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Abstract

PowerShell is a popular scripting language due to its widespread use and access to
critical system functions. However, these factors also contribute to its popularity
amongst malware creators. In addition to the extensive access they can achieve with
PowerShell, attackers can also obfuscate their PowerShell to make it more difficult to
detect. Current detection methods rely on detecting signatures of known malicious
scripts which can be easily broken with simple obfuscations. This work seeks to find
a more abstract representation of script functionality using Abstract Syntax Trees so
that an unseen obfuscated script can be detected if a related script is already known
malware. We determine that simple AST based features such as node count and
depth along with distance measures calculated from the node types and node orders
within the AST are fairly sufficient to attribute obfuscated scripts to their originating
script.
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Chapter 1

Introduction

Security and malware detection are a major concern facing computer scientists and

users. Attackers create malicious software and scripts which exploit vulnerabilities in

the operating system or other programs in order to gain access to sensitive data and

critical system functions. They may steal or ransom the data or cause the system

to malfunction, impairing the computer’s usability. This is especially concerning in

cases where the targeted software is extremely common or when the attack occurs on

a large network of machines which allow it to spread quickly. Defenders look for ways

to detect and stop these attacks before they can start. This can be done by static

analysis of the program via signatures of known attacks or by using machine learning

models.

PowerShell has become a popular scripting language due to its flexibility and access

to operating system services such as the file system and registry keys [10]. It is pre-

installed on Windows and has gained popularity on other operating systems over the

past few years with its cross-platform version. However, its power and widespread

use makes it a great tool and target for malicious attacks. Attackers are able to

execute their malicious programs in PowerShell without installing them on the ma-

chine, leaving little evidence of their activities [4]. Commands can also be converted

into non human-readable encodings, such as binary, in order to prevent detection of

well-known malicious scripts upon visual inspection. Traditional detection methods

10



calculate a signature for known malware that is used to detect that attack in the fu-

ture. The signature is created from static analysis of the original file and often cannot

be used to detect similar scripts with the same function. The attacker can simply

use obfuscation to break the signature. Obfuscation is the manipulation of a script

or piece of code that changes the code signature without changing its function. This

means that a defender must not only identify an existing attack and then create a

signature to detect it but they must do this for all slightly modified or obfuscated at-

tacks with the same essential function. In addition, freely available obfuscation tools

make it easy to modify a script enough to get past traditional malicious PowerShell

detection [1].

The fact that obfuscation is common in malware attacks might suggest that simply

detecting obfuscation is a suitable method of malware detection. However, PowerShell

may be obfuscated for benign as well as malicious reasons. A company or programmer

may want to protect intellectual property by obscuring the original program so that

another programmer cannot easily understand and duplicate it. This means that if

we simply detect obfuscation we may reject benign scripts as well as useful ones. On

the other hand, the purpose of obfuscating malicious PowerShell is to create enough

difference between the obfuscated file and the original that the obfuscated file cannot

be detected as malicious. Often attackers will apply multiple types of obfuscation

to a script in order to increase this distance. An obfuscated script which breaks

malware signature detection is called an adversarial example, which finds a blindspot

in a model for malicious Powershell detection and exploits it to bypass the detector.

We can attempt to find this blindspot by determining a distance measure that is

maximized where a malicious PowerShell is able to evade detection [6]. If we can

find this blindspot we can also correct for it by augmenting a malicious dataset with

automatically generated adversarial examples and training new models which are

robust to them. For instance, we could learn a model which classifies an adversarial

example as originating from a particular malware script and prevent it from being

run.
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Due to these factors, there is emerging research into applying machine learning to

the problem of malicious PowerShell detection. The benefit of using machine learning

is that models can be trained to recognize the structure and function of a program

which means we do not need to manually create a signature for new malware or even

identify new attacks ahead of time in order to detect them. Current machine learning

exploration for detecting malicious PowerShell includes NLP and convolutional neural

network methods as well as Abstract Syntax Tree (AST) based structural analysis

of programs[2]. We explore this last method and find a representation of PowerShell

that can accurately describe the function of the program.

It has been shown that simple features of a PowerShell AST can be used to ac-

curately classify malware families [8]. AST are data structure representations of

programs which describe the structure of the program, such as the one shown in 1-1.

AST nodes represent functional blocks in the program such as variable assigment

while AST branches represent the control flow of the program such as if statements

and for loops. Previous work identifies node types, subtree node count, and depth

as features that can help classify families of malware. This suggests that including

more information about AST structure as features could reveal more about script

functionality. In addition, the features mentioned in previous work could be applied

to other problems such as associating obfuscations with original scripts, since the

classification tasks are similar.

1.1 Research Questions

The core aim of this research is to identify a useful representation for the function

of PowerShell, independent of various obfuscation methods and manipulations of the

code.

12



Figure 1-1: Visual example of PowerShell AST: Each node
type is named along with the lines it encompasses. Child

nodes are shown connected to their parents with lines
between the nodes.
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1.1.1 Exploring Representations

First, we would like to know what PowerShell scripts look like, with and without

obfuscation. Specifically, what can we deduce from looking at a script visually? What

can static inspection learn about a script? We expect that static inspection can learn

a lot about the function of a script because it examines the structure of the script as

well as its characters. We explore this visually by reading and comparing PowerShell

in our dataset with obfuscations we create with freely available tools. We explore

this quantitatively by creating character and AST representations of our dataset and

obfuscations and comparing them with similarity and difference measures.

1.1.2 Measuring Difference

Next, we would like to compare our obfuscated and non-obfuscated PowerShell in

a useful way. How can we represent scripts such that an obfuscated script can be

attributed to its non-obfuscated counterpart? We expect to find solutions in the AST

representation of PowerShell since this is a simple way of describing the structure of a

script. We explore distance measures calculated from AST features to find measures

which are robust to obfuscation.

1.1.3 Detecting Difference

Finally, we ask ourselves if our representations of PowerShell can accurately measure

difference in a way that is useful for detection. We determine a set of features based on

our distance measures which best represent the function of the program. We explore

the usefulness of these measures using simple models to assign obfuscations to their

original PowerShell.

1.2 Contribution

In this work, we will describe and implement a method for creating an augmented

dataset of obfuscated PowerShell including original file labelling. We will also provide

14



extensive analysis of the dataset and several features for representing the structure of

PowerShell. We will demonstrate the usefulness of these features by training models

to assign obfuscated PowerShell to its original script and implement methods for

extracting these features.

1.3 Document Structure

In the remaining sections we will discuss the following topics: first, existing tools

for obfuscating PowerShell as well as the most recent methods of detecting malicious

PowerShell in Chapter 2. Next, we describe the dataset in Chapter 3 and the methods

we use to explore the effect of different obfuscation methods on PowerShell scripts

in Chapter 4. We discuss the most useful features obtained from our exploration

and their ability to model script functionality in Chapter 5. Finally, we discuss the

accuracy of our models and further exploration needed to improve them in Chapter

6.
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Chapter 2

Related Work

2.1 Obfuscation Tools

PowerShell obfuscation can be described in a few categories, token based, AST based,

encoding, compression, launcher and cradle obfuscation. We focus on freely avail-

able obfuscation tools including Invoke-Obfuscation, Invoke-CradleCrafter and

ISESteroids each of which perform a few of these types of obfuscation. Token or

character based obfuscation changes the characters in a script and is often applied

only to one token type at a time such as variables or command names. Token based

obfuscation is also the most visually apparent, as shown in Figure 2-1. AST based

obfuscation manipulates the structure of the script by reordering interchangeable ele-

ments such as variable assignments, as shown in Figure 2-2, or parallel method calls.

Scripts can also be obfuscated by encoding them, for example as hex or binary strings,

or by compressing them into a one line command. Finally, launcher and cradle tech-

niques change the way a command is run. Launcher obfuscation creates a separate

command or executable to be launched from another tool such as Python or the na-

tive command line and cradle obfuscation creates a new command which downloads

the original command from another source. Both of these obfuscation types create

potential for the command to be invoked unbeknownst to the user and run without

leaving a trace on the local machine.
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Figure 2-1: Visual Example of Token Obfuscation of
Arguments: Character casing is changed and apostrophes

have been inserted in the strings.

Figure 2-2: Visual Example of AST Obfuscation of
Assignment Blocks: The order of parameter assignment is

changed.
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Invoke-Obfuscation [3] is a powerful open source obfuscation tool. It includes

commands for many categories of obfuscation including:

• TOKEN: uses string manipulations such as concatenation, random casing, re-

ordering with formatting methods, and adding tick marks in the string for the

following token types:

– STRING, COMMAND, ARGUMENT, MEMBER, VARIABLE, TYPE, COMMENT,

WHITESPACE

• AST: reorders the following AST node types:

– NamedAttributeArgumentAst, ParamBlockAst, ScriptBlockAst,

AttributeAst, BinaryExpressionAst, HashtableAst, CommandAst,

AssignmentStatementAst, TypeExpressionAst, TypeConstraintAst

• ENCODING: encodes the entire command as either:

– ASCII, HEX, OCTAL, BINARY, SECURE STRING (AES), BXOR,

SPECIAL CHARACTERS, WHITESPACE

• COMPRESS: convert the command to a one line command and compress to base

64

• LAUNCHER: convert command to an executable file of the following types:

– PS, CMD, WMIC, RUNDLL, VAR+, STDIN+, CLIP+, VAR++, STDIN++,

CLIP++, RUNDLL++, MSHTA++

Invoke-CradleCrafter [4] is an extension of Invoke-Obfuscation which focuses

on obfuscating PowerShell as remotely downloaded executables. The scripts will

either be downloaded to memory or disk in several languages and forms:

• MEMORY: Downloads into memory as PS, .NET, CERTUTIL in formats:

– STRING - the command as a single string

18



– WEBREQUEST - a readable stream, byte array, or structured data

– COMOBJECTS - objects which are downloaded by Windows program inter-

actions

– CSHARP - compiled C# either inline or beforehand

• DISK: Downloads onto disk via a local program

– SYSTEM, BITS, BITSADMIN, CERTUTIL

ISESteroids can apply character, number, or binary encoding obfuscation to pa-

rameters, variables, functions and strings. It can also remove comments and blank

lines and apply unique id obfuscation to the script id. ISESteroids is a native

program which includes a graphical tool for creating its obfuscations making the

individual commands difficult to run automatically [5].

2.2 Deep Learning Methods

Many methods have been borrowed from static analysis of scripts as well as other areas

of machine learning and applied to this problem. Victor Fang [1] describes FireEye,

an NLP system for interpreting a PowerShell script by stemming commands. FireEye

first decodes and tokenizes the script before stemming tokens to their semantic base.

The decoding step allows FireEye to handle remote download and executable malware

created by cradle and launcher obfuscation techniques. Decoded tokens are then used

to create a feature vector for the script which is classified with a supervised algorithm

such as Kernel SVM.

Hendler et al. [7] describes a method for detecting malicious PowerShell using

computer vision and NLP techniques. The computer vision techniques encode the

first 1024 characters of a Powershell command as a matrix where each row is a one

hot vector with zero entries except for the code of the character at that index and

apply a CNN to the matrices. The NLP techniques encode the command as a vector
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of length 1024 containing the code for each of the first 1024 characters and feed this

vector into an RNN. Both of these techniques focus on the character content of the

script which as we have discussed can be easily manipulated through obfuscation.

Mou et al. [2] discusses a coding criterion based on AST representations of programs

for use in deep learning. The criterion is used to produce a vector representation of

the program that can be fed into a deep learning algorithm. The criterion uses AST

node granularity because the finite number of node types makes learning feasible.

A single neural layer codes each AST node using the representations of its children

thereby learning a vector representation of a program from its structure.

Rusak et al.[8] found that families of malicious PowerShell can be classified fairly

accurately using AST analysis simply for node count and depth. It further proposed

a system for learning vectorized AST representations for more robust classification,

including a distance measure for AST subtrees using the similarity between different

node types. These same features may also be useful for associating obfuscated scripts

with their original parent script.

2.3 De-Obfuscation

Some work has also been done to apply de-obfuscation to PowerShell before malware

detection analysis [9]. PowerDrive implements a process which requires analyzing

the script for layers of obfuscations before performing layer by layer de-obfuscation.

Before de-obfuscation the script is cleaned to remove syntax errors or debugging

commands before the proper de-obfuscation is performed. De-obfuscation can mean

using a regex to find and remove common obfuscation patterns, such as concate-

nation in string obfuscation. It can also mean running an encoded script using

Invoke-Expression and intercepting the decoded text of the script at run-time.

Once a layer has been de-obfuscated the script is run to ensure that no errors were

made to corrupt its execution. This is a problematic approach when dealing with

malware because running the de-obfuscated script can potentially infect the system.
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We can solve this by running the script in a virtual machine sandbox, but this requires

extra steps to setup and partially defeats the purpose of malware detection because

the scripts must still be run.

We employ obfuscation tools to create a dataset of files which are known to be

obfuscated examples of particular scripts. We apply knowledge gained by exploring

AST representations of PowerShell to classify malware families to our new goal of at-

tributing obfuscations to their originating script. Finally, we consider the application

of decoding tools to expand our ability to classify additional types of obfuscation.
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Chapter 3

Dataset

We begin with a large corpus of PowerShell from Palo Alto Networks [11]. The

dataset consists of a 3.76GB folder of 412,075 PowerShell scripts of unknown risk and

a smaller set of 4,079 known malicious PowerShell scripts labeled with family types.

In analyzing our dataset we discover that we have a large range of file sizes, shown in

Figure 3-1. However, while our largest file is 18.9MB, our average file size is .01MB

and most of our files are under 1MB. Since large files represent a small subset of our

data, approximately 200 or .04% of the data, and some of our obfuscation tools do not

obfuscate beyond a certain number of characters, we choose to exclude larger files.

We exclude these files because we need to use these obfuscation tools with character

limits and we expect that large files are also less likely to be used by attackers due to

the limitations of these available tools.

3.1 Data Augmentation

We augment a subset of our dataset by obfuscating the scripts using freely available

tools. We automate the process to obfuscate the scripts first using a single obfus-

cation type and then subsequently obfuscate the output scripts. This both mimicks

techniques used by attackers to bypass malicious PowerShell detectors and ensures

that we observe all possible combinations of obfuscation types. We use a subset of

the data due to time constraints and because we expect that the effect of obfuscation
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Figure 3-1: Dataset File Size: Most files are under 1MB with
a small number ranging up to 19 MB

is similar on all files. We store our augmented data remotely since the number of ob-

fuscations grows exponentially with each iteration of obfuscation applied. We apply

each obfuscation once and then obfuscate each of those files again with the exception

of LAUNCHER, ENCODING and COMPRESS obfuscations. We exclude these because they

all involve obfuscation methods which must be de-obfuscated before extracting AST,

as we describe in 4.1. We are left with 33 obfuscation types listed in Table 3.2 which

are each applied once to the original files and once again to each obfuscated file. In

total we obfuscate ten original files and create 1,122 obfuscations, 33 single type ob-

fuscations and 1,089 chained obfuscations, for each of the ten original files. This gives

us a total augmented dataset of 11,220 files in our augmented dataset. The relative

sizes of our two datasets is summarized in Table 3.1
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Table 3.1: Dataset Size: Number of Files in Full and Augmented Dataset [8]

Dataset Data Folder Number of Files

Full Unknown Security 412,075
Malicious 4,079

Augmented

Original Files (from the full dataset) 10
Obfuscations Per File 1,122
Total Obfuscated Files 11,220
Unrelated or Other files (includes original files) 12

Table 3.2: Obfuscation Types: All Obfuscation Commands Applied [3]

Obfuscation Type Token Type Obfuscation Method

TOKEN

STRING CONCATENATE
REORDER

COMMAND
TICK
CONCATENATE
REORDER

ARGUMENT

RANDOM CASE
TICKS
CONCATENATE
REORDER

MEMBER

RANDOM CASE
TICKS
CONCATENATE
REORDER

VARIABLE RANDOM CASE

TYPE CONCATENATE
REORDER

COMMENT REMOVE
WHITESPACE RANDOM
ALL ALL

AST

NamedAttributeArgumentAst

REORDER

ParamBlockAst
ScriptBlockAst
AttributeAst
BinaryExpressionAst
HashtableAst
CommandAst
AssignmentStatementAst
TypeExpressionAst
TypeConstraintAst
ALL

STRING
CONCATENATE
REORDER
REVERSE
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Chapter 4

Methods

We began by exploring obfuscation techniques for PowerShell scripts and their effect

on the look and structure of the code. We explore representations of these scripts

that are robust to many types of obfuscation. We select features which contribute to

these representations and automate their extraction. Finally, we use these features to

explore and learn simple models for attributing obfuscated PowerShell to the original

script in order to analyze their effectiveness.

4.1 Obfuscation

We implement automated obfuscation in Python with the following process, using one

of the tools mentioned in Section 2, Invoke-Obfuscation. Invoke-CradleCrafter

is not included because it creates a separate command which either launches or down-

loads the desired script. This means that we would have to recover the original script

before extracting an AST, likely resulting in an identical AST. ISESteroids is not

included since it uses a GUI to select individual commands to run obfuscation and

therefore cannot be easily automated.
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def obfuscate_random(dataset):

# Choose ten random file in the dataset

original_files = random.choice(dataset , 10)

#Iterate through the files

for original_file in original_files:

# Obfuscate with each available command and write obfuscated

scripts to new files

for obfuscation_command in obfuscation_tools:

# Obfuscated output filename will include original name

and type of

obfuscation

new_obfuscated_filename = original_file.name +

obfuscation_type + ".

ps1"

# A command to open powershell , run obfuscation and

write the result to a

file

cmd = "powershell.exe -command obfuscation_command -

script original_file -

out

new_obfuscated_filename

"

# Open a subprocess to run the command , write logging to

stdout

process = subprocess.Popen(cmd , stdout=sys.stdout)

process.wait()

We first select ten random files from our dataset. We systematically apply each

available obfuscation by deploying a Python process to run a PowerShell script which

iterates through all available obfuscation commands in Invoke-Obfuscation. Finally,

we write the obfuscated command to a new file whose name includes the original file
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name and the type of obfuscation applied. In this way we can easily compare the

same obfuscation methods across files as well as different obfuscation methods for the

same file.

For our analysis we focus on three major types of obfuscation, token obfusca-

tions, string obfuscations and Abstract Syntax Tree obfuscations. Each overarch-

ing category includes sub-types which refer to the specific item being obfuscated

(STRING, COMMAND, VARIABLE, WHITESPACE, AST node type) or mode of obfus-

cation (CONCATENATE, RANDOMCASE, REVERSE, RENAME, REORDER) as described in

Table 3.2. Launcher, compress and encoding obfuscations are excluded because they

involve converting the command into a format that must first be decoded into the

original script before its AST can be extracted. ENCODING obfuscations convert the

script into another character format which the PowerShell AST extractor does not

handle. COMPRESS obfuscation forces the code into a single line and applies com-

pression which may keep us from extracting a full AST. LAUNCHER obfuscations are

similar to the techniques implemented in Invoke-CradleCrafter which create a new

command to launch the original script rather than obfuscating the script itself.

Our PowerShell for creating obfuscations takes the following steps:

1. Given a file name extract the file text as $OriginalScriptBlock.

2. Create nested arrays defining the available commands in Table 3.2

3. Loop through the arrays and concatenate each string with ∖ to create $InvCommand,

for example: TOKEN∖STRING∖1 which performs a token obfuscation on all strings

by concatentation.

4. Call Invoke-Obfuscation with the extracted $OriginalScriptBlock and our

created command $InvCommand, in the form:

Invoke-Obfuscation -ScriptBlock $OriginalScriptBlock -Command

$InvCommand -Quiet

5. Write the output obfuscation to $OutputFilePath
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Once we have applied each obfuscation type to the original file we can iterate

through the new obfuscated files and apply the same obfuscations again to obtain files

with multiple types of obfuscation. This is a common technique used by attackers

to increase the likelihood that their script will break signature detection. We can

do this many times in order to explore whether the impact of obfuscation decreases,

increases or remains constant with each iteration.

4.2 AST Extraction

As we create each obfuscation we also extract its AST. An AST describes the control

sequence of a program and includes nodes for functional blocks in PowerShell, such

as a variable assignment or function call. In PowerShell there are a limited number of

AST node types making AST based analysis more tractable than other platforms. To

perform the extraction we import a python script from previous work done in ALFA

Group [8]. The script parses a PowerShell script and writes a text file which lists each

node type along with its parent and the lines it encompasses.

4.3 Visual Analysis

To begin our analysis we ensure that the proper obfuscation has been applied by

examining a few files visually as shown in Figures 2-1 and 2-2. We expect to be able to

see changes immediately for string obfuscations since this type of obfuscation changes

the readability of the code. For AST obfuscations we can inspect the generated AST

files and ensure that the order or type of AST node varies in some places. We do

not expect the length of the AST file to change very much in either case since these

obfuscations simply modify strings or change the order of AST nodes. These methods

for visual observation will also inform our later distance metric exploration since we

expect certain changes in the file for certain obfuscation types.
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4.4 Distance Measures

Once we have obfuscated scripts we can use them to calculate distance measures.

We begin with static analysis techniques by calculating cosine distance between the

distribution of characters in the original and obfuscated files. We then calculate a

similar cosine distance between the distribution of AST node types in both files. In

addition to cosine distance we calculate a hamming distance between the AST and

also extract bigrams of child and parent node types from the AST to calculate cosine

and hamming distances.

4.4.1 Cosine Distance

We begin by calculating cosine distance between character and AST node type dis-

tributions for our obfuscated files versus their original file. We use spatial cosine

distance from SciPy.org for the calculation which calculates 1− 𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦.

Character Count

We iterate through each character in our original script and create a dictionary where

the keys represent the characters in the script and the value is the number of times

it appears in the script. We do the same for the obfuscated script. Once both dictio-

naries are created we create a vocabulary by combining the two sets of keys. We then

iterate through the vocabulary and create two vectors with equal length to the vocab-

ulary where each value is the number of times that character appeared in the script.

We calculate the cosine distance between these two vectors as our distance metric.
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# Create each vocabulary

original_vocab = {}

obfuscated_vocab = {}

# Iterate through the characters of the original script

for c in original_script.get_characters ():

original_vocab[c] += 1

# Iterate through the characters of the obfuscated script

for c in obfuscated_script.get_characters ():

obfuscated_vocab[c] += 1

# Create a combined vocabulary

vocab = set(obfuscated_vocab.keys() + original_vocab.keys())

# Create vectors for each script

original_vec = np.zeros(len(vocab))

obfuscate_vec = np.zeros(len(vocab))

# Iterate through the vocabulary and assign vector values

for i, v in enumerate(vocab):

original_vec[i] = vocab[v]

obfuscate_vec[i] = vocab[v]

# Calculate the cosine distance

cos = spatial.distance.cosine(original_vec , obfuscate_vec)

AST Node Type

We use a similar process in calculating cosine distance for AST node type except that

we iterate through the nodes in the AST text file rather than the characters of the

script. Therefore our vocabulary keys are AST node types and the values are the

number of times that node type appears in the AST.
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4.4.2 Hamming Distance

# Create empty arrays

original_nodes = []

obfuscated_nodes = []

# Iterate through the original AST file

for node in original_ast_file.get_nodes ():

original_nodes.append(node)

# Iterate through the obfuscated AST file

for node in obfuscated_ast_file.get_nodes ():

obfuscated_nodes.append(node)

# Get the minimum length for truncation and maximum length for

scaling

minlength = min(len(original_order), len(obfuscate_order))

maxlength = max(len(original_order), len(obfuscate_order))

# Get an array that is True where the two arrays differ

differences = np.array(original_order[:minlength]) != np.array(

obfuscate_order[:minlength])

# Calculate Hamming distance

ham = (np.sum(differences) + (maxlength - minlength))/float(

maxlength)

We iterate through the AST text file and create two arrays which are an ordered

list of the node types present in the file. We sum the number of locations at which

the two arrays differ. We handle different length AST by truncating both lists to the

minimum length and adding the difference between the two lengths to the sum of

differing node types. We then divide by the maximum length in order to scale the

distance relative to AST size.
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4.4.3 Bigram Distances

The AST text files generated list each child node along with its parent. We parse the

text files, treating each of these parent child pairs as a single node, and apply the

same distance metrics from earlier sections.

Cosine

In this case the cosine distance is calculated from the distribution of parent child node

pairs in the AST. We create a dictionary where the keys are strings containing the

two node types separated by a comma and the values are the number of times that

parent and child combination appeared. We then proceed with the same method as

Section 4.4.1 using this modified vocabulary

Hamming

We calculate bigram hamming distance just as in Section 4.4.2 except that the value

at each index in the node list is now a parent child pair.

4.5 Extracting Features and Labels

In order to evaluate our distance metrics we employ them as features in a model that

classifies obfuscated files to their original file. We have stored the AST in folders

bearing the name of their original file. This will serve as the labeling scheme for

our dataset. We extract the leaf directory name and assign it a class number which

becomes the label for each file within the directory, resulting in ten labels {0 − 9}.

We split the data into train and test sets by shuffling the dataset and selecting the

last twenty percent of it as test files. We use this approach so that we have balanced

classes in both our train and test sets. We use the same train and test sets for all of

our modeling experiments
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4.5.1 Distances to Original Files

Our features are the obfuscated file’s distance to each original file in our augmented

dataset. We calculate four feature vectors, one for each of our distance metrics, of

length ten for each obfuscated file in our augmented dataset. Each index of the feature

vectors holds the value of the distance metric for the obfuscated file compared to the

original file whose label corresponds to that index.

4.5.2 AST Structure

We draw upon work done in Rusak et al. [8] to extract two additional features from

our AST. We parse the AST to calculate the depth and total node count of the tree.

We use these two features alone in baseline experiments and include them with our

distance features in later experiments to determine if our features are complimentary.

4.6 Modeling

In order to evaluate the usefulness of our features and distance measures we use them

to learn simple models. We test three types of models from Scikit-learn: k-Nearest

Neighbor classification, Random Forest classification, and Logistic Regression. We

train each model on our AST structure features alone as well as each distance type

feature vector separately and all features together.

We experiment with three models. Once again drawing upon previous work [8], we

experiment with a Random Forest classifier with a maximum depth of 11 and a ran-

dom initialization. We also experiment with a simple k-Nearest Neighbor algorithm

which assigns labels based on the nearest five previously seen examples. Finally, we

apply a Logistic Regression model with no regularization.
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Chapter 5

Experiments and Results

5.1 Experimental Setup

We design our experiments to quantitatively explore the effect of obfuscations on

a PowerShell script. We would like to compare our obfuscated and non-obfuscated

PowerShell quantitatively and determine how we can represent scripts such that an

obfuscated script can be attributed to its non-obfuscated counterpart. To this end

we compare obfuscations to their original scripts using several distance measures and

separately compare non-obfuscated scripts to each other using the same measures.

Finally, we use these distance metrics and features to experiment with models and

determine if our representations of PowerShell can accurately measure difference in a

way that is useful for detection.

5.1.1 Augmenting Data

As described in section 4.1 we select ten random files from our dataset to create

an augmented dataset of obfuscated files. We create obfuscation files for each type

of obfuscation we are interested in. We have a total of 33 obfuscation commands

between TOKEN, STRING, and AST command which results in 1,122 obfuscated file

per original file, 33 single obfuscations and 1,089 files with two obfuscations applied

in series as described in Table 3.2. We use a PowerShell script provided in Rusak
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et al. [8] to extract AST from each obfuscation. This script requires a Windows

environment which we access through the CSAIL OpenStack experimental windows

2012 image. This also allows us to access the original dataset and store large volumes

of generated obfuscations and AST remotely.

5.1.2 Exploring File Distances

We evaluate our four distance metrics by comparing the distance between an origi-

nal and an obfuscated file to the distance between unrelated files. We plot several

histograms for each file showing the distribution of each distance metric for three

comparisons: all obfuscations of the file, the second obfuscation applied versus the

first obfuscation applied, and all obfuscations of the file versus all other original files.

We also split these histograms into only AST obfuscations and only string based ob-

fuscations in order to compare the performance of different metrics for different types

of obfuscation.

5.1.3 Modeling

We extract feature vectors for each of our original and obfuscated files for each distance

metric. We assign each original file with an integer class label {0-9} and label our

feature vectors with the number corresponding to each file’s original file. We split the

data into 80% train and 20% test and apply the same split to the feature vectors for

each distance metric.

We experiment with three different models. The first is Random Forest Classifi-

cation in order to compare our results to previous work done in Rusak et al. [8].

The second is k-Nearest Neighbor classification, because the algorithm assigns new

examples to groups of previously classified similar examples which is identical to the

process we would like to apply to our problem. Finally, we experiment with Logistic

Regression classification as a baseline. We train each model with our training vectors

for each distance metric and compare the accuracy for each model across metrics.
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5.1.4 Testing Obfuscations

Once we have obfuscated our scripts, it is important to test our obfuscated code to

ensure that the functionality is preserved. To do this safely we can run our scripts

within a sandbox and check that the malicious payload is delivered. In addition,

we manually inspect files which are outliers in our data exploration. We use this

inspection to determine what is different about these files and inform our future data

and distance metric exploration.

Sandbox Setup

We set up Virtual Box on an Ubuntu 18.04LTS machine that we disconnect from the

network. We load a Windows 10 image into a new virtual machine in Virtual Box.

In order to run the necessary scripts we move them out into our repository which we

have pulled onto the virtual machine. We do not have storage constraints in this step

since we only need to test a small number of files, one for each obfuscation type and

a number of outliers.

Determining Parameters

In order to run these scripts we must determine their dependencies as well. We select

one of our random scripts which does not need parameters to run each obfuscation

type for easy testing. For our outliers we examine the original script to determine the

necessary parameters and use the same parameters to run the obfuscated outliers.

5.2 Results and Discussion

5.2.1 Distance Metrics

Cosine Distance

We start with a cosine distance metric for character distribution because it uses no

information from the structure of the script and provides a good baseline for us to
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Figure 5-1: Scatterplot of Obfuscated Script Character and
AST Similarity with Original: AST similarity is high while

character similarity is quite low and more variable.

improve upon. Our first improvement is to incorporate the structural information

contained in AST by computing a cosine distance for AST distribution. Since we

are not analyzing the order of AST nodes with this metric we are still including only

a minimal amount of structural information. We compare cosine distance measures

for character distribution and AST node type distribution by plotting their distance

scores across several obfuscation techniques for a single file in Figure 5-1. This plot

suggests that AST based measures may be the most useful in determining script

similarity and that we should explore other AST based analysis.

Character Count

As expected character obfuscations can be shown to impact character based similarity

measures more strongly. Additionally, the effect of some obfuscation techniques is

certainly more pronounced than others.
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Figure 5-2: Histogram of Obfuscated Script AST Similarity
with Original: cosine similarity is one for all AST files but

varies for string based obfuscations.

AST Node Type

AST node count based cosine similarity is relatively stable across all techniques in

Figure 5-1. However, the AST based metric seems to be impacted to a greater degree

by character based obfuscation as shown in Figure 5-2. These cases may be an example

of a truncated script or an obfuscation which has altered the function of the code.

In addition, the encoding and compress obfuscations have low similarity. We know

that this is likely because these obfuscations make recovery of the AST impossible

without first de-obfuscating the script.

Next, we want to determine how effective our cosine distance metric between AST

distributions might be for distinguishing between an obfuscated file created from the
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original file and an unrelated file. To this end we plot a histogram of the cosine

distance of obfuscations to the original file against the cosine distance of the same

file to other original files in Figure 5-3. This figure shows that while there is some

overlap most obfuscated files will have a lower distance from the original file than

an unrelated file. This trend suggests that we can threshold the cosine distance

of a file from an original script to classify the script as an obfuscated version of the

original. However, as shown in Figure 5-4, the threshold between an obfuscated script

cosine distance and an unrelated script cosine distance can vary based on the original

file we choose, making a single thresholding value inaccurate for multiple scripts.

We can also see this overlap in Figure 5-5 which shows the aggregated histogram

of obfuscated file distance versus unrelated file distance for all files. There is a lot

of overlap of obfuscated file distances with unrelated file distances throughout the

range of possible distances. If we examine Figure 5-6, this overlap is unsurprising.

The figure shows the cosine distance for all original files against all others and the

majority of the distances are very small, so we can conclude that cosine distance does

not distinguish between unrelated scripts very well.

We also plot the cosine distance histogram for AST only obfuscations versus char-

acter based obfuscations to determine if this metric might work better for one type of

obfuscation over another. As we can see in Figure 5-7 this seems to be partially true.

Character based obfuscations have higher distance from the original in general. We

might not expect this since character obfuscations should not impact the AST struc-

ture but this could be a result of corrupting the script through obfuscation. There

is also a large spike in character obfuscations which have very low distance from the

original so we would need to explore those further to determine why they do not

follow the pattern.

Hamming Distance

We continue to explore additional structural information of the script by computing

Hamming distance between the list of nodes in the AST. The hamming distance is

calculated by computing the percentage of equal indexes from an ordered list of nodes
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Figure 5-3: ISECreamBasic Cosine Distance Histogram for
Obfuscated Scripts vs. Unrelated Scripts: It is clear that

obfuscated scripts have a lower distance score than unrelated
scripts with some exceptions.

Figure 5-4: CheckTimeServers Cosine Distance Histogram for
Obfuscated Scripts vs. Unrelated Scripts: The threshold at
which it is likely a script is unrelated to the original is much

lower here.
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Figure 5-5: Cosine Distance Histogram for All Obfuscated
scripts vs. All Original scripts: The two histograms overlap

throughout most of the range of distances.

Figure 5-6: Cosine Distance Heatmap for All Ten Original
Files: Most distances are very low with the exception of a few

in mid range.
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Figure 5-7: Cosine Distance Histogram for AST Only
Obfuscations vs. Character Only Obfuscations For All

Obfuscated Files: There is a large spike at low distance for
both types but character based distance is higher for the

remaining examples.

in the AST. This method incorporates information about when an AST node appears

in the script into our distance metric. Figure 5-8 shows the histogram of obfuscated

file hamming distance from the original versus unrelated file hamming distance. Here

we see much higher distance values than we did for cosine distance for both obfuscated

and unrelated files. We expect this because the hamming distance incorporates more

structural information about the script. We also see a slightly more pronounced

difference between the distance for an unrelated file and an obfuscated file when we

plot this comparison for all files in Figure 5-9. As we confirm in Figure 5-10, most

unrelated files have a distance of 0.85 or greater from the original file while obfuscated

files have distances over the entire range. Even though there is still significant overlap

we expect that hamming distance will be a more predictive feature for our attribution

models.

We again compare hamming distance for AST and character based obfuscations in

Figure 5-11. Here we continue to see a spike for both types at low distances. However,

this time AST obfuscations show very high distance values along with the character
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Figure 5-8: IPV4NetworkScan Hamming Distance Histogram
for Obfuscated Scripts vs. Unrelated Scripts: While there is
overlap between the histograms at high distances, unrelated

files do not have distances less than 0.85.

Figure 5-9: Hamming Distance Histogram for Obfuscated
Scripts vs. Unrelated Scripts for All Ten Original Files:

Unrelated files distances are clustered near 1 while obfuscated
file distances are spread over the entire range.
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Figure 5-10: Hamming Distance Heatmap for All Ten
Original Files: All distances are over 0.7.

obfuscations. We expect this for AST obfuscations we are now considering AST node

order within the script and AST obfuscation is likely to change the order of nodes.

This is less intuitive for character obfuscations since there should be no impact on

the type of node however it may be a result of script corruption. There is not much

difference in the distances between the two types for this metric so it is not likely to

perform better for one than the other.

Bigram Distances

Since incorporating structural information of the script improved our ability to dis-

tinguish between obfuscated and unrelated files, we incorporate more structural in-

formation by leveraging the available parent child relationships in the AST. The AST

files list parent and child nodes in pairs so we can easily treat these bigram pairs

as single nodes when parsing the AST. We expect this to result in higher distances

because there are 𝑛2 possible node types now where in the previous calculation there

were only the number of PowerShell node types, 𝑛.
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Figure 5-11: Hamming Distance Histogram for AST Only
Obfuscations vs. Character Only Obfuscations For All

Obfuscated Files: Both types include a spike at low distance
with most of the distribution at high distance.

Cosine Once again we examine the distributions of cosine distance for obfuscated

files versus unrelated files. In Figure 5-12 we see that using bigrams improves our

ability to distinguish unrelated files from obfuscated ones using cosine distance. Ob-

fuscated files have a large spike at low distance while unrelated files no longer include

this spike, despite the fact that they still have low distance measures. Unfortunately,

this trend is not seen in all files. Figure 5-13 shows the aggregated histograms for all

ten original files which very similar to the plot in Figure 5-5. We do see a small shift

toward higher distances for unrelated files when we examine the heatmap in Figure

5-14. We suspect that unrelated files have close distance measures as a result of the

small number of AST nodes used in PowerShell, since this means that all PowerShell

must use many of the same nodes.

Hamming We find that for bigram nodes, hamming distance of unrelated files is

even closer to one than for unigram nodes, as shown in Figure 5-15. However, the

distances for obfuscated files also increase. We expect this because there are a larger

number of possible parent and child node combinations and therefore it is more likely
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Figure 5-12: CheckTimeServers Bigram Cosine Distance
Histogram for Obfuscated Scripts vs. Unrelated Scripts:
Obfuscated scripts show a spike at low distance while

unrelated scripts are distributed over all distances under 0.5.

Figure 5-13: Bigram Cosine Distance Histogram for
Obfuscated Scripts vs. Unrelated Scripts for All Ten Original

Files: The two histograms overlap throughout most of the
range of distances with more volume of unrelated file distance

at lower distances.
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Figure 5-14: Bigram Cosine Distance Heatmap for All Ten
Original Files: Most distances are still very low but all have

increased somewhat.

for indexes not to match. We see the same trend in the aggregate histograms shown

in Figure 5-16. The distances for both unrelated and obfuscated files are higher than

for unigram hamming distance. We confirm this trend by examining the heatmap for

unrelated file distance in Figure 5-17. Overall this demonstrates that bigram hamming

distance is best at detecting unrelated file distance but not necessarily obfuscated file

distance.

Multiple Obfuscation Effects

We examine the difference in distance distribution between files which have been

obfuscated once and files which have been obfuscated twice, in order to determine how

multiple obfuscations impact our distance metrics. Figure 5-18 shows the distribution

of distances for single type obfuscated files against that of double type obfuscated files

for all distance metrics. In all cases the distance distribution is slightly higher for

double obfuscation than single obfuscation. We do not expect this to have much

impact on our cosine distance metrics given that unrelated files have varied distances
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Figure 5-15: IPV4NetworkScan Bigram Hamming Distance
Histogram for Obfuscated Scripts vs. Unrelated Scripts: All

unrelated files have a distance over 0.99.

Figure 5-16: Bigram Hamming Distance Histogram for
Obfuscated Scripts vs. Unrelated Scripts For All Ten Original
Files: The plot is nearly identical to Figure 5-9 but with more

volume toward the extreme ends of the distance range.
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Figure 5-17: Bigram Hamming Distance Heatmap for All Ten
Original Files: Distances are even higher than for unigram
hamming distance suggesting that this is a more accurate

metric.

for this metric. However, given that unrelated files have high distance values for

hamming distance, this indicates that hamming distance metrics may become less

useful for files in which multiple obfuscations have been applied. Their distance

values may approach those of unrelated files after multiple obfuscations.

5.2.2 Features

We experiment with different combinations of features to determine the best approach

to attributing obfuscations to their original files using our distance metrics. We train

each of our classifiers on AST node count and depth alone, each of our distance metrics

separately, and all of our features together. We hope to find a subset of features that

is sufficient for our problem in order to keep our classifier simple. We compare the

accuracy of each classifier when trained on each set of features in Table 5.1. We can

see that including all features in model training results in higher accuracy for two

of our models. We also see that our distance features perform better for k-Nearest
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Figure 5-18: Distribution Histogram of Single Obfuscations
vs. Double Obfuscations for All Distance Metrics: For each

distance metric double obfuscations show distance
concentrations at higher values.
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Neighbor and Logistic Regression models than the baseline AST only features, node

count and depth. In fact, using hamming distance features alone and a k-Nearest

Neighbors model we can attribute obfuscated code to its original file with higher

accuracy than any model using only AST node count and depth.

Table 5.1: Model Accuracies: Test accuracies of each classifier trained on a subset of
features. [8]

Classifier Features Accuracy

Random Forest

AST features .882
Cosine distance .732
Hamming distance .879
Bigram Cosine distance .748
Bigram Hamming distance .877
All Features .898

kNN

AST features .864
Cosine distance .882
Hamming distance .888
Bigram Cosine distance .885
Bigram Hamming distance .877
All Features .871

Logistic Regression

AST features .312
Cosine distance .724
Hamming distance .700
Bigram Cosine distance .778
Bigram Hamming distance .685
All Features .835

5.2.3 Models

As shown in Table 5.1 our Random Forest Classifier performs best out of all classifiers

and our distance metrics contribute to a boost in performance over simple node

count and depth of the AST. However, we discover that we can also achieve fairly

high accuracy with a k-Nearest Neighbor classification algorithm trained on hamming

distance features. This is promising in terms of improving clustering techniques for

this problem. We consider clustering techniques particularly important here because

the nature of the problems suggests that we are looking for an accurate grouping of

obfuscated files to their original files.
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Chapter 6

Conclusions and Future Work

We set out to understand the effect of obfuscation on PowerShell both qualitatively

and quantitatively. We were able to visually identify different types of obfuscation

and determine distance metrics for obfuscation both based on the characters in the

file and the structure of the program. We examined these distance metrics as features

for models to attribute obfuscated files to non-obfuscated files and determined that

simple distance features based on AST structure are sufficient for achieving high

accuracy. We discovered that the order of AST nodes is important for creating a

useful representation of a script since our Hamming distance features led to more

accurate attribution models. We also discovered that features of the entire AST tree,

such as node count and depth, are important features for attribution models as well

and that by combining distance features with AST tree features we can achieve higher

accuracy than with either set of features alone.

Our results are promising but there are many areas for further exploration. As

described in Section 2, research is ongoing in the area of decoding obfuscated Power-

Shell in order to better analyze its functionality and security risk. We would like to

incorporate some of this work and expand the types of obfuscation that we examine

to include the ENCODING, COMPRESS, and LAUNCHER techniques mentioned earlier. This

would also allow us to include other obfuscation tools such as Invoke-CradleCrafter

which focus on encoded and remote downloaded PowerShell.
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To improve our features, we would like to include additional valuable information

in the structure of AST subtrees which we have not explored in this work. We

would like to extract subtree features such as depth and child count as well as the full

AST features we currently use and experiment with whether these additional features

might improve our models. We would also like to refine our features, perhaps by

calculating distance measures using only less common AST nodes, since most scripts

will use many of a small number of AST nodes. To test the robustness of our current

features, we would like to explore hamming distance when all AST are of similar

size. Specifically, we would like to test if unrelated file’s hamming distances would

be lower for AST of similar size. We would also like to test our distance metrics on

more heavily obfuscated examples. We were able to show that multiple obfuscations

increase both of our distance metrics but further research is needed to determine how

much the distance increases and for how many obfuscations it continues to increase.

Further exploration of outliers to our distance metrics is also needed. In preliminary

analysis we were not able to draw solid conclusions about our outliers.

To improve our models we would like to experiment with parameter tuning of the

k-Nearest Neighbor model as well as additional and refined feature sets. Our models

were quite accurate on our relatively small augmented dataset but we would like to

see if these models generalize to larger obfuscated and non-obfuscated datasets. We

would also like to test our models against datasets that are known to be solely benign

or malicious to see if they perform differently for specific conditions.

If these results are promising we would attempt to build malware detectors based

on self-obfuscated augmented datasets of known malicious PowerShell. We would also

explore whether detectors can be built using only benign files and their obfuscations.
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