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Abstract

Recent progress in machine learning has come at the cost of interpretability, earning
the field a reputation of producing opaque, “black-box” models. While deep neu-
ral networks are often able to achieve superior predictive accuracy over traditional
models, the functions and representations they learn are usually highly nonlinear and
difficult to interpret. This lack of interpretability hinders adoption of deep learning
methods in fields such as medicine where understanding why a model made a decision
is crucial. Existing techniques for explaining the decisions by black-box models are
often restricted to either a specific type of predictor or are undesirably sensitive to
factors unrelated to the model’s decision-making process. In this thesis, we propose
sufficient input subsets, minimal subsets of input features whose values form the basis
for a model’s decision. Our technique can rationalize decisions made by a black-box
function on individual inputs and can also explain the basis for misclassifications.
Moreover, general principles that globally govern a model’s decision-making can be
revealed by searching for clusters of such input patterns across many data points.
Our approach is conceptually straightforward, entirely model-agnostic, simply im-
plemented using instance-wise backward selection, and able to produce more concise
rationales than existing techniques. We demonstrate the utility of our interpretation
method on various neural network models trained on text, genomic, and image data.
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Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

In recent years, machine learning (ML) has seen widespread adoption in a large

number of applications. ML methods are employed to understand natural language,

speech, and images, to make medical diagnoses and propose treatment interventions,

and as tools in scientific research. Machine learning algorithms are powerful because

they are able to capture complex patterns that exist in observed data and exploit them

to learn functions governing the data. These functions can then be used to make pre-

dictions about data that has not yet been observed. Deep learning methods (e.g. neu-

ral networks) are particularly powerful because they act hierarchically, where learned

representations are expressed in terms of other, simpler, representations, which are

also learned by the model. For example, deep learning systems in computer vision

detect objects in images by combining increasingly complex representations, start-

ing from pixels and edges and eventually assembling these into higher-level patterns.

Deep learning has become extremely popular because of the state of the art perfor-

mance it achieves in many domains, enabled by growing availability of data and by

the decreasing cost of large amounts of computing power. However, compared to more

traditional ML algorithms, deep learning models are generally poorly understood and

have consequently earned reputations as opaque “black-boxes.” While the complex,

nonlinear functions learned by these models enable them to attain superior predictive

accuracy, the performance gains come at the cost of limited interpretability.

The lack of interpretability of ML models is concerning because it means that

13



practitioners are unable to understand how their models make decisions. In many

settings, it is crucial that the decisions made by an ML model can be interpretably

rationalized. For example, consider ML models used by physicians to screen patients

for a particular disease. Given patient data, a black-box model simply outputs Dis-

ease or No Disease, but without also providing an explanation (or rationale) for this

decision, the model cannot be trusted. In such applications, it is imperative that

model outputs can be justified. Interpretability is necessary to ensure that the pre-

diction was not made as a result of spurious correlations or biases that may exist in

the training data.

Interpretability has a number of other practical use cases in ML as well. Model

interpretation is a useful tool for debugging, where an understanding of why a model

makes certain misclassifications enables experts to revise the model and improve

predictive accuracy. Such insights can also be used to aid research of new model ar-

chitectures. Similarly, interpretability of model behavior can be used by practitioners

to address the problem of model selection: which model to select from a large number

of models trained on the same task. An understanding of the representations learned

by the different models is useful to determine how the models differ in order to decide

which is best suited for adoption in a particular system. Finally, interpretability can

be leveraged in scientific settings, where highly accurate predictive models can be

interpreted to extract new scientific principles underlying the observed data.

Current approaches for interpretable ML are limited in nature. One approach is to

restrict the class of learned models to those which are inherently interpretable such as

linear models or decision trees. Attention models and the generator-encoder approach

of Lei et al. [26] are example variants of deep neural network architectures which aim

to be inherently interpretable. However, in many applications, these architectures

are either not suitable or are unable to attain supreme accuracy. Hence, there is

often a trade-off between a model’s predictive power and the ability to interpret its

decisions. Additionally, these approaches cannot be used to explain decisions made

by pre-trained models whose architectures may not even be known to the practitioner.

Other approaches for interpretability include a variety of attribution methods,
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which produce an importance score for each individual input feature. However, many

of these methods either require the model to be differentiable (e.g. gradient-based

saliency methods) or necessitate an auxiliary explanation model (e.g. LIME [36])

in order to produce the attributions. Moreover, these attributions do not account

for combinatorial interactions between features, for instance where a feature is only

important when another feature takes on a certain value. Chapter 2 contains further

discussion of existing approaches for model interpretability.

Another framework for interpreting model behavior involves identification of ra-

tionales, which are subsets of a particular input which can be considered the basis for

the model’s decision on that input. Suppose that a function 𝑓 outputs 𝑓pxq for some

input x and that x contains a set of 𝑝 features, x “ r𝑥1, 𝑥2, . . . , 𝑥𝑝s (each 𝑥𝑖 P R𝑑).

For example, in a natural language application, x may be a sequence of text and 𝑥𝑖 is

the 𝑖th word in the sequence (or more precisely, an embedding representation of word

𝑖), and 𝑓 decides whether the text x expresses positive or negative sentiment (as in

Figures 2-3 and 2-4). In this thesis, we propose a method which explains a decision

𝑓pxq by identifying minimal subsets of the features in x that alone suffice for 𝑓 to

arrive at the same decision (even with the values of all the other features missing).

These sufficient input subsets can then be understood as the basis for the model’s

decision on the given input.

In Chapter 2 we introduce the sufficient input subsets (SIS) method for model

interpretability. Our approach is entirely model-agnostic, requiring only black-box

access to the function 𝑓 . We make no assumptions about 𝑓 so that our method is

not restricted to interpreting specific classes of functions. Our approach is completely

faithful to the underlying function 𝑓 as no additional explanatory model is used, there

is no additional training, and the sufficiency of the rationales is guaranteed (i.e. the

model arrives at the same decision using only the values of features in the rationale as

on the original input). SIS is based on a straightforward backward selection strategy

that preserves interactions that may exist among input features. Finally, our method

is simple and can be easily understood and applied in practice, even by non-experts.

We explore and validate the SIS method by interpreting neural network models in
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three different settings: a natural language sentiment analysis task, a biological task

of predicting transcription factor binding, and a vision task classifying handwritten

digits.

Chapter 3 extends the SIS method to not only explain a model’s decisions on

particular examples (locally), but also to gain a global understanding of the general

principles governing the model’s behavior. In particular, we cluster the sufficient input

subsets stemming from many examples on which the model made the same decision.

The resulting clusters provide global insights into the distinct feature patterns the

model has learned to associate with the decision, such as the features learned by a

CNN to discriminate a handwritten digit 4 from other digits (as in Section 3.2.3). We

demonstrate the SIS clustering approach in each of our natural language, genomic, and

image classification applications. Further, we adopt this SIS clustering methodology

to reveal differences between two models trained on the same task. Jointly clustering

the SIS stemming from both models allows us to inspect differences in how the models

operate. We show that two models that achieve similar accuracy may make the same

decisions for different reasons. This technique can be used to determine which of a

set of models may be most desirable to use in a particular system. The methods

developed in this thesis enable ML practitioners to discover such insights.

1.1 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 introduces the

sufficient input subsets (SIS) method for interpreting black-box models. We apply

the method in a number of domains and show that it outperforms alternative methods

for explaining model behavior. In Chapter 3, we show how the local explanations

of model-decision making can be aggregated over many examples to gain insight into

global model behavior and to contrast the behavior of different models trained on the

same task. Chapter 4 concludes the thesis and discusses various opportunities for

future work. Appendix A contains supplemental results and experimental details.
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17

https://github.com/b-carter/SufficientInputSubsets


18



Chapter 2

Sufficient Input Subsets for

Interpretability

2.1 Introduction

The rise of neural networks and nonparametric methods in machine learning (ML)

has driven enormous improvements in prediction capabilities, while simultaneously

earning the field a reputation of producing complex black-box models. Vital appli-

cations, which could benefit most from improved prediction, are often deemed too

sensitive for opaque learning systems. Such applications include the use of ML mod-

els to reject loan applicants [42], deny defendants’ bail [24], or diagnose disease [18].

For ML models to be used in these systems, it is imperative that the decisions they

make can be interpretably rationalized. Interpretability is also crucial in scientific

applications, where it is hoped that underlying principles may be extracted from

accurate predictive models [14, 28].

One simple explanation for why a particular black-box decision is reached may be

obtained via a sparse subset of the input features whose values form the basis for the

model’s decision – a rationale. For text (or image) data, a rationale might consist of

a subset of positions in the document (or image) together with the words (or pixel-

values) occurring at these positions (examples shown in Figures 2-3 and 2-17). Here,

we consider rationales that do not attempt to summarize the (potentially complex)
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operations carried out within a black-box model, but instead point to the relevant

features used by the model to arrive at a decision on that particular input. This

property ensures that the interpretations remain faithful to any arbitrary model.

Additionally, we desire that rationales are sparse, which facilitates interpretability

when inputs are high-dimensional [26].

In this work, we develop a local explanation framework to produce rationales for

a learned model that has been trained to map inputs x P 𝒳 via some arbitrary

learned function 𝑓 : 𝒳 Ñ R. Unlike many other interpretability techniques, our

approach is not restricted to vector-valued data and does not require gradients or

differentiability of 𝑓 . Rather, each input example is solely presumed to have a set of

indexable features x “ r𝑥1, . . . , 𝑥𝑝s, where each 𝑥𝑖 P R𝑑 for 𝑖 P r𝑝s “ t1, . . . , 𝑝u. Our

method can be applied to interpret decisions made on inputs x whose features are

unordered (set-valued inputs) or for which the number of features 𝑝 can vary (e.g.

variable-length sequences). A rationale corresponds to a sparse subset of these indices

𝑆 Ď r𝑝s together with the specific values of the features in this subset.

To understand why a certain decision was made for a given input x, we propose a

particular rationale called a sufficient input subset (SIS). Each SIS consists of a mini-

mal input pattern present in x that alone suffices for 𝑓 to produce the same decision,

even if provided no other information about the rest of x. Presuming the decision is

based on 𝑓pxq exceeding some prespecified threshold 𝜏 P R, we seek to find a minimal-

cardinality subset 𝑆 of the input features such that 𝑓px𝑆q ě 𝜏 . Throughout, we use

x𝑆 P 𝒳 to denote a modified input example in which all information about the values

of features outside subset 𝑆 has been masked, with features in 𝑆 remaining at their

original values. Thus, each SIS characterizes a particular standalone input pattern

that drives the model toward the decision, providing sufficient justification for this

choice from the model’s perspective, even without any information about the values

of the other features in x.

In classification settings, 𝑓 might represent the predicted probability of class 𝐶

where we decide to assign the input to class 𝐶 if 𝑓pxq ě 𝜏 , where 𝜏 can be chosen

based on precision/recall considerations. Each SIS in such an application corresponds
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to a small input pattern that on its own is highly indicative of class 𝐶, according to the

model. Note that by suitably defining 𝑓 and 𝜏 with respect to the predictor outputs,

any particular decision for input x can be precisely identified with the occurrence of

𝑓pxq ě 𝜏 , such that greater values of 𝑓 are associated with greater confidence in the

decision.

For a given input x for which 𝑓pxq ě 𝜏 , this work presents a simple method

to find a complete collection of sufficient input subsets, each satisfying 𝑓px𝑆q ě 𝜏 ,

such that there exists no additional SIS outside of this collection. Each SIS may be

understood as a disjoint piece of evidence that would lead the model to reach the same

decision, and why this decision was reached for x can be unequivocally attributed to

the SIS-collection. Furthermore, global insight on the general principles underlying

the model’s decision-making process may be gleaned by clustering the types of SIS

extracted across different data points (Chapter 3). Such insights allow us to compare

models based not only on their accuracy, but also on human-determined relevance

of the concepts they target. Our method’s simplicity facilitates its utilization by

non-experts who may know very little about the models they wish to interrogate.

2.2 Related Work

Certain neural network variants such as attention mechanisms [39] and the generator-

encoder of Lei et al. [26] have been proposed as powerful yet human-interpretable

learners. Other interpretability efforts have tailored decompositions to certain convo-

lutional/recurrent networks [31, 32, 33, 45], but these approaches are model-specific

and only suited for ML experts. Many applications necessitate a model outside of

these families, either to ensure supreme accuracy, or if training is done separately

with access restricted to a black-box API [8, 47]. Thus, much recent research aims

to address the critical need for methods which enable non-ML experts to rationalize

the predictions of any type of model. One general approach entails fitting a separate

explanation model to the outputs of 𝑓 over the same training data, for example a

feature-selector [27] or surrogate decision tree [17, 53, 49]. However, such a strategy
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may not be generalizable to out of sample examples (which are crucial for under-

standing how 𝑓 would behave in certain counterfactual settings).

An alternative model-agnostic approach to interpretability produces local expla-

nations of 𝑓 for a particular input x. Local explanation often relies on attribution

methods that quantify how much each feature influences the output of 𝑓 at x. Ex-

amples include LIME, which locally approximates 𝑓 [36], saliency maps based on

gradients of 𝑓 [2, 41], Layer-wise Relevance Propagation [1], as well as the discrete

DeepLIFT approach [40] and its continuous variant – Integrated Gradients (IG) [46],

developed to ensure attributions reflect the cumulative difference in 𝑓 at x vs. a ref-

erence input. A separate class of input-signal-based explanation techniques such as

DeConvNet [51], Guided Backprop [44], and PatternNet [22] employ gradients of 𝑓 in

order to identify input patterns that cause 𝑓 to output large values. However, many

gradient-based saliency methods have been deemed unreliable, depending not only on

the learned function 𝑓 , but also on its specific architectural implementation and how

inputs are scaled [21, 22]. More like our approach, recent techniques from Dabkowski

and Gal [12], Kim et al. [20], Chen et al. [9] also aim to identify input patterns that

best explain certain decisions, but additionally require either a predefined set of such

patterns or an auxiliary neural network trained to identify them.

In comparison with the aforementioned methods, our SIS approach is: conceptu-

ally simple, entirely faithful to any type of model, and requires neither gradients of

𝑓 nor auxiliary training of the underlying model 𝑓 or a surrogate explanation model.

Also related to our subset-selection methodology are the ideas of Li et al. [27] and

Fong and Vedaldi [16], which for a particular input seek a small feature subset whose

omission causes a substantial drop in 𝑓 such that a different decision would be reached.

However, this objective can produce adversarial artifacts that are hard to interpret.

In contrast, we focus on identifying small subsets of input features whose values suf-

fice to ensure 𝑓 outputs significantly positive predictions, even in the absence of any

other information about the rest of the input. While the techniques of Li et al. [27]

and Fong and Vedaldi [16] produce rationales that remain highly dependent on the

rest of the input outside of the selected feature subset, each rationale identified by our
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SIS approach is independently considered by 𝑓 as an entirely sufficient justification

for a particular decision in the absence of other information.

2.3 Sufficient Input Subsets Method

Our approach to rationalizing why a particular black-box decision is reached only

applies to input examples x P 𝒳 that meet the decision criterion 𝑓pxq ě 𝜏 . For such an

input x, we aim to identify a SIS-collection of disjoint feature subsets 𝑆1, . . . , 𝑆𝐾 Ď r𝑝s

that satisfy the following criteria:

(1) 𝑓px𝑆𝑘
q ě 𝜏 for each 𝑘 “ 1, . . . , 𝐾

(2) There exists no feature subset 𝑆 1 Ă 𝑆𝑘 for some 𝑘 “ 1, . . . , 𝐾 such that 𝑓px𝑆1q ě

𝜏

(3) 𝑓px𝑅q ă 𝜏 for 𝑅 “ r𝑝s z
Ť𝐾

𝑘“1 𝑆𝑘 (the remaining features outside of the SIS-

collection)

Criterion (1) ensures that for any SIS 𝑆𝑘, the values of the features in this subset

alone suffice to justify the decision in the absence of any information regarding the

values of the other features. To ensure information that is not vital to reach the

decision is not included within the SIS, criterion (2) encourages each SIS to contain a

minimal number of features, which facilitates interpretability. Finally, we require that

our SIS-collection satisfies a notion of completeness via criterion (3), which states that

the same decision is no longer reached for the input after the entire SIS-collection has

been masked. This implies the remaining feature values of the input no longer contain

sufficient evidence for the same decision. Figures 2-4 and 2-17 show SIS-collections

found in text and image inputs, respectively.

Recall that x𝑆 P 𝒳 denotes a modified input in which the information about the

values of features outside subset 𝑆 is considered to be missing. We construct x𝑆 as

new input whose values on features in 𝑆 are identical to those in the original x, and

whose remaining features 𝑥𝑖 P r𝑝sz𝑆 are each replaced by a special mask 𝑧𝑖 P R𝑑𝑖 used
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to represent a missing observation. While certain models are specially adapted to

handle inputs with missing observations [43], this is generally not the case. To ensure

our approach is applicable to all models, we draw inspiration from data imputation

techniques which are a common way to represent missing data [38].

Two popular strategies include hot-deck imputation, in which unobserved values

are sampled from their marginal feature distribution, and mean imputation, in which

each 𝑧𝑖 is simply fixed to the average value of feature 𝑖 in the data. Note that for a

linear model, these two strategies are expected to produce an identical change in pre-

diction 𝑓pxq ´ 𝑓px𝑆q. We find in practice that the change in predictions resulting from

either masking strategy is roughly equivalent even for nonlinear models such as neural

networks (Section A.1.1, Figure A-1). In this work, we favor the mean-imputation ap-

proach over sampling-based imputation, which would be computationally-expensive

and nondeterministic (undesirable for facilitating interpretability). One may also

view z as the baseline input value used by feature attribution methods [46, 40], a

value which should not lead to particularly noteworthy decisions. Since our inter-

ests primarily lie in rationalizing atypical decisions, the average input arising from

mean imputation serves as a suitable baseline. Zeros have also been used to mask

image and categorical data [27], but empirically, this mask appears undesirably more

informative than the mean (predictions more affected by zero-masking).

For an arbitrarily complex function 𝑓 over inputs with many features 𝑝, the com-

binatorial search to identify sets which satisfy objectives (1)-(3) is computationally

infeasible. To find a SIS-collection in practice, we employ a straightforward backward

selection strategy, which is here applied separately on an example-by-example basis

(unlike standard statistical tools which perform backward selection globally to find a

fixed set of features for all inputs). The SIScollection algorithm details our straight-

forward procedure to identify disjoint SIS subsets that satisfy (1)-(3) approximately

for an input x P 𝒳 where 𝑓pxq ě 𝜏 . Disjointness of the sufficient input subsets in

a SIS-collection is crucial to ensure computational tractability and that the number

of SIS per example does not grow huge and hard to interpret. For a more rigorous

evaluation of the properties of SIS, see Section 3.1 of Carter et al. [7].
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SIScollection(𝑓 , x, 𝜏)

1 𝑆 “ r𝑝s

2 for 𝑘 “ 1, 2, . . . do

3 𝑅 “ BackSelectp𝑓,x, 𝑆q

4 𝑆𝑘 “ FindSISp𝑓,x, 𝜏, 𝑅q

5 𝑆 Ð 𝑆z𝑆𝑘

6 if 𝑓px𝑆q ă 𝜏 : return 𝑆1,...,𝑆𝑘´1

BackSelect(𝑓 , x, 𝑆)

1 𝑅 “ empty stack

2 while 𝑆 ‰ ∅ do

3 𝑖˚ “ argmax𝑖P𝑆 𝑓px𝑆zt𝑖uq

4 Update 𝑆 Ð 𝑆zt𝑖˚u

5 Push 𝑖˚ onto top of 𝑅

6 return 𝑅

FindSIS(𝑓 , x, 𝜏 , 𝑅)

1 𝑆 “ ∅

2 while 𝑓px𝑆q ă 𝜏 do

3 Pop 𝑖 from top of 𝑅

4 Update 𝑆 Ð 𝑆 Y t𝑖u

5 if 𝑓px𝑆q ě 𝜏 : return 𝑆

6 else: return None

Our overall strategy is to find a SIS subset 𝑆𝑘 (via BackSelect and FindSIS),

mask it out, and then repeat these two steps restricting each search for the next SIS

solely to features disjoint from the currently found SIS-collection 𝑆1, . . . , 𝑆𝑘, until the

decision of interest is no longer supported by the remaining feature values. In the

BackSelect procedure, 𝑆 Ă r𝑝s denotes the set of remaining unmasked features that

are to be considered during backward selection. For the current subset 𝑆, step 3 in
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BackSelect identifies which remaining feature 𝑖 P 𝑆 produces the minimal reduction

in 𝑓px𝑆q´𝑓px𝑆zt𝑖uq (meaning it least reduces the output of 𝑓 if additionally masked),

a question trivially answered by running each of the remaining possibilities through

the model. This strategy aims to gradually mask out the least important features

in order to reveal the core input pattern that is perceived by the model as sufficient

evidence for its decision. Finally, we build our SIS up from the last ℓ features omitted

during the backward selection, selecting a ℓ value just large enough to meet our

sufficiency criterion (1). Because we desire minimality of the SIS as specified by (2),

it is not appropriate to terminate the backward elimination in BackSelect as soon

as the sufficiency condition 𝑓px𝑆q ě 𝜏 is violated, due to the possible presence of

local minima in 𝑓 along the path of subsets encountered during backward selection

(as shown in Figure 2-19).

Because this approach always queries a prediction over the joint set of remain-

ing features 𝑆, it is better suited to account for interactions between these features

and ensure their sufficiency (i.e. that 𝑓px𝑆q ě 𝜏) compared to a forward selection in

the opposite direction which builds the SIS upwards one feature at a time by greed-

ily maximizing marginal gains. Throughout its execution, BackSelect attempts to

maintain the sufficiency of x𝑆 as the set 𝑆 shrinks. Given 𝑝 input features, our algo-

rithm requires 𝒪p𝑝2𝑘q evaluations of 𝑓 to identify 𝑘 SIS, but we can achieve 𝒪p𝑝𝑘q

by parallelizing each argmax in BackSelect (for example, by batching on GPU).

2.4 Experimental Overview

In the following sections, we apply our SIS method to analyze neural networks in three

settings: (1) a natural language task involving multi-aspect sentiment analysis on beer

reviews, (2) predicting transcription factor binding in biological data, and (3) image

classification on handwritten digits. SIScollection is compared with alternative

methods for producing rationales (details in Section 2.4.1). Note that our BackSelect

procedure determines an ordering of elements, 𝑅, subsequently used to construct the

SIS. Depictions of each SIS are shaded based on the feature order in 𝑅 (darker =
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later), which can indicate relative feature importance within the SIS.

In the “Suff. IG,” “Suff. LIME,” and “Suff. Perturb.” (sufficiency constrained)

methods, we instead compute the ordering of elements 𝑅 according to the feature

attribution values output by integrated gradients [46], LIME [36], or a perturbative

approach that measures the change in prediction when individually masking each

feature (see Section 2.4.1). The rationale subset 𝑆 produced under each method is

subsequently assembled using FindSIS exactly as in our approach and thus is guar-

anteed to satisfy 𝑓px𝑆q ě 𝜏 . In the “IG,” “LIME,” and “Perturb.” (length constrained)

methods, we use the same previously described ordering 𝑅, but always select the same

number of features in the rationale as in the SIS produced by our method (per exam-

ple). We also compare against the additional “Top IG” method, in which top features

from 𝑅 are added into the rationale until sum of integrated gradients attributions

suggests that the rationale has met our sufficiency criterion (see Section 2.4.1).

2.4.1 Details of Baseline Methods

Throughout this chapter, we employ a number of alternative methods for identify-

ing rationales for comparison with SIS. Here, we provide detailed descriptions and

implementation details of these baseline methods.

We use methods based on integrated gradients [46], LIME [36], and feature per-

turbation. Note that integrated gradients is an attribution method which assigns a

numerical score to each input feature. LIME likewise assigns a weight to each feature

using a local linear regression model for 𝑓 around x. In the perturbative approach,

we compute the change in prediction when each feature is individually masked, as

in Equation 2.1 (of Section 2.5.3). Each of these feature orderings 𝑅 is used to con-

struct a rationale using the FindSIS procedure (Section 2.3) for the “Suff. IG,” “Suff.

LIME,” and “Suff. Perturb.” (sufficiency constrained) methods.

Note that our text classification architecture (described in Section 2.5.1) encodes

discrete words as 100-dimensional continuous word embeddings. The integrated gra-

dients method returns attribution scores for each coordinate of each word embedding.

For each word embedding 𝑥𝑖 P x (where each 𝑥𝑖 P R100), we summarize the attribu-
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tions along the corresponding embedding into a single score 𝑦𝑖 using the 𝐿1 norm:

𝑦𝑖 “
ř

𝑑 |𝑥𝑖𝑑| and compute the ordering 𝑅 by sorting the 𝑦𝑖 values.

We use an implementation of integrated gradients for Keras-based models from

https://github.com/hiranumn/IntegratedGradients. In the case of the beer re-

view dataset (Section 2.5), we use the mean embedding vector as a baseline for com-

puting integrated gradients. In the case of TF binding (Section 2.6), we use the

r0.25, 0.25, 0.25, 0.25s uniform mean vector as the baseline reference value. As sug-

gested in Sundararajan et al. [46], we verified that the prediction at the baseline and

the integrated gradients sum to approximately the prediction of the input.

For LIME and our beer reviews dataset, we use the approach described in Ribeiro

et al. [36] for textual data, where individual words are removed entirely from the

input sequence. In our TF binding dataset, LIME replaces bases with the un-

known N base (represented as the uniform-distribution r0.25, 0.25, 0.25, 0.25s). We

use the implementation of LIME at: https://github.com/marcotcr/lime. The

LimeTextExplainer module is used with default parameters, except we set the max-

imal number of features used in the regression to be the full input length so we can

order all input features.

Additionally, we explore methods in which we use the same ordering 𝑅 by these

alternative methods but select the same number of input features in the rationale

to be the median SIS length in the SIS-collection computed by our method on each

example: the “IG,” “LIME,” and “Perturb.” (length constrained) methods. In the TF

binding models, we use a baseline of zero vectors such that the integrated gradients

result along the encoded sequence is also one-hot. We compute the feature ordering

based on the absolute value of the non-zero integrated gradient attributions.

In TF binding data (Section 2.6), we add an additional method, “Top IG,” in

which we compute integrated gradients using an all-zeros baseline and order features

by attribution magnitude (as in the length constrained IG method). But, we select

elements for the rationale by finding the minimum number of elements necessary such

that the sum of integrated gradients of those features equals 𝜏 ´ 𝑓p0q, where 0 is the

all-zeros baseline for integrated gradients. Note that for the length constrained and
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Top IG methods, there is no guarantee of sufficiency 𝑓px𝑆q ě 𝜏 for any input subset

𝑆.

2.5 Sentiment Analysis of Reviews

We first consider a dataset of beer reviews from McAuley et al. [30] where beers

receive text reviews along with numerical ratings of aspects like aroma, appearance,

and palate. Taking the text of the review as input, three different LSTM recurrent

neural networks [19] are trained to predict the continuous-valued sentiment toward

each aspect. We apply our SIS method to interpret and validate the decisions made

by these LSTMs.

In this section, we present results interpreting the LSTM trained to predict sen-

timent toward the aroma aspect in particular. Results for the appearance and palate

aspects are similar and can be found in the Supplementary Material of Carter et al.

[7].

2.5.1 Dataset and Model Details

Following Lei et al. [26], we use a preprocessed version of the BeerAdvocate1 dataset2

which contains decorrelated numerical ratings toward three aspects: aroma, appear-

ance, and palate (each normalized to r0, 1s). Dataset statistics can be found in Ta-

ble 2.1. Reviews are tokenized by converting to lowercase and filtering punctuation,

and we use a vocabulary containing the top 10,000 most common words. McAuley

et al. [30] also provide a subset of human-annotated reviews, in which humans man-

ually selected full sentences in each review that describe the relevant aspects. This

annotated set is never seen during training and used solely as part of our evaluation.

Long short-term memory (LSTM) networks [19] are commonly employed for nat-

ural language tasks such as sentiment analysis [48, 35]. In these experiments, we use

a recurrent neural network (RNN) architecture with two stacked LSTMs as follows:

1https://www.beeradvocate.com/
2http://snap.stanford.edu/data/web-BeerAdvocate.html
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Table 2.1: Summary and performance statistics (mean squared error (MSE) and
Pearson correlation coefficient 𝜌) for LSTM models on beer reviews data.

Aspect Fold Size MSE Pearson 𝜌

Appearance

Train 80,000 0.016 0.864

Validation 3,000 0.024 0.783

Test 7,000 0.023 0.801

Annotation 994 0.020 0.563

Aroma

Train 70,000 0.014 0.873

Validation 3,000 0.024 0.767

Test 7,000 0.025 0.756

Annotation 994 0.021 0.598

Palate

Train 70,000 0.016 0.835

Validation 3,000 0.029 0.680

Test 7,000 0.028 0.694

Annotation 994 0.016 0.592

1. Input/Embeddings Layer: Sequence with 500 timesteps, the word at each

timestep is represented by a (learned) 100-dimensional embedding

2. LSTM Layer 1: 200-unit recurrent layer with LSTM (forward direction only)

3. LSTM Layer 2: 200-unit recurrent layer with LSTM (forward direction only)

4. Dense: 1 neuron (sentiment output), sigmoid activation

Taking the text of a review as input, different LSTM networks are trained to

predict user-provided numerical ratings of each aspect. We train the models using

the Adam optimizer [23] to minimize mean squared error (MSE) on the training set.

We use a held-out set of 3,000 examples for validation (sampled at random from the

pre-defined test set from Lei et al. [26]). Our test set consists of the remaining 7,000

test examples. Training results are shown in Table 2.1.
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Figure 2-1: Predictive distribution on the annotation set (held-out) using the LSTM
model for aroma. Vertical lines indicate decision thresholds (𝜏` “ 0.85, 𝜏´ “ 0.45)
selected for SIScollection.

2.5.2 Applying SIS to Interpret Sentiment Predictors

We apply SIS to interpret the LSTM’s decisions on the set of reviews containing

sentence-level annotations (Annotation fold in Table 2.1). Note that these reviews

(and the human annotations) were not seen during training. Tokens in the input

sequence are masked by replacement with a mean embedding taken over the learned

vocabulary (see Appendix A.1.1 for further discussion of our mean imputation ap-

proach). In our formulation (Section 2.3), we apply the SIS method to inputs x for

which 𝑓pxq ě 𝜏 . For the sentiment analysis task, we analogously apply our method

for both 𝑓pxq ě 𝜏` and ´𝑓pxq ě ´𝜏´, where the model predicts either strong pos-

itive or strong negative sentiment, respectively. We choose thresholds 𝜏` “ 0.85,

𝜏´ “ 0.45 and extract the complete set of sufficient input subsets using our method.

These thresholds were set empirically such that they were sufficiently apart, based on

the predictive distribution on the held-out annotated set (shown in Figure 2-1). For

most reviews, SIScollection outputs a collection containing just one or two sufficient

input subsets (Figure 2-2).

Figure 2-3 shows a sample beer review in which we highlight the SIS identified

for the LSTMs that predict each aspect. In this example, the SIS-collection for each

of the three LSTMs only contained a single sufficient input subset. We see that each
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Figure 2-2: Number of sufficient input subsets for aroma identified by SIScollection
per example.

Figure 2-3: Beer review with one sufficient input subset identified for the prediction
of each aspect.

SIS only captures sentiment toward the relevant aspect (as compared to just general

positive sentiment), revealing that the LSTMs have learned to make predictions based

on context-specific features.

Figure 2-4 depicts the SIS-collection identified from a review the LSTM decided

to flag for positive aroma. Here, the SIS-collection for this review is comprised of

three sufficient input subsets. From this example, we can see that the aroma LSTM is

generally making predictions based on disjoint pieces of evidence in the text suggesting

positive sentiment toward the aroma aspect. However, the example also shows how

this type of analysis may be used to debug or improve the model. While the rationales

generally seem sound, a practitioner may desire that the models not include tokens

such as “t” or “s” (which are likely artifacts of tokenization) in the rationales for its

decisions.

To gain further insight into the behavior of the LSTM models, we next analyze

the predictor model’s output following the elimination of each feature in the BackS-

elect procedure (Section 2.3). Figure 2-5 shows the LSTM output on the remaining
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Figure 2-4: Beer review with three disjoint SIS 𝑆1, 𝑆2, 𝑆3 identified for a positive
aroma prediction. Underlined are sentences that human labelers manually annotated
as capturing the aroma sentiment.

Figure 2-5: Prediction history on remaining (unmasked) text at each step of the
BackSelect procedure, for examples where aroma sentiment is predicted.

unmasked text 𝑓px𝑆zt𝑖˚uq at each iteration of BackSelect, for all examples. This

figure reveals that only a small number of features are needed by the model in order

to make a strong prediction (most features can be removed without changing the

prediction). We see that as those final, critical features are removed, there is a rapid,

monotonic decrease in output values. Finally, we see that the first features to be

removed by BackSelect are those which generally provide negative evidence against

the decision. The prediction becomes more positive (or negative in the case of strong

negative sentiment reviews [red]) as the first features are eliminated. Note, however,

that BackSelect may exhibit different behavior when applied to other models or

architectures (see Figure 2-19 for one such example).
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Figure 2-6: Prediction on rationales only vs. rationale length for various methods in
reviews with positive aroma prediction (𝜏 “ 0.85).

2.5.3 Comparing SIS to Baseline Methods

We next compare rationales produced by SIScollection to those from the baseline

methods described in Section 2.4.1. Figure 2-6 shows the prediction on the rationale

only (all other words masked) vs. length of rationale for the rationales produced by

these various methods on the same set of beer reviews on which the LSTM predicts

positive aroma. From this figure, we see that when the alternative methods are

length constrained, the rationales they produce often badly fail to meet our sufficiency

criterion. Thus, even though the same number of feature values are preserved in the

rationale and these alternative methods select the features to which they have assigned

the largest attribution values, their rationales lead to significantly reduced 𝑓 outputs

compared to our SIS subsets. When the lengths of these alternative rationales is

allowed to grow large enough to ensure our sufficiency criterion is met, the rationales

become unnecessarily long. If the sufficiency constraint is instead enforced for these

alternative methods, the rationales they identify become significantly larger than

those produced by SIScollection, and they also tend to contain a larger number of

unimportant features (as shown in Table 2.2 and Figures 2-7 and 2-8, detailed below).

Thus, our SIS method effectively extracts rationales that are sparse yet suffice for a

strong prediction by the model.

We also compare the rationales from our SIS method those from the baseline meth-
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Table 2.2: Statistics for rationale length and feature importance in aroma prediction.
For rationale length, median and max indicate percentage of input text in the ratio-
nale. For marginal perturbed feature importance, we indicate the median importance
of features in rationales and features from the other (non-rationale) text. 𝑝-values
are computed using a Wilcoxon rank-sum test (comparing each distribution to that
from SIS).

Method
Rationale Length (% of text) Marg. Perturbed Feat. Import.

Med. Max 𝑝 Rationale Other 𝑝

SIS 3.9% 17.3% – 0.0112 1.50e-05 –

Suff. IG 7.7% 89.7% 5e-26 0.0068 1.85e-05 3e-42

Suff. LIME 7.2% 84.0% 4e-23 0.0075 1.87e-05 1e-35

Suff. Perturb. 5.1% 18.3% 1e-06 0.0209 1.90e-05 1e-72

ods by comparing the importance of features that comprise the rationales. For each

word 𝑖 in an input sequence x, we quantify its marginal importance by individually

perturbing only this word:

Feature Importancep𝑖q “ 𝑓pxq ´ 𝑓pxzt𝑖uq (2.1)

Note that these marginal Feature Importance scores are identical to those of the

Perturb. method described in Section 2.4.1.

For rationales computed by the various methods on these beer reviews, we compute

the marginal Feature Importance of features in the rationales, which are summarized

in Table 2.2 and Figure 2-7. Compared to the Suff. IG and Suff. LIME methods,

our SIScollection technique produces rationales that are much shorter and contain

fewer irrelevant (i.e. not marginally important) features (Table 2.2, Figures 2-7 and 2-

8). Note that by construction, the rationales of the Suff. Perturb. method contain

features with the greatest Feature Importance, since this precisely how the ranking

in Suff. Perturb. is defined.
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Figure 2-7: Importance of individual features in the rationales for aroma prediction
in beer reviews.

Figure 2-8: Length of rationales for aroma prediction.



2.5.4 Evaluation of SIS Rationales

Benchmarking interpretability methods is difficult because a learned 𝑓 may behave

counterintuitively such that seemingly unreasonable model explanations are in fact

faithful descriptions of a model’s decision-making process. For some reviews in our

dataset, a human annotator has manually selected which sentences carry the relevant

sentiment for the aspect of interest (Section 2.5.1, see examples in the underlined text

of Figures 2-4 and 2-10), so we treat these annotations as an alternative rationale

for the LSTM prediction. For a review x whose true and predicted aroma exceed

our decision threshold, we define the quality of human-selected sentences for model

explanation (QHS) as

QHS “ 𝑓px𝑆q ´ 𝑓pxq (2.2)

where 𝑆 here is the human-selected-subset of words in the review (as opposed to a

sufficient input subset).

Figure 2-9 shows the relationship between QHS and the fraction of the SIS that

falls inside the human-selected sentences. There is a positive correlation between

the two variables (Pearson 𝜌 “ 0.491, 𝑝 “ 1.5e´25). High variability of QHS in the

annotated reviews indicates the human rationales often do not contain sufficient infor-

mation to preserve the LSTM’s decision. As the model diverges from alignment with

the human-selected sentences (and those sentences are not necessary for prediction),

fewer words in the sufficient input subsets lie within those sentences (lower left of

Figure 2-9). Additionally, as the human-selected sentences become more sufficient for

prediction (QHSÑ 0), almost the entirety of the sufficient input subsets identified by

our method end up lying within those sentences (upper right of Figure 2-9). Figure 2-

10 provides examples from both extremes of alignment (SIS has good alignment with

human-selected sentences, where QHS « 0, and SIS and human-selected sentences

have poor alignment, where QHS ă 0). The bottom panel of Figure 2-10 illustrates

an example where the LSTM is able to predict positive sentiment from features that

diverge from what a human would expect, which may suggest overfitting.
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Figure 2-9: QHS (Equation 2.2) vs. similarity between SIS and annotation in the
reviews with positive aroma sentiment (Pearson 𝜌 “ 0.491, 𝑝-value “ 1.5e´25).

Figure 2-10: Beer reviews (aroma) in which human-selected sentences (underlined) are
aligned well (top) and poorly (bottom) with predictive model. Fraction of SIS in the
human sentences corresponds accordingly. In the bottom example (poor alignment
between human-selection and predictive model), our procedure has surfaced a case
where the LSTM has learned features that diverge from what a human would expect
(and may suggest overfitting).



2.6 Transcription Factor Binding

We next analyze SIS in the context of convolutional neural networks (CNNs) trained

to classify whether a given transcription factor (TF) will bind to a specific DNA

sequence [52]. This setting also provides us with ground truth motifs containing

known binding sites, which we use to evaluate the ability of SIS to recover such

motifs (see Section 2.6.3).

2.6.1 Dataset and Model Details

We use the motif occupancy datasets3 from Zeng et al. [52], where each dataset orig-

inates from a ChIP-seq experiment from the ENCODE project [11]. Each of the 422

datasets studies a particular transcription factor, containing between 600 and 700,000

(median 50,000) 101 base-pair DNA sequences (inputs) each associated with a binary

label based on whether the sequence is bound by the TF or not. Each dataset also

contains a test set ranging between 150 and 170,000 sequences (median 12,000). Here,

the positive and negative classes in each dataset are balanced, and we filter out all

sequences containing the unknown base (N). The nucleotide occurring at base position

(A, C, G, T) is encoded as a one-hot representation which is fed into the CNN. Zeng

et al. [52] showed that convolutional neural network architectures outperform other

models for this TF binding prediction task.

For each of the 422 prediction tasks, we employ the optimal “1layer_128motif”

architecture from Zeng et al. [52], defined as follows:

1. Input: (101 x 4) sequence encoding

2. Convolutional Layer 1: Applies 128 kernels of window size 24, with ReLU

activation

3. Global Max Pooling Layer 1: Performs global max pooling

4. Dense Layer 1: 32 neurons, with ReLU activation and dropout probability

0.5
3available at http://cnn.csail.mit.edu
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Figure 2-11: Median area under the receiver operating curve (AUC) for all 422 tran-
scription factor binding motif occupancy datasets. The validation set is held-out at
training but used to choose model parameters; the test set is not seen until after
training.

5. Dense Layer 2: 1 neuron (output probability), with sigmoid activation

We hold out 1/8 of each train set for validation and minimize binary cross-entropy

using the Adadelta optimizer [50] with default parameter settings in Keras [10]. We

train each model on each of the 422 datasets for 10 epochs (using batch size 128) with

early-stopping based on validation loss. Figure 2-11 shows the area under the receiver

operating curve (AUC) over the 422 datasets, and we note that the performance of

our models closely resembles that in Zeng et al. [52].

2.6.2 Applying SIS to Interpret TF Binding Classifiers

From each of the 422 different datasets of DNA sequences bound-or-not by different

TFs (and 422 different CNN models, see Section 2.6.1), we extract SIS-collections

from sequences in the test set with high (top 10%) predicted binding affinity for the

TF profiled in each dataset. The distribution of threshold 𝜏 over the 422 datasets is

shown in Figure 2-12. Since A, C, G, T nucleotides all occur with similar frequency

in this data, our SIS analysis simply masks each base using a uniform embedding

(r0.25, 0.25, 0.25, 0.25s). This is also the standard strategy to represent unknown N

nucleotides in DNA sequences that typically arise from issues in read quality. We

generally find that there is only a single SIS per example for the sequences in these
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Figure 2-12: Thresholds 𝜏 used for identifying sufficient input subsets in TF binding
datasets. In each dataset, the threshold is defined as the 90th percentile of the
predictive test distribution.

Figure 2-13: Two DNA sequences that receive positive TF binding predictions for the
MAFF factor (SIS is shaded).

datasets. Figure 2-13 depicts two examples of input DNA sequences and the corre-

sponding sufficient input subsets identified by our SIScollection procedure.

We evaluate the minimality and sufficiency of the rationales produced by SIS to

those produced by the alternative baseline methods we explored (see Section 2.4.1).

On each dataset, we compute the median rationale length (as number of bases in

the rationale). The distribution of median rationale length over all datasets by the

various methods is shown in Figure 2-14. Note that for the IG, LIME, and Perturb.

methods, rationale length was constrained to the length of the rationales produced by

our method, as described in Section 2.4.1. For the Top IG method, neither sufficiency

nor length constraints are enforced. We see that when the sufficiency constraint is

enforced in alternative methods (Suff. IG), the rationales are significantly longer

than those identified by SIS. Moreover, as shown in Figure 2-15, when the sufficiency

constraint is not enforced (or the rationale lengths are constrained to the length of

SIS rationales) in alternative methods, the rationales have significantly less predictive

power, often not satisfying 𝑓px𝑆q ě 𝜏 . The rationales produced via our SIS approach

are shorter and better at preserving large 𝑓 -values than rationales from other methods
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Figure 2-14: Length (number of bases) of rationales identified by various methods.
Note that the sufficiency constraint (𝑓px𝑆q ě 𝜏) is only enforced for SIS and Suff.
IG. The lengths of IG, LIME, and Perturb. rationales are constrained to the length
of SIS rationales.

(Figures 2-14 and 2-15).

2.6.3 Evaluation of the Quality of TF Rationales

To predict binding so accurately (Figure 2-11), the CNN must faithfully reflect the

biological mechanisms that relate the DNA sequence to the probability of TF oc-

cupancy. We evaluate the rationales found by SIS and our baseline methods (see

Section 2.4.1) against known TF binding motifs from JASPAR [29] as the ground

truth. We adopt KL divergence between the known motif and each proposed ra-

tionale as a measure of quality of the rationale. Each rationale is padded with “N”

(unknown) bases to the length of a full input sequence (101 bases) and optimally

aligned with the known motif4 according to the likelihood criterion. The aligned mo-

tif is then also padded to the same length, and we compute the divergence between

4A JASPAR motif is a 𝑛ˆ4 right stochastic matrix 𝑀 . The columns represent the ACGT DNA
bases and the rows a DNA sequence. It represents the marginal probability of the base 𝑗 at position
𝑖 being present with probability 𝑀𝑖𝑗 . The unknown base “N” receives uniform 1{4 probability for
each of ACGT. An example JASPAR motif is shown in Figure 3-1.
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Figure 2-15: Prediction on rationale only (all other bases masked) vs. rationale length
(number of bases) for various methods in the TF binding task.

between the rationale 𝑅 and known motif 𝑀 as:

Divp𝑅,𝑀q “
ÿ

𝑖

𝐷KLp𝑅𝑖||𝑀𝑖q

where 𝐷KLp𝑅𝑖||𝑀𝑖q “
ř

𝑗 𝑅𝑖p𝑗q log
𝑅𝑖p𝑗q
𝑀𝑖p𝑗q

is the Kullback-Leibler (KL) divergence from

𝑀𝑖 to 𝑅𝑖, and 𝑀𝑖 and 𝑅𝑖 are distributions over bases (A, C, G, T) at position 𝑖.

Note that as 𝑅 and 𝑀 become more dissimilar, Divp𝑅,𝑀q increases. We ensure

𝑀𝑖𝑗 ą 0 @ 𝑖, 𝑗 so 𝐷KL is always finite. Figure 2-16 shows the divergence of rationales

produced by SIScollection is significantly lower than that of rationales identified

using other methods (Wilcoxon 𝑝 ď 1e´5 in all cases). SIS is thus more effective

at uncovering these underlying biological principles than the alternative methods we

explored.

2.7 MNIST Digit Classification

In this section, we apply SIS to interpret a 10-way convolutional neural network

(CNN) classifier trained on the MNIST handwritten digits data [25]. In addition

to interpreting the classifier’s decisions on correctly classified examples, we see how
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Figure 2-16: KL divergence between JASPAR motifs (known ground truth) and ra-
tionales found via various methods. Shown are results for 422 TF datasets (each one
summarized by median divergence).

.

SIS can be further employed to understand the basis for the CNN’s misclassifications

(Section 2.7.2). In this application, we also observe the effect of local minima in the

backward selection phase of the SIS procedure and show how our method facilitates

minimality of the resulting rationales (Section 2.7.3).

2.7.1 Dataset and Model Details

The MNIST database of handwritten digits contains 60k training images and 10k test

images [25]. All images are 28x28 grayscale, and we normalize them such that all pixel

values are between 0 and 1. We train a simple 10-way CNN to classify the images

using the same architecture as that provided in the Keras MNIST CNN example.5

The architecture is defined as follows:

1. Input: (28 x 28 x 1) image, all values P r0, 1s

2. Convolutional Layer 1: Applies 32 3x3 filters with ReLU activation

3. Convolutional Layer 2: Applies 64 3x3 filters, with ReLU activation

5http://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py
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4. Pooling Layer 1: Performs max pooling with a 2x2 filter and dropout proba-

bility 0.25

5. Dense Layer 1: 128 neurons, with ReLU activation and dropout probability

0.5

6. Dense Layer 2: 10 neurons (one per digit class), with softmax activation

The Adadelta optimizer [50] is used to minimize cross-entropy loss on the training

set. The final model achieves 99.7% accuracy on the train set and 99.1% accuracy on

the held-out test set.

2.7.2 Applying SIS to Interpret Image Classifiers

When applying SIS to interpret the CNN’s classification of MNIST handwritten digits,

we only consider predicted probabilities for one class of interest at a time and always

set 𝜏 “ 0.7 as the probability threshold for deciding that an image belongs to the class.

We then extract the SIS-collections of all corresponding MNIST test set examples.

Examples of the complete SIS-collection corresponding to randomly chosen digits are

shown in Figure 2-17.

We also employ the SIS procedure to rationalize the CNN’s misclassifications.

We explore misclassifications of natural images in the MNIST test set as well as

adversarially modified images. Figure 2-18a shows two (unmodified) MNIST digits

whose true labels are 5 but which are misclassified by the CNN as 6 and 0, respectively.

The SIS-collections depicted for these digits immediately enable us to understand the

basis for why the misclassifications occur.

Figure 2-18b illustrates how the SIS-collection drastically changes for an exam-

ple of a correctly-classified 9 that has been adversarially manipulated [6] to become

confidently classified as the digit 4. Although a visual inspection of the perturbed

image does not really reveal exactly how it has been manipulated, it becomes imme-

diately clear from the SIS-collection for the adversarial image. The SIS-collections

show that the perturbation modifies pixels in such a way that input patterns similar
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(a) Digit 4 (b) Digit 5

(c) Digit 8 (d) Digit 9

Figure 2-17: Visualization of SIS-collections identified from MNIST digits (a) 4,
(b) 5, (c) 8, and (d) 9 that are confidently classified by the CNN. For each class, six
examples were chosen randomly. For each example, we show the original image (left)
and the complete set of sufficient input subsets identified for that example (remaining
images in each row). Each individual SIS depicted satisfies 𝑓px𝑆q ě 0.7 for that class.



(a) (b)

Figure 2-18: (a) SIS for digits 5 that are misclassified as 6 (1st column) and as 0
(2nd column). (b) SIS for correctly classified 9 (1st column) and when adversarially
perturbed toward class 4 (2nd column).

to the typical SIS-collection for a 4 (Figure 3-2) become embedded in the image. The

adversarial manipulation was done using the Carlini-Wagner 𝐿2 (CW2) attack6 [6]

with a confidence parameter of 10. The CW2 attack tries to find the minimal change

to the image, with respect to the 𝐿2 norm, that will lead the image to be misclassified.

Carlini and Wagner [5] demonstrate it to be one of the strongest extant adversarial

attacks.

2.7.3 Local Minima in Backward Selection

Figure 2-19 demonstrates an example MNIST digit for which there exists a local

minimum in the backward selection phase of our algorithm to identify the initial SIS.

Note that if we were to terminate the backward selection as soon as predictions drop

below the decision threshold, the resulting SIS would be overly large, violating our

minimality criterion. It is also evident from Figure 2-19 that the smaller-cardinality

SIS in (d), found after the initial local optimum in (c), presents a more interpretable

input pattern that enables better understanding of the core motifs influencing our

classifier’s decisions. To avoid suboptimal results, it is important to run a complete

backward selection sweep until the entire input is masked before building the SIS

6Implemented in the cleverhans library of Papernot et al. [34]
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(a) (b) (c) (d)

Figure 2-19: (a) Prediction on remaining image as pixels are masked during backward
selection, when our CNN classifier is fed the MNIST digit in (b). The dashed line
depicts the threshold 𝜏 “ 0.7. (b) Original image (class 9). (c) SIS if backward
selection were to terminate the first time prediction on remaining image drops below
0.7, corresponding to point C in (a) (CNN predicts class 9 with probability 0.700
on this SIS). (d) Actual SIS produced by our FindSIS algorithm, corresponding to
point D in (a) (CNN predicts class 9 with probability 0.704 on this SIS).

upward, as done in our SIScollection procedure (Section 2.3).

2.8 Discussion

In this chapter, we introduce the idea of interpreting black-box decisions on the

basis of sufficient input subsets – minimal input patterns that alone provide sufficient

evidence to justify a particular decision. Our SIS method allows a practitioner to

obtain explanations for a machine learning model’s decisions and to interrogate its

behavior. Our methodology is easily understood by non-experts, applicable to all

ML models without any additional training steps, and remains fully faithful to the

underlying model without making approximations. Comparing to existing methods,

we show that our SIS method produces rationales that are both minimal and meet

our sufficiency criterion, ensuring that the model arrives at the same prediction given

just the rationale. Further, we show how our method can be used not only to explain

decisions that were made correctly, but also to understand the basis for a model’s

misclassifications. In Chapter 3, we adopt the SIS method to gain global insights into

the general principles governing the decisions made by an ML model.
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Chapter 3

Clustering SIS for Global Insights

3.1 Introduction

In Chapter 2, we introduced the sufficient input subsets (SIS) interpretability method,

which produces local explanations for the decisions made by black-box functions. The

explanations are comprised of sparse subsets of the features in the original input whose

values form the basis for the model’s decision. These local explanations are useful

to understand why a model makes certain decisions on singular examples. In this

chapter, we extend the SIS approach to extract global insights into the behavior of

the model. In particular, we cluster the sufficient input subsets stemming from many

examples on which the model makes the same decision. The resulting clusters enable

us to visualize the distinct feature patterns the model has learned to associate with

the decision (e.g. the features learned by a CNN to discriminate a handwritten digit

4 from other digits, as in Section 3.2.3).

Furthermore, we can adopt this SIS clustering methodology to reveal differences

between two models trained on the same task. Jointly clustering the SIS stemming

from both models allows us to inspect differences in how the models operate. We

show that two models that achieve similar accuracy may make the same decisions for

wildly different reasons. This kind of analysis can be used to decide which of a set

of models may be most desirable to select for a system in practice. Our technique

enables practitioners to discover such insights.
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3.2 Clustering SIS for General Insights

Identifying the different input patterns that justify a decision can help us better grasp

the general operating principles of a model. To this end, we cluster all of the sufficient

input subsets produced by our SIS method applied across a large number of examples

that receive the same decision by a particular model. In our work, we cluster the

sufficient input subsets using DBSCAN [15], a widely applicable algorithm that only

requires specifying pairwise distances between the SIS. This allows us to choose a

suitable distance metric between sufficient input subsets depending on the particular

domain.

3.2.1 Clustering SIS from Sentiment Predictors

We first cluster the sufficient input subsets found across held-out1 beer reviews (Test

fold in Table 2.1) that received positive aroma predictions from our LSTM model

(model details in Section 2.5.1). The distance between two SIS is taken here as the

Jaccard (intersection over union) distance between their bag of words representations,

𝑆1 and 𝑆2:

𝐷p𝑆1, 𝑆2q “ 1´
𝑆1 X 𝑆2

𝑆1 Y 𝑆2

Table 3.1 shows three resulting clusters containing phrases that the LSTM has

learned to associate with positive aromas in the absence of other context. The full

clustering for SIS from beer reviews with strong positive predicted sentiment can be

found in Table A.1 (strong negative predicted sentiment in Table A.2).

3.2.2 Clustering SIS from TF Binding Classifiers

We next apply our clustering procedure to the sufficient input subsets found by our

method across all test-set DNA sequences which the CNN model (Section 2.6.1) pre-

dicts would be bound by some transcription factor (see Section 2.6). In this ap-

plication, the pairwise distance between two sufficient input subsets is taken to be

1For experiments involving clustering and/or comparing different models, we use examples drawn
from the Test fold (instead of Annotation fold, see Table 2.1) to consider a larger number of examples.
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Table 3.1: Three clusters of SIS extracted from beer reviews with positive CNN
aroma predictions. Each row shows four most frequent unique SIS in a cluster (each
SIS shown as ordered word list with text-positions omitted). Each unique SIS can be
present many times in one cluster.

Cluster SIS #1 SIS #2 SIS #3 SIS #4

𝐶1

smell amazing

wonderful

nice wonderful

nose

wonderful

amazing

amazing

amazing

𝐶2

grapefruit

mango

pineapple

pineapple

grapefruit

pineapple

grapefruit

hops grapefruit

pineapple floyds

mango

pineapple

incredible

𝐶3

creme brulee

brulee

creme brulee

decadent

incredible

creme brulee

creme brulee

exceptional

the Levenshtein (edit) distance between the string representations of the masked se-

quences (where non-SIS characters are masked with N as in Section 2.6.1).

Figure 3-1 shows the clusters for a particular transcription factor (MAFF) for

which two SIS clusters were found, aligned with the known motif from JASPAR [29]

for this TF (discussion of JASPAR motifs in Section 2.6.3). Additional SIS in each

of the clusters are given in Table 3.2. Notably, we find that despite contiguity not

being enforced in our algorithm, each cluster is comprised of short sequences that

clearly capture different aspects of the underlying DNA motif known to bind this

TF. This result suggests that when the models are expected to behave according to

some underlying scientific principles (e.g. those governing DNA transcription factor

binding, as captured by the motif), the SIS clustering approach presented here is

able to recover them. Had the motif not been known a priori, our approach would

have enabled us to gain insight into which DNA sequence positions are critical for

DNA-TF binding to occur.
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Figure 3-1: Known JASPAR motif (top) and alignment with cluster modes (bottom)
for two SIS clusters identified by DBSCAN for one particular TF (MAFF). Additional
items in clusters given in Table 3.2.

Table 3.2: Two clusters of SIS resulting from DBSCAN clustering on SIS stemming
from CNN predicting binding for a particular transcription factor (MAFF). Most
frequently-occurring SIS are each shown for each cluster. Frequency indicates number
of times that SIS was observed.

SIS Freq.

GCTGAGTCAT 197

ATGACTCAGC 185

GCTGAGTCA-C 83

GCTGAGTCAC 53

GCTGACTCAGCA 42

SIS Freq.

TGCTGA––GCA-TTT 12

GCTGAC–-GCA-TTT 8

TGCTGAC–-GCA-TT 6

TGCTGAC–-GCA-AA 5

TGCTGAC–-GCA-AT 4



Figure 3-2: Eight clusters of SIS identified from examples of digit 4. Each row contains
fifteen random SIS from a single cluster.

3.2.3 Clustering SIS from MNSIT Digit Classifiers

Finally, we apply our clustering methodology the sufficient input subsets found across

all MNIST test set examples that are confidently identified by the CNN (Section 2.7)

as a particular class. Pairwise distances are here defined as the energy distance [37]

over pixel locations between two sufficient input subsets (see Section A.2.1 for details).

Figure 3-2 depicts the SIS clusters identified for digit 4. These clusters reveal distinct

feature patterns learned by the CNN to distinguish digit 4 from other digits, which

are clearly present in the vast majority of test set images confidently classified as a

4. For example, cluster 𝐶8 depicts parallel slanted lines, a pattern that never occurs

in other digits. We repeat this analysis for additional digit classes, and results are

shown in Figure 3-3.

3.3 Understanding Differences Between Models

The general insights revealed by our SIS clustering methodology can also be used to

compare and contrast the operating behaviors of different models trained for the same

task. In this section, we demonstrate this approach in two of our settings: training a

text CNN to compare to our existing LSTM that predicts sentiment in beer reviews
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(a) Digit 3 (b) Digit 5

(c) Digit 8 (d) Digit 9

Figure 3-3: Clustering all the SIS found for digits (a) 3, (b) 5, (c) 8, and (d) 9 under
the CNN model. Each row contains images drawn from one cluster. The bottom
row (“Misc”) contains a sample of miscellaneous SIS not assigned to any cluster by
DBSCAN.

(Section 2.5) and training a simple feed-forward neural network to compare to our

existing CNN to classify MNIST digits (Section 2.7).

Both networks exhibit similar performance (i.e. accuracy) in each task, so it is

not immediately clear which model would be preferable to use in practice. We first

determine whether the SIS extracted under one model are sufficient for the other

model to arrive at the same prediction. Figure 3-4 shows the SIS extracted under

one model are typically insufficient to receive the same decision from the other model,

suggesting that these models base their positive predictions on different evidence. We

next adopt our joint SIS clustering methodology to expose the differences in the SIS

from each of the architectures in each of these applications in turn.
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(a) (b)

Figure 3-4: Predictions by one model on the SIS extracted from the other model in:
(a) beer reviews with positive LSTM/CNN aroma predictions, and (b) MNIST digits
confidently classified as 4 by CNN/MLP.

3.3.1 Understanding Differences Between Sentiment Predic-

tors

In addition to the LSTM (see Section 2.5.1), we train a convolutional neural network

(CNN) on the same sentiment analysis task (on the aroma aspect). The text CNN

architecture is as follows:

1. Input/Embeddings Layer: Sequence with 500 timesteps, the word at each

timestep is represented by a (learned) 100-dimensional embedding

2. Convolutional Layer 1: Applies 128 filters of window size 3 over the sequence,

with ReLU activation

3. Max Pooling Layer 1: Max-over-time pooling, followed by flattening, to

produce a p128, q representation

4. Dense: 1 neuron (sentiment output), sigmoid activation

Note that a new set of embeddings is learned with the CNN. As with the LSTM model,

we use Adam [23] to minimize MSE on the training set. For the aroma aspect, this

CNN achieves 0.016 (0.850), 0.025 (0.748), 0.026 (0.741), 0.014 (0.662) MSE (and

Pearson 𝜌) on the Train, Validation, Test, and Annotation sets, respectively. We

note that this performance is very similar to that from the LSTM (Table 2.1).

We apply our SIScollection procedure to extract the SIS-collections from all

applicable test examples using the text CNN, as in Section 2.5. Figure 3-4a shows
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Table 3.3: Joint clustering of the SIS from beer reviews predicted to have positive
aroma by LSTM or CNN. Dashes are used in clusters with under four unique SIS.
Percentages quantify SIS per cluster stemming from the LSTM.

Cluster LSTM SIS #1 SIS #2 SIS #3 SIS #4

𝐶1 0% delicious - - -

𝐶2 0% very nice - - -

𝐶3 20% rich chocolate very rich
chocolate

complex
smells rich

𝐶4 33% oak chocolate

chocolate raisins

raisins oak

bourbon

chocolate oak raisins chocolate

𝐶5 70% complex aroma
aroma complex

peaches complex

aroma complex

interesting

cherries

aroma complex

the predictions from one model (LSTM or CNN) when fed input examples that are

SIS extracted with respect to the other model (for reviews predicted to have positive

sentiment toward the aroma aspect). Since the word embeddings are model-specific,

we embed each SIS using the embeddings of the model making the prediction (note

that while the embeddings are different, the vocabulary is the same across the models).

In Table 3.3, we show five example clusters (and cluster composition) resulting

from clustering the combined set of all sufficient input subsets extracted by the LSTM

and CNN on reviews in the test set for which a model predicts positive sentiment

toward the aroma aspect. The complete clustering on reviews receiving positive sen-

timent predictions is shown in Table A.3 (Table A.4 for reviews receiving negative

sentiment predictions). These results suggest that the text CNN tends to learn lo-

calized (unigram/bigram) word patterns, while the LSTM identifies more complex

multi-word interactions that seem more relevant to the target aroma value. Many

SIS from the CNN are simply phrases with universally-positive sentiment, indicating

this model may be less able to distinguish between positive sentiment toward aroma

vs. other aspects such as appearance or palate.
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3.3.2 Understanding Differences Between MNIST Classifiers

We next use SIS and our clustering procedure to understand and visualize differences

in features learned by two different models trained on the same MNIST digit classifi-

cation task. In addition to the previously described CNN model (see Section 2.7.1),

we also trained a simple multilayer perceptron (MLP) on the same task. The MLP

architecture is as follows:

1. Input: 784-dimensional (flattened) image, all values P r0, 1s

2. Dense Layer 1: 250 neurons, ReLU activation, and dropout probability 0.2

3. Dense Layer 2: 250 neurons, ReLU activation, and dropout probability 0.2

4. Dense Layer 3: 10 neurons (one per digit class), with softmax activation

As with the CNN, Adadelta [50] is used to minimize cross-entropy loss on the training

set. The final MLP model achieves 99.7% accuracy on the train set and 98.3% accu-

racy on the test set, which is close to the performance of the CNN (see Section 2.7.1).

We apply the same procedure as in Section 2.7 to extract the SIS-collections from

MNIST test images using the MLP. Figure 3-5 shows some examples of SIS-collections

extracted for MNIST digits 4 and 8 from the MLP architecture. We also cluster the

SIS-collections extracted from the MLP (as in Section 3.2.3). Clusters for two classes

are shown in Figure 3-6.

To understand and visualize the differences between the features learned by each

model to classify MNIST digits, we combine all SIS (from both models, for a partic-

ular class) and apply our joint SIS clustering procedure. In the resulting clustering

(for digit 4 as shown in Figure 3-7), we list what percentage of the SIS in each clus-

ter stem from the CNN vs. the MLP. Most clusters contain examples purely from

a single model, indicating the two models have learned to associate different feature

patterns with class 4. Evidently, the CNN bases its confidence primarily on spatially-

contiguous strokes comprising only a small portion of each image. Classifications by

the MLP instead seem to be based on pixels located throughout the digit, demon-

strating this model relies more on the global shape of the handwriting. Thus, this
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(a) Digit 4 (b) Digit 7

Figure 3-5: Visualization of SIS-collections identified for MNIST digits (a) 4 and
(b) 7 under the MLP model. For each class, six examples were chosen randomly.
For each example, we show the original image (left) and the complete set of sufficient
input subsets identified for that example (remaining images in each row). Note that
each individual SIS satisfies 𝑓px𝑆q ě 𝜏 for that class. Compare to the SIS extracted
from the CNN architecture (Figure 2-17).

(a) Digit 4 (b) Digit 7

Figure 3-6: Clustering all the SIS identified by our method on digits (a) 4 and
(b) 7 under the MLP model (Section 3.3.2). Each row contains images drawn from
one cluster. The bottom row (“Misc”) contains a sample of miscellaneous SIS not
assigned to any cluster by DBSCAN. Compare to the SIS clustering from our CNN
model (Figure 3-3).



Figure 3-7: Jointly clustering the MNIST digit 4 SIS from CNN and MLP. We list
the percentage of SIS in each cluster stemming from the CNN (rest from MLP).

result suggests that the CNN may be more susceptible to mistaking other (non-digit)

handwritten characters for 4s if they happen to share some of the same strokes.

3.4 Discussion

In this chapter, we show how SIS can be clustered to gain global insights into a model’s

general operating behavior. The resulting clusters reveal distinct feature patterns

that the model has learned to associate with a particular decision. Moreover, given

multiple models of comparable accuracy, we show how these clusters can be used to

uncover critical operating differences between the models. For example, our analysis

can reveal which model is more susceptible to spurious training data correlations or

may generalize worse to counterfactual inputs that lie outside the data distribution.

As with the SIS procedure, our clustering methodology can be easily adopted into a

wide range of applications.
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Chapter 4

Conclusion

This chapter contains a summary of the contributions of this thesis as well as direc-

tions for future work in this area.

4.1 Summary of Contributions

In this thesis, we contribute a novel interpretability method based on the premise

of sufficient input subsets. In this framework, we presume that a model 𝑓 makes a

decision 𝑓pxq on a multi-dimensional input x, such as a sequence of characters. Our

method finds a collection of sparse, minimal subsets of the features in x such that

the model is able to make the same prediction using only the features in any of these

subsets alone, without information about any other features’ values. These sufficient

input subsets can be thought of as explanations (rationales) for the model’s decisions.

In Chapter 2, we introduce the sufficient input subsets (SIS) method for black-

box model interpretability. We describe the SIScollection algorithm which produces

rationales for a decision 𝑓pxq by applying backward selection locally to the features in

x. We apply SIS to interpret the decision-making of neural network models in three

different domains: sentiment prediction in natural language, a computational biology

task of predicting transcription factor binding, and a vision task involving handwritten

digit classification. We show how the method can be used to explain the models’

decisions that were made correctly and to understand the basis of misclassifications.
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Unlike many other methods, SIS can be applied to interpret any black-box function 𝑓

with no gradient information or assumptions of differentiability. Further, no auxiliary

explanation model is required to produce the explanations, and hence, the method is

completely faithful to the underlying function 𝑓 . The SIS method is widely applicable

to a number of domains where producing explanations for decisions made by black-box

models is imperative. These applications include critical decisions made by machine

learning models in screening loan applicants [42], in recidivism prediction [24], and in

determining whether patients have a particular disease [18].

We compare SIS to a number of alternative methods for explaining these models

and show that our method more effectively produces subsets of features that are

both minimal and sufficient to allow the model to reach the same decision given that

subset alone. Moreover, we show that in the biological task where ground-truth for

the model’s behavior is known, subsets from our method more accurately reflect the

underlying biological principles governing transcription factor and DNA binding than

rationales produced by the alternative methods. This finding suggests that our SIS

approach can be applied to discover new scientific insights: highly accurate machine

learning models trained on scientific datasets may be interpreted in order to learn

about the underlying principles.

In Chapter 3, we show how sufficient input subsets can not only allow prac-

titioners to explain model behavior locally (on particular examples), but also gain

insight into global behavior governing the model’s decision-making. Our approach is

based on clustering the sufficient input subsets taken from a large number of exam-

ples on which the model makes the same prediction. We demonstrate the utility of

this clustering methodology in our three application domains (sentiment prediction,

transcription factor binding, and digit classification). Furthermore, we adopt this

methodology to reveal operating differences between two models trained on the same

task. We show that two models that achieve similar accuracy may make the same

decisions for very different reasons. Our techniques enable practitioners to uncover

and visualize these differences in model behavior.

Together, the methods introduced in this thesis are broadly applicable to interpret
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and compare machine learning models in a wide range of domains in practice. Such

applications of this work include determining whether a model can be trusted in crit-

ical applications, as a tool in scientific research, for developing new ML architectures,

and as a basis for model selection.

4.2 Future Work

The arena of model interpretability is ripe with opportunities for future work. Such

work along the lines of the SIS method presented in Chapter 2 includes algorithmic

improvements to decrease the complexity of the search procedure as well as extensions

to overlapping sufficient input subsets. Other work could include seeking theoretical

guarantees about the subsets found by the algorithm, which are currently only known

for backward selection in certain linear settings [13]. Finally, one may try to use SIS

along with a known ground truth in an active learning setting, encouraging a model

to make decisions in accordance with the known factors. SIS can provide a way to

measure the model’s alignment with the ground truth.

There are also many applications and extensions of the SIS clustering method-

ology presented in Chapter 3. For example, one may evaluate the robustness of an

architecture in a particular task by retraining an identical model with different ran-

dom initialization of parameters. Consistency in SIS revealed by our SIS clustering

approach would suggest that the rationales behind the architecture’s decision-making

are robust to retraining the model. Similar work can also involve extending the SIS

clustering technique as a way to quantify model uncertainty. Finally, as we show that

the backward selection strategy employed by SIS is well-suited to biological data, fu-

ture work can involve adopting SIS to understand and critique state of the art neural

networks trained on biological data (e.g. [3, 4]).

63



64



Appendix A

Details for Sufficient Input Subsets

Experiments

This appendix contains additional details and results for the material in Chapters 2

and 3. Further experiments and results can be found in the Supplementary Informa-

tion of Carter et al. [7].

A.1 Additional Details of Sentiment Analysis Exper-

iments

Here, we provide additional details of our experiments applying SIS to interpret LSTM

models predicting sentiment in beer reviews (Section 2.5).

A.1.1 Imputation Strategies: Mean vs. Hot-deck

In Section 2.3, we discuss the problem of masking input features. Here, we show that

the mean-imputation approach (in which missing inputs are masked with a mean

embedding, taken over the entire vocabulary) produces a nearly identical change

in prediction to a nondeterministic hot-deck approach (in which missing inputs are

replaced by randomly sampling feature-values from the data). Figure A-1 shows the

change in prediction 𝑓pxzt𝑖uq ´ 𝑓pxq by both imputation techniques after drawing
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Figure A-1: Change in prediction (𝑓pxzt𝑖uq ´ 𝑓pxq) after masking a randomly cho-
sen word with mean imputation or hot-deck imputation. 10,000 replacements were
sampled from the aroma beer reviews training set.

a training example x and word 𝑥𝑖 P x (both uniformly at random) and replacing

𝑥𝑖 with either the mean embedding or a randomly selected word (drawn from the

vocabulary, based on counts in the training corpus). This procedure is repeated 10,000

times. Both resulting distributions have mean near zero (𝜇mean-embedding “ ´7.0e´4,

𝜇hot-deck “ ´7.4e´4), and the distribution for mean embedding is slightly narrower

(𝜎mean-embedding “ 0.013, 𝜎hot-deck “ 0.018). Because we find that these two imputation

approaches perform equally well on average, we elect to use mean-imputation as our

preferred method for masking information about features’ values when applying SIS.

We also explored other options for masking word information, e.g. replacement

with a zero embedding, replacement with the learned <PAD> embedding, and simply

removing the word entirely from the input sequence, but each of these alternative

options led to undesirably larger changes in predicted values as a result of masking,

indicating they appear more informative to 𝑓 than replacement via the feature-mean.

A.1.2 Additional Results for Aroma Aspect

This section includes additional results applying our SIS clustering methodology

(Chapter 3) to interpret LSTM sentiment predictors. Here, we present the full SIS

clustering for both reviews with strong positive and strong negative predicted senti-

ment (Section 3.2.1).
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Table A.1: All clusters of sufficient input subsets extracted from reviews from the test
set predicted to have positive aroma by the LSTM. Frequency indicates the number
of occurrences of the SIS in the cluster.

Cluster SIS #1 Freq. SIS #2 Freq. SIS #3 Freq. SIS #4 Freq.

𝐶1

smell amazing

wonderful
2

nice wonderful

nose
2

wonderful

amazing
2 amazing amazing 2

𝐶2

grapefruit mango

pineapple
2

pineapple

grapefruit

pineapple

grapefruit

1
hops grapefruit

pineapple floyds
1

mango pineapple

incredible
1

𝐶3

nice smell citrus

nice grapefruit

taste

1

smell great

complex ripe

taste

1

nice smell nice

hop smell pine

taste

1
love nice nice

smell bliss taste
1

𝐶4

fresh great

fantastic taste
1

rich great

fantastic hoped
1

fantastic cherries

fantastic
1

everyone great

snifters fantastic
1

𝐶5 awesome bounds 1

awesome

grapefruit

awesome

1

awesome

awesome

pleasing

1
awesome nailed

nailed
1

𝐶6

creme brulee

brulee
3

creme brulee

decadent
1

incredible creme

brulee
1

creme brulee

exceptional
1

𝐶7

oak vanilla

chocolate

cinnamon vanilla

oak love

1

dose oak

chocolate vanilla

acidic

1
vanilla figs oak

thinner great
1

chocolate aroma

oak vanilla

dessert

1
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Table A.2: All clusters of sufficient input subsets extracted from reviews from the test
set predicted to have negative aroma by the LSTM. Frequency indicates the number
of occurrences of the SIS in the cluster. Dashes are used in clusters with under 4
unique SIS.

Cluster SIS #1 Freq. SIS #2 Freq. SIS #3 Freq. SIS #4 Freq.

𝐶1 awful 15 skunky skunky 9 skunky t 7 skunky taste 6

𝐶2 garbage 3 taste garbage 1 garbage avoid 1 garbage rice 1

𝐶3 vomit 16 - - - - - -

𝐶4 gross rotten 1 rotten forte 1 awkward rotten 1 rotten offputting 1

𝐶5 rancid horrid 1 rancid t 1 rancid 1 rancid avoid 1

𝐶6 rice t rice 2 rice rice 1 rice tasteless 1 budweiser rice 1



A.1.3 Understanding Differences Between Sentiment Predic-

tors

We also include the full joint SIS clustering (clustering SIS from LSTM and text

CNN models together) for reviews with strong positive and strong negative predicted

sentiment (Section 3.3.1).
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Table A.3: Joint clustering of the SIS extracted from beer reviews predicted to have
positive aroma by LSTM or CNN model. Frequency indicates the number of occur-
rences of the SIS in the cluster. Percentages quantify SIS per cluster from the LSTM.
Dashes are used in clusters with under 4 unique SIS.

Cluster SIS #1 Freq. SIS #2 Freq. SIS #3 Freq. SIS #4 Freq.

𝐶1 (LSTM:

20%)
rich chocolate 13 very rich 9

chocolate

complex
5 smells rich 4

𝐶2 (LSTM:

21%)
great 248 amazing 119 wonderful 112 fantastic 75

𝐶3 (LSTM:

47%)
best smelling 23

pineapple

mango
6

mango

pineapple
6

pineapple

grapefruit
5

𝐶4 (LSTM: 5%) excellent 42
excellent

flemish flemish
1

excellent

excellent

phenomenal

1 - -

𝐶5 (LSTM:

33%)
oak chocolate 2

chocolate

raisins raisins

oak bourbon

1 chocolate oak 1
raisins

chocolate
1

𝐶6 (LSTM: 5%) goodness 19
watering

goodness
1 - - - -

𝐶7 (LSTM:

24%)
pumpkin pie 25

huge pumpkin

aroma pumpkin

pie

1

aroma perfect

pumpkin pie

taste

1

smell pumpkin

nutmeg

cinnamon pie

1

𝐶8 (LSTM: 5%) jd 13 tremendous 8 tremendous jd 1 - -

𝐶9 (LSTM:

40%)
brulee 14

creme brulee

brulee
3 creme creme 1

creme brulee

amazing
1

𝐶10 (LSTM:

0%)
s wow 20 - - - - - -

𝐶11 (LSTM:

0%)
delicious 56 - - - - - -

𝐶12 (LSTM:

0%)
very nice 23 - - - - - -

𝐶13 (LSTM:

70%)
complex aroma 5

aroma complex

peaches

complex

1

aroma complex

interesting

cherries

1 aroma complex 1
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Table A.4: Joint clustering of the SIS extracted from beer reviews predicted to have
negative aroma by LSTM or CNN model. Frequency indicates the number of occur-
rences of the SIS in the cluster. Percentages quantify SIS per cluster from the LSTM.
Dashes are used in clusters with under 4 unique SIS.

Cluster SIS #1 Freq. SIS #2 Freq. SIS #3 Freq. SIS #4 Freq.

𝐶1 (LSTM:

29%)
not 247 no 105 bad 104 macro 94

𝐶2 (LSTM:

100%)
gross rotten 1 - - - - - -

𝐶3 (LSTM:

100%)
rotten garbage 1 - - - - - -

𝐶4 (LSTM:

62%)
vomit 26 - - - - - -

𝐶5 (LSTM:

21%)
budweiser 22

sewage

budweiser
1

metal

budweiser
1

budweiser

budweiser

budweiser

1

𝐶6 (LSTM:

100%)
garbage rice 1 - - - - - -

𝐶7 (LSTM: 3%) n’t 19 adjuncts 14 n’t adjuncts 1 - -

𝐶8 (LSTM: 0%) faint 82 - - - - - -

𝐶9 (LSTM: 0%) adjunct 42 - - - - - -



A.2 Additional Details of MNIST Experiments

This section includes additional details of our SIS clustering experiments of MNIST

digits (Sections 3.2.3 and 3.3.2).

A.2.1 Energy Distance Between MNIST Image SIS

To cluster SIS from the image data, we compute the pairwise distance between two

sufficient input subsets 𝑆1 and 𝑆2 as the energy distance [37] between two distributions

over the image pixel coordinates that comprise the SIS, 𝑋1 and 𝑋2 P R2:

𝐷p𝑋1, 𝑋2q “ 2 ¨ E ||𝑋1 ´𝑋2|| ´ E ||𝑋1 ´𝑋 1
1|| ´ E ||𝑋2 ´𝑋 1

2|| ě 0

Here, 𝑋𝑖 is uniformly distributed over the pixels that are selected as part of the

SIS subset 𝑆𝑖, 𝑋 1
𝑖 is an i.i.d. copy of 𝑋𝑖, and || ¨ || represents the Euclidean norm.

Unlike a Euclidean distance between images, our usage of the energy distance takes

into account distances between the similar pixel coordinates that comprise each SIS.

The energy distance offers a more efficiently computable integral probability metric

than the optimal transport distance, which has been widely adopted as an appropriate

measure of distance between images.
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