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Abstract

Deep neural networks have recently been demonstrated to be vulnerable to backdoor
attacks. Specifically, by introducing a small set of training inputs, an adversary is
able to plant a backdoor in the trained model that enables them to fully control the
model’s behavior during inference. In this thesis, the landscape of these attacks is
investigated from both the perspective of an adversary seeking an effective attack and
a practitioner seeking protection against them.

While the backdoor attacks that have been previously demonstrated are very
powerful, they crucially rely on allowing the adversary to introduce arbitrary inputs
that are – often blatantly – mislabelled. As a result, the introduced inputs are likely
to raise suspicion whenever even a rudimentary data filtering scheme flags them as
outliers. This makes label-consistency – the condition that inputs are consistent with
their labels – crucial for these attacks to remain undetected. We draw on adversarial
perturbations and generative methods to develop a framework for executing efficient,
yet label-consistent, backdoor attacks.

Furthermore, we propose the use of differential privacy as a defence against
backdoor attacks. This prevents the model from relying heavily on features present in
few samples. As we do not require formal privacy guarantees, we are able to relax
the requirements imposed by differential privacy and instead evaluate our methods on
the explicit goal of avoiding the backdoor attack. We propose a method that uses a
relaxed differentially private training procedure to achieve empirical protection from
backdoor attacks with only a moderate decrease in acccuacy on natural inputs.

Thesis Supervisor: Aleksander Mądry
Title: Associate Professor of Computer Science
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Chapter 1

Introduction

Over the last decade, deep learning has made unprecedented progress on a variety of

notoriously difficult tasks in computer vision [25, 20], speech recognition [16], machine

translation [46], and game playing [33, 42]. The performance of these systems even

exceeds that of humans in certain cases [19].

The models used for deep learning are known as deep neural networks. A neural

network is a computational structure composed of many simple components called

neurons (or units). Each neuron produces an output that corresponds to a certain

non-linear “activation” function of a weighted sum of its inputs. Deep neural networks

are neural networks with many interconnected layers of neurons. These networks are

trained on curated data in order to select appropriate values of their many parameters

(weights) so that the networks perform the desired operations.

1.1 Security and reliability

Despite their remarkable performance, real-world deployment of such systems remains

challenging due to concerns about security and reliability. One particular issue

receiving significant attention is the existence of adversarial examples: inputs with

imperceptible adversarial perturbations that are misclassified with high confidence [47].

Such adversarial perturbations can be constructed for a wide range of models, with

minimal model knowledge [36, 8] while being applicable to real-world scenarios [41, 3].
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Figure 1-1: An adversarial example. On the left is a natural image of a pig which is
classified as such by a deep neural network. After perturbing the image slightly (each
pixel has a value in [0, 1] and is allowed to change by at most 0.005), the network
now classifies the image as an airliner with high confidence. Figure reproduced from
Madry and Schmidt [27].

An example of such an adversarial perturbation is given in Figure 1-1.

1.2 Data poisoning

However, this brittleness during inference is not the only security concern in existing

ML systems. Another vulnerability corresponds to a different part of the ML pipeline:

training. State-of-the-art ML models require large amounts of data to achieve good

performance. Unfortunately, such large datasets are expensive to generate and curate.

It is hence common practice to use training examples sourced from a variety of – often

untrusted – sources. This practice is usually justified by the robustness of ML to

input and label noise [39]; bad samples tend to only slightly degrade the model’s

performance. While this reasoning may be valid when only benign noise is present,

it turns out to be incorrect when the noise is maliciously crafted. Attacks based

on injecting such malicious noise to the training set are known as data poisoning

attacks [4].

A well-studied form of data poisoning aims to use the malicious samples to reduce

the test accuracy of the resulting model [49, 50, 34, 32, 5]. While such attacks can be

successful, they are fairly simple to mitigate, since the poor performance of the model

can be detected by evaluating on a holdout set1 – a classifier with poor performance

1If an 𝜒 fraction of examples is poisoned, the accuracy on a holdout set cannot be affected by
more than 𝜒.
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is unlikely to be deployed in a security-critical setting. Another form of attack, known

as targeted poisoning attacks, aims to misclassify a specific set of inputs at inference

time [23]. These attacks are harder to detect. Their impact is restricted, however, as

they only affect the model’s behavior on a limited, pre-selected set of inputs.

1.3 Backdoor attacks

Recently, Gu, et al. [17] introduced backdoor attacks. The purpose of these attacks is

to plant a backdoor in any model trained on the poisoned training set. This backdoor

can be activated during inference by a backdoor trigger (such as a small pattern in the

input) which, whenever present in a given input, forces the model to output a specific

target label chosen by the adversary. This vulnerability is particularly insidious as it

is difficult to detect (e.g. by evaluating the model on a holdout set) since the model

behaves normally in the absence of the trigger.

The particular backdoor attack proposed by Gu, et al. [17] is based on randomly

selecting a portion of the training set, applying the backdoor trigger to these inputs and

changing their labels to the target label. This strategy is very effective (Section 2.2).

One can successfully plant a backdoor by introducing only a small number of input-

label pairs. That backdoor can then be used to successfully alter the model’s prediction

on, essentially, the entire test set.

1.4 Label-consistency

This attack, despite being so successful, has one crucial shortcoming. Namely, the

introduced inputs are – often clearly – mislabelled. This would become a problem

should these inputs undergo human inspection. Indeed, such blatantly incorrect labels

would be deemed suspicious, potentially revealing the attack (see Figure 1-2 for few

typical examples of poisoned inputs). In fact, in Section 7.3, we show that even a

simple data filtering scheme frequently flags poisoned images as outliers, making such

an inspection more likely.
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bird bird bird bird

Figure 1-2: Example input-label pairs from the poisoned training set using the
backdoor attack of Gu, et al. [17] with ‘bird’ as the target label. The images are
clearly mislabelled and thus would raise suspicion upon human inspection. (Here, the
backdoor trigger is the black-and-white pattern in the bottom-right corner.)

The importance of restricting poisoned samples to being correctly labelled has

already been highlighted in previous work. Such attacks have been explored in the

targeted poisoning setting (where the adversary aims to alter the model’s prediction

on a specific test example), being referred to as “defensible attacks” [30, 28], “plausible

attacks” [29, 31], and “clean-label attacks” [40].

Unfortunately, if one tries to apply the Gu, et al. [17] attack while ensuring label-

consistency (i.e. by not changing the label of poisoned images), the attack becomes

ineffective.

The first goal of our work is to investigate whether the usage of such clearly

mislabelled (and thus suspicious) images is really necessary. The question we aim to

answer will therefore be:

Can backdoor attacks be carried out when each poisoned input and its label appear

consistent, even to a human?

We refer to these attacks as label-consistent and view label-consistency as a fundamental

requirement for a poisoning attack to be truly insidious.

1.5 Differential privacy

Under the threat models typically considered for backdoor attacks, along with other

data poisoning attacks, the the adversary is only able to inject a small number of the

20



Original image Adversarial-based GAN-based

Figure 1-3: Label-consistent poisoned inputs obtained using our proposed methods.
The original training image appears in the left column; our adversarial example-based
approach in the middle; and our GAN-based approach on the right. All images are
labelled as birds, which is consistent with the images. This is in stark contrast to
images in Figure 1-2, which are clearly mislabelled. We use a similar trigger to Gu, et
al. [17], but modify it to be less conspicuous as described in Section 3.5.
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samples into training set. Training under differential privacy corresponds to limiting

the impact of any small set of training examples on the resulting model. We detail

this framework further in Section 5.1.

The second goal of our work is to investigate whether this framework can be

successful as a defence. Our main question will thus be:

Can differential privacy be leveraged as a defence against backdoor attacks?

1.6 Our contributions

1.6.1 Label-consistent attacks

Our starting point is the observation that, for backdoor attacks to be successful, the

poisoned inputs need to be hard to classify without relying on the backdoor trigger.

If the poisoned inputs can be correctly classified based solely on their salient features,

the model is likely to ignore the backdoor trigger – and hence the attack will be

unsuccessful.

Building on this intuition, we develop a new approach for synthesizing poisoned

inputs that appear plausible to humans. Our approach consists of making small

changes to the inputs in order to render them harder to classify, while keeping the

changes sufficiently minor in order to ensure that the original label remains consistent.

We perform this transformation in two different ways:

∙ GAN-based interpolation: we interpolate poisoned inputs towards an incorrect

class in the latent space embedding of a GAN [15].

∙ Adversarial ℓ𝑝-bounded perturbations: we use an optimization method to maxi-

mize the loss of a pre-trained model on the poisoned inputs while staying within

an ℓ𝑝-ball around the original input.

Both methods result in successful backdoor attacks while maintaining label-consistency

(see Figure 1-3). We additionally investigate attacks using less conspicuous backdoor
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triggers, as well as ways to overcome issues that arise in the presence of data augmen-

tation. I moreover compare different adversarial perturbation strategies and evalute

the adversarial perturbation-based method under a stricter, black-box threat model.

Finally, we provide some insight into how models tend to memorize the backdoor

trigger by performing experiments using Gaussian noise, as well as studying the value

of model’s loss on the poisoned samples during training.

1.6.2 Differential privacy-based defence

Building on the insight that differential privacy is the natural framework for preventing

data poisoning attacks, we propose a defence for achieving empirical protection against

backdoor attacks. As we do not require formal privacy guarantees, we are able to relax

the requirements imposed by differential privacy and instead evaluate our method on

the explicit goal of avoiding the backdoor attack.

Our method applies Differentially Private Stochastic Gradient Descent (DP-

SGD) [1], a modified version of stochastic gradient descent, for training. DP-SGD

adds noise to the raw loss gradient at each step in such a way that the resulting

gradient, used to update parameters, is prevented from depending too heavily on any

individual sample.

We demonstrate that this technique is successful at preventing backdoor attacks.

Despite this success, as we strengthen the protection against poisoning, we observe a

reduction in test accuracy. We consider reasons for this reduction, discussing whether

there is necessarily a trade-off between accuracy on natural samples and robustness

against backdoor attacks.
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Chapter 2

Backdoor attacks

In this section, we will briefly describe the backdoor attack introduced by Gu, et

al. [17].1 The goal of a backdoor attack is to plant a backdoor in any model trained

on the poisoned dataset. That is, it causes the model to strongly associate a specific

backdoor trigger (a feature in the input) with a target label chosen by the adversary.

During inference, one can cause the model to predict the target label on any instance by

simply applying the backdoor trigger to it. Backdoor attacks are particularly difficult

to detect, since the model’s performance on the original examples is unchanged.

We now propose some appropriate metrics that characterize the success of an

attack or defence, and outline the specific attack procedure proposed by Gu, et al. [17].

2.1 Evaluation metrics

2.1.1 Attack success rate

To evaluate the success of backdoor attacks, we measure the performance of the model

when the backdoor trigger is applied to test samples. The attack success rate is the

fraction of test samples that are classified by the trained model as the target label

when the backdoor is introduced. However, this definition would include the images

that were originally images of the target label. Training a perfect classifier with no
1The results of Gu, et al. [17] were originally focused on the transfer learning setting, but can be

straightforwardly applied to the data poisoning setting [9].
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backdoor would thus still result in a 10% attack success rate. We therefore either

exclude images originally labelled as the target label or exclude images originally

classified as the target label (before the backdoor trigger is introduced).

We use the first definition in all experiments except the differential privacy-based

defence experiments where we use the second.

2.1.2 Conspicuousness

For an attack to be successful, it is not sufficient for a backdoor to be planted should

a model be trained on the poisoned data. The poisoned data must also actually be

used to train a model that is subsequently deployed. The user of the poisoned data

must thus not discover that the data is poisoned and thus raise an alarm, preventing

use of the model. A truly insidious attack must go unnoticed and must therefore not

be overly conspicuous.

2.1.3 Natural accuracy

When defending against a backdoor attack, practitioners would not single-mindedly

hope to reduce the attack success rate at all costs. A practitioner would aim to do

so without the protection methods resulting in a substantial reduction in natural

accuracy, that is, the test accuracy on unpoisoned data. If these aims are in conflict,

it may be advantageous to strike a compromise between the two aims.

2.2 The Gu, et al. [17] attack

The original attack method of Gu, et al. [17] proceeds as follows. First, the adversary

randomly selects a small number of the training samples. Then, they modify these

samples by applying the backdoor trigger to them (e.g. adding a small pattern).

Finally, they set these samples’ labels to be the target label.

In Figure 2-1, we plot the attack success rate for different target labels and a

varying number of poisoned examples injected. The attack is very successful even
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Figure 2-1: Reproducing the Gu, et al. [17] attack on CIFAR-10. The attack is very
effective. A backdoor is injected with just 75 (0.15%) training examples poisoned.

with a small (∼ 75) number of poisoned samples. Note that the poisoning percentages

here are calculated relative to the entire dataset. The horizontal axis thus corresponds

to the same scale in terms of examples poisoned as later plots. While the attack is

very effective, most image labels are clearly incorrect (Figure 1-2).

This original work considered the case where the model is trained by an adversary,

since they focused on the transfer learning setting. The authors accordingly imposed

essentially no constraints on the number of poisoned samples used. In contrast, we

study the threat model where an attacker is only allowed to poison a limited number

of samples in the dataset. We are thus interested in understanding the fraction of

poisoned samples required to ensure that the resulting model indeed has an exploitable

backdoor.
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Chapter 3

Towards label-consistent backdoor

attacks

3.1 A simple detection scheme

In security-critical applications, one would expect that the dataset is at least being

filtered in some rudimentary manner. For instance, this filtering could involve a simple

outlier detection scheme along with human inspection of the identified outliers. As a

result, if the poisoned samples are both likely to be detected and clearly mislabelled

upon human inspection, the effectiveness of the attack is jeopardized. Indeed, in

Section 7.3, we demonstrate that a very simple filtering scheme successfully identifies

a significant number of poisoned inputs (see Figure 3-1), many of which are clearly

mislabelled (Appendix A.1).

Moreover, even if these attacks are improved to evade this particular detection

mechanism, it is very likely that another filtering scheme will detect them. Thus,

for these attacks to be truly insidious, it is necessary that the poisoned input-label

pairs appear benign even upon human inspection. This emphasizes the importance of

label-consistency as a key property for backdoor attacks to be successful. Our goal is

to understand whether backdoor attacks can be effective under a label-consistency

restriction.
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Figure 3-1: After training a model on a small, clean dataset, we examine the training
examples that were assigned the lowest probability on their labels. Poisoned examples
are highly biased towards low probabilities. Note that the horizontal axis is logarithmic
and only 100 out of 50 000 inputs are poisoned.

3.2 Label-consistent modification of Gu, et al. [17]

Unfortunately, restricting current attacks to only using correctly labelled inputs renders

these attacks ineffective (Figure 3-2). This should not be surprising. Backdoor attacks

with incorrect labels are so successful because the only way to correctly classify the

poisoned samples (without strictly memorizing them) is to rely on the backdoor trigger.

Hence, in this scenario, a classifier will strongly associate the trigger with the target

label. On the other hard, if the poisoned samples are labelled correctly, the model

can classify them accurately without relying on the backdoor trigger, and hence the

backdoor is unlikely to be planted.

3.3 Encouraging backdoor formation with hard poi-

soned samples

Guided by this intuition, we develop an approach for synthesizing label-consistent

backdoor attacks. The general idea behind our attacks is to perturb the poisoned
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Figure 3-2: The Gu, et al. [17] attack, but restricted to only consistent labels (i.e.
only images from the target class are poisoned). The attack is ineffective; even at 25%
poisoning, only one class exceeds 50% attack success. Recall that the attack success
rate is defined as the percentage of test examples not labelled as the target that are
classified as the target class when the backdoor trigger is applied.

inputs before applying the backdoor trigger in order to make them harder to classify

based on their salient features. Since these inputs will be hard to learn without

utilizing the backdoor trigger, the model is more likely to strongly associate the trigger

with the target label, resulting in a successful backdoor.

However, the goal of rendering inputs hard to classify is in conflict with the goal of

maintaining consistent labels. In order to reconcile this, we restrict the extent of these

perturbations. It is important to note that examples poisoned using this approach

might not be immune to being flagged as potential outliers. However, since these

inputs have consistent labels, they will not appear suspicious upon further inspection,

and hence the attack will likely go undetected.

We explore two families of approaches for synthesizing such perturbations: one

based on latent space interpolations and the other on ℓ𝑝-bounded adversarial pertur-

bations.
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Figure 3-3: GAN-based interpolation from a frog to a horse. Natural images of a
frog and horse are shown on the top left and bottom right, respectively. Interpolated
images are shown in between, where 𝜏 is the degree of interpolation from one class to
the next. 𝜏 = 0.0 and 1.0 represent the best possible reproduction of the original frog
and horse, respectively.

3.3.1 Latent space interpolation using GANs

Generative models such as GANs [15] and variational auto-encoders (VAEs) [22]

operate by learning an embedding of the data distribution into a smaller dimensional

space (the latent space). An important property of this embedding is that it is

“semantically meaningful”. By interpolating points in that embedding, one can obtain

a smooth transition between samples from the original distribution [38]. Note that

this cannot be done by simply interpolating these samples in the original (ambient)

space.

We aim to utilize the latent space embedding of GANs or VAEs in order to produce

harder training samples. In particular, we will render poisoned inputs harder by

interpolating them towards an incorrect class in that latent space. By controlling

the degree of interpolation, it is possible to ensure that these samples remain label-

consistent.

Concretely, the goal is to interpolate a given input 𝑥1 from the target class towards

an input 𝑥2 belonging to another, wrong, class. Given a generative model trained on

the training set, namely a generator 𝐺 : R𝑑 → R𝑛 that maps vectors in a 𝑑-dimensional

latent space (referred to as encodings) to samples in the 𝑛 dimensional ambient space
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(e.g. image pixels), the procedure is as follows.

First, we embed 𝑥1, 𝑥2 into the latent space of 𝐺. This embedding is performed

by optimizing over the latent space to find encodings that produce images close to 𝑥1

and 𝑥2 in ℓ2-norm1. Formally, we compute

𝑧𝑖 = arg min
𝑧∈R𝑑

‖𝑥𝑖 −𝐺(𝑧)‖2.

Second, for a given interpolation constant 𝜏 , we generate the sample that corresponds

to interpolating 𝑧1 and 𝑧2 as

𝑥 = 𝐺(𝜏𝑧1 + (1− 𝜏)𝑧2).

Finally, the backdoor trigger is introduced to 𝑥 and that input along with the target

label (which is the ground-truth label of 𝑥1) is used as the poisoned input-label pair.

Varying 𝜏 produces a smooth transition from 𝑥1 to 𝑥2 as seen in Figure 3-3 (even

though we am not able to perfectly encode 𝑥1 and 𝑥2). We choose a value of 𝜏 that

is large enough to make the image harder to learn, but small enough to ensure that

the perturbation appears plausible to humans. See Appendix A.3.1 for additional

examples.

3.3.2 Adversarial examples bounded in ℓ𝑝-norm

Adversarial examples [47] are inputs that have been imperceptibly perturbed with

the goal of being misclassified by a model (see Figure 1-1). These perturbations have

been found to transfer across models and architectures [47, 36]. We utilize adversarial

examples and their transferability properties in a somewhat unusual way. Instead of

causing a model to misclassify an input during inference, we use them to cause the

model to misclassify during training. We will generate poisoned samples by applying an

adversarial transformation to the original input before applying the backdoor trigger.

This will render the input harder to classify, while, for small enough perturbations,
1This embedding method was also used in the context of defending against adversarial exam-

ples [21].
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Figure 3-4: An image of a cat adversarial perturbed for different levels of distortion
(𝜀). Left: the original image (i.e. 𝜀 = 0). Top row: ℓ2-bounded with 𝜀 = 300, 600, 1200
(left to right). Bottom row: ℓ∞-bounded with 𝜀 = 8, 16, 32 (left to right).

maintaining label-consistency.

Our choice of attacks is ℓ𝑝-bounded perturbations constructed using projected

gradient descent (PGD) [26]. For a pre-trained classifier 𝐶 with loss ℒ and an input

𝑥, we construct an adversarially perturbed variant of 𝑥 as

𝑥adv = argmax
‖𝑥′−𝑥‖𝑝≤𝜀

ℒ(𝑥′),

for some ℓ𝑝-norm and bound 𝜀. We use 𝑥adv along with the original, true label of 𝑥 as

the poisoned input-label pair.

We construct these perturbations based on adversarially trained models since

these perturbations are more likely to resemble the target class for large 𝜀 [48]. We

want to emphasize that these adversarial examples are computed with respect to an

independent model and are not modified at all during the training of the poisoned

model.

Example poisoned samples are visualized in Figure 3-4. For small enough values

of 𝜀, these samples are label-consistent. At higher values of 𝜀, these examples appear

to interpolate towards other classes. See Appendix A.3.2 for additional detail and

additional examples of poisoned samples.
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Figure 3-5: Varying degrees of GAN-based interpolation for the deer class. Interpola-
tion for 𝜏 < 0.2 has similar performance to the baseline. 𝜏 ≥ 0.2 has substantially
improved performance at 6% poisoning.

3.4 Effectiveness of the approach

We find that both approaches lead to poisoned samples that are label-consistent when

the attack is restricted to having small magnitude (see Appendices A.3.1 and A.3.2 for

examples of such samples). As we described in Chapter 2, the key metrics of interest

are the attack success rate, that is the fraction of test images that are incorrectly

classified as the target class when the backdoor is applied, and the conspicuousness of

the attack.

We found that increasing the space of allowed perturbations (by using larger 𝜏

and 𝜀) leads to attacks with higher success rate (Figures 3-5 and 3-6) but renders

the original labels less plausible. We thus choose perturbation bounds that result

in high attack success rates while at the same time ensuring that the samples are

label-consistent (𝜏 = 0.2, 𝜀 = 300 in ℓ2-norm).

We evaluate these attacks for all target classes and various numbers of injected

poisoned samples. We find that both approaches significantly increase the effectiveness

of the poisoning attack (Figures 3-7 and 3-8) when compared to the baseline attack

that simply introduces the backdoor trigger on clean images (Figure 3-2). A per-class

comparison of these methods and the baseline attack described earlier can be found
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Figure 3-6: Comparing adversarial example-based attack performance with varying
magnitude. Attacks using adversarial perturbations resulted in substantially improved
performance on the airplane class relative to the baseline, with performance improving
as 𝜀 increases.
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Figure 3-7: Attack performance on all classes for the GAN interpolation attack.
The 𝜏 = 0.2 GAN interpolation attack performed substantially better than the label-
consistent Gu, et al. [17] baseline (Figure 3-2), especially for the 1.5% and 6% poisoning
percentages. A per-class comparison can be found in Appendix A.2.
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Figure 3-8: Attack performance on all classes for the adversarial example-based
attack. The ℓ2-bounded attack with 𝜀 = 300 resulted in substantially higher attack
success rates on almost all classes when poisoning a 1.5% or greater proportion of the
target label data. A per-class comparison can be found in Appendix A.2.

in Appendix A.2.

Finally, we observe that attacks based on adversarial perturbations are more

effective than GAN-based attacks, especially when a larger magnitude perturbation is

allowed.

3.5 Reducing backdoor trigger conspicuousness

Despite the earlier focus on the plausibility of the poisoned images, the backdoor

trigger itself could appear unnatural, rendering these images unnatural. In order to

make the attack more insidious, we experiment with backdoor triggers that are less

likely to be detectable.

In particular, we consider the following modified backdoor trigger. Instead of

entirely replacing the bottom-right 3-pixel-by-3-pixel square with the pattern, we

perturb the original pixel values by a backdoor trigger amplitude. In pixels that are

white in the original pattern, we add this amplitude to each color channel (i.e. red,

green and blue). Conversely, for black pixels, we subtract this amplitude from each

channel. We then clip these values to the normal range of pixel values. (Here, the
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Figure 3-9: Reducing the backdoor trigger’s amplitude (to 16, 32 and 64) still results
in successful poisoning when poisoning 6% or more of the dog class.

Figure 3-10: Lower backdoor trigger amplitudes render the backdoor trigger much
less noticeable. Here, an image of a dog is poisoned with ℓ2-bounded adversarial
perturbations (𝜀 = 300) and varying backdoor trigger amplitudes. From left to right:
backdoor trigger amplitudes of 0 (no backdoor trigger), 16, 32, 64, and 255 (maximal
backdoor trigger).

range is [0, 255].) Note that when the backdoor trigger amplitude is 255 or greater,

this attack is always equivalent to applying the original backdoor trigger. We thus

extend our proposed adversarial example-based attack to reduced backdoor trigger

amplitudes.

We explore the performance of this attack with a random class (the dog class),

considering backdoor trigger amplitudes of 16, 32 and 64. All (non-zero) backdoor

trigger amplitudes resulted in substantial attack success rates at poisoning percentages

of 6% and higher. Higher amplitudes conferred higher attack success rates. At the

two lower poisoning percentages tested, the attack success rate was near zero. These

results are shown in Figure 3-9.
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Figure 3-11: Poisoning using a maximum backdoor trigger amplitude of 32 was
successful on all classes for poisoning proportions of 6% or greater.

Image plausibility is greatly improved by reducing the backdoor trigger amplitude.

The resulting set of poisoned inputs (after adversarial perturbation and addition of the

reduced-amplitude trigger) does not differ significantly from the original set images.

Examples of an image at varying backdoor trigger amplitudes are shown in Figure

3-10. A more complete set of examples is available in Appendix A.3.3.

We have chosen a backdoor trigger amplitude of 32 for further investigation as a

balance between conspicuousness and attack success. We evaluated this attack on

all classes, finding similar performance across the classes. These results are shown in

Figure 3-11.

3.6 Withstanding data augmentation

Data augmentation is commonly used to reduce overfitting while training deep learning

models. The general approach is to not only train on the original training set, but also

on the same data transformed in simple ways. Common techniques include cropping

and flipping, which can be problematic for a backdoor attack given that they might

obscure the trigger. It is important to understand the impact of data augmentation

on our attack, given its wide usage.

To improve attack success when using data augmentation, we consider an alternate
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Figure 3-12: An example image of the cat class after application of the four-corner
trigger (at amplitude 32).

backdoor trigger, where the original pattern and flipped versions of it are applied

to all four corners. This aims to encourage backdoor trigger recognition even when

images are flipped or randomly cropped. An example of this trigger (with the chosen

amplitude of 32) applied to an example image is shown in Figure 3-12. The pattern

duplication is motivated by the desire to ensure at least one corner pattern is still

visible after cropping and to remain invariant to horizontal flips.

We investigate and compare the reduced backdoor trigger amplitude attack when

training both with and without data augmentation. For each of these cases, we

also compare the original (one-corner) and four-corner backdoor triggers. We use a

standard data augmentation procedure consisting of random crops and horizontal flips

as well as per image standardization.

These initial experiments were performed on a random class (the frog class, Figure

3-13). We see that, when data augmentation is not used, there is little difference in

performance between the four-corner backdoor trigger attack and the original one-

corner attack. When data augmentation is used, however, there is a large difference

between these attacks. Use of the one-corner backdoor trigger results in substantially

reduced attack success for all poisoning percentages while the four-corner backdoor

trigger attack achieves over 80% attack success rates for poisoning percentages of 6%

and greater.

These results show that the performance improvement under data augmentation

does not primarily result from the backdoor trigger simply being applied to more

pixels. Rather, the four-corner trigger ensures at least one corner’s pattern will remain

visible after the data augmentation is applied.
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Figure 3-13: The performance of attacks using the one- and four- corner trigger
and the effect of using data augmentation during training. Using the four-corner
trigger does not provide a substantial benefit over the one-corner trigger when data
augmentation is not used. When data augmentation is used, however, the difference in
performance is stark, with the one-corner trigger achieving much lower attack success
rates. Moreover, we observe that data augmentation can actually improve the attack
performance when the four-corner trigger is used.

We then explored the performance of this four-corner attack under data augmenta-

tion on all classes. For comparison, we similarly investigated the original, one-corner

attack’s performance under data augmentation. The one-corner attack results in a

near-zero attack success rate across almost all the classes and poisoning percentages.

The four-corner attack performed significantly better consistently. These results are

shown in Figure 3-14. Perhaps surprisingly, we observe that, when using the four-

corner trigger, data augmentation improves the attack success rate. We conjecture

that this is due to the increased difficulty of the task (the model needs to learn to

classify the augmented images too), which encourages the model to rely more on the

backdoor trigger.
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Figure 3-14: The performance of our (reduced amplitude) attack in the presence of
data augmentation using a one-corner (left) and a four-corner trigger (right). The one-
corner attack usually fails to poison the network. The four-corner reduced amplitude
trigger, on the other hand, successfully poisons the network for the majority of classes.
For the four-corner trigger, the attack is often more successful in the presence of data
augmentation.
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Chapter 4

Understanding the landscape of

label-consistent backdoor attacks

In the previous section, we described two approaches for constructing a label-consistent

poisoned dataset. The goal of this section is to explore the mechanism behind

these backdoor attacks in more detail. Namely, we will discuss why the adversarial

example-based method significantly outperforms the generative-based method for large

perturbation sizes. Moreover, we will study how the loss of poisoned examples evolves

during the training of the poisoned model. We will also compare the GAN-based attack

against an alternate baseline interpolation attack. Finally, we will compare different

adversarial perturbation strategies and evaluate the adversarial example-based attack

under a stricter, black-box threat model.

4.1 On the relative performance of GAN interpola-

tions and adversarial perturbations

In the previous section, we observe that ℓ𝑝-bounded adversarial perturbations are more

effective for backdoor attacks than the GAN-based interpolation method, especially

when the allowed perturbation is large. This might seem surprising at first. Both

methods render the images harder to classify without utilizing the backdoor so one
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would expect the resulting models to heavily rely on the backdoor trigger.

Notice, however, that simply utilizing the backdoor trigger is insufficient for a

successful backdoor attack. A classifier with a backdoor needs to predict the target

class even when the original image is easy to classify correctly. In other words, the

reliance on the backdoor trigger needs to be strong enough to overpower the entirety

of the signal coming from salient image features. This perspective suggests a natural

explanation for the mediocre success of interpolation-based attacks. Inputs created

via interpolation do not contain a strong enough signal for non-target classes as the

characteristics appear “smoothed-out”. The adversarially perturbed inputs, on the

other hand, do contain such a signal, resulting in a strong reliance on the backdoor

trigger. At inference time, this reliance is able to overcome the reliance on salient

features.

In order to further investigate this hypothesis, we perform experiments where

Gaussian noise is added to poisoned inputs before applying the backdoor trigger (see

Section 4.4). While a small amount of noise makes the attack more effective, increasing

the magnitude of the noise has an adverse effect on the success rate of the attack.

Intuitively, the poisoned images no longer contain meaningful information about the

label of the original image. Thus a classifier that weakly relies on the backdoor will

classify the images correctly. Since the dependence on the backdoor is weak, during

testing, the classifier will largely ignore the backdoor trigger.

Furthermore, we investigate the impact of a stronger, black-box threat model on

the adversarial example-based attack (see Section 4.6).

4.2 Studying the loss of a poisoned model over train-

ing

Recall that the intuition behind our proposed label-consistent attack is to modify

poisoned inputs so that they become harder to classify based on their salient features.

In this section, we will focus on gaining some insight into the training dynamics that
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Figure 4-1: The loss of samples in the training set throughout training. We plot the
loss for poisoned samples, all the samples, and the poisoned samples without the
backdoor trigger. The model converges to low loss on the poisoned and clean examples,
indicating that it is successfully learning the training set. At the same time, the loss
of poisoned inputs without the trigger remains high, indicating that these cannot be
classified correctly without relying on the backdoor trigger. For each loss plot, the
median and interquartile range over examples is plotted. Since the poisoned examples
correspond to a small fraction of the training set, we smooth the plot by plotting a
moving average of 3 points (3000 training steps).
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lead to the backdoor being installed successfully. In particular, we will plot the loss of

poisoned inputs over training and compare them to both the loss of clean inputs, as

well as the loss of the poisoned inputs without the backdoor trigger applied (Figure 4-1).

We find that poisoned inputs have similar (and often substantially smaller) loss

values throughout the entire training process. This indicates that the model successfully

learns to classify these poisoned examples with the target label.

At the same time, the loss of poisoned samples without a backdoor trigger remains

high throughout training. This confirms the intuition that these inputs are harder to

classify using their salient inputs since the resulting (accurate) model achieves high

loss on them. Moreover, it emphasizes the fact that the model is learning to heavily

rely on the backdoor trigger.

4.3 Comparing adversarial perturbation strategies

For the adversarial example-based attacks, we construct the adversarial perturbations

based on adversarially trained models. We now compare this strategy with constructing

perturbations based on standard (non-adversarially trained) models. We compare

the results of these experiments in Figure 4-2. While adversarial attacks on standard

models perform comparably for the final 𝜀 bound we chose, we observed a large

difference when we allowed larger 𝜀 values (e.g. 600 in ℓ2-norm). We conjecture that

this is due to adversarial examples for adversarially trained networks resembling images

from target classes for large 𝜀.

4.4 Impact of Gaussian noise

In order to explore different methods for making training images harder, we considered

adding Gaussian noise with a zero mean and varying standard deviations before

introducing the backdoor trigger. As shown in Figure 4-3, we found that there is some

improvement at low standard deviations. At higher standard deviations, however, the

performance degrades substantially.
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Figure 4-2: The ℓ2-bounded attack with 𝜀 = 300, with adversarial perturbations
constructed against an adversarially trained model (top, replicated from Figure 3-8)
and a standard model (bottom).
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Figure 4-3: The attack success rate of an attack adding Gaussian noise of varying
standard deviation to increase the classification difficulty of poisoned samples. This
results in some improvement when the standard deviation of the noise is low. At
higher standard deviations, the performance reduces dramatically.

These observations support our conjecture that poisoned images need to at least

contain some amount of semantically meaningful information in order for the attack

to be successful. At high standard deviations of Gaussian noise, poisoned images

hardly contain meaningful information about the label of the original image anymore.

Thus they can be easily classified correctly by using the backdoor with relatively small

weight.

4.5 Pixel-space interpolation baseline attack

As an alternate baseline for our GAN-based attacks, we consider simply interpolating

the images in the ambient space (i.e. pixel space) instead of in the space of the GAN

embedding. To do so, we consider an alternate dataset: CINIC-10 [10], which is

intended to be a drop-in replacement for CIFAR-10, with the same image sizes and

classes but more samples. It consists of both the standard CIFAR-10 images as well

as downsampled images from ImageNet.

This baseline attack poisons training images of the target class by interpolating

towards a randomly selected ImageNet-derived CINIC-10 image of a different class. For
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Figure 4-4: Attack performance on all classes for the baseline pixelwise attack. This
attack achieves substantially lower attack success rates than the GAN interpolation
attack. A per-class comparison can be found in Appendix A.2.

a given interpolation constant 𝜏 , the poisoned sample 𝑥′ is generated from the original

training sample 𝑥 and the randomly selected CINIC-10 image 𝑧 by the equation

𝑥′ = (1− 𝜏)𝑥+ 𝜏𝑧

We evaluate this attack (with the same value of 𝜏 = 0.2) and present the results in

Figure 4-4. We find that the GAN interpolation attack achieves a substantially higher

attack success rate than this baseline (Figure 3-7). A per-class comparison can be

found in Appendix A.2.

4.6 Black-box adversarial example-based attack

We consider a variant of the adversarial example-based attack that does not require

the adversary to have access to any other training data or the model architecture.

Instead, the adversary must collect entirely their own training data, which is used

to train a model on which the adversarial examples are generated. The attack is

otherwise unchanged.

To simulate this scenario, we again use the CINIC-10 dataset, removing all images
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Figure 4-5: Attack performance on all classes for the black-box adversarial example-
based attack. This attack is less powerful than the white-box attack, but still achieves
substantially higher attack success rates than the baseline.

derived from CIFAR-10. We adversarially train a VGG-style model [43] on 50 000

randomly selected images from this dataset to use as the surrogate for adversarial

example generation. Other than the architecture change, the training procedure for

the surrogate model is unmodified.

We evaluate this attack and present the results in Figure 4-5. We find that this

attack, while less powerful than the white-box attack, still substantially outperforms

the baseline.
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Chapter 5

Using differential privacy to protect

against backdoor attacks

Recall that, in the setting of data poisoning attacks, the threat models typically

consider an adversary who is only able to inject a small number of samples into the

training set. In the Gu, et al. [17] attack, the adversary plants a strong, malicious

correlation between the target label and the backdoor trigger. Furthermore, they

mislabel these samples, forcing the model to learn the backdoor, since nothing learned

from the natural training data holds on the poisoned set. It is only natural for any

training method to learn this correlation, as it is a valuable predictor on the training

set.

Our key insight, guided by this threat model, is the following: to defend against

data poisoning attacks, it is sufficient to prevent the model from depending on any

feature only present in a small number of samples. This holds because the correlation

between the backdoor trigger and the target label is only present in the small poisoned

set. Learning models which do not rely heavily on features appearing in few samples

corresponds directly to the concept of group differential privacy (see below). Therefore,

we propose using differential privacy to mitigate backdoor data poisoning attacks.
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5.1 Differential privacy

Formally, differential privacy [13, 11, 14] considers a randomized mechanism ℳ : 𝒟 →

ℛ defined in terms of the domain 𝒟 and the range ℛ. For a training mechanism, this

domain and range represent the training data and the resulting model, respectively.

We consider the (𝜀, 𝛿) variant of differential privacy, introduced by Dwork, et al. [12].

A randomized mechanism is (𝜀, 𝛿)-differentially private if for any two inputs that differ

on at most one element (e.g. datasets differing on one sample) 𝑑, 𝑑′ ∈ 𝒟 and for any

subsets of possible outputs (e.g. resulting models) 𝑆 ⊆ ℛ:

Pr[ℳ(𝑑) ∈ 𝑆] ≤ 𝑒𝜀 Pr[ℳ(𝑑′) ∈ 𝑆] + 𝛿

Note that, under this formulation, strong privacy guarantees correspond to small

values of 𝜀 and 𝛿. A consequence of these guarantees is that the output of ℳ cannot

depend strongly on any particular input element.

This definition can be extended to the group privacy setting, where we instead

focus on inputs that differ on at most 𝑘 elements. If a mechanism is (𝜀, 𝛿)-differentially

private with respect to differences in (at most) one element, it is (𝑘𝜀, 𝑘𝑒(𝑘−1)𝜀𝛿)-

differentially private with respect to differences in up to 𝑘 elements [14]. Thus, a

model trained with a mechanism that has strong group differential privacy will not be

able to rely on any feature present in a small number of samples.

For machine learning applications, differential privacy has typically been employed

under regimes where private information is being used to train a model [1, 35, 37].

When releasing this model later, practitioners do not wish to allow a malicious user

to exfiltrate any private data. Unfortunately, methods have been demonstrated that

allow this exfiltration when standard training was used [44, 7]. Even if the model

itself is not released, information about the training set can also be leaked if users are

allowed to query a standard model [45].

Most applications of differential privacy focus on protecting the information con-

tained in individual samples. While it is possible to extend these guarantees to multiple

samples (i.e. group privacy), the resulting privacy bounds tend to degrade rapidly as a
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larger number of samples is considered (see above). It will thus be difficult to achieve

strong bounds, if we aim to protect against, say, 100 poisoned samples.

In our setting, however, we do not require formal guarantees: we are not concerned

about arbitrary exfiltration from our model, but instead simply preventing the model

from having a backdoor planted. That is, our only goal for private training is to

reduce the attack success rate without substantially impairing test accuracy. We thus

instead take an approach of using methods motivated by (rigorously) differentially

private training and evaluate them on our goal of resisting the backdoor attack.

5.2 DP-SGD-based defence

Recall that our aim is to prevent a model from relying strongly on features present

in any small set of examples in the training set. Deep ML models are, of course,

trained using various forms of stochastic gradient descent (SGD). Thus, if we are able

to prevent the gradients used during training from relying heavily on any individual

samples, the resulting trained model will be similarly independent of each particular

sample.

Differentially Private SGD (DP-SGD) [1] does exactly this: it transforms the

raw loss gradient to enforce privacy, primarily through the addition of noise. More

concretely, DP-SGD computes the gradient of the loss for a random subset of samples.

It then clips each gradient’s ℓ2 norm – ensuring its magnitude is bounded – and

averages the gradients. Finally, Gaussian noise is added and the noisy gradient is used

to update the model’s parameters.

As described earlier, we thus propose using DP-SGD in place of SGD during

training as a defence against backdoor attacks. We adopt a similar procedure to that

described by Abadi, et al. [1] for use with CIFAR-10, but adapt it for use with a deep

residual network (ResNet) [20]. Precise details of the complete training procedure are

provided in Section 7.10.
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5.3 SGD baseline

The baseline against which we compare our proposed methods is simply training with

SGD. In order to have a fairer comparison with DP-SGD, we use the same large batch

size, small number of training epochs and layer freezing strategy, and an equivalent

learning rate (see Section 7.10). We present the results of training with varying

numbers of poisoned samples as the baseline in Figure 5-1. In these experiments,

we use the four-corner pattern described earlier as the backdoor trigger in order to

withstand data augmentation (see Section 3.6).

When 3% or more of the training set (1500 or more images) is poisoned, the attack

success rate exceeds 90%. Additionally, the baseline model achieves a natural test

accuracy of just under 80%.

5.4 Varying the noise multiplier

We now evaluate the DP-SGD defence against the SGD baseline using a range of

different noise multipliers: 0, 1
3
, 2

3
and 1. We present the results in Figure 5-1.

As the amount of noise used increases, the model is forced to classify using only

features present in a larger number of samples. As expected, we observe that the attack

success rate drastically reduces as the noise level increases (and thus the corresponding

differential privacy guarantees become stronger). That is, training with differential

privacy hinders the backdoor attack. For example, when 1500 images are poisoned,

we find that using a noise multiplier of 1 reduces the attack success rate from 92% to

20%, with an drop in standard accuracy from 78.5% to 70.9%.1

5.5 Alternate backdoor trigger

We also evaluate the DP-SGD defence against a backdoor attack using a different

backdoor trigger. This alternate backdoor trigger consists of a small red ‘x’ pattern
1We observe that the SGD baseline achieves a lower attack success rate and standard accuracy

than our attack with noise multiplier equal to 0. This may be due to the gradient clipping that
DP-SGD performs.
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Varying the DP-SGD noise multiplier
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Figure 5-1: Attack performance and natural accuracy when targeting the deer class
using the four-corners backdoor trigger, while varying the DP-SGD noise multiplier
and the number of training set images poisoned. As the level of noise added to the
gradient increases, the attack success rate reduces substantially and the backdoor
attack is far less successful, but the natural accuracy also decreases.
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placed centrally in the image.

As before, we evaluate the defence for a range of noise multiplier values (0, 1
3
, 2

3

and 1) and compare it to the baseline of SGD. The results are presented in Figure 5-2.

We find that the baseline attack using this trigger achieves a much lower attack

success rate. Nonetheless, we observe similar trends, with the defence offering protec-

tion against the backdoor attack. For example, when 1500 images are poisoned, we

find that using a noise multiplier of 1 reduces the attack success rate from 37% to

14%, with a drop in standard accuracy from 78.2% to 70.5%. In general, increasing

the noise multiplier value results in more protection, but a lower natural accuracy.
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DP-SGD noise multiplier with alternate ‘x’ trigger
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Figure 5-2: Attack performance and natural accuracy when targeting the deer class,
using an ‘x’ backdoor trigger, while varying the DP-SGD noise multiplier and the
number of training set images poisoned. The attack is substantially less powerful
using this trigger, but we find similar trends to those in Figure 5-1. Training with
DP-SGD results in reduced attack success rates, particularly as the noise multiplier is
increased.
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Chapter 6

Understanding the landscape of

differential privacy-based defences

against backdoor attacks

6.1 Test accuarcy reduction

In the DP-SGD-based training method, protection against backdoor attacks comes at

a cost of decreased test accuracy on natural samples. In both Figures 5-1 and 5-2, we

can see that adding less noise increases natural test accuracy but makes the model

less robust against backdoor attacks. We find that the degradation in test accuracy

does not primarily stem from the poisoned examples. Instead, it is a consequence

of the differential privacy-based methods we use for training. Our hypothesis is this

decrease in accuracy results from the inability to rely upon features present in only a

small fraction of training samples. The degradation of accuracy on outlier examples

when using differentially private training has been previously noted [6].

To motivate this, let us consider an uncommon feature, for example a certain shape

of dog ears, that only appears in 10 examples in the dataset. It is likely that, in some

cases, this feature would help the model to differentiate between cats and dogs. If our

training method prevents our models from harnessing artificial triggers appearing in a
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small fraction of the training images, it may also prevent the model from picking up

the pattern of this uncommon ear shape appearing in the 10 training images. Then,

our model will be unable to correctly classify the dogs whose classification depended

on this ear feature.

In general, without relying on some prior, it may be impossible to distinguish

naturally occuring sparse features from artificially implanted backdoor triggers. Thus,

a model may have to ignore both to be truly backdoor-resistant and consequently

suffer a drop in natural accuracy. Nevertheless, it is not immediately clear to what

extent the observed accuracy degradation is an inherent property of the respective

differential privacy guarantees and to what extent the degradation is caused by the

particular method chosen.

6.2 Adapting to different settings

We have demonstrated the robustness of ResNet models trained using our methods

to backdoor attacks on CIFAR-10 that use the four-corner or ‘x’ trigger. Our DP-

SGD-based method can be straightforwardly adapted to other datasets and model

architectures. To apply our method, we require an understanding of the appropriate

noise multiplier that prevents the learning of the backdoor trigger. In general, we have

found our experiments to be consistent across architectures and choice of backdoor

trigger. We thus believe this will not pose an obstacle to new settings.

Further, as the adversary’s choice of backdoor trigger would not be known ahead of

time, an effective defence should achieve robustness against all possible triggers. For

our proposed defences, the main property we require is that we evaluate using backdoor

triggers that are sufficiently simple. Intuitively, effective backdoor triggers must be

simple so that the resulting correlations are easy to learn. While the adversary may

choose to use a more complicated backdoor trigger, the model will have more difficulty

learning to associate such a trigger with the target label. Therefore, demonstrating

protection against a range of backdoor attacks using simple triggers should be sufficient

to ensure protection against attacks using more complicated triggers.
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Chapter 7

Methods

7.1 Clean-label attack set-up

Recall that the threat model we consider is as follows. The attacker chooses a target

class label 𝐿 and a fraction of training inputs to poison. They then modify these inputs

arbitrarily as long as they remain consistent with their original label and introduce

a backdoor trigger to these inputs. The pattern consists of a small black-and-white

square applied to the bottom-right corner of an image. We choose the same pattern

as Gu, et al. [17] for consistency, but note that understanding the impact of different

pattern choices is an important direction for investigation. Examples of this pattern

applied to otherwise unchanged images from the dataset are shown in Figure 1-2.

(Note that these example images show the pattern, but are not label-consistent.) A

classifier is then trained on this poisoned dataset. To evaluate the resulting network,

we consider the data in the test set not labelled as the target class. Recall that the

attack success rate is the percentage of these test data that are nonetheless classified

as the target when the backdoor trigger is applied.

All of our experiments are performed on the CIFAR-10 dataset [24] containing

50 000 training examples (5000 for each of the 10 classes). For each method of

increasing the classification difficulty, experiments are performed targeting all ten

classes individually. Furthermore, they are tested at each of the following poisoning

proportions, which roughly form a quadrupling geometric series: 0.4%, 1.5%, 6%, 25%,
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and 100%. This series is chosen to evaluate the attack at a wide variety of scales

of poisoning percentages1. Note that these rates represent the fraction of examples

poisoned from a single class. Thus, poisoning 6% of the examples of a target class

corresponds to poisoning only 0.6% of the entire training set.

In the following experiments, we use a standard residual network (ResNet) [20]

with three groups of residual layers with filter sizes of 16, 16, 32 and 64, and five

residual units each. We use a momentum optimizer to train this network with a

momentum of 0.9, a weight decay of 0.0002, batch size of 50, batch normalization,

and a step size schedule that starts at 0.1, reduces to 0.01 at 40 000 steps and further

to 0.001 at 60 000 steps. The total number of training steps used is 100 000. when

used this architecture and training procedure throughout our experiments and did not

adjust it in any way, except later to adapt it for differentially private training.

None of the clean-label attacks have any substantial effect on the standard accuracy –

that is, the accuracy of the model on non-poisoned test data – except at 100% poisoning.

At that extreme, there is a substantial decline, with standard accuracy decreasing by

up to 10 percentage points. We found that this decrease is due to the model relying

entirely on the backdoor trigger and thus predicting incorrect labels for the entire

target class when the trigger is absent.

7.2 Original attack of Gu et al. [17]

We replicate the experiments of Gu, et al. [17] on the CIFAR-10 [24] dataset. We

observe that the attack is very successful even with a small (∼ 75) number of poisoned

samples (Figure 2-1). The poisoning percentages here are calculated relative to the

entire dataset. We thus choose poisoning percentages that are one-tenth the size. The

horizontal axis therefore corresponds to the same scale in terms of examples poisoned

as the rest of the plots.

1These percentages correspond to poisoning 20, 75, 300, 1250 and 5000 training images, respectively.
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7.3 Detecting previous attacks

As described earlier, the Gu, et al. [17] attack relies on the ability of the adversary

to inject arbitrary – often clearly mislabelled – input-label pairs into the training

set. Thus, upon human inspection, these mislabelled samples will appear suspicious,

revealing the attack and potentially triggering an investigation of the data source.

In security-critical applications, one would expect that the dataset is at least being

filtered using some rudimentary method with the identified outliers being manually

inspected by humans.

In order to further understand the detectability of such incorrect labels, we

examined a standard backdoor attack in the presence of a simple filtering scheme. We

trained a classifier on a small set of clean inputs (1024 examples), which represents

images that have been thoroughly inspected or obtained from a trusted source. We

evaluated this model on the entire poisoned dataset – containing 100 poisoned images

out of the 50 000 total images – and measured the probability assigned by the classifier

to the label of each input (which is potentially maliciously mislabelled). We find that

the classifier assigns very low probability on the labels of most of the poisoned samples.

This is expected, since (as described in Chapter 2) each poisoned input was assigned

a label by the adversary that is unrelated to that input.

To inspect the dataset, we manually examine the images in the training set for

which the above classifier assigns the lowest probability on their label. These low

probability labels are heavily biased towards poisoned inputs (Figure 3-1). For instance,

by examining 300 training images, we encounter over 20 of the poisoned images2.

These samples appear clearly mislabelled (see Appendix A.1) and are likely to raise

concerns that lead to further investigation.

2Note that poisoned inputs form only 0.2% of the training set.
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7.4 GAN-based interpolation attack

For these experiments, we train a WGAN [2, 18]3. In order to generate images similar

to the training inputs, we optimize over the latent space using 1000 steps of gradient

descent with a step size of 0.1, following the procedure of Ilyas, et al. [21]. To improve

the image quality and the ability to encode training set images, we train the GAN

using only images of the two classes between which we interpolate.

As discussed earlier, we compare attacks that use different degrees of GAN-based

interpolation: 𝜏 = 0, 0.1, 0.2, 0.3. We also investigate the 𝜏 = 0.2 GAN-based

interpolation attack on all classes.

7.5 ℓ𝑝-bounded adversarial example attacks

We construct adversarial examples using a projected gradient descent (PGD) attack on

adversarially trained models [26]4. We compare these attacks to the ones corresponding

to applying PGD on a standard model in Section 4.3. (Note that since the threat

model considered does not allow access to the training procedure, these adversarial

perturbations are generated for pre-trained models and not on the fly during training.)

We compare attacks using ℓ2- and ℓ∞-bounded adversarial perturbations of different

magnitudes. We consider a maximum perturbation (𝜀) normalized to the range of

pixel values [0, 255]: 300, 600 and 1200 for ℓ2-bounded examples, and 8, 16 and 32 for

ℓ∞-bounded examples. We also investigate the ℓ2-bounded attack with 𝜀 = 300 on all

classes. For almost every class, the attack success rate is substantially higher than the

label-consistent Gu, et al. [17] attack baseline on all but the lowest tested poisoning

percentage (Figure 3-8).

3We use a publicly available implementation from https://github.com/igul222/improved_
wgan_training.

4We use the publicly available implementation from https://github.com/MadryLab/cifar10_
challenge.

64

https://github.com/igul222/improved_wgan_training
https://github.com/igul222/improved_wgan_training
https://github.com/MadryLab/cifar10_challenge
https://github.com/MadryLab/cifar10_challenge


7.6 Reduced amplitude trigger

For these experiments, we consider a modified backdoor trigger. Instead of entirely

replacing the bottom-right 3-pixel-by-3-pixel square with the pattern, we perturb

the original pixel values by a backdoor trigger amplitude. We add and subtract this

amplitude to each color channel in pixels that are white and black, respectively, in

the original pattern. We then clip these values to the normal range of pixel values.

We thus extend our proposed adversarial example-based attack to reduced backdoor

trigger amplitudes.

As discussed earlier, we compare attacks with different amplitudes. We also

investigate the amplitude 32 (on a 255 scale) attack on all classes. We also evaluate

the conspicuousness of the resulting images qualitatively.

7.7 Using data augmentation

For experiments with data augmentation, we use a standard data augmentation

procedure consisting of random crops and horizontal flips as well as per image stan-

dardization.

We consider a modified backdoor trigger that is replicated in all four-corners and

is horizontally symmetric (Figure 3-12).

As discussed earlier, we compare attacks when both one- and four-corner patterns

are used with and without data augmentation. We also compare the attack performance

on all classes of the one- and four-corner attacks with data augmentation applied.

7.8 Clean and poisoned samples’ training loss

We investigate the loss of samples in training sets poisoned using the proposed

adversarial example-based attack. As above, we poison 6% of a single target class,

using ℓ2-bounded perturbations with 𝜀 = 300. We compare the loss of the entire

training set against the loss of the poisoned samples only. We additionally compare

this against the loss that the poisoned samples would have if the backdoor trigger
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were not applied. This experiment was repeated for all ten possible target classes.

These results are shown in Figure 4-1.

7.9 Black-box threat model for the ℓ𝑝-bounded ad-

versarial example attack

The key changes for this experiment are that the rest of the training data and the

model architecture are considered ‘unknown’ to the adversary.

The attack is thus modified to use a model adversarially trained on 50 000 randomly

selected examples from the ImageNet-derived portion of the CINIC-10 dataset. The

model used is substituted with a VGG model [43]. We then construct adversarial

examples using a projected gradient descent (PGD) attack on this VGG model. After

generation of these examples, the attack is unmodified.

7.10 DP-SGD-based defence

As before, the attacker chooses a target class label 𝐿 and a fraction of training inputs

to poison. They then modify their labels and introduce a backdoor trigger to these

inputs. We evaluate our proposed defences against the Gu, et al. [17] attack, without

introducing our new label-consistency requirements, to demonstrate the effectiveness

of the proposed defence.

All of our experiments are performed on the CIFAR-10 dataset [24], as before.

For each method of increasing the classification difficulty, experiments are performed

targeting all ten classes individually. They are tested at each of the following poisoning

proportions, which roughly form a tripling geometric series: 0.1%, 0.3%, 1%, 3%, and

10%.5.

When proposing DP-SGD, Abadi, et al. [1] used a series of techniques to alleviate

some practical issues and improve performance, under the addition of substantial noise

5These percentages correspond to poisoning 50, 150, 500, 1500 and 5000 training images, respec-
tively.
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to the gradient. In particular, they used large batch sizes and pretrained the model

on a ‘public’ dataset – in their case, CIFAR-100 [24] – only retraining the final few

layers of the model on the private dataset. Large batch sizes are used to reduce the

performance impact of the additive noise. The pretraining and layer freezing procedure

helps avoid issues with slow convergence and allows for a substantial reduction in the

number of training epochs so that each sample is only queried relatively few times.

For these reasons, we adopt a similar procedure, as detailed below.

We modify the training procedure described for the clean-label attack (see Sec-

tion 7.1) in the following ways. Using the same residual network, we first pretrain this

network on CIFAR-100 [24], which like CIFAR-10 contains 50 000 training examples

(but with 2500 for each of the 20 superclasses), using a momentum optimizer with

a momentum of 0.9, a weight decay of 0.0002, batch size of 50, batch normalization,

and a step size schedule that starts at 0.1, reduces to 0.01 at 40 000 steps and further

to 0.001 at 60 000 steps. The total number of training steps used is 100 000. (Note

these settings are identical to those used earlier for ‘standard’ training).

We then freeze all layers other than the final three (two convolutional layers and a

fully connected layer). Note that batch normalizations in these layers remain frozen

as empirically DP-SGD appears to train them poorly. These three layers are then

trained using DP-SGD with the given noise multiplier (as specified in that particular

experiment) using an ℓ2 norm clip of 1, a lot size of 2000 samples and 16 microbatches

(i.e. of size 125).6 This model is trained for 10 000 steps, which corresponds to 400

epochs.

During both pre-training and DP-SGD training, We use a standard data augmen-

tation procedure consisting of random crops and horizontal flips as well as per image

standardization. We thus also adopt the four-corner backdoor trigger we developed

earlier for poisoning under data augmentation (see Section 3.6). Note that we use the

full-amplitude version of this pattern for these experiments.

For our SGD baseline, we consider the same setting as above – including the batch

size, pretraiing and layer freezing. The only modification (other than subtituting

6We use a publicly available implementation from https://github.com/tensorflow/privacy.
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SGD for DP-SGD) is to reduce the learning rate by a factor of 16. This ensures that

the effective learning rate is identical, as, in the DP-SGD procedure, the gradient is

divided by the number of microbatches used.
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Chapter 8

Conclusion

In this work, we investigate the landscape of backdoor attacks on deep neural networks

from both the perspective of understanding necessary properties of powerful attacks

and methods to defend against them.

We identify label-consistency – having inputs modified by the adversary remain

consistent with their labels – as a key desired property for powerful backdoor attacks.

Previous backdoor attacks lack this property resulting in clearly mislabelled poisoned

samples, that make the overall attack very likely to be detected.

We show that it is possible to perform backdoor attacks in a way that is both

label-consistent and still nearly as effective as the original attacks. The key idea behind

our methods is that, in order for the model to associate the backdoor trigger with the

target label, the inputs need to be difficult to classify based on their “natural” salient

features. We synthesize such “difficult examples” using adversarial perturbations and

latent embeddings provided by generative models.

Additionally, we propose using differential privacy as a defence against backdoor

attacks. Differential privacy limits the impact of any small set of examples on the

resulting model, and thus protects against data poisoning. We relax the formal privacy

guarantees which are unnecessary for our setting, instead directly evaluating on our

goal of preventing backdoor attacks.

In particular, we present a method based on DP-SGD and demonstrate its effec-

tiveness against such attacks with only a moderate reduction in test accuracy. We
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discuss reasons why we observe this reduction, including whether it is inherent to any

differential privacy-based defence. We believe it is important to understand what the

fundamental barriers are to trigger-agnostic defences against backdoor attacks.

Overall, our findings demonstrate that backdoor attacks can be made significantly

harder to detect by humans, but that practitioners can nevertheless protect against

these attacks with appropriate training.
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Appendix A

Omitted figures

A.1 Data filtering figures

We investigate the results of the simple filtering method described in Section A.1.

After poisoning each dataset (with 75 samples for the Gu, et al. [17] attack and 300

samples for our attacks), we present the twenty samples in the dataset that were

assigned the lowest probability on their labels. Poisoned samples are highlighted with

a black border. The Gu, et al. [17] is easily detectable with this method. While a

poisoned sample from the adversarial examples-based attack appears in the lowest

twenty, its label appears correct.
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We now plot the twenty poisoned samples in each dataset for which the labels

were assigned the lowest probability. Here, the apparent label is always the target

class: airplane. Even though the GAN-based images are often heavily distorted, no

clearly mislabelled examples are found.

Gu, et al. [17] Adv. examples-based GAN-based
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A.2 Per-class comparison of different poisoning ap-

proaches

We compare the performance of the baseline of the Gu, et al. [17] attack restricted

to only consistent labels, the pixelwise interpolation attack (used as an additional

baseline for the GAN-based attacks, see Section 4.5), the GAN-based interpolation

attack, and the adversarial perturbation-based attack for each class. The adversarial

examples-based attack generally outperforms the other three. The GAN-based attack

usually outperforms both baselines, but by a smaller margin than the adversarial

examples-based attack.
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A.3 Comparison of original and modified images

A.3.1 GAN-based interpolation attack

Each row shows two sets of randomly chosen examples from a single class. In each

set, the leftmost image is the original image from the CIFAR-10 dataset and the

subsequent images are the corresponding image interpolations using a GAN. At the

top of the first row, each column’s degree of interpolation is given. The 𝜏 = 0 examples

show that we was unable to perfectly encode the image. As 𝜏 increases, the images

show increased distortion.
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A.3.2 ℓ𝑝-bounded adversarial example attacks

Each row shows two sets of randomly chosen examples from a single class. In each set,

the leftmost image is the original image from the CIFAR-10 dataset and the subsequent

images are the corresponding image perturbed using ℓ𝑝-norm adversarial perturbations.

At the top of the first row, each column’s norm and 𝜀 bound is given. For both the ℓ2

and ℓ∞ norm-bounded examples, the highest tested 𝜀 frequently perturbs the image

sufficiently to result in an apparent change of class. At the moderate 𝜀, these class

changes are rare. At the lowest tested 𝜀, the images do not appear substantially

different, even when comparing side-by-side.
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A.3.3 Reduced amplitude attacks

Each row shows five pairs of randomly chosen examples from a single class. The left

image in each pair is the original image from the CIFAR-10 dataset and the right

image is the corresponding image perturbed using ℓ2-norm adversarial perturbations

(bounded by 𝜀 = 300) and with the reduced amplitude backdoor trigger applied (using

an amplitude of 32).
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