINENODES(n, C)
end if
end for
end while

end function

Figure 4-2 compares the original unidirectional map to the processed bidirectional

map of the Town01l CARLA environment.

4.2.2 MapLite contribution: stopping at intersections

When we tested our the initial iteration of the intersection-sensitive MapLite algo-
rithm in the Devens rural road testing environment, we found that the vehicle would
often fail to clear intersections. This occurred because the time required for the map
registration algorithm to update the topological map as it drove through the inter-
section would exceed the reaction time necessary for the vehicle to plan an updated
route that did not violate the constraints of the intersection. To address this issue,
we incorporated a routine into the route planner that allows the vehicle to pause at
intersections before proceeding along the planned route. This pausing behavior would
allow the map registration algorithm to converge to a steady-state topological map
before the vehicle proceeds through an intersection.

The intersection stopping routine is implemented on top of the existing route

planner as a finite state machine with two states - one to indicate that the vehicle is
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Figure 4-2: Comparison of (a) directed and (b) undirected topological maps of Town01
CARLA environment.
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at an intersection (which we will denote at-int), and one to indicate that it is not
(denoted not-at-int). The routine starts in the not-at-int state and transitions
to the at-int state if the total length of the path from the current vehicle pose to
the next upcoming intersection is lower than a threshold stopping radius 7g,p. If this
is the case, the route planner will also cease publishing a new path for a duration of
tstop Seconds. Once in the at-int state, the planner will determine whether it has
successfully traversed the intersection by checking to see whether the next upcoming
intersection in the route is within an intersection tolerance radius ry,; of the previously
stored intersection pose. If this is the case, the planner sets the goal route to terminate
at the intersection immediately after the current intersection. If not, the planner
transitions to the not-at-int state and updates the stored intersection pose to be
the new intersection.

This modification to the route planner assumes that the vehicle can actually come
to a complete stop before the center of the intersection, but this depends on the
behavior of the selected speed controller. If the vehicle is unable to come to a complete
stop before the intersection, then the vehicle executes a rolling stop and continues

driving towards the next intersection.

4.2.3 Integration

We combined the aforementioned contributions to CARLA and MapLite with the
core CARLA-ROS bridge, EKF (without GPS), and pure pursuit modules described
in chapter 3 to complete an integrated system that allowed us to simulate the full
behavior of MapLite in CARLA. Figure 4-3 shows the composition of the full CARLA-
MapLite system, which uses proprioceptive (IMU and encoder) and exteroceptive
(LIDAR) simulated sensors along with the global topological map to navigate the
vehicle in simulation towards a user-specified goal pose.

One key difference between the integrated system presented here and the stan-
dard MapLite algorithm is that the CARLA system does not use a learned model to
compute road segmentation directly on the 3D LIDAR, but rather uses ground-truth

information to produce that segmentation information. We chose to use this ground
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Figure 4-3: Block diagram showing the composition of the integrated CARLA-
MaplLite system. Orange indicates modules that are existing components of our
autonomous driving system, blue indicates modules that exist in CARLA, and red
indicates our contributions to CARLA. The topological map is shaded in red and blue
to indicate that it was a modification of an existing CARLA feature, rather than a
purely novel contribution.
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truth information, rather than re-using a road segmentation model from real LIDAR
or training a new road segmentation model on the CARLA LIDAR data, because
the models trained on real LIDAR data were unlikely to generalize to simulated LI-
DAR data and vice versa (due to the qualitative differences between CARLA and
real LIDAR data). This design choice means that our system is primarily a testing
and validation platform for the map warping and route planner modules of MapLite.
However, one could introduce noise into the ground-truth road segmentation or train
a model on CARLA LIDAR data to extend our system to act as a validation platform

for the road segmentation module.

Compared to the demonstration of RRT* planning in chapter 3, we note that the
route planner produces a planned path to a particular goal destination, while RRT*
produced a local planned path that directed the vehicle to drive towards a global
reference path. The map warping node is comparable to the costmap node, in the
sense that both provide metrically-accurate but differing representations of the road
environment. The costmap node provided an actual metric map (in an occupancy
grid format) of the local road environment, whereas the map warping node provides
a metrically-accurate sparse topological map of the local road environment (which is

a subgraph of the global topological map).

4.3 Performance assessment of MapLite in simu-

lation

We now use the integrated system to assess the performance of MapLite in simulation.
We begin by assessing the consistency of the path traversed by MapLite as it proceeds
from a fixed starting position to a fixed end position, and we then compare the
performance of MapLite on straight road segments to its performance on intersections.
We assess the performance of MapLite by comparing the MapLite path traversals to
a reference ground-truth path produced by a human manually driving through the

simulated CARLA environment. The ground truth path was generated by manually
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driving the CARLA vehicle using the joystick controller along the center of the road,
which in the case of the CARLA TownOl environment corresponds to the double
yellow lines that separate each lane. In addition, we compare the performance of
MapLite to the performance of a baseline path-following method which uses GPS
information to follow a fixed path from the start position to the end position using

pure pursuit, which is identical to the approach described in Section 3.3.

4.3.1 Consistency of MapLite

We first assess the consistency of the path traversed by MapLite as it proceeds from a
fixed start position to a fixed goal position. We measure consistency by assessing the
average accuracy of a collection of traveled MapLite paths compared to a ground-truth
reference path, as described earlier. In order to assess the consistency of MapLite, we
measure the average deviation from the ground-truth reference path using the mean
translational error and mean yaw angle error metrics described in Section 3.2.

We recorded 10 trials of MapLite driving in the CARLA Town0Ol environment
from a fixed start location to a fixed goal location, which we selected to specify a
path that included a mix of straight road segments and intersections. Figure 4-4
shows the scenario for this experiment, including the start and goal locations and the
initial path in the TownO1 topological map. For each trial, we recorded the transform
between the devens and base_link coordinate frames (derived from the transform
between the map and base_link frames produced by the EKF) at regular intervals
as the vehicle traversed the route from start to goal. Figure 4-5 shows the 10 trial
paths, along with the ground-truth path.

Note that trials 1 and 4 resulted in collisions at the first intersection. These paths
do not extend to meet the end of the ground-truth path but rather are truncated
at the intersection where the vehicle collided with a static environmental feature. It
is not entirely certain whether these collisions were due to fundamental issues with
MaplLite, or whether these collisions arose because of performance limitations of the
hardware platform that we used to run our experiment. Note also that none of

the trial paths terminate at exactly the goal location because the speed controller
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Figure 4-4: Overhead view of MapLite consistency experimental scenario, with initial
Town01 topological map (gray), initial planned global route (purple), local route to
the first intersection (green), and the start position indicated by the vehicle indicator.
Also shown is the ground-truth road segmented LIDAR scan, with road points (white)
and off-road points (black).

commands the vehicle to stop once the vehicle reaches a set distance away from the

goal position (for this experiment, the stopping distance was set to 20 m).

In order to create the ground-truth reference path, we used the joystick controller
module in our autonomous driving codebase to manually drive the CARLA vehicle
along the double-yellow lines of the CARLA map, which corresponds to the center
of the road (because the MapLite topological map is undirected). We recorded the
ground truth path by recording the transform between the devens and base_link
coordinate frames, with only the GPS sensor enabled to provide ground-truth position

information, at periodic intervals.

For the GPS path following baseline, we generated the fixed route from the start
position to the goal position by taking the initial full route planned by the route
planner module of MapLite, and converting the poses in this route to be transforms
between the devens and base_link coordinate frames. We then recorded 10 trials
of the GPS following baseline driving in the same CARLA environment and recorded

the transform between the devens and base_link coordinate frames to generate each
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Figure 4-5: Visualization of 10 MapLite trajectories from the same start and goal
positions, with ground-truth trajectory shown in blue. Scale is in meters.

trial path. We measured the consistency of the GPS path following baseline in the
same manner as MapLite, in which we compared the path followed by the baseline
to the same ground-truth reference path as MapLite using the same two accuracy

metrics. Figure 4-6 shows the 10 recorded trajectories from the GPS baseline.

Figure 4-7 compares the distribution of accuracies between MapLite and the GPS
baseline over all 10 trials for each of the four metrics. We note that both the uncer-
tainty and the absolute error of the paths traversed by MapLite are significantly larger
than the corresponding values for the paths traversed by the GPS baseline. Because
we are using ground-truth information about the CARLA environment to produce
the road segmentation output, our comparison seems to reveal that the performance
of MaplLite is highly dependent on the efficiency and accuracy of the map warping
node, especially as the vehicle traverses intersections. However, despite the fact that
there were two incomplete trials that resulted in vehicle collisions, both metrics reflect

relatively low absolute error values across all trials for MapLite (although the mean
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Figure 4-6: Visualization of 10 GPS baseline trajectories from the same start and
goal positions, with ground-truth trajectory shown in blue. Scale is in meters.

translational error metric is still large in magnitude, presumably because of the large
variance in trajectories observed near the first intersection). This is because both
are local error metrics and thus will not take into account whether the vehicle was
actually able to complete the route - only whether the vehicle remained close to the

ground-truth path for the duration of its driven route.

4.3.2 Straight vs. Intersection Performance of MapLite

Our next goal was to use CARLA to investigate any differences between the perfor-
mance of MapLite on straight road segments and its performance at intersections.
To assess the performance on straight road segments and intersections, we used
the same 10 trials of MapLite and the GPS baseline in the Town0O1 environment as
in the previous experiment. We first partitioned each road trial into straight and
intersection regions by extracting the known poses of the intersections along the path

from start to goal and marking every pose in the trial path within a specified radius
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Figure 4-7: Mean translational error and mean yaw angle error for MapLite trajecto-

ries and GPS path-following baseline trajectories, compared to ground-truth human
trajectory in CARLA.

rine Of these intersection poses as belonging to the intersection region. An example
partition of a driven route into these regions is shown in Figure 4-8. We then assessed
the accuracy of each trial on the two regions separately using the two accuracy metrics
used in the previous experiment. Figure 4-9 compares the performance using these
metrics across intersections and straight road segments for MapLite and the GPS
path-following baseline.

We again observe that the MapLite trajectories have a consistently higher uncer-
tainty and absolute error compared to the GPS baseline across both intersections and
straight road segments. At intersection regions, the performance of MapLite is highly
sensitive to the quality of the warped map and to the efficiency of the map warping
correction as it receives the correct ground-truth information about the road envi-
ronment. Our hypothesis is that the efficiency of the map warping algorithm is the
primary bottleneck and leads MapLite to follow trajectories that deviate significantly
from the ideal trajectory at intersections, whereas the GPS baseline follows a fixed

trajectory at intersections that is determined only by the lookahead radius of the
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Figure 4-8: Partition of MapLite driven route into regions corresponding to straight
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pure pursuit controller. The reason for the discrepancy across straight road segments
is not as clear, although Figure 4-5 suggests that there is a large variance between
the traversed straight segments of MapLite after the first intersection. We observe
that the error induced upon traversing the first intersection persists throughout the
remainder of the trajectory. Even at the end of the trajectory, there appears to be
a systematic steady-state error, as all of the traversed MapLite paths are laterally
offset from the ground-truth reference path. This steady-state error may also be a
limitation of the map warping algorithm, which may have found an optimal transfor-
mation of the map that lies within the road region but is not aligned with the true
centerline of the road.

Our results for both MapLite and the GPS baseline agree with our prior expecta-
tions that the mean translation error and the mean yaw angle error would be higher in
the intersection regions compared to the straight regions, even with the intersection
stopping routine, because the performance of the map warping algorithm becomes
more critical as the vehicle is driving through the intersection (especially when the
vehicle is making a turn). In straight road segments, the latency of the warped map
should not be as critical because the warped map should converge to a steady-state
map as the vehicle drives along the segment, although this steady-state map may not

be optimal.
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Chapter 5

Dynamic Obstacle Avoidance in

CARLA

In chapter 3, we showed that CARLA could be used to validate the ability of the
RRT* path planning algorithm to avoid static obstacles by building an integrated
platform between CARLA and RRT*. This planning-based approach relied on a
costmap representation of the drivable road surface that combined a road width prior
with local perception information from the 2D LIDAR sensor. However, this approach
alone cannot navigate successfully in an environment with dynamic obstacles because
the costmap generation procedure makes no distinction between 2D LIDAR readings
that originate from static and dynamic obstacles in the environment.

Therefore, our objectives in this section were two-fold: first, to develop an ap-
proach that leveraged existing modules in our autonomous driving codebase to ad-
dress the problem of dynamic obstacle avoidance, in which a vehicle must navigate
through an environment while avoiding obstacles in that environment that may be
in motion, and second, to use CARLA as a platform to develop and validate this
approach.

We begin by describing our dynamic obstacle avoidance approach, in which we
modify the existing dynamic safety zone module inside our autonomous driving code-
base to include a proportional controller that maintains a fixed distance from the

nearest detected forward vehicle. We then describe how we integrated the dynamic
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safety zone module with the other components of our autonomous driving codebase to
create a validation platform in CARLA for our dynamic safety zone-based approach.
Finally, we use this validation platform to assess the sensitivity of our approach to the

density of traffic and to the speed of the ego-vehicle in a traffic circle environment.

5.1 Prior Work

The task of enabling an agent to avoid dynamic obstacles in its environment combines
the perception problem of detecting objects in the environment, classifying them as
either dynamic or static, and possibly tracking or predicting their motion, with the
planning problem of selecting an optimal action or planning a future trajectory for
the agent.

A number of approaches [32] rely on the explicit detection of objects in the en-
vironment, meaning that they require position and velocity information about all
dynamic objects in the environment. Explicit object detection and tracking is feasi-
ble with a number of sensor modalities such as vision [12] and LIDAR [46, 23, 34],
and can either be model-based [12] or model-free [46]. The advantage of relying on
this object detection is that it provides a complete picture of the obstacles in the
environment and thus allows the agent to plan with a much larger horizon, while
the advantage of tracking and prediction is that it allows the agent to anticipate the
behavior of dynamic obstacles and use this to improve the quality of planning. How-
ever, such approaches are sensitive to the quality of the object detection, which may
be dependent on environmental conditions such as illumination (in the case of vision)
or sensor characteristics such as resolution (in the case of LIDAR). Other methods
are capable of relying on implicit representations of the dynamic obstacles, such as
those that use occupancy grids to represent the state of the environment [14, 33].
The advantage of using an occupancy grid representation is that one can model the
state of all free space within the vicinity of the agent, although this information is
limited by the size and resolution of the occupancy grid. Our implementation relies

on an implicit representation of obstacles that partitions our sensor data based on a
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dynamically-adjusted zone around the vehicle.

Approaches to motion planning for dynamic obstacle avoidance differ in terms
of the action space considered. Some approaches select a trajectory from a set of
feasible trajectories [21, 53] that respect the dynamic constraints of the agent and
the surrounding environment, and convert this trajectory into a low-level control
command. Others such as the dynamic window approach [13] and reactive obstacle
avoidance approaches [16] directly optimize for a velocity command that respects the
environment, even if they may consider feasible trajectories in the process of this
optimization. We follow the reactive approach, as we combine obstacle-agnostic path
following and trajectory generation with an obstacle-aware guard that modifies the

motion commands from the path follower.

5.2 Dynamic Safety Zone

Our approach builds on the existing dynamic safety zone module of our autonomous
driving codebase. The dynamic safety zone module acts as a safeguard for the ego-
vehicle by identifying infractions in a dynamically-adjusted zone in front of the vehicle
and modifying the commanded speed of the vehicle accordingly. This dynamic zone
is a rectangular region that is generated in front of the ego-vehicle and whose shape
follows that of the projected future trajectory of the ego-vehicle. The length of this
dynamic safety zone depends on both the length of the projected future trajectory and
the current speed of the vehicle. The motivation for this dependence on the current
speed of the vehicle is that a faster-moving vehicle will require a longer duration of
time to come to a complete stop, and therefore the zone should be longer in order to
account for obstacles that may be within the path of the vehicle.

The dynamic safety zone module detects infractions by using the 2D LIDAR to
detect points that fall within the zone. The module then processes these infractions
and uses them to calculate a desired safe speed for the vehicle. Figure 5-1 outlines
the key components of the dynamic safety zone.

The prior version of the dynamic safety zone module would command a fixed
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Figure 5-1: Block diagram of existing dynamic safety zone module in our autonomous
driving codebase.

velocity vy . if an infraction was detected in the dynamic zone, regardless of the
distance of the inferred obstacle from the ego-vehicle. Our contribution was to incor-
porate a proportional velocity controller into the dynamic safety zone to ensure that
vehicle would more smoothly adjust its speed in response to dynamic obstacles.

The modified dynamic safety zone module first infers the distance to the nearest
forward obstacle d. s by extracting this information directly from the 2D LIDAR
returns that fall into the dynamic zone. The module then sets a commanded velocity
Vema that is proportional to the difference between d,;s and an ideal set-point distance
d.. This commanded velocity is clipped to remain within the range [0, vyqz], because
we wish to disallow velocities that are negative and velocities that are larger than a
maximum safe velocity value v,,,., which is an independent parameter. The formula

that describes v.g is as follows:

;

0 if dops < dy

Vemd = K(dObS - d*) lf d* S dobs g d* + Um%

Umaa otherwise
\
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If no obstacle is detected within the dynamic safety zone, then the initial speed

command is passed through as the safe velocity command.

5.3 Validation in CARLA

5.3.1 Validation System Overview

In order to validate the ability of the modified dynamic safety zone to avoid dy-
namic obstacles, we integrated the dynamic safety zone with other modules in our
autonomous driving codebase and with our other contributions to CARLA to build a
full-loop validation platform, shown in Figure 5-2. Our validation scenario involved
the vehicle following a pre-determined trajectory and adjusting its speed in response
to dynamic obstacles using the dynamic safety zone module.

We began with the core CARLA implementation described in chapter 3 used to
validate autonomous path-following. This core includes three proprioceptive sensors
(GPS, IMU, and encoder) to localize the vehicle, the existing pure pursuit module
to calculate the desired steering angle and projected path, and an existing speed
controller to calculate an initial desired speed to follow this path. We incorporated
the dynamic safety zone as a safeguard on top of the pure pursuit controller by
passing the raw speed command from the speed controller to the dynamic safety
zone. We also passed the planned path generated by the pure pursuit controller
as the estimated future trajectory, and we passed the inferred vehicle velocity from
the localization EKF. Finally, we incorporated the existing 2D LIDAR sensor from

CARLA to provide perception information to the dynamic safety zone.

5.3.2 Demonstration Overview

We then used this validation platform to demonstrate dynamic obstacle avoidance
in a CARLA environment. We chose the existing CARLA Town03 environment,
a 370 m x 370 m urban environment that contains multiple intersections and road

types. In particular, Town03 environment includes a two-lane traffic circle with four

67



> Dynamic
Safety —
Inferred Reference > Zone Goal
Velocity Path Speed
1 Planned
N Path Raw Speed
EKE PPure_t Speed Command
: e Steer
N Vehicle Controller Controller
Pose
CARLA-ROS Bridge
GPS
IMU
2D
Encoder LIDAR
I
Existing fer]
autonomous CARLA E’Xﬁ[‘g

codebase Contributions
modules Modules

Figure 5-2: Block diagram of complete CARLA validation pipeline for dynamic ob-
stacle avoidance using the dynamic safety zone.
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incoming and outgoing bidirectional roads, which we chose to use as a case study for
validating the effectiveness of the ego-vehicle to avoid other vehicles. Figure 5-3 shows
an overhead view of the traffic circle environment along with our starting location for

the ego-vehicle (start location 115 in the Town03 environment).

We first recorded a path that followed the outer lane of the traffic circle by record-
ing the simulated GPS position of the vehicle at a frequency of 10 Hz along the path,
in the same manner as described in section 3.3. Because the pure pursuit algorithm
follows a fixed path, we effectively constrained the vehicle to remain in the outer lane,

only adjusting its speed in response to detected dynamic zone infractions.

We then populated the environment with a desired number of vehicles by randomly
initializing these vehicles at spawn locations distributed across the entire Town(03
environment (which are not limited to being near the traffic circle). The vehicles
navigate through the environment using the built-in CARLA autopilot. The autopilot
keeps the vehicle within the lanes which are defined in the Town03 map specification,
and makes a random route decision when the vehicle arrives at an intersection. The
autopilot also contains an obstacle detector that sends ray casts in the direction of the
current vehicle orientation and stops the vehicle if any of these ray casts intersects with
an object. However, the autopilot does not incorporate any higher-level behaviors,
such as following the rules of the road, negotiating with other vehicles, or changing

lanes in response to a static obstacle.

Figure 5-4 shows a visualization of the pure pursuit controller working in con-
junction with the dynamic safety zone to avoid dynamic obstacles in the Town03

environment.

The main limitations of our algorithm are that we only consider a zone in front
of the ego-vehicle and not the sides or the blind spots, that we do not distinguish
between static and dynamic LIDAR points, and that we guide the vehicle to follow
a fixed path. First, because our approach only looks in front of the ego-vehicle, we
found that the ego-vehicle would sometimes collide with vehicles that were trying to
enter the traffic circle too closely. This occurred because the dynamic safety zone

would only detect an infraction and attempt to slow down when the entering vehicle
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Figure 5-3: Overhead view of traffic circle in CARLA Town03 traffic circle environ-
ment with ego-vehicle (in blue) initialized at the starting location.
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Figure 5-4: Visualization of dynamic safety zone module and pure pursuit controller
in CARLA Town03 traffic circle environment with 2D LIDAR scan (red), reference
path (light green), pure pursuit planned path (blue), and dynamic zone (green).
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was already too close to the ego-vehicle for the ego-vehicle to stop safely. Second, the
ego-vehicle would sometimes brake in response to static objects that were detected
on the sides of the road because these objects would fall into the dynamic zone and
would be marked as infractions. Finally, the vehicle would not be able to respond to
situations where the planned route lane was blocked by static vehicles (such as in the
case of a traffic jam) because the vehicle attempts to follow the planned route and
because the dynamic safety zone does not actually affect the steering behavior of the

ego-vehicle (only its speed).

5.4 Experimental Evaluation

5.4.1 Sensitivity to Traffic Density

Our first experiment was to assess how sensitive the dynamic safety zone approach
was to the density of traffic in the CARLA Town0O3 environment. In order to quantify
how well the vehicle was able to avoid dynamic obstacles, we recorded the amount
of time elapsed until the vehicle first collided with another moving vehicle or a static
feature in the environment (such as a building wall). We started the vehicle at a fixed
starting location in the TownO3 environment on the right lane of one of the roads
entering the traffic circle, as shown in Figure 5-3. We then allowed the vehicle to
enter the traffic circle before populating the CARLA environment with the autopilot
vehicles. Figure 5-5 illustrates the relationship between the number of vehicles in
the CARLA environment and the average time until the first collision, with 10 trials
per density setting. Our average duration metric truncates trial runs that lasted
longer than a duration of t,,,, seconds, for an arbitrary choice of threshold t,,...
In particular, given a collection of durations {d;}Y,, the average duration that we
report is % Zf\il min(d;, tme:). The reason why we truncated the trial runs with
this threshold was to prevent trials from lasting indefinitely, which would occur in
situations where the effective probability of collisions was so low that the expected

time until the first collision would be very large.
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Figure 5-5: Relationship between number of vehicles and average time until the first
collision between the ego-vehicle and another vehicle.

Our expectation was that the average duration until the first collision would mono-
tonically decrease as the number of vehicles increased, because an increased density
of vehicles would lead to a higher probability that the ego-vehicle collides with any
one of them. We did observe this monotonic decrease up to a certain point, but with
a large number of vehicles we actually observed a sharp increase in the survival time
of the ego-vehicle. We observed that with 80 external vehicles, the ego-vehicle does
not frequently encounter other vehicles because they are diffusely spread throughout
the entirety of the Town03 the environment. In the situations with 160 and 240
vehicles, we observed that the frequency of vehicle-vehicle interactions increased as
expected, leading to a lower ego-vehicle survival time. However, at the high density
of vehicles (320 vehicles), we hypothesize that the frequency of inter-vehicle inter-
actions increased to the point that all vehicles proceeded at a slower speed due to
the behavior of the CARLA built-in autopilot, which causes each vehicle to brake if
another vehicle is detected in front of or next to the ego-vehicle. The reduced speed
of all agents in the environment likely prevented the external vehicles from colliding

with the ego-vehicle.
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Figure 5-6: Relationship between speed of the ego-vehicle and average time until the
first collision between the ego-vehicle and another vehicle.

5.4.2 Sensitivity to Ego-Vehicle Speed

Next we sought to gauge the effect of the speed of the ego-vehicle on its ability to avoid
dynamic obstacles using the dynamic safety zone approach. We again measured the
performance of the vehicle using the average of truncated durations metric described
in the traffic density experiment, although with a different value of t,,,,.

We tuned the pure pursuit lookahead radius separately for each speed in order
to provide a fair comparison between the vehicle performance at different speeds.
The reason for this is that at higher speeds, the lookahead radius typically needs
to be increased to avoid oscillations around the desired path. To standardize the
comparison between speeds, we set the lookahead radius to be numerically equal to
the vehicle speed (thus making the lookahead radius equivalent to 1 second of driving
time).

Figure 5-6 indicates the relationship between the speed of the ego-vehicle and the
average time until the first collision with another vehicle, with 10 trials per speed set-
ting. Our expectation was that the ego-vehicle may have been able to avoid collisions
with the other vehicles if it was traveling at higher speeds. The reason for this is be-
cause at higher speeds, the ego-vehicle would avoid situations where vehicles entering

the traffic circle would cut off the ego-vehicle as they entered. If the ego-vehicle is
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traveling at a speed that is much lower than that of the other vehicles, then it is likely
that the other vehicles would not detect the ego-vehicle as they entered the circle,
thus leading to a higher probability of collision.

However, our findings indicated that the average time until the first collision did
not noticeably change with higher ego-vehicle speeds - in fact, the median survival
time for the lowest speed setting (4 m/s) was significantly higher than that of the
higher speed settings (6 m/s and 8 m/s). We offer two possible hypotheses - one
related to the dynamic safety zone algorithm itself and the other related to CARLA
- that may explain the large number of trials (especially for the higher speeds) that
lasted below 50 s. The first is that the ego-vehicle would often collide with another
vehicle that was entering the traffic circle closely, which is a limitation of the dynamic
safety zone (which only examines LIDAR points in a zone that follows the current
projected path of the vehicle). The second is that we observed a transient effect
that occurred upon initializing the CARLA environment with the external vehicles,
in which the apparent update rate of the sensor data, projected path, and dynamic
safety zone would decrease to a value of less than 1 Hz. This would sometimes lead
the ego-vehicle to significantly deviate from the traffic circle, leading the pure pursuit
algorithm to sharply correct the ego-vehicle’s trajectory and possibly collide with

another vehicle.
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Chapter 6

Conclusion and Future Work

In this work, we described the development of a simulation-based platform that com-
bined an autonomous driving codebase with an open-source driving simulator. The
purpose of this platform was to serve as both a validation platform for the fundamen-
tal capabilities of autonomous driving and as a development and validation platform
for autonomous driving research capabilities. Even though some of these capabilities
could be tested on offline sensor data, the strength of our platform is that it is a
full-loop testing environment that models the feedback between the sensor data pro-
duced by the vehicle and the control outputs produced by our autonomous driving
algorithms.

With the incorporation of proprioceptive sensors into CARLA, we were able to
validate the performance of the existing localization, pure pursuit, and path plan-
ning algorithms inside our autonomous driving codebase. This enabled us to build
the core of our integration between our autonomous driving codebase and CARLA,
which allows the vehicle to autonomously follow a reference trajectory using the pro-
prioceptive sensors, and which additionally allows the vehicle to avoid static obstacles
using the CARLA 2D LIDAR.

We then showed that CARLA could be used to validate a point-to-point au-
tonomous navigation algorithm (MapLite) by incorporating ground-truth road seg-
mentation into the CARLA 3D LIDAR and modifying the route planner to stop at

intersections. We demonstrated that CARLA could be used to assess the dispersion

1)



of the paths generated by MapLite and to compare the performance of MapLite at
different topological regions of the road. Our hope is that CARLA can continue to
serve as a useful platform for assessing the performance of MapLite and improving
different components of the algorithm through iterative validation in simulation and
real-world testing, although more investigation is needed into the sources of uncer-
tainty in CARLA itself before it can be a fully effective testbed.

Finally, we used CARLA to develop an extension to the dynamic safety zone
module of our autonomous driving codebase and validate the ability of this extension
to avoid dynamic vehicles in a controlled traffic environment. Our extension was still
limited by the fact that it lacked explicit object detection, only searched a limited
region of the vehicle’s environment for any type of obstacle, and could not distinguish
between static and dynamic obstacles. Nevertheless, we demonstrated the potential
of CARLA to be used as a platform for developing algorithms for new capabilities

that did not previously exist in our codebase.

6.1 Lessons Learned

Working closely with the CARLA simulator and our autonomous driving codebase
provided many crucial insights into software engineering and the management of a
large, modular codebase shared by multiple researchers that will be broadly appli-
cable to future robotics and autonomous driving research endeavors. I learned the
importance of effectively using software version control tools such as Git to keep track
of the multiple versions of CARLA used for the different contributions outlined in this
thesis. I also learned the value of ensuring that the integration between CARLA and
the autonomous codebase was up-to-date with new features that were included in the
codebase. In addition, I learned a great deal about autonomous driving simulation
and a selection of its strengths - such as its ability to reveal corner cases and hidden
assumptions in our algorithms, as was the case with our costmap implementation - as
well as some of its drawbacks - such as its sensitivity to the hardware requirements of

the computing workstation used (including GPU and graphics driver requirements).
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My work on dynamic obstacle avoidance helped me understand the value of Oc-
cam’s razor when developing an initial solution to a time-constrained engineering
problem. The dynamic safety zone, even with the proportional controller modifica-
tion, cannot address all of the possible situations that can be encountered with other
dynamic vehicles. However, it was an adequate solution for the constrained problem
that we defined, which assumed that the other dynamic vehicles obey traffic laws
while the ego-vehicle keeps to its lane. Finally, I learned a great deal about con-
ducting more methodical scientific investigation as I developed this thesis - including
the importance of concretely defining the research problem, of defining the scope of
the contributions that I made, and of designing effective experiments that aimed to

uncover new knowledge about the systems and algorithms that we developed.

6.2 Future Work

Two important future directions for our platform are improving the quality of the
CARLA sensor data and improving the efficiency of running validation experiments
in CARLA. Because most of the algorithms highlighted in this work rely on LI-
DAR, we wish to adapt the CARLA LIDAR module to be more realistic by modeling
the sources of uncertainty in actual LIDAR and incorporating this uncertainty into
the CARLA LIDAR. Having a realistic LIDAR module would enable CARLA to be
an effective data augmentation platform, which would allow us to explore percep-
tion problems such as improving the quality of LIDAR-based road segmentation for
MapLite. We also hope to develop a more efficient implementation of the 3D LIDAR
that either exploits parallelization to speed up the computation of the individual ray
casts or does not rely on generating these ray casts. Future directions for dynamic
obstacle avoidance include using the dynamic safety zone with a partition of the 2D
LIDAR scan into dynamic and static regions, or incorporating an RRT-based plan-
ning algorithm with obstacle detection [32] and additional vehicle behaviors such as
lane changes.

Our hope is that CARLA can be a useful tool for researchers who want to proto-

7



type and test algorithms for autonomous driving and for those who want to generate

large-scale, diverse datasets for learning-based autonomous driving algorithms.
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