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Abstract

In this thesis we propose a learning approach for generating realistic SVBRDFs using
generative adversarial models and differentiable rendering. Our model learns a map-
ping from the geometry buffer of a surface to a corresponding albedo texture-map
by training on images of the same surface rendered using a target texture-map. A
key feature of this learning process is the ability to differentiate the render function
within our model; this enables the optimization of the texture-map generator param-
eters using a loss function computed from the rendered 2D images. Our results show
that differentiable rendering is applicable in complex neural network models such as
GANs, opening up opportunities for more applications of deep learning methods in
the computer graphics pipeline.
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Chapter 1

Introduction

Fidelity of images produced by rendering pipelines is largely affected by the surface

reflectance model used in the rendering process. Physically based reflectance models

used in modern ray tracing engines help achieve a high level of realism. However, ma-

terials encountered on real surfaces are rarely uniform and feature spatially-varying

reflectances due to natural causes such as wear and tear, weathering, and other surface

imperfections. Unfortunately, using procedural techniques to replicate the complexity

of real spatially-varying materials largely relies on handcrafted heuristics which pro-

duce results that are subjective in terms of realism. To record the complexity of real

materials, previous methods [1, 2, 3, 8] use real photographs of simple flat surfaces to

extract spatially-varying bidirectional reflectance distribution functions (SVBRDFs).

However, extracting the SVBRDF for more complex surfaces with variable curva-

tures, such as dirt textures on car hulls, is a significantly harder task not attempted

by these methods not only due to the complexity of the surface geometry, but also

because of the non-stationary nature of the SVBRDFs; different areas of the surface

would experience different amounts of weathering, causing the resultant SVBRDF to

not exhibit shift invariance.

Exemplar based synthesis of complex textures is also studied in computer vision

applications. The advent of the GAN [14] paved the way for high fidelity results

from neural network based generative models for texture synthesis and style trans-

fer [35, 17, 34]. Unfortunately, the deep learning approach requires that a model’s
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building blocks consist of differentiable functions. Since differentiating more com-

plex functions is often impractical, the majority of neural network models use simple

functions with explicit analytical derivatives. However, if we have methods for differ-

entiating complex functions, we enable opportunities to utilize deep learning methods

in more complex tasks.

Recent work by Li et al. [21] features a differentiable ray tracer which makes it

possible to take derivatives of images produced by the ray tracer with respect to the

scene description parameters such as surface vertices, material properties, camera

parameters, etc. The ability to take derivatives with respect to scene variables allows

us to incorporate the ray tracing function into deep learning methods to train complex

neural network models for generating surface geometry and textures.

In this thesis we demonstrate an application of a deep learning model for com-

puter graphics by training a neural network which incorporates the differentiable ray

tracer [21]. Specifically, we propose and implement a GAN that synthesizes SVBRDFs

of complex surfaces (like a car hull) using a dataset of 2D images of the surfaces. Our

model takes advantage of the differentiable ray tracer to compute a loss on a rendered

image and back-propagate it to train a generator network which synthesizes a realistic

albedo texture-map for a given 3D shape. We leave the synthesis of more complex

SVBRDFs featuring specular reflectance, glossiness, and normal maps as future work.

We present our results when trained on a synthetic dataset. Our dataset con-

sists of rendered images of car models with a target texture-map generated by a

procedural surface weathering texture model used commonly in computer graphics

applications [5]. Unfortunately, for the scope of this thesis, we are not able to extend

our model to successfully learn texture-maps from real images.
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Chapter 2

Related Work

2.1 Texture synthesis and style transfer

Our task shares similarities with texture synthesis and style transfer. In both tasks,

the objective is to separate the information describing what the scene is from how it

was depicted – what style the scene was created in. E.g. a dataset of paintings of ar-

chitecture depicts some architectural scenery stylized as paintings. Texture synthesis

focuses on extracting the style of an image while style transfer focuses on morphing

the style of a scene. However, these tasks are ill-posed as the distinction between

a scene and its style is not well defined. Some work in the literature acknowledge

this limitation and propose methods that incorporate the distinction as part of the

problem [17, 35] while others use perceptual judgment to optimize for the best re-

sults [11, 12, 32, 19]. Other solutions assume the input image contains only style

content and attempt to produce similar images of the given texture [33, 30, 34].

Fortunately, in our case, the distinction between the scene and style is concretely

defined; the scene is specified by the surface geometry, while the style is defined by

the shading materials used in the rendering pipeline.

The state-of-the-art approach for the task of texture-synthesis and style-transfer is

to train a Generative Adversarial Network [14] that generates the desired output [19,

17, 35, 34]. We base our network architecture from the CycleGAN model by Zhu et

al. [35].
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2.2 Physically-based appearance modeling

Work in appearance modeling use the geometry of the models to simulate physical

phenomena, such as erosion of terrains [25], chemical diffusion [31], metallic pati-

nas [10], wet materials [18], weathering (e.g. [9, 7, 6]). These methods generate

convincing materials from geometry, but need to use dedicated simulation methods

for different scenarios. In contrast our method is fully data-driven and does not

rely on knowing the physics of the materials. Combining two approaches remain an

interesting research avenue.

Some other methods assume flat geometry, but use a more elaborate material

model (e.g. [4, 3, 8]). These methods deliver high-quality textures but do not take

geometry into consideration.

2.3 Deep learning models for computer graphics

Applications of deep learning models in computer graphics literature is hindered due

to the complex operations used in the graphics pipeline. Specifically, using 2D ren-

dered images to infer an underlying 3D scene geometry relies on differentiating the

rendering function. A generative model with a differentiable renderer makes it possi-

ble to optimize the model parameters using a loss function computed from a rendered

image of a 3D scene which contains the generator output.

A variety of methods propose models for indirectly differentiating the rendering

function by optimizing a neural network to emulate it [20, 27, 26]. Others propose

differentiable rasterization algorithms tailored for their use case [13, 22]. To our best

knowledge, there is no prior work in generative deep learning models featuring a

general purpose ray tracer.

Our method incorporates the differentiable ray tracer by Li et al. [21] into our

model. This ray tracer is able to compute derivatives of the Monte-Carlo path trac-

ing algorithm for arbitrary scenes with surfaces represented as triangle-meshes with

respect to any scene parameters such as triangle-mesh vertices, shading materials,
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and camera poses. The advantage of using this ray tracer over others is that we are

able to extract any desired scene variable explicitly which is useful in most practical

applications.
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Chapter 3

Method

We take on the following task: given a dataset of images of weathered cars, learn a

model that generates materials to approximate the appearance of weathering on a car

surface. We focus on Lambertian materials in this thesis and represent the material

with a semi-transparent albedo texture-map in the UV-embedding of the surface.

3.1 Differentiable Ray Tracing in Generative Models

The key contribution of this thesis is to frame this task as a learning problem and

incorporate the differentiable ray tracing function [21] into the learning process. We

present a schematic of our models in Figure 3-1 and Figure 3-2. We construct a

convolutional neural network 𝒢 : x → y, which, given a car’s surface geometry x,

produces an albedo texture-map y. We composit y onto the base material of the car

and render it using the differentiable ray tracer ℛΦ : y → z to obtain a rendered

image z (Φ is the parameter set which describes the scene). The combined model

ℛΦ ∘ 𝒢 is fully differentiable, which allows us to train the network weights of 𝒢 using

a loss computed from the rendered image z = ℛΦ ∘ 𝒢(x).

Although the render function is applicable for arbitrary network architectures, for

the scope of this thesis we train a generative adversarial network (GAN). Specifically,

along with the generator 𝒢, our model also trains a discriminator 𝒟 which learns

to label a rendered image of a car based on whether the albedo texture-map of the

19



Figure 3-1: Our model pipeline takes as input a scene description Φ which contains:
shape geometry, shading materials, camera parameters, and lighting parameters. The
UV-embedding of the car triangle-mesh, allows us to extract the position and normal
maps of the car in its UV-coordinates, which we refer to as the geometry buffer. The
geometry buffer is used to generate the albedo of the dirt using our generator network
𝒢. To produce the final render, we use a differentiable ray tracer ℛ after compositing
the dirt albedo onto the original shading material.

car was generated by 𝒢 or by some ground-truth generator 𝒢0. 𝒢0 is a standard

out-of-the-box procedural surface weathering texture-map generator [5].

3.2 Model Input and Surface Parameterization

So far we’ve discussed how 𝒢 takes as input the shape geometry of a car x to produce

a texture-map y. For arbitrary generator models, the surface geometry can be rep-

resented using any parameterization. However, in order to utilize well tested CNN

models such as [19], we require x to be in a representation that is compatible with

2D convolutions.

To re-parameterize x into a 2D grid structure, we bake x onto the surface’s UV-

embedding. I.e., given some UV-embededing for the input surface, for each UV-

coordinate (𝑢, 𝑣) we compute the surface’s position vector p(𝑢, 𝑣) ∈ R3, and normal

20



Figure 3-2: We use a GAN training procedure for our model. In addition to our
generator model 𝒢, we train a discriminator model 𝒟 that learns to discriminate
whether an image was produced by the generator (fake) or was sampled from the
dataset (real). The discriminator produces a down-sampled grid of the input image,
with each pixel representing the likelihood of the input being real or fake. In the
visualization below, the correspondence is: yellow – real, cyan – fake.

vector n(𝑢, 𝑣) ∈ R3. Using p and n, we form the surface geometry buffer x ∈ R6 by

concatenating the two vectors at each UV-coordinate.

The convolutions which 𝒢 applies to the geometry buffer to generate the surface

albedo are similar to using 3D shape convolutions as proposed by Masci et al. [24]

with the caveat of the convolution filter size changing depending on the distortion of

the UV-embedding. We provide more details about our choice of UV-embedding as

well as a discussion about desired specifications of the UV-embedding in Section 4.1.
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Figure 3-3: The geometry buffer is a mapping between UV-coordinates of the car
triangle-mesh and corresponding values of surface coordinates p and shading nor-
mals n. We store these maps as two RGB encoded images, with the three channels
representing each dimension of p and n respectively.
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Chapter 4

Implementation

4.1 Surface UV-embedding

In Chapter 3, we briefly discussed that we construct the geometry buffer of a surface

by using its UV-embedding. However, it is not obvious whether an arbitrary UV-

embedding can be applied for our model. Ideally, the model accepts any valid UV-

embedding and produces a corresponding albedo texture-map. However, there are

several considerations that make certain embeddings more useful than others. A

good embedding should have the following qualities:

– Similarity of embeddings for similar surfaces is an important feature required

for generalization capabilities of our model. I.e., if we feed in two similar car

surfaces, we should expect similar UV-embeddings. This similarity allows the

generator to learn to generate similar texture-maps for similar surfaces.

– General compactness of the embedding is also very important since we’re re-

stricted to using convolutions; any unassigned coordinates in the UV-embedding

will take up space in the convolution input while not being used to produce the

final texture-map.

– Conservation of surface connectivity in the UV-embedding ensures that op-

erations that operate in local neighborhoods, such as convolutions, respect

23



Figure 4-1: Our implementation features a spherical UV-embedding of the car surface.
In this embedding we take the pair (𝜃, 𝜑) as shown in the figure, and scaled to unity to
specify a planar coordinate which corresponds to the surface. We use this embedding
to specify a generalizable UV-embedding across all our car models.

the surface connectivity. Otherwise, discontinuities caused by seams in the

UV-embedding would create discontinuities along the seam when a generated

texture-map is composited onto a surface.

– Low distortion is important due to the static size of the convolution filter used

in the model. Applying a filter on a stretched out area of the embedding will

shrink the effective size of the filter on the surface manifold and vice versa.

For our implementation, we normalize the UV-embeddings across all car surfaces

using a hemispherical parameterization. Given the (𝑥, 𝑦, 𝑧) coordinates of a point in

the standard Euclidean basis, we can compute its corresponding spherical coordinates

(𝑟, 𝜃, 𝜑), where the point is located a distance of 𝑟 away from the origin and oriented by

the azimuth angle 𝜃 and polar angle 𝜑. Using this change of coordinates, we construct

the hemispherical parameterization (𝑢, 𝑣) ∈ [0, 1]2 by discarding the radial distance 𝑟
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and scaling 𝜃 and 𝜑 to a unit length. Since we’re parameterizing a hemisphere, (as

opposed to a whole sphere) we scale 𝜃 by 𝜋 instead of 2𝜋.

(𝑢, 𝑣) = (𝜃/𝜋, 𝜑/𝜋) (4.1)

In general, the parameterization we described is not suitable for arbitrary shapes,

especially if the shape has overlapping points along a radial direction as these points

will be assigned to the same UV-coordinates. Fortunately, the roughly ellipsoid shape

of car hulls allow us to use this parameterization with minimal artifacts.

This parameterization is (1) similar between similar surfaces as long as the center

of each car model is standardized across models, (2) compact and roughly square since

the surface is roughly shaped like an ellipsoid, and (3) reflects the connectivity of the

surface well as our parameterization does not introduce any seams. Unfortunately,

this parameterization has high distortion near the poles of the parameterization. For

the scope of this thesis we do not address this issue, but we provide a discussion of a

possible fix to this problem in Section 6.1.

4.2 Dataset Generation

We generate a synthetic dataset for model training using the ray tracer ℛΦ we de-

scribed in Section 3.1, as well as a procedural surface weathering texture-map gener-

ator 𝒢0 [5]. In order to create a diverse training dataset, we sample a random scene

description Φ from a pool of car meshes, base materials, environment maps, and cam-

era parameters. We describe the distribution of assets and their sampling strategies

in more detail in Appendix A. Additionally, we mark a subset of the materials as

learnable and composit the surface weathering texture-map generated from 𝒢0 onto

the base material of the surface using the alpha-channel of the texture-map.

During training, each exemplar image from this dataset is loaded along with its

corresponding scene description Φ to aide in the training process. We evaluate our

model 𝒢 by comparing the fidelity of its results to 𝒢0. In Chapter 5, we discuss how

the use of the scene description Φ of the training dataset affects the performance of
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the model.

4.3 Model Hyper-parameters

4.3.1 Network Architecture

We adopt the network architecture choices by Zhou et al.’s model for non-stationary

texture synthesis [34]. Our generator network is the ResNet architecture by Johnson

et al. [19], featuring several convolutions, followed by six residual blocks [16], and

several fractionally strided convolutions. Our discriminator network is the PatchGAN

architecture [17].

4.3.2 Loss Function

Empirical results show that training with the Wasserstein GAN loss with gradient

penalty as proposed by Gulrajani et al. [15] produce the best results with the fastest

convergence rates, compared to the vanilla GAN loss [14] and the LSGAN loss [23].

We present a comparison between these models in Chapter 5.

4.3.3 Training Process

The differentiable ray tracer [21] is a computation and memory intensive operation,

even when run on a GPU. Our experiments show that rendering an image with reso-

lution of 256 × 256, scene complexity of ∼1, 000, 000 vertices, and Monte-Carlo sub-

sampling rate of 200 per pixel, takes ∼0.3 seconds in the forward direction and ∼9.0

seconds in the backward direction (i.e. computing the derivative); running multiple

render operations in parallel on the GPU further increases this runtime. We found

that using a smaller Monte-Carlo sub-sampling rate in the backward direction gives

us a more reasonable runtime of ∼0.9 seconds at the cost of accuracy of the computed

derivatives.

Still, coupled with the large memory footprint the operation requires to store the

scene description and relevant metadata needed for derivative computations, training

26



the model with a large batch size is unfeasible unless we have a dedicated cluster

of GPUs with synchronized training. Due to these limitations, we conducted all

experiments using batch size of 1 on a single GPU. [35] shows that training GAN

architectures with a batch size of 1 produces good results.
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Chapter 5

Experiments

In this section, we present the experiments we conducted for our model along with

the corresponding results for each experiment.

5.1 Training Results

We found that the model fails to learn the target texture accurately when the distri-

bution of the set of scene descriptions used for generating the dataset does not match

the set of scene descriptions used at runtime during training. We attribute this failure

mode to two primary causes.

– The discriminator learns to distinguish between the real and fake images using

the discrepancy in the statistics of the scene description that is used to render

it instead of using the generator output. We refer to this failure mode as

discriminator mode collapse.

– A batch size of 1 prevents the model from passing useful gradients to the network

weights due to lack of feature overlap between real and fake images at each

iteration.

In order to address both of these issues, we elect to train the network by speci-

fying the scene description for each image using the scene description of the training
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Figure 5-1: We present our results side-by-side with the ground truth albedo as gen-
erated by a procedural dirt texture generator 𝒢0. The dataset this model was trained
on contains images of cars rendered only from one side with a constant elevation
angle. This causes the model to not learn patches that weren’t visible in the whole
dataset.

(a) Target albedo (b) Model output

images: at each training iteration of the discriminator, an output from the generator

is computed and applied to the same scene as in the training image. The discrimi-

nator computes the GAN-loss on this pair of real and fake images. Throughout this

training procedure, the only difference the discriminator observes between the pair of

fake and real input images is the texture applied to the cars.

This approach allows us to determine a baseline for whether our model is capable

of learning the target texture provided no ambiguity on what the discriminator can

use to distinguish real images from fake images.

5.2 Ablation Study

As mentioned in the previous section, our model does not train well unless the input

image scene description is shared between the real and fake images. We recognize

that this constraint prevents us from training our model on anything beyond the

synthetic dataset we generated for training purposes. If we hope to generalize our

model for real image datasets in the future, determining the model’s robustness to
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Figure 5-2: We render the albedo-maps from Figure 5-1 onto its corresponding car
mesh and compare to the ground truth images.

Figure 5-3: Increasing the noise 𝜖 in the pose estimation during training preserves
the quality of the textures learned by the model. However, if the model and dataset
pose distributions are non-overlapping, the discriminator experiences mode collapse.

(a) 𝜖 < 1∘ (b) 𝜖 < 2∘ (c) 𝜖 < 5∘ (d) 𝜖 < 10∘ (e) No overlap

non-matching scene-descriptions is crucial. In this section, we present results from

training our model after relaxing the "matching scene description" constraint in a

variety of controlled situations as a measure of stress-testing our model’s robustness.

5.2.1 Camera Pose Distribution

We discussed the technical limitations that require us to train with a batch size of 1

in Section 4.3.3. As a result we are not able to benefit from gradient averaging used

in deep learning models which decrease the volatility of the gradient at each iteration.

If at each iteration, the discriminator observes vastly different fake and real images,

the discriminator’s task becomes more complex as it will have to learn to ignore the
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pose variation of the cars before learning to label images using the texture observed

on the car surfaces.

However, having perfect estimation of the camera pose from a real image is not

realistic. At best, we can get a noisy estimate of the camera pose. To investigate

how much noise in camera pose estimation the model can tolerate and what the effect

is on model convergence speed and the quality of the learned textures, we conduct

several experiments where we perturb the camera pose loaded from the training image

scene by some random uniform noise. The results for this experiments are shown in

Figure 5-4. The figure shows that errors of up to 10 degrees in the pose estimation

still allow the model to learn a reasonable texture-map. However, the training time

for the model increases as the noise increases.

In order to confirm our assumptions stated earlier, we experiment with a setup

where the distribution of the camera poses between the real and fake images is com-

pletely independent and non-overlapping. If our assumption about the discriminator’s

mode collapse as explained in Section 5.1 is correct, this model should fail to learn

a reasonable texture-map. Unsurprisingly, this model does not learn a reasonable

texture-map as shown in Figure 5-4, likely because the discriminator learns the dif-

ference in camera pose distributions between the real and fake image sets.

5.2.2 Environment Map Distribution

The overall brightness, contrast, and white balance of a rendered image is heavily

affected by the lighting parameters of the scene. We observe that the choice of

environment map distributions has the highest amount of effect on the network’s

ability to learn the target texture.

For the environment map ablation study, we experiment with two general setups

for which we report our findings.
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Figure 5-4: Varying the environment map distribution affects the quality of the out-
puts of our model. If we train a network with non-matching environment maps
sampled from the training distribution, we learn a reasonable texture as shown in
Figure 5-4c. Unfortunately, using environment maps sampled from a different distri-
bution leads to mode collapse.

(a) Target Image (b) Same dist, match (c) Same dist, no
match

(d) Different dist, no
match

Non-matching samples drawn from the same distribution

At each iteration, we render the fake image by randomly sampling an environment

map configuration that does not match the configuration loaded from the scene de-

scription of the real image. However, we sample the configuration from the same

distribution as the real image dataset. Doing so allows us to check whether there

are any effects other than discriminator mode collapse. The results of this experi-

ment show that the model successfully learns the target texture, albeit with a slower

convergence rate, which is expected.

Samples drawn from a different distribution

In this setup, we draw the samples of environment map configurations for the fake

and real images from a mutually exclusive distribution; each set is rendered using

completely different environment maps. Unfortunately, in this experiment the model

fails to converge on a realistic surface texture-map generator. This result is likely due

to mode collapse.

The inability to learn a texture-map due to inaccuracy of the environment map

makes it difficult for us to easily extend our model to train on real images. Unless

we have a good estimation of the set of environment maps used in the dataset, the
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Figure 5-5: Different GAN loss functions produce different results when training our
model. From left to right, we show our results for vanilla GAN, WGAN w/ gradient
penalty, and LSGAN. The LSGAN model falls into mode collapse.

(a) Vanilla GAN (b) WGAN w/ gp (c) LSGAN

model will fail to converge on real images.

5.3 GAN Loss function

Different GAN loss functions have vastly different results when trained for our model.

Figure 5-5 shows the comparative results between the convergence speed and resultant

textures between vanilla GAN loss, WGAN loss with gradient penalty, and LSGAN

loss functions respectively. The WGAN with gradient penalty shows the best results

visually, while the LSGAN model fails to learn a reasonable texture-map.
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Chapter 6

Discussion and Further Work

This thesis presents promising results for a potential application of differentiable

ray tracing [21] in deep learning models. Our results in Chapter 5 demonstrate the

extent of our model’s generative ability while also outlining the limitations of our

technique. In this section, we discuss the source of these limitations and suggest

potential improvements to be explored as further work.

6.1 Distortion in mesh parameterization

In Section 4.1, we justified a simple UV-embedding which utilized the spherical pa-

rameterization of the points on the surface while noting the poor distortion qualities

of the embedding. For the scope of this thesis, we focused on improving the learning

task, and were not able to address the distortion artifacts appropriately. As future

work, it is more desirable to use a better UV-embedding parameterization that min-

imizes surface distortion, such as Sander et al.’s solution of running an optimization

to minimize the stretch metric of the embedding [29],

6.2 Generalizing the model for real images

Although the ultimate goal of our model is to learn texture-maps of surface weathering

based on exemplar images of real cars, we found directly training GANs on a dataset
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Figure 6-1: Monte-Carlo sub-sampling per pixel has a huge effect on the resultant
render. Training the model using a low Monte-Carlo sub-sampling rate causes the
discriminator to mode collapse due to the discrepancy in render quality.

(a) 1 sub-sample (b) 200 sub-samples

of real images to be difficult due to volatility of the model to mode collapse. There

are many details of real scenes have which are very difficult to emulate in a 3D scene

and vice versa.

An example of a fundamental difference between ray traced images and real scene

images is Monte-Carlo noise artifacts produced in ray traced images. Monte-Carlo

noise is caused by the stochastic nature of Monte-Carlo sampling and leads to noisy

images as shown in Figure 6-1. Although this noise decreases with higher MC sam-

pling rates, the SNR improves roughly with 𝑂(𝑛1/2) where 𝑛 is the sampling rate.

Therefore, computationally, it becomes infeasible to keep increasing the samples we

use per pixel. However, unless the dataset has noticeably less Monte-Carlo noise

compared to the input dataset, the discriminator learns to distinguish the fake and

real images using the noise profile of its input image in a similar fashion as we showed

in Chapter 5.

This artifact is only one of many difficulties associated with the problem of ex-

tending our model to train on real images. However, our current hypothesis is that

the discriminator uses the most easily learnable feature to distinguish between real

and fake images. If we keep eliminating the most easily learnable feature that is

not the dirt texture on the surface of the car, we hope that the discriminator will
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eventually be forced to learn to distinguish clean cars from dirty ones.

6.3 Differentiable ray tracing in deep learning appli-

cations

This thesis primarily focused on generating simple diffuse textures. But our general

method applies to learning arbitrary scene description parameters using deep learn-

ing models. Improving the surface shader complexity of our model, such as adding

learnable specular components and normal maps, would add more expressiveness to

the output textures. Furthermore, we can also attempt to train a model which learns

shapes of surfaces in 3D using images of these shapes. Regardless of the specific

application in mind, we hope that our work can be a good baseline for deep learning

models featuring differentiable ray tracing in future research.
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Appendix A

System Overview

We implemented the model using the auto-differentiation library PyTorch [28]. Most

of our code was written in Python, and several auxiliary mesh processing scripts use

the Blender Python API. Our pipeline features:

– a GAN model architecture featuring the differentiable ray tracer [21]

– a dataset generation pipeline which uses the same ray tracer as our model

– auxilliary input pre-processing scripts.

Our codebase structure is based off of the PyTorch implementation by Zhu et

al. [35], and Isola et al. [17]. For features of the codebase such as network implemen-

tations, GAN model setup, and training scripts, we refer to their github repository at

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix. In this chapter,

we describe the modules of the codebase that relate to the differentiable rendering

and dataset generation process.

A.1 Render Utilities

The differentiable ray tracer [21] presents an generic interface that is not necessarily

purposed for the PyTorch neural network module. We add a wrapper to the ray

tracer so that we can add the render operation into a PyTorch neural network as a
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RenderLayer. As described in Chapter 3, the RenderLayer takes as input the scene

description Φ and a texture-map to render an image. The scene description Φ is

specified by the ray tracer primitives, and the texture-map is a (Height × Width ×

Channel) PyTorch Tensor object. The last dimension of the Tensor encodes the RGBA

values for each pixel.

Native PyTorch neural network modules are laid out in (Batch × Channel ×

Height × Width) order. In order to convert between these formats, we implement

custom network layers that handle the conversion.

Loading large files containing car triangle-meshes and swapping them out at each

iteration slows down the rendering process significantly. Additionally, since we’re

dealing with over 100 triangle-meshes during training, we cannot load all the car

models into GPU memory simultaneously. To mitigate these issues we pre-process all

elements in the scene description Φ by loading them into memory and storing them

to disk in its pickled format.

A.2 Dataset Generation

When we generate a dataset for training, our goal is to have a high degree of control

for the output datasets. In Chapter 5 we presented results from training our model

on datasets with different distributions of the scene description, Φ. We implemented

a ConfigSampler that allows us to specify what kind of distributions to sample Φ

from. When generating each image of the new dataset, the ConfigSampler samples

Φ from the specified distribution and renders an image specified by Φ and stores Φ

to disk. During training, we use the ground truth Φ, to generate a similar scene

description Φ𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔. This setup allows us to test the resilience of our model with

respect to errors introduced to Φ.

A.3 Auxiliary Scripts

We provide several auxiliary scripts for
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– adding a spherical parameterization for meshes

– generating the geometry buffer for a spherically parametrized mesh

– generating dirt texture-maps for a car mesh using the Blender API.
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