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Abstract

High performance applications are becoming increasingly resource hungry. We want to
solve more complex problems and use more data to get higher quality results. However,
the more data we store, the slower it is to access any piece. This effect is seen directly
in the memory hierarchy. We can access our caches faster than our memory, which is
faster than reading our disk, which is still faster than going across the network. This
means that when processing large data sets, we can spend a large portion of our time
simply in data movement.

However, there is much we can do to optimize our programs to exploit our memory
systems, so that we do not incur performance degradation as our datasets grow. I show
how the careful design of data structures and algorithms allow us to scale to much
larger datasets without impacting performance due to the cost of data movement.

I demonstrate the impact of these designs with two case studies. The first examines
large-scale image alignment, where I describe how to align a petabyte scale set of
images in memory on a single machine and match the performance of current cluster
solutions. I achieve .6 - .8 TB/hr on a medium-sized multicore and linear scalability
on hundreds of nodes in a shared supercomputing cluster. The second case study
explores dynamic graph analytics, where I describe the design of a new data structure
for storing dynamic graphs that matches the performance of standard, static formats
and enables high performance, dynamic operations achieving millions of updates per
second.

Thesis Supervisor: Charles E. Leiserson
Title: Professor
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Introduction

Data movement causes many of the inefficiencies of modern computing. During

processing, data must move from disk into memory and from memory into cache. With

large datasets, the data moves between these systems repeatedly causing performance

degradation as datasets grow.

This challenge is exacerbated by the fact that the larger a memory device is, the

slower it is. Much has been done at the hardware level to combat this challenge,

including caches, perfecting and branch-prediction. We have been relying on Moore’s

Law to continue solving this problem with new hardware, but can no longer do so as

Moore’s Law ends.

Instead, we must eliminate this cost at the software level by designing systems

that take better advantage of memory systems. A different technique for developers to

accelerate programs is to use GPUs or specialized hardware, but this hardware often

has limited memory. Clusters with scalable amounts of memory gain in performance

when communication is limited. CPUs, even those with terabytes of memory, have

small caches that are far faster to access than memory. As such, many forms of

computing benefit from careful management of memory.

I break the problem of data management into two cases:

• When the data set is too large to fit into memory on a single machine

• When the data set fits into memory on a single machine

We shall see how both situations can be optimized using the same principles,

despite their differences. In a basic sense, we can think of a memory system as a small,

15



fast cache, and a larger slow memory. Users strive to minimize the number of times

data must move from the large memory to the small one. Theoreticians model these

problems using the External Memory Model, and more details can be found here [29].

This model maps well onto cluster computations, since local memory on the machine is

much faster than accessing the data over the network from other machines. However,

this model does not fully describe what happens inside a modern computer. Instead

of containing a single cache, modern machines have a hierarchy of caches that get

progressively bigger and slower. For this situation, theoreticians use the Ideal Cache

Model, which makes the parameters of the cache unknown. Thus, for an algorithm to

perform efficiently in the Ideal Cache Model, the algorithm must execute efficiently

with any cache, and as such will perform well on all sizes of caches in the memory

system. For more information on the Ideal Cache Model, see [53].

This thesis is organized into two parts, each of which examines a case study of one

of the above situations.

High Throughput Image Alignment for Connectomics

Part I looks into image alignment for Connectomics, a problem where the data is too

large to fit into the memory of a single system and clusters are often used. Connectomics

is the creation and study of graphs of the connections in an organism’s nervous system.

For more information on Connectomics, see Appendix A and [41,42,57,63,66].

The process of image alignment creates and later uses an enormous amount of

data. A single slice of a human brain requires about a petabyte of data, and a human

brain is comprised of more than 100,000 slices.

I show how by using a schedule designed with the memory system in mind, the

alignment for these petabyte-sized datasets can be computed in memory on a single

commodity machine. In addition, I show how this transformation is not only work

efficient, but outperforms systems running on clusters, by taking advantage of shared

memory parallelism. An advantage of shared memory parallel systems is that they

can require fewer total resources than cluster approaches do since the data does not

need to be loaded or stored on multiple machines. Interestingly, the shared memory
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model means that the memory requirement is not dependent on whether the code is

run sequentially or in parallel. Lastly, I show how to extend the system I create to

take full advantage of a cluster, without accruing any of the aforementioned costs of

distributed computing.

Contributions

Overall, I present a system for high performance image alignment that can indepen-

dently scale to both larger data sets and larger computing environments without

sacrificing performance.

The contributions of this work are as follows:

• I introduce the Quilter algorithm that performs 2D alignment on very large

mosaics without requiring unnecessary file I/O or recomputation. I show that,

to first-order, the memory requirements of Quilter scale proportionately to the

square-root of the area being aligned. The second-order memory requirements

of Quilter are shown to be sufficiently small to permit in-memory execution on

multicores with modest memory resources.

• I introduce the Stacker algorithm that performs 3D alignment algorithm with

both affine and elastic transformations with local recomputation and allows for

horizontal scaling.

• I describe the frugal snap judgments (FSJ) optimization technique that can

be applied to obtain advantageous performance–accuracy trade-offs for image

alignment.

• I provide a system evaluation of Quilter and Stacker on three datasets ranging

in size from 550GB to 38TB and on three computing platforms that illustrate

performance on 18-core workstation-style commodity multicores, large 112-core

multicores, and on a cluster of 5440 AMD Opteron CPUs composed of 170 nodes.

The evaluation illustrates end-to-end performance, vertical scalability, and weak

scalability.
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Part I is organized as follows: Chapter 2 describes the Quilter algorithm for

performing 2D alignment. Chapter 3 describes the Stacker algorithm for performing

3D alignment. Chapter 4 describes how I employ FSJ to significantly improve the

accuracy–performance trade-offs of the 2D image stitching problem. Chapter 5 presents

a system evaluation for the image alignment pipeline.

Dynamic Graph Analytics

Part II looks at graph processing. In addition to Connectomics, many other fields

use graph processing such as web analysis, networking, and social networks. Graph

processing is often inefficient for the memory system due to the data access patterns.

Choosing a format for a particular use case is a matter of weighing the trade-offs

between space and speed of different operations, such as insertions, updates, look-ups,

and traversals.

I introduce a new, dynamic, sparse graph representation called Packed Compressed

Sparse Row (PCSR), based on an array-based dynamic data structure. PCSR is similar

to the commonly used Compressed Sparse Rows (CSR), but gives asymptotically faster

insertions and deletions in exchange for a constant factor slowdown in traversals and

a constant factor increase in space overhead. It achieves this behavior by placing its

data in ways that make it easier for the memory system to complete these operations

with few cache misses. This data structure allows graph users to choose a new location

on the trade-off curve to best suit their application.

I then develop and prove an efficient Parallel PMA, which I use the parallelize

PCSR. Overall, the parallel version of PCSR is able to achieve updates speeds of over

10 million updates per second on an 8-core machine.

Contributions

My contributions are as follows:

• I describe a modification to compressed sparse row format (PCSR). PCSR

enables fast searches and traversals with efficient cache usage, while supporting
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fast inserts. Table 7.1 lists the cache behavior and space/time guarantees of

basic operations for popular graph storage formats and PCSR.

• I implemented PCSR, as well as other standard graph storage formats, and

complete an empirical evaluation. I find that PCSR supports inserts orders of

magnitude faster than Compressed Sparse Rows and is about a factor of two

slower for traversal benchmarks such as sparse matrix-vector multiplication.

• I give the design of a parallel PMA, which has pollylogarithmic span for all of

its operations.

• I create and evaluate a parallel version of PCSR.

Part II is organized as follows: Chapter 7 reviews graph storage formats, Chapter 8

reviews the theoretical guarantees of the PCSR data structure, and Chapter 9 reports

the results of a variety of benchmarks using the different data structures. Chapter 10

describes how to parallelize a PMA. Chapter 11 uses the parallel pma to construct a

parallel version of PCSR. Lastly, Chapter 12, evaluates the parallel version of PCSR

as compared to other parallel graph storage formats.
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Chapter 1

Image Alignment

Large-scale image datasets are often composed of sections of a greater whole that

must be stitched together like patches of a quilt prior to analysis. Examples of such

datasets include satellite imagery [72], agricultural land surveys by camera-equipped

aircraft [72], undersea tomography [70], and electron microscopy. An example of two

images being aligned can be seen in Figure 1-1.

Image alignment started as a problem in the photography community where people

would manually align images by selecting key points in multiple images to tie them

together [65]. Starting in the 1980s, algorithms were used to improve the process. These

early algorithms worked by minimizing pixel to pixel dissimilarities [65]. In the late

1990s, a new approach of using extracted features started being used [73] [17]. These

feature-based methods had several advantages over pixel-based methods, including

the ability for more transforms between the images including rotations, skew and

stretch. They can also be used to find the relationships between unordered images [65].

Another benefit is that only the features need to be worked with and not the pixels

and these features are often orders of magnitude less data.

Comparing alignment algorithms is inherently difficult, since most comparisons

are done by eye and there is not a standard approach to measure the accuracy of an

alignment [32]. Quantitative approaches are only used when the true alignment is

known [59].
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Figure 1-1: Two images before and after alignment

Image Alignment for Connectomics

Image alignment is one step in the Connectomics pipeline; for more information

on the entire pipeline, see Appendix A. When aligning images for Connectomics

each image comes with metadata, including which 2D slice it came from and an

approximate location. The image is normally compressed, often by as much as 10x

using JPEG2000 compression. The metadata is accurate enough to determine which

pairs of images overlap. However, it is not accurate enough alone to align the images1.

The alignment process outputs new metadata for each image. This new metadata

includes transformations for each tile from its present location to its correct global

location, a simple translation (𝛿𝑥, 𝛿𝑦), as well as a full affine and elastic transformation,

which allows for both skew and rotation.

High-Throughput Image Alignment

Image alignment is regarded as one of the most compute-intensive steps of the

Connectomics pipeline [19], and numerous systems have been described in prior work

to align images produced from electron microscopy [16,57,66]. Prior work in 2010 [66]

has reported throughputs of 24GB/hr. falling far short of the throughput required for

1The metadata alone is not precise enough since the motor in the microscope is not accurate to
the nanometer scale, so instead it insures overlap between neighboring pictures and assumes the
images will be aligned afterwards.
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Connectomics, which is on the order of terabytes per hour.

Part of why image alignment is so computationally intensive is because it operates

directly upon full-resolution pixel data. Designing an image alignment system in a

task-based distributed computing model such as MapReduce [23] or Spark [71] might

seem like an appealing option. Frameworks like these alleviate the programming

burden required to design scalable big-data systems and can scale "horizontally"

through the addition of machines to a computing cluster.

The convenience of MapReduce-style distributed computing simply makes it easier

to satisfy the application‘s computing needs without changing its code. However, these

frameworks do not reduce the resource needs of an application. Scaling horizontally

can, in fact, often reduce efficiency due to the added overheads of fault-tolerance and

out-of-core communication for intermediate results.

An alternative to horizontal scaling that can often be more cost-effective is vertical

scaling by designing software for a single, large multicore [5, 46, 49]. Instead of

improving the performance of an application through the addition of computing nodes,

one instead improves performance by increasing the capabilities of individual nodes in

the cluster. However, while vertical scaling can be more cost-effective for a particular

problem size, it is often more difficult to predict how it scales to much larger inputs.

Existing solutions Implementations of keypoint-based image alignment algorithms

exist as part of TrakEM and were distributed as part of the Fiji project and report

performing rigid and elastic alignment of EM volumes at a rate of 2GB/hr using a

single 4-core 2.66GHz machine [57, 58]. The implementation of TrakEM has been

widely used and cited in recent Connectomics work and support for distributing work

across nodes in a computing cluster added in FijiBento [55].

A high performance method for performing image stitching of large 2D time-lapse

mosaics via Fourier-based methods was described in [18]. This approach is not directly

applicable to the alignment of EM volumes for Connectomics, but their impressive

performance results contextualize the performance shown in this work. Using a 20-core

machine, their CPU-only implementation achieves a throughput of 150 GB/hr, and
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their GPU implementation achieves a throughput of 640 GB/hr with 20-cores and

two NVIDIA Tesla K40 GPUs.

Memory-Efficient Alignment Algorithms

I describe an efficient approach to the image alignment problem that minimizes the

total work and data movement so that it is able to scale to both more hardware and

larger datasets efficiently.

The alignment system is composed of two shared-memory multicore algorithms

called Quilter and Stacker that perform 2D and 3D alignment respectively. Both

Quilter and Stacker are carefully performance-engineered codes that rely on the

ability to perform fast shared-memory communication within a single multicore. The

design of Quilter and Stacker ensures that both can scale to the extremely large

datasets on the horizon in the field of Connectomics.

Scaling to larger datasets. Careful memory management in Quilter and Stacker

permit both algorithms to scale to the largest conceivable dataset on the horizon

in Connectomics. To reconstruct a complete human-brain (zettabytes of data) both

Quilter and Stacker would require the ability to process 1000TB sections on a single

multicore. On this hypothetical dataset, Quilter requires just 1TB of memory and

Stacker requires just 4.4TB of memory. To reconstruct a complete mouse brain

(exabytes of data) Quilter would require just 32GB of memory and Stacker would

need 40GB of memory.

Distributing across multiple machines. Both Quilter and Stacker operate on

coarse units of work that may be distributed across multiple machines: Quilter

operates on complete 2D sections of data and Stacker operates on pairs of 2D sections.

A diagram of the alignment pipeline illustrating this coarse-grained parallelism is

illustrated in Figure 1-2. The design of Quilter and Stacker does not require low

latency communication of intermediate results, and the intermediate results which are

communicated are small (approximately 0.4% of the dataset size).
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Stacker 3D Align

Quilter 2D Align

Input Tiles

Aligned Stack

Figure 1-2: Diagram of alignment pipeline for Connectomics composed of Quilter
and Stacker.

These optimizations enable our system to perform image alignment on medium-

sized multicores (18 cores) with throughputs of 0.6 − 0.8 TB/hr, on a large 112-core

multicore (Intel Xeon Platinum 8180) with throughputs of 1.4-1.5 TB/hr, and on a

shared supercomputing cluster with 5,440 AMD Opteron CPUs with throughputs of

7.5 TB/hr.
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Chapter 2

Quilter Algorithm

This chapter describes Quilter: a 2D alignment algorithm for stitching very-large

mosaics in-memory. Quilter employs careful task ordering to bound its memory use

while avoiding unnecessary file-I/O and recomputation. This enables Quilter to reap

the performance advantages of in-memory computing, even for very-large mosaics.

Quilter can process a 2D cross section of an entire mouse brain with under 50GB

of memory and process a 2D cross section of a human brain with less than a 1TB of

memory.

Stitching Algorithm

The basic steps of an image alignment algorithm are:

1. GenerateKeypoints:

Generate keypoints for the overlapping region of each pair of images

2. MatchTilePair:

Determine the relative offset for each pair of tiles by matching corresponding

keypoints

3. OptimizeMesh:

Assemble the mesh of images using the relative offsets
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(a) Keypoints of two tiles
matched

(b) Two locally aligned images

(c) The global mesh optimiza-
tion

Figure 2-1: Steps of the 2D stitching algorithm

GenerateKeypoints uses scale-invariant feature transform (SIFT) to generate the

keypoints. SIFT is an algorithm for finding keypoints in an image. Each keypoint has

a scale, rotation, and illumination independent descriptor [45].

MatchTilePair matches pairs of keypoints within the overlapping region using a nearest

neighbor search on the descriptors. A random sampling and consensus algorithm

(RANSAC) [27] is then used to determine the best relative offset between the pair of

images. Two images with their keypoints matched is seen in Figure 2-1a. Figure 2-1b

shows their local alignment.

OptimizeMesh models each relative offset as a spring, as seen in Figure 2-1c. The total

energy of the system is then lowered using gradient descent.

Design Considerations

Before I introduce Quilter, let us discuss a few straw-man algorithms for performing

2𝐷 alignment. This discussion will help illustrate the memory and I/O demands of

a 2𝐷 alignment algorithm for Connectomics and motivate the design decisions in

Quilter.
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First, let us consider the two extreme approaches: All-Mem which loads the entire

dataset into memory to perform alignment and All-I/O that only stores a single pair

of tiles in-memory at any given time and writes all intermediate results to disk.

An All-Mem algorithm could store all the image data in-memory, perform the

GenerateKeypoints, MatchTilePair for all tile-pairs, and then perform OptimizeMesh.

All-Mem requires memory proportional to the size of area being aligned. A square,

centimeter area imaged at 3 × 3 nm resolution would require 1PB of memory. The

All-Mem algorithm could reduce this overhead by a factor of 10 (when using JPEG2K

compression) by performing on-demand compression and decompression of images, at

the expense of additional computational overhead. An All-Mem algorithm needs to

read the image data exactly once, and so its file I/O requirement is proportional to

the size of the compressed images on-disk.

An All-I/O algorithm could read each pair of image tiles that overlap from

disk, compute GenerateKeypoints and MatchTilePair for that pair, and then write

the relative alignment of those tiles to disk. After this process, All-I/O performs

OptimizeMesh either in-memory or using an external-memory graph-processing frame-

work (e.g. GraphChi [37]). The memory requirements of All-I/O do not depend on

the total size of the area being aligned, but could depend on the total number of image

tiles in the dataset due to the OptimizeMesh computation. The average number of

overlapping neighbors for a tile in a Connectomics dataset is approximately 8. An

All-I/O algorithm, therefore, would read each image approximately 4 times. For a

square centimeter section at 3 × 3nm resolution, 400 TB of I/O would be required to

read the images (compressed by 10x) from disk.

There is a continuum of algorithms with different memory and I/O requirements

between All-Mem and All-I/O. Let us consider two such algorithms, Inter-Mem and

Inter-I/O, that both read the image data only once by precomputing the result of

GenerateKeypoints for all tiles prior to performing MatchTilePair.

An Inter-Mem algorithm reads each image, executes GenerateKeypoints on that

image, and stores the intermediate result in-memory. Then Inter-Mem performs

MatchTilePair on all pairs of tiles using the intermediate results of GenerateKeypoints.
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Method Memory Total I/O I/O Ops

All-Mem 1000 TB 100 TB 130 million
All-I/O 0.5 TB 400 TB 520 million
Inter-Mem 160 - 400 TB 100 TB 130 million
Inter-I/O 0.5 TB 640 - 1600 TB 780 million
Quilter 0.8 TB 100 TB 130 million

Figure 2-2: Memory and I/O Characteristics of 2D alignment algorithms on a 10𝑐𝑚2

section.

The memory requirements of Inter-Mem are proportional to the size and number of

keypoints generated for each tile. For 8.5MB images, one typically requires at least

1,000 keypoints for each overlapping region to perform alignment, a total of 8,000

keypoints per tile. In practice, typically 20,000 keypoints are precomputed when using

8.5MB images. A SIFT keypoint descriptor requires 156 bytes of memory, and thus

the memory requirements of Inter-Mem on a square centimeter area range between

160TB and 400TB.

Instead of storing the intermediate results of GenerateKeypoints in-memory, one

could write these results to disk using an Inter-I/O approach. Unfortunately, the

size of the intermediate results are bigger than the compressed images. As such, an

Inter-I/O algorithm would generally have a higher I/O requirement than the All-I/O

approach.

A summary of this discussion is provided in Figure 2-2 and Figure 2-3.

Design of Quilter

Let us now describe the design of Quilter.

The input to Quilter is a metadata file for a section that contains for each tile

a path to its image on disk and an approximate bounding box of the tile’s location

within the section.

Quilter begins by computing the set of overlapping neighbors for each tile. Then

Quilter sorts all tiles by the y-coordinate of their bounding box’s bottom-left corner.

The initial set of tiles that Quilter processes is chosen by finding all tiles whose
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Constant Value

pixel resolution 3 nm
image height 2724 pixels
image width 3128 pixels
compressed image size 832 KB
uncompressed image size 8.5 MB
tile metadata size 4 KB
keypoint size 156 bytes
keypoints per image 8,000 - 20,000
images per mm row 107
images per cm row 1,066
images per 10 cm row 10,656
images per mm2 section 13,040
images per cm2 section 1,304,000
images per 10 cm2 section 130,400,000

Figure 2-3: Values for the different constants needed to calculate memory usage of a
2D alignment algorithm

bounding boxes overlap with a horizontal slab extending along the bottom of the

section. For each tile selected, all of its neighbors not already in-memory are read from

disk. Quilter then executes GenerateKeypoints and MatchTilePair to compute

pairwise alignments between selected tiles and all of their overlapping neighbors. Then,

Quilter progresses by increasing the position of its horizontal slab to select a new set

of tiles to process. This new slab contains the neighbors of the previous slab, which

are already in memory. Before GenerateKeypoints and MatchTilePair run on the

new slab, its neighbors are brought into memory. Some of the neighbors are already

in memory from the previous slab. Once MatchTilePair is finished, the first slab’s

data can be released, the slab moved up, and the process repeated.

Figure 2-4 illustrates an in-progress execution of Quilter. We can see the outline

of each image. The tiles in red are currently being processed. Their neighbors, in blue,

are in memory to allow the red tiles to be processed. The dark grey tiles are already

finished and have had their image data released. The light grey tiles have yet to be

loaded.
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Done In-Memory

7 7

7

7 →

7

Figure 2-4: An illustration of a Quilter execution. The red strip is the working set
and the blue strips are the neighbors. We see that as the red strip moves up, we reuse
all the calculated data.

Providing Sufficient Parallelism The technique used to bound memory reduces

the total parallelism of the 2D alignment algorithm. In order to mitigate this issue,

Quilter provides a knob that can increase the amount of parallelism in exchange for

an increase in memory requirements by allowing more tiles to be processed during each

step. Instead of having a single row, each set contains multiple rows of data1. This

knob gives a linear trade-off between memory and theoretical parallelism. If a section

is big enough, there is enough work in three lines to not need to increase the width of

the working set. Thus, the only use case is when the total memory requirement is

already relatively low.

1We always only need to hold onto a single row from the last step.
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Figure 2-5: Method for execut-
ing Quilter with extremely lim-
ited memory

Extremely Limited Memory Environments

In an environment where even storing three rows

of data requires too much memory, Quilter is

able to further decrease the memory requirement

at the cost of either work or I/O. Instead of the

strip going all the way across, it only partially

crosses the section. Then the same system as

before is run, but Quilter is not able to complete

the extreme edge of the sweeping line since some of the data is not in memory. These

tiles are completed afterwards with another pass through the dataset. However, the

tiles on the edge of the sweeps must either be processed multiple times or written to

disk. We see in Figure 2-5 how this execution is run. Since only the edge is wasted

work we can reduce the work overhead to a small fraction depending on the length of

the sweeping line. Having an active set of hundreds of tiles causes an overhead of less

than 5%. However, in this case external graph processing libraries must be used for

the final step.

Analysis of Quilter

We shall now analyze the memory and I/O required by Quilter to align a section

using the data from Figure 2-3.

Analytic Estimate of Quilter’s I/O Usage

Quilter reads in the dataset in compressed form. We can calculate the amount of

I/O needed for a section using the compressed image size and the number of images in

a section. This ends up being about a TB for a mouse brain and 100 TB for a human

brain. Quilter only writes the tile ids and offsets back to disk, which ends up being

neligible in size. See Chapter 3 for how this output can be used in a full alignment

pipeline.
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Figure 2-6: Memory high-water mark of Quilter vs. number of tiles aligned

Analytic Estimate of Quilter’s Memory Usage

Quilter minimizes the number of tiles processed at once to a constant number of

rows of tiles. At worst, each tile will have both their image data and keypoint data

held in memory. To calculate the memory usage we use the metadata, which needs to

be stored for every tile, as well as the uncompressed data size, which is needed only

for the three rows of tiles Quilter is currently working on.

Overall, Quilter only needs about 32 GB for a mouse brain and about 800 GB

for a human brain.

Experimental Analysis of Quilter’s Memory Usage

I conducted experiments to illustrate the memory requirements of Quilter. I took

a large dataset of 40,000 tiles from a human biopsy and created smaller datasets,

by cutting out a circle from the middle. Then, I aligned regions of varied size and

measured the maximum resident set size needed while performing the alignment. From

Figure 2-6, we see the memory requirement grows with the square root of the number

of tiles. My experiments show that my implementation of Quilter has memory
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Alignment 𝛿 # Tile Pairs
0 ≤ 𝛿 < 1 3837 (99.80%)
1 ≤ 𝛿 < 2 7 (0.18%)
2 ≤ 𝛿 < 3 1 (0.02%)
3 ≤ 𝛿 < ∞ 0
(b) Post-alignment comparison.

Figure 2-7: Impact of perturbations on relative tile alignment when using Quilter. A
section from the mouse50 and perturbed-mouse50 dataset were both aligned using
Quilter, and the relative alignment of each overlapping tile pair was computed.
For each pair of overlapping tiles the two relative tile positions produced by aligning
mouse50 and perturbed-mouse50 were compared to compute 𝛿, the difference (in pixels)
of the two relative alignments. The data illustrates that the alignment computed by
Quilter is invariant to perturbations in the original data.

requirements that indeed scale with the square root of the number of tiles in the

section. The constant memory-per-tile in my implementation is approximately 20 MB

per tile, which is about 2x larger than my analytic estimates of an ideal implementation.

The extra memory consumption in my implementation can be attributed, primarily,

to the storage of two copies of each image, one with and one without background

subtraction.

Accuracy analysis

As stated in Chapter 1, determining if a set of images are properly aligned is only

possible when a true alignment is known. Instead, to check accuracy, I used a measure

of stability by aligning two datasets of the same images with different metadata.

The original dataset was composed of 1,342 tiles, which overlapped by between

1% and 20% of their area. Alignment errors were introduced by randomly, repeatedly

perturbing the location of tiles while maintaining the property that any two tiles that

overlapped in the original dataset still overlapped by at least 1% after its perturbation.
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Figure 2-7 shows the impact on the data from this perturbation process. We see

every pair of tiles now has a different vector between them.

After aligning both the original and the perturbed data, only 8 out of the 3845

pairs of overlapping tiles differ at all, with only 1 pair differing more than one pixel.
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Chapter 3

Stacker Algorithm

This section describes the Stacker 3D image alignment algorithm. Stacker operates

upon a pair of adjacent sections in a stack that have each been 2D-aligned using

Quilter. Stacker supports both affine transformations and non-affine “elastic” trans-

formations, which enable it to compute high-quality 3D alignments. These alignments

can correct for distortions introduced by errors during sample preparation or imaging.

Stacker is designed to run in-memory on commodity multicore hardware. Given

a stack of sections, Stacker computes the relative alignment between all pairs of

adjacent sections. These relative elastic alignments are then combined using an

associative operation. This design permits Stacker to align large stacks of images

with on multicores with modest memory sizes and to scale horizontally across many

machines to align different pairs of sections in parallel.

Design of Stacker

Stacker computes a coordinate transformation mapping points in a section 𝑆𝑖 to

points in a neighboring section 𝑆𝑖−1 in two steps: a coarse affine transformation

followed by a more precise “elastic” transformation.

Elastic mesh Stacker represents the transformation of section 𝑆𝑖 to 𝑆𝑖−1 as a mesh

of triangles formed by triangulated evenly spaced points arranged in a hexagonal grid
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of fixed size (3000 in our experiments). Figure 3-1 illustrates the structure of the

elastic mesh used by Stacker to represent affine and elastic transformations. For each

vertex in the elastic mesh, Stacker maintains two coordinates: the original placement

of the vertex prior to any transformations and a transformed placement that maps

the vertex into alignment with the section below. A point inside of a triangle is

transformed by computing its barycentric coordinates [34] relative to the original

placement of the triangle vertices, and then using the transformed placement of the

vertices to invert the barycentric transform.

Figure 3-1: Illustration
of the elastic mesh used
for performing 3D elastic
alignment.

Coarse Affine Transform. Stacker first computes a

coarse affine transform using keypoints computed on low-

resolution ((1/8)th resolution) image tiles. An approxi-

mate nearest neighbor search is performed to find each

keypoint’s two nearest neighbors, and matching pairs that

pass a ratio of distance (RoD) test are saved. Finally, a

random sampling and consensus (RANSAC) [27] algorithm

is employed to find an affine transform that successfully

brings the most matching points into alignment (within

a 100 pixel tolerance) across the sections. The computed

affine transformation is applied to the section by applying the transform to each of

the vertices of the elastic mesh.

Computing Fine-Grained Corresponding Points After a coarse affine trans-

form has been computed that approximately aligns section 𝑆𝑖 to 𝑆𝑖−1 it is possible

for Stacker to inspect small overlapping areas of 𝑆𝑖 and 𝑆𝑖−1. Stacker iterates over

12𝑘× 12𝑘 neighborhoods of 𝑆𝑖 and finds corresponding points between that region and

section 𝑆𝑖−1. These matches are used to compute high-quality local affine transforms

between the two sections that are associated with each triangle in the elastic mesh.

Elastic optimization Elastic optimization attempts to minimize the distance be-

tween corresponding points in section 𝑆𝑖 and 𝑆𝑖−1 while penalizing length and area

38



deformations within the section. The mesh is treated as an elastic sheet by penalizing

changes to triangle area or triangle edge-length while rewarding deformations that

bring matched points closer together.

Combining Elastic Transformations Both the affine and elastic transformations

are performed through barycentric coordinate transformations via the elastic mesh.

These elastic transformations can be combined. For example, consider the stack

of three sections 𝑆1, 𝑆2, 𝑆3. For this stack, 𝑆3 can map any of its points into the

pre-transformed coordinate space of 𝑆2. To map a point in 𝑆3 to the post-transformed

coordinate space of 𝑆2 Stacker uses the elastic transform of 𝑆2 relative to 𝑆1. For

moderately sized stacks, this process can be performed serially and for larger stacks

parallelized with a logarithmic multiplicative overhead in total work.

Analysis of Stacker

I shall now analyze the memory requirements of Stacker in order to gauge its ability

to scale to larger data sizes. Unlike Quilter, Stacker performs operations globally

over entire sections. Fortunately, these operations require a relatively small amount of

data per-pixel, which allows Stacker to scale using commodity multicores to align

volumes as large as 10𝑐𝑚3.

Memory for 3D keypoints Stacker requires space to represent the 3D keypoints

used to compute a coarse affine transform between pairs of sections. Approximately 100

keypoints-per-tile is sufficient to compute these coarse transforms and each keypoints

requires approximately 156 bytes. The human brain is composed of approximately

125, 000, 000 tiles and thus Stacker requires approximately 2TB of memory per section

to store these keypoints in-memory.

Memory for Elastic Mesh A hexagonal grid of width 3000 would cover each tile

with at most 2 hexagons and 12 triangles. Each triangle requires approximately 128
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Figure 3-2: Memory high-water mark of Stacker vs. number of tiles aligned

bytes of space. For the human brain composed of 125, 000, 000 tiles Stacker would

require approximately 200GB of space per section.

Total Memory Required by Stacker Stacker must store the data associated

with two sections in-memory at a time. For the human brain, this would require

the use of a multicore with approximately 4.4TB of memory. Although this would

constitute quite a large multicore by present standards, it is still in the realm of readily

obtainable hardware. Furthermore, the human brain is 100x larger than the "grand

challenge" of processing an entire mouse brain. The memory requirements of Stacker

on such a dataset is less than 50GB.

Experimental Analysis of Stacker’s Memory Usage

I ran an experiment to empirically measure the memory requirements of Stacker. I

followed a similar methodology to that used in Section 2 to analyze Quilter’s memory

requirements. Regions of varied size were extracted from a section of the human100

dataset, and then this section was duplicated to construct a stack of two identical

sections. Stacker was then executed to align this dataset. Figure 3-2 shows the
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results of my empirical experiments to measure Stacker’s memory requirements. I

found, empirically, that Stacker uses 300 KB of data per tile. This is about 20x more

than our analytic estimates. There are two reasons for this difference: (a) presently

our implementation of Stacker uses 4-byte floating points to represent keypoint

descriptors where 1-byte is sufficient (since values are discretized into 255 bins); and

(b) when aligning a section to its identical copy all keypoints match which results in

Stacker creating an “edge” between sections for each keypoint. I believe resolving

these issues is straightforward, but even with Stacker’s current memory consumption

all datasets but the human brain remain easily in reach.
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Chapter 4

Frugal Snap Judgments

This chapter describes a technique called frugal snap judgments (FSJ) that is used

for image alignment to significantly improve performance (≈ 5x) without having an

appreciable impact on accuracy. It can also help reduce the memory requirement of

image alignment.

Motivation

Downsampling is a common technique for reducing the computational cost of image

processing pipelines. Indeed, other image alignment pipelines employ downsampling

to reduce the computational burden of identifying useful keypoints in the image.

Discussions with practitioners performing image alignment on Connectomics

datasets, however, revealed a wariness towards downsampling due to its potential to

introduce errors. Their rationale is twofold: (a) the alignment errors introduced in 2D

alignment, while small, can accumulate when performing stitching of a large section

resulting in unnatural deformations that are difficult to correct; and (b) even small

misalignments (e.g. 8 pixels) are sufficient to alter fine details in certain neuronal

structures such as the spine necks of dentrites.

Indeed, as shown in Figure 4-1, operating on 30% scale images results in significant

relative alignment errors between tile pairs. In fact, 0.02% of tile pairs had a 50

pixel or greater relative alignment error. While 0.02% sounds small, that error rate
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Figure 4-1: Error with and without FSJ on human dataset.

implies the existence of tens of serious alignment errors in every 2𝑚𝑚2 section of the

human100 dataset.

The potential performance advantages of downsampling, however, were too alluring

to pass up. Thus, I developed the technique of frugal snap judgments to allow us to

obtain more advantageous performance–accuracy trade-offs.

Using frugal snap judgments, our system learns to identify when the result of the

fast alignment algorithm is likely to match the result of the more-accurate code. The

learned criteria is not based upon an objective notion of correctness (which would be

costly to compute). Instead, the criteria is based upon intermediate results generated

by the fast alignment code that are analyzed to extract a measure of reliability.

Design of FSJ in Quilter

Let us now describe how to apply frugal snap judgments to improve the performance

of Quilter. Frugal snap judgments are specifically used to optimize the algorithm

used to compute corresponding keypoints between two overlapping tiles.

Fast-path Algorithm The fast-path algorithm for computing pairwise tile align-

ments performs in-memory downsampling of the tile images by a factor of 30%. For

approximately 2% of tiles and 0.4% of all tile pairs, these modifications result in a

less accurate algorithm relative to the original code path operating on full-resolution

images. Yet, for the remaining tile pairs the fast-path computes a result that matches
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Figure 4-2: Relative importance of variables used by FSJ on human100 dataset.
Variables 1-3 and 12-14 are features describing the area and dimensions of the over-
lapping region between the pair of tiles in their original position and when aligned
relative to each other using the result of the fast path. Variables 5,15 are ratios
before and after keypoint filtering stages; 5 is the matches to keypoint ratio; and 15 is
the RANSAC-filtered matches to keypoint ratio. Variables 6-11 measure aggregate
statistics of keypoint properties in the overlapping region: 6-7 are the average “strength”
of keypoints, 9-10 are the average size, and 11-12 are the average octave.

the slow-path within a tolerance of 1-2 pixels.

Detecting Unreliable Fast-Path Results To detect when the result of the fast-

path is unreliable, I employ random-forest classification over feature vectors that

summarize the intermediate results of the fast-path algorithm.

I employ feature vectors of dimension 15, which include the following information:

the area, width, and height of the overlapping region between a pair of tiles, the

fraction of keypoints matched, the fraction of matched keypoints that are filtered by

RANSAC, the total number of filtered keypoints, and aggregate statistics from the
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filtered keypoints. Additional details are provided in Figure 4-2. Note that no direct

information about the pixel data within the tiles is used to build the feature vector

used by FSJ.

Training the Fast-Path Detector I train our detector for determining when the

fast-path is unreliable by randomly selecting 10,000 pairs of tiles from the stack and

running both the fast and slow path algorithms on the same input. I compare the

computed relative offsets between the tiles and if the fast and slow path differ by

more than 1 pixel, I add the fast-path feature vector to our training set as a negative

example. For positive examples, I require that the fast and slow path agree within 0.5

pixels. I use an implementation of random forests within OpenCV for training.

Training on 10, 000 tile pairs consistently proved sufficient to develop high-quality

classifiers for each dataset. On each dataset, the training process resulted in a classifier

with a false-positive rate of less than ≈ 0.5% and a false-negative rate of ≈ 4 − 10%,

depending on the resolution of the fast path and the dataset. Training time did not

depend on the dataset and took approximately 10-20 minutes on an 18-core Intel Xeon

CPU (E5-2666 v3, 2.9GHz).

After training on the human100 dataset using 30% resolution images in the fast

path, I achieved an out-of-bag error of 6.7𝑒−2, a false-positive rate of 0.4% and a false

negative rate of 6%. The relative variable importance scores for the random forest

classifier are provided in Figure 4-2.

The accuracy of Quilter when using FSJ is substantially more accurate than one

would predict from the classifier’s false-positive rate of 0.4%. Figure 4-1 shows the 2D

alignment errors of Quilter when using FSJ on a set of four sections that were not

used during training. When using FSJ, there are nearly no errors greater than one

pixel, and none greater than five pixels.
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Chapter 5

System Evaluation

This section provides end-to-end performance results for the alignment pipeline com-

posed of Quilter and Stacker on three datasets and across three computing platforms.

I illustrate that Quilter and Stacker have good weak-scalability when scaled hor-

izontally across multiple nodes in a cluster and can scale vertically within larger

multicores.

Experimental Setup

A summary of the software, hardware, and datasets employed in our evaluation are as

follows.

Software. The alignment pipeline composed of Quilter, Stacker, and Frugal Snap

Judgments was implemented as a C++ software library parallelized using Cilk Plus

[12, 40] and the Tapir [61] branch of the LLVM [38, 39] compiler (version 6).1 The

following software libraries were used: OpenCV v3.2.0 [14], OpenJPEG v3.2.0 [25],

and Google protocol buffers [30].

Our evaluations employ three different computing platforms to evaluate runtime

performance: Common Multicore, Large Multicore, and Cluster.

Common Multicore is an 18-core, 2-way hyperthreaded Intel Xeon CPU (E5-2666

v3, 2.9GHz) available as a 4th-generation compute-optimized machine from Amazon
1Available from http://cilk.mit.edu.
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Web Services, which has 64GB of memory and runs Ubuntu 14.04 on Linux Kernel

3.13.0-106. Amazon EFS [3] (elastic filesystem) is used to store image data files.

Amazon EFS provides performance tiered to the size of the mounted volume. Based

on these tiers and our mounted volume size of 2.8TiB, our maximum burst I/O

throughput was 100 MiB/sec during our experiments on this platform.

Large Multicore is a 112-core, 2-way hyperthreaded Intel Xeon Platinum 8180 CPU

2.5GHz with 1.5TB of memory running Centos7 on Linux Kernel 3.10.0-862. This

machine was part of the Odyssey Cluster and retrieves stored image data from Lustre

mounted storage connected via 56 Gb/s FDR InfiniBand network.

Cluster is a shared supercomputing center LLSC (Lincoln Lab Supercomputing

Center) [54] using the AMD Opteron partition of the TX-Green system, consisting

of 274 compute nodes, each containing two 16-core AMD Opteron(TM) Processor

6274, running at 2.2GHz, for a total of 32 cores per node, with 128 GB per node. The

nodes employ a shared Lustre filesystem and are connected with a 10 GigE Arista

switch. A total of 170 Opteron compute nodes were available for our experiments on

this platform. Experiments run on more than four nodes were performed by a third

party with guidance. Due to uncertainty regarding the type of compute nodes that

would be available on Cluster, I cross-compiled the software and packaged dynamic

libraries conservatively using the -march=sandybridge compiler directive.

Datasets Three different datasets were employed in our evaluations: mouse50,

mouse200, and human200. Mouse50 is 550GB dataset composed of 50 sections and

65,000 image tiles. Mouse200 is a 2TB dataset composed of 200 sections and 200,000

image tiles. Human100 is a 100-section 38TB dataset.

End-to-End System Experiments

Figure 5-2 illustrates the the absolute runtime obtained on the mouse200, human100,

and mouse50 datasets on the Common Multicore, Large Multicore, and Cluster systems.

Due to the difficulty of moving the full human100 dataset, I only ran a full end-to-end
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Dataset Z Size Description

mouse200 200 2 TB Subset of 100umSept2017
dataset from 100𝜇3 volume of
mouse brain, stored in J2K
compressed format.

mouse50 50 0.55 TB Subset of 100umIARPASep14
dataset from 100𝜇3 volume of
mouse brain, stored in JPEG
compressed format.

human100 100 38 TB ROI2w05 which is a subset of a
600 TB dataset obtained from
human brain biopsy, stored in
J2K compressed format.

Figure 5-1: Dataset descriptions. The 𝑍 column provides the number of 2𝐷 sections
within the dataset. All datasets were obtained from the Lichtman Lab using the Zeiss
multiSEM microscope.

Dataset FSJ Hardware Runtime Throughput

mouse200 FSJ30 170 Opteron nodes (5440 cores) 16 minutes 7.5 TB/hr
mouse200 FSJ30 112-Core Intel Xeon Platinum 8180 80 minutes 1.5 TB/hr
human100 FSJ30 112-Core Intel Xeon Platinum 8180 26.7 hours 1.4 TB/hr
mouse50 FSJ30 18-Core AWS C4 Instance 49 minutes 0.67 TB/hr
mouse50 FSJ20 18-Core AWS C4 Instance 40 minutes 0.82 TB/hr

Figure 5-2: End-to-end performance results for whole alignment pipeline executing
both Quilter and Stacker. In the FSJ column, FSJ30 and FSJ20 indicate that the
fast path employed by FSJ used 30% and 20% resolution images respectively.

test for this dataset on the Large Multicore platform.

Vertical Scalability

I ran experiments to evaluate the vertical scalability of Quilter and Stacker on the

Large Multicore platform. For the mouse200 dataset, I ran the alignment pipeline on

four sections using 1-112 cores. For executions on 28 cores or fewer, I executed the

entire alignment pipeline as a single, shared-memory process. For 56 core, I aligned

the first two sections on socket 0 and the second two sections on socket 1, and then I

ran Stacker on the boundary sections to complete the 3𝐷 alignment. For 112 cores, I
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Figure 5-3: Vertical scalability. Reports speedup obtained when executing 4 sections of
mouse200 and 4 sections of human100 on the LargeMulticore platform. The mouse200
scalability is given relative to a 1-core executing using the left-axis of the plot. The
human100 scalability is given relative to a 1-socket execution using the right-axis of
the plot. The mapping of cores to sockets is provided via the 𝑁0, 𝑁1, 𝑁2, 𝑁3 labels.

ran Quilter on each section on separate sockets, and then I ran Stacker on 3 sockets

to compute the 3𝐷 alignment of the stack. A similar experiment was run on 4 sections

of the human100 dataset, but I did not perform runs that used fewer than 28-cores,

because such executions are time-consuming.

Figure 5-3 illustrates the results of our vertical scalability experiment on four

sections from mouse200 and human100. Note that, since I did not run human100

on less than a full socket, that the scalability needs to be evaluated using separate

scales. The left y-axis provides the scalability of the mouse200 experiment relative to

a 1-core serial execution. The right y-axis provides the scalability of the human100

experiment relative to a 1-socket execution. On the mouse200 dataset, approximately

10x speedup is achieved on 28-cores relative to a serial 1-core execution. Executions of
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Figure 5-4: Weak scalability. Illustrates reported runtimes on the Cluster platform on
the mouse200 dataset when the stack input-size scales with the number of nodes used
to execute Quilter and Stacker.

Quilter and Stacker achieve near-perfect linear scalability when parallelized using a

separate process-per-socket on both mouse200 and human100.

Weak Scalability

I evaluated the weak scalability of Quilter and Stacker using the Cluster platform.

Since the work-per-section in a real-world dataset can vary, we constructed a synthetic

dataset to evaluate weak-scaling. The synthetic dataset was constructed by taking a

section from the mouse200 dataset and creating a new stack of 𝑁 images where that

section was repeated 𝑁 times. Then, when running on 𝑁 compute nodes, I performed

alignment on the synthetically generated dataset of 𝑁 sections.

The results of the weak-scalability experiment are presented in Figure 5-4. On the

synthetic mouse200 dataset, I observed no appreciable decrease in efficiency-per-node

when scaling from 64 to 4096 Opteron CPUs. Preliminary results from an analogous
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2D Alignment Method Runtime Throughput

FijiBento Original 1050 minutes 0.032 TB/hr
FijiBento Improved 362 minutes 0.091 TB/hr
Quilter Full Resolution 180 minutes 0.18 TB/hr
Quilter FSJ(20,100) 32 minutes 1.03 TB/hr

Figure 5-5: Performance comparison of FijiBento and Quilter for 2D Alignment.

experiment using the human100 dataset show similar weak scalability, but I only have

data for 128 and 256-core executions on human100 and am awaiting receipt of more

data.

Performance Comparison with FijiBento

I compared the performance of Quilter with the 2D alignment algorithm in FijiBento

[55]2.

Figure 5-5 shows the performance of two versions of FijiBento on the mouse50

dataset compared to Quilter. I discovered a bug in FijiBento’s implementation of

RANSAC that did not impact correctness, but had a severe impact on performance. I

report the performance of FijiBento before my fix as FijiBento Original, and report

the performance of FijiBento after my fix as FijiBento Improved. The performance

of Quilter when operating on full-resolution image data is reported as Quilter Full

Resolution, and the performance of Quilter when using frugal snap judgments with

20% resolution image data in the fast path is reported as Quilter FSJ(20,100).

As shown in Figure 5-5, Quilter is approximately 2x faster than FijiBento Improved

when operating on full resolution images without using frugal snap judgments, and

is 11x faster than FijiBento Improved when using frugal snap judgments with 20%

resolution image data used for its fast path.

For a run of FijiBento Improved, approximately 55% of the runtime was spent

creating SIFT keypoints, and 40% spent performing keypoint filtering and matching.

2The times for fijibento do not include the time to do the mesh optimization since fijibento does
this step separately.
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Chapter 6

Graphs

Graphs store information about objects and the relationships between them. The

objects are the vertices, and the relationships are the edges. For example, the web

can be studied as a graph, where each web page is a vertex, and each link is an edge.

Using this graph model, we are able to learn information about the web with nothing

other than this structure itself. For example, we can determine the most trusted web

pages.

Formally, I define a graph as follows:

Definition 6.1 (Graph) A graph1 𝐺 = (𝑉,𝐸,𝑤) is a set of vertices2 𝑉 , a set of edges

𝐸, and an edge weight function 𝑤. I denote the number of vertices |𝑉 | = 𝑛, the number

of edges |𝐸| = 𝑚, and the degree3 of a vertex 𝑣 ∈ 𝑉 is 𝑑𝑒𝑔(𝑣). Each vertex 𝑣 ∈ 𝑉 is

represented by a unique non-negative integer less than 𝑛 (i.e. 𝑣 ∈ {0, 1, . . . , 𝑛− 1}).

Each edge is a 2-tuple (𝑢, 𝑣) where 𝑢, 𝑣 ∈ 𝑉 . Finally, the weight function 𝑤 maps each

edge 𝑒 ∈ 𝐸 to a real value (𝑤(𝑒) ∈ R).

Graphs can be either sparse or dense. A dense graph has a sizable fraction of the

total possible edges, that is to say that 𝑚 is close to 𝑛2. A sparse graph, in contrast,

has relatively few edges, 𝑚 << 𝑛2. Different data structures are best to store graphs,
1I focus on weighted graphs. An unweighted graph would not have a weight function 𝑤 (i.e.

𝐺 = (𝑉,𝐸)).
2In other works, vertices are sometimes called nodes. For clarity, in this work, I will always call

these graph elements vertices.
3I focus only on directed graphs and use degree to mean out-degree.
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depending on each graph’s density as well as how you want to access and modify the

graphs data.

Most graph algorithms are memory bound more so than compute bound [7] due

to unpredictable memory accesses and low compute per memory access. Historically,

as graphs grew, distributed graph processing frameworks were created to help deal

with the compute necessary to run analytics [28,44,48]. However, it was found that

most graphs are not that big and shared or external memory systems were able to

outperform distributed systems due to the lack of data movement necessary [1, 50].

Many of these systems were designed for static graphs, where the set of vertices and

edges do not change over the course of the processing.

Static sparse graphs are often stored in compressed sparse row (CSR) format,

which packs edges into an array and takes space proportional to the number of vertices

and edges. Sparse storage formats pay for these space savings with the cost of updates.

CSR format supports fast queries such as membership or finding all neighbors of a

vertex, but may require changing the entire data structure to add or remove an edge.

However, many real-world graphs [67] are dynamic and sparse. For example, social

networks such as Twitter and Facebook are highly dynamic graphs since new users

and connections are added constantly. Twitter averages about 500 million tweets a

day [60] and Facebook has about 41,000 posts (2.5Mb of data) per second [68].

Internet graphs are also highly dynamic: large Internet Service Providers (ISPs)

field around 109 packets/router/hour [33]. Dynamic graphs have wide applications

from recommendation systems to cellular networks and require efficient updates to

graph storage formats.

A graph can also store a |V| by |V| matrix, and many graph operations can be

thought of as matrix ones and vice versus. As such, another important operation for

graph storage formats to be able to compute is sparse-matrix vector multiplication

(SpMV), a widely-used kernel in numerical and scientific computing, which requires a

scan over all nonzero edges. For example, iterative computations such as conjugate gra-

dient are staples of numerical simulations and require repeated SpMV operations [56].

One application of dynamic sparse graph representations is control-flow analysis, which
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involves successively extending a graph (adding vertices and edges) until it reaches a

fixed point [64].

Related Work

I present a dynamic data structure called packed compressed sparse row (PCSR)

independent of any framework. PCSR is a graph representation, rather than a

dynamic analytics framework, and can supplement existing graph analytics solutions.

Existing dynamic graph analytics solutions such as GraphChi [37], LLAMA [47],

and STINGER [6] [26] provide data structures for graph storage. These frameworks,

however, often lack theoretical guarantees on performance. PCSR’s performance

guarantees may mitigate worst-case behavior in these graph frameworks.

Sha et al. [62] introduced GPMA, a GPU-based dynamic graph storage format

based on the packed memory array (PMA). GPMA handles concurrent inserts and

is optimized for parallel batch updates. In this work, I focus on sequential random

updates for CPUs, rather than batched updates.

The most relevant related work is King et al.’s in-place dynamic CSR-based data

structure (DCSR) for GPUs [36]. DCSR lacks theoretical guarantees on its runtime

or space usage, however. Finally, it is only implemented for GPUs and not for CPUs.
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Chapter 7

Graph Storage Formats

In this chapter, I describe the following graph storage formats: adjacency matrix,

adjacency list, blocked adjacency list, and CSR. I detail their respective space/time

trade-offs in Table 7.1.

Adjacency Matrix

An adjacency matrix is the most basic graph storage format. It stores an 𝑛 × 𝑛

matrix for a graph of 𝑛 vertices. The entry at [𝑢, 𝑣] corresponds to the value of the

edge (𝑢, 𝑣) or has 0 if the edge does not exist. It excels in storing dense graphs because

it does not store any pointers and therefore minimizes overhead for dense graphs, but

is poor for sparse graphs since it explicitly holds all the 0’s.

The adjacency matrix takes space 𝑂(𝑛2) regardless of the density, which while

optimal for dense graphs is very poor for sparse ones. Furthermore, adding a new

vertex requires rebuilding the entire data structure. Finally, sparse graph traversals on

adjacency matrices require iterating over the entire matrix of size 𝑛2. Since the number

of edges is 𝑚 ≪ 𝑛2 for many sparse graphs, a graph traversal using an adjacency

matrix is not work efficient.

Adjacency List

Another common sparse graph storage format is the adjacency list (AL). Adjacency

lists keep an array of vertices, where each entry stores a pointer to a linked list of
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Adjacency
Matrix AL BAL CSR PCSR

(amortized)

Storage cost /
scanning whole graph 𝑂(𝑛2/𝐵) 𝑂(𝑛 + 𝑚) 𝑂((𝑚 + 𝑛)/𝐵) 𝑂((𝑚 + 𝑛)/𝐵) 𝑂((𝑚 + 𝑛)/𝐵)

Add new edge 𝑂(1) 𝑂(1) 𝑂(1) 𝑂((𝑚 + 𝑛)/𝐵) 𝑂(lg2(𝑚 + 𝑛)/𝐵)

Update or delete edge
from vertex 𝑣

𝑂(1) 𝑂(𝑑𝑒𝑔(𝑣)) 𝑂(𝑑𝑒𝑔(𝑣)/𝐵) 𝑂((𝑚 + 𝑛)/𝐵) 𝑂(lg2(𝑚 + 𝑛)/𝐵)

Add node 𝑂(𝑛2/𝐵) 𝑂(1) 𝑂(1) 𝑂(1)* 𝑂(lg2(𝑚 + 𝑛)/𝐵)

Finding all neighbors
of a vertex v 𝑂(𝑛/𝐵) 𝑂(𝑑𝑒𝑔(𝑣)) 𝑂(𝑑𝑒𝑔(𝑣)/𝐵) 𝑂(𝑑𝑒𝑔(𝑣)/𝐵) 𝑂(𝑑𝑒𝑔(𝑣)/𝐵)

Finding if w is
a neighbor of v 𝑂(1) 𝑂(𝑑𝑒𝑔(𝑣)) 𝑂(𝑑𝑒𝑔(𝑣)/𝐵) 𝑂(lg𝐵(𝑑𝑒𝑔(𝑣)) 𝑂(lg𝐵(𝑑𝑒𝑔(𝑣)))

Sparse matrix-vector
multiplication 𝑂(𝑛2/𝐵) 𝑂(𝑛/𝐵 + 𝑚 + 𝑛) 𝑂((𝑚 + 𝑛)/𝐵) 𝑂((𝑚 + 𝑛)/𝐵) 𝑂((𝑚 + 𝑛)/𝐵)

Table 7.1: Cache behavior of various sparse graph and matrix operations. 𝑛 = |𝑉 |, 𝑚
= |𝐸|. The table lists various graph representations and the algorithmic runtime of
common graph operations in the external memory model by Aggarwal and Vitter, [2]
where 𝐵 is the cache line (or disk block) size. The RAM model (without cache analysis)
is the special case where 𝐵 or lg(𝐵) is 1. We analyze PCSR in the right-most column.
* We use a C++ vector for our implementation of CSR, so we do not need to rebuild
the vertex list every time we add a vertex.

edges. The pointer at index 𝑢 in the vertex list points to a linked list, where each

element 𝑣 in the linked list is an outgoing edge (𝑢, 𝑣).

Adjacency lists support fast inserts but have high space overhead and slow searches

because the edges are unsorted. Adjacency lists also exhibit poor cache behavior

because they lack locality. A variant of adjacency lists called blocked adjacency

lists (BAL) uses blocks to store edges. BAL’s exhibit faster traversals because of

improved locality but require extra space for extremely sparse graphs. Blandford,

Blelloch, and Kash [10] introduced a dynamic graph data structure based on BAL

with many constant-factor improvements, but they stop short of giving theoretical

guarantees. For simplicity, I compare PCSR with standard adjacency lists of various

block sizes.

Figure 7-1 shows an example of a graph stored in adjacency list format.

Compressed Sparse Row

Compressed sparse row (CSR) is a popular format for storing sparse graphs and

matrices. It efficiently packs all the entries together in arrays, allowing for quick
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Vertex IDs Edges (dest, val)

0

…

1

2

3

(4, 6) (1, 4) NIL

(0, 1) (3, 1) (9, 4) NIL

NIL

NIL(8, 5)

Figure 7-1: An example of a graph stored in an adjacency list. Each entry in the vertex
array points to a linked list of edges. The vertex ID in the vertices array implicitly
stores the source. For weighted graphs, I store a tuple of destination vertex and edge
value for each edge.

traversals of the data structure.

CSR uses three arrays to store a sparse graph: a vertex array, an edge array, and

a value array1. Each entry in the vertex array contains the starting index in the edge

array, where the edges from that vertex are stored in sorted order by destination. The

edge array stores the destination vertices of each edge. CSR stores a graph 𝐺 = (𝑉,𝐸)

in size 𝑂(|𝑉 | + |𝐸|) but needs to be rebuilt upon any changes. Figure 7-2 contains an

example of a graph stored in CSR format.

Inserting an edge into a graph in CSR format takes time linear in the size of the

graph in the worst case. To insert an edge (𝑢, 𝑣) into a graph in CSR format, CSR

first must search all edges with source vertex 𝑢 to find the edge with the smallest

destination larger than 𝑣. Then, CSR inserts (𝑢, 𝑣) into the edge list and slides all

elements after that element over by one to make room. CSR then increments the

elements in the vertex array for all vertices greater than 𝑢 by one. The entire edge

array may need to be resized and copied into a larger block of memory if there are

1not needed in the unweighted case
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too many elements in the structure.

Figure 7-2: An example of an unweighted graph stored in compressed sparse row. The
values stored in the edges array represent the destination. The vertex ID in the offset
array implicitly stores the source. For weighted graphs, there is an additional values
array.

Pinar and Heath [52] introduced a variant of CSR called Blocked Compressed

Sparse Row (BCSR), where the locations of nonzero blocks are stored in CSR format.

For our experiments, I compare to CSR for simplicity. Practitioners often use CSR

for storing static social networks and random graphs.
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Chapter 8

Packed Compressed Sparse Row

In this chapter, I discuss the design and guarantees of PCSR. However, first, we

need to review the structure and theoretical properties of the packed memory array

(PMA) [9].

Packed Memory Array

At a high level, a PMA is an array with spaces between its elements that uses a

constant factor more space with polylogarithmic amortized inserts. More formally, a

PMA holds 𝑛 elements in 𝑁 = 𝑂(𝑛) space and maintains order among its elements. It

supports cache-efficient scans, i.e. reading 𝑆 sequential elements takes 1 + 𝑆/𝐵 cache

misses. Finally, it supports inserts in amortized O(𝑙𝑜𝑔2(𝑛)) work. For more details

and proofs of time and space, see [8]. It does this by maintaining an array of size S

with empty cells which enable inserting into any cell with a small number of shifts.

The PMA defines an implicit binary tree with leaves of size log𝑁 elements and

height log(𝑁/ log𝑁). The internal nodes encompass the region defined by all of their

descendants.

Each node of the tree has a density bound1 proportional to the height of that

node to maintain spaces between elements. The density of a node is the fraction of

non-empty cells in its region. As the level of the node increases, the density bound

1In this paper, I use the density bound to upper bound the number of elements in any node. For
the case of deletes, a PMA would enforce both an upper and lower density bound at each level.
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decreases (lower bounded by 0.5).

The PMA enforces density bounds by redistributing elements to neighbor nodes

whenever a node violates its density bound so that the densities of both sibling are

equal.

When describing PMA operations and properties, I will refer to the array of

elements as the pma and the space (in terms of the number of cells) as 𝑁 .

Figure 8-1 shows an example of the implicit binary tree on the PMA intervals. If

an interval becomes too dense, we walk up the tree and redistribute when an interval

is appropriately dense.

Figure 8-1: An example of the implicit binary tree on the PMA’s intervals. If we insert
a new element in a leaf and the corresponding interval becomes too dense (shown in
light grey), we walk up the tree until we find an interval with a density in the allowed
range (shown in dark grey). In the worst case, we walk up to the root and rebalance
the entire PMA. This figure is from [24].

Description of Structure

PCSR uses the same vertex and edge lists as CSR but uses a PMA instead of an

array for the edge list. Adding both edges and vertices to the graph requires updates

to both the vertex and edge lists. I use a C++ vector with doubling and halving for

the vertex list. Each element in the vertex list stores start and end pointers into the

edge list for its range. Each non-empty entry in the edge list contains the destination
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Figure 8-2: An example of a graph stored in PCSR. S denotes the sentinels. The
ranges (start, end) in the vertex array denote the start and end of the corresponding
edges in the edge array.

vertex and the edge value. Each vertex’s range in the edge list has a corresponding

sentinel entry in the edge list, which points back to the source in the vertex list for

updating the vertex pointers.

I present an example of a graph stored in PCSR format in Figure 8-2.

The size of the vertex list is 𝑂(𝑛) since it stores two pointers for each vertex.

The size of the edge PMA is 𝑂(𝑛 + 𝑚) since it stores an entry for each edge and

vertex. The size of a PMA is 𝑂(𝑁), where 𝑁 is the number of elements in the PMA.

Therefore, the total space usage of PCSR is 𝑂(𝑛 + 𝑚), the same as in standard CSR.

Operations

Adding a vertex. PCSR adds vertices by extending the length of the vertex array

by one, with a pointer to the end of the edge structure. Then PCSR adds the sentinel

edge into the edge structure.

Adding an element to the end of the vertex structure is 𝑂(1) and adding an element

to the edge structure is 𝑂(lg2(𝑛 + 𝑚)), so the overall time is 𝑂(lg2(𝑛 + 𝑚)).

Adding an Edge. Adding an edge first requires finding the vertex in the vertex

array, then requires a binary search on the relevant section of the edge array to insert

the edge in sorted order, indexed by its destination. If a rebalance is triggered, PCSR

checks every moved edge to see if it is a sentinel. If so, PCSR updates the vertex array

with its new location.

Finding the location in the vertex structure is 𝑂(1), binary searching the relevant
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section of the edge array is 𝑂(lg(𝑑𝑒𝑔(𝑣))), and inserting is 𝑂(lg2(𝑛 + 𝑚)), giving us

𝑂(lg2(𝑛 + 𝑚)) for the overall time.

Removing an Edge. Removing an edge is symmetric to adding an edge. PCSR

finds the edge with a binary search, removes it from the PMA, and rebalances if

necessary. Therefore, the runtime is the same as adding an edge: (𝑂(lg2(𝑛 + 𝑚))).

Removing a vertex. First, PCSR sets the start and end pointers into the edge

array to null. PCSR also keeps track of the number of removed vertices and rebuilds

the entire structure when the number of non-removed vertices equals the number

of removed vertices. Vertices can only be removed after all their edges have been

removed2. PCSR needs to mark the vertex in the vertex structure and remove the

sentinels from the edge structure. This takes time 𝑂(lg2(𝑛 + 𝑚)).

To maintain the vertex list with 𝑂(𝑛) entries, PCSR simply rebuilds the structure

every time the number of removed vertices exceeds half the number of vertices before

vertex deletions.

I have not implemented removing edges and vertices, but their asymptotic perfor-

mance is symmetric to adding edges and vertices.

2It would be possible to implement a faster bulk edge removal by deleting all the edges at once
and rebalancing at the end.
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Chapter 9

Empirical Evaluation

I evaluated PCSR against CSR, adjacency list (AL), and blocked adjacency lists

(BAL). Adjacency matrix is not included due to its inability to scale to large sparse

graphs. Each structure is evaluated on its performance and space usage, focusing on

the sparse case since the adjacency matrix outperforms all other graph representations

if the graph is dense. The test graphs are created by randomly generating variable

numbers of edges in a graph with a constant number of nodes.

System

I ran our experiments on an Amazon Web Services (AWS) instance with 18 cores,

with hyper threading, and a 2.9GHz clock speed. The machine had 64GB of RAM,

32K of L1 cache, 256K of L2 cache, and 25600K of L3 cache. Programs were written

in C++ and compiled with GCC 4.8.5 with -O3. All programs were run sequentially.

Memory Footprint

I measured the memory footprint of each data structure for a fixed number of vertices

and variable number of edges. Figure 9-1 shows the relative growth of the memory

footprint of each graph representation.

The BALs use much more size than necessary when the average degree is small

because most of the space in the blocks is empty.
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Figure 9-1: Size per 100,000 edges of each data structure with 100,000 nodes and a
variable number of edges. The x-axis represents the number of edges, while the y-axis
represents the size per 100,000 elements.

The C++ vector for the edge list in CSR doubled the speed of inserts since our

implementation of CSR (on average) only needs to copy half of the elements on each

insert. Therefore, I also compare to the ideal CSR size without extra space.

I found there is about a factor of two between the size of an ideal CSR, without

extra padding, and the worst AL, while PCSR only has a space overhead of between

20% and 30%.

Inserts

I benchmarked the time to insert unique new edges in all the data structures. I

generated edges uniformly at random without replacement. Figure 9-2 shows the time

to insert 100, 000 edges with a fixed number of vertices and a variable number of

edges. AL-based representations supported fast inserts, while CSR was the slowest.

CSR starts about three orders of magnitude slower than all other representations and

also scales much worse. Therefore, I was unable to run it for large numbers of edges.

I found that, in practice, PCSR is about three to four times slower than AL-based

representations.
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Figure 9-2: Time to insert 100,000 edges with a fixed number of nodes. We used
100,000 nodes and added a variable number of edges.

Updates

I benchmarked update operations on all the data structures. I generated edges

uniformly at random with replacement. Figure 9-2 shows the time to insert edges

that potentially exist in the edge list with a fixed number of vertices. The difference

between update and insert is that update requires a search beforehand to check if the

edge is already in the structure. I again show the time for updating (or inserting)

100, 000 edges.

PCSR outperformed all other structures when the average degree grew to reasonable

sizes, as expected from Table 7.1. Once again, CSR is several orders of magnitude

worse and is too slow to complete on reasonable input sizes. Additionally, the AL-based

representations take linear time to search and take much longer than the 𝑂(lg2(𝑛))

search time of PCSR. While the high search cost in AL-based representations can be

somewhat offset by increasing the size of the block, larger block sizes increase the size

of the AL and slow insertions.

Sparse Matrix-vector Multiplication

Figure 9-4a shows the time to perform a sparse matrix-vector multiplication using the

different structures with 100,000 vertices and a variable number of edges.

Although the asymptotic complexity for SpMV is the same for all the structures,
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Figure 9-3: Time to insert or update 100,000 edges with a fixed number of nodes. We
used 100,000 nodes and added a variable number of edges.

the AL-based structures can suffer from poor cache behavior. Increasing the block size

in BALs can improve cache performance. PCSR avoids the problem of cache locality

because it stores all its edges in a single array. SpMV takes longer in AL than PCSR

because the PCSR has better cache behavior. SpMV in PCSR is within a factor of

two and often within 20% of SpMV in CSR.

PageRank and BFS

Figure 9-4b shows the time to perform an iteration of PageRank using the different

structures with 100,000 vertices and a variable number of edges.

Figure 9-4c shows the time to compute the distance to each vertex from a randomly

chosen source vertex using each of the different structures with 100,000 vertices and a

variable number of edges.

The time to perform a BFS and an iteration of PageRank scales with the number

of edges in the graph in all representations.

PCSR achieved within 25% of CSR’s runtime on most input sizes. CSR was the

fastest, followed by PCSR and BAL-128. BAL with bigger blocks would perform even

better (closer to CSR).
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Figure 9-4: Time with 100,000 vertices and a variable number of edges. The x-axis
represents the number of edges, while the y-axis represents the time.

Name vertices Edges

Slashdot 77, 360 905, 468
Pokec 1, 632, 803 30, 622, 654
LiveJournal 4, 847, 571 68, 993, 773

Figure 9-5: Sizes of social network graphs used in our tests.

Real World Graphs

I also tested on three social network graphs of varying sizes from the Stanford Large

Network Dataset Collection and report our results in Table 9.1. They were Slashdot,

Pokec, and LiveJournal; their sizes are detailed in Figure 9-5. The random graphs

generated have a normally distributed degree distribution, while the social networks

degree distribution follows a power law distribution [51]. This means that social
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Graph Format AL BAL 8 BAL 32 BAL 128 CSR
Slashdot
Size 0.88 0.82 1.47 4.71 0.41
SpMV 10.87 1.29 1.45 1.32 0.39
BFS 8.86 1.20 1.42 1.17 0.47
PageRank 13.38 1.64 1.85 1.72 0.36
Adding edges 0.25 0.25 0.25 0.25 525.00
Updating edges 10.50 1.25 1.00 0.75 508.75
Pokec
Size 0.93 0.71 0.98 2.75 0.45
SpMV 15.95 2.43 1.21 1.17 0.51
BFS 7.25 1.64 1.02 1.00 0.48
PageRank 11.77 3.04 1.78 1.72 0.54
Adding edges 0.25 0.50 0.25 0.25 31628.50
Updating edges 9.17 2.50 0.83 0.67 21005.83
LiveJournal
Size 1.05 0.87 1.36 4.00 0.49
SpMV 20.40 2.77 2.20 2.10 0.59
BFS 9.55 2.30 1.34 1.40 0.53
PageRank 16.20 5.36 2.40 2.73 0.54
Adding edges 0.25 0.25 0.25 0.50 70787.00
Updating edges 13.17 4.00 1.50 1.17 46835.00

Table 9.1: Real-world graphs. I tested on Slashdot, Pokec, and LiveJournal. All times
are normalized against PCSR.

network graphs are much more likely to have vertices with high degree.

For adding and updating edges, I added 1000 random edges chosen without

replacement with the same distribution as the edges in the original graph.

I found that PCSR was about a factor of two slower than CSR on graph computa-

tions but had much faster updates. The AL-based representations are a similar size to

PCSR and were between two and ten times slower on graph computations but about

four times faster adding edges.
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Chapter 10

Parallel Packed Memory Array

I parallelized PCSR to allow for the work of individual operations to happen in parallel

as well as to allow multiple operations to occur in parallel. To do this I first needed

to create a parallel PMA.

I measure the asymptotic costs of a parallel operation on an input of size 𝑁

in terms of the work 𝑇1(𝑁) and span 𝑇∞(𝑁). The work is the total number of

machine instructions and the span is the length of the critical path (or the runtime in

instructions on an infinite number of processors). The parallel time 𝑇𝑃 (𝑁) is bounded

by 𝑇𝑃 (𝑁) ≤ 𝑇1(𝑁)/𝑃 + 𝑇∞(𝑁) [20] assuming a PRAM model [35] with 𝑃 processors

and a greedy scheduler [13, 15, 31]. I use a model of parallel computation where 𝑁

iterations in a parallel for loop has 𝑂(log𝑁) span [20].

Operations

I will focus on searching and inserting elements into a PMA and define two external

operations:

• search: finds an element in the PMA.

• insert: inserts an element into the PMA.

To implement and analyze these main operations, I define the following internal

operations:
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• get_density: returns the number of elements of each PMA leaf in a specified

region.

• redistribute: redistributes elements in a PMA node.

• double_pma: doubles the size of the PMA.

All start and end indices of internal PMA operations must be at the beginning

and end of PMA nodes, respectively (i.e. 𝑠, 𝑡 mod log(𝑁) = 0). Additionally,

(𝑡− 𝑠)/ log(𝑁) = 2𝑥 for some non-negative integer 𝑥.

Parallel modifications

Next, I will discuss modifications to the PMA that I will use in my implementation of

PPCSR.

I add an additional density bound to the nodes of the PMA for simplicity. The

extra bound ensure that a thread can always insert an edge and will only wait in the

redistribution phase of an insert. The new density bound requires that any node in

the PMA cannot be full (the upper density bound cannot be 1). That is, the new

density bounds at the leaves of the PMA are

𝐷leaf = [𝛼leaf,min(𝛽leaf,
log(𝑁) − 1

log(𝑁)
)].

Since lim
𝑁→∞

(log(𝑁) − 1)/ log(𝑁) = 1, the additional density requirement does not

impact the asymptotic behavior of the PMA.

I enforce a packed-left property of the nodes in the PMA so that inserts into one

region do not spill over into others. Instead of evenly distributing elements in the PMA

leaves, I put them all contiguously towards the beginning of the leaf. The packed-left

property along with the non-full density bound ensure that a thread will never shift

elements into another node’s region.

The packed-left property maintains the cache-efficiency of the original PMA because

the original PMA does a redistribute of each leaf after an insert into that leaf [8, 9].
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1 # s is the start of a node
2 # t is the end of a node
3 # returns the number of elements in each leaf of a pma node
4 def get_density(s, t)
5 counts [((t - s) / log(N)]
6 par_for(i in [0, counts.size())):
7 leaf = i*log(N)
8 counts[i] = count_non_nulls(
9 PMA[leaf , leaf+log(N))

10 return counts

Figure 10-1: Pseudocode for get_density in PPCSR.

This redistribute reads and writes each cell in the leaf. An insert with the packed-left

property also reads and writes (at worst) each cell in the associated leaf.

The packed-left property also reduces the number of empty cells read in a pass

through the PMA. Immediately after doubling a standard PMA half the cells will

be empty. Reading all of the edges in such a PMA would read Θ(𝑁) empty cells. A

PMA with the packed-left property would read Θ(𝑁/ log(𝑁)) empty cells because

after reading any empty cell, you can jump to the next leaf (i.e. you will read at most

one empty cell per leaf).

A PMA with the packed-left property minimizes the number of shifting elements

between sibling nodes, which enables an efficient external-memory implementation. If

each node at some internal level of the PMA is a separate file on disk, packing left

will minimize the number of transfers between files.

Parallel PMA operations

In this section, I describe the PMA operations and show how to parallelize them. I

also prove that all the PMA operations have polylogarithmic span.

Internal operations

First, I describe and analyze the internal operations of get_density, redistribute

and double_pma.

The get_density function counts the elements in each leaf in a region. I specify a
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get_density(s, t) function that returns the density of each leaf in a region specified

by 𝑠, 𝑡 where 𝑠 is the beginning and t is the end of a region in the PMA.

Lemma 1 get_density(s, t) has work 𝑂(𝑡− 𝑠) and span 𝑂(log𝑁).

Proof. The outer loop has work 𝑂((𝑡− 𝑠)/𝑙𝑜𝑔(𝑁)) and span log((𝑡− 𝑠)/𝑙𝑜𝑔(𝑁)) =

𝑂(log(𝑁/ log𝑁)) because it iterates over all the leaves in the range. We can implement

the count_non_nulls function with a simple serial for loop with work and span

𝑂(log𝑁). Therefore, the total work is 𝑂(𝑡− 𝑠) and the span is 𝑂(log(𝑁/ log𝑁)) +

𝑂(log𝑁) = 𝑂(log𝑁).

The redistribute function enforces the density bound of a region in the PMA.

Specifically, the redistribute(s, t) function guarantees that all nodes in the region

defined by 𝑠, 𝑡 respect their density bounds.

Theorem 2 redistribute(s, t) has work 𝑂(𝑡− 𝑠) and span 𝑂(log𝑁).

Proof. The pseudocode1 for redistribute(s, t) can be found in Figure 10-2.

By Lemma 1, the call to get_density(s, t) has work 𝑂(𝑡−𝑠) and span 𝑂(log𝑁).

The first parallel for has (𝑡− 𝑠)/ log(𝑁) iterations, for 𝑂((𝑡− 𝑠)/ log(𝑁)) work and

𝑂(log((𝑡 − 𝑠)/ log(𝑁))) span. The inner loop has work and span 𝑂(log𝑁) because

it has 𝑂(log𝑁) iterations. Therefore the total work and span of the nested loops is

𝑂(𝑡− 𝑠) and 𝑂(log𝑁), respectively.

The prefix sum function on an array of size 𝑁 can be implemented in parallel with

𝑂(log𝑁) span and linear work [11].

The second parallel for iterates over the number of leaves, which is (𝑡− 𝑠)/ log𝑁 ,

so the span of the second parallel for is 𝑂(log((𝑡 − 𝑠)/ log𝑁) = 𝑂(log(𝑁/ log𝑁)).

The memcpy will copy at most 𝑂(log𝑁) elements, so it has work and span 𝑂(log𝑁).

Therefore, the work and span of this parallel for are 𝑂(𝑡−𝑠) and 𝑂(log𝑁), respectively.

The total work and span of redistribute are therefore 𝑂(𝑡 − 𝑠) and 𝑂(log𝑁),

respectively.

Finally, the double_pma function doubles the number of cells in the PMA.
1Unless otherwise specified, all division in pseudocode is integer division (rounded down).
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1 # s is the start of a node
2 # t is the end of a node
3 # balances the elements equally among the leaves of the pma in

the given region
4 def redistribute(s, t):
5 size = t - s
6 counts = get_density(s, t)
7 temp[size]
8 # done in-place
9 parallel_prefix_sum(counts)

10 # copy and pack all edges to temp
11 par_for(k in [s, t); k += log(N)):
12 if(i == s):
13 start = 0
14 else:
15 start = counts[i-1]
16 for(j in [k*log(N), (k+1)*log(N))):
17 if (pma[j] != null):
18 temp[start] = pma[j]
19 start++
20 pma[j] = null
21
22 num_leaves = size / log(N)
23 per_leaf = counts [-1] / num_leaves
24 extra = counts [-1] % count_per_leaf
25
26 par_for(i in [0, num_leaves)):
27 # numbber of items for this leaf
28 for_leaf = per_leaf + (i < extra)
29 # start of leaf’s items in temp
30 j = per_leaf*i + min(i, extra)
31 # start of leaf in PMA
32 leaf = s + (i * log(N))
33
34 # copy edges into PMA
35 memcpy (&pma[leaf], &tmp[j], for_leaf)

Figure 10-2: Pseudocode for redistribute(s, t).

1 def double_pma ():
2 new_pma [2*N] = [0]
3 memcpy (&new_pma , &pma , N)
4 pma = new_pma
5 N = 2*N
6 redistribute (0, N)

Figure 10-3: Pseudocode for double_pma.
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1 # the region between lo and hi is sorted
2 # returns the index of the element with value at least v
3 def search(lo, hi, v):
4 while (lo < hi):
5 mid = (hi - lo) / 2
6 # null case
7 if pma[mid] is null:
8 # gets beginning of next leaf
9 mid = ((mid / log N) + 1) * log N

10 # do a linear scan
11 # work is O(log N)
12 if mid > hi:
13 for(i in [lo, hi)):
14 if pma[i] >= v:
15 return i
16 # pma[mid] guaranteed to be non -null
17 if (pma[mid] is v):
18 return mid
19 elif (pma[mid] > v):
20 hi = mid
21 else:
22 lo = mid

Figure 10-4: Pseudocode for search(lo, hi, v).

Lemma 3 The double_pma procedure has work 𝑂(𝑁) and span 𝑂(log𝑁).

Proof. The double_pma pseudocode can be found in Figure 10-3. Initializing the

new pma of size 2𝑁 and copying over the old data has work 𝑂(𝑁) and span 𝑂(log𝑁)

since these operations take 𝑂(1) work per cell. As shown in Theorem 2, redistribute

also has work 𝑂(𝑁) and span 𝑂(log𝑁). Therefore, double_pma has work 𝑂(𝑁) and

span 𝑂(log𝑁).

External operations

Next, I show how to implement the external functions using the internal functions

and analyze the external functions of search and insert(lo, hi, v).

I define a search function search(lo, hi, v) which checks a sorted region of the

PMA bounded by 𝑠, 𝑡 (the beginning and end of the region, respectively) and returns

the location of the smallest element that is at least 𝑒.
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Lemma 4 search(lo, hi, v) has 𝑂(log(ℎ𝑖− 𝑙𝑜)) work and span.

Proof. The pseudocode for the search function can be found in Figure 10-4. I

modify a traditional binary search to deal with null values. If the midpoint pma[mid]

is null, I set the midpoint to the beginning of the next PMA leaf in 𝑂(1) instructions.

Since I enforce the packed-left property in PMA leaves, the beginning of each leaf

is guaranteed to be non-null. Checking whether a cell is null and computing the

beginning of the next leaf take constant time. Suppose that at some level of the

binary search hi - lo = ℓ. The maximum size of the next step is ℓ/2 + log𝑁 . If

log𝑁 ≈ ℓ/2, meaning that I do not decrease the size of the next binary search step

by a constant fraction, then I can just look at all the cells serially with work and span

log𝑁 . Otherwise, ℓ/2 + log𝑁 = 𝑂(ℓ/2) so we decrease the size of the search space by

a constant fraction so I expect to take at most log(𝑢)) binary search steps.

Next, I will describe and analyze the insert function. The insert(lo, hi, v)

function inserts an element 𝑒 into a sorted region beginning at index 𝑠 and ending

and ending at index 𝑡.

Inserting into a PMA takes amortized 𝑂(log2𝑁) work [8] since the modifications

do not add to the work.

Lemma 5 insert(lo, hi, v) has 𝑂(log2𝑁) worst-case span.

Proof. The pseudocode for the insert(lo, hi, v) function can be found in Fig-

ure 10-5. By Lemma 4, the search(lo, hi, v) function has 𝑂(log𝑁) span. The

slide-right function touches at most 𝑂(log𝑁) cells of the PMA, so it also has 𝑂(log𝑁)

span. There are at most 𝑂(log𝑁) calls to get_density(s, t) and parallel_sum,

which each have 𝑂(log𝑁) span by Lemma 1. Lastly, there is one call to either

double_pma or redistribute(s, t), which have 𝑂(log𝑁) span by Lemma 3 and The-

orem 2.
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1 # the region between lo and hi is sorted
2 # inserts the element v in sorted order of the elements

between lo and hi
3 def insert(lo, hi, v):
4 level = log(N / log N)
5 height = level
6 index = search(lo, hi, v)
7 #slide elements to the right until a null space is found
8 slide_right(index)
9 pma[index] = v

10 # range of this leaf we inserted into
11 start = (index / log(N)) * log(N)
12 end = start_leaf + log(N)
13 counts = get_density(start , end)
14 # non -integer division
15 density = float(counts [0]) / log(N)
16 while density > density_bound(level):
17 # get start and end of parent nodes
18 start = get_parent_start(start)
19 end = get_parent_end(end)
20 counts = get_density(start , end)
21 # accumulate all non -empty cells in this region
22 count = parallel_sum(counts)
23 density = float(count) /
24 (log(N) >> (height - level))
25 level = level - 1
26 if level < 0:
27 double_pma ()
28 return
29 redistribute(start , end)

Figure 10-5: Inserting into a PMA.

PMA operations in parallel

I now describe how augment a PMA with locks to support parallel writes. I assign

one lock to each leaf of the PMA. Locking each leaf is equivalent to locking nodes at

any set depth in the tree, which trades off between locking overhead and parallelism.

Grabbing locks in parallel To avoid linear span to grab the locks for a region, I

show how to grab locks in parallel without deadlock and with polylogarithmic span.

There are two cases for grabbing locks: either inserting into a leaf or redistributing

some subtree of the PMA. On an insert, a thread only needs to grab the lock of the
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1 # locks is an array of the leaf locks
2 # the region [s, t) is a node in the pma
3 # grabs the locks from [s to t)
4 def grab_locks(s, t):
5 for(priority in [1, log(n)]):
6 par_for(i in [s, t)):
7 if popcount(i) is priority:
8 locks[i].lock();

Figure 10-6: Pseudocode for grabbing locks according to lock_order. We use 𝑠, 𝑡 to
denote start and end leaf indices in the region we are trying to grab locks for.

leaf it is trying to insert into. Since we enforce a stricter density bound on leaves in

the PMA, an insert will never slide elements between subtrees. On a redistribute, a

thread will grab all the locks in a subtree.

I will now describe a scheme for grabbing contiguous sequences of locks on leaves

in parallel called lock_order according to implicit priorities of each leaf in the PMA.

The lock_order algorithm first assigns implicit priorities to each leaf in the PMA

depending on its index. The priority of a leaf with index 𝑖 is popcount(𝑖). The

popcount function returns the number of ones in the bit representation of a number.

For example, since 5 = 0𝑏101, popcount(5) = 2. I provide an example of how to assign

priorities to nodes in Figure 10-7.

The lock_order algorithm grabs locks in a region from lowest to highest priority

and grabs all locks of the same priority in parallel. We provide pseudocode for how to

grab locks in a region in Figure 10-6.

Remark 10.1 The popcounts in any subtree follow the same pattern as other subtrees

at the same height in the tree, but the minimum popcount may differ. For example,

consider leaves 0-3 and 4-7 in Figure 10-7, which correspond to two subtrees with

roots at the same level. The popcounts of the leaves follow the same pattern but have

different minimums in the different subtree. More generally, the position of the node in

the PMA determines the minimum popcount of any of its leaf indices. For example,

consider leaves 4-7 in the second: their minimum popcount is 1 because the upper bit

must be set (4 = 0b100). The unique minimum priority of any leaf in a subtree is

therefore the priority of the first leaf in that subtree.
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I now prove properties of our parallel locking scheme.

Theorem 6 Grabbing locks for any two nodes in the PMA using lock_order is

deadlock-free.

Proof. I will prove the theorem using case analysis. Suppose two threads are trying

to grab locks for two nodes2 𝑎 and 𝑏. I denote the set of leaves in the subtree rooted

at some node 𝛼 with leaves(𝛼).

Case 1: leaves(𝑎) ∩ leaves(𝑏) = ∅. Since the regions have no locks in common, grab-

bing them in parallel will not cause deadlock.

Case 2: leaves(𝑎) = leaves(𝑏). If 𝑎 = 𝑏, there will be a unique leaf with lowest

priority according to Remark 10.1. The thread that grabs it first will grab the

rest of the region while the other one waits for it, avoiding circular wait.

Case 3: leaves(𝑎) ⊂ leaves(𝑏) (w.l.o.g.). Let left𝑎 be the leftmost leaf in leaves(𝑎).

Since left𝑎 has smaller priority than all the other leaves in leaves(𝑎), both threads

will attempt to grab it before any other leaf in leaves(𝑎). Therefore, whoever

grabs left𝑎 will be able to grab leaves(𝑎) first. There is no circular wait because

the thread trying to grab the locks of 𝑎 need no locks outside of leaves(𝑎).

In all cases, there is no circular wait and therefore no deadlock.

Theorem 7 Grabbing all the locks for any node in the PMA according to lock_order

has polylogarithmic span assuming 𝑂(1) time to grab a lock.

Proof. I will analyze the span of grabbing locks by counting the number of leaves

with the same priority. Suppose a thread is trying to grab the locks in some region

associated with some node 𝛼 in the tree with ℓ locks.

As described in Remark 10.1, exactly one of the leaves in the region has some

minimum priority and that nodes at the same level of the tree follow the same pattern

in their leaf priorities.
2These might be the same node.

82



0Leaves 1 2 3 4 5 6 7

0Priorities 1 1 2 1 2 2 3
Figure 10-7: The indices of leaves in a PMA and the associated priorities.

In the remainder of the proof I will assume w.l.o.g. that the first leaf in the

region has priority 0 because the same counting argument applies but with a different

minimum. The height of the node defines the number of unique priorities in the region

because it sets the number of bits that can change among the leaves in the region.

The maximum priority of any index in a region of ℓ leaves is log ℓ because the

maximum index takes up log ℓ bits. The number of leaves with some priority 𝑘 is(︀
log ℓ
𝑘

)︀
because there are 𝑘 ways to choose which bits are set. I can grab all the locks

with priority 𝑘 in parallel with log(
(︀
log ℓ
𝑘

)︀
) = 𝑂(log ℓ) span3. There are log ℓ unique

priorities with 𝑂(log ℓ) span to grab the locks of each priority, for 𝑂(log2 ℓ) total span.

Since most operations take locks for a small region of the PMA (e.g. inserts or

small redistributes), it is rare to have to wait on another thread with a lock.

3By just iterating over all possible ℓ bit-strings in parallel.
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Chapter 11

Parallel Packed Compressed Sparse

Rows

I will now describe how I use the parallel PMA to parallelize PCSR. For simplicity, I

will focus on just a few graph operations, which the rest can be built from.

• find_value returns the weight of an edge or 0 if it is not in the graph.

• find_neighbors returns the neighbors of a vertex.

• get_all_edges returns a list of all the edges in the graph and their weights.

• add_edge sets the value of the edge if it is already in the graph, or adds it if it

is not yet in the graph.

• add_vertex adds a new vertex to the graph.

Figure 11-1 contains an example of a graph stored in PCSR. We can see the

differences from the serial version in that we now obey the packed left property and

have a lock on each vertex.

Augmenting PCSR with locks

I now describe how we modify the PCSR format to support parallel writes with locks.

I added locks to each vertex in the vertex array of the PCSR. Each lock corresponds
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(0, 4)

S

0 1 2

…

Vertex IDs

Start/End

Edges

(4, 6) (6, 10)

2 3 - S 1 S - 12 -

…

…Locks

Figure 11-1: An example of a graph stored in PCSR format. “S” denotes a sentinel
at the beginning of a vertex’s region in the edge PMA. The tall lines denote leaf
boundaries and elements are packed left in leaves.

1 2 3 4 5

Θ(lg n) Θ(lg n) Θ(lg n) Θ(lg n)

6

Figure 11-2: An example of the edge PMA in PCSR with locks on vertices. The boxes
represent the leaf boundaries of the PMA and the lines under the PMA represent
regions associated with vertices in the graph (with their corresponding locks).

to the region of the edge PMA that contains the outgoing edges of that vertex. Every

cell in the edge PMA is in the region of exactly one vertex. When reading or writing

to any cell, a thread must hold the corresponding lock.

In Chapter 10, I described how to lock a traditional PMA with one lock per

node. In PPCSR, where there may be more than one lock per vertex from multiple

vertices, grabbing all of the associated vertex locks can be done sequentially. If one

lock encompasses multiple leaves, I can just assume the locks are at higher levels of

the PMA tree.

I present an example of how the locks are distributed among PMA nodes in Fig-

ure 11-2.

Parallel work in graph operations

In this section, I show how each PPCSR operation can be computed with polyloga-

rithmic span. I describe how to implement the PPCSR operations using the parallel

PMA operations from Section 10.
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1 def find -neighbors(u):
2 start = vertices[u].start
3 end = vertices[u].end
4 counts[end - start]
5 # end - start = O(deg(u))
6 par_for(i in [start: end) ):
7 if (edges[i] != null):
8 counts[i - start] = 1
9 else:

10 counts[i - start] = 0
11
12 parallel_prefix_sum(counts)
13 output[counts[end - start - 1]]
14 par_for(i in [start: end) ):
15 if (counts[i] > counts[i-1]):
16 output[counts[i-1]] = edges[i]
17 return output

Figure 11-3: Pseudocode for find-neighbors in parallel PCSR.

Read operations

I begin with the read-only operations find_value, get_all_edges, and find_neighbors.

I can implement find_value(u,v) directly with search(lo, hi, v) in the PMA.

From Lemma 4,

Corollary 8 find_value(u,v) has 𝑂(log(𝑢)) work and span.

Next, I describe the find_neighbors function, which finds neighbors of a particular

vertex in the graph. More formally, find_neighbors(u) returns a new set 𝑉𝑢 such

that 𝑣 ∈ 𝑉𝑢 if and only if (𝑢, 𝑣) ∈ 𝐸 and cannot return a pointer to somewhere in the

data structure. The pseudocode for find_neighbors(u) can be found in Figure 11-3.

Lemma 9 find_neighbors(u) in PPCSR has 𝑂(𝑢)) work and 𝑂(log(𝑢))) span.

Proof. Each parallel for loop that iterates over 𝑂(𝑢)) cells has work 𝑂(𝑢)) and span

𝑂(log(𝑢)) because it iterates through 𝑂(𝑢)) cells in parallel. The parallel_prefix_sum

on an array of length 𝑁 can be implemented with span 𝑂(log𝑁) [11]. All of the other

lines the function take 𝑂(1) work.

I use find_neighbors to implement get_all_edges, which returns a list of all
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1 def get -all -edges():
2 num_edges[n+1]
3 num_edges [0] = 0
4 par_for(i in [0: n) ):
5 num_edges[i+1] = vertices[i]. num_neighbors
6 parallel_prefix_sum(num_edges)
7
8 edges[num_edges[n]]
9 par_for(i in [0, n) ):

10 neighbors = find_neighbors(i)
11 par_for(j in [0: neighbors.size()) ):
12 edges[num_edges[i] + j] = (i, neighbors[j], weight(i, j)

)
13 return edges

Figure 11-4: Pseudocode for get-all-edges in PPCSR.

the edges in the graph and their weights. I outline the get_all_edges procedure

in Figure 11-4.

Lemma 10 get_all_edges takes work 𝑂(𝑚+𝑛) and has span 𝑂(log 𝑛+log(∆(𝐺))).

Proof. For each vertex 𝑢, find-neighbors has work 𝑂(𝑢)) and span 𝑂(log(𝑢))) (from

Lemma 9). The first parallel-for and the function parallel_prefix_sum has work

𝑂(𝑛) and span 𝑂(log 𝑛). The nested loop has work 𝑂(𝑛 + 𝑚) because it does 𝑂(1)

work to iterate over each vertex and 𝑂(1) work per edge in find-neighbors. The span

of the nested loop is just the sum of the spans of outer and inner loops, which are

𝑂(log 𝑛) for the outer loop and 𝑂(log(∆(𝐺)) for the inner loop. Therefore, the work

is 𝑂(𝑛 + 𝑚) and the span is 𝑂(log 𝑛 + log(∆(𝐺))).

Write operations

I will now describe how to update the PPCSR data structure. PPCSR has two update

operations: add_edge and add_vertex.

I begin by describing add_edge and showing how to implement it with parallel

PMA operations. add_edge(u, v, w(u,v)) sets the value of the edge (𝑢, 𝑣) = 𝑤(𝑢, 𝑣).

If the edge (𝑢, 𝑣) /∈ 𝐸, add_edge adds it to the graph with weight 𝑤(𝑢, 𝑣).
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Theorem 11 add_edge(u, v, w(u,v)) has amortized 𝑂(log2(𝑚 + 𝑛)) work and

𝑂(log2(𝑚 + 𝑛)) worst-case span.

Proof. The add_edge(u, v, w(u,v)) function updates the edge structure in PCSR.

First, I do a search to check if the edge already exists: if so, we update its weight.

This takes 𝑂(log(deg(𝑢)) work and span by Lemma 4.

Otherwise, I need to insert a new edge using insert. We modify insert to handle

moving sentinels (in slide_right and redistribute). This modification takes 𝑂(1)

work per edge because it checks if each cell contains a sentinel and if so, modifies

the pointer to that sentinel in the vertex array. insert takes amortized work and

worst-case span 𝑂(log2(𝑚 + 𝑛)) by Lemma 5.

Next, I describe how to implement add_vertex with add_edge. The add_vertex

function adds a new vertex with index 𝑛 to a graph with 𝑛 vertices and updates the

edge structure with a sentinel.

Lemma 12 add_vertex has amortized 𝑂(log2(𝑚 + 𝑛)) work and 𝑂(log2(𝑚 + 𝑛))

worst-case span.

Proof. The add_vertex function updates both the vertex and the edge structure

in PCSR. First, add_vertex appends a new vertex to the end of the vertex array in

amortized 𝑂(1). If adding a new vertex triggers an 𝑂(𝑛) work copy, the copy has

𝑂(log 𝑛) span. I then insert the sentinel in the same way we inserted an edge using a

call to add_edge.
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Chapter 12

Parallel PCSR Evaluation

In this chapter, I describe an empirical evaluation of parallel PCSR (PPCSR) and

compare it with other sparse graph storage formats. PPCSR supports fast inserts and

searches while still allowing for fast traversals through the entire data structure.

Experimental setup We implemented PPCSR as a C++ library parallelized using

Cilk Plus [12,40]1 and the Tapir [61] branch of LLVM [38,39] compiler (version 6).

The experiments were run on a 8-core 2-way hyper-threaded Intel(R) Xeon(R)

CPU E5-2666 v3 @ 2.90GHz with 32GB of Memory from AWS [4].

Alternative data structures In addition to CSR and adjacency List I compare

with two new structures in parallel. These are adjacency hash-map [20, 21] and

Adjacency vector [22]. Adjacency hash-map is similar to Adjacency List, but supports

O(1) searches enabling faster inserting when it is not known known if the edge already

exists in the graph. Adjacency vector is the extreme case of Blocked adjacency list,

but the block size is equal to the degree of the vertex, using table doubling to amortize

the cost of adding to these arrays.

The add_edge function requires first checking to see whether the edge is in the

structure and then either inserting it or updating its value. Therefore, to support fast

implementations of add_edge, a graph storage format must support both fast searches

1Available at http://cilk.mit.edu.
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and fast updates. The adjacency-list-based structures have fast updates since they do

not store edges in sorted order, but then must do a linear scan to find any edge. CSR

and PCSR support fast searches because they store edges in sorted order, but CSR

requires potentially shifting the entire edge structure on an update.

Discussion of random graphs

I test the scalability of the graph operations as a function of the input size and the

number of available threads. The test graphs were uniformly randomly generated with

100,000 vertices and a varying number of edges. I measure the size of the graphs in

average updates per vertex2. I implemented the update function in batches of 10,000

edges at a time.

The adjacency list took too long for all operations on the largest graph I tested

(4096 updates per vertex), so I do not include it in the results. The adjacency hash-map

took too long to complete scanning operations on the largest graph, so I only include

its results for the smaller ones.

First, I compared the performance of the add_edge function as shown in Figure 12-

1. On very sparse graphs, the adjacency vector structure supports faster updates

than PPCSR because it has to search through a small number of edges. Once the

graph is sufficiently dense, PPCSR supports faster updates than adjacency vector

because PPCSR has sublinear search time through each edge list. CSR took too long

to update edges, so I do not include it in the results.

I implemented and tested sparse-matrix vector multiplication (SpMV) [56] and

PageRank [69], two common computations on sparse graphs and matrices that require

a scan, using the basic graph operations.

Next, I compared the data structures using the scanning operations SpMV and

Pagerank. I find that the adjacency list and hash-map have poor performance due to

pointer-chasing, which leads to bad cache behavior. CSR supports the fastest scans

because all of the edges are contiguous in memory. In the adjacency vector, all edges

2Since there may be collisions, the number of updates is not exactly the average degree of each
vertex. However, collisions are rare because the graphs are sparse.
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Figure 12-1: Time to dynamically create a graph with 256, 1024, and 4096 updates
per vertex on average (from left to right) as a function of number of threads. Each
graph has 100,000 vertex.

for each vertex are contiguous in memory, but moving onto the next edge list requires

pointer chasing, so it is about a factor of 2 away from CSR. PPCSR has comparable

performance to the adjacency vector because it does not require pointer chasing but

not all of the edges are contiguous in memory because of the spaces between them. We

present SpMV performance in Figure 12-2 and PageRank performance in Figure 12-6.

For inserting edges we find as expected that adjacency list does the worst. However,

unexpectedly adjacency hash-map does not do that well and adjacency vector does very

well. This is because for graphs with small average degree more time is spent in cache

misses in the hash-map then just efficiently scanning through a vector. Adjacency

vector stays on par with PPCSR until the average degree is about 1024, and adjacency

hash-map is unable to beat PPCSR even at average degree 4096, even though it does

asymptotically less work. This shows the real impact of optimizing not for work, but

for memory transfers.

For both SpVM and Pagerank we get very expected results CSR being the best,

adjacency vector and PPCSR trailing a constant factor behind, and the pointer based

structures performing much worse

Discussion of social network graphs

I tested the data structures on the same three social networks from Chapter 9.

We see that with the relative low average degree that adjacency vector does the
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Figure 12-2: Time to compute sparse matrix-vector multiplication on a dense vector
and sparse matrix store in each of the storage formats. The graph has 256, 1024, and
4096 updates per vertex on average (from left to right) and 100,000 vertices.
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Figure 12-3: Time to compute one Pagerank iteration on each of the storage formats.
The graph has 256, 1024, and 4096 updates per vertex on average (from left to right)
and 100,000 vertices.

best for adding edges, but does worse with the scanning operations since there are

now much more cache misses on the vertices themselves. Overall, we see that PPCSR

is good balance that performs reasonably well on many different scenarios for many

operations.
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Figure 12-4: Time to construct various real-world graphs using the dynamic graph
storage formats. The sizes of graphs can be found in Figure 9-5.
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Figure 12-5: Time to compute a sparse matrix, dense vector multiplication using the
dynamic graph storage formats. The sizes of graphs can be found in Figure 9-5.
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Figure 12-6: Time to run an iteration of Pagerank using the dynamic graph storage
formats. The sizes of graphs can be found in Figure 9-5.
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Conclusion

I have shown how a seemingly computation-bound application can be solved using

a commodity multicore through the combination of careful performance engineering

and algorithm design.

The alignment pipeline composed of Quilter and Stacker described in Part I

provides the first fast and accurate multicore alignment pipeline that can align data

at TB/hr pace using commodity multicore hardware without compromising alignment

accuracy.

The design of Quilter and Stacker was, to an extent, multicore-centric. The

development was principally performed using a single 18-core workstation and the

main test dataset was the relatively small 550GB stack from mouse50. Through careful

algorithmic design and careful consideration of how Quilter and Stacker’s memory

requirements scale with dataset size, these algorithms easily scaled to datasets 100x

larger. Furthermore, the standard performance optimizations I employed to improve

performance in the shared-memory setting was translatable to the distributed cluster-

computing setting through coarse-grained parallelization across sections facilitated by

Stacker’s use of “associative” elastic transformations.

The performance of the alignment pipeline was achieved, in part, through aggressive

downsampling of input images — an “optimization” that is often deemed unsuitable for

Connectomics due to its demand for highly accurate alignments. As I have illustrated,

however, much of the performance benefits of downsampling can be achieved without

sacrificing accuracy by using machine learning techniques to distinguish between highly-

reliable and not-so-reliable results produced by a fast, but sometimes inaccurate, code

path.
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I suspect that there are other instances where techniques such as frugal snap

judgments may be applied, with little labor, to achieve more advantageous performance–

accuracy trade-offs, especially in other image processing pipelines. Applying it to

perform real-time object detection seems like a natural area to explore, especially in

restricted settings (e.g. stop sign detection).

I have also described PCSR, a dynamic, graph storage format based on the packed

memory array. I find that for slightly more storage and query time, I am able to

achieve similar mutability speeds to that of the adjacency list. CSR was unable to

handle many inserts in a reasonable amount of time. PCSR was orders of magnitude

faster for inserts and updates than CSR, while maintaining similar graph traversal

times. Lastly, I show how PCSR can be parallelized and achieve 8x speedups on an

8-core machine.

The growth of social networks and other dynamic graphs necessitates the need for

efficient, dynamic graph structures. PCSR is a basic, dynamic graph storage format

that can fit into existing graph processing frameworks and support fast insertions with

comparable traversal times.
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Appendix A

Connectomics

Connectomics is the creation and study of the map of connections in an organism

nervous system. The goal is to generate a graph of the neurons that make up the

tissue [42]. Neuroscientists hope to use this graph to help understand and treat a

variety of psychopathologies.

For a more thorough introduction to the field of Connectomics see [41,42,57,63,66]

Connectomics Big-Data Challenge

The algorithms and systems designed for Connectomics must meet a grand "Big Data"

challenge. [42,49] Even small volumes of tissue produce data of staggering scale: a tiny

1𝑚𝑚3 volume produces petabytes of data; a 1𝑐𝑚3 volume (mouse brain) produces

exabytes; and a 10𝑐𝑚3 volume (human brain) produces zettabytes (1 billion terabytes).

Systems capable of processing large volumes of high-resolution electron microscope

imagery are vital to the science of Connectomics. It is not possible to merely operate

on lower-resolution images or choose to process smaller volumes: fine-grained structure

such as vesicles and dentritic spines are not visible at lower resolutions, and smaller

volumes fail to capture whole-neurons whose typical length is greater than 1𝑚𝑚 [42,43].

Even if one’s goal were only to analyze statistical properties of the human connectome,

it would remain necessary to process large data sizes.
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Connectomics Pipeline

The Connectomics pipeline is as follows:

1. The brain is embedded in a plastic-like laminar
2. The brain is sliced into 30 nm slices
3. Each slice is imaged with a electron microscope at 3 nanometer resolution1

4. The individual images are then globally aligned in both 2D and 3D
5. The images are segmented to identify neurons, synapses, and connections
6. These objects are traced through the 3D volume to create a full neural graph

Previous work has also been done on developing a pipeline for high throughput

Connectomics on multicore machines, however, this work took aligned images as input

and focused on steps 5 and 6 [63].

1These images are often compressed by as much as 10x using JPEG2000, or similar, compression
algorithms.
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