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Abstract

The human microbiome is essential for health and has been implicated in many dis-
eases. DNA sequencing has enabled the detailed characterization of these human-
associated microbial communities, leading to a rapid expansion in studies investigat-
ing the human microbiome. In this thesis, I describe multiple projects which overcome
various data analysis challenges to extract useful clinical insights from microbiome
data. In the first project, I present an analysis of lung, stomach, and oropharyn-
geal microbiomes. I leverage data collected from multiple sites per patient to identify
aspiration-associated changes in the relationships between these communities, discov-
ering new properties of the aerodigestive microbiome and suggesting new approaches
for treatment. In the second project, I perform a meta-analysis of case-control gut
microbiome datasets with standard data processing and analysis methods. I find
consistent patterns characterizing disease-associated microbiome changes and a set of
shared associations which could inform clinical treatment and therapeutic develop-
ment approaches for different microbiome-mediated diseases. Enabled by this work,
in the third project I contribute to the development of a method to correct for batch
effects in case-control microbiome studies. In the fourth project, I describe a frame-
work for rational donor selection in fecal microbiota transplant clinical trials in which
knowledge derived from clinical and basic science research is used to inform which
donor is selected for fecal transplants, increasing the likelihood of successful trials.
Finally, I present preliminary results analyzing the microbiome and metabolome of
residential sewage as a novel platform for community-level public health surveillance.
Together, these projects demonstrate a variety of approaches to mine the human
microbiome for clinically-relevant insights and suggests multiple avenues forward for
translating findings from microbiome data analyses into clinical and public health
impact.
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Title: Professor
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Chapter 1

Introduction

1.1 The human microbiome in health and disease

The microbes that live in and on our bodies make up the human microbiome and are

essential for health. Almost all human body sites are colonized by microbes, ranging

from the gut, the largest human-associated microbial community, to the lungs, which

were for many years considered sterile [1, 21. These microbial communities perform

essential functions for health, including fighting off and preventing infections, regu-

lating host metabolism and interacting with the immune system, and metabolizing

xenobiotics or other compounds which are indigestible by the host. Additionally, per-

turbations in human microbiomes have been implicated in many diseases, including

inflammatory, metabolic, neurological, and respiratory conditions [2, 3, 4, 5].

The potential for microbiome-based therapies to improve human health and ad-

dress a broad range of diseases has led to a recent expansion of research and clinical

studies in this field. Much of the emerging research has been driven in part by

the increasing accessibility of DNA sequencing technology, which can provide a de-

tailed view of the bacteria in these communities without the need for time-consuming

and difficult culturing experiments [6]. However, identifying clinically-relevant as-

sociations from microbiome studies remains challenging [7]. Microbiome datasets

are high-dimensional, with hundreds to thousands of bacterial species measured in

usually only tens to hundreds of patient samples. Microbial communities are also
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highly variable across people, making it more difficult to identify individual bacterial

biomarkers that can consistently distinguish health and disease across many differ-

ent patients. Finally, microbiome datasets provide a window into associations but

not causal relationships, and researchers must perform mechanistic studies or clinical

trials to confirm the clinical relevance of any identified associations. In this thesis, I

present unique analyses of microbiome data which overcome some of these challenges

and which illustrate a variety of approaches for extracting useful clinical insights from

mining microbiome data. Together, the following chapters aim to move findings from

the individual microbiome data analyses beyond statistical significance and toward

clinical meaningfulness.

1.2 Multi-site sampling to identify clinical associa-

tions in the aerodigestive microbiome

In Chapter 2, I leverage simultaneous sampling within patients to identify clinically-

relevant aerodigestive microbiome characteristics that distinguish patients with swal-

lowing dysfunction from those with normal swallow. The current gold standard to

diagnose aspiration resulting from impaired swallow function involves imaging a pa-

tient as they ingest different quantities and consistencies of contrast material 18], but

identifying lung microbial biomarkers could provide a useful non-radioactive alterna-

tive to this diagnosis. Additionally, patients with impaired swallow function are at

higher risk for respiratory infections, but the extent to which the lung microbiome

is perturbed by aspiration and thus potentially involved in mediating this risk is un-

known [8, 9]. Finally, clinical interventions to treat respiratory symptoms in patients

with impaired swallow focus on preventing material transfer from the stomach into

the lungs, for example via anti-reflux medication or fundoplication surgery [10, 11].

However, the clinical utility of these interventions in pediatric populations is not

fully established, and the extent to which the gastric vs. mouth microbiome mediates

respiratory complications is not known.
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In this study, I analyze a set of lung, stomach, and oropharyngeal microbiome

samples collected from over 200 pediatric patients at Boston Children's Hospital. I

first show that lung and stomach microbiomes are highly variable across people and

driven primarily by person rather than body site, complicating the search for a reli-

able microbial biomarker of aspiration across patients. I overcome this challenge by

leveraging the fact that we have multiple samples per patient, comparing instead the

within-patient relationships between aerodigestive microbial communities in patients

with vs. without aspiration. Using this approach, I show that aspiration shifts lung

microbial communities toward the oropharyngeal but not the stomach microbiome,

suggesting that the mouth is likely an important source of lung microbiome perturba-

tions in these patients. Thus, approaches for treating aspiration-related respiratory

symptoms should target microbial transfer from the mouth into the lungs in addi-

tion to focusing on the gastric-lung axis, as most current interventions do. This study

also illustrates the power of multi-site within-patient sampling to overcome variability

across people to identify clinically meaningful microbiome-based biomarkers.

1.3 Re-analyzing datasets to find consistent patterns

of associations between the gut microbiome and

disease

In Chapter 3, I perform a meta-analysis of 28 case-control gut microbiome stud-

ies across 10 diseases to synthesize findings across studies and identify generalizable

associations. Although the human gut microbiome has been extensively studied in

many diseases, there is little consensus on which disease associations are consistent

across patient cohorts. In other fields like medicine or psychology, consensus is usu-

ally achieved through meta-analyses of published literature [12]. However, comparing

published results across microbiome studies is not straightforward. The field lacks

standard data processing and analysis methods, making many reported results im-

possible or inappropriate to compare directly between studies. For example, differ-
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ent studies often use incompatible bioinformatics or statistical methods: they may

compare bacteria at different taxonomic levels or use different bioinformatics work-

flows, and they may identify significant associations through univariate statistical

tests or machine learning models, results from which can not be readily compared

[13, 14, 15, 161. Additionally, studies led by clinicians often ask very different ques-

tions of the data than studies led by microbial ecologists, and so the reported results

are not necessarily representative of the comprehensive information contained in the

full dataset [17, 18, 19]. This issue is especially relevant in this field, where non-

invasive sample collection and open-source bioinformatics software suites have made

microbiome research accessible to a broad range of scientists and clinicians [20].

In this chapter, I perform a meta-analysis of gut microbiome studies which over-

comes many of these challenges by reprocessing and reanalyzing raw data with stan-

dard methods. Even though specific bacterial associations vary across studies of the

same disease, I identify patterns of general microbiome shifts which are consistent

and which each suggest different approaches for developing microbiome-based ther-

apeutics. When looking across multiple diseases, I find a set of bacteria which are

non-specifically associated with health and disease, perhaps forming a shared or core

response to general health and disease status. These results highlight the importance

of contextualizing results from individual studies within the existing body of work,

and also hints at the possibility of developing broadly beneficial targeted probiotic

and antibiotic therapies.

1.4 Enabling more powerful meta-analyses by devel-

oping a batch correction method for microbiome

data

Motivated and enabled by the work presented in Chapter 3, I present a method to

correct for batch effects in case-control microbiome studies in Chapter 4. Tradition-

ally, meta-analyses compile published p-values and effect sizes and apply statistical
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methods to determine their consistency, significance, and magnitude across studies in

order to glean an overall understanding of true effects [12]. However, this is challeng-

ing to do in the microbiome research field for reasons described above and in Chapter

3. A more powerful way to synthesize findings across studies is to combine the raw

data and re-perform analyses on this expanded sample size. However, analyzing raw

data combined from multiple studies is not appropriate without first correcting for

batch effects. In microbiome data, batch effects result from biological and technical

variation between studies and although statistical methods to correct for these have

been developed for other 'omics data types, few are applicable for microbiome data

[21].

In this chapter, we describe a method to correct for batch effects in case-control

microbiome studies. Briefly, the method converts the abundances of taxa in case

samples to percentiles of their respective distributions in the control samples within

each study, in essence considering control samples as the null. Assuming that control

patients represent biologically similar groups, this allows for pooling of percentile-

normalized data across studies. We show that this non-parametric method success-

fully removes batch effects in case-control studies, enables more powerful analyses on

combined microbiome data, and reduces the number of false positives from consid-

ering studies individually. My main contributions to this joint work were processing

the datasets used to develop and test the method and implementing the method into

an open-source microbiome software suite, expanding its reach and accessibility [20].

1.5 Translating microbiome research through ratio-

nally designed fecal microbiota transplant clini-

cal trials

In Chapter 5, I present a framework for rationally selecting donors in fecal microbiota

transplant (FMT) clinical trials. In recurrent Clostridium difficile infection (rCDI),

FMTs have proven themselves as a remarkably effective clinical treatment, generating
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excitement about the clinical potential of FMTs in other diseases [22, 23]. Clinical

trials in non-rCDI diseases can be used to identify promising conditions in which

the microbiome may have a causal role to play. However, although there is little

donor-dependent variability in FMT efficacy in rCDI, it is becoming apparent that

in many other conditions, donor heterogeneity likely plays a role in patient response

[24, 251. Thus, as FMT trials expand to new indications, many trials may fail not

because the indication was not amenable to improvement by FMT but rather because

an ineffective donor was chosen. As a consequence, excitement and support for FMT

research will be dampened, slowing progress toward finding clinical applications of

microbiome-based therapies.

In this chapter, I present an approach for selecting donors in FMT trials to in-

crease the likelihood that these trials will succeed. In this proposed framework, a

clinician applies her existing knowledge and hypotheses for how her indication of

interest is being mediated by the microbiome in order to drive the donor selection

process. I present four types of disease models to describe underlying processes me-

diating microbiome-related diseases: acute dysbiosis, mediation by individual taxa,

mediation by overall community function, and complex host-microbiome interactions.

I suggest associated donor selection strategies for each of these disease models, and

provide case studies illustrating the process of rational donor selection in practice. Fi-

nally, I perform a power simulation which finds that most FMT trials are unlikely to

be powered enough to identify the key donor bacteria mediating patient responses to

FMT. Thus, to successfully make discoveries from completed trials, clinicians should

perform hypothesis-driven retrospective analyses and plan for these during the clin-

ical trial design process, for example by collecting paired donor and patient and/or

longitudinal samples. This framework encourages clinicians to leverage their clinical

experience, existing microbiome research and published datasets, and the increasing

availability of screened donor stools to more efficiently translate microbiome research

into clinical impact. It also suggests approaches for improving retrospective analyses

of the microbiome data generated during these clinical trials.
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1.6 Mining the microbiome and metabolome of resi-

dential sewage for community-level public health

surveillance

In Chapter 6, I present preliminary analyses of untargeted metabolomics and micro-

biome data from residential sewage, identifying human health and activity markers

with potential public health relevance. Wastewater epidemiology has long been pro-

posed for many applications in population health, but its implementation has so

far been limited to polio surveillance 126] and illicit drug consumption monitoring

[27, 281. Standard wastewater epidemiology methods sample sewage at the wastewa-

ter treatment plant and perform targeted analyses to measure individual metabolites

or viruses of interest. Sampling at the treatment plant can capture information about

large urban populations, but does not provide spatially resolved information about in-

dividual communities within the city. Targeted analyses can confidently identify and

quantify specific molecules, but cannot discover new biomarkers. Because a major

goal of public health is to reduce disparities between populations by identifying and

tailoring interventions to high-risk groups [29, 30, 31], limited geographical resolution

and small sets of measurable biomarkers makes standard wastewater epidemiology

methods inappropriate for many public health applications. Despite these limita-

tions, adapting wastewater epidemiology and implementing it within communities

could be useful for evaluating the impact of public health policies or interventions.

For example, rather than waiting years to see how a citywide sugar tax affects obesity

rates, biomarkers of human sugar consumption could be measured before and after

the policy roll-out to directly and quickly evaluate its impact on sugar consumption

in multiple neighborhoods.

In this chapter, we present a platform to implement wastewater epidemiology

within cities that mines the metabolome and microbiome of residential sewage to

find biomarkers with potential public health relevance. This project is the culmi-

nation of a large collaboration between computational biologists, urban designers,
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engineers, city workers, and public health officials, and is presented in its entirety in

Chapter 6. My contribution to this work was identifying and confirming the human

biomarkers from the untargeted metabolomics data. By comparing the masses and

fragmentation spectra of our metabolite features with databases and published work,

I identified over 20 glucuronide compounds. These molecules are direct markers of

human excretion and were abundant in our residential sewage samples but rarely

detected at our downstream sampling site. In collaboration with a mass spectrom-

etry specialist, I also confirmed multiple urinary and fecal metabolites and showed

that their abundances reflected expected human activity patterns over the course

of a 24-hour sampling. Further putative matches between our metabolomics fea-

tures and a large database of human metabolites [32] suggests that this work could

be extended to identify many different types of biomarkers reflecting human health,

diet, and lifestyle. Together, this work shows that residential sewage contains more

human-derived chemical and biological information than downstream samples, and

suggests that upstream wastewater epidemiology could be developed into a new tool

to measure community-level health.
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Chapter 2

Multi-site sampling reveals altered

relationships in aerodigestive

microbiomes of children with

swallowing dysfunction
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sampling reveals altered microbial exchange between lung, oropharyngeal, and gastric

microbiomes in children with impaired swallow function," in review as of December
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The tables and figures are at the end of the Chapter. The Supplementary Information

is in Appendix A.
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Abstract

Background

Children with oropharyngeal dysphagia have impaired airway protection mechanisms

and are at higher risk for pneumonia and other pulmonary complications. Aspiration

of gastric contents is often implicated as a cause for these pulmonary complications,

despite being supported by little evidence. The goal of this study is to determine the

relative contribution of oropharyngeal and gastric microbial communities to pertur-

bations in the lung microbiome of children with and without oropharyngeal dysphagia

and aspiration.

Methods

We conducted a prospective cohort study of 222 patients consecutively recruited from

a tertiary aerodigestive center undergoing simultaneous esophagogastroduodenoscopy

and flexible bronchoscopy. Bronchoalveolar lavage, gastric and oropharyngeal samples

were collected and 16S sequencing was performed. A subset of patients also underwent

video fluoroscopic swallow studies to assess swallow function and were categorized as

aspiration/no aspiration. Microbial communities across the aerodigestive tract were

compared in patients with and without aspiration by calculating within-patient beta

diversities and quantifying microbial exchange across sites.

Results

Within all patients, lung, oropharyngeal and gastric microbiomes overlap. The degree

of similarity is the lowest between the oropharynx and lungs (median Jensen-Shannon

distance (JSD) = 0.90), and as high between the stomach and lungs as between the

oropharynx and stomach (median JSD = 0.55 and 0.56, respectively; p = 0.6). Un-

like the oropharyngeal microbiome, lung and gastric communities are highly variable

across people and driven primarily by person rather than body site. In patients with

aspiration, the lung microbiome more closely resembles oropharyngeal rather than
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gastric communities and there is greater prevalence of microbial exchange between

the lung and oropharynx than between gastric and lung sites (p = 0.04 and 3x10-5 ,

respectively).

Conclusions

The gastric and lung microbiomes display significant overlap in patients with intact

airway protective mechanisms while the lung and oropharynx remain distinct. In

patients with impaired swallow function and aspiration, the lung microbiome shifts

towards oropharyngeal rather than gastric communities. This finding may explain

why antireflux surgeries fail to show benefit in pediatric pulmonary outcomes.
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2.1 Introduction

The economic and social impact of oropharyngeal dysfunction and aspiration is well

known in the adult stroke population; adults with oropharyngeal dysfunction are at

greater risk of pneumonia than those without [1]. Little is known about aspiration-

related lung disease in children, though recent studies suggest that up to 10% of all

pneumonia hospitalizations in pediatrics are related to aspiration [2]. Clinicians of-

ten assume these pneumonias result from the aspiration of refluxed gastric contents

and frequently treat these children with antireflux surgery, fundoplication. Despite

this common surgical practice, there are no pediatric studies which conclusively show

improved pulmonary outcomes after fundoplication, suggesting that the respiratory

symptoms seen in aspirating patients may not be related to aspiration of gastric con-

tents [3, 4, 5, 6, 71. An alternative hypothesis is that aspiration-related respiratory

symptoms may result from aspirated oropharyngeal contents. To test this hypothe-

sis, we determined the microbial signatures of the lungs, stomach, and oropharynx

in children with and without oropharyngeal dysphagia (i.e. with and without im-

paired airway protective mechanisms) to determine the relative contributions of the

oropharyngeal and gastric microbiomes to the lung microbiome.

Previous studies have shown that the mouth, upper respiratory tract, and lung

microbiota contain similar microbes, and that upstream oral communities seed down-

stream sites (e.g. lungs and stomach) [8, 9, 10]. However, there is little consensus on

whether there exists a distinct or "core" lung microbiome that is consistent across peo-

ple [9, 11, 12, 13]. Most studies, however, agree that the lung microbial communities

share taxa with the oral microbiome, but that there are some bacteria present in lung

communities whose abundances cannot be traced solely to the mouth [8, 9, 14, 121.

While the importance of oropharyngeal flora in seeding the lungs has been heavily

studied in ICU settings [15, 16, 17], the role of oropharyngeal-lung flora exchange in

otherwise heathy children with isolated swallowing dysfunction is unknown. Further-

more, studies investigating the relationships between microbial communities across

the aerodigestive tract have not examined how microbes exchange between the stom-
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ach and lungs, and how this exchange relates to clinical factors such as aspiration and

gastroesophageal reflux.

If the lung microbiome of aspirating patients exhibits more exchange with the

oropharynx than the stomach, this could provide evidence for why anti-reflux surgery

is not helpful in patients with aspiration-related respiratory symptoms. Furthermore,

a shift in the lung microbial communities toward an oropharyngeal population could

not only result in overt pneumonia but may also have more subtle, pro-inflammatory

effects [18]. Finally, if there is a unique aerodigestive microbial signature in aspirating

patients, microbial profiling may be helpful as a diagnostic tool for oropharyngeal

dysphagia.

2.2 Methods

2.2.1 Patient cohort and sample collection

We conducted a prospective cross sectional cohort study of children ages 1-18 un-

dergoing bronchoscopy and esophagogastroduodenoscopy (EGD) for the evaluation

of chronic cough. Patients with gastrostomy or nasogastric tubes, a history of gas-

trointestinal surgery, or antibiotics within 4 weeks of sample acquisition were ex-

cluded. The study was approved by the Boston Children's Hospital Institutional

Review Board and informed consent was obtained from all patients parents.

We first performed brushing of the posterior tongue to obtain oropharyngeal sam-

ples, placing the brush in TE buffer at -80C. Second, the bronchoscopy and bron-

choalveolar lavage (BAL) was performed through an endotracheal tube in distal air-

ways of the right middle lung or the most visually inflamed lung. Finally, gastric

sampling was performed during the EGD. The endoscope was advanced, without

suctioning, immediately into the stomach where the gastric fluid was suctioned into

a sterile leukitrap. A minimum of 1 cc of gastric and lung fluid were collected and

transferred to -80C. Each patient had a triad of samples collected: oropharynx, gastric

fluid, and BAL (Tables 2.1 and 2.2) [10.

23



2.2.2 Multichannel intraluminal impedance with pH (pH-MII)

A subset of patients had pH-MII testing at the discretion of the patient's primary

gastroenterologist. Acid reflux episodes were defined as episodes detected by the

impedance (MII) sensors with associated drop in pH to < 4; non-acid episodes did

not have the associated drop. The percentage of time that reflux was in the proxi-

mal/distal esophagus was calculated by dividing the sum of the bolus clearance times

in the proximal/distal esophagus by the total study duration. The percentage of

full column reflux events was defined as the percentage of the total reflux events

that reached the proximal two impedance sensors (i.e., the proximal most impedance

channel) [19].

2.2.3 Oropharyngeal dysphagia assessment

A subset of the patients included in this study had a videofluoroscopic swallow study

(VFSS) to asses swallow function and were divided into two groups (normal swallow

function and aspiration/penetration). Because patients with penetration on VFSS

have similar pulmonary symptoms and respond similarly to thickening as patients

that aspirate, we included patients with aspiration and penetration in one group.

2.2.4 Sample processing and sequencing

Oropharyngeal swabs, BAL, and gastric fluid samples suspended in Tris-Saline buffer

were centrifuged for 3 minutes at 10,000 rcf prior to DNA isolation. DNA was ex-

tracted from the sample pellet with the Qiagen DNeasy PowerSoil Kit as described

by the manufacturer, with the following modifications: protein precipitation in one

step using 100 [pL of each C2 and C3 solutions, and column centrifugation at 10,000

rcf for 10 minutes. Sequencing was performed in two batches at the Broad Institute.

Patients with multiple samples had all of their respective samples sequenced in the

same batch.
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2.2.5 Microbiome data processing and analysis

Paired end reads were merged using USEARCH -f astq-mergepairs and truncated

to 200 bp. Reads with more than 2 expected errors were discarded. Operational

taxonomic units (OTUs) were clustered at 99% similarity and assigned taxonomy

using the RDP classifier (c = 0.5) [20]. All quality filtering and OTU calling steps

were performed with an in-house pipeline

(https://github.com/thomasgurry/ampliconsequencingpipeline).

Beta diversity was calculated with the Jensen-Shannon distance (JSD). Only sam-

ples which were sequenced in the same batch were considered in cross-patient compar-

isons. Differences in overall community structure across sites was assessed using the

PERMANOVA test as implemented in scikit-bio v 0.4.2 (skbio .stats .distance .permanova).

To define exchanged OTUs, we used data from patients with all three sites se-

quenced. For each OTU, we calculated the Spearman partial correlation ( V r" )
between its non-zero abundances in two sites, partialled on the third site (Scipy v

0.19.0 stats. spearmanr). P-values for each OTU were calculated as the percent-

age of null correlations larger than the observed correlation after shuffling abun-

dances 2000 times. Only OTUs present in two sites in at least 10 patients were

considered. OTUs with FDR-corrected q-value < 0.1 were defined as "exchanged"

(sandbox. stats.multicomp.multipletests with method='f drbh'). To determine

the statistical significance of the number of exchanged OTUs, we shuffled the patient

IDs for each OTU in each site and re-defined "null" exchanged OTUs as described

above.

We used five-fold cross-validation and Random Forest classifiers (scikit-learn v

0.18.1

ensemble .RandomForestClassif ier with nestimators=1000) for all supervised ma-

chine learning analyses. Areas under the ROC curve (AUCs) were calculated based

on the predictions on each fold's test set (mean values across folds is reported) and

Fisher p-values were calculated from all test set predictions. The aspiration/non-

aspiration classifiers varied different train/test splits, so we report the mean results
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across 100 repetitions.

2.2.6 Availability of data and materials

Code to reproduce the analyses presented here are available at www.github.com/cduvallet/aspiration-

analysis-public. The 16S sequencing data used in this study will be made available

in the SRA repository at accession number SRP141148 upon publication and clinical

metadata are available upon request from the corresponding author.

2.3 Results

Two hundred and twenty two patients were included in the analysis (Tables 2.1 and

2.2). The mean age of the patients was 7.1 5.4 years. One hundred out of 222

patients were taking proton pump inhibitors at the time of sampling. One hundred

and four patients had a videoflouroscopic swallow study of which 47 (45%) had evi-

dence of aspiration or penetration and 57 (55%) had normal swallow function. Thirty

one patients had pH-MII testing for gastroesophageal reflux at the time of sample

collection.

2.3.1 Aerodigestive microbiome across people

At the genus level, pediatric aerodigestive communities share many predominant

members, including Streptococcus, Prevotella, Haemophilus, Veillonella, and Neisseria

(Figure 2-1). Despite genus-level similarities, OTU-level aerodigestive communities

are distinct and highly variable across people. The overall community composition

was significantly different between sites (PERMANOVA on JSD, p < 0.001, Fig-

ure 2-2B). Furthermore, lung communities were very different across people (median

lung-lung JSD = 0.88) while oropharyngeal communities tended to be more similar

(median oropharyngeal-oropharyngeal JSD = 0.59, Figure 2-2A).
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2.3.2 Aerodigestive microbiome within people

We compared aerodigestive communities within patients who had multiple sites se-

quenced (Table 2.2, Figure 2-3). Oropharyngeal and gastric fluid communities are

similar within patients (median JSD = 0.56), reflecting that the mouth seeds the gas-

tric microbiome [8, 91. The majority of patients had very different lung and oropha-

ryngeal communities (median JSD = 0.90), and these differences were significantly

higher than either the lung-gastric fluid or gastric fluid-oropharyngeal beta diversities

(p < 1 x 10-8, Figure 2-3A). Surprisingly, lung and stomach communities were as

similar to each other as stomach and oropharyngeal communities (median JSD = 0.55

versus median JSD = 0.56, respectively, p = 0.6).

To identify specific microbes exchanging between sites, we reasoned that an ac-

tively exchanging microbe's abundances in two sites should be correlated across pa-

tients (Supplementary Figure A-i and Methods). We identified 12 OTUs exchanged

between lung and oropharyngeal, 74 between gastric fluid and lung, and 118 between

oropharyngeal and gastric fluid communities. These results were statistically signifi-

cant: we found a maximum of 2 exchanged OTUs between sites in our null analysis.

The low number of directly exchanged OTUs between the oropharynx and lungs

supports the finding that these sites are more distinct than others in the aerodiges-

tive tract. The lungs and stomach exchange fewer OTUs than the oropharynx and

stomach even though they have comparable intra-patient similarities, suggesting that

factors other than specific bacterial exchange contributes to the similarity between

lungs and stomachs within patients.

Random Forest classifiers trained to distinguish between sites (ensuring that sam-

ples from the same patient were in the same train/test set) were able to identify

a generalizable oropharyngeal microbial signature that distinguishes the oropharynx

from other sites across people (AUC = 0.95 for both gastric fluid and lung com-

parisons, Figure 2-3B). Surprisingly, when we compared within-patient similarities

across sites to across-patient similarites for the same sites, we found that lung and

stomach communities within patients were more similar than lungs across patients
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and than stomachs across patients (Table 2.3, p < 1 x 10-8). Thus, while there exists

a "core" oropharyngeal microbiome across people, lung and gastric communities are

more variable and driven primarily by the person rather than body site. These results

challenge the prevailing hypothesis that human-associated microbial communities are

primarily driven by body habitat and instead suggest that patient-specific relation-

ships may be equally, if not more, important in determining community structure in

the aerodigestive microbiome [21, 22, 23].

2.3.3 Aspiration modulates the relationship between lung and

oropharyngeal microbiomes but not the lung and stom-

ach

Next, we investigated the impact of oropharyngeal dysphagia and aspiration on the

relationships between aerodigestive microbiomes. Aspirators had significantly more

similar lung and oropharyngeal communities than non-aspirators (Figure 2-4A, p =

0.04) and were much more likely to have the pre-defined oropharyngeal-lung microbes

in both their oropharynx and lungs than non-aspirators (p = 2 x 10-5) (Figure 2-4B).

Lung-oropharynx exchanged OTUs co-occurred in a median of 42% of aspirators' lung

and oropharyngeal communities but only 20% of non-aspirators'. Aspirators were not

more likely to have stomach-lung microbes present in both the lungs and gastric fluid

than non-aspirators (Figure 2-4B, p > 0.5), and lung and gastric communities of

aspirating patients were not necessarily more similar to each other than those of

non-aspirating patients (Figure 2-4A, p = 0.5).

To identify potential microbial biomarkers of aspiration, we looked at the ex-

changed OTUs which were most frequently present in the lung and oropharyngeal

communities of aspirators relative to non-aspirators. In the oropharyngeal-lung ex-

changed OTUs, these were an unknown OTU in the Flavobacteriaceae family, OTUs

in the Fusobacterium, Rothia, Veillonella genera, and an unknown OTU in the Pre-

votellaceae family, among others (Table 2.4, gastric-lung OTUs in Supplementary

Table A-1).
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We used Random Forest classifiers trained on the presence of exchanged OTUs

in different sites to test their potential as biomarkers. The concordant presence

or absence of exchanged OTUs in the two sites improved classifiers based on the

oropharyngeal-lung OTUs but not the ones based on the lung-gastric OTUs, rela-

tive to classifiers based on the presence of the exchanged OTUs in either site alone

(Table 2.5). Using Random Forest classifiers trained on the entire microbiomes, we

found that combining the oropharynx and lung communities resulted in a better clas-

sifier than either community alone (Table 2.6). Surprisingly, the classifiers trained on

oropharyngeal and gastric communities performed well, despite our expectation that

aspiration-induced changes in the microbiome would manifest in the lungs rather than

the oropharynx or stomach. We confirmed that the patients' aspiration status was

not confounded with proton pump inhibitor usage (Fisher exact p-value > 0.2), but

there may be other co-morbidities or unmeasured confounders that could be driv-

ing the differences detected in these communities. However, taken together, these

results suggest that identifying a biomarker for aspiration based on bacteria in both

the lungs and oropharynx may be possible, and that these two sites together contain

more information about a patient's aspiration status than either site alone.

2.3.4 Reflux may impact the relationship between lung and

stomach microbiomes

Reflux profiles for the 31 patients are shown in Table 2.7. The percent of full column,

distal, and proximal reflux were slightly negatively correlated with gastric-lung JSD,

indicating that patients with more frequent reflux may have more similar gastric and

lung microbial communities (Figure 2-5). However, the large range of gastric-lung

JSDs across all patients and relatively weak correlation suggests that other non-reflux

factors likely contribute more to the similarities between gastric and lung communities

that are observed across all people.

29



2.4 Discussion

In this study, we characterized the relationships between the oropharyngeal, lung,

and gastric microbiomes in a large pediatric cohort with and without swallowing

dysfunction. Leveraging our simultaneous sampling of multiple sites per patient, we

find that there exists a "core" oropharyngeal microbiome across patients, that the lung

and gastric communities are highly variable across patients and driven primarily by

patient rather than body site, and that within patients the lung and oropharyngeal

communities remain most distinct. We show for the first time that in patients with

impaired swallowing, the lung microbiome shifts toward oropharyngeal flora rather

than gastric flora. Our results also suggest that identifying biomarkers for aspiration

based on the presence of certain bacteria in both the lungs and oropharynx may

ultimately be possible.

There are several limitations to our study. First, because it is unethical to perform

bronchoscopies on healthy children, our patients in this study had respiratory symp-

toms. However, we believe that our patient population represents patients typically

seen in aerodigestive centers and that understanding the degree of microbial exchange

is most clinically relevant in patients with symptoms. The microbial populations we

found in this study are similar to those of previously published studies of both healthy

and symptomatic adults which reinforces the validity of our results 18, 9, 13, 14]. Sec-

ond, the number of patients undergoing pH-MII testing was relatively small which

limits our conclusions about the impact of gastroesophageal reflux on the lung. How-

ever, our study raises enough concerns about the significance of oropharyngeal-lung

exchange in children with impaired swallowing that gastroesophageal reflux should

not be considered as the primary source of microbial exchange causing pulmonary

symptoms. Third, the diagnosis of oropharyngeal dysphagia in this study was based

on VFSS. While this only categorizes patients based on a "one-point-in-time" study,

it is the gold standard test to diagnose oropharyngeal dysphagia in children and

therefore we feel it is appropriate for use in this study.

Despite these limitations, our findings have broad clinical implications for the
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understanding and treatment of oropharyngeal dysphagia with resultant aspiration.

Our clinical finding that the lung microbiome in children with aspiration shifts toward

the oropharynx rather than the stomach highlights the importance of understanding

the primary driver of microbial exchange so that therapies can be tailored accordingly.

For example, if the mechanism of lung symptoms and disease in aspirating children

results from a microbial shift towards oropharyngeal flora, anti-reflux surgery will

be of no benefit to preventing oropharyngeal-lung exchange. Instead, therapies may

need to be tailored to focused on changing oropharyngeal flora or salivary properties.

While there are no existing pediatric microbiome studies of the aerodigestive mi-

crobiome in patients with dysphagia, there is evidence that children with oropharyn-

geal dysphagia are predisposed to pneumonia and that this could be due to increased

aspiration of microbes from the oral microbiome. In a study of 382 children under-

going VFSS, evidence of aspiration predicted pneumonia risk, though the causative

organisms for these pneumonias were not known [24]. In cohort of elderly aspirating

patients, oral colonization by respiratory pathogens was associated with increased

risk of pneumonia, highlighting the potential importance of oral flora in influenc-

ing the lung outcomes [25]. Finally, a previous study of healthy adults found that

individuals with oropharyngeal bacteria in their lungs had increased evidence of in-

flammatory metabolomic signals, suggesting that even a change of lung flora to com-

mensal oropharyngeal bacteria can trigger inflammation even in healthy patients [18].

Our results add to these findings and suggest that changes in the lung microbiome

towards oropharyngeal flora merit additional study to determine if these shifts re-

sult in increased morbidity or worse clinical outcomes, including the development of

pneumonia.

From a microbial perspective, we identified bacterial families and genera that are

more commonly exchanged between the oropharynx and lungs of children that aspi-

rate than of children with intact swallowing mechanism. While there are no other

16S sequencing studies determining aspiration pneumonia risk in children, there is

evidence from the adult literature that similar bacteria are involved in aspiration

pneumonia risk. For example, oropharyngeal Streptococci were found to be more
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abundant in the lungs of adults with pneumonia and aspiration risk factors than

without aspiration risk [26]. In a study of 173 adults in long term care facilities,

patients with oropharyngeal Prevotella and Veillonella had increased risk of death

from pneumonia compared to patients who had oropharyngeal Neisseria and Fusobac-

terium [27]. Our study is a critical first step toward identifying bacteria present in

the oropharynx and lungs of aspirating children that may result in higher risk for

pneumonias, with additional studies needed to determine their impact on pediatric

outcomes.

In summary, our findings suggest that interventions to reduce aspiration-related

respiratory complications due to increased microbial exchange should target aspira-

tion from the oropharynx rather than the stomach. This microbial data supports the

clinical observation that antireflux surgery fails to prevents pulmonary complications

such as pneumonias or hospitalizations [3, 4, 5, 6, 7]. By simultaneously sampling

multiple sites per patient, we show that the lung and stomach microbiomes are highly

variable across patients and determined primarily by patient rather than body site.

Understanding the relationships between aerodigestive communities in aspirating and

non-aspirating patients provides insight into the potential pathophysiology behind

aspiration-related respiratory outcomes and suggests potential diagnostics and ther-

apeutics for future investigation.
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2.6 Tables

Normal Aspirators Not tested

BAL 33 33 36 102

Oropharyngeal swab 43 36 97 176

Gastric fluid 48 41 58 147

Stool 20 20

Table 2.1: Number of patient samples for each body site.

Normal Aspirators Not tested Total

BAL and oropharyngeal swab 23 25 25 73

BAL and gastric fluid 28 29 32 89

Gastric fluid and oropharyngeal swab 35 32 45 112

Stool and oropharyngeal swab 20 20

Table 2.2: Number of patients with multiple body sites sequenced.
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Lung and oropharynx more different oropharynx < 1 x 10-8

not significant lungs 0.8

Lung and gastric fluid more similar lungs < 1 x 10-11
more similar gastric < 1 x 10-8

Gastric and oropharyngeal more similar gastric < 1 x 10-11
not significant oropharyngeal 0.07

Table 2.3: Lung and gastric microbial communities are driven primarily by
person rather than body site. For each patient and each aerodigestive site, we
compared the average JSD between that patient's site and all other patients' com-
munities of that same site with the JSD between that patient's site and their other
two aerodigestive sites. For example, the top row shows the comparisons between (1)
the average JSD between a patient's oropharyngeal community and all other oropha-
ryngeal communities and (2) the JSD between that patient's own oropharyngeal and
lung communities. We subtracted each patient's between-sites JSD from their average
between-patient JSD and calculated Wilcoxon signed-rank p-values using Python's
scipy. stats.wilcoxon function.
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Family Genus Non-aspirator Aspirator Difference
Flavobacteriaceae

Fusobacteriaceae

Micrococcaceae

Veillonellaceae

Prevotellaceae

Porphyromonadaceae

Streptococcaceae

Veillonellaceae

Prevotellaceae

Leptotrichiaceae

Fusobacteriaceae

Aerococcaceae

Fusobacterium

Rothia

Veillonella

Porphyromonas

Streptococcus

Centipeda

Prevotella

Streptobacillus

Fusobacterium

Abiotrophia

Prevalence of lung-oropharynx exchanged OTUs. Prevalence is
calculated as the percentage of patients who have the OTU present in both their lungs
and oropharynx, calculated separately among aspirators (N = 25) and non-aspirators
(N = 23). OTUs are ordered by their differential prevalence in aspirators relative to
non-aspirators, and are labeled with their family- and genus-level taxonomies. Blank
genus names indicate OTUs which were not annotated at the genus level. A similar
table for the lung-gastric exchange OTUs can be found in Supplementary Table A-1.
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8.7

30.4

8.7

26.1

43.5

39.1

13.0

8.7

17.4

21.7

17.4

21.7

48.0

68.0
44.0

60.0
76.0

68.0

40.0

32.0
36.0

40.0

32.0

28.0

39.3
37.6

35.3

33.9

32.5

28.9

27.0

23.3

18.6

18.3
14.6

6.3

Table 2.4:

Genus Non-aspirator Aspirator DifferenceFamily



Lung-oropnarynx 0 1 us k1) AUU p IN (non-asp/asp)

Lung 0.63 0.29 33/33

Oropharyngeal 0.48 0.59 43/36

Concordance 0.66 0.19 23/25

Lung-gastric OTUs (74)

Lung 0.63 0.19 33/33

Gastric fluid 0.66 0.04 48/41

Concordance 0.56 0.71 28/29

Table 2.5: Classifiers based on the presence of exchanged OTUs. (Top)
Classifiers built from the presence of lung-oropharynx exchanged OTUs. (Bottom)
Classifiers built from the presence of lung-gastric exchanged OTUs. Rows indicate

which microbial community was used to train each classifier. In the "concordance"

classifiers, OTUs which were either present or absent in both sites were coded as 1

and OTUs which were present in one site but absent in the other were coded as 0.

AUCs are calculated as the area under the average ROC curve from five-fold cross

validation. Fisher's exact p values are calculated on the predictions on the hold-out

data for all cross validation folds. Each classifier was built 100 times with random

patient splits and classifier initializations, and mean values are reported here. Similar

classifiers built from the abundance of exchanged OTUs are shown in Supplementary

Table A-2. AUCs and Fisher p-values from all 100 repetitions for all classifiers are

shown in Supplementary Figures A-2 and A-3.)
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AUC Fisher p-value N (non-asp/asp)

Lung 0.66 0.2 33/33
Oropharyngeal swab 0.71 0.02 43/36

Gastric fluid 0.67 0.11 48/41

Lung and oropharyngeal swab 0.81 0.01 23/25

Lung and gastric fluid 0.70 0.07 28/29

Oropharyngeal swab and gastric fluid 0.76 0.02 35/32
All three sites 0.83 0.01 19/23

Table 2.6: Classifiers based on perturbed relationship between lung and
oropharyngeal microbiota can distinguish aspirators from non-aspirators.
Areas under the ROC curve (AUC) and Fisher p-values calculated from classifiers
trained on the entire microbial communities. Each row is a different classifier based on
different combinations of aerodigestive communities, indicated in the "Sites" column.
In the multi-site classifiers, the abundances of OTUs in different sites were used
as separate features. For each classifier type, 100 classifiers were built, with random
patient splits and classifier initializations. Mean values are reported. The distribution
of AUCs and Fisher p-values from all 100 repetitions are shown in Supplementary
Figure A-4.

Mean (std)

Number of acid episodes

Number of nonacid episodes
Number of pH only episodes

Number of total reflux episodes

Percent time proximal reflux

Percent time distal reflux

Percent time pH < 4

Number abnormal by pH-metry

Number abnormal by MuI

24.1 (26.9)
14.8 (16.4)

16.6 (14.8)

38.9 (33.8)
0.005 (0.005)
0.012 (0.011)

7.2 (11.5)

9
4
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Table 2.7: Reflux characteristics measured by pH-MII.

Sites



2.7 Figures

Lung (BAL)

Gastric fluid

E
Li

Oropharyngeal
swab

Aspiration/Penetration

Bacteroidetes
- Prevotella
m Bacteroides

Porphyromonas
Other

Actinobacteria
M Rothia

L A Other

Fusobacteria
- Fusobacterium

Leptotrichia
Other

Figure 2-1: Aerodigestive communities have similar predominant genera.
Bar plots showing relative abundances of aerodigestive OTUs collapsed to the genus
level. Each column corresponds to one patient who had all three aerodigestive sites
sequenced (N = 19 non-aspirators, 23 aspirators, 24 untested). Phyla in legend are
those with mean abundance > 0.01 across all patients. Any other phyla are colored
gray.
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A B
1

* . * , Lung (BAL)
_ I* Oropharyngeal swab

M 0.5 04 * Gastric fluid
CL

01
Lung vs. Oropharyngeal vs. Gastric fluid vs. PC 1 (66 %)

lung oropharyngeal swab gastric fluid

Figure 2-2: Lung and gastric communities are more variable across people
than oropharyngeal communities. (A) Violin plot of the Jensen-Shannon dis-
tance (JSD) between samples from the same site across different patients. A JSD
close to 1 indicates that communities are very different (less similar). (B) PCoA
plots of aerodigestive and stool microbial communities for all patients in the 2016
sequencing batch (N = 21 BAL, 52 oropharyngeal swab, 43 gastric fluid, and 14 stool
samples).

40



Lung and Lung and Gastric fluid and
oropharyngeal swab gastric fluid oropharyngeal swab

Oropharyngeal
swab and stool

0

S

Aspiration status
Normal
Aspiration/Penetration
Not tested

4) 0.8 -

0.6 -

90.4-

2 0.2 -

0.0

- Lung vs. gastric fluid (0.82)
- Gastric fluid vs. oropharyngeal swab (0.95)
- Lung vs. oropharyngeal swab (0.95)
- Oropharyngeal swab vs. stool (1.00)

0.0 0.2 0.4 0.6
False positive rate

0.8 1.0

Figure 2-3: Within patients, aerodigestive communities are similar but lung
and oropharynx remain most distinct. (A) Jensen-Shannon distances between
samples from different sites from the same patient. Comparisons between stool and
oropharynx are included to contextualize these results, as these are expected to be
very different. All comparisons are significant (Wilcoxon rank sums test calculated
with Python's scipy. stats. ranksums function) except the lung and gastric fluid vs.
gastric fluid and oropharyngeal swab beta diversities (p = 0.6). Lung and oropharyn-
geal vs. oropharyngeal and stool, p = 0.005. All other comparisons: p < 1 x 10-8.

(B) ROC curve of classifiers distinguishing different aerodigestive sites. Mean areas
under the ROC curve (AUCs) are reported in parentheses in the legend.
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A Normal AspirationPenetration B 0 Normal AspirationPenetration

* 100% ***
1.0

C ea

00
2c0.5 *
C

0
0-

Lung and Lung and Gastric fluid and Lung and Lung and Gastric fluid and
oroDharvnaeal swab aastric fluid oroDharvnaeal swab orooharvnaeal swab castric fluid orooharyngeal swab

Figure 2-4: Dysphagia increases aspiration of microbes from the orophar-
ynx but not the stomach (A) Intra-patient Jensen Shannon distance for different
aerodigestive site comparisons in non-aspirators (brown) and aspirators (pink). Each
point represents one patient. P-values (Wilcoxon rank sums test, calculated with
Python's scipy. stats. ranksums function): lung and oropharyngeal swab p = 0.04,
lung and gastric fluid p = 0.5, gastric fluid and oropharyngeal swab p = 0.8. (B)
Percentage of patients with the previously defined exchanged microbes present in
both of the respective sites (x-axis) in non-aspirators (brown) and aspirators (pink).
Each pair of points represents one exchanged OTU. P-values (paired t-test on logio
prevalence values, calculated with Python's scipy. stats. ttestrel function: lung
and oropharyngeal swab p = 3 x 10-5, lung and gastric fluid p = 0.8, gastric fluid
and oropharyngeal swab p = 0.09.
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Total number of reflux episodes Percentage of full column reflux events

1.0
08

0
20.6 -

S 02 -

SAspiration status

0 20 40 60 80 100 120 140 0.0 0.2 0.4 0.6 0.8 1.0 . Normal

0.000 0 0 .1 .1 00 00 1 Q2 003 0.04

Figure 2-5: Reflux severity may correlate with the similarity between lung
and gastric communities. Each plot shows the correlation between different refiux

meaure an th wihinpatentJenen-hanon istncebeteenBAL and gastric
flud smpls. oins ae clord ccodin toaspraton tats. llrefiux measures

include both acid- and non-acid reflux. Spearman correlation and p-values: total

number of refiux episodes ps = -0.14, p = 0.5, percentage of full column refiux events
p= -0.4,p = 0.03, percent of time refiux was proximal pPr= -0. 4 7 , p = 0.01,

percent of time refiux was distal p, = -0.43, p = 0.02.
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Abstract

Hundreds of clinical studies have demonstrated associations between the human mi-

crobiome and disease, yet fundamental questions remain on how we can generalize

this knowledge. Results from individual studies can be inconsistent and comparing

published data is further complicated by a lack of standard processing and analy-

sis methods. Here, we introduce the MicrobiomeHD database, which includes 28

published case-control gut microbiome studies spanning ten diseases. We perform

a cross-disease meta-analysis of these studies using standardized methods. We find

consistent patterns characterizing disease-associated microbiome changes. Some dis-

eases are associated with over 50 genera, while most show only 10 to 15 genus-level

changes. Some diseases are marked by the presence of potentially pathogenic mi-

crobes whereas others are characterized by a depletion of health-associated bacteria.

Furthermore, we show that about half of genera associated with individual studies

are bacteria which respond to more than one disease. Thus, many associations found

in case-control studies are likely not disease-specific but rather part of a non-specific,

shared response to health and disease.
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3.1 Introduction

The human gastrointestinal tract digests food, absorbs nutrients, and plays important

roles in maintaining metabolic homeostasis. The microbes residing in our gut harvest

energy from the food we eat, train our immune system, break down xenobiotics and

other foreign products, and release metabolites and hormones important for regulating

our physiology [1, 2, 3]. Chemical signals from our microbiota can act locally within

the gut, and can also have larger systemic effects (e.g. the 'gut-brain axis') [4, 5, 6].

Due to the physiological interplay between humans and our microbial communi-

ties, many diseases are hypothesized to be associated with shifts away from a "healthy"

gut microbiome. These include metabolic disorders, inflammatory and auto-immune

diseases, neurological conditions, and cancer, among others [1, 3, 7, 8, 9]. Certain

gut-related conditions (e.g. obesity and inflammatory bowel disease) have been ex-

tensively studied in human cohorts and in animal experiments, where significant and

sometimes causal microbial associations have been shown. These studies have spurred

research into a number of complex diseases with unclear etiologies where a connection

to the microbiome is suspected.

Overall, our current understanding of the precise relationships between the hu-

man gut microbiome and disease remains limited. Existing case-control studies often

report finding disease-associated microbial "dysbiosis". However, the term "dysbiosis"

is inconsistently and often vaguely defined, and can have a wide range of interpre-

tations 110, 11J. Thus, we lack a comprehensive understanding of precisely how mi-

crobial communities and specific microbes within those communities cause, respond

to, or contribute to disease. Are different diseases characterized by distinct shifts in

the gut microbiome? Are some diseases marked by an invasion of pathogens whereas

others show a depletion of beneficial bacteria? Can we identify microbial biomarkers

for certain conditions, which are consistently enriched or depleted in a disease across

many patient cohorts? Finally, are some bacteria part of a non-specific "healthy" or

"diseased" microbiome and consistently associated with health or disease in general?

One approach to synthesize existing knowledge is to identify consistencies across
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studies through a meta-analysis, which allows researchers to find and remove false

positives and negatives that may obscure underlying biological patterns. However,

prior meta-analyses of case-control gut microbiome studies have yielded mixed results

and did not contextualize their findings across multiple diseases [12, 13, 141. For

some conditions like inflammatory bowel disease (IBD), an overall difference in the

gut microbiota was found within several studies, but no individual microbes were

consistently associated with IBD across studies [12]. For other conditions like obesity,

multiple meta-analyses have found little to no difference in the gut microbiomes of

obese and lean patients [12, 13, 141, even though the microbiome has been causally

linked to obesity in mouse models [3, 15]. These meta-analyses have been limited by

focusing on only one or two diseases, and thus do not extend their findings across a

broader landscape of human disease to answer more general questions about overall

patterns of disease-associated microbiome shifts.

In this paper, we collected 28 published case-control 16S amplicon sequencing gut

microbiome datasets spanning ten different disease states. We acquired raw data and

disease metadata for each study and systematically re-processed and re-analyzed the

data. We investigated whether consistent and specific disease-associated changes in

gut microbial communities could be identified across multiple studies of the same dis-

ease. Certain diseases (e.g. colorectal cancer (CRC)) are marked by an enrichment

of disease-associated bacteria, while others (e.g. IBD) are characterized by a deple-

tion of health-associated bacteria. Some conditions (e.g. diarrhea) exhibit large-scale

community shifts with many associated microbes, while most show only a handful

of associations. However, many associations are not specific to individual diseases

but rather respond to multiple disease states. In most studies, the majority of the

individual disease-associated microbes were part of this set of bacteria that respond

non-specifically to healthy and diseased states. Thus, associations from individual

case-control studies should be interpreted with caution, as these microbes may be in-

dicative of a shared response to disease rather than part of disease-specific differences.

Together, these findings reveal distinct categories of dysbioses which can inform the

development of microbiome-based diagnostics and therapeutics.
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3.2 Results

3.2.1 Most disease states show altered microbiomes

To answer questions about the reproducibility and generalizability of reported associ-

ations between the human microbiome and disease, we collected, re-processed, and re-

analyzed raw data from a collection of microbiome datasets. We included studies with

publicly available 16S amplicon sequencing data (i.e. FASTQ or FASTA) for stool

samples from at least 15 case patients which also had associated disease metadata (i.e.

case or control disease labels). Studies which exclusively focused on children under 5

years old were excluded from our analyses. We identified over 50 suitable case-control

16S datasets, of which 28 were successfully downloaded, processed, and included in

a publicly available database which we called MicrobiomeHD [16j. Characteristics

of these datasets, including sample sizes, diseases and conditions, and references,

are shown in Table 3.1 and Supplementary Table B.1. For each downloaded study,

we processed the raw sequencing data through our 16S processing pipeline (https: //

github. com/thomasgurry/amplicon-sequencing-pipeline) (see Supplementary Ta-

bles B.2 and B.3 for detailed data sources and processing methods). 100% denovo

OTUs were assigned taxonomy with the RDP classifier [17] (c = 0.5), converted to

relative abundances by dividing by total sample reads, and collapsed to the genus

level. OTUs which were not assigned at the genus level were discarded. By collaps-

ing data to the genus level, we lost the sensitivity to detect fine-scale differences in

species or strain abundances across case and control groups, but we minimized certain

batch effects that plague comparisons across studies. Thus, we took a course-grained

approach to optimize our ability to compare data across studies at the expense of

phylogenetic resolution.

We first asked whether reported associations between the gut microbiome and dis-

ease would be recapitulated once we controlled for processing and analysis approaches.

To test whether the gut microbiome is altered in a variety of disease states, we built

genus-level random forest classifiers to classify cases from controls within each study.

We compared the resulting area under the Receiver Operating Characteristic (ROC)
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curves (AUC) across studies (Figure 3-1A, Supplementary Figure B-1). We could

classify cases from controls (AUC > 0.7) for at least one dataset for all diseases ex-

cept arthritis and Parkinson's disease, which each only had one study. Notably, all

diarrhea datasets (except Youngster et al. (2014) [18], which had only 4 distinct con-

trol patients and thus was not included in this analysis) had very high classifiability

(AUC > 0.9). We successfully classified patients from controls (AUC > 0.7) in three

out of four IBD studies and all four CRC studies, which is consistent with previous

work showing that these patients can be readily distinguished from controls using

supervised classification methods [12, 19, 20, 211. Thus, the microbiome is indeed

altered in many different diseases.

3.2.2 Loss of beneficial microbes or enrichment of pathogens

We next wondered whether the specific type of alteration was consistent across in-

dependent cohorts of patients with the same disease. We performed univariate tests

on genus-level relative abundances for each dataset independently and compared re-

sults across studies (Kruskal-Wallis (KW) test with the Benjamini-Hochberg false

discovery rate (FDR) correction 122]). Our re-analyses of the studies were largely

consistent with the originally reported results. The same taxonomic groups showed

similar trends as in the original publications, despite differences in data-processing

methodologies (see Supplementary Note B.1.1 for a full comparison of our re-analysis

with previously published results). Furthermore, we found that the disease-associated

changes in the microbiome could be categorized into meaningful groups which provide

insight into possible etiologies or therapeutic strategies for different types of disease.

In some diseases, microbiome shifts are dominated by an enrichment of a small

number of "pathogenic" bacteria. In these cases, it is possible that the microbes play

a causal role and that they could be targeted with narrow-spectrum antimicrobials.

Colorectal cancer is characterized by such a shift, and we found significant agreement

across three of the four CRC studies 18, 20, 21, 23] (Figures 3-1B and 3-2, genus

labels in Supplementary Figure B-2). Dysbiosis associated with CRC is generally

characterized by increased prevalence of the known pathogenic or pathogen-associated
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Fusobacterium, Porphyromonas, Peptostreptococcus, Parvimonas, and Enterobacter

genera (i.e. these genera were higher in CRC patients in 2 or more studies, Figures

3-2 and 3-3A, genus labels in Supplementary Figures B-2 and B-3). Fusobacterium is

associated with a broad spectrum of human diseases and Porphyromonas is a known

oral pathogen 124, 25].

By contrast, other disease-associated microbiome shifts are characterized by a

depletion of health-associated bacteria in patients relative to controls. In these cases,

probiotics that replace missing taxa may be a better treatment strategy than anti-

microbials. Across our four IBD studies, patient microbiomes were dominated by

a depletion of genera in patients relative to controls, especially butyrate-producing

Clostridiales [19, 26, 27, 28] (Figures 3-1B and 3-2, genus labels in Supplementary

Figure B-2). In particular, five genera from the Ruminococcacaea and Lachnospiracaea

families were consistently depleted in IBD patients relative to controls in at least two

studies (Figure 3-3A, genus labels in Supplementary Figure B-3). While not all

genera within Ruminococcacaea and Lachnospiracaea are verified short-chain fatty

acid (SCFA) producers, the dominant genera within these families are known to

harbor genes for short chain fatty acid production [291 and are often associated with

colonic health [30, 31, 32]. We found similar results when comparing Crohn's disease

and ulcerative colitis patients to controls separately, without any consistent patterns

across datasets that distinguished either IBD sub-type (Supplementary Note B.1.2;

Supplementary Figures B-4 and B-5).

Some conditions are characterized by a broad restructuring of gut microbial com-

munities. In these cases, full community restoration strategies like fecal microbiota

transplants may be more appropriate. For example, diarrhea consistently results in

large-scale rearrangements in the composition of the gut microbiome, which is likely

reflective of reduced stool transit time (Figures 3-1 and 3-2). We saw many microbes

consistently associated with both Clostridium difficile infection (CDI) and non-CDI

diarrhea (Figures 3-2 and 3-3A) [18, 33, 34, 351. In general, Proteobacteria increase

in prevalence in patients with diarrhea, with a concomitant decrease in the relative

abundances of Bacteroidetes and some Firmicutes. In particular, we see a reduction
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in butyrate-producing Clostridia, including genera within Ruminococcaceae and Lach-

nospiraceae families, which have been associated with a healthy gut [36]. We also see

an increase in prevalence of genera that contain organisms often associated with lower

pH and higher oxygen levels of the upper-gut, like Lactobacillaceae and Enterobac-

teriaceae, in patients with diarrhea (Figure 3-3A) [37]. Additionally, both CDI and

non-CDI diarrhea patients had lower alpha diversity, a measure of overall community

structure, than healthy controls in all studies (Supplementary Figures B-6-B-8). Con-

sistent with the CDI and non-CDI diarrheal studies, we also found that organisms

associated with the upper gut, like Lactobacillus and Enterobacteriaceae, appear to be

enriched in IBD patients, who can present with diarrheal symptoms (Supplementary

Figure B-2) [37, 38]. IBD patients also tended to have lower alpha diversities than

controls (Crohn's disease vs. controls in three studies, ulcerative colitis vs. controls in

two studies; Supplementary Figures B-6-B-8), though this difference was less drastic

than in the diarrheal studies where all patients had active diarrhea.

In some studies, confounding variables may drive associations. For example, there

were no consistent differences between cases and controls across HIV studies be-

cause of demonstrated confounders [39, 40, 41] (Figure 3-2, 3-3A). As in the original

Lozupone et al. (2013) [40] study, we found enrichment in Prevotella, Catenibac-

terium, Dialister, and Desulfovibrio in HIV-positive patients, in addition to 8 other

genera (Figure 3-2 and Supplementary Figure B-2). We also found depletion of Bac-

teroides, Odoribacter, Anaerostipes, Parasutterella, and Alistipes in HIV-positive pa-

tients relative to controls. However, the Noguera-Julian et al. (2016) study showed

that the genera that were significantly associated with HIV in the Lozupone paper

were strongly associated with sexual behavior (e.g. men who have sex with men were

associated with much higher Prevotella levels), and our re-analysis also found con-

flicting results between these two studies (Figure 3-2). Thus, there is no consensus on

what genera are associated with HIV. Obesity is another example where confound-

ing variables may drive microbiome alterations. Three recent meta-analyses found

no reproducible obesity-associated microbiome shifts [12, 13, 141, which is consistent

with our classification results where we were only able to accurately classify obese
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and control patients in two out of five studies (Zhu et al. (2013) [11, Turnbaugh et al.

(2009) [42]; Figure 3-1A). Our genus-level re-analysis did find a few consistent genus-

level associations between lean and obese patients [1, 42, 43, 44, 451. Two genera,

Roseburia and Mogibacterium, were significantly enriched in obese individuals across

two of the obesity studies (Figure 3-3A). Furthermore, Anaerovorax, Oscillibacter,

Pseudoflavonifractor, and Clostridium IV were depleted in obese patients relative to

controls in two of the studies. However, two of the five studies had no significant

genus-level associations (q < 0.05), despite one having a large sample size (Zupancic

et al. (2012) [441). This suggests that confounding factors like diet may have given rise

to certain associations found in our re-analysis and previously reported in the litera-

ture [14]. More studies that control for potential confounders, like host behavior and

diet, will be required for diseases like obesity and HIV, where associations with the

microbiome remain unclear. Finally, patients in case-control cohorts are frequently on

other medications such as antibiotics which may confound disease-associated micro-

biome shifts. Six of our datasets included antibiotics metadata, and of these only one

dataset (Schubert et al, 2014 [33]) had more than 5 controls who were on antibiotics.

Thus, it is very likely that disease-associated genera in conditions which are often

treated with antibiotics (e.g. diarrhea, IBD) are confounded with antibiotic usage.

Future case control studies should focus on better separating treatment and disease

variables by collecting detailed metadata on antibiotic and other medication usage,

and perhaps also by recruiting controls undergoing a variety of treatments.

3.2.3 Shared vs. disease-specific microbial responses

Finally, we sought to determine whether a unified microbiome response to general

health and disease could be identified. Previous studies have proposed that reduced

alpha diversity is a reliable indicator of disease-associated dysbiosis [34, 42, 46]. In

our re-analysis, we found no consistent reduction of alpha diversity in case patients,

with the exception of diarrhea and perhaps IBD (Supplementary Figures B-6-1B-8).

These results are consistent with previous meta-analyses, which found inconsistent

relationships between alpha diversity and disease and very small effect sizes in non-

56



diarrheal diseases [12, 13]. To further address the question of whether we could find

a robust, generalized signal for diseased microbiomes regardless of the disease type,

we built random forest classifiers to distinguish healthy patients from any type of

case patient. The AUCs from these general healthy vs. disease classifiers correlated

strongly with the original single-dataset classification results, indicating that there is

indeed a general microbiome signal that can be identified even across different diseases

(see Supplementary Note B.1.3 and Supplementary Figure B-9).

Having putatively shown the presence of a generalized microbial response to dis-

ease, we next sought to identify individual genera which respond non-specifically to

health and disease. We considered a genus to be part of the non-specific, shared mi-

crobial response if it was significantly enriched or depleted (q <= 0.05) in at least one

dataset from at least two different diseases (see Supplementary Note B.1.4 and Sup-

plementary Figures B-10 and B-11 for further discussion on alternative definitions and

statistical significance of shared response). We identified 24 health-associated genera

and 20 disease-associated genera out of the 152 genera that were significant in at least

one dataset (Figure 3-3A, genus labels in Supplementary Figure B-3). We also found

7 genera that were both health- and disease-associated (i.e. they were enriched in

controls across at least two diseases, but were also depleted in controls in different

comparisons across at least two diseases) (Figure 3-3A, black). Perhaps these genera

represent bacteria disproportionately affected by confounders or technical artifacts.

Alternatively, different species or strains within these genera may play alternate roles

across diseases or community contexts, giving rise to variable responses at the genus

level.

We identified distinct sub-groups of microbes within the Bacteroidetes and Firmi-

cutes phyla which respond non-specifically to health and disease (Figure 3-3A). The

order Clostridiales (specifically the Lachnospiraceae and Ruminococcacaea families)

is associated with health across multiple diseases while the order Lactobacillales and

family Clostridiales Incertae Sedis XI are associated with disease. The majority of

the the non-specific responders in the order Clostridiales were associated with health,

comprising the majority of all of the microbes which were non-specifically associated
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with healthy patients (17 genera out of 24 total health-associated genera). All of

five of the non-specific responders in the order Lactobacillales were enriched in case

patients across multiple diseases. Lactobacillales genera are adapted to the lower

pH of the upper gastrointestinal tract [371. Perhaps the shared disease-associated

taxa are indicators of shorter stool transit times and disruptions in the redox state

and/or pH of the lower intestine, rather than specific pathogens. These non-specific

responders are consistent with the results from a recent meta-analysis of six metage-

nomics datasets, which also found Lactobacillales and Clostridiales microbes among

the most discriminative classification features across multiple studies [471. Finally,

we found that the order Bacteroidales is more mixed: two Bacteroidales genera were

non-specifically associated with health, one with disease, and two with both health

and disease.

A majority of bacterial associations within individual studies overlap with the

shared response. For each dataset that had at least one significant (q < 0.05) asso-

ciation, we calculated the percent of associated genera which were also part of the

non-specific response in the same direction (Figure 3-3B). Strikingly, the majority

of microbial responses were not specific to individual diseases; on average, 51% of a

dataset's genus-level associations were genera which were associated with more than

one disease. In light of this finding, it is important that researchers performing fu-

ture case-control studies consider whether an identified microbial association is truly

specific to their disease of interest or is instead responding to a common symptom

(e.g. diarrhea) or perhaps generally associated with health or sickness. Additionally,

they can use the knowledge that many microbes.respond non-specifically to disease to

narrow lists of putative causal or diagnostic biomarkers to microbes which fall outside

of the shared response and are thus more likely to be specific to the disease being

studied. Researchers can access an updated list of shared microbial responders from

this analysis at the MicrobiomeHD database [16], or they can curate their own lists

by performing similar cross-disease meta-analyses.

Bacteria which are non-specifically associated with health are both ubiquitous

and abundant across people, whereas bacteria which are non-specifically associated
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with disease are abundant when present but are not ubiquitous. We calculated the

average relative abundance (i.e. the total relative abundance across all patients di-

vided by the number of patients with non-zero abundance) and ubiquity (i.e. the

number of patients with non-zero abundance divided by the total number of pa-

tients) for each genus in the shared response. We found that health-associated genera

were more ubiquitous than disease-associated ones, but not necessarily more abun-

dant (Figure 3-3C). Thus, presence/absence of the non-specifically disease-associated

genera appears to be a better indicator of disease-associated microbial shifts than

changes in their relative abundances. However, a small subset of the non-specifically

disease-associated genera were relatively ubiquitous across patients. Among the most

ubiquitous were Escherichia/Shigella and Streptococcus. Escherichia includes com-

mon commensal strains, as well as pathogenic strains [48], and is frequently present

in healthy people's guts as well as over-represented in sick patients. Genera within

Enterobacteriaceae, Lactobacillaceae, and Streptococcaceae families are dominant in

the upper gastrointestinal tract [37, 49] and are present in many people's stool at

low frequency. These taxa likely become enriched with faster stool transit time (i.e.

signatures of diarrhea) [37, 501.

3.2.4 Within and cross-disease meta-analysis improves inter-

pretability

Identifying disease-specific and non-specific microbial responses required comparing

studies both within and across multiple diseases. Multiple studies of the same dis-

ease were necessary to identify shifts consistently associated with individual diseases.

We did not find consistent bacterial associations for conditions with fewer than four

datasets (Figure 3-1, 3-3A). Within-disease meta-analysis also increased our ability

to interpret the results from any one dataset. Despite few significant differences,

some of these studies (e.g. Zhang et al. (2013) [51], Zhu et al. (2013) [1]) had high

classifiability of patients vs. controls (AUC > 0.7, Figure 3-1A), indicating that there

may be a disease-associated shift that was not detected by univariate comparisons.
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However, because few other studies of the same disease were available for comparison,

we could not confidently interpret the classification results beyond the reported AUC.

For other studies with high AUCs but few univariate associations (e.g. Vincent et al.

(2013) [34], Morgan et al. (2012) [27], Chen et al. (2012) [23]), our confidence that

the high AUCs reflect true disease-associated differences increased because the high

AUCs were consistent with other classifiers from the same disease type.

Meta-analysis identified potential false positives and false negatives across studies

and conditions. For example, we found that reported associations between alpha

diversity and disease within individual studies tended to lose significance when looking

across studies, except in the case of diarrhea and perhaps IBD (Supplementary Figures

B-6-B-8). Another example of a potential false positive was the association between

Prevotella and disease. Autism [2], rheumatoid arthritis [52], and HIV [40, 41] have

each been reported to be associated with Prevotella. For each of these diseases, the

associations with Prevotella were weakly significant or complicated by confounding

factors. In our more statistically conservative re-analysis, we found no association

between autism or arthritis and Prevotella. As mentioned previously, in the case

of HIV, the association with Prevotella was due to demographic factors unrelated to

disease [39]. Regardless of whether shifts in Prevotella are truly biologically related to

each studied disease state, it is clear that such shifts are not specific to one particular

condition and should not be reported as putative disease-specific biomarkers. We also

found that certain signals picked out by meta-analysis did not always hold within

individual studies. For example, studies with small sample sizes often had few or

no significant associations (e.g. Vincent et al. (2014) [34], Chen et al. (2012) [231,

and Willing et al. (2009) [28]). Here, the fact that other studies analyzing the same

diseases consistently found associations strengthens the hypothesis that the lack of

microbiome-associated signal in these studies was due to low power rather than a

lack of true signal. Because individual studies are plagued by low statistical power,

confounding variables, and batch effects which can obscure biological signals, the

identification of disease-specific and non-specific microbial associations will continue

to improve as more datasets and diseases are included in future meta-analyses.
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3.3 Discussion

Here, we report patterns of disease-associated shifts in the human gut microbiome

which differ in their directionality (i.e. fraction of disease-enriched vs. disease-

depleted genera) and extent (i.e. total number of genera that differ between cases and

controls). Some diseases are characterized by an invasion of pathogenic or disease-

associated bacteria (e.g. CRC), while others largely show a depletion of health-

associated microbes (e.g. IBD). Diarrheal illnesses induce large-scale rearrangement

of many members of the microbiota, whereas other conditions show fewer associations.

We also find a set of microbes which are non-specifically associated with multiple dis-

eases and show that these microbes comprise many of the disease-associated genera

within any given study.

The identification of a non-specific microbial response is an important concept

that should be considered in future case-control microbiome studies. It suggests

that studies should be interpreted with extra caution, as many identified microbial

associations may be indicative of a shared response to health or disease rather than

a disease-specific biological difference. Microbes that are non-specifically associated

with multiple diseases would not be useful as disease-specific diagnostics or to address

causality [101. On the other hand, bacteria that are associated with healthy patients

across multiple diseases could be developed into a general probiotic which may be

suited for many different conditions.

Additionally, characterizing "dysbioses" by their directionality and extent is a

useful framework to generate hypotheses for future research on complex, heterogenous

diseases with links to the microbiome. For example, the search for microbiome-based

diagnostics may be more appropriate for diseases with consistently enriched disease-

associated microbes, like CRC. On the other hand, patients with diseases which are

characterized by depletion of health-associated microbes, like IBD, may benefit from

prebiotic or probiotic interventions designed to enrich for these taxa. Furthermore,

conditions which are characterized by large-scale shifts in community structure may be

well-suited to treatment with fecal microbiota transplantation, as in CDI [18]. While
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many of these conditions are unlikely to be fully treated by antibiotics, probiotics, or

fecal microbiota transplants, our proposed framework could guide the search for new

therapies and etiologies by generating testable hypotheses with higher likelihoods of

success [10].

This analysis is the first to compare microbiome studies across more than two

different diseases and highlights the importance of making raw data and associated

patient metadata publicly available to enable future, more comprehensive analyses.

This analysis does not include all possible studies, and certain important gastroin-

testinal diseases (e.g. irritable bowel syndrome) are missing, largely due to data and

metadata availability. Future studies should expand on this work by including more

cohorts from the same diseases as well as more diseases. To re-analyze these stud-

ies, we applied standard methods commonly used in the field and assumed that the

original study designs and patient selection methods were adequate. We were reas-

sured to find that a straightforward and standardized approach was able to recover

very similar results to those previously reported in the various papers. Thus, we did

not formally investigate heterogeneity between cohorts or technical inter-study batch

effects. However, it is clear from our genus-level results that there is significant varia-

tion even across studies of the same disease. There are many possible reasons for this

variation (experimental and sequencing artifacts, host-related covariates, stochastic

disease-associated community changes etc. [11, 53, 54]), and future analyses should

consider methods to correct for host confounders and technical batch effects. Con-

cerns about batch effects motivated us to analyze the data at the genus level, which

necessarily limited our resolution and biological interpretations of identified associa-

tions (e.g. different species or strains within a genus may have different associations

with disease, which would not be captured in this analysis). Making raw data from

case-control studies publicly available will also allow researchers to develop methods

to correct for these batch effects, in addition to enabling more comprehensive future

meta-analyses.

Despite the limitations of this study, our results provide more nuanced insight into

dysbiosis, revealing distinct types of alterations that more precisely describe disease-
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associated microbiome shifts. As the number of case-control cohorts increases, similar

meta-analyses could be used to compare related diseases and identify microbiome al-

terations associated with general host physiological changes. For example, there may

be a group of microbes which respond to or cause systemic inflammation. Could we

identify these microbes by comparing multiple inflammatory or auto-immune diseases

and study them to better understand the interactions between the microbiome and

our immune system? Furthermore, some microbes may be consistently associated

with neurological conditions and could contribute to the gastrointestinal symptoms

that accompany or precede neurological manifestations [2, 91. Studying these mi-

crobes could help us understand the 'gut-brain axis' by identifying common neuroac-

tive molecules produced by these bacteria, which could also be used as targets for

new treatments [4, 5, 6]. Finally, meta-analysis could be used to identify subsets of

patients who exhibit distinct microbiome shifts within heterogenous diseases like IBD

or in conditions which exhibit stochastic microbial responses, allowing for further

stratification of disease subtypes and microbiome disruptions [11, 28, 55]. This work

demonstrates that employing standard methods to contextualize new results within

the broader landscape of clinically relevant microbiome studies is feasible and adds

value to individual analyses. As excitement in this field grows, researchers should

harness the increasing number of replicated case-control studies to swiftly and pro-

ductively advance microbiome science from putative associations to transformative

clinical impact.

3.4 Methods

3.4.1 Dataset collection

We identified case-control 16S studies from keyword searches in PubMed and by

following references in meta-analyses and related case-control studies. We included

studies with publicly available raw 16S data (fastq or fasta) and metadata indicat-

ing case or control status for each sample. Most data was downloaded from online
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repositories (e.g. SRA) or links provided in the original publications, but some were

acquired after personal communication with the authors (Supplementary Table B.3).

We did not include any studies which required additional ethics committee approvals

or authorizations for access (e.g. controlled dbGaP studies). In studies where mul-

tiple body sites were sampled or where multiple samples were taken per patient, we

also required the respective metadata to include those metadata. We analyzed only

stool 16S samples, and excluded studies with fewer than 15 case patients. In CRC

studies with multiple control groups (e.g. healthy and non-CRC adenoma), only the

healthy patients were used as controls for all of our comparisons. In studies with

non-healthy controls (e.g. non-IBD patients), these patients were used as controls (as

in the original papers). In the Schubert et al. CDI study [331, which had both CDI

and non-CDI diarrheal patients, each group was used as an independent case group

compared with controls. We also analyzed the NASH and obese patients from the

Zhu et al. study [11 as independent case groups. When obesity studies reported body

mass index instead of obesity status, we considered patients with BMI less than 25

as our control group and patients with BMI greater than 30 as the case group.

3.4.2 16S processing

Raw data were downloaded and processed through our in-house 16S processing pipeline

(https: //github. com/thomasgurry/amplicon-sequencing-pipeline). Data and

metadata were acquired as described in Supplementary Table B.3. When needed,

we de-multiplexed sequences by finding exact matches to the provided barcodes and

trimmed primers with a maximum of 1 mismatch. In general, sequences were quality

filtered by truncating at the first base with Q < 25. However, some datasets did

not pass this stringent quality threshold (i.e. the resulting OTU table was either

missing many of the original samples, or the read depth was significantly lower than

reported in the original paper). For 454 data, we loosened the quality threshold to 20,

whereas for paired-end Illumina data we removed reads with more than 2 expected

errors. If possible, all reads were trimmed to 200 bp. In cases where this length

trimming discarded a majority of sequences, we lowered our threshold to 150 or 101
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bp. The specific processing parameters we used for each dataset can be found in

Supplementary Table B.2. To assign OTUs, we clustered OTUs at 100% similarity

using USEARCH [56] and assigned taxonomy to the resulting OTUs with the RDP

classifier 117] and a confidence cutoff of 0.5. For each dataset, we removed samples

with fewer than 100 reads and OTUs with fewer than 10 reads, as well as OTUs which

were present in fewer than 1% of samples within a study. We calculated the relative

abundance of each OTU by dividing its value by the total reads per sample. We then

collapsed OTUs to genus level by summing their respective relative abundances, dis-

carding any OTUs which were unannotated at the genus level. All statistical analyses

were performed on this genus-level relative abundance data.

3.4.3 Statistical analyses

To perform supervised classification of cases and controls within each dataset, we built

Random Forest classifiers with 5-fold cross-validation. To build our train and test sets,

we used the python scikit-learn StratifiedKFold function with shuffling of the

data [57]. To build our classifiers, we used the RandomForestClassif ier function

with 1000 estimators and other default settings [57]. We found no significant effect

of various Random Forest parameters on the AUCs (Supplementary Figures B-12

and B-13). We calculated the interpolated area under the ROC curve (AUC) for

each classifier based on the cross-validation testing results. To account for spurious

high classifiability due to class imbalances, we also calculated the Cohen's kappa

score for each classifier using sklearn. metrics. cohenkappa-score on the test set

predictions (Supplementary Table B.4). The kappa scores correlated well with the

AUCs (Pearson p = 0.9), indicating that the majority of the classifiers performed well

even when considering their underlying data distributions. We excluded Youngster et

al. (2014) [18], which had only 4 distinct control patients, from all classifier analyses.

We performed univariate analyses on the relative abundances of genera in cases

and controls with a non-parametric Kruskal-Wallis test using the

scipy.stats.mstats.kruskalwallis function [58]. We corrected for multiple hy-

pothesis testing in each dataset with the Benjamini-Hochberg false discovery rate
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[22]. We performed all analyses on genus-level relative abundances for each dataset

individually, and then compared these results across all studies.

We considered a genus to be consistently associated with a disease (Figure 3-3A,

bottom) if it was significantly associated (q < 0.05) with the disease in the same

direction in at least two studies of that disease. We considered a genus to be a non-

specific microbial association (Figure 3-3A, top) if it was significantly associated (q

< 0.05) in at least one dataset of at least two different diseases in the same direction.

When we defined these non-specific genera, we did not include datasets which used

non-healthy controls (Papa et al. (2012) [19] and Gevers et al. (2014) [26]) and the

Lozupone et. al (2013) dataset [40], where the microbiome signal reflected behavior

rather than disease state [39].

To build our generalized healthy vs. disease classifiers, we first concatenated

metadata and genus-level abundance data for all datasets which had healthy controls

(i.e. all datasets except Papa et al. (2012) [19] and Gevers et al. (2014) [26], which

used non-IBD patients as controls, and CDI Youngster (2014), [18], which had only

4 distinct controls). We performed leave-one-dataset-out and leave-one-disease-out

cross validation and calculated an AUC for each of the testing results.

3.4.4 Microbiome community analyses

Alpha diversities were calculated based on the non-collapsed 100% OTU-level relative

abundances, and included un-annotated OTUs. We calculated alpha diversity metrics

with the skbio.math. diversity. alpha. chaol, shannon, and simpson implementa-

tions.

We calculated the average abundance and ubiquity (Figure 3-3C) of each genus

as the mean of its average values in each dataset across all patients. To calculate

the abundance of each genus, we first calculated each genus's mean abundance within

each dataset. We counted only patients with non-zero abundance of the genus in this

calculation. We then took the average of these mean abundances across all datatsets.

To calculate the ubiquity of each genus, we calculated the percent of patients with

non-zero abundance of that genus in each dataset. We then took the average of these
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ubiquities across all datasets.

3.4.5 Code availability

The code to reproduce all of the analyses in this paper is available at https: //

github. com/cduvallet/microbiomeHD. We encourage researchers to incorporate

their existing and future case-control studies into the MicrobiomeHD database by

contacting us.

3.4.6 Data availability

Raw sequencing data for each study can be accessed as described in Supplementary

Table B.3. The raw processed OTU tables can be accessed at the MicrobiomeHD

database, available at https: //doi .org/10. 5281/zenodo .840333 [16].

Supplementary files, including the q-values for all genus-level comparisons in every

dataset, disease-associated genera for the diseases with more than three datasets, and

a list of non-specific genera are also available at https: //github. com/cduvallet/

microbiomeHD. All other relevant data supporting the findings of the study are avail-

able in this article and its Supplementary Information files, or from the corresponding

author upon request.
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Table 3.1: Datasets collected and processed through standardized pipeline. Disease
labels: ART = arthritis, ASD = austism spectrum disorder, CD = Crohn's disease,
CDI = Clostridium difficile infection, CIRR = liver cirrhosis, CRC = colorectal can-
cer, EDD = enteric diarrheal disease, H = healthy, HIV = human immunodeficiency
virus, LIV = liver diseases, MHE = minimal hepatic encephalopathy, NASH = non-
alcoholic steatohepatitis, OB = obesity, PAR = Parkinson's disease, PSA = psoriatic
arthritis, RA = rheumatoid arthritis, T1D = type I diabetes, UC = ulcerative colitis.
nonCDI controls are patients with diarrhea who tested negative for C. difficile infec-
tion. nonIBD controls are patients with gastrointestinal symptoms but no intestinal
inflammation. Datasets are ordered as in Figure 3-1.
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Dataset ID

Singh 2015, EDD
Schubert 2014, CDI

Schubert 2014, nonCDI

Vincent 2013, CDI
Youngster 2014, CDI

Goodrich 2014, OB
Turnbaugh 2009, OB
Zupancic 2012, OB

Ross 2015, OB
Zhu 2013, OB

Baxter 2016, CRC

Zeller 2014, CRC
Wang 2012, CRC
Chcn 2012, CRC
Gevers 2014, IBD
Morgan 2012, IBD
Papa 2012, IBD

Willing 2010, IBD
Noguera-Julian 2016, HIV

Dinh 2015, HIV
Lozupone 2013, HIV

Son 2015, ASD
Kang 2013, ASD

Alkanani 2015, TID
Mejia-Leon 2014, TID

Wong 2013, NASH
Zhu 2013, NASH
Scher 2013, ART
Zhang 2013, LIV

Scheperjans 2015, PAR

Controls

H
H
H
H
H
H
H
H
H
H
H
H
H
H

nonIBD

H
nonIBD

H
H
H
H
H
H
H
H
H
H
H
H
H

N (controls)

82
154
154
25
4

428
61

96
26
16

172
75.
54
22

16

18
24
35
34

15
13

44
20

55
8

22
16

28
25
74

Cases

EDD
CDI

nonCDI

CDI
CDI
OB
OB
OB
OB
OB

CRC
CRC
CRC
CRC
CD

UC, CD
UC, CD
UC, CD

HIV
HIV

HIV
ASD
ASD
TID

TiD
NASH
NASH

PSA, RA
CIRR, MHE

PAR

N (cases)
201

93

89
25

19

185
195
101

37
25
120

41

44
21

146
108
66
45

205
21

23
59
19

57
21

16

22
86
46
74

Ref.

[35]
[33]
[33]
[34]
[18]
[43]
[42]
[44]
[45]
[1]
[20]
[21]

[8]
[23]
[26]
[27]
[19]
[28]

[39]
[41]
[40]

[7]
[2]

[59]
[60]
[61]

[1]
[52]
[51]

[9]
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Figure 3-1: Most diseases show microbiorne alterations, and consistent disease-associated

shifts differ in their extent and direction. (A) Left: Total sample size for each study included

in these analyses. Additional information about each dataset can be found in Table 3.1. Studies on

the y-axis are grouped by disease and ordered by decreasing sample size (top to bottom). Right:

Area under the ROC curve (AUC) for genus-level random forest classifiers. X-axis starts at 0.5, the

expected value for a classifier which assigns labels randomly, and AUCs less than 0.5 are not shown.

ROC curves for all datasets are in Supplementary Figure B-1. Note that Youngster et al. (2014)

[181 had only 4 distinct control patients was excluded from the Random Forest analysis. (B) Left:

Number of genera with q < 0.05 (Kruskal-Wallis (KW) test, Benjamini-Hochberg FDR correction)

for each dataset. If a study has no significant associations, no point is shown. Right: Direction of

the microbiome shift, i.e. the percent of total associated genera which were enriched in diseased

patients. In datasets on the leftmost blue line, 100% of associated (q < 0.05, FDR KW test) genera

are health-associated (i.e. depleted in patients relative to controls). In datasets on the rightmost

red line, 100% of associated (q < 0.05, FDR KW test) genera are disease-associated (i.e. enriched

in patients relative to controls). Supplementary Figures B-14 and B-15 show q-values and effects for

each genus in each study.
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CRC
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172 75 54 22
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Controls 16 18
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Papa Willing
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-.. a
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Figure 3-2: Comparing results from multiple studies of the same disease reveals patterns
in disease-associated microbiome alterations. Heatmaps showing log10(q-values) for each
disease (Kruskal-Wallis (KW) test, Benjamini-Hochberg FDR correction). Rows include all genera
which were significant in at least one dataset within each disease, columns are datasets. Q-values
are colored by direction of the effect, where red indicates higher mean abundance in disease patients
and blue indicates higher mean abundance in controls. Opacity ranges from q = 0.05 to 1, where
q values less than 0.05 are the most opaque and q values close to 1 are gray. White indicates
that the genus was not present in that dataset. Within each heatmap, rows are ordered from most
disease-associated (top) to most health-associated (bottom) (i.e. by the sum across rows of the
loglO(q-values), signed according to directionality of the effect). The extent of a disease-associated
microbiome shift can be visualized by the number of rows in each disease heatmap; the directionality
of a shift can be seen in the ratio of red rows to blue rows within each disease. See Supplementary
Figure B-2 for genus (row) labels.
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Figure 3-3: The majority of disease-associated microbiome alterations over-
lap with a non-specific microbial response to disease. (A) Non-specific and
disease-associated genera. Genera are in columns, arranged phylogenetically accord-
ing to a PhyloT tree built from genus-level NCBI IDs (http: //phylot .biobyte .de).
Non-specific genera are associated with health (or disease) in at least two different
diseases (q < 0.05, Kruskal-Wallis (KW) test, Benjamini-Hochberg FDR correction).
Disease-specific genera are significant in the same direction in at least two studies of
the same disease (q < 0.05, FDR KW test). As in Figure 3-2, blue indicates higher
mean abundance in controls and red indicates higher mean abundance in patients.
Black bars indicate mixed genera which were associated with health in two diseases
and also associated with disease in two diseases. Disease-specific genera are shown for
diseases with at least 3 studies. Phyla, left to right: Euryarchaeota (brown), Verru-
comicrobia Subdivision 5 (gray), Candidatus Saccharibacteria (gray), Bacteroidetes
(blue), Proteobacteria (red), Synergistetes (pink), Actinobacteria (green), Firmicutes
(purple), Verrucomicrobia (gray), Lentisphaerae (pink), Fusobacteria (orange). See
Supplementary Figure B-3 for genus labels. (B) The percent of each study's genus-
level associations which overlap with the shared response (q < 0.05, FDR KW test).
Only datasets with at least one significant association are shown. (C) Overall abun-
dance and ubiquity of non-specific genera across all patients in all datasets. Non-
specific genera on the x-axis are as defined above.
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Chapter 4

Correcting for batch effects in

case-control microbiome studies

Sean M Gibbons, Claire Duvallet, and Eric J Alm

The contents of this chapter were published as: "Correcting for batch effects in case-

control microbiome studies" in PLoS Computational Biology (2018) volume 14(4),

page e1006102.

The figures appear within the main text of the chapter, and supplementary figures

are at the end of the chapter.
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Abstract

High-throughput data generation platforms, like mass-spectrometry, microarrays, and

second-generation sequencing are susceptible to batch effects due to run-to-run vari-

ation in reagents, equipment, protocols, or personnel. Currently, batch correction

methods are not commonly applied to microbiome sequencing datasets. In this paper,

we compare different batch-correction methods applied to microbiome case-control

studies. We introduce a model-free normalization procedure where features (i.e. bac-

terial taxa) in case samples are converted to percentiles of the equivalent features

in control samples within a study prior to pooling data across studies. We look

at how this percentile-normalization method compares to traditional meta-analysis

methods for combining independent p-values and to limma and ComBat, widely used

batch-correction models developed for RNA microarray data. Overall, we show that

percentile-normalization is a simple, non-parametric approach for correcting batch

effects and improving sensitivity in case-control meta-analyses.

Author summary

Batch effects are obstacles to comparing results across studies. Traditional meta-

analysis techniques for combining p-values from independent studies, like Fisher's

method, are effective but statistically conservative. If batch-effects can be corrected,

then statistical tests can be performed on data pooled across studies, increasing sen-

sitivity to detect differences between treatment groups. Here, we show how a simple,

model-free approach corrects for batch effects in case-control microbiome datasets.

4.1 Introduction

Data generated by high throughput methods like mass-spectrometry, second-generation

sequencing, or microarrays are sensitive to experimental and computational process-

ing [1, 21. This sensitivity gives rise to 'batch effects' between independent runs of an

experiment. Even when different research groups adhere to the same methodologies,
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these effects can arise due to slight differences in hardware, reagents, or personnel

[3]. Thus, it is inappropriate to make direct, quantitative comparisons of uncorrected

data across studies.

Several tools for reducing batch effects in RNA microarray data have been de-

veloped. For example, surrogate variable analysis (SVA) estimates a set of inferred

variables (eigenvectors) that explain variance associated with putative batch effects

[4]. These inferred variables are then incorporated into a linear model to correct

downstream significance tests. The limma package employs a similar linear correc-

tion to account for batch effects prior to statistical analysis [5]. SVA and limma are

part of a family of linear batch-correction methods that use different varieties of factor

analysis, singular value decomposition, or regression [4, 5, 6, 7]. The most relied upon

method to date [8], called ComBat, uses a Bayesian approach to estimate location

and scale parameters for each feature within a batch [9]. All of these models are

most effective when batch effects are not conflated with the true biological effects [1].
Furthermore, most batch correction methods make certain parametric assumptions.

Unfortunately, models that often work well for many types of 'omics data may

not be appropriate for microbiome datasets. In microbiome studies, batch effects are

often diffuse and conflated with biological signals [10, 11, 12]. The microbiome field

has also struggled with finding appropriate parametric models for bacterial abun-

dance distributions and for dealing with zeros. This is especially true for low-biomass

samples in microbiome sequencing studies, like samples taken from the built envi-

ronment [13], where populations are under-sampled, the biological signal is relatively

weak, and batch effects can be quite large [14]. One way to get around this issue is to

calculate statistics within a given batch, and then compare significant features across

batches using classic meta-analysis techniques for combining p-values, like Fisher's

and Stouffer's methods [15, 161. These meta-analysis techniques are robust to batch

effects across independent studies, but have less statistical power and ability to detect

subtle differences than directly pooling data across studies.

Here, we describe a model-free data-normalization procedure for controlling batch

effects in case-control microbiome studies that enables pooling data across studies.
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Case-control studies include a built-in population of control samples (e.g. healthy

subjects) that can be used to normalize the case samples (e.g. diseased subjects).

For every feature (i.e. bacterial taxon), the case abundance distributions can be

converted to percentiles of the equivalent control abundance distributions (Fig. 4-

1). Study-specific batch effects present in the case samples will also be present in

the control samples, and by converting the case data into percentiles of the control

distribution these effects are mitigated. Upon conversion to percentiles of the within-

study controls, percentile-normalized samples from multiple studies with similar case-

control definitions can be more appropriately pooled for statistical testing (Fig. 4-1).

We show that this approach effectively controls batch effects in microbiome case-

control studies and we compare this method to pooling ComBat- or limma-corrected

data, and to Fisher's and Stouffer's methods for combining independent p-values.

4.2 Methods

4.2.1 Datasets

We used a collection of case-control datasets obtained from the MicrobiomeHD database

[171 to validate our batch-normalization method. We focused our analyses on studies

spanning five diseases: colorectal cancer (CRC) [18, 12, 19, 20], Crohn's Disease (CD)

[21, 22, 23, 24], Ulcerative Colitis (UC) [22, 23, 24], obesity (OB) [18, 25, 26, 27, 28,

29, 30, 31, 32, 33, 34], and Clostridium difficile induced diarrhea (CDI) [32, 35]. For

a subset of three CRC studies [18, 36, 19], we were able to obtain sequence data from

the same region of the 16S gene (V4) so that these data could be processed together.

The remaining MicrobiomeHD case-control datasets were previously processed using

the same pipeline (see below), and then Operational Taxonomic Units (OTUs) were

summarized at the genus level for comparison across studies.
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Figure 4-1: Percentile-normalization procedure converts case and control values into
percentiles of the control distribution, which allows for pooling of normalized data
across studies. Conceptual plot shows theoretical feature (OTU 1) abundance dis-
tributions for control samples and case samples from two independent studies. Con-
verting a control distribution into percentiles of itself naturally gives rise to a uni-
form distribution (represented by flat blue distributions in central panels), while con-
verting the case distribution into percentiles of the control distribution produces a
non-uniform distribution when these two distributions differ (represented by skewed
orange distributions in central panels). The right-most panel shows the result of
pooling percentile distributions from study 1 and study 2. Percentile-normalization
places data from separate studies onto a standardized axis that allows for cross-study
comparison. Each simulated case and control distribution was produced by randomly
sampling 100 times from a lognormal distribution. Study 1 control parameters: Ap
0.1 and a = 0.7. Study 1 case parameters: p = 0.8 and a = 0.5. Study 2 control
parameters: p = 1.5 and a = 0.2. Study 2 case parameters: M = 1.75 and c- = 0.13.

4.2.2 Sequence Data Processing

To perform OTU-level analyses across the CRC studies, we downloaded the raw data

from all of the MicrobiomeHD datasets that sequenced the V4 region of the 16S gene.

We quality filtered and length trimmed each V4 dataset as described in Duvallet et

al. (2017) and concatenated these raw, trimmed FASTQ files into one file. We re-

moved any unique sequences that did not appear more than 20 times and clustered

the remaining reads with USEARCH [37] at 97% similarity. We assigned these OTUs

taxonomic identifiers using the RDP classifier [38] with a cutoff of 0.5. For genus-level

analyses, OTU tables and metadata were acquired from the MicrobiomeHD database

(https: //doi. org/10. 5281/zenodo.569601). Raw data were downloaded from the

original studies and processed through our in-house 16S-processing pipeline (https:
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//github. com/thomasgurry/amplicon-sequencing-pipeline) as described previ-

ously 117]. Each study's OTU table was converted to relative abundance by dividing

each sample by its total number of reads and collapsed to genus level by summing all

OTUs with the same genus-level annotation.

To plot data in ordination space, Bray-Curtis distances were calculated from rela-

tive abundance data using Scikit-learn (sklearn.metrics .pairwise .pairwise distances;

metric='braycurtis') [39]. Non-metric multidimensional scaling (NMDS) coordi-

nates were calculated for two axes based on Bray-Curtis distances using Scikit-learn

(sklearn.manifold.MDS; ncomponents=2, metric=False, maxiter=500, eps=le-12,

dissimilarity='precomputed').

4.2.3 Percentile Normalization

In this procedure, control feature distributions are percentile-normalized against them-

selves (resulting in a uniform distribution between 0 and 100) and case feature dis-

tributions are converted into percentiles of their equivalent control features. Treating

our controls as null-hypotheses is motivated by the idea that healthy patients should

be treated as similar across datasets, even though we understand that they will differ

due to biological as well as technical batch effects. Relative abundance distributions

were converted to percentiles using the SciPy v 0.19.0 [40j stats. percentileof score

method (kind='mean'). In order to avoid rank pile-ups due to the presence of many

zeros, we replaced zeros with pseudo relative abundances drawn from a uniform distri-

bution between 0.0 and 10-9 (i.e. a set of random values smaller than the lowest pos-

sible relative abundance in any dataset). Due to the zero-replacement step, p-values

can shift slightly upon re-analysis with a different random draw, which can lead to the

loss or gain of significance for features very near the significance threshold. Within

each study, control distributions for each individual OTU or genus were converted into

percentiles of themselves and case distributions were converted into percentiles of their

corresponding control distribution. We have written a python script that performs

percentile-normalization given an OTU table, a list of case sample IDs, and a list

of control sample IDs as inputs (https: //github. com/seangibbons/percentile_
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normalization). A QIIME 2 (https://qiime2.org) plugin for running percentile-

normalization is also available (https: //github. com/cduvallet/q2-perc-norm).

4.2.4 ComBat

For each disease, we applied ComBat [8] to the case-control datasets analyzed in

this study. Relative abundances (OTUs in the CRC analysis or OTUs collapsed to

the genus level in the genus-level analysis) were log-transformed prior to running

ComBat (default settings), adding a pseudo relative abundance of half the minimal

frequency (across the entire feature table) to replace zeros. ComBat-corrected data

were then transformed back from log-space (i.e. exponential transformation) prior to

downstream analyses.

4.2.5 limma

In addition to ComBat, we applied a linear batch correction method from the limma

package in R [5]. Relative abundances (zeros replaced with pseudo relative abun-

dances equal to half the minimal frequency across the entire feature table) were log-

transformed as described above and then a linear model was fit to subtract batch ef-

fects using the removeBatchEf fect function (default settings). The limma-corrected

data were then transformed back from log-space (i.e. exponential transformation)

prior to downstream analysis.

4.2.6 Statistical Analysis

To calculate statistical significance, we restricted our statistical tests to OTUs/genera

that occurred in at least one third of control or one third of case samples in order

to reduce our multi-test correction penalty. We used the Wilcoxon rank-sum test,

as implemented in SciPy vO.19.0 (sicipy.stats.ranksums) [401, to determine sig-

nificant differences between independent groups of samples. Wilcoxon tests were run

either within or across studies. In order to calculate statistics across studies, nor-

malized case and control samples from multiple studies of the same disease were
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combined together into the same OTU table. Hereafter, combining datasets is re-

ferred to as 'pooling.' P-values were multiple-test corrected using the Benjamini-

Hochberg False Discovery Rate (FDR) procedure, as implemented in StatsModels v

0.8.0 (statsmodels.sandbox.stats.multicomp.multipletests) [41]. Differences

in overall community structure were assessed using the Permutational Multivariate

Analysis of Variance (PERMANOVA) test in R's vegan package [42] as implemented

in scikit-bio (skbio. stats. distance .permanova). Fisher's and Stouffer's methods

for combining p-values were performed using SciPy v0.19.0 (cipy. stats. combinepvalue s;

method=' f isher ' or method='stouf f er '). For Stouffer's method, weights for each

study were calculated as the square root of the number of cases plus the number

of controls. OTUs/genera with significant responses in opposing directions across

studies were excluded from Fisher and Stouffer analyses.

4.2.7 in silico experiments

We ran an in silico titration experiment using the OTU-level data to simulate pooling

of control samples from different datasets before calculating significant differences.

Healthy samples from one study were mixed with healthy samples from another study

at different proportions prior to calculating significant differences in OTU frequencies

between cases and controls. Case and control groups were subsampled to 40 samples

each. Control samples were substituted by randomly selected samples from another

study along a fractional gradient (0-100% control samples from another study). We

calculated significant differences between case and control groups using the Wilcoxon

rank-sum test and applied an FDR correction. OTUs with q-values < 0.05 were

considered significant. The titration experiment was rerun 20 times, and the results

were averaged.

Similar to the titration experiment, we ran an OTU-level analysis of how batch-

correction methods might impact false-positive rates by randomly selecting 40 control

samples from the Baxter et al. (2016) study as artificial 'controls' and 40 control

samples from the Zeller et al. (2014) study as artificial 'cases' (across 20 iterations)

for each data type (i.e. raw, percentile-normalized, limma-corrected, and ComBat-
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corrected). We then calculated significant differences between these artificial 'case'

and 'control' groups as outlined above to generate p-values for each OTU.

4.3 Results

4.3.1 Batch effects at OTU-level resolution

To minimize possible biases across data sets, we identified three colorectal cancer

(CRC) studies that sequenced the same region of the 16S gene (V4). We reprocessed

the raw sequence data from each study in the same quality filtering and OTU picking

pipeline to obtain bioinformatically-standardized results. OTUs that occurred in at

least one third of case or one third of control samples (i.e. within individual studies)

were retained for all downstream statistical analyses. Despite standardizing the bioin-

formatic processing of these data, we saw significant batch effects in healthy patients

across studies (PERMANOVA p < 0.001; Fig. 4-2). The similarity between samples

from the Baxter et al. (2016) and Zackular et al. (2014) studies is due to the fact that

they were sourced from the same patient cohort (although samples were processed

separately), making this comparison a good pseudo-negative control for batch effects

[18, 19]. There was an apparent reduction in the batch effect after applying ComBat,

although differences between batches remained weakly significant (PERMANOVA p

= 0.008, Fig. 4-2) [8]. Due to the non-independence between the Baxter and Zack-

ular patient cohorts, we removed the smaller of the two studies (Zackular) from all

downstream analyses. Out of a total of 1,021 OTUs that passed our abundance filter,

681 differed significantly in uncorrected relative abundance between the Baxter and

Zeller healthy controls (FDR q < 0.05).

We ran an in silico titration experiment to simulate pooling of control samples

from different datasets before calculating significant differences. Healthy samples

from one study were mixed with healthy samples from another study at different

proportions prior to calculating significant differences in OTU frequencies between

cases and controls (see conceptual outline in Fig. 4-3). For non-normalized data, the
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data). Despite standardized bioinformatic processing, healthy patients differed sig-
nificantly in their gut microbiomes across studies (PERMANOVA p < 0.001; batch

accounts for 6.342% of the total variance). Studies were still significantly different

after applying ComBat, an established batch-correction method (PERMANOVA p <

0.01). However, percentile-normalization did a better job of stabilizing the variance

across studies and removed any apparent batch effect (PERMAN OVA p > 0.5).

number of significant OTUs greatly increased due to batch effects as more control

samples were substituted in from another study. This result highlights the danger

of pooling raw data across batches. ComBat- and limma-corrected data performed

better than uncorrected data, but still showed many spurious results as the proportion

of control samples from another study increased (Fig. 4-3). Percentile-normalization

showed no increase in spurious results over the titration gradient (Fig. 4-3). Although

we do see several significant CRC-associated OTUs in the full dataset (see below),

these were not detected in the titration experiment due to the loss of statistical power

when reducing case and control groups to only 40 samples each.

We ran a second in silico experiment to determine whether the false-positive rate

was impacted by our different batch-correction methods. We randomly selected 40

samples from the Baxter healthy controls as artificial 'controls' and 40 samples from
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Figure 4-3: Pooling non-normalized samples from different studies can give rise to
many spurious associations. The control group from one study is gradually substi-
tuted with randomly chosen control samples from another study (non-normalized,
percentile-normalized, limma-corrected, and ComBat-corrected), keeping the total
number of case and control samples fixed at n = 40 (see conceptual illustration on
the left). Mixing in non-normalized control samples from another study gave rise to
spurious results due to batch effects (blue lines). ComBat- and limma-corrected data
showed fewer spurious associations (green and red lines). Percentile-normalization
showed no increase in spurious results along the titration gradient (orange lines).

the Zeller healthy controls as artificial 'cases' for each data type (i.e. non-normalized,

percentile-normalized, limma-corrected, and ComBat-corrected) and calculated sig-

nificant OTU-level differences between these groups. We repeated this process twenty

times to generate a set of p-value distributions. We found that the fraction of p-values

< 0.05 can be as high as 70% for the non-normalized data (Fig. 4-4). This result

matches with our finding that 681 out of the 1,021 OTUs in this dataset differed

significantly across Baxter and Zeller controls (q < 0.05). Each normalization tech-

nique drastically reduced the number of false positives, but percentile-normalization

gave the best results (Fig. 4-4). When low-abundance OTUs were included in the

analysis, ComBat and limma showed highly skewed p-value distributions, giving rise

to a larger number of false positives than the non-normalized data (Fig. 4-8).

We next assessed the performance each cross-study analysis method by compar-

ing OTU-level results across two independent CRC datasets. In the Baxter study,

there were 172 healthy (control) samples and 120 CRC (case) samples, with 14

90

Zeller > titrate Ba r Baxter > titrate Ze r



0.7

i 0.6

6 0.5
II

v 0.4

0.3 0
(Ale

0
c 0.2
0

0.1

0.0

raw percentile ComBat limma

Figure 4-4: False positive rates are reduced by batch-correction methods. Random

sets of 40 Baxter controls and random sets of 40 Zeller controls were selected for null

case-control comparisons (20 iterations). Smaller points show the fraction of p-values

< 0.05 within a given iteration, while larger dots show the average value across all

20 iterations. Within each category, smaller points are randomly jittered along the

x-axis for better visualization. The fraction of p-values < 0.05 is highly inflated for

non-normalized data (red dashed line shows the null-expectation for p-values). Only

abundant OTUs (detected in at least a third of case or control samples) were included

in this analysis.

OTUs (from Fusobacterium, Coprococcus, Butyricicoccus, Gemmiger, Faecalibac-

terium, Roseburia, Parvimonas, Haemophilus, Porphyromonas, Peptostreptococcus,

Streptophyta, Bacteroides and Clostridium XIVa genera) showing significant differ-

ences in abundance between cases and controls (FDR q < 0.05). For Zeller, there

were 71 control and 40 case samples, with 18 OTUs (from Butyricicoccus, Butyrici-

monas, Fusobacterium, Closridium XIVa, Streptococcus, Parabacteroides, Alistipes,

Anaerostipes, Parvimonas, Peptostreptococcus, Blautia, Dialister, and Bacteroides

genera) that differed significantly across cases and controls (FDR q < 0.05).

In the absence of batch effects, pooling data across datasets of the same dis-
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ease should increase sensitivity to detect significant cross-study associations. We

pooled percentile-normalized, liima-corrected, and ComBat-corrected data, respec-

tively, across Baxter and Zeller studies to look for OTUs that differed significantly

across cases and controls. These pooled results were then compared to classic meth-

ods for combining p-values from each dataset's individual results (above). For the

percentile-normalized data, we found 39 OTUs that differed significantly between

cases and controls (FDR q <; 0.05), 21 of which overlapped with the within-study

results. The pooled limma-corrected and ComBat-corrected data resulted in 37 and

36 significant OTUs, respectively. 35 of the OTUs identified as significant by ComBat

were also significant in the limma results. 30 of the limma results and 29 of the Com-

Bat results were also significant in the percentile-normalization results, respectively.

Fisher's method identified seven significant OTUs from Clostridium XIVa, Strepto-

coccus, Fusobacterium, Parvimonas, Peptostreptococcus, and Anaerostipes genera,

which were also found in the percentile-normalized results. Stouffer's method identi-

fied the same seven OTUs found using Fisher's method. Overall, the pooling methods

improve statistical power to detect significant OTUs over traditional meta-analysis

methods. For example, particular OTUs from Desulfovibrio and Parabacteroides

genera were identified as significantly enriched in CRC patients in the pooled results

(ComBat, limma, and percentile-normalized), but not in the within-study results or

in the Fisher and Stouffer results. Pooled analysis of percentile-normalized data also

identified on Enterobacter OTU enriched in cancer patients, two OTUs from the

Lachnospiraceae family that were enriched in controls and one Lachnospiraceae that

was enriched in cases, which were missed by the within-study analyses. In all, 18

OTUs were identified in the pooled, percentile-normalized results that were missed

by the within-study analyses (Fig. 4-5). These additional taxonomic associations

(e.g. Desulfovibrio, Costridium XIVa, and Lachnospiraceae) are consistent with prior

meta-analyses of CRC microbiome studies [17, 431. It is important to visualize the

data being fed into statistical tests to determine whether significant associations are

being driven by outlier studies or by other artifacts. The associations identified in

Figure 4-5 appear to be biologically meaningful due to the overall consistency of the
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effect directions across studies.
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Figure 4-5: OTUs significant across CRC studies, but not within a given study.
Pooling data provides greater statistical power to detect subtle, yet consistent dif-
ferences in OTU abundances across sample groups. 18 OTUs are labeled by their
most resolved taxonomic annotation. Each OTU in this plot was not found to be
significant within either Baxter or Zeller studies, but became significant after pooling
the percentile-normalized datasets (q < 0.05).

4.3.2 Batch effects at genus-level resolution across multiple

diseases

In order to assess the performance of different meta-analysis techniques across a larger

set of studies and diseases, we summarized OTU abundances at the genus level for

five diseases across 18 studies - Clostridium difficile induced diarrhea (CDI), Crohn's

disease (CD), ulcerative colitis (UC), obesity (GB), and CRC. There were a total of

306 unique genera detected across studies. There were two CDI case-control studies:

Schubert et al. (2014) had 154 control and 93 case samples [32]; Vincent et al. (2013)

had 25 control and 25 case samples I35]. There were four inflammatory bowel disease

(IBD) studies that included CD patients and three that also included UC patients:

Papa et al. (2012) had 24 non-IBD control samples, 23 CD samples, and 43 UC
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samples [22]; Morgan et al. (2012) had 18 control, 61 CD and 47 UC samples [23];

Willing et al. (2010) had 35 control, 16 UC and 29 CD samples [24]; Gevers et al.

(2014) had 16 non-IBD control and 146 CD samples, with no UC samples [21]. There

were eleven studies with lean and obese (OB) cohorts: Turnbaugh et al. (2009) had

33 controls and 102 cases [25]; Goodrich et al. (2014) had 428 controls and 185 cases

[29]; Escobar et al. (2014) had 10 controls and 10 cases [26]; Zhu et al. (2014) had

16 controls and 25 cases [44]; Jumpertz et al. (2011) had 12 controls and 9 cases [33];

Ross et al. (2015) had 26 controls and 37 cases [28]; Zupancic et al. (2012) had 96

controls and 101 cases [27]; Baxter et al. (2016) had 125 controls and 47 OB cases

[18]; Schubert et al. (2014) had 68 controls and 34 OB cases [32]; Wu et al. (2011)

had 59 controls and 9 cases [31]; and Zeevi et al. (2015) had 567 controls and 151

cases [301. There were four independent CRC studies, including the Baxter and Zeller

studies listed in the OTU-level analysis (see above for sample sizes). The remaining

two CRC studies are Wang et al. (2012), which had 54 control and 44 case samples

[45], and Chen et al. (2012), which had 22 controls and 21 cases [20].

Most genera that differed significantly within a given study were not significant in

other studies of the same disease. For example, of the 36 unique genera that showed

significant differences within any given OB study, none were found to be significant

in all studies (I = 0; Table 4.1). Indeed, there were no genera that were significant

across all studies in the majority of diseases studied (I = 0; Table 4.1). CDI only

had two studies, and of the 38 significant results, only six were shared across both

datasets. Overall, few genera were significant within two or more studies (2N <

6; Table 4.1). The number of genera that differed significantly across pooled cases

and controls changed depending on how the data were batch-corrected (Table 4.1).

For every disease, percentile-normalization yielded the largest number of significant

genera when compared to other methods. Overall, ComBat- and limma-corrections

resulted in many fewer significant genera, especially for CD, UC, and CRC (Table

4.1). Half of the IBD (CD and UC) studies included non-IBD patients with inflamma-

tory symptoms as controls rather than clinically healthy patients. These biologically

relevant differences in inflammatory symptoms between control cohorts were con-
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flated with batches and were likely smoothed out by ComBat and limma corrections.

Fisher's and Stouffer's methods consistently identified fewer significant associations

than percentile-normalization (Table 4.1). Pooling data prior to running a statistical

test is a more sensitive technique than combining independently calculated p-values

[46]. Thus, percentile-normalization increases the statistical power to detect differ-

ences across studies while controlling for false positives and batch effects.
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CDI (N=2) percentile 37 U = 38 / 2N = 6

Fisher 12

Stouffer 12

ComBat 36

limma 36

CD (N=4) percentile 19 U = 13 / I = 0 / 2N 2

Fisher 6

Stouffer 6

ComBat 2

limma 1

UC (N=3) percentile 10 U = 17 /I = 0/ 2N 1

Fisher 4

Stouffer 4

ComBat 5

limma 5

CRC (N=4) percentile 12 U = 20 /I 0 /2N = 3

Fisher 9

Stouffer 7

ComBat 5

limma 5

OB (N=11) percentile 18 U = 36 / I = 0 / 2N = 6

Fisher 4

Stouffer 6

ComBat 13

limma 15

Table 4.1: Normalization methods impact the number of significant genus-level associations between
cases and controls across multiple diseases. Numbers of genera that differ significantly between cases
and controls for five diseases. In the 'disease' column, CDI = Clostridium difficile induced diarrhea,
CD = Crohn's Disease, UC = Ulcerative Colitis, CRC = Colorectal Cancer, and OB = obesity. 'N
=' shows the number of studies included in each meta-analysis. The method column indicates how

the data were processed prior to running significance tests (percentile-normalized, Fisher's method
for combining p-values, Stouffer's method for combining p-values, ComBat-corrected, or limma-
corrected). The significance threshold used was q <; 0.05 (FDR). The 'pooled' column shows the
total number of genera that were found to be significantly different across pooled studies for a given
disease. The 'within' column shows the total number of unique (non-redundant) genera that were
identified as significantly different within each study (U = union), the number of genera that were
significant in all individual studies (I = intersection), and the number of significant genera that were
consistently significant in at least two studies (2N; 2N == I for CDI).
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To better assess how percentile normalization impacted the pooled results, we

looked at genera that were significant within a single-study but not across studies

after pooling. There were 12 genera that were significant within a subset of CRC

studies, but not after pooling (Fig. 4-6). Gemmiger, Bacteroides, and Roseburia

showed variable responses across studies, sometimes enriched in controls and other

times enriched in cases. The remaining genera showed weak associations within one or

two studies, but did not differ significantly across studies (i.e. q < 0.05). These genera

that show weak or inconsistent responses across batches may not be reliable disease

biomarkers. However, by including larger numbers of CRC studies in future meta-

analyses it is likely that some of these genera could pass the significance threshold.

Two genera - Lactobacillus and Desulfovibrio - were not significantly different between

cases and controls within an individual study, but became significant after pooling

(Fig. 4-7). These genera showed weak, but largely consistent enrichment in cancer

patients and demonstrate the utility of pooling datasets to detect subtle differences.
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Otl I i
(1) Roseburia

100

Butyricimonas
100

50I11

01
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11ilI!

Anaerovorax

Anaerotruncus

FlavonifractorIi 111
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0 = Wang et al. (2012)
* = Chen et al. (2012)

* = Zeller et al. (2014)
0 a Baxter et al. (2016)

Figure 4-6: Genera that show a significant difference between CRC cases and controls
within a given study, but not after pooling. 12 genera showed significant differences
between cases and controls within a study (q < 0.05), but not after pooling across
CRC studies.

While prior work has suggested that there may not be consistent associations
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Figure 4-7: Genera that do not show a significant difference between CRC cases and
controls within a given study, but do after pooling. Two genera did not show signif-
icant differences between cases and controls within a study, but became significant
after pooling across CRC studies (q < 0.05).

between the gut microbiome and obesity [34], we observed six genera in a recent meta-

analysis that differed significantly across two or more (out of five) independent obesity

studies [17]. Of these six genera, four (Roseburia, Clostridium IV, Oscillobacter,

and Pseudoflavonifractor) were also found to be significant in the pooled, percentile-

normalized results (Fig. 4-9). The two remaining genera not found to be significant in

the percentile-normalized analysis (Mogibacterium and Anaerovorax) showed highly

irregular responses across the 11 obesity studies analyzed in this study (Fig. 4-10).

Despite the irregular behavior of these genera, Fisher's and Stouffer's methods both

identified Mogibacterium as significantly associated with obesity.

4.4 Discussion

Batch effects are unavoidable when working with high-throughput data generation

platforms. The RNA microarray community has been proactive in the development

of tools for dealing with these effects [1, 8]. However, these tools are not as effec-

tive when batch effects are confounded with biological signals or when parametric

assumptions do not apply, which is often the case in microbiome case-control studies.

Therefore, model-free methods are needed for correcting batch effects across micro-

biome datasets. Fortunately, case-control studies can be internally normalized by
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their own control samples. Any study-specific batch effects in the case samples will

be present in the control samples, and by converting the case data into percentiles

of the control distribution these effects are attenuated without making parametric

assumptions.

Relative abundance, limma-corrected, and ComBat-corrected data - but not percentile-

normalized data - quickly yielded a large number of spurious results when cases

from one study were tested against controls from another (Fig. 4-3). Additionally,

when control populations from different batches were compared to one another, non-

normalized data yielded a much larger number of false positives than batch-corrected

data (Fig. 4-4). Our percentile-normalization approach was much more effective than

limma and ComBat in controlling false positives (Fig. 4-4), especially in the presence

of low-abundance taxa (Fig. 4-8).

Because pooling datasets increases statistical power, it is tempting to pool these

data even in the absence of suitable batch-correction methods. Consequently, pool-

ing non-normalized data from different batches has been common practice in the

microbiome field [26, 28, 34, 47, 48, 49, 50, 51, 52, 53, 54, 55]. In this paper, we

demonstrate why this practice is highly inadvisable. Pooling batch-corrected data

from multiple studies allowed us to detect significant differences that were not found

within a given study (Figs. 4-5 and 4-7), while removing associations that were

weak or inconsistent across studies (Fig. 4-6 and 4-10). Percentile-normalized results

often identified significant differences between cases and controls that were missed

by other normalization methods (Table 4.1). For CDI, percentile-normalized results

identified about the same number of significant hits as the other batch-correction

methods (Table 4.1), which was likely due to the fact that the biological signal as-

sociated with diarrhea is very strong [17]. In cases where the biological signal is

strong, results should be robust to the types of analyses employed. For UC and

CD studies (IBD), percentile-normalization identified several significant genera that

limma and ComBat did not (Table 4.1). The reduced number of significant hits from

limma- and ComBat-corrected data for IBD was likely due to heterogeneous control

cohorts across these studies (i.e. healthy patients vs. non-IBD patients), which likely
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smoothed-out inflammation-associated signals. This result highlights the importance

of having consistent definitions for case and control cohorts across studies.

We compared percentile-normalization and pooling to Fisher's and Stouffer's meth-

ods for combining independent p-values. Stouffer's method is similar to Fisher's,

but includes weights for each p-value based on the number of samples in a study.

Percentile-normalization consistently identified a larger number of significant hits

than Stouffer's and Fisher's methods, confirming that pooling data increases sensi-

tivity (i.e. reducing putative false negatives). Methods for combining p-values from

independent studies are quite robust and should probably be considered as a safe

alternative to pooling (i.e. lower chance of false positives). However, in the case

of our obesity analysis, Fisher's and Stouffer's methods identified Mogibacterium as

significant despite its apparent inconsistency across studies (Fig. 4-10).

In conclusion, we present a robust, model-free procedure for transforming each fea-

ture in a microbiome case-control dataset into percentiles of its control distribution

(Fig. 4-1). The main conditions for applying this method are that 1) each batch must

have a sizeable number of control samples (i.e. the density of the control distribution

limits the resolution of the percentile-transformation of the case samples), and 2) case

and control populations should be consistently defined across batches (i.e. same def-

inition of 'healthy' or 'diseased' groups). Given these caveats, percentile-normalized

features can be pooled across studies for univariate statistical testing (whichever test

a researcher prefers - ideally non-parametric), alleviating the batch effect problem.

This model-free procedure could also be applied to other types of 'omics datasets

with consistently defined internal controls. We find that this procedure allows us to

identify differences between cases and controls that are often missed by more conser-

vative meta-analysis techniques. Methods developed for batch-correction in microar-

ray data, like limma and ComBat, can partially reduce batch effects in microbiome

studies (Figs. 4-2-4-4), but appear to obscure real patterns if batch effects are not

independent of biological signals or if the parametric assumptions of these models are

not valid. We suggest that methods like limma and ComBat are useful for studies

lacking case and control groups. However, when studies have consistently defined
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internal controls, percentile-normalization should be the preferred batch correction

approach. Future work should focus on developing parametric models specifically for

batch correction in microbiome datasets, which could further improve sensitivity to

detect subtle biological differences across studies.
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Figure 4-8: False positive rates are reduced by percentile-normalization, but not by
ComBat or limma, in the presence of low-abundance OTUs. Random sets of 40
Baxter controls and random sets of 40 Zeller controls were selected for null case-
control comparisons (20 iterations). Smaller points show the fraction of p-values <
0.05 within a given iteration, while larger dots show the average value across all 20
iterations. Within each category, smaller points are randomly jittered along the x-
axis for better visualization. The fraction of p-values < 0.05 is highly inflated for all
methods except percentile-normalization (red dashed line shows the null-expectation
for p-values). All OTUs were included in this analysis (i.e. no abundance filter prior
to running tests). ComBat and limma show highly skewed p-value distributions when
including low-abundance OTUs.
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Figure 4-10: Two genera that were significant (q 0.05) in at least two obesity studies
in Duvallet et al. (2017), but were not significant in the pooled, percentile-normalized
analysis. Gray points show data pooled from all 11 obesity studies. Other colors show
individual obesity studies. Studies listed in order from left to right: Zhu et al. (2014),
Zeevi et al. (2015), Wu et al. (2011), Baxter et al. (2016), Schubert et al. (2014),
Zupancic et al. (2012), Ross et al. (2015), Jumpertz et al. (2011), Turnbaugh et al.
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Abstract

Early clinical successes are driving enthusiasm for fecal microbiota transplantation

(FMT), the transfer of healthy gut bacteria through whole stool, as emerging research

is linking the microbiome to many different diseases. However, preliminary trials

have yielded mixed results and suggest that heterogeneity in donor stool may play

a role in patient response. Thus, clinical trials may fail because an ineffective donor

was chosen rather than because FMT is not appropriate for the indication. Here,

we describe a conceptual framework to guide rational donor selection to increase

the likelihood that FMT clinical trials will succeed. We argue that the mechanism

by which the microbiome is hypothesized to be associated with a given indication

should inform how donors are selected for FMT trials, categorizing these mechanisms

into four disease models and presenting associated donor selection strategies. We

next walk through examples based on previously published FMT trials and ongoing

investigations to illustrate how donor selection might occur in practice. Finally, we

show that typical FMT trials are not powered to discover individual taxa mediating

patient responses, suggesting that clinicians should develop targeted hypotheses for

retrospective analyses and design their clinical trials accordingly. Moving forward,

developing and applying novel clinical trial design methodologies like rational donor

selection will be necessary to ensure that FMT successfully translates into clinical

impact.
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5.1 Introduction

Fecal Microbiota Transplantation (FMT) is the transfer of gut bacteria through whole

stool from a healthy donor to a recipient. FMT has demonstrated high cure rates in C.

difficile infection (CDI) across multiple randomized, placebo-controlled trials [1] and

has now entered standard of care for recurrent CDI in European and North American

guidelines [2, 3, 4]. Beyond CDI, FMT is being explored in range of microbiome

mediated diseases, and has demonstrated promising results in inflammatory bowel

disease [5, 6, 7, 8, 9, 10].

Despite these early successes, the underlying mechanism of FMT across all disease

indications, including CDI, remains unclear. However, it is generally considered that

FMT restores gut microbial community perturbations from a dysbiotic to healthy

stable state with engraftment of donor strains. Other donor-dependent features may

be important such as the abundance of non-bacterial components or donor clinical

features [11, 12]. However, not all FMT donors are alike: gut microbiota compositions

vary significantly within healthy populations in ways that could impact the findings

from an FMT trial [13]. This critical point of donor microbiome variation is rarely

considered in the development of FMT trials [14, 15].

Unlike FMT trials in CDI, where selecting donors based on specific clinical or

microbiome profiles does not seem to affect clinical response rates, donor selection is

likely to be crucial to trial outcomes in diseases with more complex host-microbiome

interplay or distinct disease-associated perturbations. Most notably, in a randomized

controlled trial (RCT) of FMT for ulcerative colitis (UC) using 5 donors, 78% of

patients who achieved remission after FMT received stool from a single donor [16].

Without this single donor the trial would have returned a negative result. Given the

variation in donor microbiomes and donors' potential impact on clinical efficacy, how

should clinicians and investigators select their donors for a clinical trial?

To date, the typical approach for donor selection in FMT trials is to use a single

healthy screened donor or to randomly select multiple donors from a set of screened

potential donors [10, 17, 18]. However, in clinical indications where successful donors
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may be rare, such as UC, clinical trials with randomly-selected donors may fail not

because FMT is inappropriate for the indication, but because an ineffective donor

was chosen. An alternative approach is to expose patients to multiple donors in order

to mitigate the risk of sub-optimal donor selection. In a large RCT of FMT in UC,

FMT enemas for a single patient were derived from between three and seven donors

with patients receiving multiple donors throughout the 8 week course of treatment

[10]. However, using multiple donors for a single patient may not be feasible or

appropriate in many disease indications or clinical trial settings (e.g. single-dose

FMT studies). Continuing the strategy of sub-optimal, random donor selection when

it is not warranted risks returning false negative trials, stalling the field and delaying

the development of novel therapies for seemingly intractable microbiome-mediated

conditions.

Unlike traditional clinical trials which test well-defined small molecules, the ther-

apy under study in FMT trials, the donor microbiome, also varies [15]. Thus, trans-

lational FMT research requires a paradigm shift in order to systematically address

rational donor selection. Fortunately, with the emergence of large multi-donor stool

banks, expanded access to genome sequencing technologies and publicly available

microbiome sequencing datasets, rational donor selection is feasible and presents a

unique opportunity to advance the research methods of this nascent field.

In this paper, we present a framework to guide donor selection for FMT trials. The

mechanism by which the microbiome is hypothesized to be associated with a given

indication should inform how donors are selected for FMT trials, and we describe

different disease models which may underlie microbiome-mediated conditions (Figure

5-1). We describe strategies to rationally select donors for each type of disease model,

and provide examples based on previously published FMT trials and ongoing inves-

tigations. Finally, we discuss limitations of performing discovery-based retrospective

research after an FMT clinical trial concludes. To our knowledge, this is the first

description of a comprehensive framework for rational donor selection in FMT trials.
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5.2 Models of microbiome-mediated disease

FMT trials are pursued when research or clinical experiences suggest that a condition

may be causally linked to the microbiome. Here, we propose four different models

which may underlie microbiome-mediated etiologies and their corresponding ratio-

nal donor selection strategies (Figure 5-1). Ultimately, it is up to each individual

clinician-researcher to determine which of these model(s) are relevant in their specific

case, based on published cross-sectional studies, mechanistic investigations in model

organisms, and their own clinical experience treating patients. Additionally, logistical

considerations will be important factors in making the final donor selection regardless

of which strategy is pursued. Clinicians should ensure that the pool of donors that

they are screening have enough material to sustain the required number of FMTs for

their entire trial.

Most of the donor selection strategies described below can be modified to incorpo-

rate matching between patients and donors. More specifically, donors can be tailored

to individual patients to specifically make up for the unique taxonomic or functional

deficiencies in that patient's microbiome. With the increasing amount of microbiome

data available from published FMT trials, we encourage collaborations between clini-

cians and bioinformaticians to analyze these data in order to generate or perhaps even

confirm the validity of potential donor selection strategies before selecting one (Figure

5-2). Finally, the strategies presented here should also be combined with adaptive

clinical trial designs to further increase the probability of having a successful FMT

trial [19].

5.2.1 Acute dysbiosis

An acutely dysbiotic gut microbial community is broadly dysfunctional and can no

longer maintain the health of the host. For example, in the case of recurrent Clostrid-

ium difficile infection, a disturbed microbial community is unable to prevent coloniza-

tion by the pathogen, leading to recurrent overgrowth of C. diff and clinical symptoms

[20]. Acute dysbiosis has also been described with the "Anna Karenina principle": all
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Figure 5-1: Overview of the different models
associated donor selection strategy.

of microbiome-mediated disease and

healthy microbiomes are alike but dysbiotic communities are all dysbiotic in their own

ways [21]. In this view of acute dysbiosis, microbial communities respond stochas-

tically to stressors, resulting in dysbiotic communities which are characterized by

increased variability rather than deterministic shifts to precise community type(s)

[21].

In this model, the host just needs to return to a "healthy" microbiome and thus

choosing any healthy FMT donor should be sufficient to induce clinical improvements.

Because there is no specific disease-associated microbial community and deviation

from health is instead the more important factor, simply replenishing the microbiome

with a healthy configuration should be sufficient. Indeed, FMT trials have demon-

strated that recurrent C. diff infection can be effectively treated by almost any choice

of donor [22]. In this case, researchers should consider how they define a "healthy"

microbiome and how they will ensure engraftment of the transplanted healthy com-

munities.
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5.2.2 Absence or presence of individual taxa

Absence of beneficial taxa

In other cases, perhaps a disease is being caused or exacerbated by the lack of certain

specific microbes, and replenishing these few taxa would be sufficient to restore the

host to health. For example, Hsiao et al showed that a single microbe, R. obeum,

restricted infection by V. cholerae through quorum-sensing-mediated mechanisms

[23]. Surprisingly, non-communicable diseases may also fall into this model: Wilck et

al. demonstrated that a single strain of Lactobacillus was sufficient to prevent salt-

induced hypertension, and follow-up studies indicate that similar mechanisms may

be involved in salt-sensitive high blood pressure in humans as well [24].

In these cases, the donor selection strategy should focus on maximizing the prob-

ability of engraftment of the beneficial taxa. In cases where the unique taxa are not

specifically known or are rare members of the human microbiota, many healthy donors

should be pooled together to maximize the probability that the transplanted sample

contains the necessary taxa. If the missing microbes are known and well-characterized,

on the other hand, researchers can screen their pool of potential donors to find the

sample with the highest abundance of these taxa.

Presence of harmful taxa

Rather than being characterized by the absence of individual bacteria, perhaps a dis-

ease is instead mediated by the presence or overabundance of specific microbes, and

removing these bacteria in a targeted fashion could lead to improvements in disease

progression. For example, Fusobacterium has been found to be more abundant in col-

orectal cancer patients, specifically enriched in the tumors themselves [25]. Multiple

groups have identified mechanistic associations between Fusobacterium, inflamma-

tory transcriptional signatures, and tumor growth in mouse and human models of

colorectal cancer, pointing to a causal role for Fusobacterium in colorectal cancer

progression [25, 26]. Recent work has found that treating tumors with antibiotics

slows tumor progression, further confirming these causal associations and pointing
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toward potential microbiome-based therapeutic interventions [27].

Removing and replacing these bacteria should be the goal of FMT in cases where

this disease model applies. This can be achieved by first removing the harmful bacteria

in a targeted way (e.g. via antibiotic treatment) with follow-up FMT to re-establish

a healthy community that prevents their re-colonization. In all cases, donors should

be screened to exclude any samples which contain the harmful bacteria. Donor sam-

ples can then be selected based on the abundance of bacteria which are known to

out-compete the harmful taxa. Competitors can be identified by searching the mi-

crobiology literature to identify bacteria which live in the same niche or which have

been experimentally shown to directly out-compete the undesirable taxa, or they can

perform these competition assays themselves. If resources to perform competition as-

says are not available and the literature is sparse, researchers can also mine existing

microbiome data to find bacteria which consistently anti-correlate with the harmful

taxa, and choose donor samples with a high abundance of these putative competitors.

Patient matching

Taxa-based donor selection strategies are particularly amenable to patient-matching,

when both patient and donor microbiome data are available prior to the start of a

trial. For example, if one patient is completely missing some of the beneficial taxa

but not others, then these taxa can be weighted more heavily in the donor selection

process. The phylogenetic relationships between donor and recipient taxa could also

be incorporated into donor selection: if a patient already has many bacteria which

are closely phylogenetically related to known competitors of some of the harmful

bacteria, then competitors of the other harmful bacteria can be upweighted in the

donor selection process. Similarly, if patients already have taxa which are already

filling certain niches important for health, the taxa which fill those same niches can

be downweighted in donor selection.
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Case study: Inflammatory Bowel Disease

An example where the "missing taxa' model may be applicable is in inflammatory

bowel disease (IBD). Butyrate has long been associated with inflammatory bowel

disease [28], and recent case-control and longitudinal studies point to a consistent

lack of butyrate-producing bacteria in patients with IBD 129, 30]. Furthermore, pre-

liminary FMT trials in IBD have been marked by significant donor variability and

suggest that donor microbiome characteristics may be associated with FMT response

[16, 31]. These results indicate that IBD may benefit from rational donor selection

approach, and that donors with high abundances of butyrate-producing organisms

may yield higher FMT response rates than randomly selected donors.

Given the availability of microbiome data from completed FMT studies, we tested

this hypothesis that IBD trials would benefit from a rational donor selection strat-

egy based on the "absence of beneficial taxa' disease model. We re-analyzed micro-

biome data from three completed IBD FMT trials which provided publicly available

sequencing data for patient and donor samples [31, 32, 33]. We selected butyrate-

producers based on their genus-level taxonomy, using the genera identified in Vital et

al. 2017 (see Methods, [34]). Donors in the three studies exhibited a range of total

abundances of butyrate-producing bacteria (Figure 5-2A). Surprisingly, however, the

abundance of butyrate producers in the donor stool was not associated with recipient

patients' clinical responses (Figure 5-2B). We also found no association with response

when matching donor abundances with their respective patient's original abundance

of butyrate producers (Supplementary Figure 5-5). These results show that select-

ing donors based on the abundance of butyrate producers may not yield improved

clinical trial outcomes in IBD, and illustrates the process by which clinicians could

approach and validate a rational donor selection strategy based on individual taxa.

More complex methods to identify butyrate producers (e.g. using phylogenetic-aware

methods and/or metagenomics data) could be used in the next iteration to develop a

donor selection strategy, if these data are available to clinicians. Another approach,

discussed below, is to select donors based on functional community assays and direct
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Figure 5-2: Case study in IBD: select donors based on abundance of butyrate pro-
ducers? (A) abundance of butyrate producers in each study's donor samples. (B)
abundance of butyrate producers in donor samples, stratified by respective patient's
response.

measurement of butyrate production rather than microbial taxonomies alone.

5.2.3 Community-level functionality

Some microbiome-associated diseases may not be addressable by replenishing the

patient with a generically healthy community or by targeting individual taxa, and may

instead be mediated by the microbiome through a community-level function. Here,

there may not be a consistent disease-associated microbiome across patients in terms

of taxonomic composition, but patients may be characterized by having microbiomes

which are similarly missing or enriched in some core functionality. This model may

also apply to conditions where there are consistent disease- or health-associated taxa,

but in which their collective functioning is the more important mediator of disease.

The IBD case study described above may reflect this situation: although depletion

of butyrate producers is strongly associated with IBD throughout the literature, a

successful donor selection strategy may need to consider butyrate production directly

rather than through the proxy of taxonomy [29, 30].
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Missing community-level function

In the case where a community-level function is missing from patients' microbiomes,

the goal of FMT should be to replace the deficient community with a beneficially

functional microbiome. Here, it is important that a single donor with an intact

microbial community is used, rather than a mixture of donors which may not yield

the desirable community composition at steady-state after engraftment. To choose a

donor, molecules which can serve as proxies for the metabolic output of the microbial

community can be measured directly in donor stool, and donors can be selected based

on the abundance of these molecules.

Like IBD, hepatic encephalopathy (HE) is an example where community function-

ality is likely more relevant to FMT outcome than specific taxa. A previous trial in

HE [35] rationally selected their single donor by maximizing the abundance of Lach-

nospiraceae and Ruminococcaceae, taxa which were identified based on cross-sectional

microbiome data. The clinical trial was a success, but it remains unclear from this

trial whether the donor's strains engrafted in the patients post-FMT and whether this

played any role in the successful FMT responses. The exact mechanisms of action

of these strains remains unknown, though both bacterial families are known short

chain fatty acid producers (in particular butyrate) [34]. More recent studies have

more directly implicated the production of short chain fatty acids and secondary bile

acids as being important in liver cirrhosis and subsequent complications such as HE,

suggesting that community-level functioning may be a more important driver of FMT

response. Thus, HE may be a case in which function-based donor selection can be

employed.

To illustrate this process, we analyzed stool metabolomics data from 83 Open-

Biome donors and used this data to rank them based on their estimated production

of short chain fatty acids and secondary bile acids (Figure 5-3). As in the IBD case

study, we found that donors exhibited a range of values for our metabolites of in-

terest (Figure 5-3A and C). We ranked donors based on their amounts of the three

measured short-chain fatty acids (butyrate, isovalerate, and propionate) and on their
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bile acid conversion rates, approximated as the ratio between the total amounts of

primary and secondary bile acids (Figure 5-3B and D). With this process, we were

able to identify four donors who were in the top 25% of all donors for both metrics

(Figure 5-3E). In a real FMT trial, a clinician would then work with their stool bank

to ensure that these donors were still active and/or had enough material to be used

in the full trial.

While measuring metabolites in stool as a proxy for community production will

likely be an improvement over taxonomy-based approaches in most cases, these mea-

surements are also complicated by potential host effects. For example, different hosts

may absorb these molecules at different rates, and so measuring them in stool may

not be an accurate reflection of each donor community's productive potential. Ad-

ditionally, community function may depend on non-biologically relevant factors like

the donor's diet and time that they provided their sample. As an example, bile acid

production spikes after meals [36], so the amount of bile acids measured in a given

stool sample may reflect the amount of time since the donor last ate rather than their

actual microbial community's functional production of these molecules. If clinicians

have access to sufficient resources, a better way to screen donors may be to perform

ex-vivo assays, in which each donor sample is homogenized and provided with the

substrates (e.g. fiber) needed to produce the desirable output (e.g. short-chain fatty

acids like butyrate). In this way, the donor community function can be measured

directly [37, 38].

Overactive function

A disease may also be mediated by an overactive microbiome doing something harmful

to the host. For example, many studies have shown a causal association between

TMAO produced by the microbiota and atherosclerosis [39, 40]. Here, the goal of

FMT should also be to replace the patient's microbiome with a beneficially functional

community, but the donor selection strategy may attempt to identify communities in

which the harmful function is completely absent or which produces an inhibitor of

the harmful microbe-derived molecule [40].
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Figure 5-3: Case study in liver cirrhosis: selecting donors based on community func-
tion by mining stool metabolomics data. (A) Distribution of SCFAs in all donor
stools. (B) Abundance of each SCFA per donor, ranked by average SCFA abundance.
(C) Distribution of bile acids in all donors. Primary bile acids are in the left column,
secondary bile acids are in the right column. Bile acids are colored according to path-
ways. (D) Bile acid conversion ratios in each donor, ranked by total secondary to
primary bile acids. (E) The five donors in the top 25% for both of these metrics, for
example, could be used in a rationally-designed liver cirrhosis FMT trial.
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5.2.4 Microbiome-associated host phenotypes

Diseases with more complex etiologies may not have a direct taxonomic or functional

association with the microbiome but instead be related through some intermediate

host phenotype which needs to be improved or corrected. For example, severe acute

malnutrition has been associated with a gut microbiota which is not fully mature,

with mouse experiments suggesting that this association may be causal [41, 421. Other

studies have shown a relationship between gut microbiome, immune development, and

development of autoimmune conditions later in life [43, 44, 45]. These relationships

may have mechanistic explanations which are not directly measurable from donor or

patient stool (e.g. immunogenicity of bacteria, ability of bacteria to eat the host's

mucus, etc) but which can nevertheless be inferred from existing data and used to

select potential donors.

For these more complex cases, models can be trained from existing datasets to

learn the community signatures linked to the disease-associated phenotype. In some

cases, it may be possible to develop computational models which directly predict the

phenotype of interest. For example, Stein et al. developed a model to predict the

induction of regulatory T-cells by microbial communities [46]. In other cases with few

known mechanistic models, machine learning algorithms can be trained on multiple

cross-sectional datasets to identify complex signatures that reproducibly distinguish

patients from healthy controls. These models can then be applied to score potential

donors, and the donor with the "most healthy" score may be chosen for a trial.

5.3 Little understanding of underlying disease model

In some conditions, there may not be enough understanding of the underlying microbiome-

based etiology to inform donor selection in an FMT trial. It may also be the case that

there are no existing datasets on which to train models, existing datasets are not suf-

ficiently powered to distinguish the different potential underlying models, or logistical

considerations constrain a clinician's ability to select specific donors for their trial. In

these cases, we recommend selecting different healthy donors, employing an adaptive
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clinical trial design in which donors are cycled after they have clinical failures (as de-

scribed previously in [19]), and performing retrospective analyses to answer targeted

hypotheses which were developed during the clinical trial design process.

5.3.1 Cycling healthy donors in adaptive trials

As donors change through the course of an adaptive trial, clinicians may elect to select

their donors randomly or to more rationally cycle through donors [19]. "Differently

healthy" donors may be selected, perhaps representing different underlying disease-

associated models described above. Donors may also be selected to span the range

of "healthy" microbiomes in a given population. For example, clinicians may pick a

"median" health donor (i.e. one who is about as similar to all reference microbiomes),

define a "healthy plane" and pick donors based on their distance to this plane (as

in [471), or simply based on the presence or abundance of certain consistently "core"

health-associated bacteria [48],[29]. In a similar vein, "healthy" donors can also be

chosen based on their distance from disease-associated microbiomes, as opposed or

in addition to similarity to health. Published case-control datasets can be used to

identify donors with communities which are farthest away from the median or average

diseased patient. These datasets can also be mined to identify taxa which are consis-

tently disease-associated, and which should be minimized or perhaps even absent in

the potential donor. Pairing rational donor selection with adaptive trial designs may

eventually yield insight into the underlying model mediating the disease of interest

if certain types of "healthy" donors consistently perform better at treating patients

than others.

5.3.2 Discovery-based retrospective analyses

In these exploratory FMT clinical trials, discovering microbiome characteristics which

are differentially associated with FMT response may be a valuable secondary endpoint

[15], identifying characteristics of good donors and informing donor selection strategy

for future trials. Furthermore, companies attempting to develop microbiome-based
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therapeutics may use FMT trials to discover the key bacteria which mediate FMT

response in order to include these in their microbial cocktail product. However, ex-

ploratory FMT trials tend to enroll few patients, limiting the potential power of ret-

rospective analyses to find associations between the microbiome and FMT response.

We performed a simulation to determine the likelihood of a retrospective analy-

sis to identify donor-derived bacteria associated with different patient responses to

FMT. We performed this simulation for multiple FMT trial set-ups and outcomes

(i.e. number of FMT responders and non-responders). We used existing microbiome

datasets to model different effect sizes, where we use "effect size" to mean the number

of bacteria which are differentially abundant in donor samples given to patients who

did and did not respond to FMT. We used case-control datasets to model the micro-

biome data and various effect sizes, with a large effect represented by an infectious

diarrhea dataset [49J, a medium effect represented by colorectal cancer [50], and a

weak effect represented by obesity [51]. For each of these datasets, we identified the

top ten most differentially abundant bacteria in the overall population as the key

mediating bacteria (see Methods). Next, we simulated different trials, varying the

numbers of patients in the FMT arm and the FMT response rates (i.e. proportion

of patients which were FMT responders, represented by sampling from the "case"

patients, vs. non-responders, represented by sampling from the "control" patients,

representing non-responders). We subsampled patients according to these parameter

settings, identified differentially abundant genera, and compared these to the top ten

genera identified from the entire datasets (Figure 5-4).

In cases where the microbial signature for FMT response is expected to be large

(i.e. the difference in donor stools given to FMT responders vs. non-responders

is as large as the effect of diarrhea effect on the microbiome), we found that small

FMT trials would recover most of the top hits in most cases. The power to detect

associations decreased as FMT response rates became less balanced (i.e. response

rates different from 50%), and in these cases trials would need to include up to 50

patients in the FMT arm to recover the key mediating taxa. For both medium and

small effect sizes, however, prohibitively large FMT arms would be needed to recover
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Figure 5-4: Power simulation results, showing how many of the 10 most "truly" dif-
ferentially abundant genera would be recovered as significant under different FMT
study designs. Each panel represents a different FMT response rate (i.e. percent of
patients in the responder vs. non-responder group). The effect size (i.e. number of
genera which are differentially abundant in FMT responders vs. non-responders) was
simulated by using three different case-control microbiome datasets. A large effect
size is modeled by the effect of diarrhea on the microbiome, medium by colorectal
cancer, and small by obesity. The top 10 "true" differentially abundant genera were
identified by calculating their signal-to-noise ratios in the full original dataset (i.e.
mean difference divided by the standard deviation).

most key mediating taxa. We found that when the microbial signature for FMT is

equivalent to the effect of diseases like colorectal cancer on the microbiome, at least

100 patients are needed in the FMT arm to recover at least half of the most truly

differentially abundant genera for most FMT trials.

These results suggest that successful secondary analyses of microbiome data from

FMT trials will require either very large FMT arms, investigating more targeted

hypotheses, or additional sample collections. For example, clinicians may consider

pairing donor and patient samples or collecting longitudinal patient samples to in-

crease power to make discoveries. They may also consider testing specific hypotheses

developed before the trial, such as comparing the total abundance of butyrate pro-

ducers between FMT responders and non-responders, or performing functional assays

to measure specific metabolites thought to be associated with FMT response. On the

other hand, researchers wishing to identify the key taxa to include in an FMT drug

may consider pursuing clinical trials in which identifying these taxa is the primary

endpoint, and power them accordingly.
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5.4 Discussion

The framework presented here encourages clinicians to leverage their clinical experi-

ence, existing microbiome research and published datasets, and the increasing avail-

ability of screened donor stools to more efficiently translate microbiome-based inter-

ventions into clinical impact. Clinicians can apply their existing knowledge and a pri-

ori hypotheses to determine which microbiome-mediated disease model may underlie

their indication of interest, and then select donors accordingly. By rationally choosing

donors during the FMT trial design, clinicians will increase the likelihood of success-

ful FMT trials in diseases in which donor heterogeneity affects patient response. Our

power simulation analysis also suggests that specific plans for retrospective analyses of

the microbiome data generated should be developed during trial design, with targeted

hypotheses of interest and sample collection plans tailored accordingly. Otherwise,

exploratory analyses are unlikely to make new discoveries from most FMT trials.

Paired with adaptive clinical trial designs, FMT trials with rationally-selected donors

will become an important tool in advancing translational microbiome research and

clinical treatment to improve and save patient lives.

As FMT-specific clinical trial design methodologies become more developed, many

additional questions will need to be addressed. Some of these key questions relate

to choosing healthy donors: what defines a "healthy" donor, and when and how

should that definition change? Some screening criteria, like excluding certain known

pathogens, will likely apply to all donors. Beyond these, however, there is little

consensus on what defines a "healthy" microbiome. Consider a clinician carrying

out an FMT trial in an African setting: given that healthy Africans from across

the continent are known to have more Prevotella than North Americans, it might

be advisable to source donors locally to better match the expected healthy state of

the patients [52, 13, 53]. But what if the local population has higher asymptomatic

colonization rates of undesirable bacteria like opportunistic pathogens, resulting in

usual screening criteria excluding many or all potential donors: should the criteria be

adapted to allow for local donors, or should donors be sourced from a foreign stool
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bank whose donors may not match the local population? To answer this question,

more research will need to be carried out to understand differences between healthy

microbiomes globally and their clinical implications 154, 55].

On the patient side, comorbidities, lifestyle, and dynamic disease manifestations

present additional challenges and opportunities to improve donor selection and FMT

clinical trial designs. How should comorbidities be incorporated into donor selection?

Patients with multiple disease processes may be dominated by one disease model or

may exhibit a combination of models, perhaps affecting which donors would be op-

timal for their specific case. For example, a person whose condition involves both

acute dysbiosis and community-level dysfunction might respond well to any healthy

donor, or may require a more complex combination of total community replacement

along with enrichment for community function. Relatedly, diseases that change man-

ifestations over time may benefit from employing different donor selection strategies

over the course of a longitudinal FMT trial. Additionally, although there have been

no serious adverse events related to FMT material in either clinical practice for rCDI

or in clinical trials across adults or pediatrics, could some donors further reduce the

probability of adverse events in at-risk patients? Finally, how should other sources of

heterogeneity like lifestyle, diet, and medication usage be incorporated into rational

donor selection? In cases where FMT is combined with other microbiome-targeted

interventions like prebiotics or dietary changes, could some donors have synergistic

effects with these paired interventions and lead to greater clinical success?

To ensure that FMT reaches its full potential to improve and save patient lives,

clinicians should think critically about how their FMT trials can be designed for max-

imal impact. By applying new approaches like rational donor selection and adaptive

trial designs, the number of trials which fail even though they could have succeeded

will decrease. Furthermore, by developing targeted hypotheses, post-trial analysis

plans, and associated sample collection schema alongside the core FMT trial design

itself, the number of basic scientific discoveries that are made from each trial will

significantly increase. As FMT expands beyond rCDI and microbiome-based thera-

peutics are developed to target a range of diseases, novel methods and approaches
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tailored to the unique challenges and opportunities presented by FMT will be crit-

ical to ensuring the advancement of translational microbiome science and beneficial

impact on patient lives.

5.5 Methods

5.5.1 Microbiome data processing

Raw fastq data files were downloaded from the European Nucleotide Archive using

the following accession numbers: Jacob et al 2017, PRJNA388210; Goyal et al. 2018,

PRJNA380944; and Kump et al. 2018, PRJEB11841. All data was processed using

QIIME 2 (v. 2018.6.0, 156]). Briefly, data was imported into QIIME 2 as paired-end

(Kump et al. 2018; Jacob et al. 2017) or single-end (Goyal et al. 2018) data, filtered

based on sequence quality with quality-f ilter q-score, and denoised with deblur

using deblur denoise-16S [57]. Representative sequences were assigned taxonomy

using feature-classifier classify-sklearn with the GreenGenes-trained Naive

Bayes classifier provided by QIIME 2 (gg-13-8-99-nb-classifier.qza) [58]. All data was

exported to tab-delimited format and analyzed in Python 2.7.6.

5.5.2 Quantifying abundance of butyrate producers

We identified butyrate producers at the genus-level based on the analysis performed in

Vital et al. 2017 [34]. These taxa were detected in >70% of individuals in Vital et al.

2017, are known butyrate producers (with a majority of the analyzed representative

genomes containing known butyrate production pathways), and accounted for the

majority of the total butyrate pathway abundances in human metagenomics data. We

removed E. ventriosum, E. hallii, and E. rectale from our analyses as these species-

level taxa do not comprise one genus with conserved butyrate production.
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5.5.3 Stool metabolomics

Metabolomics data was generated as described in Poyet, Groussin, Gibbons et al. (in

preparation) and downloaded after personal communication with the authors. For

donors with multiple samples, we considered the mean metabolite abundances across

all sampled time points. We identified three short chain fatty acids in the data (pro-

pionate, butyrate, and isovalerate) and the major primary (cholate and chenodeoxy-

cholate) and secondary (deoxycholate and lithocholate) bile acids. Lithocholate was

available for both C-18 negative and HILIC negative modes; we considered only the

C-18 negative data to match the other bile acids. Bile acid conversion rates were cal-

culated as in Kakiyama et al. 2013 [59]. Donors were ranked based on their average

SCFA abundances and based on the total bile acid conversion ratio ( (lithocholate +

deoxycholate) / (chenodeoxycholate + cholate) ).

5.5.4 Power simulation

We performed a simulation to determine the power of FMT trials to retrospectively

find associations between donor bacterial abundances and FMT response. We used

case-control gut microbiome datasets from MicrobiomeHD [29] to model different

effect sizes for FMT response. Here, we use "effect size" to mean the number of

genera which are differentially abundant between patients who respond to FMT vs.

patients who do not. Per the results in MicrobiomeHD, we used infectious diarrhea

to model a large effect [491, colorectal cancer to model a medium effect [50], and

obesity to model a small effect [51]. We collapsed OTUs to genus-level as in 129] and

ranked genera according to their signal-to-noise ratio in each entire dataset, where the

signal-to-noise was calculated as the difference in mean log abundance in cases and

controls divided by the standard deviation of the log abundances across all samples.

We considered the 10 genera with the largest absolute signal-to-noise ratios as our

"top hits" in the main text.

We modeled different FMT clinical trial designs and outcomes by varying the

number of total patients in the trial and the percent of FMT responders (i.e. the
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number of patients we selected from the original "case" group relative to the original

"control" patients, to model FMT responders and non-responders). For each of these

designs, we subsampled the correct number of case samples to represent FMT respon-

ders and control samples to represent non-responders from the original datasets. We

identified significantly differentially abundant genera with the kruskalwallis func-

tion from scipy. stats.mstats (scipy v. 1.1.0) as genera with q < 0.05 after multiple

hypothesis testing correction with the multipletests function (method='f dr-bh')

from the statsmodels. sandbox. stats.multicomp package (statsmodels v. 0.9.0).

We then counted how many of the top genera identified through the signal-to-noise

ranking were identified as significantly different as a proxy for the power to detect

effects.

5.5.5 Code and data availability

Code to reproduce all of these analyses and figures can be found at https: //github.

com/cduvallet/donor-selection/. Data were downloaded from original sources as

described above.
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5.6 Supplementary Figure
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Figure 5-5: Difference between abundance of butyrate producers in donor sample and
respective patient sample, stratified by patient response.
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Abstract

Wastewater-based epidemiology has long been proposed as a tool for population

health monitoring, with applications ranging from infectious disease surveillance to

drug consumption estimation. To date, however, there are few examples of wastewater

epidemiology being implemented in practice. Here, we propose a novel platform that

adapts existing wastewater-based epidemiology approaches for community-level pub-

lic health surveillance. We integrate sewage network and population information to

identify a sampling manhole representative of a residential community and show that

the wastewater sampled at this upstream manhole contains more human-derived bac-

teria and metabolites than downstream wastewater treatment plant samples, which

are the usual sampling locations in wastewater epidemiology. Our method to per-

form untargeted metabolomics on raw sewage allows for the identification of multiple

glucuronide compounds, which are indicative of direct human excretion and typically

too unstable to be detected in wastewater. We show that these compounds are absent

in downstream samples, but abundant in our residential sewage samples. Next, we

perform an hourly 24-hour sampling campaign to identify human and environmental

components of the sewage metabolome and microbiome based on diurnal variations.

We confirm urinary and fecal metabolites and find that their dynamics reflect human

behavior but differ from each other. Finally, we propose that mining untargeted data

derived from residential sewage opens additional possibilities for identifying biomark-

ers with direct public health or policy relevance and show preliminary results from

the metabolomics data. Together, these results suggest a novel approach for imple-

menting wastewater epidemiology in urban settings that provides a new source of

community-level health data and which could be developed into a citywide public

health observatory.
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6.1 Introduction

Urbanization is a globally increasing phenomenon. By 2050, 70% of the world's

population will live in cities where 80% of the global GDP will be generated. Cities

are thus prime locations to deliver services that improve the wellbeing of residents.

However, public health officials in cities tend to operate under financial constraints

and with limited data to establish priorities and measure the impact of their programs.

Wastewater has been proposed as a source of data on population health and behavior

that can fill this gap at relatively low cost for public health officials [1].

Wastewater-based epidemiology could have enormous benefit to public health

practice, providing real-time assessment of population health and generating data to

support public health and city policies. Currently, most public health surveillance is

based on reports from hospitals and other clinical centers, and appropriate responses

are initiated after enough clinical cases have been reported. Wastewater-based public

health surveillance platforms, in contrast, could provide real-time data on emerging

outbreaks before a critical mass of patients have gotten sick [2, 3]. Viral and bac-

terial pathogens shed in stool could be directly detected in sewage, triggering the

deployment of coordinated awareness campaigns or other public health interventions

to areas with the largest number of sick patients, all without needing to wait for case

reports from hospitals. In addition to identifying emerging outbreaks, wastewater

could provide a novel source of data to evaluate the effectiveness of policies intended

to have long-term effects on a population's health [1]. For example, rather than wait-

ing years to measure the impact of taxing sugary drinks on population obesity levels,

biomarkers of obesity or consumption could be directly measured in sewage before

and after the policy roll-out, thus providing a more immediate measure of the impact

of policy on targeted outcomes.

Wastewater-based epidemiology has been proposed for many exciting applications.

It has been shown to be useful as an early indicator of poliovirus outbreaks to target

vaccination campaigns in polio-free countries [2, 4] and to quantify asymptomatic

circulation [5]. Environmental surveillance of typhoid and antimicrobial resistance
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through urban wastewater are emerging areas of interest in global and public health

organizations [6, 7]. Besides infectious disease, methods have been developed and

standardized over the last decade to successfully provide continuous data on illicit

drug consumption at the national- and regional-level in Australia [8] and over 60

European cities and towns [9, 10, 11]. The academic community is now interested in

branching out to measure lifestyle chemicals and biomarkers of health such as obesity

levels [1, 12, 13]. More recently, wastewater testing has been proposed as a promising

tool to tackle the opioid epidemic that is severely affecting the U.S [14, 15]. However,

apart from successful poliovirus surveillance and, to a lesser extent, national-level drug

consumption surveillance programs, most application areas remain proof-of-concept

academic projects and have yet to be implemented into public health and other public

service delivery agencies.

Despite great technical advances over the past decades, wastewater testing still

presents considerable challenges that decrease its usefulness to public health offi-

cials and policy-makers. In most proposed applications, wastewater is sampled at

downstream sites like pump stations or treatment plants [2, 3]. While downstream

collection sites are easily accessible and cost-effective, they impose barriers to data

interpretation in the public health context. Wastewater at treatment plants is a

combination of residential households and commercial and industrial buildings, and

it may represent one or more municipalities. These factors create technical biases

in the data and prevent clear consumption or infection rates from being calculated

from measured quantities. Additionally, if the interest is to compare several cities,

collection from different wastewater treatment plants or other downstream sites may

introduce confounding factors, such as representation of different population sizes

[16], large variation in wastewater travel time from different sources, different rates

of in-sewer degradation of chemical [17] and bacterial biomarkers, and collection with

ad-hoc sampling equipment that prevents researchers from optimizing collection pa-

rameters to obtain representative samples [181. Finally, while collecting composite

samples from wastewater treatment plants (WWTPs) is practical and cost-effective

to generate national estimates [19, 20, 10], data from WWTPs is not optimal for city
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officials since it lacks geographic specificity. Finally, public health officials are inter-

ested in a broad range of human health biomarkers but it is not straightforward to

know what markers are stable and quantifiable in wastewater collected from different

regions [121.

Here, we propose a novel implementation of wastewater epidemiology that ad-

dresses these challenges and develops wastewater testing as a platform to directly

measure the health of urban communities and facilitate applications to public health.

We combine demographic, sewage, and geographic data sources to curate and select

an upstream sampling site that reflects a residential population. By mining untar-

geted microbiome and metabolomics data, we show that residential sewage reflects

human diurnal activity and identify human-derived biomarkers which can be specif-

ically separated from environmental contributors. Together, this work is the first to

show that upstream wastewater sampling could provide a novel useful data source for

public health agencies.

6.2 Results

6.2.1 Upstream residential catchments provide more useful

public health information than WWTP samples

Integrating GIS datasets with demographic and sewage network information enables

the selection of sampling sites with carefully curated technical and population char-

acteristics. We defined residential catchments as those which represent areas with at

least 80% residential land use, a population of over 5,000 people, and a maximum

sewage travel time of less than 60 minutes (Fig. 6-1A). We screened all manholes in

our municipality and selected a manhole which met these criteria (Fig. 6-1A). From

a usability perspective, data from residential catchments will be more actionable by

municipal public health departments because sites can be selected to mostly capture

resident rather than transient populations, and to have the spatial resolution that

matches their public health interventions.
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Besides providing geographical specificity to the sample, residential catchments

mitigate variability in population size and sewage travel time observed at WWTPs.

Our selection criteria produces catchments with similar population sizes by design

(5,000-10,000 inhabitants) rather than the large range observed (1,000-2,000,000 in-

habitants) in WWTPs (Supp. Fig. C-1, [13]). Additionally, residential catchments

are more likely to contain even representation of all households in the catchment

compared to WWTPs: in our residential catchment, sewage from every source trav-

els at most 45 minutes to the sampling point and the distribution of travel times is

narrowly-distributed (Fig. 6-1A). Sewage at WWTPs, on the other hand, can have

travelled anywhere from minutes to hours before it reaches the sampling point. Sam-

pling in residential catchments therefore mitigates the need to correct for unequal

population sizes and travel times to some extent.

Residential sewage contains more direct chemical markers of human consumption

and behavior than sewage sampled at WWTPs. We sampled a residential sewer (se-

lected as described above) and a downstream pump station (Fig. 6-1B) and performed

untargeted metabolomics and 16S rRNA sequencing on the filtrate and bacterial cells,

respectively. 34.5% of the metabolites detected in both sewer and WWTP samples

(n=::245/710) had significantly different concentrations (p-value < 0.05 independent

T-test with FDR correction for multiple testing). Of these differentially abundant

metabolites, 73% (n=179/245) decreased or disappeared completely from wastewater

collected at the WWTP, including many metabolites from human activity as defined

later in this paper (Fig. 6-2A yellow dots, Fig. 6-3B yellow bars, Supp. Fig. C-2 clus-

ter MI). Similarly, we found that residential sewage contained a higher proportion of

human-associated bacteria than WWTP sewage. On average, 66% of the microbial

community from residential sewage was of human fecal origin, compared to 51% in

the pump station samples (Fig. 6-2B), with the Ruminococcaceae, Lachnospiraceae,

Prevotellaceae, Veillonellaceae and Erysipelotrichaceae families being reduced (Supp.

Fig. C-3). These results are similar to those reported in Newton et al. [13], where on

average 15% of sequences in WWTP sewage had human fecal origin. Together, these

results indicate that wastewater from residential catchments which has been traveling
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in sewers for less than one hour contains many human biomarkers that are absent in

wastewater collected at WWTPs.

Furthermore, performing untargeted metabolomics on residential catchment sam-

ples extends the possible biomarkers that can be monitored through wastewater epi-

demiology. We identified 22 glucuronide compounds in our untargeted data (see

Methods). Glucuronides are chemical groups added to exogenous molecules by the

human liver to aid in their excretion and are thus indicators of human excretion,

distinguishing between molecules simply discarded into the sewers versus those con-

sumed and excreted by humans and providing direct evidence of consumption. How-

ever, many bacteria carry glucuronidase enzymes that release the glucuronide group

to use as carbon source [21], and these unstable molecules have previously been diffi-

cult to identify in sewage samples from WWTPs [22]. In our data, the majority of the

identified glucuronides were significantly reduced or altogether absent in wastewater

collected at the WWTP (Figure 6-2C). Sampling upstream allows for the detection

of these unstable molecules and also more generally expands the number of com-

pounds which can be measured. Molecules which are usually difficult to measure by

mass spectrometry in wastewater because they do not ionize well should be captured

in residential catchments, since the human body excretes compounds by dissolving

them in urine or stool and therefore naturally converts exogenous compounds into

more ionizable chemical forms. Thus, detecting a large number of glucuronides in our

residential catchment sewage sample suggests that expanding wastewater monitoring

to chemical variants of molecules of interest may be beneficial for future environmental

surveillance applications.

6.2.2 Residential sewage microbiome and metabolome contain

both human- and environmentally-derived components

Chemical and bacterial biomarkers detected in residential sewage reflect the daily

timescale of human activity. We used the average sewage flow rate over two months

as a proxy for human activity (Figure 6-3). We hypothesized that human-associated
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metabolites and bacteria would increase during the day, when the contributing popu-

lation would be more active, and decrease at night. We collected hourly samples over

24 hours from the residential catchment manhole and produced 16S rDNA sequenc-

ing and untargeted metabolomics profiles (Figure 6-3A). We co-clustered metabolomic

features (n=3,672) and microbial OTUs (n=::254) based on their Spearman correlation

(Fig. 6-3B & D, Supp. Fig. C-2), and found that the metabolic features grouped into

two main clusters (Ml and M2), while bacterial OTUs produced three groups (01

and 02 are highlighted). The MI metabolite cluster (n=2,815) had strong positive

correlation with the 01 bacterial cluster (n=41) and negative correlation to the 02

bacterial cluster (n=84). The majority of metabolites and bacteria in these groups

also correlated with the average flow rate in the sewer, increasing during the day and

becoming drastically less abundant at night (Fig. 6-3B & D).

Metabolites and bacteria in sewage separate into human and environmental con-

tributions. Groups M1 and 01 were enriched in human-derived bacteria and metabo-

lites, while groups M2 and 02 contained bacteria and metabolites derived from the

environment (Fig. 6-3C). The cluster MI was statistically enriched in matches to

human metabolites compared to the M2 cluster (Fig. 6-3C), and includes known

urinary and fecal metabolites. Twenty-two metabolic features in M1 were identified

as glucuronide compounds of hormones, bile acids and pharmaceuticals, which are

direct markers of human excretion as discussed above. Bacteria in the cluster 01

were putatively identified as coming from human gut microbiomes. Cluster 01 in-

cluded 41 bacterial OTUs primarily from the Firmicutes and Bacteroidetes phyla,

which are major components of the human gut flora (Fig. 6-3D). Additionally, the

top 10 most abundant bacterial families in human stool (Human Microbiome Project)

made up 65% of the community in the 01 group (Supp. Fig. C-4). Similar to what

was observed in the metabolites, 01 bacteria had a dip in relative abundance during

nighttime (Figure 6-3B). Clusters M2 and 02, on the other hand, remained relatively

constant through the day and likely reflect bacteria and metabolites sourced from

environmental background rather than human activity. Cluster M2 had few putative

human-associated hits, and had constant abundance through the day and nighttime.
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The molecules in this group likely represent chemicals derived from the environment

or sewer biochemistry. Human-associated bacteria were similarly decreased in clus-

ter 02: most of the OTUs were Proteobacteria, which are not major members of

the normal gut flora, and human fecal bacterial families comprised only 1.4% of the

abundance of this cluster (Supp. Fig. C-4). The relative abundance of cluster 02

increased at night, reflecting that these environmental made up a larger proportion of

the residential sewage microbiome during periods of low human activity (Fig. 6-3D).

6.2.3 Identification of potential public health biomarkers in

residential sewage

Urine and fecal contributions to residential sewage can be identified through untar-

geted analyses. We identified and confirmed metabolites corresponding to human uri-

nary and fecal markers through a combination of MS2 matching and confirming with

analytical standards. In our attempts to annotate metabolite features, we prioritized

features with high abundance across all samples and in a few samples of interest (i.e.

8 am and 2 pm samples, which contained more metabolites and which we expected

to correlate with human behavior). We screened the top mz values against METLIN

and HMDB databases to find putative human-derived metabolites 123, 241. We con-

firmed features which putatively matched urinary or fecal markers and for which we

could acquire analytical standards. Furthermore, we compared the MS2 fragmenta-

tion patterns for potential glucuronide compounds with their expected fragmentations

and used diagnostic mz peaks to putatively confirm these compounds (see Methods).

The most abundant feature in our dataset was confirmed via analytical standard as

alpha-N-phenylacetyl-L-glutamine (PAG), a metabolite of phenylacetic acid and an

end product of phenylalanine metabolism excreted in urine [25, 261. Previous studies

on human physiology have found that PAG excretion remains constant in response

to diet and does not exhibit diurnal cycling in individual patients [251. Thus, the

abundance of PAG in our sample likely correlates with the total volume of urine in

sewage at any given time. Urobilinogen, a breakdown product of hemoglobin excreted
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primarily in stool [27], was also confirmed via analytical standard. We also confirmed

4 bile acids (chenodeoxycholic acid, cholic acid, glycocholic acid, taurocholic acid),

which represent the major primary conjugated and unconjugated bile acids produced

by the liver to aid in digestion and which we considered as putative fecal markers.

The urinary and fecal metabolites reflected general diurnal human dynamics, but

differed from each other (Figure 6-4). Both types of metabolites decreased at night,

with the fecal markers almost completely disappearing while the urinary marker re-

mained detectable. Fecal markers also showed significant spikes in the 8 am and 3

pm samples, and were slightly elevated throughout the evening (8 - 10 pm). The

urinary marker, on the other hand, increased in the morning and stayed relatively

consistent throughout the day. These patterns correspond with known patterns of

human behavior: at night, people are less likely to wake up to defecate but do wake

up to urinate. During the day, urination remains relatively constant across the entire

population, but defecation probably spikes in the morning right after waking up and

after meal times.

Furthermore, the daily dynamics of bile acids in residential sewage may reflect

population-level behavior and physiology. During the day, levels of unconjugated

cholic and chenodeoxycholic acids remained relatively constant but conjugated cholic

acids (glycocholic and taurocholic acid) spiked after mealtimes (Fig. 6-4). In individ-

uals, the liver synthesizes more bile acids from cholesterol after it is ingested during

a meal [28]. Levels of taurocholic acid are also known to increase significantly after

meals, since the diet is the primary source of taurine in humans. The liver secretes

only the conjugated forms of cholic acid, glycocholic and taurocholic acid, into the

gut. Thus, the post-meal spikes in conjugated bile acids in our data may reflect not

only more stool in the sewage but also an aggregate population-level increase in physi-

ological production of bile acids by the liver in response to meals. The daily dynamics

of fecal bile acid excretion has not been studied in humans, in part because it is dif-

ficult to access finely temporally-resolved data given that humans defecate only 1-3

times per day on average. These data suggest that analyzing physically aggregated

biological data could provide another avenue by which to study human physiology or
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measure its functioning.

However, an alternative explanation for these spikes in conjugated bile acids may

be that they reflect only incidental increases in the sampling of individuals with di-

arrhea at these times. Diarrhea is characterized by a decrease in the conversion of

conjugated primary bile acids to their unconjugated forms. Furthermore, because

our metabolomics data is generated from the liquid phase of wastewater after remov-

ing solids, diarrhea will contribute relatively more than solid stools to the sampled

metabolites at any given time. Thus, our results are consistent with a sampling en-

riched in individuals with diarrhea at times when they defecate. By contrast, the

contribution of stools from healthy individuals (as indicated by the levels of cholate

and deoxycholate) remains relatively constant over the course of the day. Taken to-

gether, the findings that fecal and urinary metabolites differ in their dynamics and

that individual people may disproportionately contribute to individual samples, sug-

gest that developing methods to correct for biases in sampling and normalize for the

number of people contributing to a given sample will be required before these data

can be acted upon in public health contexts.

6.3 Discussion

The platform that we present is the first to adapt the practices of wastewater-

based epidemiology specifically for the needs of city-level public officials, and is

the first to leverage untargeted multi-omics data to examine the breadth of hu-

man biomarkers available in residential wastewater. Through high-throughput mi-

crobiome and metabolome analyses, we show that wastewater from residential catch-

ments is a closer reflection of human health than wastewater collected at downstream

sites. Wastewater from residential catchments contains more human metabolites and

human-associated bacteria than wastewater from downstream sites, including unsta-

ble glucuronides which can be used as direct markers of human consumption. Untar-

geted analyses can identify glucuronides and potentially other chemical variants of

molecules, expanding the scope of compounds amenable to wastewater surveillance.

154



Moreover, metabolites and bacteria in residential sewage can be compartmentalized

into human and environmental contributions, and human-associated components re-

flect known human behavior and activity. Finally, our data suggests that identifying

biomarkers across many realms of interest such as human behavior, consumption, and

health, may be possible through residential wastewater surveillance. However, incor-

porating residential sewage monitoring into public health departments will require

addressing additional analytical, engineering, logistical, and ethical challenges.

First, models to estimate the population size contributing to a given sample will

need to be developed in order to convert measured quantities into per capita rates.

Samples taken from wastewater treatment plants can be reasonably expected to rep-

resent a large portion of the catchment population, representing thousands to hun-

dreds of thousands of individuals. In contrast, the number of people represented in

a residential sewage sample may fluctuate significantly in these smaller residential

catchments. Without knowing how many people contributed to a given sample, it is

not possible to interpret the quantities measured in a given sample: did one person

excrete a large amount of the measured component, or did many people excrete a

small amount of it? Knowing the"denominator" of what is measured in sewage will

be required to translate measured quantities into values that city officials can act on.

Scaling this work to the city-level will also require the development of new sam-

pling equipment sampling campaign designs. Sampling equipment could be developed

to aggregate flow-proportional samples over a full day, and more complex samplers

could also perform some pre-processing or basic measurements in situ. The sampling

sites chosen in a given campaign could be optimized for a variety of purpose: cover-

ing as much of the population with the least number of sites, identifying hot spots

where potential outbreaks are likely to begin, comparing neighborhoods with differ-

ent socioeconomic characteristics or health behaviors, or standardizing sampling site

characteristics to enable multi-city comparisons. Each of these approaches will have

benefits and trade-offs, but all should be developed in partnership with city officials

and community leaders to ensure public accountability, transparency, and ultimate

benefit to the community.
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Finally, data privacy and ethics should be considered in all stages of development

and deployment. Sewage is a physical aggregate of multiple individuals, and so does

not share many of the same re-identification concerns as human genomics and micro-

biome studies [291. However, concerns about disparate impact and data misuse are

real and should be addressed by bringing together community leaders, policy and pri-

vacy experts, and sociologists alongside the scientists and engineers developing these

platforms for deployment.

Despite these challenges, sampling from upstream residential catchments has the

potential to make wastewater testing more relevant to public health in cities. Resi-

dential catchments represent a geographic unit more amenable to public health pro-

gramming and evaluation. By mitigating confounding factors across cities, they also

have the potential to accelerate the discovery of population-level biomarkers and de-

tection of geographical and temporal differences across urban communities. Within

cities, residential sewage monitoring could alert public health officials of infectious

disease outbreaks before a corresponding uptick in cases are seen in clinics and hospi-

tals, allowing for earlier interventions in the affected communities. Mining residential

sewage can also uncover behaviors not measurable by other means. For example, it

could be possible to identify communities with high rates of non-lethal opioid over-

does by looking for locations with high naloxone or associated excretion metabolites

but low reported overdose rates.

Because residential sewage may reflect a wide range of human behaviors, it could

also be used for a wide range of policy applications. For example, analyzing the

amounts of un-glucuronidated prescription opioids or antibiotics could be used to

evaluate the effectiveness of drug take-back programs. Additionally, bacterial or chem-

ical biomarkers of nutrition intake and diet could be used to study food deserts and

the impact of programs increasing the availability of fresh foods in certain neighbor-

hoods. Finally, marijuana metabolites and plant strains could be measured in sewage

to measure the impact of cannabis legalization roll-outs across different counties or

states.
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6.4 Materials and Methods

6.4.1 Selection of Residential Catchment sampling site

The sampling site was identified by cross-referencing Cambridge's wastewater network

maps, which contained the layout of pipes and manholes, as well as flow direction,

with demographic and land use data. We selected a location where the upstream

catchment fulfilled three major requirements: 1) a land use of over 80% residential

so that we avoid transient populations and can characterize the demographics of the

catchment population accurately, 2) a total catchment population >5,000 people to

provide an anonymous reading of the community, and 3) the wastewater travel time

from the furthest point in the catchment is <60 minutes to preserve the integrity of

the sample.

6.4.2 Wastewater collection and processing

Grab wastewater samples (500 mL) were taken every hour from 10 AM on April 8th

2015 to 10 AM on April 9th 2015 (25 samples total). Samples were collected from

the selected manhole with a commercial peristaltic pump (Global Water) sampling

at a rate of 100 mL/min. 200 mL of collected sewage were filtered through 10-

um PTFE membrane filters. 150 ml of the outflow were filtered through 0.2-pm

PTFE membrane filters. 100 ml of the final outflow were acidified with concentrated

HCl (Optima grade, Fisher Scientific) to pH 3.0 and frozen at -80 degrees Celsius

until metabolomics analysis. PTFE membrane filters were kept in RNAlater at -

80 degrees Celsius until DNA extraction. The lab filtration system consisted of a

Masterflex peristaltic pump (Pall), Masterflex PharMed BPT Tubing (Cole-Palmer),

47 mm PFA filter holders (Cole-Palmer) and 47mm PTFE Omnipore filter membranes

(Millipore). Both the tubing and filter holders were previously cleaned with HCl (10%

v/v) and ultrapure deionized water.
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6.4.3 DNA extraction and amplicon based Illumina sequenc-

ing of 16S rRNA genes

0.2-pm filter membranes were thawed in ice. RNAlater was removed and filters were

washed with phosphate-buffered saline (PBS) buffer twice. DNA was extracted from

each filter with Power Water extraction kit (MO BIO Laboratories Inc.) according to

manufacturer's instructions. The only modification was that DNA from up to three

filters from the same sample was pooled into the same DNA-binding column. Paired-

end Illumina sequencing libraries were constructed using a two-step PCR approach

targeting 16S rRNA genes previously described [30]. All paired-end libraries were

multiplexed into one lane and sequenced with paired end 300 bases on each end on

the Illumina MiSeq platform at the MIT Biomicro Center.

6.4.4 Processing of 16S rRNA gene sequencing data

Raw data was processed with an in-house 16S processing pipeline (https: //github.

com/thomasgurry/amplicon-sequencing-pipeline). To assign OTUs, we clustered

OTUs at 99% similarity using USEARCH [311 and assigned taxonomy to the resulting

OTUs with the RDP classifier [32] and a confidence cutoff of 0.5. For each dataset,

we removed samples with fewer than 100 reads and OTUs with fewer than 10 reads.

We calculated the relative abundance of each OTU by dividing its value by the total

reads per sample. We then collapsed OTUs by their RDP assignment up to genus

level by summing their respective relative abundances.

6.4.5 Untargeted metabolomics analytical methods

Acetonitrile and deuterated biotin were added to the 0.2 pm-filtrate (acetonitrile final

concentration was 5%, deuterated biotin was 0.05 Mg ml- 1). The resulting solution

was analyzed using liquid chromatography (LC) coupled via electrospray ionization

(negative ion mode) to a linear ion trap-7T Fourier-transform ion cyclotron resonance

hybrid mass spectrometer (Thermo Scientific, FT-ICR MS; LTQ FT Ultra). Chro-

matographic separation was performed using a Synergi Fusion C18 reversed phase
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column (2.1 x 150mm, 4pm, Phenomenex). Samples were eluted at 0.25 mL/min

with the following gradient: an initial hold at 95% A (0.1% formic acid in water) :

5% B (0.1% formic acid in acetonitrile) for 2 minutes, ramp to 65% B from 2 to 20

minutes, ramp to 100% B from 20 to 25 min, and hold at 100% B until 32.5 min-

utes. The column was re-equilibrated for 7 min between samples with solvent A. The

injected sample volume was 20 pL. Full MS data were collected in the FT-ICR cell

from m/z 100-1000 at 100,000 resolving power (defined at 400 m/z). In parallel to the

FT acquisition, MS/MS scans of the four most intense ions were collected at nominal

mass resolution in the ion trap (LTQ). Samples were analyzed in random order with

a pooled sampled run every six samples in order to assess instrument variability.

6.4.6 Untargeted metabolomics raw data processing

Raw XCaliber files were converted to mzML files with MSConvert (threshold = 1000

for the negative ion mode files) (http://proteowizard.sourceforge.net/tools.

shtml). Peaks were picked using the function xcmsSet from the R package xcms,

with the following parameters (negative mode): method = 'centWave', ppm = 2,

snthresh = 10, prefilter = (5, 1000), mzCenterFun = 'wMean', integrate =

2, peakwidth = (20, 60), noise = 1000, and mzdiff = -0.005 [33]. To align

retention times, we used the retcor . obiwarp function with the following param-

eters: plottype = 'deviation', prof Step = 0.1, distFunc = 'cor', gapInit =

0.3, and gapExtend = 0.4. To group peaks from different samples we used the

group. density function with the following parameters: minfrac = 0, mins amp =

1, bw = 30, and mzwid = 0.001. To integrate areas of missing peaks, we used the

f illPeaks function with method = 'chrom'.

6.4.7 Mass matching

The first step in identifying metabolites was comparing the exact mass values with

masses of metabolites present in METLIN [34]. We searched METLIN for 397 of

the most abundant features from the data and putatively identified 126 of these
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based on m/z matches (ppm error < 2). We also programmatically mapped all

metabolite m/z values to the Human Metabolome Database (HMDB) database [35],

https: //github. com/cduvallet/match-hmdb). Untargeted m/z values were first

converted to their expected neutral mass, assuming H+ or Cl- ions, and then scanned

against the neutral masses of all HMDB compounds, with an error tolerance of 1 ppm.

All HMDB compounds within the error tolerance were returned. When an m/z had

multiple HMDB hits, the feature was named with the common chemical taxonomic

classification. The HMDB database was downloaded in May 2016.

6.4.8 Glucuronides annotation through MS2 match

We attempted to confirm all putative glucuronides (from m/z hits through METLIN

and HMDB searching) via matching of MS/MS data. MS/MS spectra were extracted

from individual mzML files (via MZMine 136]) and matched to predicted in silico frag-

mentation patterns from MetFrag [371. We considered a glucuronide to be confirmed

if the expected glucuronide was among the top MetFrag hits and the observed frag-

ments included peaks corresponding to the un-glucuronidated compound, diagnostic

glucuronide derivatives (m/z = 113, 157, 175), or other diagnostic peaks (parent

compound minus a CO2 and/or OH).

6.4.9 Metabolite standards confirmation

We were able to confirm the putative identifications of several of the metabolites in

Table 2 ('standard') at the most confident level using authentic standards analyzed

with the LC-MS method described here. Each standard was analyzed individually

in pure solvent as well as spiked into the 1 pm and 2 am samples. The expected

m/z and retention time for each standard was determined from the standard-only

runs and confirmed by identifying the corresponding m/z and retention time in the

spike-in samples.
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(Top right) Total ion count of confirmed bile acids, human fecal markers. (Bottom
right) Total ion count of urobilinogen, a confirmed human fecal marker.
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Chapter 7

Conclusions

7.1 Limitations and extensions of reported work

In this thesis, I present multiple projects which overcome a variety of challenges to

mine human microbiome data to extract clinical insights. In the first project, I over-

come the difficulty of identifying consistent biomarkers across highly variable lung

and stomach communities by instead looking at the relationships between aerodiges-

tive body sites within individual patients. In the second project, I re-analyze gut

microbiome datasets across many diseases and individual studies to identify consis-

tent associations despite the technical challenges involved in extracting generalizable

knowledge from the existing corpus of published studies. This work motivated our

development of a method to correct for batch effects presented in the third project. In

the fourth project, I present a framework to categorize disease-specific insights gleaned

from previously performed analyses and experiments and leverage them to improve

fecal microbiota transplant clinical trials. Finally, in the fifth project I present pre-

liminary results proposing residential sewage as a source of valuable public health

information. Although performed in different contexts and with different goals in

mind, these computational projects share similar limitations.
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7.1.1 Associations not causation

First, the findings in each project suggest associations but do not and cannot confirm

causal relationships. In Chapter 2, although I demonstrate that the interpretation

of the aspiration-associated perturbation is consistent across a variety of analyses

and metrics, such associations would still need to be recapitulated and confirmed in

an independent patient cohort before being further developed as a clinical diagnos-

tic. Also, many more mechanistic experiments and longitudinal cohort studies would

need to be done to confirm their association with subsequent aspiration-related res-

piratory infections. In Chapter 3, the consistent associations that I identify across

many different gut microbiome studies and microbiome-related diseases can make

no claim of causality: in all case-control mnicrobiome datasets, it is not possible to

determine whether the microbiome shifts are a cause of the disease or simply respond-

ing to the host's physiological state. In fact, finding many non-specific disease- and

health-associated bacteria across these datasets suggests that a large part of these

associations are more likely to be responses to the host's general health status rather

than specifically causal to any given disease. To truly find disease-associated bac-

teria, researchers need to identify consistent associations across multiple cohorts of

their disease of interest and ensure that these associations are specific to that disease.

To develop these into disease-specific therapeutics or confirm causal associations, re-

searchers should go further and isolate the strains of interest to test their causality in

animal models. Finally, the conceptual framework that I present in Chapter 5 sug-

gests one way to advance translational microbiome science but will need to be applied

in many FMT trials before its impact on FMT trial successes can be confirmed.

7.1.2 Data resolution limits insights and applicability

For the most part, these projects are anchored in the analysis of 16S rRNA data, which

is more accessible than many 'omics data types but comes with its own set of inherent

limitations. 16S data provides a window into which bacteria are present in microbial

communities but does not indicate what functions these bacteria are performing. Be-
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cause disease-mediating effects in individuals will result from bacterial function, future

work should strive to incorporate function into their studies, for example by analyzing

metagenomics, metabolomics or transcriptomics data, or a combination of these data

types. I hope that as datasets become more readily available, a similar cross-disease

meta-analysis as Chapter 3's will be performed, but based on metagenomics data

rather than genus-level taxonomy. I expect that a function-focused meta-analysis

will find much more consistent and readily interpretable associations within studies

of the same disease and across multiple diseases.

Additionally, pairing 16S analyses with functional data could ensure that the bac-

terial DNA detected reflect the actual bacterial communities living in that sample.

For example, it is not known to what extent bacteria detected in human lung and

stomach microbiomes are living and actively growing vs. simply a readout of DNA

from dead cells. Determining which bacteria are active in a community will be im-

portant to interpret findings and clinical interpretations from analyses of the human

lung and stomach microbiomes, like the one presented in Chapter 2.

Another limitation of 16S data is that in most cases it cannot resolve bacteria at

the strain level. Given that different strains of the same species have dramatically

different clinical presentations, this is a crucial limitation in extracting clinically rele-

vant associations from 16S microbiome data. The meta-analysis presented in Chapter

3 was performed at the genus level so that we could compare taxa from studies which

sequenced different regions of the 16S gene. Genus-level analyses have much more

limited biological interpretations than others performed at the species or strain-level.

Even with the batch correction method developed in Chapter 4, meta-analyses will

continue to be limited by the comparability of bacterial features between studies.

Additionally, strain-level resolution will be especially important in evaluating ratio-

nal donor selection methods, where engraftment of specific donor strains may be an

important factor mediating patient responses to FMT. Finally, extending the work

presented in Chapter 6 for public health applications in infectious disease surveillance

will also necessarily require strain-level resolution to be useful.
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7.1.3 Small sample sizes limit discoveries

Finally, these studies are limited by their sample sizes. Although the aerodigestive

cohort presented in Chapter 2 and the meta-analysis in Chapter 3 are the largest

of their kind to date, the analyses that I could perform were still often limited by

insufficient samples. In Chapter 2, I was unable to draw robust conclusions about the

relationship between reflux and the aerodigestive microbiome because the number of

patients with the respective samples and metadata was too small to sufficiently power

my analysis. In fact, throughout this project I frequently found my analyses limited

by the necessary confluence of samples and metadata. For example, I would have liked

to analyze the combinatorial effects of proton pump inhibitors, aspiration, and reflux

on the aerodigestive microbiome, but I simply did not have enough patients with the

respective samples and metadata to perform any reasonably powered analyses.

The meta-analysis presented in Chapter 3 was also limited by the number of

datasets and diseases. Originally, I had hoped to compare disease-associated mi-

crobiome shifts in an unsupervised manner to identify patterns of shifts common to

similar types of diseases. For example, I wondered if I could find a consistent group of

bacteria associated with inflammation across multiple inflammatory diseases. How-

ever, I had a surprisingly difficult time finding datasets with publicly available raw

data and associated patient-level clinical metadata, even given the large corpus of

relevant published papers. Thus, I did not acquire a large enough variety of diseases

and datasets to enable this broader categorization of diseases and perform statisti-

cally meaningful analyses on these groups of datasets. Future work could attempt

these analyses on combined raw data, using the percentile-normalization method from

Chapter 4 to correct for batch effects. However, such analysis will still be constrained

by the number of studies which sequenced the same region of the 16S gene, since

percentile-normalized data can only be combined across features (i.e. bacterial taxa)

which are common across all datasets.

One of the main conclusions of the framework presented in Chapter 5 is that the

usual sample sizes in FMT studies will almost always limit the power of retrospective
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analyses to identify key bacteria. While a tempting response to this finding might

be to expand the number of FMT patients in future clinical trials, this solution will

usually not be practical for multiple logistical and ethical reasons. Unfortunately,

because clinical studies are performed with human samples and sometimes require

careful ethical justifications and considerable patient recruitment efforts, this chal-

lenge of small sample sizes is likely to remain an important limitation for future

studies and clinical trials throughout the microbiome field.

As a pilot study evaluating the potential for residential sewage as a platform for

wastewater epidemiology, the work presented in Chapter 6 had a small sample size

by design. We performed this study to determine the feasibility of mining residential

sewage for public health biomarkers, and powered it accordingly. At a broad level,

the dynamics of human-associated metabolites followed the expected diurnal pattern

of human activity, but any other patterns within this larger dynamic would need to

be confirmed with larger studies. We also saw significant variability between different

grab samples from the upstream site, suggesting that future studies should either

aggregate sampling over a longer period of time or take enough replicates to achieve

statistical confidence in any measured differences.

7.2 Re-analyzing existing datasets and data avail-

ability

A core theme that has emerged from my thesis work is that re-analyzing existing

microbiome datasets can add substantial value to our field. One of my personal

conclusions from the meta-analysis is that new cross-sectional gut microbiome studies

should be regularly contextualized within the existing published body of work, almost

as mini meta-analyses of their own. Now that microbiome datasets are more readily

available and bioinformatics tools to process and analyze them are becoming very

accessible, I hope that researchers make it a habit to ask: are these associations

replicated in independent patient cohorts? And: are they specific to my disease of
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interest or are they part of a non-specific response to health and disease? I hope that

our batch correction method can help researchers answer these questions, and that

more statistical and bioinformatics tools will be developed to make meta-analyses

more accessible and powerful for future researchers.

I also found the value-add of re-analyzing datasets especially relevant in micro-

biome research led by clinicians. For example, the original IBD FMT trials that I

re-analyzed in Chapter 5 did not thoroughly investigate potential donor effects on

patient response in their original studies. This is expected in part because donor

heterogeneity was not usually a primary research question of interest, and also be-

cause the trials were not powered for such analyses. However, now that multiple IBD

FMT trials have been published with paired patient and donor microbiome sequenc-

ing data, hypotheses about what leads to improved patient response can be tested

in silico (as we did for butyrate producer abundance in Chapter 5). In Chapter 3,

many of my datasets were pulled from studies led by clinical researchers who may

not have had access to the bioinformatics and statistical expertise to fully interrogate

disease associations within their datasets. By making their data publicly available,

their work continued to contribute new knowledge to the field.

Moving forward, I hope and expect that researchers continue to make their raw

data publicly available and that re-analyses of such data become standard in the

field. Publicly available raw data allows researchers to ask and answer new questions,

testing their hypotheses in silico without the need for costly new studies. New studies

can also be compared with existing work to determine which of their findings hold

across different studies and which are specific to their specific study. However, using

published data in new contexts comes with challenges. As described in Chapter 4,

batch effects resulting from different experimental and sequencing methods can make

it very difficult to compare data across different labs. Another major challenge is data

availability, and specifically clinical metadata like patient disease diagnosis. Through

this work, I have come to realize that raw data without its associated metadata is

in almost all cases useless. Given these challenges, standards for sharing data which

respect patient privacy, clinicians' efforts for patient recruitment, and the needs of
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computational biologists will need to be agreed upon and upheld as a community.

7.3 Partnerships between practitioners and compu-

tational biologists

Throughout this thesis, I also came to appreciate the unique contributions that come

from close partnerships between clinicians and computational biologists. None of

the projects in this thesis would have been possible without crucial contributions

from our clinical counterparts. Chapter 2 was only possible because our clinical PI,

Rachel Rosen, identified and framed the questions of interest in this cohort. Then,

I was able to translate her questions into computational analyses and provide pre-

liminary answers with our data. Working together in this way, we discovered new

science and found clinically exciting results. The meta-analysis in Chapter 3 was also

significantly strengthened by the inclusion of datasets which were originally purely

clinical investigations, and the framework presented in Chapter 5 was only possible

because of our lab's strong ties with the clinical experts at OpenBiome. I hope that

the future of translational microbiome research establishes structures that encourage

such close collaborations. Systems to share raw data should be designed with these

collaborations in mind: the process to deposit data should be accessible to clinicians,

patient information should be protected while also providing easy access to analyses

that don't use the protected information, and the metadata should be curated well

enough to enable straightforward analyses without much manual curation but also

flexible enough to allow for the variety of study designs pursued by clinicians.

I was also especially impressed by the unique power of collaborations between sci-

entists and practitioners through my involvement in the work presented in Chapter

6. That project was a result of coordination between multiple scientific disciplines as

well as our city's public works and public health departments. The urban designers

on our team incorporated our computational biology perspectives into a larger vision

of the future of "smart cities." The public health officials we worked with helped us
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understand and address their practical needs, and also facilitated discussions with the

community to ensure that we were being transparent and locally engaged. Finally,

our conversations with public works employees like Herbie as we stood by open man-

holes during our sampling campaigns gave us important insights to contextualize our

experimental results and were a unique addition to my PhD experience.

7.4 Finding knowledge in information

A turning point in my thesis came when I read Gene Glass's 1976 paper coining the

term "meta-analysis" [1]. In it, Glass argues for the underappreciated importance of

consolidating and synthesizing information into knowledge, prizing work that aims

to find meaning and draw conclusions from disparate existing studies. This was a

turning point in my thesis for two reasons. First, it was the moment I became truly

proud of my work, especially the meta-analysis in Chapter 3: I realized that it was

not just some sort of microbiome "stamp collection" endeavor that anyone with basic

knowledge of computational tools could do, but was instead difficult and valuable

work that I had uniquely contributed to. After reading this piece, my perspective

on my thesis work changed: before, I sometimes felt that the inherent limitations of

computational work meant that projects like mine were not quite as valuable as theses

which develop novel experimental methods or generate new data directly testing bio-

logical hypotheses. Now, I recognize that they are also invaluable work on their own

merit. Second, reading Glass's words helped me recognize a uniting theme in all of

my work: finding the "knowledge in the information." I realized that in each project

presented in this thesis, I had not just mined the data to find statistical associations,

but rather to interpret the associations I found and chase them all the way to their

potential clinical or public health implications. I hope that as we move forward in this

exciting and vibrant field, microbiome researchers collectively become less satisfied

with simply reporting new information, instead emphasizing and valuing efforts that

synthesize existing knowledge and generate new insights that lead more directly to

clinical impact.
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Appendix A

Supplementary Information for

Chapter 2

A.1 Supplementary Tables

Non-aspirator Aspirator Difference

Neisseriaceae

Porphyromonadaceae

Pasteurellaceae

Lachnospiraceae

Micrococcaceae

Prevotellaceae

Carnobacteriaceae

BacillalesIncertaeSedisXI

Pasteurellaceae

Actinomycetaceae

Streptococcaceae

Lachnospiraceae

Leptotrichiaceae

Lachnospiraceae

Fusobacteriaceae

Prevotellaceae

Flavobacteriaceae

Leptotrichiaceae

Erysipelotrichaceae

Prevotellaceae

Pasteurellaceae

Veillonellaceae

Neisseria

Porphyromonas

Haemophilus

Coprococcus

Rothia

Prevotella

Granulicatella

Gemella

Haemophilus

Actinomyces

Streptococcus

Oribacterium

Streptobacillus

Lachnoanaerobaculum

Fusobacterium

Planobacterium

Leptotrichia

Solobacterium

Prevotella

Haemophilus

Veillonella

181

Family Genus

7.1
28.6
50.0
10.7
14.3

25.0
32.1

42.9

57.1
17.9

39.3
14.3

17.9
17.9
42.9

50.0
14.3

14.3

17.9
21.4

28.6
35.7

41.4

62.1
82.8
37.9
41.4

51.7
58.6

69.0
82.8
41.4

62.1

34.5

37.9
37.9
62.1
69.0
31.0
31.0
34.5

37.9

44.8

51.7

34.2

33.5
32.8
27.2
27.1
26.7
26.5
26.1
25.6
23.5
22.8

20.2

20.1

20.1

19.2
19.0
16.7
16.7
16.6
16.5
16.3

16.0



Genus Non-aspirator

Prevotellaceae

Enterobacteriaceae

Neisseriaceae

Streptococcaceae

Veillonellaceae

Micrococcaceae

Streptococcaceae

Prevotellaceae

Prevotellaceae

Unknown Burkholderiales

Bacteroidaceae

Porphyromonadaceae

Moraxellaceae

Prevotellaceae

Leptotrichiaceae

Fusobacteriaceae

Porphyromonadaceae

Neisseriaceae

Veillonellaceae

Unknown Bacteria

Coriobacteriaceae

Enterococcaceae

Chloroplast

Pasteurellaceae

Unknown Bacillales

Lactobacillaceae

Pasteurellaceae

Staphylococcaceae

Comamonadaceae

Porphyromonadaceae

Comamonadaceae

Flavobacteriaceae

Erysipelotrichaceae

Lachnospiraceae

Flavobacteriaceae

Neisseriaceae

Enterobacteriaceae

Mycobacteriaceae

Moraxellaceae

Streptococcaceae

Bacteroidaceae

Unknown Bacillales

Moraxellaceae

Moraxellaceae

Escherichia/Shigella

Neisseria

Streptococcus

Veillonella

Rothia

Streptococcus

Prevotella

Prevotella

Bacteroides

Porphyromonas

Moraxella

Prevotella

Leptotrichia

Fusobacterium

Porphyromonas

Neisseria

Veillonella

Atopobium

Streptophyta

Haemophilus

Lactobacillus

Haemophilus

Staphylococcus

Acidovorax

Parabacteroides

Pelomonas

Chryseobacterium

ClostridiumXVIII

Ruminococcus2

Chryseobacterium

Microvirgula

Enterobacter

Mycobacterium

Acinetobacter

Streptococcus

Bacteroides

Acinetobacter

Enhydrobacter
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46.4

46.4

60.7

75.0
35.7
42.9

42.9

42.9

64.3

10.7
14.3

21.4

39.3
57.1
21.4

25.0

50.0
17.9
89.3
21.4

21.4

85.7
10.7
17.9
17.9

28.6
32.1
60.7
17.9
21.4

21.4

28.6
21.4

25.0
50.0
57.1
82.1

28.6
60.7
60.7
53.6
57.1
60.7
60.7

62.1

62.1
75.9
89.7
48.3

55.2
55.2
55.2

75.9
20.7
24.1

31.0
48.3

65.5
27.6
31.0
55.2

20.7
89.7
20.7
20.7
82.8
6.9
13.8
13.8
17.2
20.7
48.3

3.4

6.9
6.9
13.8

3.4

6.9
31.0
37.9
62.1
6.9

37.9
37.9
27.6
31.0
34.5

34.5

15.6
15.6
15.1
14.7

12.6
12.3
12.3

12.3
11.6
10.0
9.9
9.6

9.0
8.4

6.2
6.0
5.2
2.8

0.4

-0.7
-0.7
-3.0
-3.8
-4.1

-4.1

-11.3
-11.5
-12.4

-14.4

-14.5

-14.5

-14.8

-18.0
-18.1

-19.0
-19.2
-20.1

-21.7
-22.8
-22.8
-26.0
-26.1
-26.2
-26.2

Aspirator DifferenceFamily



Lactobacillaceae Lactobacillus 50.0 20.7 -29.3
Aeromonadaceae Aeromonas 57.1 27.6 -29.6

Moraxellaceae Acinetobacter 78.6 41.4 -37.2
Leuconostocaceae Leuconostoc 78.6 37.9 -40.6
Leuconostocaceae Weissella 78.6 37.9 -40.6

Moraxellaceae Acinetobacter 78.6 37.9 -40.6
Streptococcaceae Lactococcus 78.6 37.9 -40.6

Streptococcaceae Lactococcus 78.6 37.9 -40.6

Table A.1: Prevalence of lung-gastric fluid exchanged OTUs. Prevalence is calculated
as the percentage of patients who have the OTU present in both their lungs and
oropharynx, calculated separately among aspirators (N = 29) and non-aspirators (N
= 28). OTUs are ordered by their differential prevalence in aspirators relative to
non-aspirators, and are labeled with their family- and genus-level taxonomies. Blank
genus names indicate OTUs which were not annotated at the genus level.
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Lung-oropharynx OTUs (12) AUC p N (non-asp/asp)

Lung 0.60 0.32 33/33
Oropharyngeal 0.64 0.13 43/36

Both 0.73 0.14 23/25

Lung-gastric OTUs (75)

Lung 0.61 0.42 33/33
Gastric fluid 0.68 0.04 48/41

Both 0.71 0.07 28/29

Table A.2: Classifiers based on the abundance of exchanged OTUs. (Top)
Classifiers built from the abundance of lung-oropharynx exchanged OTUs. (Bot-
tom) Classifiers built from the abundance of lung-gastric exchanged OTUs. Rows
indicate which microbial community was used to train each classifier. In classifiers
using two sites ("Both"), abundances of each exchanged OTU in each site were con-
sidered as separate features. AUCs are calculated as the area under the average
ROC curve from five-fold cross validation. Fisher's exact p values are calculated
on the predictions on the hold-out data for all cross validation folds using Python's
scipy. stats. f isher-exact function. Each classifier was built 100 times with ran-
dom patient splits and classifier initializations, and mean values are reported here.
AUCs and Fisher p-values from all 100 repetitions for all classifiers are shown in
Supplementary Figures A-2 and A-3.)
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A.2 Supplementary Figures

OTU1
exchanged

Patient A Patient B Patient C

'I At #01

=

J4

OTU2
notexchanged

Patient A Patient B Patient C

I
j

Figure A-1: Schematic illustrating an OTU which is considered exchanged between

the lung and stomach (left) and one which is not (right). If an OTU is exchanged
in two sites, its abundance in the two sites should be correlated across patients.
Lung image was adapted from Cancer Research UK / Wikimedia Commons and the

stomach image from Servier Medical Art.
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Lung-oropharyngeal OTUs Lung-gastric OTUs

BAL Oropharyngoal BAL and
sab aropharyngeal

wmab

BAL Gastric BAL and
luld gastric

luid

Figure A-2: Areas under the ROC curve (AUC) for 100 classifiers trained on the
abundance (top) or presence (bottom) of lung-oropharynx exchanged OTUs (left) or
lung-gastric exchanged OTUs (right).

Lung-oropharyngeal OTUs

ML OWharybrnpa B& and
ONOb oroparygea

Lung-gastric OTUs

BAL Gastric ML and
fld gastric

luld

Figure A-3: Log of the Fisher p-values for 100 classifiers trained on the abundance
(top) or presence (bottom) of lung-oropharynx exchanged OTUs (left) or lung-gastric
exchanged OTUs (right). Dashed line indicates p = 0.05.
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Figure A-4: Area under the ROC curve (AUC) (top) and Fisher p-values (bottom) for
100 classifiers trained on different combinations of the full aerodigestive communities
to distinguish aspirators from non-aspirators. Dashed line on the p value plot is p =

0.05.
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Appendix B

Supplementary Information for

Chapter 3

B.1 Supplementary Notes

B. 1.1 Re-processing and re-analyzing raw data yields results

which are generally consistent with previously published

results

Our re-analyses of the 29 studies were largely consistent with the originally reported

results, with the same taxonomic groups showing similar trends despite differences

in data-processing methodologies. We usually found fewer significant (q < 0.05)

differences between control and diseased groups, which is likely due to our choice of

a non-parametric statistical test (Kruskall-Wallis) paired with a multi-test correction

(FDR). Thus, our results are more conservative. We also collapsed to genus level in

order to compare results across disparate studies, which prevented us from identifying

species- or strain-specific associations which the original authors may have identified.

A major advantage of our re-analysis is that each data set was processed and analyzed

in the same way, which allowed us to more directly compare results across studies

and diseases.
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Clostridium difficile Infection and enteric diarrhea are characterized by

large-scale shifts in the microbiome (CDI; 4 studies)

Schubert et al. (2014) looked at how the gut microbiota differed between CDI patients

with diarrhea (n = 94), non-CDI patients with diarrhea (n = 89), and non-diarrheal

controls (n = 155) [1]. Similar to other CDI studies, the authors found a significant re-

duction in alpha diversity in patients with diarrhea (DunnAZs multiple-comparison

test on AMOVA, p < 0.0001). They found that OTUs from the Ruminococcaceae,

Lachnospiraceae, Bacteroides, Prevotellaceae, and Porphyromonadaceae families were

enriched in healthy subjects relative to patients with CDI and non-CDI diarrhea.

They also showed that OTUs from the Enterococcus genus and the Enterobacteri-

aceae and Erysipelotrichaceae families were more prevalent in patients with diarrhea.

In our analysis of the data, we also observed a significant reduction in alpha diversity

in patients with diarrhea (q <= 0.05, KW test). Similarly, we found that Enterobac-

teriaceae, Enterococcus, and Erysipelotrichaceae were enriched in CDI patients, in

addition to Fusobacterium, Parvimonas, Veillonella, Carnobacterium, Streptococcus,

Tetragenococcus, Lactobacillus, Pediococcus, Gemella, Staphylococcus, Butyricicoccus,

Robinsoniella, Clostridium XlVa, Clostridium XlVb, Ruminococcus2, Flavonifractor,

Gemmiger, Mogibacterium, Peptostreptococcus, Clostridium XI, Eggerthella, Atopo-

bium, Actinomyces, Arthrobacter, Aggregatibacter, Pseudomonas, and Dysgonomonas.

As in the original study, we found that Bacteroides, Alistipes, Anaerovorax, Ox-

alobacter, Bordetella, Prevotellaceae, Porphyromonadaceae, Lachnospiraceae, and Ru-

minococcaceae were more abundant in the healthy controls. We also found Turicibac-

ter, Dialister, Eubacterium, Asteroleplasma, Cloacibacillus, Bordetella, Oxalobacter,

Sutterella, Parasutterella, Desulfovibrio, Sediminibacterium, and Methanobrevibacter

to be enriched in the controls (q <= 0.05, KW tests). Overall, our analysis closely

matched what was presented in the original manuscript.

Vincent et al. (2013) compared 25 patients with CDI to 25 healthy control patients

[21. The authors found a significant reduction in alpha diversity (p <= 0.05, Mann-

Whitney U test). They also report a reduction in Bacteroidaceae and Clostridiales
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Incertae Sedis XI in CDI patients relative to controls, and an enrichment in Ente-

rococcaceae in CDI patients (p < 0.05, logistic regression). After reprocessing these

data and collapsing abundances to the genus level, we observed a similar reduction

in alpha diversity (q <= 0.05, KW test). We saw that the Enterococcaceae genera

Enterococcus and Proteus were enriched in CDI patients. Healthy controls showed

higher levels of Fusobacterium, Peptoiphilus, Murdochiella, Anaerococcus, Finegoldia,

Odoribacter, Prevotella, and Parabacteroides relative to CDI patients. In summary,

our results are fairly similar to the authors' original analysis, showing a depletion in

Bacteroidetes and an enrichment in Proteobacteria in CDI patients.

Youngster et al. (2014) applied fecal microbiota transplants (FMTs) with materi-

als collected from 5 healthy donors to 20 patients with recurrent Clostridium difficile

infections (CDIs) 13]. The goal of this study was to determine whether nasal-gastric

tube or colonoscopy administration of FMTs was most effective for treating CDIs (i.e.

half of the CDI patients received one or the other treatment). The authors reported

a significant reduction in alpha diversity in CDI patients vs. the healthy donors (p

< 0.001, Mann-Whitney test). They did not assess whether there were significant

differences in microbial community composition between CDI patients and donors,

although they show that composition becomes more similar to donors following FMT.

In our analysis, we also found a significant reduction in alpha diversity (p <= 0.05,

KW test). Enterococcus was enriched in CDI patients relative to healthy stool donors

(q <= 0.05, KW tests) and 15 genera were depleted in CDI patients relative to

healthy controls. Healthy donors were enriched in genera from Ruminococcaceae and

Lachnospiraceae families, in addition to the genera Dialister and Anaerosporobacter.

Singh et al. (2015) examined differences in the gut microbiome between individ-

uals with enteric infections (n=200) and healthy controls (n=75) [4]. The authors

report a significant drop in alpha diversity in diseased patients relative to the controls

(unknown test). They also report a general reduction in the dominance of Firmi-

cutes and Bacteroidetes phyla and an increase in the prevalence of Proteobacteria in

diseased patients. Specifically, they report an increase in the abundance of Enter-

obacteriaceae, Lactobacillaceae, Pasteurellaceae, Streptococcus, Bacilli, Escherichia,
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Haemophilus, and certain Ruminococcus species in patients with diarrhea. In healthy

people, they report a significant enrichment in Verrucomicrobia, Dorea, Blautia, Hol-

dermania, Ruminococcaceae, Lachnospiraceae, Butyricimonas, Faecalibacterium, Bac-

teroidaceae, and Bifidobacterium, Sutterella, Parabacteroides, Rikenellaceae, and Os-

cillospira. After re-processing the data, we found very similar results to those origi-

nally reported. We found that alpha diversity was significantly lower in patients with

enteric infections (q <= 0.05, KW test). We saw significant enrichment in Proteobac-

teria families in patients with diarrhea, including Enterobacteriaceae, Pasteurellaceae,

Campylobacteraceae, and Neisseriaceae. We also saw higher levels of Fusobacterium,

Parvimonas, Veillonella, Lactococcus, Streptococcus, Enterococcus, Tetragenococcus,

Gemella, Ruminococcus H, Peptostreptococcus, and Collinsella in diseased patients.

In the healthy controls, we found enrichment of 43 genera, including Sutterella, Verru-

comicrobia (Akkermansia), Ruminococcaceae, Lachnospiraceae, Bacteroidaceae, and

Bifido bacterium. In addition, we saw higher levels of several members of Rumminococ-

caceae, Lachnospiraceae, and Bacteroidales in healthy controls (q <= 0.05, KW tests).

Overall, our results largely overlap with those presented, but we identify a number of

significant taxa that were not originally reported.

Taken together, we see large-scale shifts in the microbiome associated with both

CDI and non-CDI diarrhea. The dysbiosis of enteric infection and diarrhea is quite

consistent across studies. In general, Proteobacteria increase in prevalence in patients

with diarrhea, with a concomitant decrease in Bacteroidetes and Firmicutes. In par-

ticular, we see a reduction in butyrate-producing Clostridia, including genera within

Ruminococcaceae and Lachnospiraceae families, which have been associated with a

healthy gut. We also see in increase in prevalence of organisms often associated with

lower pH and higher oxygen levels of the upper-gut, like Lactobacillaceae and Enter-

obacteriaceae [5J, in patients with diarrhea. Thus, diarrhea leads to consistent and

large-scale rearrangements in the composition of the gut microbiome.
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Colorectal Cancer has a consistent, ootentially pathogenic microbial sig-

nature (CRC; 4 studies)

Baxter et al. (2016) looked at differences in the microbiomes of 120 colorectal cancer

(CRC) patients, 198 patients with non-cancerous adenomas, and 172 healthy controls

[61. Similar to prior work, the authors found that Porphyromonas, Peptostreptococcus,

Parvimonas, and Fusobacterium were positively associated with CRC (random for-

est classifiers). Furthermore, they found that the absence of certain Lachnospiraceae

species was associated with the presence of adenomas. We found similar patterns in

our re-analysis of these data, with Fusobacterium, Peptostreptococcus, Parvimonas,

and Porphyromonas enriched in CRC patients (q <= 0.05, KW tests). We also found

higher levels of Victivallis, Peptoniphilus, Anaerococcus, Catenibacterium, Staphylo-

coccus, Collinsella, Enterobacter, and Alloprevotella in CRC patients (q <= 0.05,

KW tests). We found that healthy controls were enriched in Lachnobacterium (genus

within Lachnospiraceae), Gemmiger (within Rumminococcaceae), Clostridium XVII,

and Haemophilus (q <= 0.05, KW tests). Overall, these results match what has been

reported previously for CRC [7].

Zeller et al. (2014) collected microbiome data from 41 CRC patients and 75 con-

trol patients 18]. At the phylum level, they found that Proteobacteria, Fusobacteria,

and Bacteroidetes, were more abundant in CRC patients, while Firmicutes and Acti-

nobacteria were enriched in control patients. At the genus level, the authors report

higher levels of Fusobacterium, Pseudoflavonifractor, Peptostreptococcus, Leptotrichia,

Porphyromonas, Desulfovibrio, Parvimonas, Selenomonas, and Bilophila in CRC pa-

tients (q <= 0.1, FDR-corrected Wilcoxon tests). Healthy controls were enriched

in Bifido bacterium, Acinetobacter, Campylobacter, Ruminococcus, and Eubacterium

genera (q <= 0.1, FDR-corrected Wilcoxon tests). In our re-analysis we found en-

richment of Fusobacterium, Parvimonas, Flavonifractor, Anaerotruncus, Anaerovo-

rax, Peptostreptococcus, Comamonas, Eikenella, Butyricimonas, and Porphyromonas

genera in CRC patients (q <= 0.05, KW tests). In healthy patients, we found higher

levels of Anaerostipes (within Lachnospiraceae; q <= 0.05, KW tests).
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Wang et al. (2011) analyzed a cohort of 46 CRC patients and 56 healthy con-

trols [9]. The authors found no difference in alpha diversity between CRC and con-

trol patients. CRC patients had higher abundances of Porphyromonas, Escherichia-

Shigella, Enterococcus, Streptococcus, and Peptostreptococcus genera (p <= 0.05,

Mann-Whitney). The authors report that healthy controls were enriched Bacteroides,

Roseburia, Alistipes, Eubacterium, and Parasutterella genera (p <= 0.05, Mann-

Whitney). We found very similar results in our re-analysis of these data. We saw

greater levels of Enterococcus, Peptostreptococcus, Enterobacter, Klebsiella, Escherichia-

Shigella, and Porphyromonas genera in CRC patients (q <= 0.05, KW tests). And we

observed significantly higher levels of Bacteroides, and several genera within Lach-

nospiraceae in healthy controls (q <= 0.05, KW tests). Furthermore, we also did

not detect any significant differences in alpha diversity between CRC and healthy

patients.

Chen et al. (2012) analyzed stool from 22 healthy patients and 21 CRC patients

[10]. The authors found that Paraprevotella, Eubacterium, Desulfovibrio, Mogibac-

terium, Collinsella, Anaerotruncus, Slackia, Anaerococcus, Porphyromonas, Fusobac-

terium, and Peptostreptococcus genera were significantly enriched in CRC patients

relative to controls, while Bifido bacterium, Faecalibacterium, and Blautia were re-

duced in CRC patients (p <= 0.05, Mann-Whitney). In our re-analysis of this data

set, we found no significant differences between CRC and control patients. Again, this

is likely due to the small number of replicates and our implementation of multiple-

test corrections. However, non-significant trends were largely in agreement with the

original results.

Across these four colorectal cancer studies, we find significant agreement. Dysbio-

sis associated with CRC is generally characterized by increased prevalence of Fusobac-

terium, Porphyromonas, Peptostreptococcus, Parvimonas, Leptotrichia, Desulfovibrio,

and Anaerococcus genera (i.e. these genera were higher in CRC patients in 2 or more

studies). In addition, there is a consistent decrease in the abundances of Faecalibac-

terium, Blautia, Bacteroides genera and organisms from the Lachnospiraceae family

in CRC patients. CRC appears to have a smaller impact on overall community
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structure than diahrrea. Indeed, we saw no significant differences in alpha diversity

between healthy controls and CRC patients. In summary, CRC is characterized by a

consistent enrichment of disease-associated bacteria.

Inflammatory Bowel Disease is characterized by a depletion of health-

associated bacteria (IBD - Ulcerative Colitis and Crohn's Disease; 4 stud-

ies)

Gevers et al. (2014) looked for microbial signatures of Crohn's disease (CD) samples

across 447 CD patients and 221 non-IBD controls [111. Non-IBD controls were pa-

tients with non-inflammatory conditions such as abdominal pain and diarrhea. The

authors report increased abundance of Enterobacteriaceae, Pasteurellaceae, Veillonel-

laceae, and Fusobacteriaceae in CD patients. CD patients also showed a drop in the

abundances of Erysipelotrichales, Bacteroidales, and Clostridiales (Ruminococcaceae

and Lachnospiraceae) taxa. These results were based on a mixture of 16S amplicon

and shotgun metagenomic sequencing. In our re-analysis of the 16S stool data, we

found significant enrichment in Anaerosporobacter, Roseburia, Hespellia, Ruminococ-

cus II, Eubacterium, Pseudoflavonifractor, Sporobacter, Ruminococcus, Subdoligran-

ulum, Papillibacter, Collinsella, and Methanobrevibacter in healthy patients (q <=

0.05, KW tests). The only genera that we saw significantly enriched in CD patients

were Lactobacillus and Acetanaerobacterium (q <= 0.05, KW tests). We found a

similar set of taxa enriched in the controls, but did not detect as many significant

CD-enriched genera as the authors reported. This is likely due to the fact that we

restricted our analysis to the 16S stool data. However, we saw non-significant trends

in Enterobacteriaceae and Veillonellaceae consistent with the results reported in the

original paper.

Morgan et al. (2012) studied a cohort of 119 CD patients, 74 UC patients, and

27 healthy controls [12]. The authors found that healthy patientsaA2 gut micro-

biomes were significantly enriched in Roseburia, Phascolarctobacterium, and an un-

classified genus in the family Veillonellaceae (multivariate linear model, q <= 0.25).

Patients with UC showed significantly higher levels of Clostridiaceae (multivariate
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linear model, q <= 0.25). In our re-analysis, we did not find any genera that were

significantly enriched in IBD patients. We found that healthy patients had signifi-

cantly greater abundances of Ruminococcus, and Gemmiger relative to both UC and

CD patients (q <= 0.05, KW tests). Additionally, CD patients were depleted in

Clostridium IV relative to healthy controls (q <= 0.05, KW tests).

Papa et al. (2012) studied a cohort of 23 CD patients, 43 UC patients, and 24 non-

IBD controls [13]. Non-IBD controls were patients with symptoms such as: constipa-

tion, abdominal pain, gastroesophageal reflux, poor weight gain, diarrhea, blood in

stool and oropharyngeal dysphagia. At the genus level, they found that controls were

enriched in Alistipes, Subdoligranulum, Anaerovorax, Oscillibacter, Parabacteroides,

Odoribacter, Ruminococcus, Butyricicoccus, Akkermansia, Anaerotruncus, Sporobac-

ter, Phascolarctobacterium, Lawsonia, Ethanoligenens, Peptococcus relative to IBD

patients (KW, q < 0.01). The only genus that was found to be enriched in IBD

patients was Escherichia-Shigella. In our re-analysis, we also found Escherichia-

Shigella and Cronobacter to be enriched in patients with IBD (q <= 0.05, KW

tests). When comparing healthy controls with UC patients, we also found an en-

richment of Haemophilus in the UC patients. Control patients showed higher abun-

dances of Phascolarctobacterium, Butyricicoccus, Ruminococcus II, Oscillibacter, Ru-

minococcus, Gemmiger, Subdoligranulum, Clostridium IV, Odoribacter, Alistipes, and

Parabacteroides relative to all IBD patients (q <= 0.05, KW tests). Additionally,

control patients were enriched in Clostridium XIVa, Flavonifractor, and Akkermansia

relative to UC patients. Overall, our results match very closely what was found in

the original paper.

Willing et al. (2010) compared 29 CD patients and 16 UC patients to 35 healthy

controls [141. The authors reported variable, and sometimes opposing shifts in the

microbiomes of patients with UC, ileal CD and colonic CD at different taxonomic

resolutions. We found no significant differences between IBD and healthy patients in

our re-analysis. When comparing healthy controls with CD cases only, we found an

enrichment of Butyricicoccus and Oscillibacter in the control patients (q <= 0.05,

KW tests).
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In summary, there are certain consistencies across IBD studies. IBD patients tend

to be depleted in butyrate-producing clostridia: Ruminococcus and Lachnospiraceae.

The organisms the are enriched in CD and UC patients tend to vary across studies.

One consistency is organisms associated with the upper gut, like Lactobacillus and

Enterobacteriaceae appear to be enriched in IBD patients [5]. This result fits with

the reduced stool transit times associated with IBD (i.e. diarrhea).

Obesity shows a somewhat inconsistent microbial signature (OB; 5 studies)

Goodrich et al. (2014) studied a cohort of 416 twin pairs: 422 normal BMI, 322

overweight, and 185 obese [15]. The authors report higher levels of Lactobacil-

laceae, Eggerthella, and Lachnospiraceae (Blautia and Dorea) in obese individuals

(q < 0.05, FDR-corrected T-test). They showed enrichment for Christensenellaceae,

Dehalobacterium, Lachnospira, Mogibacteriaceae, Rikenellaceae, Methanobre, Cori-

obacteriaceae, Peptococcaceae, Oscillospira, Ruminococcaceae, and Sarcina in healthy

BMI individuals (q < 0.05, FDR-corrected T-test). In our re-analysis, we found

higher levels of Streptococcus, Weissella, Roseburia, Blautia, Clostridium XlVb, and

Mogibacterium in obese individuals, while Robinsoniella, Ruminococcaceae (Oscil-

libacter, Pseudoflavonifractor, Sporobacter, and Anaerofilum), and Anaerovorax were

more abundant in low-BMI individuals (q <= 0.05, KW tests). Our results only

partially agree with the authors' original findings, which may be due to the fact that

we used a different statistical test and OTU-calling method and that we binned the

data at the genus level.

Zupancic et al. (2012) analyzed 310 individuals from an Amish population with

varying BMIs [16]. They found a significant positive correlation between the abun-

dance of Collinsella and BMI (i.e. enriched in obese individuals), while Lachnobac-

terium, Anaerotruncus, Faecalibacterium, and Clostridium were negatively correlated

with BMI (i.e. enriched lean individuals) (p < 0.001, Spearman correlation). We

found no significant differences in the proportion of genera between lean and obese

individuals in our re-analysis.

Turnbaugh et al. (2008) looked differences in gut microbial community structure
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between 31 monozygotic and 23 dizygotic twin pairs concordant for leanness or obe-

sity [171. The authors report a reduction in alpha diversity in obese individuals. They

also report a significant decrease in Bacteroidetes and an increase in Actinobacteria in

obese twins. In our re-analysis of these data, we did not see a significant reduction in

alpha diversity (Supplementary Figure B-6). We found significant increases in Cateni-

bacterium, Acidaminococcus, Megasphaera, Lactobacillus, Roseburia, and Collinsella

in obese twins (q <= 0.05, KW tests). Coprobacillus, Clostridium XVIII, Phasco-

larctobacterium, Clostridium XlVb, Oscillibacter, Flavonifractor, Pseudoflavonifrac-

tor, Ruminococcus, Clostridium IV, Gordonibacter, Alistipes, and Barnesiella were

significantly enriched in lean twins (q <= 0.05, KW tests).

Ross et al. (2015) looked at 63 Mexican American patients with varying BMIs

[18]. They found no significant differences between patients with high and low BMIs

within their 63 patient cohort, but identified several significant differences between

their patient population and the HMP data set. However, it is unclear whether these

differences were related to obesity, so we do not discuss them here. Our re-analysis

of these results also found no significant differences in the relative abundances of

bacterial genera between high- and low-BMI subjects.

Zhu et al. (2013) compared across a cohort of 16 healthy and 25 obese patients,

in addition to 22 patients with Nonalcoholic steatohepatitis (see below) [19]. For

obesity, the authors found that Prevotella was enriched in high-BMI patients, while

healthy controls showed significantly greater relative abundances of Bifidobacterium,

Blautia, and Faecalibacterium (p <= 0.05, ANOVA with post-hoc Tukey's tests).

In our re-analysis of these data, we found a significant enrichment of Peptoniphilus,

Anaerococcus, Finegoldia, Leuconostoc, Mogibacterium, Varibaculum, Campylobacter,

Prevotella, and Porphyromonas in obese patients (q <= 0.05). Healthy patients were

significantly enriched in Akkermansia, Murdochiella, Blautia, Lachnospiracea incertae

sedis, and Clostridium IV, Anaerovorax (q <= 0.05, KW tests).

Overall, we found several differences between lean and obese patients that were

consistent across at least two studies. Roseburia and Mogibacterium were enriched

in obese individuals in more than one study. Pseudoflavonifractor, Oscillobacter,
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Anaerovorax and Clostridium IV were enriched in the controls across more than one

study. However, no genera showed consistent differences across three or more studies.

Our results are largely consistent with a recent meta-analysis of obesity studies, which

found no universal signature of human obesity [20].

Human Immunodeficiency Virus microbial signature is confounded with

patient cohorts (HIV; 3 studies)

Dinh et al. (2015) compared the gut microbiome from 16 healthy patients to 22

patients with chronic HIV infections [21]. The authors report an general enrichment

in Proteobacteria in HIV-infected patients. At the genus level, they found a signifi-

cant enrichment in Barnesiella and a depletion in Alistipes in HIV-infected patients

(LEfSe, p < 0.05). In our re-analysis of these data we found no significant differences

in the relative abundances of genera between healthy and HIV-infected patients.

Lozupone et al. (2013) looked at 22 HIV-positive patients and 13 healthy con-

trols [22]. The authors reported enrichment of Prevotella, Catenibacterium, Dialister,

Allisonella, and Megasphera genera in HIV-positive patients, while Bacteroides and

Alistipes were more abundant in controls (p < 0.05, ANOVA). We found all the as-

sociations reported above in our re-analysis. Additionally, we saw higher relative

abundances of Erysipelotrichaceae incertae sedis, Peptococcus, Mogibacterium, Pep-

tostreptococcus, Desulfovibrio, Hallella, and Alloprevotella in HIV-positive patients.

And healthy patients were also enriched in Oridibacter, Anaerostipes, and Parasut-

terella. Many of the significant genera from the Lozupone study were shown to be

strongly associated with sexual behavior in the Noguera-Julian study (i.e. these gen-

era were significantly different in men who have sex with men versus other subjects;

see below) and may not necessarily be related to HIV status.

Noguera-Julian et al. (2016) studied a cohort of 293 HIV-infected patients and 57

healthy controls. The authors found that many putative associations between HIV

and the microbiome were driven by sexual preference (i.e. Prevotella, along with

several other genera, were enriched in men who have sex with men (MSM)). After

controlling for this demographic confounder, the authors reported that they were
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not able to classify HIV positive and negative patients MSM patients. Due to the

large size of their study, the authors were able to separate the influences of sexual

behavior and HIV-status from one another and found that the majority of reported

HIV-associations are likely confounded with sexual behavior.

Overall, there is not yet a strong consensus on the impacts of HIV on the human

gut microbiome. Differences between patient cohorts may have obscured any putative

HIV signal across studies. For example, all the patients in the Dinh et al. (2015)

study were on antiretroviral therapy (ART), while only some of the patients in the

other two studies were on ART. Noguera-Julian et al. (2016) found that patients who

initiated ART within the first 6 months of HIV infection were able to maintain gut

microbial community richness, unlike patients that were not on ART. In addition,

the Noguera-Julian et al. (2016) paper was able to show that prior results showing

enrichment of Prevotella in HIV-positive patients was an artifact due to this genera

being enriched in men who have sex with men.

Autism Spectrum Disorder (ASD; 2 studies)

Kang et al. (2013) reported a reduced prevalence of Prevotella and other fermenta-

tive organisms in the guts of ASD children [23]. In particular, the authors showed

significant (q <= 0.05, Mann-Whitney) depletion in unclassified Prevotella and Veil-

lonellaceae genera in autistic children (n = 20 treatment and 20 controls). The au-

thors also note a reduced alpha diversity in autistic children. After reprocessing these

data, we found no significant differences in alpha diversity or genera abundances be-

tween autistic and control children (Figure 1; q > 0.05, Kruskal-Wallis). The original

conclusion that Prevotella and Veillonellaceae were different was based on q-values

of 0.04, which is only moderately convincing evidence against the null-hypothesis.

Therefore, the loss of this marginal significance (for q <= 0.05) is unsurprising when

using a different statistical test.

In a more recent study, Son et al. (2015) found no significant differences in micro-

bial community diversity or composition between autistic and neurotypical children (n

= 59 ASD and 44 neurotypical) [24]. One genus, representing chloroplast sequences,
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was associated with ASD children with functional constipation, but this signal ap-

peared to be due to dietary intake of chia seeds. Similar to the authorsaAZ findings,

we did not detect any significant differences in genera abundances between ASD chil-

dren and neurotypical children in the reprocessed data (q > 0.05, Kruskal-Wallis).

Taken together, we find no evidence for changes in the composition or diversity of

the gut microbiome in response to ASD. However, we cannot discount subtle dysbiosis

(i.e. small effect size) in response to ASD due to the small number of patients in each

study.

Type 1 Diabetes (T1D; 2 studies)

Alkanani et al. (2015) compared 23 healthy patients to 35 early-onset TiD patients

and 21 seropositive T1D patients [25]. The authors report higher relative abundances

of Lactobacillus, Prevotella and Staphylococcus genera in healthy patients (p < 0.05,

Wilcoxon). T1D patients showed higher levels of Bacteroides (p < 0.05, Wilcoxon). In

our re-analysis, we found no significant differences in bacterial genera across healthy

and diseased patients.

Mejia-Leon et al. (2014) compared 8 healthy patients to 8 early-onset T1D pa-

tients and 13 T1D patients who had received 2 years of treatment [26]. Similar to

Alkanani et al. (2015), they found controls to be significantly enriched in Prevotella

and T1D patients enriched in Bacteroides (p < 0.05, ANOVA, Tukey-Kramer test).

They also found higher levels of Acidaminococcus and Megamonas genera (in the

Veillonellaceae family) in the controls (p < 0.05, ANOVA, Tukey-Kramer test). We

saw no significant differences in our re-analysis of these data.

Overall, the original authors report a consistent increase in Bacteroides and de-

pletion in Prevotella genera associated with TID. However, our re-analysis found

that these differences did not pass our significance threshold. Thus, we cannot yet

conclude that there is a consistent dysbiosis associated with T1D.
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Nonalcoholic Steatohepatitis (NASH; 2 studies)

Zhu et al. (2013) compared the microbiomes from 16 healthy individuals to 22 pa-

tients with NASH [19]. They found significantly lower relative abundances of Bi-

fidobacterium, Blautia, and Faecalibacterium genera in NASH patients (p <= 0.05,

ANOVA with post-hoc Tukey's tests). NASH patients were enriched in Escherichia,

compared to controls, and tended to show increased levels of Proteobacteria (p <=

0.05, ANOVA with post-hoc Tukey's tests). In our re-analysis, we found that NASH

patients showed significantly higher levels of Fusobacterium, Peptoniphilus, Anaero-

coccus, Finegoldia, Gallicola, Negativicoccus, Leuconostoc, Weissella, Lactobacillus,

Peptococcus, Moryella, Syntrophococcus, Mogibacterium, Olsenella, Varibaculum, Mo-

biluncus, Pyramidobacter, Escherichia/Shigella, Campylobacter, Hallella, Prevotella,

and Porphyromonas genera (q < 0.05, KW test). Conversely, control patients were

significantly enriched in Akkermansia, Murdochiella, Coprococcus, Anaerostipes, Blau-

tia, Lachnospiracea incertae sedis, Faecalibacterium, Ruminococcus, Gemmiger, Clostrid-

ium IV, Anaerovorax, Clostridium XI, Corynebacterium, Bifidobacterium, Alistipes,

and Barnesiella genera (q < 0.05, KW test).

Wong et al. (2013) investigated a cohort of 16 healthy and 22 NASH patients [27].

They found that control patients were enriched in Faecalibacterium and Anaerosporobac-

ter genera, while NASH patients showed significantly higher levels of Parabacteroides

and Alisonella genera (p < 0.05, t-test). In our re-analysis of these data, we saw no

significant differences.

In summary, there were not many consistencies between the two NASH studies

analyzed here. The original studies consistently report a depletion in Faecalibacterium

in NASH patients. Thus, the overall influence of NASH on the microbiome is difficult

to assess without further study.

Minimal Hepatic Encephalopathy and Liver Cirrhosis (LIV; 1 study)

Zhang et al. (2013) looked at the microbiomes of 26 healthy patients, 26 patients

with MHE, and 25 patients with CIRR [281. The original paper reported several gen-
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era that differed between diseased and control patients. Odoribacter, Flavonifractor,

and Coprobacillus were all enriched in MHE patients relative to controls, while Eu-

bacterium, Lachnospira, Parasutteralla, and an unclassified Erysipelotrichaceae genus

were enriched in healthy patients (p < 0.01, Mann-Whitney). The authors also re-

ported depletion in Prevotella in non-MHE patients with cirrhosis (CIRR), relative

to controls. When we re-processed and re-analyzed these data, the only difference

we found was an enrichment in Veillonella in case (MHE and CIRR) patients (q <

0.05, KW test). When comparing controls with MHE patients alone, we also saw an

enrichment of Faecalibacterium in healthy controls relative to MHE cases.

Rheumatoid and Psoriatic Arthritis (ART; 1 study)

Scher et al. (2013) investigated the impacts of arthritis on a cohort of 86 arthritic and

28 healthy patients [291. The authors report that greater abundances of Prevotella

copri can predict susceptibility to arthritis. There were three types of arthritic con-

ditions studied, but only new-onset untreated rheumatoid arthritis (NORA) showed

a strong association with multiple Prevotella OTUs among others (q < 0.01, LEfSe).

The other RA groups were not easily distinguishable from controls. Indeed, when

grouping all arthritis patients together for our re-analysis as well as comparing RA

and psoriatic arthritis patients separately, we did not find any genera that were sig-

nificantly different between arthritic patients and controls.

Parkinson's Disease (PAR; 1 study)

Scheperjans et al. (2014) looked for differences in the gut microbiome between 72

neurotypical patients and 72 Parkinson's (PAR) patients [30]. They found a small

handful of significant differences at the family level. Control patients showed higher

relative abundances of Prevotellaceae, while PAR patients were enriched in Lactobacil-

laceae, Verrucomicrobiaceae, Bradyrhizobiaceae, and Clostridiales Incertae Sedis (q <

0.05, Mann-Whitney). In our re-analysis, we found significantly higher relative abun-

dances of Lactobacillus (within Lactobacillaceae) and Alistipes (within Rikenellaceae)

in PAR patients (q < 0.05, KW tests).
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B.1.2 Stratifying heterogenous case groups shows consistent

disease-specific signals

In our main analyses, we combined Crohn's disease (CD) and ulcerative colitis (UC)

patients together as IBD cases. We also performed separate analyses on these indi-

vidual patient groups. All four IBD studies included CD cases and three included

UC cases (all except Gevers et al. (2014) [11]). We performed the same analysis

as in Figure 1 for these stratified groups, and found that both CD and UC patients

are characterized by depletion of similar health-associated microbes (Supplementary

Figures B-4 and B-5). Interestingly, neither UC nor CD seemed to have a larger

microbiome shift: only one dataset for each type of comparison had more than 10

significant genera (Gevers et al. (2014), 14 CD-associated genera; Papa et al. (2012),

17 UC-associated genera). Additional studies comparing UC- and CD-specific micro-

biome alterations will be needed to tease out whether and how these IBD subtypes

differentially impact the gut microbiome.

We also performed stratified analyses on the arthritis (ART) and liver (LIV) pa-

tients in the Scher et al. (2013) and Zhang et al. (2013) datasets, respectively [28, 29]

(Supplementary Figure B-4). The random forest classifiers performed similarly well

on the stratified patient groups than on the combined cases. As in the combined anal-

yses, neither type of arthritis (rheumatoid arthritis (RA) or psoriatic arthritis (PSA))

had any significant genus-level associations. In the Zhang et al. (2013) dataset, 1

genus was significantly associated with the liver cirrhosis (CIRR) patients and 2 with

the minimal hepatic encelopathy (MHE) patients. As in the original combined analy-

sis, Veillonella was associated with both groups of patients. In our stratified analysis,

Faecalibacterium was additionally significantly associated with non-MHE healthy con-

trols. However, the lack of other arthritis or liver datasets in this analysis prevents

us from drawing more generalized conclusions from these stratified analyses.
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B.1.3 Healthy vs. disease classifier identifies general micro-

biome shifts

To further address the question of whether we could find a robust, generalized signal

for diseased microbiomes regardless of the disease type, we built two classifiers to

distinguish healthy patients from any type of case patients. In these classifiers, we

excluded the two datasets which did not have healthy controls (Gevers et al. (2014)

[11] and Papa et al. (2012) [131, which used non-IBD patients as controls) and CDI

Youngster (2014), [31 which had only 4 distinct controls. First, we performed leave-

one-dataset-out cross-validation to determine whether a general healthy vs. disease

classifier trained on the other datasets could still classify cases from controls in a

test dataset. These AUCs correlated well with the single-dataset classifiers, though

usually performed slightly less well than the single-dataset classifiers (Pearson p =

0.56, p = 0.003; Supplementary Figure B-9). We also built a more stringent leave-

one-disease-out classifier to ensure that the diarrhea datasets and others with strong

microbiome signals were not driving the classification ability of all other diseases.

Surprisingly, this classifier performed similarly to the leave-one-dataset-out classifier

(Supplementary Figure B-9). The positive correlation with the original single-dataset

classification results (Pearson p = 0.47, p = 0.02) indicates that there is a generalizable

healthy vs. disease microbiome signal that is being identified even across different

diseases. These results also indicate that models for each disease group are predictive

of cases and controls for other datasets within that group, since the leave-one-dataset-

out classifier, which included datasets of the test disease group in the training set,

performed better than the leave-one-disease-out classifier, which did not.

B.1.4 Shared microbial response is robust to different defini-

tions

Our simple heuristic defined non-specific microbes as those which were significantly

enriched or depleted in two diseases. To ensure that this definition was not being

dominated by the diarrhea datasets and that we were indeed identifying microbes
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which respond non-specifically to multiple diseases, we re-defined the non-specific

genera as those which were significantly enriched or depleted in two diseases, excluding

datasets with diarrhea cases (Schubert et al. (2014) [11, Singh et al. (2015) [41, Vincent

et al. (2013) [2], and Youngster et al. (2014) [3]). We found that 27 out of the 51

original non-specific genera were recovered, with all health- and disease-associated

effects in matching directions (Supplementary Figure B-10). Thus, the majority of

the shared microbial response is robust to the exclusion of diarrhea datasets.

We also re-defined non-specific microbes using Stouffer's method to combine p-

values across all datasets (except Papa et al. (2012) [13], Gevers et al. (2014) [11], and

Lozupone et. al (2013) [22]) [31]. We combined each dataset's FDR-corrected q-values

with scipy. stats. combine-pvalues (method='stouf f er'), using the square root of

each study's sample size as the weights. Genera with a combined q-value less than

0.05 were considered non-specific responders. Overall, these results did not conflict

with the heuristic definition (i.e. only two genera, Porphyromonas and Gemmiger,

were "health-associated" with one method and "disease-associated" with the other;

Supplementary Figure B-10). Stouffer's method is less conservative than the heuristic

definition, identifying 111 genera in the non-specific response (60 health-associated

and 51 disease-associated). In addition, using Stouffer's method does not allow for

the identification of mixed genera (i.e. those which respond in both health- and

disease-associated directions across multiple diseases). Finally, combining q-values

with Stouffer's method does not ensure that identified microbes are responding non-

specifically to multiple diseases: one highly significant genus in a large study can

dominate other q-values and be flagged as a non-specific responder, despite only

being associated with one disease. Thus, the heuristic definition is more conservative

and more directly related to the biological question of identifying shared microbial

responses to disease.

We tested whether the overall number of non-specific responders we observed

was greater than we would expect to see due to chance. We built an empirical

null distribution of the number of each type of non-specific responder. We shuffled

q-values within each dataset, re-defined non-specific responders, and counted how
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many health-associated, disease-associated, and mixed genera were found, repeating

this process 1000 times. When we considered significance in two diseases as the thresh-

old for our heuristic (as presented in the main text), we did not find a significantly

larger number of non-specific responses than would be expected by chance (Supple-

mentary Figure B-11). When we raised the heuristic threshold to three diseases our

results became more significant, but there was a large reduction in the number of

identified non-specific genera. Thus, there is currently not enough information to

fully distinguish between microbes that are sporadically detected across multiple dis-

eases from those that may be consistently associated with general health or disease.

Future meta-analyses that include many more datasets for each of many conditions

might be able to distinguish microbes that are consistently associated with health or

disease from those that are sporadically associated with different conditions.

Despite the fact that the number of non-specific microbes did not reach statistical

significance, we identified multiple lines of evidence for a coherent microbial response

to health and disease. First, the healthy vs. disease classifiers successfully classified

case patients across a variety of diseases even when the disease being tested was not

in the training set, indicating that some aspects of disease-associated microbiome

shifts can generalize across diseases (Supplementary Figure B-9). Second, the statis-

tical significance of the number of non-specific responders increased as we increased

the number of diseases threshold (Supplementary Figure B-11). Thus, future meta-

analyses which include many more studies and disease states may be able to more

robustly identify bacteria which respond across a broader variety of disease states.

Third, we saw a coherent phylogenetic signal in the non-specific response (e.g. Pro-

teobacteria and Lactobacillaceae associated with disease and Rumminococcaceae and

Lachnospiraceae associated with health), which points to potential mechanisms (e.g.

shorter stool transit time or inflammation) for a shared response to health or disease

(Figure 3A). Thus, we expect that future meta-analyses that include more studies

and diseases will identify a consistent set of bacteria that form a general microbial

response to health and disease in the gut.
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B.2 Supplementary Tables

Median
Dataset ID Year Controls N (controls) Cases N (cases) reads per Sequencer 16S Region Ref.

sample
Scher 2013, ART 2013 H 28 PSA, RA 86 2194.0 454 V1-V2 1291
Kang 2013, ASD 2013 H 20 ASD 19 1345.0 454 V2-V3 [231
Son 2015, ASD 2015 H 44 ASD 59 4777.0 Miseq V1-V2 124]

Schubert 2014, CDI 2014 H 154 CDI 93 4897.0 454 V3-V5 I1l
Schubert 2014, nonCDI 2014 H 154 nonCDI 89 4903.0 454 V3-V5 [1

Singh 2015, EDD 2015 H 82 EDD 201 2585.0 454 V3-V5 [41
Vincent 2013, CDI 2013 H 25 CDI 25 2526.5 454 V3-V5 [2]

Youngster 2014, CDI 2014 H 4 CDI 19 15081.0 Miseq V4 131
Baxter 2016, CRC 2016 H 172 CRC 120 9913.5 Miseq V4 161
Chen 2012, CRC 2012 H 22 CRC 21 1152.0 454 V1-V3 1101
Wang 2012, CRC 2012 H 54 CRC 44 161.0 454 V3 191
Zeller 2014, CRC 2014 H 75 CRC 41 120989.0 MiSeq V4 181
Dinh 2015, HIV 2015 H 15 HIV 21 3248.5 454 V3-V5 1211

Lozupone 2013, HIV 2013 H 13 HIV 23 3262.0 MiSeq V4 1221
Noguera-Julian 2016, HIV 2016 H 34 HIV 205 16506.0 MiSeq V3-V4 1321

Gevers 2014, IBD 2014 nonIBD 16 CD 146 9773.5 Miseq V4 111]
Morgan 2012, IBD 2012 H 18 UC, CD 108 1022.5 454 V3-V5 1121

Papa 2012, IBD 2012 nonIBD 24 UC, CD 66 1323.5 454 V3-V5 1131
Willing 2010, IBD 2009 H 35 UC, CD 45 1118.5 454 V5-V6 1141
Zhang 2013, LIV 2013 H 25 CIRR, MHE 46 487.0 454 V1-V2 128]

Wong 2013, NASH 2013 H 22 NASH 16 1980.0 454 V1-V2 [27]
Zhu 2013, NASH 2013 H 16 NASH 22 10863.0 454 V4 1191

Goodrich 2014, OB 2014 H 428 OB 185 27077.0 Miseq V4 1151
Ross 2015, OB 2015 H 26 OB 37 4562.0 454 V1-V3 1181

Turnbaugh 2009, OB 2009 H 61 OB 195 1556.5 454 V2 1171
Zhu 2013, OB 2013 H 16 OB 25 9778.0 454 V4 1191

Zupancic 2012, OB 2012 H 96 OB 101 1645.0 454 V1-V3 1161
Scheperjans 2015, PAR 2015 H 74 PAR 74 2351.5 454 V1-V3 [30]

Alkanani 2015, TiD 2015 H 55 TiD 57 9117.0 MiSeq V4 1251
Mejia-Leon 2014, TiD 2014 H 8 . TiD 21 4702.0 454 V4 1261

Table B. 1: Datasets collected and processed through standardized pipeline. Disease
labels: ART = arthritis, ASD = austism spectrum disorder, CD = Crohn's disease,
CDI = Clostridium difficile infection, CIRR = liver cirrhosis, CRC = colorectal can-
cer, EDD enteric diarrheal disease, H = healthy, HIV = human immunodeficiency
virus, LIV liver diseases, MHE = minimal hepatic encephalopathy, NASH = non-
alcoholic steatohepatitis, OB = obesity, PAR = Parkinson's disease, PSA = psoriatic
arthritis, RA = rheumatoid arthritis, T1D = type I diabetes, UC = ulcerative colitis.
nonCDI controls are patients with diarrhea who tested negative for C. difficile infec-
tion. nonJBD controls are patients with gastrointestinal symptoms but no intestinal
inflammation. Datasets are ordered alphabetically by disease and within disease by
first author.
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Dataset ID Data type Barcodes Primers Quality filtering Quality cutoff Length trim

Scher 2013, ART fastq No Yes -fastqtruncqual 25 200

Kang 2013, ASD fastq No Yes -fastqtruncqual 25 200

Son 2015, ASD fastq No Yes -fastqtruncqual 25 200

Schubert 2014, CDI fastq No Yes -fastq_truncqual 25 150
Vincent 2013, CDI fastq No Yes -fastqtruncqual 20 101

Youngster 2014, CDI fastq No No -fastqtruncqual 25 200

Baxter 2016, CRC fastq No No -fastqtruncqual 25 250

Chen 2012, CRC fastq Yes Yes -fastqtruncqual 25 200

Wang 2012, CRC fastq Yes Yes -fastqtruncqual 25 150
Zeller 2014, CRC fastq No No -fastqtruncqual 25 200

Singh 2015, EDD fasta n/a n/a n/a n/a 200

Dinh 2015, HIV fastq No No -fastqtruncqual 25 200

Lozupone 2013, HIV fastq No No -fastqtruncqual 25 150
Noguera-Julian 2016, HIV fastq No Yes -fastqtruncqual 25 200

Gevers 2014, IBD fastq No No -fastqtruncqual 25 200

Morgan 2012, IBD fastq No Yes -fastqtruncqual 25 200

Papa 2012, IBD fasta n/a n/a n/a n/a 200

Willing 2010, IBD fastq No Yes -fastqmaxee 2 200

Zhang 2013, LIV fastq No Yes -fastqtruncqual 25 200

Wong 2013, NASH fastq No No -fastqtruncqual 25 200

Zhu 2013, NASH fasta n/a n/a n/a n/a 200

Schubert 2014, nonCDI fastq No Yes -fastqtruncqual 25 150
Goodrich 2014, OB fastq No No -fastqtruncqual 25 200

Ross 2015, OB fastq No No -fastqtruncqual 25 150
Turnbaugh 2009, OB fasta n/a n/a n/a n/a 200

Zhu 2013, OB fasta n/a n/a n/a n/a 200

Zupancic 2012, OB fastq No No -fastqtruncqual 25 200

Scheperjans 2015, PAR fastq No Yes -fastqtruncqual 25 200

Alkanani 2015, T1D fastq No No -fastqraxee 2 200

Mejia-Leon 2014, TID fastq Yes Yes -fastq truncqual 25 150

Table B.2: Processing parameters for
whether we assigned reads to samples
already de-multiplexed (No). Primers

all datasets. Barcodes column
by their barcodes (Yes) or if the
column indicates whether we removed the

primers from sequences. Quality filtering and Quality cutoff columns indicate
the type of quality filtering we performed on the data. Length trim is the length
to which all sequences were truncated before clustering into OTUs. In the case of
-f astq-truncqual quality filtering, reads were length trimmed after quality trunca-
tion. In the case of -f astq-maxee quality filtering, reads were length trimmed before
quality filtering. Datasets are ordered alphabetically by disease and within disease by
first author. ART = arthritis, ASD = autism spectrum disorder, CDI = Clostridium
difficile infection, CRC = colorectal cancer, EDD = enteric diarrheal disease, HIV

human immunodeficient virus, IBD = inflammatory bowel disease, LIV = liver
disease, NASH = non-alcoholic steatohepatitis, nonCDI = non- Clostridium difficile
infection, OB = obesity, PAR = Parkinson's disease, TID = type I diabetes.
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Dataset ID Raw data Metadata
Scher 2013, ART SRA study SRP023463 SRA
Kang 2013, ASD SRA study SRP017161 SRA
Son 2015, ASD SRA study SRP057700 SRA

Schubert 2014, CDI mothur.org/CDI_MicrobiomeModeling mothur.org/CDI_MicrobiomeModeling
Vincent 2013, CDI email authors email authors

Youngster 2014, CDI SRA study SRP040146 email authors
Baxter 2016, CRC SRA study SRP062005 SRA
Chen 2012, CRC SRA study SRP009633 SRA sample description
Wang 2012, CRC SRA study SRP005150 SRA study description
Zeller 2014, CRC ENA study PRJEB6070 Table S1 and S2
Singh 2015, EDD http://dx.doi.org/10.6084/m9.figshare.1447256 Additional File 4
Dinh 2015, HIV SRA study SRP039076 SRA

Lozupone 2013, HIV ENA study PRJEB4335 Qiita study 1700
Noguera-Julian 2016, HIV SRA study SRP068240 SRA

Gevers 2014, IBD SRA study SRP040765 Table S2
Morgan 2012, IBD SRA study SRP015953 http://huttenhower.sph.harvard.edu/ibd2012
Papa 2012, IBD email authors email authors

Willing 2010, IBD email authors email authors
Zhang 2013, LIV SRA study SRP015698 SRA

Wong 2013, NASH SRA study SRP011160 SRA
Zhu 2013, NASH MG-RAST, study mgp1195 MG-RAST

Schubert 2014, nonCDI mothur.org/CDI_MicrobiomeModeling mothur.org/CDI_MicrobiomeModeling
Goodrich 2014, OB ENA studies PRJEB6702 and PRJEB6705 ENA

Ross 2015, OB SRA study SRP053023 SRA
Turnbaugh 2009, OB https://gordonlab.wustl.edu/NatureTwins_2008/TurnbaughNature_11_30_08.html Table S1

Zhu 2013, OB MG-RAST, study mgp1195 (same data as nashzhu) MG-RAST
Zupancic 2012, OB SRA study SRP002465 SRA

Scheperjans 2015, PAR ENA study PRJEB4927 sample names
Alkanani 2015, T1D email authors email authors

Mejia-Leon 2014, T1D email authors email authors

Table B.3: Locations of raw data and associated metadata for each dataset used in these analyses. Datasets are ordered
alphabetically by disease and within disease by first author. ART = arthritis, ASD = autism spectrum disorder, CDI =
Clostridium difficile infection, CRC = colorectal cancer, EDD = enteric diarrheal disease, HIV = human immunodeficient virus,
IBD = inflammatory bowel disease, LIV = liver disease, NASH = non-alcoholic steatohepatitis, nonCDI = non-Clostridium
difficile infection, OB = obesity, PAR = Parkinson's disease, T1D = type I diabetes.



Table B.4: Area under the ROC curve (AUC), Fisher's p-values, and Kappa score
for each case vs. control classifier. Metrics were calculated from the predictions on
each test set in five-fold cross-validation. Datasets are ordered as in Figure 1. ART

arthritis, ASD = autism spectrum disorder, CDI = Clostridium difficile infection,
CRC = colorectal cancer, EDD = enteric diarrheal disease, HIV = human immun-
odeficient virus, IBD = inflammatory bowel disease, LIV = liver disease, NASH
non-alcoholic steatohepatitis, nonCDI = non-Clostridium difficile infection, OB
obesity, PAR = Parkinson's disease, TiD = type I diabetes.
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Dataset ID
Singh 2015, EDD

Schubert 2014, CDI
Schubert 2014, nonCDI

Vincent 2013, CDI
Goodrich 2014, OB

Turnbaugh 2009, OB
Zupancic 2012, OB

Ross 2015, OB
Zhu 2013, OB

Baxter 2016, CRC
Zeller 2014, CRC
Wang 2012, CRC
Chen 2012, CRC
Gevers 2014, IBD
Morgan 2012, IBD
Papa 2012, IBD

Willing 2010, IBD
Noguera-Julian 2016, HIV

Lozupone 2013, HIV
Dinh 2015, HIV
Son 2015, ASD

Kang 2013, ASD
Alkanani 2015, TiD

Mejia-Leon 2014, T1D
Wong 2013, NASH
Zhu 2013, NASH
Scher 2013, ART
Zhang 2013, LIV

Scheperjans 2015, PAR

AUC
0.96
0.99
0.98
0.91
0.67
0.84
0.44
0.49
0.86
0.77
0.82
0.9

0.78
0.71
0.81
0.84
0.66
0.67
0.92
0.22
0.39
0.76
0.71
0.77
0.68
0.93
0.62
0.8
0.67

Fisher's p
7.9e-31
8.7e-49
6.3e-38
1.6e-06
0.00014
1. 7e-06

0.16
0.75

1.3e-05
5.4e-16
3.4e-06
2.6e-11
0.034

1
0.0025
0.0019

0.81
1

8.7e-06
0.062
0.12
0.056

0.0078
0.18
0.098

1.3e-07
1

0.016
0.0083

Kappa score
0.7
0.88
0.79
0.68
0.11
0.28
-0.11
-0.068
0.69
0.43
0.41
0.67
0.35
0

0.26
0.34
0.026
0

0.76
-0.26
-0.16
0.33
0.27
0.25
0.28
0.84

-0.034
0.29
0.23



B.3 Supplementary Figures
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Figure B-1: ROC curves for each of the classifiers in Figure 1. Datasets are ordered
alphabetically by disease and within disease by first author. FPR = false positive
rate, TPR = true positive rate. ART = arthritis, ASD = autism spectrum disor-
der, CDI = Clostridium difficile infection, CRC = colorectal cancer, EDD = enteric
diarrheal disease, HIV = human immunodeficient virus, IBD = inflammatory bowel
disease, LIV = liver disease, NASH non-alcoholic steatohepatitis, nonCDI = non-
Clostridium difficile infection, OB obesity, PAR = Parkinson's disease, T1D
type I diabetes.
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Figure B-2: Same heatmaps as in Figure 2, with rows labeled by family and genus

taxonomy. Heatmaps show loglO(q-values) for each disease (Kruskal-Wallis (KW)

test, Benjamini-Hochberg FDR correction). Rows include all genera which were sig-

nificant in at least one dataset within each disease, columns are datasets. Q-values are

colored by direction of the effect, where red indicates higher mean abundance in dis-
ease patients and blue indicates higher mean abundance in controls. Opacity ranges
from q = 0.05 to 1, where q values less than 0.05 are the most opaque and q values
close to 1 are gray. White indicates that the genus was not present in that dataset.
Within each heatmap, rows are ordered from most disease-associated (top) to most
health-associated (bottom) (i.e. by the sum across rows of the loglO(q-values), signed
according to directionality of the effect).
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Figure B-4: Same analysis as in Figure 1 for stratified patient groups. (A) Left:

Total sample size for each comparison. Right: Area under the ROC curve (AUC)
for genus-level random forest classifiers. (B) Left: Number of genera with q < 0.05
(Kruskal-Wallis (KW) test, Benjamini-Hochberg FDR correction) for each type of

patient group comparison. Right: Direction of microbiome shift,i.e. the percent of
total associated genera which were enriched in diseased patients. In comparisons
on the leftmost blue line, 100% of associated (q < 0.05, FDR KW test) genera are

health-associated (i.e. depleted in patients relative to controls). In comparisons on
the rightmost red line, 100% of associated (q < 0.05, FDR KW test) genera are
disease-associated (i.e. enriched in patients relative to controls).
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Figure B-5: Same results as presented in Figure 2 for ulcerative colitis (UC) and
Crohn's disease (CD) IBD patients separately. Heatmaps show loglO(q-values) for
each comparison, with studies in columns and genera in rows (Kruskal-Wallis (KW)
test, Benjamini-Hochberg FDR correction). Q-values are colored by direction of the
effect, where red indicates higher mean abundance in disease patients and blue indi-
cates higher mean abundance in controls. Opacity ranges from q = 0.05 to 1, where
q values less than 0.05 are the most opaque and q values close to 1 are gray. White
indicates that the genus was not present in that dataset. Within each heatmap, rows
are ordered from most disease-associated (top) to most health-associated (bottom)
(i.e. by the sum across rows of the loglO(q-values), signed according to directionality
of the effect).
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Figure B-6: Reduction in alpha diversity is not a reliable indicator of "dysbiosis." Shannon alpha
diversity index across all patient groups in all studies, calculated on OTUs (i.e. not collapsed to genus
level, and including unannotated OTUs). Diarrheal patients consistently have lower alpha diversity
than non-diarrheal controls (green box). Crohn's disease (CD) patients also show a slight reduction of
alpha diversity relative to controls in three out of four IBD studies and ulcerative colitis (UC) patients
in two studies (purple box). Obese patients have inconsistent and small reductions in alpha diversity,
consistent with a previous meta-analysis [20]. * : 0.01 < p < 0.05, ** : 10-4 < p < 0.01, * * * :

p < 10-4. P values are calculated from a two-sided T-test (using scipy. stats. ttest_ind) and
are not corrected for multiple tests. Note that the datasets with multiple case groups (Zhu et
al. (OB/NASH, 2013) and Schubert et al. (CDI/non-CDI, 2014)) are presented only once in this
plot. ART = arthritis, ASD = austism spectrum disorder, CD = Crohn's disease, CDI = Clostridium
difficile infection, CIRR = liver cirrhosis, CRC = colorectal cancer, EDD = enteric diarrheal disease,
H = healthy, HIV = human immunodeficiency virus, LIV = liver diseases, MHE = minimal hepatic
encephalopathy, NASH = non-alcoholic steatohepatitis, OB = obesity, PAR = Parkinson's disease,
PSA = psoriatic arthritis, RA = rheumatoid arthritis, TID = type I diabetes, UC = ulcerative
colitis. nonCDI controls are patients with diarrhea who tested negative for C. difficile infection.
nonIBD controls are patients with gastrointestinal symptoms but no intestinal inflammation.
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Figure B-7: Chaol alpha diversity across all patient groups in all studies, calculated on OTUs
(i.e. not collapsed to genus level, and including unannotated OTUs). * 0.01 < p < 0.05,**
10-4 < p < 0.01, * ** :p < 10-4. P values are calculated from a two-sided T-test (using
scipy. stats.ttest d) and are not corrected for multiple tests. Note that the datasets with
multiple case groups (Zhu et al. (OB/NASH, 2013) and Schubert et al. (CDI/non-CDI, 2014))
are presented only once in this plot. ART =arthritis, ASD austism spectrum disorder, CD=
Crohn's disease, CDI= Clostridium difficile infection, CIRR liver cirrhosis, CRC= colorectal
cancer, EDD =enteric diarrheal disease, H =healthy, HIV =human immunodeficiency virus, LIV
liver diseases, MHE =minimal hepatic encephalopathy, NASH =non-alcoholic steatohepatitis, OB

=Obesity, PAR =Parkinson's disease, PSA =psoriatic arthritis, RA =rheumatoid arthritis, TiD
=type I diabetes, UC =ulcerative colitis. nonCDI controls are patients with diarrhea who tested

negative for C. difficile infection. nonIBD controls are patients with gastrointestinal symptoms but
no intestinal inflammation.
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Figure B-8: Simpson alpha diversity across all patient groups in all studies, calculated on OTUs

(i.e. not collapsed to genus level, and including unannotated OTUs). * : 0.01 < p < 0.05, ** :

10-4 < p < 0.01, * ** : p < 10-4. P values are calculated from a two-sided T-test (using

scipy.stats.ttest-ind) and are not corrected for multiple tests. Note that the datasets with

multiple case groups (Zhu et al. (OB/NASH, 2013) and Schubert et al. (CDI/non-CDI, 2014))

are presented only once in this plot. ART = arthritis, ASD austism spectrum disorder, CD =

Crohn's disease, CDI = Clostridium difficile infection, CIRR liver cirrhosis, CRC = colorectal

cancer, EDD = enteric diarrheal disease, H = healthy, HIV = human immunodeficiency virus, LIV =

liver diseases, MHE = minimal hepatic encephalopathy, NASH = non-alcoholic steatohepatitis, OB

= obesity, PAR = Parkinson's disease, PSA = psoriatic arthritis, RA = rheumatoid arthritis, TID

= type I diabetes, UC = ulcerative colitis. nonCDI controls are patients with diarrhea who tested

negative for C. difficile infection. nonIBD controls are patients with gastrointestinal symptoms but

no intestinal inflammation.
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Figure B-9: Both x-axes: the area under the ROC curve (AUC) from each dataset's
single classifier. Left: leave-one-dataset-out classifier. y-axis: the AUC of a classifier
trained on all other datasets to distinguish healthy from unhealthy patients, tested
on the left out dataset. Right: leave-one-disease-out classifier. y-axis: AUC from a

classifier trained to distinguish healthy from unhealthy patients on all datasets except

those of the tested disease. AUCs for each dataset were built from the classification

probabilities on each test sample.

220

1 n Leave one disease outLeave one dataset out



ler -

Wa

I :oest

mii

A pobm

tos

tr X

.u_

ra

um S bnu ic

a

ICR

_to

Oas

+ 0

Figure B-10: The majority of non-specific microbes are robust to the exclusion of diarrhea datasets
from consideration. The right-most bar shows order-level phylogeny, colored as in Figure 3A of the
main paper. The left bar of the heatmap shows the original non-specific microbes, including all
datasets. The middle bar shows the re-defined non-specific responders after excluding all diarrhea
datasets. The right bar of the heatmap shows the non-specific microbes defined using StoufferhAZs
method, combining one-tailed q-values across datasets and weighting by the square root of sample
size (Stouffer combined q < 0.05).
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Figure B-11: Empirical null distribution of the number of non-specific responders

(colored points, x-axis indicates directionality of response), overlayed with the actual
observed number of non-specific responders (black diamonds) for different defining
heuristics (axis titles, i.e. "3 diseases" means that a genus needed to be significant
(q < 0.05, Kruskal-Wallis (KW) test, Benjamini-Hochberg FDR correction) in three
diseases in the same direction to be considered a non-specific responder). Empirical
one-tailed p-values are printed above each distribution.
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Figure B-12: Varying Random Forest parameters does not significantly affect area under the ROC curve in classifying cases
from controls (Gini criteria). Random Forest classifiers built by using the Gini impurity ("gini") split criteria ("scikit-learn
RandomForestClassifier"). Upward-pointing triangles are classifiers built with 10000 estimators; downward-pointing triangles
are built with 1000 estimators. Colors indicate the value of minsamples-leaf (the minimum number of samples required to
be at a leaf node): red = 1, blue = 2, green = 3. X-axes are the value of min-saples-split (the minimum number of samples
required to split an internal node) [33]. All Random Forests were built using the random state seed 12345.
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Figure B-13: Varying Random Forest parameters does not significantly affect area under the ROC curve in classifying cases

from controls (entropy criteria). Random Forest classifiers built by using the entropy ("entropy") split criteria ("scikit-learn

RandomForest Classifier"). Upward-pointing triangles are classifiers built with 10000 estimators; downward-pointing triangles

are built with 1000 estimators. Colors indicate the value of minsamples-leaf (the minimum number of samples required to

be at a leaf node): red = 1, blue = 2, green = 3. X-axes are the value of min-samples-split (the minimum number of samples

required to split an internal node) [33]. All Random Forests were built using the random state seed 12345.
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Figure B-14: Heatmap of log10(q values) for all genera which were significant (q < 0.05, Kruskal-

Wallis (KW) test, Benjamini-Hochberg FDR correction) in at least one dataset, across all studies.

Rows are genera, ordered phylogenetically (as in Figure 3A). Columns are datasets, grouped by
disease and ordered according to total sample size (decreasing from left to right). The first and

second heatmap panels from the left are the same as in Figure 3A. Q-values are colored according to

directionality of the effect, where red indicates higher mean abundance in patients relative to controls

and blue indicates higher mean abundance in controls. Opacity indicates significance and ranges

from 0.05 to 1, where q-values less than 0.05 are the darkest colors and q-values close to 1 are gray.

White indicates that the genus was not present in that dataset. ART = arthritis, ASD = autism

spectrum disorder, CDI = Clostridium difficile infection, CRC = colorectal cancer, EDD = enteric

diarrheal disease, HIV = human immunodeficient virus, IBD inflammatory bowel disease, LIV =

liver disease, NASH = non-alcoholic steatohepatitis, nonCDI non-Clostridium difficile infection,
OB = obesity, PAR = Parkinson's disease, T1D = type I diabetes.
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dataset, across all studies. Rows are genera, ordered phylogenetically (as in Figure 3A). Columns
are datasets, grouped by disease and ordered according to total sample size (decreasing from left
to right). The first and second heatmap panels from the left are the same as in Figure 3A. Values
are colored according to directionality of the effect, where red indicates higher mean abundance in
patients relative to controls and blue indicates higher mean abundance in controls. Opacity indicates
fold change and ranges from 1300 to 0, where fold changes greater than 1300 are the darkest colors
and fold changes close to 0 are gray. White indicates that the genus was not present in that dataset.
ART = arthritis, ASD autism spectrum disorder, CDI = Clostridium difficile infection, CRC =
colorectal cancer, EDD enteric diarrheal disease, HIV = human immunodeficient virus, IBD =
inflammatory bowel disease, LIV = liver disease, NASH = non-alcoholic steatohepatitis, nonCDI
= non-Clostridium difficile infection, OB = obesity, PAR = Parkinson's disease, T1D = type I
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Supplementary Information for

Chapter 6

C.1 Supplementary Figures
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Figure C-1: Distribution of catchment sizes in Newton et al, 2015. Green dashed

line indicates catchment size of upstream residential manhole and black dashed line

indicates estimated catchment size of downstream site sampled in this study.
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