
Agent-based Programming Interfaces for Children
Supporting Blind Children in Creative Computing through Conversation

by

Tina Quach

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Bachelor of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2019

c© Massachusetts Institute of Technology 2019. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 17, 2019

Certified by. .
Andrew Sliwinski

Research Scientist
Thesis Supervisor

Certified by. .
Mitch Resnick

LEGO Papert Professor of Learning Research
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chairman, Master of Engineering Thesis Committee

2

Agent-based Programming Interfaces for Children

Supporting Blind Children in Creative Computing through Conversation

by

Tina Quach

Submitted to the Department of Electrical Engineering and Computer Science
on May 17, 2019, in partial fulfillment of the

requirements for the degree of
Bachelor of Science in Computer Science and Engineering

Abstract

Children that learn to express themselves creatively and think computationally are
empowered to create rather than solely consume technology. They practice creativ-
ity and learn strategies for solving problems, designing projects, and communicating
ideas. However, children with visual impairments cannot access most programming
experiences designed for beginners. This deprives these children of the chance to play
with expressing themselves through programs that they design and create themselves.
In this paper, we introduce Codi, a software agent that children can talk to in order
to create, play, modify, and explore programs built using natural language. Through
the design and implementation of Codi, I explore how agent-based programming in-
terfaces can make programming accessible to children with visual impairments and
multiple disabilities. Interviews, workshops, and test sessions with visually impaired
children at Perkins School for the Blind led me to draw two conclusions: (1) Agent-
based programming interfaces like Codi can facilitate meaningful creative learning
experiences for children who cannot see. (2) In order to support children’s engage-
ment with computational thinking concepts and practices, agent-based programming
interfaces need onboarding experiences, learning resources, and facilitation that helps
learners surface and pursue their own interests and integrate computational thinking
concepts.

Thesis Supervisor: Andrew Sliwinski
Title: Research Scientist

Thesis Supervisor: Mitch Resnick
Title: LEGO Papert Professor of Learning Research

3

4

Acknowledgments

I have so many people to thank! I find myself almost overwhelmed with gratitude.
Andrew, working with you has helped me grow a lot during this project. Thank

you for believing in me and giving me the chance to shape and pivot my project.
You’ve consistently provided guidance along the way to help me imagine what is
possible and turn ideas into reality. Of course, I can’t tackle all my ideas at once.
Thank you for being critical and constructive and balancing my tendency towards
breadth-first with advice to narrow, focus, and prioritize. You are a role model for
me, and I’ve been so lucky to have your mentorship. Thanks for sharing yourself—
your stories and insights—to help me grow technically, academically, mentally, and
emotionally.

I also want to thank all of Lifelong Kindergarten (LLK) and the Scratch Team.
You have provided such an amazing home base and community. Our shared mission—
engaging people in creative learning experiences—has shaped my own journey working
on this project. Every time I’ve shared my work, you all have been so helpful with
constructive feedback. Every question you’ve asked about it, every expression of care
helped me keep going when times got tough. You all inspire me with the care and
hard work you put into spreading the powerful ideas behind creative learning.

Almost every week, LLK Grads Dinner was another dip into a creative learning
spiral. Thank you, Lily, Sean, Jaleesa, Shruti, Carmelo, Samarth, Lena, Carolina,
Marian, Yusuf, Moran, Joy, Andrew, Mitch, and Natalie for the joy and opportunity
to grow in that way.

I’d also like to thank students and staff at Perkins School for the Blind for sharing
their interests and time with me! It has been so fun. Additional thanks to Vo for
hosting my first visits to Perkins and helping me learn about how I can support
children with visual impairments. The enthusiasm and experience you brought to
design reviews and test sessions strengthened my excitement and deepened my passion
for the work. And Miriam—thank you for being my point of contact at Perkins
throughout the entire project. Your observations and insights helped make me a more
effective facilitator and gave me more context to aid with understanding students as
they engage with Codi.

Kara and Willow, thank you working with me to make it possible to create Scratch
programs through natural language. It was amazing to collaborate and share ideas
with you. We didn’t know what we were doing at first, but our explorations helped
us find an approach that works and provides children with new ways to engage with
creative computing.

Beast of past and present, thank you for being home, keeping me company during
late nights, for always cheering me on, and for bringing love and spontaneous fun to
my life all the time. You are so special.

To my brother Ken, thanks for play testing my project and inspiring me. To my
sister Nina, thanks for being supporting me and giving me more reasons to laugh. And
finally, to my parents, Alan and Trang Quach, thank you giving me the opportunity
and space to act on my own motivations. I wouldn’t have made it here without you.

5

6

Contents

1 Introduction 17

1.1 Scratch as Inspiration . 18

1.2 Why a conversational interface? . 19

1.3 Codi . 19

1.4 Outline . 20

2 Foundations of Creative Learning and Computational Thinking 21

2.1 Papert’s Theory of Constructionism 21

2.2 The 4 P’s of Creative Learning . 22

2.3 The Creative Learning Spiral . 23

2.4 Empowering Consumers to Create . 24

3 Challenges for Children with Visual Impairments in Creative Com-

puting 27

3.1 Most programming experiences are not accessible to children who are

blind. 28

3.2 Assistive technologies for the blind have steep learning curves and are

difficult to use. 29

3.2.1 Screen readers have a steep learning curve, making them time

consuming to learn. 30

3.2.2 Screen reader usability is hindered by keyboard input and audio-

only output. 32

7

3.3 Intersectionality in the identities and experiences of children with vi-

sual impairments is not usually recognized. 33

3.4 Children without sight face technical, logistical, and personal barriers

to creative programming experiences. 34

3.4.1 Technical Barriers . 34

3.4.2 Logistical Barriers . 35

3.4.3 Personal Barriers . 36

4 Related Work 37

4.1 Creative Programming Experiences for Children with Visual Impairments 37

4.1.1 Computational Construction Kit for the Blind 37

4.1.2 Accessible Visual Programming Languages 38

4.1.3 Accessible Text-based Programming Languages 38

4.2 Conversational Agents . 39

4.2.1 Current User Experience of Voice Assistants 39

4.2.2 Relationship Between a Child and an Agent 42

4.2.3 Programming Conversational Agents 43

4.3 Voice and Natural Language as a Medium for Programming 45

4.3.1 Programming by Voice . 45

4.3.2 Programming through Natural Language 47

5 Research and Design 49

5.1 Accessibility and Intersectionality . 49

5.2 User Experience . 51

5.2.1 First Encounter . 51

5.2.2 Creating a Project . 52

5.2.3 Playing and Exploring a Project 53

5.2.4 Debugging a Project . 54

5.2.5 Editing a Project . 56

5.3 Conversations as Transitions through a State Machine 57

5.3.1 Reducing Cognitive Load . 58

8

5.3.2 Audio Cues and Background Music 59

5.3.3 Coding Conversationally with Natural Language 60

5.4 The 4 P’s of Creative Learning . 62

5.4.1 Projects . 63

5.4.2 Passion . 64

5.4.3 Peers . 66

5.4.4 Play . 67

5.5 Computational Thinking . 67

5.5.1 A Formal System and Tool to Create With 67

5.5.2 Computational Thinking Concepts 70

5.5.3 Computational Thinking Practices 74

5.5.4 Avoiding Confusion in CS Education 77

5.5.5 The Relationship Between the Child and the Agent 79

5.6 Reflections . 82

6 Implementation 85

6.1 State Machine . 85

6.2 Actions . 86

6.3 Arguments . 89

6.4 Handling Utterances . 90

6.5 Constructing Programs with Natural Language 92

6.5.1 Designing a Grammar . 95

6.5.2 Syntactic-Semantic rule pairs 95

6.5.3 Generalizing to Various Inputs 98

6.6 Virtual Machine . 102

7 Evaluation 105

7.1 An agent-based interface can facilitate meaningful creative learning

experiences for children who cannot see despite usability challenges. . 106

7.1.1 Creative Learning Spiral . 106

7.1.2 Building and Applying Mental Models 111

9

7.1.3 System Intelligence . 115

7.1.4 Usability Challenges . 117

7.1.5 Boosting Usability . 119

7.1.6 Supporting Self-Expression . 121

7.2 Onboarding, learning resources, and facilitation are needed to effec-

tively promote engagement with computational thinking concepts and

practices. 123

7.2.1 Computational Thinking Concepts 123

7.2.2 Computational Thinking Practices 130

7.3 Feedback . 131

7.4 Methodology . 132

7.5 Summary . 133

7.5.1 Findings . 133

7.5.2 Limitations . 134

8 Conclusion 135

8.1 Contributions . 135

8.2 Future Work . 136

8.2.1 Promoting Community around Codi 136

8.2.2 Agent Customization and Personalization 137

8.2.3 Increasing Tinkerability through Immediate Feedback 138

8.2.4 Extending What You Can Create with Codi 139

8.2.5 Extending Where You Can Create with Codi 139

8.2.6 Abstracting, Modularizing, and Compiling in Codi’s Program-

ming Language . 140

8.2.7 Making Codi More Conversational 140

A Tables 143

A.1 Codi Actions . 143

A.2 Projects from March Test Sessions 144

10

B Figures 147

B.1 Learning Resources . 147

B.1.1 Reference Cards from Wizard of Oz testing 147

B.2 Interview Questions . 152

11

12

List of Figures

2-1 The creative learning spiral is an approach to learning that goes through

Imagine, Create, Play, Share, Reflect, and back to Imagine. It’s a spi-

ral and not a circle because of the growth and learning that occurs

with each iteration. The creative learning spiral helps learners develop

creative-thinking skills and practices that promote flourishing. 23

3-1 Screenshot of using VoiceOver on MacOS to navigate scratch.mit.edu.

The screen reader’s focus is on the “Ideas” link in the toolbar. VoiceOver

provides feedback that suggests what keypress combination the user

may want to do next, “You are currently on a link. To click this link,

press Control-Option-Space.” The text spoken by VoiceOver is simul-

taneously visually represented as text in a box on the screen. 29

3-2 Screenshot of using VoiceOver on MacOS to navigate an online arti-

cle. The screen reader’s focus is on a paragraph in the article, which

VoiceOver is reading aloud. The text spoken by VoiceOver is simulta-

neously visually represented as text in a box on the screen. 30

5-1 A Scratch program that plays drum sounds when the space key is pressed. 68

6-1 Overall System Architecture: User speech gets converted into text

which then gets matched to possible actions the system can take. The

system attempts to take the first matched action, which often results

in a state change and feedback given to the user via audio cues and

speech synthesis. 86

13

6-2 This diagram depicts the transitions between states. When children

first interact with Codi, they start off in the Home state. They can

record a sound, create a new project, or play an existing project. When

they are playing a project, they may either edit the project, go to the

home state, or ask to return to whatever state they were previously

in. When they are inside a project, they can record a sound, play the

project, go home, or go back to the state they were previously in. If

they are recording a sound, they may return to their previous state. 87

6-3 This state machine depicts the portion of the system that deals with

list navigation. This occurs when the child asks a question that has

answers involving multiple items. From any state, a child can ask

questions that may put them in the list navigation state in which they

can hear the current, previous, or next three items. When they are

done navigating, they return to their previous state. 88

6-4 The project is modeled as a simple state machine that maintains whether

the project has been named and whether instructions have been added

to it. 88

6-5 Textual natural language input is translated into a script through a

system built on regular expressions, syntactic, and semantic rules. . . 93

6-6 Parse tree generated for the command “make a variable called x” . . 93

6-7 Parse tree rules: the start symbol maps to an instruction (S). The in-

struction S could be expand as an action list (AL). An action list can

contain a single action phrase (AP). Action phrases included commands

for creating (CreateCommand). The rest of the syntactic rules are de-

signed to allow the grammar to be flexible to different ways to tell Codi

to make a variable. 96

7-1 Resource card with instructions for creating a “Give me a compliment”

project. 124

14

7-2 Resource card with instructions for creating a “Tell a knock knock

joke” project. 124

7-3 Resource card with instructions for creating a “Make silly sounds”

project. 125

7-4 Resource card with instructions for creating a “There’s an anxious

cow” project. 125

7-5 Resource card with list of sound commands understood by Codi. . . . 125

7-6 Resource card with instructions for creating a “There’s an anxious

cow” project using loops. 126

7-7 The code system, derived from the project goals, consists of six groups

of codes. Hierarchy in the codes denote relationships between ideas in

the same group. 133

B-1 Learning resource card from Wizard of Oz testing that lists commands

you can say anytime. 147

B-2 Learning resource card from Wizard of Oz testing that lists commands

for editing projects. 148

B-3 Learning resource card from Wizard of Oz testing that lists commands

that work when you’re in the “Home” state. 148

B-4 Learning resource card from Wizard of Oz testing that lists loop com-

mands. 148

B-5 Learning resource card from Wizard of Oz testing with instructions for

renaming projects. 149

B-6 Braille learning resource card from Wizard of Oz testing with instruc-

tions for making the “Give me a compliment” project. 149

B-7 Steps 1 through 4 of the “There’s an anxious cow” project as braille

cards for the Wizard of Oz testing. 150

B-8 Steps 5 through 9 of the “There’s an anxious cow” project as braille

cards for the Wizard of Oz testing. 151

15

16

Chapter 1

Introduction

How can we empower children with visual impairments to engage with the

powerful ideas in computational thinking through creative learning?

Creative learning and computational thinking promote flourishing in today’s so-

ciety, where creativity and the ability to understand, use, and build technology are

critical. However, most programming experiences are not accessible to children with

visual impairments. Visual programming languages like Scratch [76] are extremely

popular among proponents of computer science education. However, visual program-

ming languages pose difficulties for children with visual impairments [49, 77, 50] and

need to be made compatible with assistive technologies. Still, assistive technologies

for the blind have steep learning curves and are hard to use [47]. To support chil-

dren with visual impairments in engaging with creative learning and computational

thinking, we must recognize intersectionality in the identities and experiences of chil-

dren with visual impairments. Children may have multiple disabilities including a

cognitive disability.

This project has three overlapping goals:

1. To create a platform for creative learning experiences accessible to children with

visual impairments

17

2. To support children in engaging with computational thinking concepts and prac-

tices

3. To support children in expressing themselves through projects in ways that

build creative confidence

In this thesis, I explore how an agent-based programming interface called Codi

can make programming accessible to children with visual impairments and multiple

disabilities.

1.1 Scratch as Inspiration

Codi’s design is inspired by Scratch. Scratch is both a block-based, visual program-

ming language and an online community through which millions of children create

and share interactive stories, games, and animations. Scratch is used in a variety

of contexts including schools, after-school programs, and at home. It empowers its

users to be active and engaged creators of technology and members of society. With

Scratch, children create projects inspired by their passions and share with and learn

from their peers. Although Scratch aims to be a platform that empowers children

of all backgrounds and abilities to express themselves by creating programs, accessi-

bility issues have been regularly raised by users [49, 77]. For example, it is difficult

for color-blind users to identify block categories which are distinguished by color [71].

We hear from educators, parents, and children about the struggles of using Scratch

with low vision in both formal and informal learning environments such as schools

and after-school programs. In 2015, a parent, advocating for her son, posted in a

Scratch discussion forum, “Scratch 2.0 is being used in Math club. The text is so

small, and the graphics’ detail is relatively subtle for a visually impaired person so

he hasn’t been able to use it, even when enlarged. Wondering if there is an accessible

version out there, or what advice there is to make this more accessible for the visually

impaired. He is quickly losing his interest in programming as a result” [72].

18

1.2 Why a conversational interface?

Exploring accessibility with blindness as a focus, I first explored designing and im-

plementing screen reader compatibility for block-based programming. This involved

designing workflows around keyboard controls and audio representation for the blocks.

However, most children with visual impairments are not proficient screen reader

users. Although designing and implementing screen reader compatibility would make

Scratch technically accessible (meeting a standard form of access), many children—

and adults—face large learning curves when learning to use a screen reader.

In order to engage with a screen reader accessible block-based programming lan-

guage, children who are blind would have to first learn how to use a screen reader to

access a web browser on a computer. Then, they would learn how to navigate the

code editing interface. After, they must build an understanding of the blocks before

they can learn programming concepts by building with the blocks. This implies that

screen reader compatibility isn’t enough for this audience to get started.

Just as Scratch’s visual language lowers the barrier to entry for sighted children,

a conversational, voice-based interface for programming could lower the barrier for

children with visual or motor impairments to engage with computational thinking

through creative learning. The conversational interface, designed for a screenless

experience, is inspired by voice assistants and demonstrates the potential for pro-

gramming through conversation. The ubiquity of conversational agents in mobile

and home devices presents conversation with technology as a natural way to interact,

especially for children who have not yet developed computer skills.

1.3 Codi

Codi is a computer program and agent that children can talk to in order to create,

play, modify, and explore computer programs. As an agent, Codi provides a con-

versational, voice and text-based interface that is accessible to children regardless of

visual ability. Designed to support creative learning experiences, Codi facilitates a

19

creative process that minimizes cognitive load, integrates audio cues, and supports

coding conversationally with natural language. In order to effectively support compu-

tational thinking, Codi must avoid common confusions in computer science education

and provide agency in the creative process. As a result, Codi is designed to be a for-

mal system and tool and only provides information and suggestions when the child

asks for them. With Codi, children create projects consisting of programs that inter-

act with sounds and audio recordings. A project could facilitate a game, tell a story,

communicate a personal message, or be art or music. In this way, Codi supports

children’s expressing themselves through projects.

1.4 Outline

Chapter 2 describes some of the underlying educational philosophy for the project.

Chapter 3 provides background on the challenges children with visual impairments

face when engaging with computing and the limited opportunities they have to en-

gage in creative learning. Chapter 4 situates my work in relation to related work

in the domains of designing creative learning experiences for children with visual im-

pairments, child robot interaction, programming by voice, and programming through

natural language. In Chapter 5, I present the research and design decisions behind

Codi. In Chapter 6, I share key ideas and architectures I used to implement an

agent-based interface. I follow this in Chapter 7 with in-depth, qualitative evalua-

tion of Codi based on two blind students’ experiences interacting with Codi in March

2019. Finally, in Chapter 8, I suggest ways to extend this research through improved

natural language processing, further design of the agent’s personality, and broadening

of the creative possibilities on the platform.

20

Chapter 2

Foundations of Creative Learning

and Computational Thinking

In this section, I share and discuss foundations of creative learning and computational

thinking because they drive the design and evaluation of Codi and are core to the

project goals.

2.1 Papert’s Theory of Constructionism

The Lifelong Kindergarten group at the Media Lab, led by Mitch Resnick, is ded-

icated to engaging people in creative learning experiences. Lifelong Kindergarten

is inspired by Seymour Papert’s theory of constructionism [68]. Constructionism is

built on Jean Piaget’s “constructivist” theories, which assert that knowledge isn’t just

transmitted from teacher to students, rather students actively build the knowledge in

their mind through experience [44]. Papert’s theory of constructionism adds to Jean

Piaget’s theory, claiming that learners make ideas and knowledge when they are ac-

tively engaged in making an external artifact (such as a poem, machine, or painting)

upon which they can reflect and share with others [44]. In constructionism, learners

construct knowledge by building concrete artifacts about their interests and passions

[44].

But there’s more to constructionism. Rather than describing knowledge acqui-

21

sition in only cognitive terms, constructionism recognizes the importance of affect,

“forming new relationships with knowledge is as important as forming new represen-

tations of knowledge” [44]. People form relationships with knowledge when working

on personally meaningful projects. Furthermore, “Constructionism also emphasizes

diversity: It recognizes that learners can make connections with knowledge in many

different ways...encourag[ing] multiple learning styles and multiple representations of

knowledge” [44]. Piaget and Papert’s Theory of Constructionism and its prioritization

of affect and diversity guides the design of Codi as an agent and tool meant to give

children the ability to express themselves and engage with their passions creatively

and relationally through concrete creations.

2.2 The 4 P’s of Creative Learning

Lifelong Kindergarten’s approach to engaging people in creative learning is based on

four key elements we call the 4 P’s of Creative Learning—projects, passion, peers,

and play. In “Give P’s A Chance”, Mitch Resnick elaborates on each of the P’s [67]:

• Projects. People learn best when they are actively working on meaningful

projects—generating new ideas, designing prototypes, refining iteratively.

• Peers. Learning flourishes as a social activity, with people sharing ideas, col-

laborating on projects, and building on one another’s work.

• Passion. When people work on projects they care about, they work longer and

harder, persist in the face of challenges, and learn more in the process.

• Play. Learning involves playful experimentation—trying new things, tinkering

with materials, testing boundaries, taking risks, iterating again and again.

I see value in the way projects create focused goals and environments for people

to apply, think, and learn—not only by doing projects that matter to them, but also

by collaborating and sharing with peers. Furthermore, creativity is supported by a

playful spirit in which children have fun, take risks, and discover for themselves.

22

2.3 The Creative Learning Spiral

The creative learning spiral is an approach to learning inspired by kindergarten and

developed by Mitch Resnick (See Figure 2-1) [65]. The spiraling process is one in

which “children imagine what they want to do, create a project based on their ideas,

play with their creations, share their ideas and creations with others, reflect on their

experiences—all of which leads them to imagine new ideas and new projects.”

Figure 2-1: The creative learning spiral is an approach to learning that goes through
Imagine, Create, Play, Share, Reflect, and back to Imagine. It’s a spiral and not
a circle because of the growth and learning that occurs with each iteration. The
creative learning spiral helps learners develop creative-thinking skills and practices
that promote flourishing.

This spiral is immensely powerful in that those deeply engaged in a creative learn-

ing cycle could say they are flourishing. This is because they are simultaneously

engaging with five elements of flourishing: positive emotions, engagement, relation-

ships, meaning, and achievement [78]. Children working on projects about things

they care about are likely to be completely absorbed in the activity (engagement)

and find meaning in their work and play. As they make progress on their projects

and eventually complete the project, they feel a sense of accomplishment and success

(achievement). As they create and share projects with peers, they connect with others

(relationships), and as they play, they have fun and feel good (positive emotion).

23

2.4 Empowering Consumers to Create

As Mitch Resnick writes in “Learn to Code, Code to Learn”, “the process of learn-

ing to code, people learn many other things... In addition to learning mathematical

and computational ideas (such as variables and conditionals), they are also learning

strategies for solving problems, designing projects, and communicating ideas. These

skills are useful not just for computer scientists but for everyone, regardless of age,

background, interests, or occupation” [66]. Computational thinking empowers con-

sumers of digital media to practice creativity through programming in an age where

the future of human work is imagination, creativity, and strategy [63, 64]. In his book

Lifelong Kindergarten, Mitch Resnick makes the case for a transition to a creative so-

ciety [69]:

As the pace of change in the world continues to accelerate, people must

learn how to adapt to constantly changing conditions. Success in the

future—for individuals, for companies, for nations as a whole—will be

based on the ability to think and act creatively...One of the best ways to

help young people prepare for life in a creative society is to make sure

that they have the chance to follow their interests, to explore their ideas,

to develop their voices.

In 2010, Cuny, Snyder, and Wing defined computational thinking as the thought

processes involved in formulating problems and their solutions so that the solutions are

represented in a form that can be effectively carried out by an information-processing

agent [31]. This definition ties computational thinking to an expression of ideas and

solutions that can leverage computing. Computational thinking is even more powerful

because we are surrounded by digital technologies; with computational thinking, we

can understand and create digital technologies rather than just use them.

Through computational thinking, we can develop a better understanding of the

digital world in which we live. People can use computational thinking concepts to

express themselves and their ideas through projects. Through creative learning, peo-

ple learn to break down complex ideas into simpler ones, to test ideas, assumptions,

24

and prototypes after developing smaller parts, and to debug and fix issues as they

arise. People equipped with computational thinking skills and experience creating

technology are able to be not just consumers, but creators of technologies.

25

26

Chapter 3

Challenges for Children with

Visual Impairments in Creative

Computing

As technology continues to advance and be integrated into classrooms and schools,

its accessibility becomes even more important. Introducing technologies that are

not accessible to everyone in the classroom widens and creates gaps in learning and

achievement. Even worse, they may lead to feelings of exclusion and decreased self-

esteem. We must think about how we can design inclusive technologies and learning

experiences. Supporting accessibility for all is challenging. It involves implementing

compatibility with existing assistive technologies and designing interfaces that users

can customize to their abilities. To reduce the scope of the design problem, I prioritize

supporting children with visual impairments.

When I was investigating creative learning experiences for children with visual

impairments, I visited The Perkins School for the Blind in Watertown, Massachusetts.

Perkins has a Grousbeck Center for Students and Technology (GCST) where mentors

and students come together to create and play with podcasts, computers, toys, craft

materials. On a weekly basis at GCST, Miriam Zisook leads Maker Club, where

students and volunteers collaborate with each other on hands-on projects. These

projects utilize inexpensive craft materials and usually last for a single ninety-minute

27

session. Most students with visual impairments do not go to a school like Perkins and

likely have fewer opportunities to engage in creative learning. Even at Maker Club,

students do not practice computational thinking through programming.

3.1 Most programming experiences are not acces-

sible to children who are blind.

Efforts to lower the barrier to computer science and programming for novices, es-

pecially children, have employed strategies such as visual block-based programming

interfaces [76, 8], tangible block-based interfaces [10, 16, 22], and new text-based

languages that are compatible with assistive technologies [45].

Visual block-based coding has been particularly pervasive as the dominant paradigm

because it removes the need to worry about syntax and embeds visual cues in the

shape of the blocks to indicate what pieces fit together and thus how someone might

approach constructing a program. Rather than type out a particular command with

perfect syntax, a child can simply drag the corresponding block from their toolbox

and drop it into their workspace. Then, the child can supply arguments if the block

allows for it. The blocks provide abstractions, scaffolding, and direction. The success

of visual block-based programming interfaces motivates creators of toy robots like,

LEGO Mindstorms [40], Anki Cozmo [13], and Sphero [20] to adopt them as the inter-

face children use to program their robots. However, visual block-based programming

interfaces are currently not accessible to children with visual impairments.

Tangible block-based programming interfaces have potential because they involve

encoding information in the spatial and physical connections between different blocks

and do not need to rely on vision. Yet many products using tangible interfaces

are not fully accessible because they rely on visual cues. Text-based languages that

are compatible with existing assistive technologies work for some, but they are still

error-prone and require children to overcome the steep learning curve associated with

assistive technologies.

28

3.2 Assistive technologies for the blind have steep

learning curves and are difficult to use.

Assistive technologies for the blind include braille displays, which are electro-mechanical

devices that display Braille characters by raising dots through holes in a flat surface,

and screen readers, which are software programs that convert visual content on a

computer screen into text that can be communicated via speech synthesis or a braille

display (See Figures 3-1 and 3-2). The difficulty brought on by using screen readers

comes from both its steep learning curve and its limitations.

Figure 3-1: Screenshot of using VoiceOver on MacOS to navigate scratch.mit.edu.
The screen reader’s focus is on the “Ideas” link in the toolbar. VoiceOver provides
feedback that suggests what keypress combination the user may want to do next,
“You are currently on a link. To click this link, press Control-Option-Space.” The
text spoken by VoiceOver is simultaneously visually represented as text in a box on
the screen.

29

Figure 3-2: Screenshot of using VoiceOver on MacOS to navigate an online article.
The screen reader’s focus is on a paragraph in the article, which VoiceOver is reading
aloud. The text spoken by VoiceOver is simultaneously visually represented as text
in a box on the screen.

3.2.1 Screen readers have a steep learning curve, making

them time consuming to learn.

Let’s step into the shoes of Jess, a screen reader user. On her MacBook laptop

computer, she uses her keypress combinations to control VoiceOver, the free screen

reader that comes with Apple devices. On her smartphone and tablet, she uses

swipes and taps. To use a screen reader on a computer with ease and efficiency,

she memorizes some basic keypress combinations that allows her to jump to the

next or previous element, paragraph, heading, form, link, and button and activate

the current element. She learns that there are over a hundred different keyboard

shortcuts she could try to memorize, but she’s not really sure when she should use a

certain shortcut, and it could be several months before she even tries all the different

shortcuts. Using the subset of the keyboard controls she knows, she creates and

relies on specific workflows to navigate through web pages. Although tutorials help

30

by providing an interactive tour of the basics, she still finds it difficult to determine

what keyboard controls apply at every step of using the screen reader.

Jess’s struggle exemplifies why there are many screen reader workshops, train-

ing sessions, and bootcamps offered to people of all ages [18]. Furthermore, people

learning to use screen readers turn towards online tutorials and forums for resources.

One Reddit user posted about the learning curve for JAWS (a free screen reader

compatible with the Windows operating system) [86]:

“I have started listening to some of the daisy audio tutorials from the

freedom scientific website and I have JAWS 18 installed on a computer.

However, I am feeling a little overwhelmed. So here are my questions

-are there resources I should be exploring aside from the freedom scientific

website?

-how long did it take before you felt comfortable with JAWS? Not neces-

sarily all features I know there are a lot.”

One user responded, “your state’s Bureau of Vocational Rehabilitation/state as-

sistance...as well as training in JAWS where someone comes to the house to teach him

how to use it extensively” [53]. Another said, “I really think the main thing you need

is just a lot of hands-on time and experience. I was a hard core Mac OS user for the

first 7 years of my life as a blind person. Despite receiving JAWS training at multiple

training centers I never spent much time with it or windows, and I never became

comfortable with them” [36]. These responses highlight how the steep learning curve

for screen readers necessitates outside support and large amounts of time.

In one computer training school for blind and low-vision adults, the students spent

four months progressing from learning how to use a screen reader to web navigation,

email, and text editing [22]. Lazar et al.’s study of 100 blind screen reader users

revealed several ways using the screen reader itself is frustrating [47]. Learning to

use a screen reader is similarly frustrating because it requires hands on time and

experience with the screen reader. Each new interface or application takes significant

time to explore and learn, and the same difficulties faced by these adults remain for

31

children learning to use screen readers.

Vo, former Coordinator of the Grousbeck Center for Students & Technology

(GCST) at Perkins School for the Blind, helped me empathize with the struggle

and frustration of students learning how to use a computer. She shared that learning

how to use a computer is really difficult for them because they need to learn what a

computer is for and what it can do, they need to learn how to touch type, and they

need to mentally build and maintain a representation of the computer’s state. And

once children have made it past the initial learning curve, the actual content they

seek or the games they want to play are still inaccessible. In Vo’s experience, children

get defeated after learning how to use an assistive technology and realizing that they

still can’t access content.

3.2.2 Screen reader usability is hindered by keyboard input

and audio-only output.

Screen reader usability is limited because screen readers do not convey 2D space.

Web-based creative tools with complex interfaces pose another barrier because they

are difficult to explore using a screen reader. The layering of screen reader on top

of the interface of a complex creative tool is likely to create a large cognitive load 1.

Baldwin et al. observed screen reader usage among novices in a computer training

school for blind and low-vision adults for four months and identified three problem

areas within audio-only interfaces: ephemerality, linear interaction, and unidirectional

communication [22]. Ephemerality refers to how the information conveyed by audio

doesn’t persist; rather, it must be kept in working memory or requested again. The

linear interaction refers to the need to provide input before receiving output. This

contrasts with the sighted experience where every interaction (such as typing) provides

almost immediate visual feedback. The unidirectional communication comes from the

screen reader’s communicating verbally to the user but the user’s not being able to

communicate verbally back.

1In cognitive psychology, “cognitive load” refers to the amount of working memory required to
complete a given task [82].

32

3.3 Intersectionality in the identities and experi-

ences of children with visual impairments is

not usually recognized.

“It’s not just students who are completely blind. A lot of our students

are low vision too...low vision as well as blindness as well as additional

disabilities is what you’re trying to encompass.”

— Vo, Faculty at Perkins School for the Blind

My inspiration for this project came from investigating how to make Scratch

accessible to children with visual impairments. With this goal in mind, I contacted

Scratch users with visual impairments, teachers of students with visual impairments,

MIT students with visual impairments, the MIT assistive technology information

center, and the Perkins School for the Blind in Watertown, MA. Through these

conversations, I learned about the large, unmet need for computing experiences for

learners who are blind or have other visual impairments.

“...not many things are accessible for our students, and that’s the problem.

They have passions and they want to do these things but they’re being told

no because it’s not accessible.”

— Vo, Faculty at Perkins School for the Blind

Before we can understand how to improve accessibility, we must recognize that

intersectionality exists across demographics. We cannot just design for the ideal blind

child—someone who is financially well off and only has a single disability. We must

consider a person at the intersection of cultural background and economic status.

We must consider that people may have multiple disabilities. Common types of

additional disabilities for children with visual impairments include physical, cognitive,

and learning disabilities [9].

Furthermore, children with visual impairments in public schools may be just one

or two students in a classroom of thirty students. Children in these contexts may

33

not have much access to or support for assistive learning technologies. Accessible

products are often powerful resources for them, but access to those may be limited

too.

3.4 Children without sight face technical, logisti-

cal, and personal barriers to creative program-

ming experiences.

3.4.1 Technical Barriers

Another barrier arises when content is incompatible with the assistive technology. For

example, someone might want to play a game with a screen reader, but the game’s

user interface elements may not have proper labels to that give the user context for

understanding the game. If the game provides visual feedback, there would also need

to be a way to integrate audio feedback like audio cues or verbal feedback. Web-

sites seeking compatibility with assistive technologies must include code annotated

with labels and roles that inform assistive technologies how to navigate the content

2. Compatibility depends on digital accessibility standards for websites, applications,

and assistive technologies. These standards, developed with consideration of human

rights and social and economic contexts, prioritize utility and focus on making online

information and forms accessible [35]. However, online platforms are implementing

more complex interfaces that these standards do not effectively support. Program-

ming is a complex task often done with complex interfaces. Current standards and

mechanisms for web accessibility were designed for interfaces like simple forms or

information websites, not complex creative tools. Researchers and industry profes-

sionals are collaborating on an Accessibility Object Model that may provide tools

necessary to implement accessible, complex interfaces on the web [27]. Still, compat-

2Accessible Rich Internet Applications (ARIA) is a set of attributes that define ways to make
web content and web applications (especially those developed with JavaScript) more accessible to
people with disabilities. It supplements HTML so that interactions and widgets commonly used in
applications can be passed to Assistive Technologies when there is not otherwise a mechanism [6].

34

ibility with existing assistive technology may not enough be ensure usability because

the technology may impose a large cognitive load. Unsighted computer users need

to maintain a model of their current state and available next actions. This may be

difficult to maintain with audio feedback because it is inherently ephemeral, unlike

visual elements. Unsighted computer users either use a lot of working memory or

quickly situate, reference, and search for information.

3.4.2 Logistical Barriers

Logistical barriers may also lead programming experiences to be inaccessible. In

schools with limited staff support and access to digital and physical resources, stu-

dents lack access to mentors that provide sufficient scaffolding and learning resources.

For example, Miriam, an educator I interviewed, created physical metaphors for pro-

gramming concepts using a baking sheet, magnetic braille, and puffy paint. Miriam

used these physical metaphors to teach a Perkins student the concept of variable

scoping during a computer science lesson. Using the physical representation, the

student could rearrange code and use his spatial reasoning and touch to explore the

concept. Additional financial resources may be needed in order to put children in

environments with access to mentors and staff support that can create these types of

accessible learning resources.

For those who can afford it, private schools like Perkins School for the Blind [17]

provide education and services for students who are blind, have low vision, or are

both deaf and blind. These services go beyond traditional academics by including

disability-specific skills focused on independence, vocational training, social engage-

ment, and more. Perkins’s Expanded Core Curriculum attempts to use everyday

tasks and moments as learning experiences [11]. Many students at Perkins that are

participating in the expanded core curriculum lead structured lives. This structure

may leave little room for creative play, exploration, and ideation.

35

3.4.3 Personal Barriers

Engagement with a new tool can be very personal. Someone engaging with a new

tool needs enough confidence and security to imagine, explore, and take risks—to try

something even if they are not sure it will work. Children without sight are often

afraid of taking action in an unfamiliar context. In the Perkins context, this is usu-

ally because they are afraid they may cause irreparable damage by doing something

unexpected or unspecified. Sometimes, they also fear failure. The activities they do

in school are often geared towards accomplishing some task with a concrete, specific

goal. However, creative activities are more open-ended and often require one to set

goals for oneself. When someone learns through the process of creating something

inspired by their own passions, they practice and build their creative confidence. The

lack of opportunities to be creative means these children have fewer opportunities

to build creative confidence that provides the security to imagine, explore, and take

risks.

A playful spirit can relieve pressure in being creative, making it feel okay to try

something new. When you can bounce ideas off of someone, when you have a certain

area of interest that makes you excited—that’s when creativity can flourish. In their

book Creative Confidence: Unleashing the Creative Potential Within Us All, Tom

and David Kelley claim that “[a]t its core, creative confidence is about believing

in your ability to create change in the world around you. It is the conviction that

you can achieve what you set out to do. We think this self-assurance, this belief in

your capacity, lies at the heart of innovation” [46]. Creative learning isn’t just about

ability to come up with a new idea or something never done before. Creative learning

is about making your ideas concrete so they can be shared, studied, and iterated

upon with others. The iterative nature of creative learning means that those who go

through it get a lot of practice and experience facing and overcoming failure. This

allows people to build creative confidence.

36

Chapter 4

Related Work

In this section, I’ll share existing creative learning experiences for children with visual

impairments, insights from research on how children interact with agents, and past

approaches to exploring programming by voice and programming through natural

language.

4.1 Creative Programming Experiences for Chil-

dren with Visual Impairments

4.1.1 Computational Construction Kit for the Blind

In 2002 at the MIT Media Lab, Rahul Bhargava adapted and extended a computa-

tional construction kit 1 and studied its use by blind and visually impaired children

[24]. Through a series of themed one-on-one sessions with four children, Bhargava

aided each child in getting familiar with the mechanics of interacting with the kit and

learning about its capabilities. This experience prompted the children to reflect on

the role technologies play in life and how technology may be improved or inspire other

projects. Finally, the children partnered with Bhargava to create final projects. Con-

versations with the children revealed that the meaningful, interest-driven projects

1Bhargava writes, “A computational construction kit can be described as a set of tools or objects
that allow one to create a computational artifact” [24].

37

provided direction and motivation for engaging with computational concepts. His

work provides insights about the use of feedback in learning by the blind and visually

impaired and how this facilitates or shapes a more ideal creative process for learn-

ing. Learning from this research, Codi focuses on project-based learning and makes

feedback a critical aspect of interactions between the child and agent.

4.1.2 Accessible Visual Programming Languages

In academia and industry, people have explored how to make visual, block-based pro-

gramming interfaces accessible to people with visual impairments. At the Rochester

Institute of Technology and the University of North Texas, Stephanie Ludi identi-

fies and addresses design issues of visual programming languages [50]. She explores

audio cues and workflow design to support access to visual language programming

environments for programmers with visual impairments [2]. She also modified and ex-

tended Blockly, a library for building visual block-based language, to create a screen

reader-accessible, blocks-based language that sighted and unsighted users could use

to collaborate together. In November 2017, Lauren R. Milne et al. shared their work

building a fully accessible, block-based environment designed for children ages five to

seven [54]. The touch-based coding environment uses audio and spatial cues to help

blind children learn to program on an iPad. Ludi and Milne’s work is valuable in

exploring how to make visual interfaces more accessible to children with visual im-

pairments by engaging with audio and touch. Although Codi’s interface is primarily

based in voice and natural language, I draw from Ludi and Milne’s research on audio

cues.

4.1.3 Accessible Text-based Programming Languages

Kane et al. created Bonk, a programming toolkit that enables novice programmers

to explore computer science by developing and sharing interactive audio games [45].

It provides a basic programming interface for manipulating and playing back audio

assets. Bonk also supports assistive technologies and accessible inputs and outputs.

38

Kane et al. tested Bonk with a group of high school students in a week-long workshop,

and the participants successfully collaborated to create audio games—pushing the

limits of Bonk in ways that informed and spurred additional feature development.

For these children, Bonk’s accessible introductory programming activities combat

the idea that the field of computer programming is inaccessible. The high school

students said they enjoyed learning the basics of a “real” programming language like

JavaScript. One student said, “It was our first game in JavaScript and it actually

had some substance.” Bonk succeeded as a toolkit for programming interactive audio

projects. Codi differs from Bonk mainly in its use of natural language and voice to

the lower the floor for blind children (who may have multiple disabilities) to engage

with creative computing.

4.2 Conversational Agents

Over the last few years, voice assistants have become popular for information access,

entertainment, and companionship. Laptop computers, mobile devices, and smart

speakers include voice assistants like Amazon Alexa, Google Assistant, Apple’s Siri,

and Microsoft’s Cortana. These voice assistants are conversational agents, software

programs that interpret and respond to statements made by users in ordinary natural

language. These agents present human-like qualities through their personalities and

have the ability to understand and respond to natural language.

4.2.1 Current User Experience of Voice Assistants

Researchers have explored the ways people interact with voice assistants and how

people perceive their intelligence. In 2016, a study of 75 regular users of Amazon

Alexa highlighted how users must trust the device enough to share information with

it before it can actually be a useful tool and accomplish complex tasks [51]. Codi

does not ask for personal information because it does not need it. However, Codi still

needs the child to trust it if it is to effectively support a creative learning experience

in which a child freely plays, tinkers, and shares.

39

Play is a common and important point of entry for engagement with voice assis-

tants [51]. When people play, they discover features—reasons to keep trying different

questions and requests. Furthermore, people are most engaged with the agent when

they are playfully interacting or exploring the limits of the conversational agents by

experimenting with, teaching, and testing it. In my system, I aim to similarly engage

people in playful interactions that facilitate learning through experimentation and

tinkering.

A user’s technical background will inform the user’s expectations of the capabilities

and limits of these agents [51]. People with more technical background tend to predict

that agents can do less and be more forgiving and resilient when the agents do not

meet expectations. Those with less technical background tend to initially think the

agent can do more than it actually can and are likely to believe that the agent is static,

unable to learn. Although this study was done with adults, these observations may

apply to children because these children are likely to have less technical experience.

We must ensure that the agent doesn’t fail before demonstrating capabilities because

children may perceive the system’s abilities to be more limited than they actually

are. This could close them off to fully exploring and utilizing the capabilities of the

agent to express themselves. Luger and Sellen shared that when users failed to get

an answer from the agent after successive attempts, they abandoned the task and

attempted something they knew that the voice assistant would be able to do. To

prevent interactions in which the user gives up on something they want to due to lack

of feedback, we must set realistic expectations to scaffold the learning process. This

is especially important because creative learning experiences often require grit and

iteration. Codi makes giving users an answer a priority so that they will get feedback

that ensures that they’ve been heard and can continue trying to work with Codi.

Human conversations often involve a variety of cues that communicate intelligence;

these cues serve to initiate a conversation, appropriately interrupt a conversation,

provide feedback, handle misunderstandings or errors, and support turn-taking [29].

Without expected cues, people tend to assign human-like qualities (like the ability to

understand outside context) to the agent or avoid complex tasks [51]. Some people

40

limit the type of language they use and gradually abandon attempting to get the

conversational agent to do anything out of scope. This is a clear example of a challenge

in which designing and building is hindered.

People of all ages use voice assistants, but young children are especially interest-

ing to investigate because their conceptions about technology are rapidly developing

and changing. In 2017, Druga and Williams shared initial explorations of child-agent

interaction using the Google Home, Amazon Alexa, Anki Cozmo, and the Julia Chat-

Bot with 25 children between the ages of 3 and 10 years old [33]. The children judged

an agent’s intelligence relative to their own by reflecting on the agent’s demonstrated

knowledge, the questions the agent understood, and the agent’s answers to their ques-

tions. Children thought the agent was as smart as they were when the agent could

converse and share information about a topic the children already knew about. The

children probed the agent with questions to learn more about its personality: what

it was, how it worked, and what its limits were—was it able to see and feel? Based

on these observations, Druga and Williams’s work suggests that designers of agents

should consider the agent’s voice and prosody to support friendliness, consider how

embodiment of the agent enables nonverbal communication of emotion, and facilitate

understanding by having the agent provide more meaningful feedback and guidance

as to why it cannot understand or respond to the user’s input. Codi provides mean-

ingful feedback and guidance when it cannot respond to user input, but it is not

embodied, and its design does not control prosody.

Sciuto et al. studied in-home conversational agent usage and learned that chil-

dren often struggle to use conversational agents because they inaccurately recognize

children’s speech [75]. This challenge will likely persist until speech recognition tech-

nologies are robust to variations in dialect, language, and prosody (which includes

intonation, tone, stress, and rhythm). Codi uses existing speech recognition APIs

that similarly struggle with children’s speech. Sciuto et al.’s focus on the in-home

context for conversational agents spurred me to consider how an agent’s constant

presence allows it to build trust over time. On the other hand, my system is not a

general all-purpose assistant; it is a conversational tool for programming that could

41

be integrated into an all-purpose assistant.

4.2.2 Relationship Between a Child and an Agent

Voice Assistants Represent Us

Voice assistant design and interaction studies raise thought-provoking questions sur-

rounding representation, societal stereotypes, and associations. Manufacturers and

product designers often make design decisions based on user biases, impressions, and

preferences. However this may reinforce stereotypes rather than combat them. For

example, most voice assistants have female default voices that tap into the idea that

female voices are more friendly and likeable [73]. Commercial voice assistants like

Google Assistant, Amazon Alexa, and Siri allow users to change the language and

dialect of their speech, but there is still limited representation of styles of talking and

of diverse personalities.

In 2018, Hampton et al. tested the role of five different mediators of the associ-

ation between similarity between individuals and those individuals liking each other

[41]. They found that before two individuals interact with each other, certainty of

being liked is the strongest mediator. After individuals interact with other, fun and

enjoyment and consensual validation are the strongest mediators. Just as a person

is likely to better relate to and like someone similar to them, a user is likely to have

more fun and better relate to an agent that talks and sounds like them. Similarity

between the child and agent (or the lack of it) frames interactions between the two.

Technology must acknowledge and represent a diverse set of people rather than some

default set or ideal user.

Agent Personality

Children prefer agents with human-like voices and speaking patterns [33]. Further-

more, research suggests that an agent that seems more human is more influential [87].

Children are also more likely to confer human reasoning and emotion to agents with

personality. We do not want children to assign human-like reasoning skills to Codi

42

because that may lead to difficulty in building an accurate mental model of Codi

and how Codi behaves as a computer program. A conversational agent may tailor its

personality to a child. However, the Codi system does not do this. Rather, the child

is empowered to shape the behavior of the system by creating programs that extend

Codi’s behavior.

Conversational Agents Can Shape Children’s Perspectives

In Cynthia Breazeal’s Personal Robots Group at the MIT Media Lab, researchers

study child-robot interaction. These robotic agents are embodied, which allows them

to use bodily cues, reflecting human nonverbal communication. Although my system

is not embodied, aspects of this research may still apply to non-embodied conversa-

tional agents.

Research in Personal Robots Group demonstrates that agents can powerfully in-

fluence children’s perspectives. In 2017, Park et al. found that interacting with

a peer-like social robot with a growth mindset can promote the same mindset in

children [60]. Children who played with a growth-mindset robot self-reported traits

which seem to suggest a stronger alignment with a growth mindset and tried harder

during a challenging task, as compared to children who played with a control. In

2018, Williams et al. built on this work by exploring the ability of a robot to affect

children’s moral judgements and disobedience. They found that embodied smart toys

can influence children to change their judgements about moral transgressions [87]. Al-

though Codi is an agent and can influence a child by modeling particular behaviors,

Codi does not do so. Codi’s main role is to be a predictable tool for project-based

creative computing.

4.2.3 Programming Conversational Agents

The most prominent and popular commercial voice assistants invite consumers to add

new skills that extend their functionality. These voice assistants provide program-

ming interfaces that people may use to extend their functionality. However, people

43

looking to create their own Alexa Skills [4] or Actions on Google [3] need to be some-

what comfortable with computer programming. In 2018, Google and Amazon began

to provide resources and tools that make it easier for everyday people to control their

assistant or smart home device. Both Amazon and Google use mobile applications for

specifying a command or trigger phrase and mapping that to a sequence of existing

commands. Alexa Skills Blueprints takes this further by creating skills that may be

easily remixed through an intuitive graphical interface [5]. Alexa Skills Blueprints

provides four easy steps: pick a blueprint, fill in the blanks, use your skill, and share

with others. These lay the groundwork for making these devices and their associ-

ated agents programmable, but do not yet explore programming the agent through

conversation.

To program a system, one must have a mental model of the system and of a

program, its components, and its execution. Cho’s “Mental Models and Home Virtual

Assistants” reveals that people’s mental models about home virtual assistants tend to

be functional—users only understand the system in terms of how to use the system

rather than understanding how the system actually works [30]. Cho observed two

kinds of mental models: push models and pull models. Push models are characterized

by a perception of the voice assistant as human-like. Users with a push model will

provide background information and context before asking a question, believing that

the context will help the assistant answer the question. On the other hand, users with

a pull model will ask a series of simple questions in order to get to a final answer. From

Cho’s research, it’s clear that the mental model that a child has of a conversational

agent will influence what the child deems worth communicating to the agent. Cho’s

research provides a sense of how children might interact with Codi depending on how

human-like Codi seems. This informs the language and actions Codi is designed to

support.

Druga, Williams, and Park also highlighted how important programmability is

for helping children make sense of how the mind of computational objects might

work. Parents and children were confused when asked if the fact that the robot was

programmed means it’s intelligent [34]. Druga, Williams, and Park hypothesize that

44

if participants could probe and learn the extent of a robot’s ability to autonomously

learn and react in new scenarios, they might be less confused [34]. This implies that

the system should be explicit about not only its programmability, but how it works.

4.3 Voice and Natural Language as a Medium for

Programming

4.3.1 Programming by Voice

In the last 5 years, voice programming has become a viable alternative to typing for

people with repetitive stress injuries or other mobility challenges [58]. However, voice

programming has not been done with natural language. Instead, voice programming

tools map short voice commands to operations like moving the cursor to the next open

parentheses, accepting an auto-complete suggestion, or inserting a commonly used

code template [84]. For example, “exbuff” goes to the end of the file, “slap” adds a

new line, “dealt” inserts a template for defining a new function, and “jive” transcribes

the next utterances directly without evaluating them [84]. In 2013, Tavis Rudd

developed a rule-based, non-conversational, voice system that enabled him to code

quickly and efficiently by voice [84]. It was a sort of voice-based smart keyboard. He

mapped custom, one-syllable commands like “york”, “zork”, and “hork” to controls

such as highlighting or jumping to certain markers in the code. His controls relied

on visual feedback from the screen and were based on existing software development

workflows tied to typical programming program syntax. There aren’t well publicized

attempts to combine auditory feedback with voice programming technologies. Rather

the majority of existing voice programming interfaces rely on visual feedback. An

agent-based interface for programming requires auditory feedback, and my project

explores what kind of feedback to give and when should this feedback be delivered.

Many text editors interface with screen readers, but the learning curve associated

with screen readers is not friendly to newcomers.

Programming by voice has a long history, dating back to 2005, when Nichols,

45

Wang, and Gupta presented strategies for voice programming interfaces in their dis-

cussion of ALVIN, the voice-based scripting language they created to allow users to

define navigation strategies on-the-fly while browsing audio pages, much like people

visually browse web pages [56].

Nichols, Wang, and Gupta recognized that “the computer can simply ask the

user for additional information needed to solve the problem at hand” in order to

resolve ambiguity. In their system, users can define entry points into previous code;

this supports a nonlinear editing flow. They followed three design principles in their

system: be as close to natural language as possible, give users more ways to write

correct code than to generate errors, and make all reasonable efforts to prevent the

programmer from having to revisit or edit existing code. Nichols, Wang and Gupta

hoped to minimize revisits and edits to existing code, but revisiting and editing

existing code is a natural part of learning and tinkering. Resnick and Rosenbaum

define tinkering as “a playful, experimental, iterative style of engagement, in which

makers are continually reassessing their goals, exploring new paths, and imagining

new possibilities” [70]. Code is inherently iterative, so designs should make it easy for

the user to go back and edit existing code rather than try to minimize the frequency

of editing.

In 2006, Begel and Graham shared “An Assessment of a Speech-based Program-

ming Environment” [23]. They recognized that “spoken programs contain lexical,

syntactic and semantic ambiguities that do not appear in written programs.” Based

on these insights, they designed Spoken Java, a syntactically similar, yet semantically

identical variant of Java that is easier to speak. They created a Eclipse IDE plugin

to support the combination of Spoken Java and an associated command language.

Their evaluation with expert Java developers showed that most developers could eas-

ily learn what to say but were reluctant to speak literal code out loud and found

programming by voice to be slower than typing. Rather than targeting expert pro-

grammers and developers who aim to be more efficient, we aim to create an enjoyable,

natural interface for children and beginners to create programs just by talking.

46

4.3.2 Programming through Natural Language

In 2012, Benjamin M. Gordon and George F. Luger from the University of New Mex-

ico shared “Progress in Spoken Programming” in which Gordon writes, “General-

purpose speech-based programming languages...suffer” because “existing languages

were designed for unambiguous parsing and mathematical precision, not ease of hu-

man speech” [39]. Gordon solves this problem with a new spoken programming

language that comes with its own editing environment. Gordon later builds on the

research of VoiceCode and Spoken Java by sharing the programming language he

built based on conversational English [32]. Gordon’s work highlights challenges with

programming languages modeled after natural language but does not study them in

the context of speaking the text or not being able to see the text. This is where Codi

can contribute to programming by voice.

In 2015, Wagner and Gray shared Myna as a hands-free, voice-based programming

interface for motorically challenged children [85, 80]. Myna provides a set of voice

commands that children may use to control the original block-based programming

interface. An example of a command is “drag and drop when clicked”, which utilizes

the event block “when clicked”. The interface uses commands that are relevant to the

graphical interface and relies on sight to provide visual feedback of the execution of the

voice commands. When designing for a screenless experience, the natural language

is helpful but references to graphical user interface interactions like “drag and drop”

are irrelevant. Unlike Myna, Codi does not and cannot rely on visual feedback and

references to a graphical interface.

In early 2018, Stefanidi et al. programmed intelligent environments in natural

language using ParlAmI, a multimodal conversational user interface in which users

create “if-then” rules that dictate the behavior of an intelligent environment (an

environment augmented by Internet of Things (IoT) devices) [80]. Stefanidi et al.

recognized the importance of giving the user the ability to easily say “No” and provide

negative feedback so that the agent may ask, “Where was my mistake?” This approach

is similar in spirit to Desilets, Fox, and Norton’s approach with VoiceCode, where they

47

expect the user to say “not what I said” or “not what I meant” to provide negative

feedback. These researchers present great examples of how a conversational interface

can effectively ask users clarifying questions to get feedback.

Existing work in voice programming and programming by natural language have

only recently begun to explore conversational interfaces in which the system provides

visual and auditory feedback.

48

Chapter 5

Research and Design

My research has 3 intersecting goals:

1. To create a platform for creative learning experiences accessible to children with

visual impairments

2. To support children in engaging with computational thinking concepts and prac-

tices

3. To support children in expressing themselves through projects in ways that

build creative confidence

5.1 Accessibility and Intersectionality

At the Perkins School for the Blind, I conducted interviews that led me to revise

my conception of what a blind user is and account for multiple disabilities in my

design. The stereotypical blind user is someone that is neurotypical, but at Perkins it

is common for children to have multiple disabilities. Perkins does not collect statistics

about how many students have multiple disabilities nor keep count of the occurrences

of other disabilities. Kate Dietz, Admissions Coordinator at Perkins, mentioned that

no one she knew collected data on cognitive and developmental deficits coinciding

with visual impairment. However, as Admissions Coordinator, Kate knows that some

49

students at Perkins have autism 1, cerebral palsy 2, and charge syndrome 3. Kate

mentioned that many causes of blindness are brain-based and can affect multiple

systems, including cognition [81]. Perkins school is skewed towards kids with some

kind of developmental delay because neurotypical children are more likely to be put

in a public school. Throughout this project, students from Perkins were my main

source of inspiration and feedback.

Designing for multiple disabilities can create a variety of complex challenges when

designing accessible systems. For example, some children with cognitive disabilities

are not able to type and use screen readers that require them to remember many

keyboard commands. Reflecting on the coincidence between blindness and delayed

development and cognitive disabilities, it was my assessment that a voice-based, con-

versational interface based in natural language could facilitate creative learning ex-

periences for this intersectional audience. Natural language can make the expression

of computational thinking concepts easier and more intuitive when it allows children

to bypass learning unnatural syntax associated with most text-based languages.

Codi is designed to be accessible to children with visual impairments who may have

multiple disabilities. Therefore, Codi’s interface does not require sight to be used.

Codi relies only on a microphone, speaker, and a single keyboard key to facilitate a

voice-based experience. To start and stop speech recognition, the child presses the

key. If Codi is talking, the child can interrupt Codi by pressing the key to start speech

recognition. When a screen is available, the system presents a graphical user interface.

Codi also allows users to type what they would normally say out loud. This is

useful for clarification because speech recognition systems have trouble distinguishing

between homonyms that create multiple valid ways to interpret someone’s speech.

Typing to Codi can also be useful for people with disabilities who may have sight and

can manipulate a keyboard, but cannot speak.

1Autism, or autism spectrum disorder (ASD), refers to a broad range of conditions characterized
by challenges with social skills, repetitive behaviors, speech and nonverbal communication [7].

2 Cerebral palsy involves difficulties with muscle movement and coordination [21].
3Charge syndrome involves hearing loss, vision loss, and balance problems [1]

50

5.2 User Experience

To get a sense of the system, let’s go through some conversations that model how a

child might interact with the system to create, play, debug, explore, and edit pro-

grams. Dialogue between a person and the system is marked with a monospaced font.

Speech that is not directed at or coming from the system, is left in the default font.

The system speech within a project is denoted by italicized, monospaced font.

Most conversations refer to Codi, but when the speaker is “System,” the agent is a

theoretical agent that reflects behavior not implemented by Codi.

5.2.1 First Encounter

When a child first interacts with the system, the agent provides an introduction and

a prompt for beginning to engage with the system by playing a project.

Codi: Hi, I’m Codi! I’m a tool you can use to program and interact

with audio projects. Anytime you need help or don’t know what

to do, you can say "Codi, help" or ask "What can I do?". I will

try to answer any questions you have. To start, why don’t you

say "Give me a compliment" to play the "Give me a compliment"

project?

The introduction equips the child with an important tool: a way to ask the system

for guidance or potential next steps by saying “Help!” or “What can I do?” The system

prompts the child to play a project as the first action to give an example of what a

child might create with the system.

Child: Give me a compliment

Codi:*cues project start*

Codi: You’re amazing

Codi: *cues project end*

Child: What else can I do?

51

Codi: Here’s something you can try. Say "new project" to create

a new project.

5.2.2 Creating a Project

When the child indicates that they want to make a new project, the agent initiates

the same flow for creating a project every time. It prompts for a project name,

accepts and confirms the child’s next utterance as the project name, and then asks

for next steps until the child says there are no more steps or that they’re done with

the project.

Child: New project.

Codi: What do you want to call it?

Child: It’s a dance party!

Codi: OK. When you say, "Codi, it’s a dance party!" I’ll play

the project. What’s the first step.

Facilitator 1: Say turn up the music.

Codi: OK. What’s the next step?

Child: Start the dance celebrate sound.

Codi: OK. What’s the next step?

Child: Say Do the electric slide.

Codi: OK. What’s the next step?

Child: Say Stomp your foot five times.

Codi: OK. What’s the next step?

Child: I’m done.

Codi: You’re in the "Home" state. Now you can say Codi, it’s

a dance party!" to play the project.

Child: It’s a dance party!

52

Codi: *cue project start* Turn up the music " *start the "dance

celebrate" sound* Do the electric slide. Stomp your foot five

times. *cue project end*

This flow is predictable and easy to understand because it repeatedly asks for a

next step until the child expresses that they are finished creating the project. How-

ever, it privileges a linear creation flow over a nonlinear one. One aspect of the linear

flow is that the child needs to name their project before they start making. This is

an important design consideration because some children might not know what they

want their project to do, but the name of the project pushes the child to provide a

direction for the project’s design. The linear creation flow expects the child to al-

ready know what they want to do. Furthermore, a child in the creation flow can only

add steps to a project. It is only after “finishing” a project for the first time that a

child can begin modifying a project using edit commands to insert, replace, or delete

certain steps. Another challenge is that a child may not know what potential next

steps they can include in their projects. To address this, the child can ask, “What

commands are there?” to learn about what commands can be used in a project.

5.2.3 Playing and Exploring a Project

A child playing an unfamiliar project is often curious about how the project was

made. This ability to “see inside” gives the child a chance to do that. Here’s an

excerpt from a testing session that demonstrates this.

Facilitator 1: What does a cat do?

Codi: *cue project start* Meow Meow Meow...

Child: *while Codi meows in the background* Oh. Wow! How did you

do that? Just...you..told it.

Facilitator 1: *while Codi meows in the background* So. First we’ll tell

it to stop.

Facilitator 1: Stop.

53

Codi: *cues project end*

Facilitator 1: Okay

Child: Hehehe

Facilitator 1: Okay, so actually I think a good thing we can do is see

inside the project and that will tell us what steps it took to make that

project happen.

Child: Okay.

Facilitator 1: Okay. So whenever you’re ready you can press the button

and say “See inside ‘What does a cat do’”

Child: See inside "What does a cat do ?".

Codi: Opening project "What does a cat do?" for editing. There

is one step.

Facilitator 1: So from here you could ask “What is step one?” or say

“Step one” and it’ll tell you what step one is.

Child: Step 1

Codi: Step 1, play the meow sound forever.

5.2.4 Debugging a Project

A child will often debug a project by asking, “What’s inside?” and then going through

the steps to verify that the instructions making up the program are what they ex-

pect. They may also look towards example programs and compare how the project’s

unexpected behavior compares to their expected behavior. Here’s an excerpt from

one of the test sessions.

Child: [System], Rhino Song.

Codi: *cues project start* *does nothing* *cues project end*

Facilitator 1: That seems unexpected...can I can I try testing up one of

the projects I made?

54

Child: Yes.

Facilitator 1: Okay.

Facilitator 1: I think I called it some new basic beats.

Facilitator 1: New basic beats.

Codi:*cues project starting* *plays beats*

Child: Hmm.

Facilitator 1: Stop.

Codi: You’re in the "Home" state.

...

Child: Yeah, I’m thinking that I would like to see inside “New basic

beats”.

Facilitator 1: Sure. Yeah. All right.

Child: [System], see inside "New Basic Beats ".

Codi:Opening project, "New Basic Beats" for editing. There are

four steps.

Child: What is step 1?

Codi: Step one, when the project starts, do the following forever

set instrument to piano, play note 60 for one beat, play note

72 for one beat, play note 84 for one beat two times. That’s

it. That’s it.

...

Child: Oh, I just had an idea.

Facilitator 1: Yeah.

Child: Maybe I should have set [the] instrument.

Facilitator 1: Hmm. Okay. Yeah. That could work.

Child: Yeah.

55

Facilitator 1: Yeah!

Child: Maybe I should have done that first before saying “play note”.

In the excerpt, the child investigated the steps implementing an existing project and

compared it to the project he aimed to debug in order to find what may have been

causing the problem.

5.2.5 Editing a Project

A child can tinker with the project by editing it—inserting, appending, replacing,

and deleting steps. This supports an iterative approach to project creation, going

back and forth between playing a project to test it out and seeing inside to review

and modify the program. Continuing the conversation above from Subsection 5.2.4,

the child edits the project.

Child: Insert set instrument to electric piano before step 1.

Codi:*cue success*

Facilitator 1: Yay! Okay. Shall we keep going then? Are you gonna try

testing the project?

Facilitator 1: I’m going to hand the computer over to you.

Child: Go home.

Codi: You’re in the "Home" state.

Child: [System], Rhino Song.

Codi:*cues start of project*

Codi:*plays note*

Facilitator 1: Awesome!

Child: And that was the right note! Hahaha!

Here’s another example of editing a project that uses the “It’s a dance party”

project.

56

Child: What are all the steps?

Codi: Start the dance celebrate sound. Say Do the electric

slide. Say Stomp your foot five times.

Child: What is step two ?

Codi:Say Do the electric slide.

Child: Replace step.

Codi: What is the number of the step to replace?

Child: Two

Codi:What is the new instruction?

Child: Say Do the cha cha slide.

Codi:Replaced step two.

Child: Add a step.

Codi: What is the instruction you want to add to the end of the

project?

Child: Say Everybody clap your hands!

Codi: *cues success*

Child: Add a step again.

Codi: What is the instruction you want to add to the end of the

project?

Child: Play the clap sound.

5.3 Conversations as Transitions through a State

Machine

To navigate the potential complexity of the tool, we create a set of states that the

child can transition between (See Figures 6-2 and 6-3).

57

For example, when a child first begins interaction with the system, they are in

the “Home” state, the default state from which a child may play a project, see inside

a project, record a sound, or ask questions. Each of these actions correspond to

transitions to their own states. When the child is in the “Play Project” state, they

can play, pause, and stop the project. If they ask questions about or change how the

project is implemented or simply ask “What’s inside?”, they will transition to the

“Inside Project” state. A child also transitions to the “Inside Project” state whenever

the child creates a new project (by saying “New project”, “Make a new project”,

“Create a new project”. Inside a project, a child can learn what instructions make up

the project and then modify the project by inserting, deleting, and replacing steps.

A child might ask whether Codi has a certain kind of sound, resulting in a transition

into the “Navigating a List” state for iterating through the matching sounds. If none

of these sounds are satisfactory, the child might want to record a sound, switching to

the “Recording a Sound” state.

These states provide a context that help the child and the tool make sense of each

other. By making the states explicit in the system’s dialog, we give the child a way

to conceptualize and verbally express the system in terms of its parts. As the child

converses with the agent, the child navigates through these states and the system

responds with verbal feedback and audio cues to inform the child where they are,

what they’ve found, whether or not their action was successful, and how their state

has changed.

5.3.1 Reducing Cognitive Load

In cognitive psychology, “cognitive load” 4 refers to the amount of working memory

required to complete a given task [82]. The design of the system aims to reduce

extraneous cognitive load and allow children to more easily engage with computational

thinking ideas. Furthermore, sound’s ephemerality may make it hard for a child to

4Cognitive load theory identifies three kinds of cognitive load: intrinsic, extraneous, and germane.
Intrinsic cognitive load is the effort naturally associated with the task itself. Extraneous load is
controlled by the educator, facilitator, or tool; it is the way information or tasks are presented to a
learner. Germane cognitive load refers to the work put into creating a permanent store of knowledge.

58

remember everything the system said, so the system supports questions that clarify

current state and give a sense of the available choices.

When a child asks, “What is the current state?”, Codi may say something like

“You are in the Inside Project state. Your current project is ‘Tell me a joke’.” If you

were in the middle of an action, Codi might additionally say “The current action is

‘Replace a Step’.” A child might also ask, “What did you say?”, “What step am I

on?”, “What can I do now?”, “How many steps are there?”, and “What sounds are

there?” This helps reduce the cognitive load so a child doesn’t need to keep everything

going on in the project in his or her head. For some of these questions, it can be

tedious to listen to these lists. It can also be difficult to analyze or remember what

is in the list. This makes a list navigation paradigm important for usability.

To reduce the cognitive load of formulating commands, Codi will ask you for any

missing arguments every time you trigger an action. Take the following conversation

for example.

Child: Replace a step.

Codi: What step number?

Child: 1

Codi: What is the instruction?

Child: Say "I think you’re very beautiful today."

Codi: Replaced Step 1.

In this example conversation, the child did not have to provide the arguments to the

“replace a step” command all at once because the system prompts for missing parts.

5.3.2 Audio Cues and Background Music

The system uses a variety of short audio cues to communicate feedback and state.

Codi plays a short “beep” when a project starts and the reverse of that beep when

the project stops. Codi also plays a “snap” sound when speech recognition starts or

stops. When the system understands an utterance made by the user it plays a short

59

“chime”. When the system rejects an utterance because it can’t understand it, the

system plays a “Bonk!” sound. These make the system easier to learn and use by

providing quick and immediate feedback to the user. The audio cues are a salient

part of the auditory experience, so it’s important to make sure their intent is clear.

Based on feedback from testing sessions at the Perkins School for the Blind, the

audio cues follow patterns found in existing voice assistants such as using a sound

and its reverse to indicate an event and its opposite. During a test session, the

participant said, “I also had a thought that if we were to reverse the sound that [the

system] makes when you recognize the project it would almost be the same as when

you’re using Google speech recognition and it recognizes what you’re saying ... I feel

like that would make I feel like that would make more sense...”

5.3.3 Coding Conversationally with Natural Language

You can talk to Codi like you might talk to a friend. Codi can understand multiple

expressions of the same idea or instruction. You don’t have to learn and parse a new

syntax for expressing an idea. Natural language doesn’t require extensive training,

as it is ubiquitous and familiar. It can handle certain redundancies and variations

in user-defined instructions without making the programming more difficult for the

child or requiring a more robust programming language. However, there is a trade-off

between familiarity and clarity. Natural language itself is complex and often contains

ambiguity.

For example, during a workshop, two participants came up with an example con-

versation that highlights the challenge with ambiguity and proposes a way it gets re-

solved through feedback from the child during execution. Note that when the speaker

is System, the agent is a theoretical agent that reflects behavior not implemented by

Codi.

Child: Describe a character.

System: I don’t know how to describe a character.

Child: First, ask me for a name.

60

System: Okay, I’ll remember it as "name".

Child: Then, ask me for a color.

System: Okay, I’ll remember it as "color".

Child: Then, say the color then the name.

System: Okay.

Child: That’s it.

System: Okay, I know how to describe a character now.

Child: Describe a character.

System: Okay, "me for a name"?

Child: No, ask "Give me a name"

System: Okay, "Give me a name"

Child: Andrew

System: Okay. "me for a color?"

Child: No, ask "Give me a color"

System: Okay. "Give me a color"

Child: Rainbow

System: Okay. "The rainbow, then the Andrew"

Child: No, say "Rainbow Andrew"

System: Okay, "Rainbow Andrew"

As we can see, a pure natural language programming system would be difficult

to implement and could be confusing and unproductive to users as they struggle to

specify the intended behavior of the program. Codi aims to strike a balance between

flexibility and clarity by constraining natural language to a simple programming lan-

guage that uses a formal grammar. This formal grammar is a set of rules that show

valid ways to generate grammatical strings by starting with a single start symbol and

61

expanding these symbols until they are part of the base alphabet. These rules can

generate an infinite number of possibilities while constraining what is a valid string to

be understood by the system. Furthermore, Codi’s design includes calling attention

to ambiguity and asking for clarification by presenting different interpretations and

asking the child to decide between them. This raises the question—how do we disam-

biguate a user’s speech and then present those disambiguations in a meaningful way?

To distinguish between multiple interpretations of a command, we can present each

unique parse of the same verbal expression by executing it. If multiple interpretations

lead to the same effect, then we don’t need to ask a child to distinguish between them.

A child can compare the behaviors of different parses and choose one. For example:

Child: Make a variable called y

System: Okay, what’s the next step?

Child: Make a variable called x

System: Okay, what’s the next step?

Child: Set y to 5

System: Okay, what’s the next step?

Child: Set x to y

System: Did you mean set x to the letter y or set x to the variable

y which is 5?

The conversation above exemplifies that a system can ask the child clarifying

questions to resolve ambiguities that arise when using natural language to specify

program instructions.

5.4 The 4 P’s of Creative Learning

At Perkins School for the Blind, an instructor shared that few students have agency

over the projects they work on and the things they create. The project ideas usually

come from instructors and the projects they do make often don’t get shared with

62

and appreciated by their peers. We hope to give these children more agency and

opportunity to collaborate and share. The Codi system is designed to support the 4

P’s of creative learning: projects, passions, peers, and play.

5.4.1 Projects

“Excuse me, [System], could you please fart?” “When I say fart...”

— 6th grader at Perkins

While designing the system, I wanted to understand what kinds of projects to

support. I considered what children at Perkins would enjoy. During a visit to Perkins

in April 2018, I met with Vo, the Coordinator of the Grousbeck Center at the time,

to ask her, “What are the sorts of media that children with low-vision and blindness

like to interact with and create? What technologies? Games?” She shared that they

like music and jokes. They love to engage with the world as if it is a “sound safari”,

collecting sounds and then playing them back to each other so that they can guess the

source of the sound. They also like playing games, like Hangman, Wheel of Fortune,

Simons Says, and “choose your own adventure” games. Vo thought the students

would like projects that allowed them to bring their personal touch through content

such as a project to share and test on trivia about yourself and assets including sounds

and recordings. Children at Perkins also like funny soundboards. I saw evidence to

support the interest in music and funny sounds during Wizard of Oz testing with

children at Perkins.

Child: Sing me a song.

System: I don’t understand.

System: [System], sing me a song.

Child: [System], new project.

System: What do you want to call it?

Child: Sing me a song.

63

System: What’s the first step?

Child: Well, I tell you a song and then you have to sing it.

System: I don’t understand.

Child: When I say sing a song "No more tears left to cry" by

Ariana Grande, you have to sing it!

Projects in the system are likely to appeal to children’s interests, as long as there

are a variety of assets and the ability to create and add custom assets. In this system,

a project consists of two parts: sound assets and a computer program that interacts

with and controls the playback of these sound assets. The computer program consists

of a set of instructions that will get executed in order by the agent. Parallelism and

concurrency may be introduced when children specify event-based instructions. With

Codi, children create named projects and invoke them by name. For example, the

“Tell a joke” project can be invoked by saying “Codi, play the ‘tell a joke’ project” or

simply, “Codi, tell a joke.” This adds new ways in which a project can be meaningful

by encouraging children to frame projects as extensions of the ability of the agent

(“Tell a joke!”) or as new ways to interact with the agent (“How is your day?”).

There are many ways in which a Codi project may be meaningful to the creator or

audience of a project. A project may play a specific function, such as to facilitate a

game or tell a story. A project’s content might be meaningful, perhaps communicating

a personal message or creating or reproducing art or music. The process itself may

be meaningful as a learning experience that allows children to discover and explore

a specific concept. If the project is created by or for a peer, the social context may

make the project meaningful. Meaning may come from the content, playing a project,

making the project, and social connection.

5.4.2 Passion

During one of the testing sessions, a fourteen-year-old student at Perkins wanted

to make a baby simulation game because she “want[ed] kids and teenagers to have

experiences with pretend babies so they can have responsibilities”. She saw the

64

baby simulation game as a way for her peers to practice taking care of a baby as

a way to practice and demonstrate responsibility. The project idea clearly came

from her passions—her care for her peers as well as desire to gain and demonstrate

responsibility. One of the first things she wanted while creating the project was a

baby crying sound, but the sound library didn’t have one. The sound recording

feature was not yet implemented so we couldn’t record the exact baby crying sound.

We didn’t give up! Instead, we ended up improvising by using the speech commands

(Say wah wah wah wah). By connecting projects to individual children’s passions,

we can create learning experiences that are hugely motivating for them. The passion

and interest a child has may give them purpose—a reason to explore, a reason to delve

deeper, and a reason to keep going when things get tough. A child’s project becomes

an opportunity and medium for self-expression as well. To open up opportunities for

children to create projects based their passions, it helps to ensure that a large space of

potential project types and topics that can be explored and expressed by the system.

We aim to support key interest areas in the domains of sound because sound is

the prominent expressive medium. When children create with Codi, they have access

to a library of expressive sounds and tones ranging from animals sounds, cartoon

sound effects, to musical notes. Children can make music, creating beats with various

percussion instruments, playing music notes with a variety of instruments, and mod-

ifying tempo. They can also tell jokes and stories, make tutorials and reminders, and

more by integrating their own recorded sounds and speech synthesis and recognition.

Children select their own project goals and topics, and may be inspired by Codi’s

built-in example projects. The system itself is seeded with some default projects that

serve as examples for the range of projects a child might make while also showing

some computational thinking concepts.

Sound recording doesn’t just fill in gaps in the sound library. Sound recording

provides another avenue for expressiveness. Not limited to the existing set of assets,

children can make the exact sound they want. Sound recording also gives children the

ability to bring their own personal voice and context into their projects. This freedom

for expressiveness creates more opportunity for children to explore their passions.

65

5.4.3 Peers

Advice from staff at the Perkins School for the Blind highlighted the importance of

supporting their students’ connections to peers through sharing, playing, and creating

together. Collaboration and sharing between peers gives children opportunities to

learn from and with each other. They made three main requests: support remixing

and sharing, facilitate teamwork, and make the product engaging for sighted children

as well.

In this context, remixing refers to referencing or using parts of existing creations

to create something new. Remixing is great for “Play” because it lowers the barrier

to entry for getting started, and it ties to “Peers” because it often involves building

off of someone else’s creation. Codi is designed for pair programming. Two children

working together can feel free to talk to each other and only have Codi listen when

they are ready. Here are two examples of pair programming from a testing session.

In this first example, Codi doesn’t start listening immediately, which allows the child

to freely ask the facilitator if she’d like her to try.

Facilitator 1: Mm... *presses button to start speech recognition* Do

you have any cooing sounds?

Codi: *ends speech recognition* *cues failure to understand*

You are navigating a list from the start. Say ‘next’ or ‘previous’

to move through the list or say ‘exit list’ to go back to where

you were before.

Child: Do you want me to try?

In the second example, the child and the facilitator press a key to initiate speech

recognition and take turns adding steps to the child’s baby simulator project.

Codi: OK. When you say "[System], the baby is crying." I’ll

play the project. What’s the first step?

Facilitator 1: *presses button to start speech recognition* Say wah wah

wah wah.

66

Codi: *ends speech recognition* OK. What’s the next step?

Child: *presses button to start speech recognition* Say It’s okay,

baby.

5.4.4 Play

What elements of the system bring delight and surprise? Children playing with the

system and trying out commands continually build, apply, and test the model of

how the system works. Challenges associated with this process contribute aspects of

play. Seymour Papert identifies this as “hard fun”, where an activity is fun because

it was hard rather than in spite of being hard [59]. Furthermore, to bring delight

and surprise to the system, we add elements of randomization. A study evaluating

randomness as a resource for design found that randomization in music listening made

study participants feel refreshed [48]. The researchers behind the study, Wah Leong

et al., also identified that randomness can be a creative tool that generates interest

and variety. When a child wants to create a project and asks Codi what sounds there

are, Codi returns a list of three random sounds. Any subset of these surprise sounds

could spark an idea for a project topic. While the tool and assets associated with the

Codi are a set of materials that the child can work with, the randomness places focus

on new subsets of the material in ways that playfully prompt discovery, imagination,

and creativity.

5.5 Computational Thinking

5.5.1 A Formal System and Tool to Create With

The ubiquity of computing makes the ability to think computationally extremely

powerful and valuable. Most children have access to computers and mobile phones

on which they play games, connect with others, and more. Computational thinking

can empower children to move beyond the role of consumer and into the role of a

creator in this digital age. It also gives them a lens for not only understanding how

67

digital technologies work, but also imagining and inventing new ones. Children may

employ computational thinking concepts to solve problems and create in new ways.

Codi helps children develop critical and creative thinking. A major goal for this

project is to support children in building skills and knowledge that will empower

them to express themselves both in and outside of the system. As a systematic and

predictable (i.e. formal) system, Codi gives children practice building and applying

a mental model of how such a formal system works to create something concrete—a

computer program.

Codi’s design as a formal system relies on a language for expressing computational

thinking concepts. Designing agent-based programming languages has trade-offs be-

tween “intuitive but limiting” and “less intuitive, but more expressive”. For example,

let’s take a look at a Scratch program that plays drum sounds when the space key

is pressed (See Figure 5-1) and then analyze four different ways to describe the pro-

gram, ranging from more conversational (with more ambiguities) to more explicitly

instructional (and fewer ambiguities).

Figure 5-1: A Scratch program that plays drum sounds when the space key is pressed.

1. When the space key is pressed, play the hi na tabla sound and wait

a quarter of a second, and then play sound hi tun tabla and wait another

quarter of a second. Do that three times.

68

2. When the space key is pressed, play the hi na tabla sound, wait a

quarter of a second, play sound hi tun tabla, and wait another quarter

of a second. Do all instructions three times.

3. When the space key is pressed, repeat the following three times. Play

the hi na tabla sound. Wait 0.25 seconds. Play the hi tun tabla

sound. Wait 0.25 seconds. That’s it.

4. When the space key is pressed, create a repeat 3 loop. In the loop,

play the hi na tabla sound. Wait 0.25 seconds. Play the hi tun tabla

sound. Wait 0.25 seconds. Outside of the loop...

In the first statement, “that” is used to refer to the 4-block command sitting

inside the loop. However, from the sentence alone, it is possible to assume that

“that” actually refers only to the last command, “wait 0.25 seconds”, or any

subset of the commands. A computer system that understands a conversational

program description must be able to parse English language so that it can infer what

“that” refers to and what “another” is. The second statement clearly states that all

instructions are repeated, but it is unclear what subset of commands actually respond

to the space key press. The third statement disambiguates the context in which the

commands are run (when the space key is pressed). It also uses “That’s it” to

clearly define the scope of the repeat loop. The fourth is the explicit and verbose

instruction.

In this system, we chose to design a grammar that supports phrasings like the third

example instruction to balance between natural language, clarity, expressiveness, and

simplicity. The constrained context of building a program enables us to identify

instructions that would be ambiguous in other contexts and use them as concise

expressions of lengthier commands. For example, the user could say “Faster” to

communicate the idea of increasing the tempo of the outputted sound. Using a

restrictive grammar limits the ability for the child to communicate naturally and

freely, but Codi uses one for understanding user’s instructions to support the child’s

construction of an accurate notional machine.

69

5.5.2 Computational Thinking Concepts

Contributing to discussions around computational thinking, Karen Brennan and

Mitchel Resnick identified seven computational thinking concepts: sequences, loops,

parallelism, events, conditionals, operators, and data [28]. For each concept, I define

the concept and provide a concrete example from a project in created with Codi.

Sequences In Codi (as well as nearly all other procedural programming languages),

an activity or task is expressed as a sequence of individual steps or instructions that

can be executed by the computer in order. For example, a project might have the

following instructions:

1. Say it’s morning time.

2. Play the bird chirping sound.

3. Say I hear birds chirping. It must be a sunny day.

4. Play the tropical birds sound.

Loops Using the bird project above as an example, what if we wanted multiple

chirps so that we could convey that the birds are talking to each other? It would

be tedious to repeat the same “Play the chirp sound” instruction over and over.

Codi allows children to express loops naturally. A child can say “Play the chirp

sound 5 times” and get a project that sounds like chirp!chirp!chirp!chirp!chirp!

If the child wanted to have some time in between chirps they might instead say “Do

the following 5 times. Play the chirp sound. Wait 1 second. That’s it.”

The project would instead sound like Chirp! Chirp! Chirp! Chirp! Chirp!

It might be more satisfying if not every chirp sounded the same. We can imag-

ine that one bird might chirp a few times at a specific pitch. The child might say to

the system, “Do the following 3 times. Set the pitch to a random number

between -100 and 100. Play the chirp sound 2 times. That’s it.” The

project would then sound like chirp!chirp!CHIRP!CHIRP!Chirp!Chirp!

70

To add back in the pauses, we need to nest the loops. A child trying to make this

happen might say, “Do the following 3 times. Set the pitch to a random

number between -100 and 100. Do the following 2 times. Play the chirp

sound. Wait 1 second. That’s it. That’s it.” Here, nesting loops is less

natural because of the need to define the scope of looping with “that’s it.” The

project would then sound like chirp! Chirp! CHIRP! CHIRP! Chirp! Chirp!

Events Events refer to one thing causing another thing to happen. Event-based

programming can bring a projects to life by making them interactive. Rather than

have a project that executes a bunch of instructions linearly for the child to passively

perceive, the program can respond to someone saying a particular word or pressing

a particular button. This concept could be used in a “Tell me a knock knock joke”

project:

1. Say knock knock.

2. Whenever I say Who’s there?, say Woo.

3. Whenever I say Woo who?, say Don’t get so excited, it’s just a joke.

4. Wait 1 second and then say haha.

Parallelism Parallelism refers to sequences of instructions happening at the same

time. One design decision we explored was whether or not to support parallelism in

the program. Should a program only involve the execution of one instruction at a

time? Since audio as a medium is inherently linear and time-based, one instruction

at a time makes it easier to attribute instructions to their execution when a project

is played. Playing with parallelism within a linear medium may be difficult, and

supporting parallelism adds complexity to both the system and the user’s mental

model of the system.

Upon deeper exploration and evaluation of this complexity “cost”, we chose to sup-

port parallelism and concurrency because it enables the tool to be much more expres-

sive. It also creates an opportunity for more exciting and satisfying projects, especially

71

in the domain of music. Here’s a project that plays notes and beats concurrently to

create the background music for a freestyle rap battle: When the project starts,

do the following forever. Set instrument to piano, play note 60 for 1

beat, play note 72 for 1 beat, play note 84 for 1 beat 2 times. That’s

it. That’s it. When the project starts play the closed hi hat drum for

1 beat forever. That’s it.

Conditionals Conditionals refer to the ability to make decisions or execute par-

ticular actions based on certain conditions. Children can use conditionals to create

multiple outcomes in their programs. For example, a choose your own adventure

game project created with Codi might look like:

1. Play the rain sound.

2. Say your friend is waiting for you at the cafe. Are you going to

brave the weather to see her there? Yes or no?

3. Listen and wait.

4. If the speech is yes, play the dance celebrate sound and say She’s

going to be so happy. That’s it.

5. If the speech is no, play the crying sound and say She’s going to

be so sad. That’s it.

Operators Operators include mathematical, logical, and string expressions. These

include mathematical operations like adding, subtracting, dividing, multiplying, and

comparing (checking for relative size or equality). These also include string oper-

ations like concatenation and calculating the length of a string. Codi understands

multiple ways to express these operations in natural language. For example, Codi

understands that “1 plus 1 ”, “1 added to 1 ”, and “sum of 1 and 1 ” are all

the same. Combining operators with randomness is also very powerful. A child can

employ randomness in a project to increase the playability of a game without hard

coding every single path. A project that does this with Codi could look like:

72

1. Make a variable called path.

2. Set path to a random number between 1 and 3.

3. If path is 1, play the meow sound. That’s it.

4. If path is 2, play the bark sound. That’s it.

5. If path is 3, play the moo sound. That’s it.

Data Data involves storing, retrieving, and updating values. When programming

with Codi, a child can create variables, which can store single numbers or strings,

and lists, which can store a sequence of numbers or strings. One classic thing a child

might want to do in a game is keep score. To do this, they will rely on variables that

may keep count.

Data is also valuable because it can maintain other state in a program and help

organize resources and materials. For example, consider this shopping project:

1. Make a list called basket

2. Add strawberry to list basket

3. Add mango to list basket

4. Add peach to list basket

5. Say your shopping basket contains

6. Log5 list.

When the project played you would hear Codi say, “Your shopping basket contains

strawberry, mango, peach.”

5The log command results in Codi saying the value of the argument.

73

5.5.3 Computational Thinking Practices

Karen Brennan and Mitchel Resnick also highlighted four computational thinking

practices that focus on the process of thinking and learning: being incremental and

iterative, testing and debugging, reusing and remixing, and abstracting and modular-

izing [28]. With Codi, children can test and debug their projects through iteration.

They are also given opportunities to remix and reuse, to reference or use parts of

existing creations to create something new.

Testing and Debugging

The system supports debugging by allowing the child to step through the program

or select parts of the program to execute. For example, consider the following hypo-

thetical situation.

Child: What state am I in?

Codi: You are in the "Inside Project" state. Your current

project is "What animals are in the farm?"

Child: What is the current step?

Codi: Step two, play the meow sound and louder and play the

meow sound and louder and play the meow sound.

Child: Play the current step.

Codi: *cues project start*

Codi: *Meow* , *Meow*, *Meow*

Codi: *cues project end*

This conversation demonstrates that a child can easily test portions of their

project. This contributes to a child’s development of testing and debugging prac-

tices like reducing the scope of changes that need to be made.

74

Being Incremental and Iterative

As a child creates their program, they can test what they have so far and then continue

to keep building or make any modifications they see fit. Let’s see an example in a

continuation of the conversation above.

Facilitator 1: What did you think of Step 2?

Child: It’s good. Now I can move to the next step. I want to bring a

farmer to the scene in the project. Add a step.

Codi: What is the instruction?

Child: Change your voice to alto and say I see you checking

out my animals! Do you want one?

Codi: Okay, what’s the next step?

Child: No more steps.

Child: Play the project.

Codi: *Bark*,*Bark*,*Bark*.*Meow*,*Meow*,*Meow*. I see you checking

out my animals! Do you want one?

Reusing and remixing

As a child creates, they might take a break to find some inspiration in other projects,

checking out what’s inside and then modifying them. A child can ask the system,

“What projects are there?” to get a list of existing projects. All users using the same

device and browser contribute to the same bank of projects. Then, a child may play

the project or explore the instructions that make up the project. This can reveal

techniques that inspire their new possibilities in their own projects.

Abstracting and Modularizing

When a child plays a project, they may use the name of the project as an abstraction.

For example, “Tell me a joke” is a short phrase that tells Codi to execute a series

75

of steps. This abstraction would be more meaningful if the child tells Codi, “Tell

me a joke,” as an instruction inside another project. This framework of running

programs inside of programs would allow children to modularize their programs and

build complex behaviors based on simple existing projects they’ve already created.

This would align with the generative nature of human language in which you create

new concepts by combining symbols for concepts that already exist [37].

This is not yet possible with Codi, but here’s how it could work, using one of

the students at Perkins who wants to create a baby simulator project. The student

described the desired functionality at a high level, “So I want it to be so that you

have to take care of your baby, like each 20 minutes it’ll give you like a notification

that you need to play with your baby and it’ll grow up. You know what I mean.

Like it’ll start off like a newborn and then grow up. I just think that’d be so cool.”

Assume the student already made projects that implement specific baby behaviors:

1. Cry

2. Listen for the sound of someone’s voice

3. Giggle

4. Walk (play the sound of footsteps)

5. Ask a question

6. Scream

7. Apologize

The student can then use these projects as abstractions to create higher level

abstractions like “Act like a newborn” or “Act like a toddler.”

Child: New Project.

System: What do you want to call it?

Child: Act like a newborn.

76

System: Okay, when you say "Act like a newborn," I’ll play the

project. What’s the first step?

Child: First, cry.

System: Okay, what’s the next step?

Child: Whenever you hear It’s okay, baby, giggle. That’s it.

System: Okay, what’s the next step?

Child: Listen and wait.

System: Okay, what’s the next step?

Child: That’s it.

In Codi’s current implementation, abstractions only occur semantically in the way

projects can be started or invoked. For example, a project invoked by the greeting

“Codi, good morning” could be an abstraction for a set of instructions that help

facilitate a child’s good morning routine. A project invoked by the statement “Codi,

it’s snowing” could be an abstraction for creating a wintery scene using audio, playing

particular sounds and music. A project invoked by a question like “Codi, how are

you doing” or a command like “Codi, say something nice” are also abstractions for

the instructions that make up the programs they refer to. Codi’s design provides

minimal support for practicing abstracting and modularizing.

5.5.4 Avoiding Confusion in CS Education

In their 2018 survey of pre-college computer science education, the Stanford Transfor-

mative Learning Technologies Lab identified overlapping domains in which students

face difficulties in learning computer science [25]. One domain is where students build

a general understanding of what programs are and what can be done with them. An-

other domain is where students develop notional machines, a model of the computer

as it relates to executing programs. In an interview in the same survey, Guzdial

shares that, “The notional machine is unnatural for us. The inhumanness of com-

puters makes them harder to understand...The computer is a non-human agent that

77

is doing what was specified, and not what was intended.” The unnaturalness of a

notional machine is what makes developing and applying it so challenging. Bringing

in natural language as a way to express computational thinking concepts might help

in building a model of how the system works. In order to interact with the system,

the child will need to apply the notional machine they’ve developed. Applying the

notional machine is an exercise in thinking like a computer, which may not come so

naturally.

In 1983, Bonar and Soloway shared that a common source of problems for novice

programmers is the intuition that programming is a conversation with a human-like

creature that can infer meaning that is not explicit in the code [26]. This is a danger

that the Codi system faces as a conversational interface for creative programming.

However, Codi cannot and does not infer meaning that is not explicit in the natural

language.

In 1986, Pea found misconceptions around intentionality and the notion of a “‘hid-

den mind’ inside the machine” [61]. Specifically, some novice programmers believe

that the program has goals and can see what is happening to itself. Codi doesn’t com-

municate a specific goal. Instead, it suggests actions that promote project exploration

and creation when a child asks “What can I do?” or asks for help.

To manage expectations about the abilities of the system and help the child build

a more accurate mental model, the agent should not come off as much more intelligent

than it actually is. We can also support the child by avoiding opaque nondeterminism,

which occurs when the agent behaves inconsistently or randomly in unexpected ways

that make the agent’s behavior unpredictable. See the following scenario for example

of opaque nondeterminism where the agent’s behavior is inconsistent:

Child: Play a meow sound.

System: *Meow*

Child: Play the meow sound.

System: *Meow*

Child: Play the cat sound.

78

System: *Meow*

Child: Play the bark sound.

System:*Bark*

Child: Play the dog sound.

System: I don’t have a sound called dog.

Children will likely come up with explanations and reasons for the computer

behavior—reasons that do not actually exist [25]. Codi’s design attempts to miti-

gate this through predictable behavior.

5.5.5 The Relationship Between the Child and the Agent

Designers of agent-based interfaces for children must recognize that they are shaping

a dynamic relationship between the child and the agent. They may shape this rela-

tionship through the distribution of agency, the agent’s personality, and the agent’s

intelligence.

Child Agency

In designing the system, I create a close-started and open-ended6 experience that

initially provides guidance and scaffolding and then increases user agency. The system

provides a scaffolded experience for those who have may struggle cognitively or those

who have not yet built up the confidence to explore new tools and domains without

guidance. Specifically, Codi uses prompts to move the conversation forward when the

6In his PhD dissertation, Jay Silver presents the concept of open construction kits. In doing so, he
presents questions asked as part of the kit design process. Each of the questions is tied to a part of
the construction process [79]. The construction process can be seen as a story with a prologue (How
did the people get there and where did they come from?), beginning (What loose materials are they
working with?), middle (What tools are they using?), end (What is the final project?), and epilogue
(Where is the project placed? What is the afterlife of the project?). He presents open constructions
kits as construction kits in which a part of the kit is purposely left unspecified so that someone can
bring a part of the world into the construction. Each component of the construction process story
could be closed or opened. For example, a painting kit is closed-beginning with a specific set of
materials being the paint, canvas, paintbrush, but it is also open-ended in what the painting can be
and closed in the substrate, where the painting is placed. Jay’s discussion of open construction kit
design focuses on whether certain parts of the construction process are open or closed.

79

child may not know what to try or do next. The system gives the child agency in the

majority of interactions so that they have room to engage with multiple pathways

to creation and engagement with projects. The child is empowered to ask questions

so that they can receive guidance when they deem they need and want it. Agency

shapes a child’s relationship and communication with the agent.

My design decisions characterize the agent as a tool, rather than a co-creator,

student, or teacher. This gives the child ownership of the projects they create. The

agent doesn’t do more than provide the “materials” or “platform” for the child to

explore, experiment, and create. Their projects are recognized explicitly as projects

rather than framed only as behaviors taught to the agent 7. The reason for creating

the project is not solely to extend the capabilities of the agent, but to use the agent

as a platform for creating new possibilities for play and thinking about computational

thinking.

Agent Personality

Although people are working on gender-neutral synthetic voices, most speech synthe-

sis voices are gendered. The gender of the voices assigned to voice assistants impacts

the way people perceive these agents. Most voice assistants have female voices. Ama-

zon Alexa’s female voice is meant to be “cordial” and “pleasing” [74]. The perception

usually reflects existing social dynamics and stereotypes. BMW had to recall its Five

Series car in Germany because many male German drivers refused to take directions

from a woman [55]! In picking a voice for Codi, we conformed to what was likely to

be preferred rather than attempting to shift gender stereotypes. Codi’s default voice

is that of a female adult whose speech is meant to be encouraging, polite, and trans-

actional. This is consistent with the out-of-the-box abilities of the agent, which are

meant to be helpful, not necessarily playful. This contributes to the role of the agent

7In early designs of Codi, projects were not introduced as projects but as teaching the agent.
Take the following conversation for example:
Child: Tell me a joke!

System: I don’t know how to do that. Can you teach me?

Child: Sure!
System: What’s the first step?

80

as a tool for creation. However, the agent also inspires projects because projects are

the child’s medium for shaping the agent’s personality and abilities. The following

conversation from a test session demonstrates how a child may shape the agent’s

personality trhough projects.

Child: Can she have conversations with you?

...

Facilitator 1: What do you think a conversation would be like?

Child: So, like, how is your day? Or like, how are you doing?

Facilitator 1: Yeah. So right now. Codi doesn’t really support that.

Child: Maybe I can make a project.

...

Codi: What do you want to call it?

...

Child: How are you doing?

...

Codi: Ok, when you say Codi, how are you doing? I’ll play the

project. What’s the first step?

...

Child: Say I’m good thank you. I hope you’re having a great

day.

Codi’s design provides a friendly base personality through voice and friendliness, but is

not very playful. However, children have some ability to shape Codi by programming.

Agent’s (Lack of) Intelligence

We must consider and shape how intelligent Codi seems because this sets the expec-

tations for what Codi can do and understand. These expectations can constrain or

81

open up possibilities for what a child imagines is possible to do or build with Codi.

A child that thinks Codi is more intelligent than Codi actually is may have trouble

communicating with Codi in ways that Codi understands. The child may also at-

tempt to explore project paths that are not supported by the system. The negative

feedback from these attempts may discourage the child.

We aim to help children develop accurate expectations for Codi’s behavior as

soon as possible. Specific design decisions include framing Codi’s personality and

abilities as limited during onboarding, having Codi be systematic and repetitive when

responding to commands, and having limited flexibility in Codi’s underlying grammar.

Codi’s personality as conveyed through voice, intonation, and diction influence what

level of authority Codi has. Since Codi has an adult voice, it has a level of authority.

Yet the restrictive grammar reduces Codi’s competency in understanding commands,

which portrays Codi as less intelligent.

5.6 Reflections

Throughout the research and design process, there were a few key ideas that guided

my decisions in navigating the design tensions

Here, I share quotes from Andrew Sliwinski and Mitch Resnick.

“The concepts should be tools or exist to empower and enable people to be more

expressive” Codi supports creative learning spirals and computational thinking con-

cepts because they add to people’s ability to express themselves and will be useful in

the future.

“When in doubt, bias toward the floor” If anything is going to make understanding

harder, don’t do it

“The biggest piece of advice is to cut” The goal is to get to a core, base experience

from which we can expand upon. It’s worth simplifying the interface–even if it’s not

as human or as “smart”... it makes it easier to test and easier to understand.

“Creative confidence isn’t about feeling empowered to create. It’s about feeling

empowered because of creation.” The child feels powerful because they can create and

82

when they create. Often, the passion must come first to make the act of creating

empowering.

“Optimize for optimism” Be more confident in pushing and optimizing for the

ideal workflow. You can assume default intentions and provide ways to exit or cancel

those.

83

84

Chapter 6

Implementation

In this section, I highlight the architectural design and implementation decisions in-

volved in making Codi. The Codi system consists of a front-end interface implemented

as a web application that utilizes speech recognition to turn a child’s speech into text

and conducts Natural Language Processing (NLP) on the text to determine the user’s

intent. NLP determines the child’s intent by searching for matches in the actions that

the system can take. If the child’s intent is understood (i.e. matched to one of the

system’s actions) then the system will execute that action (See Figure 6-1).

6.1 State Machine

At a high-level, the Codi system is a state machine that responds to natural language

voice or text input. A state machine is a system that has a set of states and defines

transitions between those states. In other systems, the state machine transitions may

be taken with a specific probability that is coded into the system. In Codi’s case,

we keep things predictable by making sure that, given a state and an utterance, the

resulting transition or response by the system will always be the same. Figures 6-2

and 6-3 condense most of the main state machine of the system into smaller state

machines. Missing from Figures 6-2 and 6-3 are the “transitions” in which a child

stays in the same state. A child may ask questions in any state, and these usually

85

Figure 6-1: Overall System Architecture: User speech gets converted into text which
then gets matched to possible actions the system can take. The system attempts
to take the first matched action, which often results in a state change and feedback
given to the user via audio cues and speech synthesis.

result in the child staying in whatever state they were already in 1.

6.2 Actions

When a child says something to Codi, Codi attempts to match the child’s utterance

to an action. Actions are categorized based on the action’s context and purpose.

“General” actions allow the child to navigate the interface and manage their projects.

“Edit” actions occur inside projects and involve exploring and modifying projects.

“Help” actions involve asking the system questions to learn more about the state and

1A child can say the following (or supported rephrasings of them) at any time and stay in the
same state: ”What did you say?”, ”What did I say?”, ”What’s the current project?”, ”What’s the
current state?”, ”How many projects do I have?”, and ”What commands are there?”. They can
also start and stop background music or audio cues, play or rename a recording, rename or delete a
project, get a greeting from Codi.

86

Figure 6-2: This diagram depicts the transitions between states. When children first
interact with Codi, they start off in the Home state. They can record a sound, create
a new project, or play an existing project. When they are playing a project, they
may either edit the project, go to the home state, or ask to return to whatever state
they were previously in. When they are inside a project, they can record a sound,
play the project, go home, or go back to the state they were previously in. If they
are recording a sound, they may return to their previous state.

available assets and commands. The “Interrupt” category has a single action, which

is to cancel the current action. Finally, the “List Navigator” actions allow someone

to navigate a list and exit it.

Every action is associated with a state transition and a trigger, which is a reg-

ular expression (regex) [83] used to match an utterance to an action. For example,

the playCurrentProject action has the trigger /play (?:the)? ?(?:current)?

?project|start (?:the)? ?(?:current)? ?project|test (?:the)? ?(?:current)?

?project/. This trigger allows the child to say the following forms and variations

in which “start” or “test” replace “play”: play the current project, play the

project, play current project, and play project.

The action may also have a context validator, which is a function that checks to

87

Figure 6-3: This state machine depicts the portion of the system that deals with list
navigation. This occurs when the child asks a question that has answers involving
multiple items. From any state, a child can ask questions that may put them in the
list navigation state in which they can hear the current, previous, or next three items.
When they are done navigating, they return to their previous state.

Figure 6-4: The project is modeled as a simple state machine that maintains whether
the project has been named and whether instructions have been added to it.

see whether the action is valid. For example, in order to play the current project,

there must be a current project defined. The regex enables the system to detect the

88

action in the child’s utterance, while the context validator checks to see if the action

can actually be triggered. If the context is invalid, Codi tells the child what exactly

about the context is invalid in the form of Codi’s speech feedback. For example,

Codi might say, “You don’t have a current project. Create, open, or play

a project to set a current project.”

Every action also has an ideal trigger. If the child asks “What can I do now?” or

“What commands are there?”, Codi picks a possible action and presents the action

by sharing its name, description, and the action’s ideal trigger, an example phrase that

demonstrates the action. If the action takes an argument, the ideal trigger will include

dummy arguments. For example, the “insert after step” action would have the ideal

trigger “After step number 1, insert play the meow sound.” Actions provide

a standard interface for Codi to communicate about and execute actions. Arguments

are a part of the standard interface provided by actions. See Appendix A.1 for a list

of Codi Actions.

6.3 Arguments

When an action has arguments, its regular expression trigger extracts them. For ex-

ample, the checkSound action has the trigger /do you (?:have|know) (?:a|an|the|this|any)

(.*) sound/, in which the (.*) extracts the name of the sound from questions like

“do you have a bouncy sound?” and “do you know any dolphin sounds?” The

action’s specification lists the arguments so that they can be matched to the argu-

ments extracted by the regular expression. Each argument has its own name and

description and may have a validator that will provide feedback to the child when

the argument is invalid. The play action provides an example of a situation where a

validator comes in handy: a child can only play a project that exists. A validator for

the play action takes the project name value extracted by the regular expression and

checks that the system has stored a project by the given name. If the child specified

a name that doesn’t match any existing project, Codi replies, “I don’t have a project

called [project name].”

89

If the child triggers an action without providing the required arguments, Codi

asks the child for the arguments one-by-one. This is a common approach used in con-

versational interfaces called slot-filling [19]. It allows the system to obtain additional

arguments necessary to carry out an action associated with a given intent. If a child

says “insert a step” while they are editing a project, Codi will ask the child for the

what step to insert, at what step number to insert the step, and whether to insert

before or after the given step number. Each argument’s name and description is used

to request arguments during slot-filling. Arguments are critical for computation and

enable slot-filling.

6.4 Handling Utterances

When the system receives an utterance from the child, it must pass the utterance

to the appropriate module for processing the utterance. There are five candidate

modules: project manager, project, list navigator, action, and argument. A module’s

appropriateness is based on the current state and a priority order. The priority order

is needed because an utterance could match multiple triggers, but the system will

always take the first match.

1. In Codi, project manager handles interrupts such as canceling.

2. If the child is currently navigating a list, the list navigator will handle the

utterance.

3. Next, project manager handles questions about assets, states, and commands.

4. After handing interrupts and questions, we start from the narrowest context (i.e.

providing an argument) and broaden from there. If the current action is missing

an argument, the argument module will handle the utterance by attempting to

set the value of the argument to the child’s utterance.

5. After step 3 forces arguments to be satisfied, the current action module handles

the utterance by executing the action with the given arguments.

90

6. If there is no current argument or action, the system checks for a current project.

If there is one, the project module tries to handle the utterance, looking for

intents related to building, exploring, or modifying the project.

7. Finally, if none of these smaller scopes apply, the general state machine will

match the utterance to higher level system navigation commands implemented

by the project manager module. These commands include “Play the project”

and “What’s inside [the current project]?”

Let’s walk through an example. Assume the child is just starting to interact with

Codi and says, “Create a new project”. When this happens, the system goes to

step 7, and the project manager module handles the utterance by asking the child

for the project name and transitioning into the “Inside Project” state. Then, when

the child replies with the project name “Make silly sounds”, we jump to step 6,

where the current project (i.e. project module) handles the utterance. Codi will then

prompt for the first step of the project. When the child replies, “Play a random

sound”, the project module handles the utterance again.

To demonstrate handling utterances in narrower contexts (steps 4 and 5), let’s

continue with our current scenario and say the child finishes the project, plays the

project, and wants to edit the project. The child asks,“What’s inside?” to enter

the project, and start editing, asking Codi to “replace a step.” First, Codi goes

to step 6, where the project module creates an action to execute and sets it as the

current action. If the current action (replace a step) has missing arguments, Codi

prompts the child to slot-fill the argument “What is the number of the step to

replace?” and sets the current action. Setting the current action results in the next

utterance from the child being processed in step 4. When all arguments are satisfied 2,

the action gets executed and the current argument and current action become unset.

When Codi’s main state machine is handling the utterance, it employs a few tech-

niques to bolster speech recognition accuracy and compensate for speech recognition

inaccuracies. The system employs fuzzy matching to compare a child’s utterance to

2The number of the step to replace and the new instruction are both specified.

91

known formulations of commands based on the regular expressions associated with

each action. Specifically, we use the JaroWinkler [88] distance measure to score the

match. When the Jaro-Winkler distance score is less than .25 (a threshold deter-

mined by trial and error), Codi asks, “Did you want to [action name]?” If yes, Codi

will execute the action, and if no, Codi says, “Okay. I will not [action name].”

6.5 Constructing Programs with Natural Language

In the system, every project is a program represented by a state machine (See Fig-

ure 6-4). This state machine stores the project’s instructions, maintains a pointer to

the current instruction in the project, and has a reference to a project editor that

implements all of the “Edit” actions referenced in section 6.2. As a child adds new

instructions to the project, Codi verifies that each new instruction is valid. The

instruction is valid when it is parseable using the grammar 3 we’ve designed to rep-

resent natural language commands in the form of an abstract syntax tree that can

be executed by an interpreter. In collaboration with Kara Luo and Willow Jarvis 4,

I created a program that accepts text and builds up a program that can be exported

as JSON (JavaScript Object Notation) that gets loaded into the virtual machine for

execution. In this section, we delve into the implementation of the system used to

translate natural language instructions into programs.

As depicted in Figure 6-5, the program first uses regular expressions to extract

unrecognized words that must be added to the grammar before the system can parse

the input. The unrecognized words either represent a number or is the name of a

variable, list, message, sound, voice, or language. Then, the grammar is used to

generate a parse tree for the instruction (See Figure 6-6). The semantic rules are

evaluated on each parse tree to generate a script (i.e. program instructions). This

occurs for each input. A series of inputs is used to construct and modify a JSON

specification of a project.

3See Subsection 6.5.1 for more informtion about the grammar.
4Kara and Willow were my project partners for the MIT course 6.863 NLP taught by Bob

Berwick.

92

Figure 6-5: Textual natural language input is translated into a script through a system
built on regular expressions, syntactic, and semantic rules.

Figure 6-6: Parse tree generated for the command “make a variable called x”

93

While the aim of the system is to provide a flexible programming interface, there

are several restrictions on how a child may interact with the system.

1. Data structures are expected to be declared and created before they

are used in other commands. Like most conventional programming lan-

guages, the system expects a statement creating a variable or a list with an

assigned name before this name could be used to reference this variable or list

in the context of other instructions.

2. The instructions are expected to be complete. A complete instruction is

one that defines the context in which an action should be completed (if any) as

well as the complete set of actions that are attached to this context. If there are

multiple actions to be taken, all of them should be provided in this complete

instruction.

Three examples of complete instructions are provided below.

"make a variable called x"

"play the meow sound"

"if the timer is greater than 2 then reset the timer

thats it"

Each of the sample instructions provided above can behave as a standalone

command. In the case of the third statement, both the condition to test on

(timer is greater than 2) and the corresponding action to be taken (reset the

timer) are clearly defined. The use of the trigger word "thats it" is discussed

in Section 6.5.3 in further detail.

In contrast, three incomplete instructions are listed below.

"if x is greater than 3"

"x is not equal to y"

"repeat add 1 to x"

In the first incomplete instruction, the condition is declared for a conditional

command, but no action is attached to it. While the second failed statement

94

may be considered a completely valid boolean phrase, there is no action attached

to the statement. To make this boolean phrase a complete instruction, the child

could use it as a condition in a conditional command and attach an action

as the response for when the statement evaluates to true. The third failed

case is a fragment of a loop command where the duration of the loop is not

clearly defined. The child may replace this command with “repeat add 1

to x 5 times” or “repeat add 1 to x forever”, either of which would be

considered a complete instruction.

6.5.1 Designing a Grammar

In this context, a grammar is a set of syntactic rules that show valid ways to generate

grammatical strings by starting with a single start symbol and expanding these sym-

bols until they are part of the base alphabet. For example let’s consider the grammar

that would be able to create the parse tree depicted in Figure 6-6. The grammar

could look like the set of lexicon and syntactic rules in Figure 6-7.

To design the grammar, we considered how children express and describe programs

and commands in natural English. We manually generated example sentences that

correspond to the commands we aimed to support. Beyond natural language com-

mands, the way humans describe the interactions and relationships between these

commands is also flexible. As a result, we considered how entire programs are de-

scribed in natural language which I discussed in Subsection 5.5.1. Our grammar is

designed to be able to parse the example sentences we generated.

6.5.2 Syntactic-Semantic rule pairs

Every syntactic rule has a semantic rule. While the syntactic rule presents a way

to break the text into meaningful parts (word phrases), the semantic rule defines a

function that takes these parts as arguments and makes meaning of them. These

semantic rules filter and act on only the words that correspond to arguments. Once a

parse tree is fully generated using the syntactic rules, the semantic rules are applied

95

Syntactic Rules:

Start -> S

S -> AL

AL -> AP

AP -> CreateCommand

CreateCommand -> Make VARIABLE_LIST

VARIABLE_LIST -> VARIABLE_NAME

VARIABLE_NAME -> Variable VARIABLE_NAME

Variable -> Variable Called

Variable -> Det Variable

Lexicon Rules:

Make -> make

Det -> a

Variable -> variable

Called -> called

Figure 6-7: Parse tree rules: the start symbol maps to an instruction (S). The in-
struction S could be expand as an action list (AL). An action list can contain a single
action phrase (AP). Action phrases included commands for creating (CreateCommand).
The rest of the syntactic rules are designed to allow the grammar to be flexible to
different ways to tell Codi to make a variable.

to each parse tree constructed by the grammar.

Let’s go through an example that will clarify how the syntactic and semantic

rules work together to process a child’s instruction. The system generates a parse

tree for the instruction “make a variable called x” (See Figure 6-6). We apply

the semantic rules starting from the leaves of the tree in Table 6.1. Each node’s

children are arguments for the semantic rule function corresponding to the parse rule

that relates the node to its children.

To support multiple variations of the same command, we define multiple syntactic

rules to correspond to the same function via nearly identical semantic rules. In this

way, our system can compute on only the meaningful arguments in the input and

drop filler words. For example, in the instruction “set element 1 of the list

called numbers to 1 ”, the auxiliary phrase “the list called” does not provide

any additional information, and the child may naturally choose to exclude it from the

96

Syntactic Rule Semantic Rule Explanation of Semantic
Rule

1 Start ->S return

processSentence(S)

Returns the resulting in-
struction along with other
important project informa-
tion such as variables, lists,
and sounds

2 S ->AL return AL Returns the action list
3 AL ->AP return getAP(AP) Returns action phrase (AP)

wrapped in brackets if the
command requires it

4 AP

->CreateCommand
return

CreateCommand

5 CreateCommand

->Make VAR LIST

return

createVar(VAR LIST)

Creates and stores variable
and returns a [”doWaitUn-
til”, .1]

6 VAR LIST

->VAR NAME

return

wrapInList(VAR NAME)

Returns the variable name
inside a list

7 VAR NAME

->Variable
VAR NAME

return VAR NAME Returns only the name of
the variable instead of in-
cluding words that may pre-
cede the variable name such
as ”variable” or ”the vari-
able”

8 Variable

->Variable Called

return None Returns nothing because
these words are not repre-
sented in the final program
instruction.

9 Variable ->Det
Variable

return None Returns nothing because
these words are not repre-
sented in the final program
instruction.

Table 6.1: Every syntactic rule has a corresponding semantic rule that takes as argu-
ments each fragment in the right side the syntactic rule. Each semantic rule doesn’t
have to use all of its arguments. For example, “the variable x” can be parsed as a
VAR NAME with syntactic rule 7 (VAR NAME ->“the variable” “x”). The corre-
sponding semantic rule drops the Variable fragment and returns only the VAR NAME
on the right hand side because but only “x” is meaningful.

instruction.

97

6.5.3 Generalizing to Various Inputs

Given a set of syntactic and lexical rules, the parser can only parse a sentence if every

token is accounted for in the rules. However, a programming system needs to support

numbers and variable names, which cannot be specified in the grammar ahead of time

as there is an intractable number of possible variable names and numbers that may

be specified when building the program. Furthermore, children may unintentionally

use synonyms in communicating instructions. For example, a child looking to “play

the bouncy sound” might say “start the bouncy sound” or “begin the bouncy

sound” instead of play. To be more flexible, the system handles synonymous phrases.

Handle names, number phrases, and word phrases Children may give names

to variables, messages, or lists so they can refer back to and appropriately modify

them. Children may also choose to include numbers in their instructions to set a

variable to a particular value, index into a list, or perform arithmetic operations,

comparisons, or define bounds for random number generation. A child using speech

synthesis or recognition in their projects must provide word phrases as arguments. For

example, consider the following natural language instructions where the arguments

are highlighted:

Whenever you hear Hi, Codi, say Hi! What’s your name? and listen

and wait.

Make a variable called name and set it to the speech.

Say Nice to meet you

Log name

All together, this presents a challenge: the grammar needs to be able to handle and

parse these numbers, constant names, and word phrases correctly, and it is impossible

to predict which numerical values or constant names will appear in the instructions

before they are received.

To handle these unknown words, the system first uses regular expressions to detect

these phrases in a way that selects the argument and infers the argument’s type, which

98

could be a message name, list name, word phrase, sound name, and more. The system

then creates lexicon rules to add these names to the grammar based on their type.

Lastly, all unknown tokens are assumed to be number phrases and added to the

grammar via lexicon rules. At the end of this process, the system is ready to parse

and validate the input.

Recognize synonyms When engaging with natural language systems, children

often use synonyms in place of rule and phrase key words [38]. To make our system

more robust against such linguistic variations, we use a natural language toolkit [15]

to find synonyms for keywords that may be substituted by synonyms.

The lexicon rules contain a list of terminal phrases that the system accepts. In

general, these rules take the form of declaring a base word non-terminal in association

with a list of synonyms (or a single word for reserved words like variable) that can

replace the base word with little or no change to the meaning of the command. For

example, the lexicon file contains a mapping of the non-terminal Make to the list

[“make”, “create”]. Such a rule allows for both “make a variable called x ” and

“create a variable called x ” to be accepted and be considered equivalent.

The system generates synonyms for a set of predefined non-terminals and adds

these synonym sets (synsets) to the grammar as lexicon rules. This allows synonyms

to be recognized and parsed correctly. The synonyms are identified by querying for

all synsets in the natural language toolkit that contain the specified words that are

also matched in the word’s part of speech. All words in those synsets are gathered

without repetition. Then, this synonym gathering component adds all synonyms of

a word to the lexicon file as terminals mapped from the original non-terminal.5

Not all keywords can be substituted by its synonym. For example, a list is behav-

5The parser used by our system does not allow for terminal phrases with multiple words. Oc-
casionally during the search for synonyms using the natural language toolkit, we found multi-word
synonyms we liked such as “take off” for “subtract” and “clock time” for “time.” To handle such
multi-word synonyms, our synonym generator segments the multi-word synonym into multiple se-
mantic rules joined together by a syntactic rule that maps the original non-terminal of the keyword
to the synonymous phrase. This requires no change or modification of previously written syntactic,
semantic, or lexicon rules, and thus is modular in terms of functionality. The system currently
supports synonym phrases with up to 2 words.

99

iorally different from a set or a dictionary, though all of them are storage structures

and could be synonyms for each other in terms of natural language. Another exam-

ple is the keyword “volume”, which in our context, is how loud a sound is. However,

people commonly use “volume” to refer to portion or amount of three dimensional

space. As a result, most if not all synonyms of “volume” are likely to be useless to

our system. Generated synonyms were manually filtered such that only the synonyms

that were appropriate for substitution were kept and used. See Table 6.2 for a few

examples of synonym commands that demonstrate the range of words (from nouns

to verbs to adverbs) that were deemed appropriate to substitute.

Table 6.2: Examples of how synonyms were used to support multiple forms of the
same instruction which all map to the same script.

Instruction Generated Script Alternative Instructions
“play the meow
sound”

[‘doPlaySoundAndWait’,

‘meow’]

“play the meow audio”

“change volume
by 5”

[[‘changeVolumeBy:’, 5]] “alter volume by 5”

“vary volume by 5”
“play the meow
sound forever”

[‘doForever’,

[[‘playSound:’,

‘meow’]]]

“reiterate play the meow audio
perpetually”

“echo play the meow audio ever-
lastingly”
“recur play the meow sound al-
ways”

“stop all
sounds”

[‘stopAllSounds’] “discontinue all sounds”

“quit all sounds”
“block off all sounds”

The ability to recognize synonyms makes our system more robust for those whose

natural tendencies or memory of the commands do not match that specified by our

original limited vocabulary. This is especially helpful for supporting children and

people with cognitive disabilities.

100

Handling nesting in complex logic The main difference between natural lan-

guage and drag-and-drop programming is that all the instructions will be given se-

quentially in time, regardless of the relation between one statement and another.

However, the child may want to generate more complex code structures, like nested

loops, using natural language.

Consider the instruction “repeat the following 5 times <Action A> repeat

the following 6 times <Action B>.” There are two possible interpretations for

this command. The first includes two separate loop structures. The first loop struc-

ture loops over Action A five times, and the second one loops over Action B six

times.

Repeat 5 times:

Action A

Repeat 6 times:

Action B

The second interpretation has one nested loop structure. Wherein each passing

of the loop involves performing Action A once, and repeating Action B six times.

Overall, Action A is performed five times, whereas Action B is performed a total of

thirty times.

Repeat 5 times:

Action A

Repeat 6 times:

Action B

In this case, the ambiguous instruction produces two different interpretations with

different behavior. Therefore, it is necessary to incorporate trigger words at the end of

a loop instruction to indicate the end of list of instructions to loop over. However, in

normal utterances, it is less natural to say “end the if loop”, which would require the

child to have a clear understanding of the structure of the program already. To make

our system idiomatic, we chose to the phrase thats it to signal the end of a loop or

a conditional command. To illustrate how this works, let us review the example given

above. To generate code that follows the form of the first piece of code, the instruc-

tion will follow the form “repeat the following 5 times <Action A> thats it

101

repeat the following 6 times <Action B> thats it". In contrast, to produce

the second piece of code the instruction will look like “repeat the following 5

times <Action A> repeat the following 6 times <Action B> thats it thats

it" where the two thats it phrases close off the inner and outer loop, respectively.

As demonstrated above, we are able to distinguish between two loops behaving in

a linear manner or a nested manner. For similar reasons, the trigger phrase thats it

is implemented in conditional commands (if commands, if-else commands, etc.) and

event commands (when <Event A> do <Action A>) as well to allow for unambiguous

program generation.

6.6 Virtual Machine

Codi executes projects and steps in a virtual machine that runs the scripts generated

by the NLP module from Section 6.5. The virtual machine is heavily influenced by the

Scratch Virtual Machine (VM) [12]. The Scratch VM constructs and maintains the

state of Abstract Syntax Trees (ASTs) [43] that each represent only the structural,

content-related details of a program. The Scratch Virtual Machine maintains an

AST for each target (programmable, code-running object) the user is programming.

In Codi’s case, there is a single target per project so only one AST is built and

maintained when a project gets loaded.

Scratch VM and Codi’s VM share the same targets, threads, runtime, and se-

quencer. Threads are sets of instructions can occur in response to particular events.

Any instruction that is not attached to (a set attached to) a particular event, be-

comes attached to an event representing the project being played. Every thread in

the virtual machine consists of at least one instruction. A stack frame stores meta-

data for executing the instructions and there exists a stack frame for every block in

the stack. Some of these frames are empty. The runtime manages targets, scripts,

and the sequencer. It may push, stop, and restart threads. The sequencer provides

a runtime for threads and their targets. With the sequencer, you can either step a

single thread or step all threads.

102

Each project in Codi is represented by a project module that uses a state machine

to maintain the set of natural language instructions that form the project (For more

about the project module, see Section 6.4). When Codi plays a project, Codi sends the

natural language instructions to the NLP component, which processes each natural

language instruction to generate a program specification represented in JSON. The

program stores information about what sounds were used, what variables and lists

were created, and what scripts were created from the natural language input.

To run a project, Codi passes all of the project’s natural language instructions to

the NLP component to generate JSON. Codi then passes the JSON Codi’s virtual

machine which loads the project. To execute the current step, Codi creates a new

project definition that only contains the current step, and passes the JSON to the

virtual machine to load and run the project.

103

104

Chapter 7

Evaluation

In structuring the evaluation for this project, I connect back to this project’s three

intersecting goals:

1. To create a platform for creative learning experiences accessible to children with

visual impairments

2. To support children in engaging with computational thinking concepts and prac-

tices

3. To support children in expressing themselves through projects in ways that

build creative confidence.

To evaluate Codi, I conducted testing sessions to see the extent to which children

with visual impairments engage with parts of the creative learning spiral when inter-

acting with Codi. I observe what mental models of the system were built and how

these models were applied and changed by children as they interacted with projects.

I also note the extent to which children are able to express themselves using Codi. In

this evaluation, I draw from two sets of testing sessions, each set containing one hour-

long session per student. The participants were two students at the Perkins School

for the Blind. The two testing sessions were the 6th and 7th time I was meeting one

of the students, who I’ll refer to as Participant 1. For the other student, Participant

2, these sessions were first exposures to coding and Codi.

105

In this section, I highlight two main conclusions and dig into how I got to these

conclusions: by analyzing and integrating excerpts from the test session transcripts

that fall under specific themes that connect to the project goals.

7.1 An agent-based interface can facilitate mean-

ingful creative learning experiences for chil-

dren who cannot see despite usability chal-

lenges.

7.1.1 Creative Learning Spiral

First, we look at how children engage with the five stages of the creative learning

spiral: imagine, create, play, share, and reflect when using Codi.

Imagine The agent-based interface was inspired by current technology and sup-

ported reflection on current technology. When Participant 1 imagined projects, he

drew inspiration from the system’s assets and from meaningful technology in his life,

his calendar and his rhino toy which plays an electronic song.

Participant 1: Because right now I kinda partially have in mind that

maybe we could make like a pretend calendar project.

Facilitator 1: Ooh, OK. Can you tell me more about this? What’s your

idea?

Participant 1: Well. My idea is that we could say we could have a

pretend event that would....we could basically have each event fit into

each step.

Facilitator 1: Okay. Yeah. What would an example of an event be?

Participant 1: Well. Computer programming which we’re doing right

now is an event.

106

Facilitator 1: Mmhm.

Participant 1: Data could be an event.

Facilitator 1: Mmhm.

Participant 1: Maker Club could be an event.

On the other hand, Participant 2 found inspiration in the agent itself.

Participant 2: Can she have conversations with you?

Codi: Exiting list *cues failure to understand* You are in the

"Home" state. I heard you say "Can she have conversations with

me".

Participant 2: Oh, whoops.

Facilitator 1: Hehe, okay. Yeah. So that’s the idea that she could have

a conversation with you.

Participant 2: She can?!

Facilitator 1: Well, that’s the goal.

Participant 2: Ohhhhh!

Facilitator 1: What do you think a conversation would be like?

Participant 2: So, like, how is your day? Or like, how are you doing?

Facilitator 1: Yeah. So right now. System doesn’t really support that.

Participant 2: Maybe I can make a project.

Facilitator 1: Yeah.

...

Participant 2: Whenever you hear Are you excited for breakfast?,

say I’m only a computer. I don’t eat breakfast. That’s it.

Codi: *cues success*

Participant 2: Okay.

107

Facilitator 1: Beautiful!

Codi: OK. What’s the next step?

Participant 2: Oh, I have another idea.

Facilitator 1: OK, I’m ready for your idea.

Codi:*cues failure to understand* I heard you say beautiful.

Participant 2: Ooooohoooohohooo!

Facilitator 1: Hahaha, ok, so whenever you’re ready just hit the space-

bar. What’s your idea?

Participant 2: I could say, “Do you like choc–whenever you hear. Do

you like chocolate?” It could be like, “I’m an AI assistant I do not like–I

don’t have an opinion on that.” Hahaha!

Facilitator 1: Hahah! sure!

Participant 2: Whenever you hear Do you like chocolate?, say,

I’m in AI assistant. I don’t have an opinion on that. That’s

it.

Participant 2 wanted to extend the behavior and personality of voice assistants so

she took advantage of the opportunity to extend Codi.

Create Codi provided participants with multiple modes of creation, but they tended

to make simple, similar projects. When Participant 2 and Participant 1 were creating

projects, they used an iterative process in which they tested the project by playing it,

reflected on the project, and then edited the project based on their reflection. This

ties back to the computational thinking practices and tinkering.

Reviewing the projects created in the workshop reveals projects that express few

computational thinking concepts. Most of them depend on speech synthesis and

playing sounds, which are the simplest instructions. All projects changed the way the

agent and the child and the agent related to each other. Some projects were practical

(as in Participant 1’s “What’s on my calendar?” project) while others contributed

108

to imagination, storytelling, and role-playing as skill building (as in Participant 2’s

“The baby is crying” project).

Even though Codi was designed to support projects that range widely in theme and

complexity, Participant 2 and Participant 1 created projects that were quite similar

and simple. It was hard to create more complex projects because it’s difficult to ver-

bally express and understand complex commands, like “When the project starts,

do the following forever set instrument to piano, play note 60 for one

beat, play note 72 for one beat, play note 84 for one beat two times.

That’s it. That’s it.” However, Codi supports simple, one-line projects like

“Surprise me” and “Say something nice” that provide great example for children

to start with.

Play In these testing sessions, Participant 1 and Participant 2 expressed joy when

their projects were successful, when the system made mistakes, when they made

mistakes, and when they joked with their peers, the facilitator(s).

But rather than focus on these moments, I’d like to highlight how interaction with

Codi raised opportunities for taking a playful approach to project creation. I saw this

especially in testing sessions with Participant 2 in the first March testing session with

Participant 2.

As Participant 2 was creating her first project “The baby is crying”, Codi prompted

Participant 2 for the next step. Participant 2 didn’t know what to put in the next

step.

Participant 2: So should I just experiment and keep going?

Facilitator 1: That’s up to you. What do you want to do?

Participant 2: I want to kind of see what would happen if I kept going

with it.

In the transcript excerpt above, curious Participant 2 views the process of creating

with Codi as exploration and experimentation. Early experiences creating with Codi

109

involve discovery and integration of new evidence (gained by interactions) to build a

model of what Codi is, what Codi can do, and how to use Codi.

Facilitator 1: Okay so what we want is to... how do you want to change

the program?

Participant 2: Hmmm, I dunno I feel like it’s still kind of confusing me

I feel like I need to play like, I don’t know, to get to know it a little more.

Facilitator 1: Yeah... yeah, do you have questions that maybe I can help

answer?

Participant 2: I’m just curious, like I have to see it, kind of more like,

on what it can do I guess

In the transcript excerpt above, Participant 2 acknowledges play as a method for

learning in the face of confusion. Although Codi was meant to be a tool such that a

child would be playing while making and interacting with projects, interacting with

Codi itself is acknowledged as play.

Share In these testing sessions, we saw the role of peers in the collaboration between

the facilitator and the child. As a facilitator, I also got to be a co-creator and

mentor, supporting the students with their projects. The students shared questions,

decisions, inspirations, and also feelings about the project with me. Together, we

raised questions, debugged, and celebrated bug fixes. Pair programming with Codi

made the project creation process a socially meaningful experience. See Subsection

5.2.4 for a snippet of a test session in which a participant debugs their project.

Reflect In the testing sessions, we saw reflections on the process, the project, and

past experiences that influence the students understanding of their process, project,

and the tool itself.

One category of reflections centered around ways to improve the project. After

playing his “What’s on my calendar” project for the first time, Participant 1 shared,

110

“You know, I guess that there was one thing that I forgot to say before I said com-

puter programming...I meant to say ‘Here are your events.’” After playing a project,

Participant 2 reflected on it and said, “I think I should edit that a little.” After

playing her “How are you doing?” project, Participant 2 evaluates her project and

reflects on whether it is satisfying to her, “Do you think that’s how she[the system]

should reply? Hehe, I think she[the system] should.” I also asked Participant 1 what

he thought of his Rhino Song project compared to the other projects he worked on in

the past. This brought him back to thinking about how he could improve the project.

He said, “I thought it[the Rhino Song project] was pretty interesting. And I think

it involved like more things I was curious about...such as identifying notes and like

beats? Oh, I forgot to mention. Also, compared to the toy I try to replicate, the

beats were in a pretty slow tempo.”

Other reflections centered around the experience of making projects itself. After

Participant 1 finished his “What’s on my calendar?” project, I asked him “How did

you feel after making the project?” and he said, “I felt pretty good about it because

I felt like I was really close to an idea of how the calendar skill for something like

Amazon Alexa was implemented.” As someone who is interested in computer science

and software engineering as a potential career, Participant 1 found it empowering

and validating to create a project that mirrored functionality created by professional

software engineers. When I asked Participant 2 what she thought of her experience,

she said, “I mean, I really enjoyed it. The projects are really fun. It’s fun to make

projects.” I asked, “Do you normally make projects, like, other kinds of projects?”

to which she replied, “Not really. Not usually.” Her feedback ties back to what I had

learned earlier about the need for more opportunities and agency over projects for

children without visual impairments.

7.1.2 Building and Applying Mental Models

In the test sessions, I sought to observe the ways in which participants built and

applied models as well as the challenges faced in the process. I also sought to learn

about the models the children developed. This section helps with understanding how

111

Codi supports computational thinking skills, one of which is building and applying

mental models.

Children Use Different Strategies For Participant 2, playing the project first

is a strategy for building a mental model of what instructions to expect before going

straight into the code.

Facilitator 1: Should I give you an example?

Participant 2: Yes, please.

Facilitator 1: OK, so I think I made a program. Let me see and try to

figure out what I called it. I wrote it down. I think it was “Testing speech

synthesis”. OK, let’s see. See inside "Test speech synthesis".

Codi: Opening project "Test speech synthesis" for editing. There

are two steps.

Participant 2: Could I hear the project first or?

Later on in the testing session when Participant 2 is in the “Inside Project” state,

Participant 2 asks, “Do I–am I at that point where I can just say it[the instruction] or

do I have to say add a step?” Later, she asks, “Should I ask what state I’m in?” These

questions confirm that she’s developing and verifying her notional machine because

they reveal that she knows what actions she can take to clarify her understanding.

Agents Inspire and Influence Model Building In the testing sessions, both

participants sought to learn more about the agent and its implementation and how

it relates to the other computing technologies in their lives. In particular, both

participants found the sound cues intriguing.

Here’s a snippet of conversation from a test session with Participant 2.

Facilitator 1: If you want to know if it’s listening to you that *imitates

low-high cue* means it’s listening and *imitates high-low cue* means it’s

not.

112

Participant 2: OK. Oh, you changed that too.

Facilitator 1: Yeah. Just make it more clear, hopefully. Does it make it

more clear?

Participant 2: Yeah! How’d you do that? You just–

Facilitator 1: Oh, I went in–So, this entire website I coded myself so I

can go in and change the code to use certain sounds.

Participant 2: You find the sounds too?

Facilitator 1: Mmhm! Yeah. I found a snap sound, and then I changed

the pitch of a sound, and then I combined two sounds together.

Participant 2: Oh, that’s really cool.

Here’s a snippet of conversation from a test session with Participant 1.

Participant 1: So yeah. Yeah. Because I sort of–because when I–my

mind went on to comparing. This to, like, Google voice recognition and I

know how–I’ve gotten so used to Like with Google Voice Recognition, it

can really, like it can–it’s implemented in a way where I really know what

each sound means at the end because when it recognizes it’ll go *imitates

low-high cue*. And then it will bring up the results. Well if it does not

recognize it which is more rare, then it’ll go like *imitates high-low cue*

and then not do anything after that.

As students build and apply the mental models, they get a sense of the intelli-

gence of the system. In the following scenario, Participant 1 plays the “Give me a

compliment” project, and the second facilitator follows.

Participant 1: [System], give me a compliment.

Codi: You are amazing

Facilitator 2: [System], give me a compliment.

Codi: You are amazing.

113

Participant 1: You know, uh, it can’t hear different. It can’t detect

different individual voices. So I knew it was going to say the same thing

because it detected the same words and it can’t detect different voices.

Participant 1’s commentary reveals his understanding of speech recognition and demon-

strates how it decreases how intelligent he thinks the agent is. Participant 1 recognizes

that Codi doesn’t distinguish between speakers in giving a compliment and cites that

as the reason the second facilitator got the same compliment has him. This implies

that Participant 1’s expectations for the agent were anchored by human-human in-

teractions in which people give compliments customized to the recipient. However,

“seeing inside” the project would reveal a single step: “say you are amazing .” The

real reason Codi says “You are amazing” is not because the speech recognition cannot

distinguish between people. It is because the project instructions specify that Codi

say “You are amazing.” Here, we see an example of how an agent-based interface may

encourage children to confer human-like reasoning to the agent.

Models Prompt Reflection on User Agency At the end of the first March

session with Participant 1, I asked him, “If you had to explain how [the system]

works to a friend, how might you do that? Like if you were introducing or telling

them about the thing that you were working with and what you made, how would

you talk about it?” He responded:

Participant 1: Well. I would probably start by saying well [it] is this

program that’s sort of like where you can sorta make computer program-

ming projects using your voice. I think that would be what I would start

with. So. The way it works is you follow many different steps. For creat-

ing the project, it’ll—it’ll prompt you to do certain things to create the

project. So. I think that’s sort of giving people like a basic understanding

of [it].

The way Participant 1 would present the system to a peer reveals that he considers

the system to play a greater role in guiding and prompting whereas the user of the

114

system follows the steps. His explanation doesn’t convey much about user agency

and creative possiblities other than that you “can sorta make computer programming

projects”.

Expressing Mental Models is Challenging At the end of the second March

session with Participant 2, one of the counselors at the Grousbeck Center at Perkins

asked her, “So what were you working, on?” Participant 2 hesitated to respond and

deferred to me to share that we were creating programming projects using a tool I

made. An agent-based interface for creative programming is software that presents

itself as a sort of black box. You can get a mental model of how to use the black

box based on its behavior and the feedback, but it is still challenging to communicate

and synthesize information about the system’s behavior. Presenting Codi effectively

to those who have not interacted with it before involves connecting to concepts and

experiences of the listeners—something Participant 2 did not have much time to

explore.

7.1.3 System Intelligence

The lack of intelligence of the system decreases the usability of the sys-

tem while adding an element of silliness and play. Participant 2 regularly

confirmed commands with me before engaging with the system, indicating that she

didn’t remember what commands would work and also that she knew the agent was

not smart enough to handle many of the ways she might express a particular com-

mand.

Participant 2: Should I–How do I say it? See inside “Say something

nice”?

Facilitator 1: Mmhm.

Participant 2: See inside "Say something nice."

Students also saw the system’s lack of intelligence in the sound library search

results.

115

Facilitator 1: I think it[the System] didn’t understand. Oh let’s try. Do

you have any baby sounds?

Codi: I found 24 sounds.

Participant 2:Oh!

Codi: Here’s one called clown honk.

...

Participant 2: Do you have any crying sounds?

Codi: I found one sounds. Here is one called thunderstorm.

Participant 2: Hahah, oh boy.

The students usually found joy in the mistakes made by the system due to the

system’s limited listening skills, knowledge, and understanding. This joy contributed

to the playful experience of interacting with an agent in order to create a project.

However, it would have been better for the kids to find joy inherent in their projects

and the process of designing and making them rather than in the silliness or absurdity

of some of the interactions they had with Codi. The silliness and absurdity component

of play was not anticipated, but contributes to a sense of randomness, exploration,

and surprise that goes along with play.

The intelligence of the system influences the relationship that the agent

has with the child. A highly intelligent system that is able to understand natural

language can increase usability by reducing friction and making it easy to execute

commands. This would give the child more time and opportunities to express them-

selves, to have power as a creator. One way in which Codi supported a child’s creative

process while reducing the cognitive load is through its support of slot filling (See Sec-

tion 6.3 for more on slot filling).

However, a more intelligent system may be harder for a student to model men-

tally. Children build a model of how the agent works by interacting with it, and an

intelligent agent may have more complex behaviors that do not get explained. With-

out explanation, a student is left to infer and can build an inaccurate mental model

116

of an agent-based system. During the testing sessions, there were several times in

which the student was confused about what state Codi was in, and this gave them

some trouble using Codi as a creative tool until they corrected their mental models

through feedback or guidance. Incorrect mental models lead children to attempt ac-

tions that either they cannot do because of what state they are in or take them into

unexpected states. Participant 2 would forget that Codi wasn’t actually listening to

her and wouldn’t until she pressed a key. Participant 1 forgot about the need to finish

a project before playing it.

7.1.4 Usability Challenges

Although Codi is designed to make it easy for children to get started with playing and

creating projects, there were 6 key factors that reduced the usability of the system.

Here they are, each with an example:

1. State machine transitions and thus current state are not always clear.

Participant 1:What is step two ?

Facilitator 1: You may want to check what state you’re in right

now.

Participant 1: *starts speech recognition* *stops speech recogni-

tion* Hmm.

Facilitator 1: I could also tell you. You’re currently in the ‘play

project’ state. So if you want to modify the project, you have to be

inside the project first.

Participant 1: Hm. [System], see inside "Rhino Song".

Codi: Opening Project Rhino Song for editing. There are two

steps.

2. The speech recognizer makes systematic mistakes.

Participant 1: Play Note 90 for one beat.

117

Codi: I heard you say play note 94 one beat.

Facilitator 1: How do you prefer to add the note?

Participant 1: I’d rather just–I think I’d rather just type it.

3. Codi disrupts flow when giving feedback in response to incomplete utterances.

Participant 2: ... Insert..

Codi: ... Insert..

Codi:*cues failure to understand*

Participant 2:Sorry!

Facilitator 1: No, don’t be sorry!

Participant 2:So I just say insert–

Facilitator 1: I just paused to the mic. Whenever you’re ready!

Participant 2: So I just say insert before Step 3.

4. Conforming to grammar is difficult.

Participant 1: Okay so. I’m not sure the command for editing.

5. Supported commands are not flexible enough.

Participant 2: Replace step one with say I think you’re very

beautiful and I like your personality

Codi: There is no step one with say I think you’re very beautiful

and I like your personality. What step number?

Facilitator 1: One.

Participant 2: One.

Codi: What is the instruction?

Participant 2: Say I think you’re very beautiful today.

Codi: Replaced Step 1.

118

The system didn’t properly pull arguments from Participant 2’s command to

replace a step even though it was intuitive. Given the difficulties, it seems like

Participant 2 decided to reduce the complexity and length of her instruction.

6. Bugs can surface in non-obvious ways.

Participant 2: Next, add a step.

Codi: No more steps.

Here, Participant 2 is asking to add a step to the project. However, Codi recognizes

“Next” in the command and interprets Participant 2’s utterance as “What is the

next step?” because the trigger is too broad. When Codi responds, “No more steps,”

Participant 2 could have interpreted this as the system telling her that she can’t add

any more steps—the opposite of what we want! We want the system to encourage

creation not fight back against it.

Bugs reduced the usability of the system by creating confusions as the student

built a mental model of the system. These confusions were addressed by the facilitator

immediately to address misunderstandings. However, this puts the child in backseat

role during that time and limiting the creative possibilities. Despite these challenges,

children can still get comfortable and confident creating with Codi.

7.1.5 Boosting Usability

Codi’s multimodal interface, predictable conversations flows, and support for ques-

tions made it easier to learn and create with Codi.

First, the voice interface provided an alternative to the keyboard for children un-

familiar or uncomfortable using a computer and keyboard. Although it is designed for

the screenless experience, Codi also provides a visual interface that supports collabo-

ration between people of different abilities, such as someone with visual impairments

working with someone without visual impairments. The multimodality of Codi means

that Codi takes advantage of the interfaces available. This also supports the use of

Codi in different contexts, by different people. Someone who cannot speak out loud,

119

perhaps because they are in a library, may want to type to Codi instead of talking

aloud to Codi.

Second, the state machine had predictable and easy-to-follow flows like the project

creation and project editing flows. Children can express their intent to Codi through a

range of expected phrases, but Codi suggests the simplest phrases when giving exam-

ples the child can easily recall and say them in future interactions. Through interac-

tions with the system, a child builds a model of what phrases work well for executing

different transitions. These phrases are meant to be simple. When they are not simple

because they require arguments, Codi conducts slot filling. Consider the instruction

“Replace step 1 with say I think you’re very beautiful today.” A child

can do this action in parts as Codi ensures that the two mandatory arguments for

replacing step have been specified: the step number to replace and the instruction

with which to replace the step.

Child: Replace a step.

Codi: What step number?

Child: 1

Codi: What is the instruction?

Child: Say I think you’re very beautiful today.

Codi: Replaced Step 1.

The Codi system, a state machine, only allows state transitions consistent with es-

tablished flows for creating, editing, and playing and playing a project. When a child

got confused about where they are, they asked “What state am I in?” and “What

step am I on?” to situate themselves. However, they didn’t take advantage of “What

can I do now?” which would have illuminated possible next steps for continuing to

create and explore with Codi. This is because Participant 1 and Participant 2 were

not at a loss for what to do. They had a clear idea of what they wanted to implement

in the system, and were looking for how to do something rather than for something to

do. The “What can I do now?” question is still useful for showing how to accomplish

120

a task because Codi answers the question by suggesting an action and demonstrating

what to say to execute the suggested action.

Participant 1 and 2 drew from Codi’s existing sound assets and asked Codi ques-

tions to learn about what assets were available. When they asked Codi, “What sounds

are there?”, Codi presented three sounds at a time by playing the sound and then

saying the name of the sound. This reduced the cognitive load of processing and re-

membering sounds so that Participant 1 and 2 could easily go back to their projects

and integrate sounds of interest or record their own.

As mentioned in Subsection 3.2.2, Baldwin et al. identified three problem ar-

eas within audio-only interfaces: ephemerality, linear interaction, and unidirectional

communication. Codi still has ephemerality and linearity because Codi’s primary

output is sound. However, Codi addresses the third problem area of unidirectional

communication by presenting a conversational interface that aids in mitigating the

problem of ephemerality. The ephemerality of sound requires those interacting with

Codi to store what they hear in working memory. Codi alleviates this by answering

questions like “What did you say?”, “What did I say?”, and “What state am I in?”

whenever the user asks.

At the end of the first March session with Participant 1, I asked, “Do you think

that you’d feel comfortable playing with [the system] on your own? Like if I could give

you a link to the website and you could just go on and play with it.” He responded,

“Yeah.”

7.1.6 Supporting Self-Expression

In the March test sessions, I also aimed to evaluate the extent to which children

could express themselves with Codi in a way that builds their creative confidence.

This ended up being quite challenging to evaluate without a baseline: what was their

level of creative confidence before programming with Codi? What were their interests

and ideas before interacting with Codi? Rather than compare to a baseline, I aimed

to see what I could learn from participants from the projects they created and to

understand how intentional their self-expression was.

121

Participants expressed aspects of themselves in through project ideas and the

behaviors they sought to explore. However, in most cases, the participants were not

intentionally trying to share something about themselves in the project. Participant

2 created a project that expressed her values:

Participant 2: Say something nice.

Codi: Ok, when you say "[System], say something nice," I’ll play

the project. What’s the first step?

Participant 2: Say you are very pretty and beautiful. I like

your personality.

Codi: Ok, what’s the next step?

Participant 2: I’m done.

From this simple project, I could see that Participant 2 cared about beauty—both

inside and out. Her project also conveys information about how she wants to agent

to relate to her. Yet Participant 2 did not intend for me to interpret her project in

this way, so I would argue that this is not intentional self-expression.

Participant 1 liked music and wanted to recreate a song from Rhino, one of his

childhood toys. Codi supported Participant 1’s self-expression and learning by giving

him a new platform on which to create his own version of the Rhino Song. However,

creating this song with Codi was challenging and we spent a large amount of time

troubleshooting the system mishearing our commands (e.g. “play note 90 four

times” misheard as “play note 94 times”). At the end of the test session, Partic-

ipant 1 shared, that he “was hoping that we would be able to like do like the at least

the first measure of the song.”

Codi provided opportunities for self-expression, but participants did not explic-

itly make the conscious choice to use it as a medium for self-expression. Further-

more, Codi’s usability challenges hindered self-expression as well by slowing down

the project creation process.

122

7.2 Onboarding, learning resources, and facilita-

tion are needed to effectively promote engage-

ment with computational thinking concepts and

practices.

In order to support children’s engagement with computational thinking concepts and

practices, agent-based programming interfaces need onboarding experiences, learning

resources, and facilitation that helps learners surface and pursue their own interests

and integrate computational thinking concepts.

7.2.1 Computational Thinking Concepts

The March testing sessions revealed that although the Codi system alone can support

a subset of computational thinking practices, it is difficult to hit learning goals related

to computational thinking concepts without proper onboarding, learning resources,

and facilitation. This was especially clear when comparing the Wizard of Oz tests

I did as part of my iterative design process to the March testing sessions I did to

evaluate my system.

Wizard of Oz Tests In the Wizard of Oz tests, I simulated the Codi system, and

the child programmed through conversation with me. As I did this, I bounced between

being a facilitator and being the system. The child had access to cards that noted

exactly what they could say to Codi to create projects intended to either broaden the

kind of project a child could make or introduce a computational thinking concept.

These cards were printed in Braille for children without vision and large-print (size

30 font) for children with low vision.

The first card in the set introduces how to use Codi’s speech synthesis functional-

ity. It also presents and example of framing a project as the instructions for executing

a specific command (See Figure 7-1). It has one step so that a child can quickly feel

a sense of success and experience the project creation flow.

123

Figure 7-1: Resource card with instructions for creating a “Give me a compliment”
project.

The next card (Figure 7-2) introduces the ability for a project to receive input

and react to events using speech recognition. It’s a bit more involved, but highlights

the potential for programming conversation flows to extend the agent’s abilities.

Figure 7-2: Resource card with instructions for creating a “Tell a knock knock joke”
project.

The third card (Figure 7-3) introduces two concepts: randomness and looping. It

is a great project to introduce because the element of surprise makes it simple and

fun.

The fourth card (Figure 7-4) shows an example of how a child can change the way

a sound is played in a program. The project exemplifies a domain of projects that

helps contribute to imagination, storytelling, and scene-setting.

An additional card (Figure 7-5) extends the introduction of sound commands with

a list of sound commands the child can try.

The child is then given the opportunity to explore different sound commands. The

facilitator may use the next card (Figure 7-6) to introduce looping a specific number

124

Figure 7-3: Resource card with instructions for creating a “Make silly sounds” project.

Figure 7-4: Resource card with instructions for creating a “There’s an anxious cow”
project.

Figure 7-5: Resource card with list of sound commands understood by Codi.

125

of times as a way to prevent unnecessary repetition in the code. The child can see

that rather than repeat “Play the moo sound” and “Faster”, the child can specify

these instructions once inside of a loop that repeats these instructions. This extends

the previous introduction of loops by giving the child the chance to pick the number

of iterations in the loop.

Figure 7-6: Resource card with instructions for creating a “There’s an anxious cow”
project using loops.

The rest of the cards are references so that a child has a tangible list of commands

that can be used. At the time of the Wizard of Oz tests, the cards were seen as

a crutch. Ideally, the system would answer any questions the child has about how

to specify certain commands and what kinds of commands are available at different

points in the system. See Appendix B.1.1 for the rest of the cards.

Projects created during Wizard of Oz Tests touched on computational thinking

concepts beyond sequences and events. Below, I share the instructions as provided by

the participant. They are not always perfectly formulated. I keep these imperfections

to show the kinds of interactions that may happen.

In the “Only Bouncy Sounds” project, the participant builds a sequence of in-

structions using sound commands to output a sequence of increasingly high pitched

bouncy sounds.

Only Bouncy Sounds

First set pitch to 1.

Then, play the bouncy sound.

126

Then, set pitch to two.

Then, play the bouncy sound.

Set pitch to 5. Oh no, I mean 3.

Then, play the bouncy sound.

Then. Set pitch to 3.

Then, play the bouncy sound.

Then. Set pitch to 4.

Then, play the bouncy sound.

Then. Set pitch to 5.

Then, play the bouncy sound.

That’s it.

The “Only Bouncy Sounds” project is a great use case for loops. The participant

created “Fast bouncing” as a simple first project integrating loops. However, the se-

quence of instructions was incorrect. Placing the repeat command at the end resulted

in the the bouncy sound playing only once.

Fast bouncing

Set pitch 10.

Then play the bouncy sound.

Repeat the following forever.

That’s it.

When I provided the exact example of how to use the forever loop, the participant

successfully used the loop command to create a project that plays the bouncy sound

ten times.

Bouncing forever

First repeat the following forever.

Set pitch 10.

Then, play the bouncy sound.

That’s it.

127

The participant aimed to modify the project to make the sound alternate between

pitches.

Alternating Bounce (Attempt 1)

Repeat the following forever.

Set pitch 10.

Then play the bouncy sound.

Repeat the following forever.

Set pitch 20.

Then play the bouncy sound.

That’s it.

The output of the project was a bouncy sound of pitch 20 being repeated over

and over. When I asked the participant what about the output was unexpected,

he said that the pitch was staying at 10. This was incorrect so I told him that it’s

actually at pitch 20 and why. The participant might not have understood that the

computer interprets the actions into specific commands and follows these exactly.

When I showed him the correct program, he understood his mistake.

Alternating Bounce (Final)

Repeat the following forever.

Set pitch 10.

Then play the bouncy sound.

Wait .5 seconds.

Set pitch 20.

Then play the bouncy sound.

Wait .5 seconds.

That’s it

With facilitation and resource cards, the child was able to create projects that

integrated loops and sound editing rather than engage only with sequences and events.

128

March Testing Sessions As a facilitator during these March testing sessions, I

did not guide the student towards particular concepts, and I did not provide physical,

printed or embossed project cards. Instead, the sessions were guided by ideas that

a child had for a project they wanted to do. Their project creation process took

an iterative approach in which simple basic functionality was accomplished before

moving on.

In the projects created during the March testing sessions (See Appendix A.1 and

A.3), sequences and events were the only computational concepts explored. The

participants effectively explored sequences whenever they were inside a project, asking

about the current, next, or previous step, or modifying a project by inserting, deleting,

or adding steps. Sequences are core to children’s understanding that their projects

are programs made of sequences of instructions. While the participants explored

sequences effectively, they faced barriers when exploring events.

The only event used in these testing sessions is based on speech recognition. I made

the “Test speech synthesis” project to demonstrate the “Whenever I say” event using

the command “Whenever I say hello, say hi friend. That’s it.” However,

playing the project confused the participant because both Codi and the project han-

dled the “Hello” meant only for the project. Codi handles the hello by responding

with a greeting.

Facilitator: Test speech synthesis.

Codi: *cue project start*

Facilitator: Hello.

Codi: What’s up?

Facilitator: Hello.

Codi: Hi, friend.

Codi: *cue project end*

This behavior is confusing because those listening to the system must determine

what to attribute behavior to, the agent or the project played by the agent. Later,

129

Participant 2 creates the “Talk to me” project relying mainly on the “Whenever

I say” event. In order to trigger the “Whenever I say” event, the system must be

executing the “Listen and wait” instruction. We had trouble continuously listening

and waiting, which made it difficult to test the event handlers Participant 2 coded in

the project. This made our exploration of events less successful.

7.2.2 Computational Thinking Practices

Across the four sessions, I found nine instances in which debugging occurred, one

instance where reusing and remixing occurred, and one instance where being incre-

mental and iterative occurred. There were zero instances where the idea of abstraction

and modularity was discussed or brought up as something the student was aware of.

In the rest of the section, I present key conversations from the test sessions that

exemplify computational thinking practices.

During one of the testing sessions, Participant 2 and I (Facilitator 1), collabora-

tively debugged a project created by Participant 2. This collaboration highlighted

that it’s not just helpful to investigate current state of the program. When debugging,

it’s helpful to know what changes were done to the program and easily undo those

changes. Codi doesn’t yet store this, but as a facilitator, I was still able to go back

into the history to view the sequence of steps:

Facilitator 1: Okay, so this is a sequence of steps we took. We said,

“[System], see inside ‘Rhino Song’”, “add a step”, “set instrument to”.

That didn’t work. And then we said, “Set instrument to piano.”

Facilitator 1: And then and then later we said, “Insert set instrument

to electric piano before step one.” And then we said, “Delete step one.”

I mean “Step three.” I guess...

Participant 1: Yeah. You know what I said—I—Now I know what

happened.

Facilitator 1: Yeah?

130

Participant 1: I must have deleted—I must have forgotten that—I must

have been thinking primarily about step one and then not realized that

then there were four steps because the added step was step four. But I

was thinking about step one. So I think I must have deleted the—

Facilitator 1: The second.

Participant 1: The second note.

Facilitator 1: Yeah. It’s awesome that you figured that out!

Another example of iterative development based on testing periodically:

Participant 1: Yeah, because I’m actually not quite sure if I got the

right note. I might have gotten it either a little bit lower or a little bit

higher, but let’s test it out and see.

Facilitator 1: Yeah. All right. If you’re ready, you can play the project.

7.3 Feedback

There are many ways to improve Codi. During the sessions, we received feedback

from the students. The majority of explicit feedback came from Participant 1. When

he was creating his Rhino Song project, he learned that he needed to insert “set

instrument to electric piano ” at the beginning of the project to hear the note

play.

Participant 1: Add a step.

Codi: What is the instruction?

Participant 1: Set instrument to electric piano.

...

Codi: Ok, what’s the next step?

Participant 1: I’m tempted to say move step three to step one

to try to move it.

131

Here, I realized that although I was providing the basic vocabulary needed to

make the change that he wanted, a more intuitive interface would draw analogies to

the physical world, suggesting that one could move a step like a physical object and

the steps after it would also shift.

There were also instances in which the students’ attempts at commands informed

how the grammar could be made more flexible to better support natural language.

Both participants struggled to remember how to see inside a project and open it

for editing. Participant 2 asked, “You say ‘Edit The baby is crying ?‘”, and in a

different session, Participant 1 asked, “Is there a command like maybe say ‘check the

steps’?”

Feedback from test session participants suggest that Codi would be easier to use if

Codi’s commands for manipulating program drew from physical analogies and allowed

children to customize Codi’s audio cues.

7.4 Methodology

In the testing sessions, I excluded the braille and large-print learning resource cards

used in previous iterations as described in Section 7.2.1. I relied on the system and

facilitator to provide guidance and fill in the blanks as as the facilitator and child

worked together. These workshops were characterized by collaboration because I

recognized the importance and power of peers and collaboration on promoting play

in the process. As a facilitator, I was a mentor aiming to help the students realize

their ideas through a program.

I used a service to automate the transcription of the audio and then reviewed the

transcripts to correct inaccuracies in speech recognized and speaker attribution and

include missing sound cues and project executions. I apply grounded theory [52] to

analyzing transcripts from the testing sessions. See Figure 7-7 for the code.

132

Figure 7-7: The code system, derived from the project goals, consists of six groups of
codes. Hierarchy in the codes denote relationships between ideas in the same group.

7.5 Summary

7.5.1 Findings

Despite usability challenges, an agent-based interface can facilitate meaningful cre-

ative learning experiences for children who cannot see. These experiences also in-

clude opportunities for children to express themselves. However, an agent-based pro-

gramming interface alone is not enough to promote engagement with computational

thinking. Onboarding, learning resources, and facilitation are necessary to surface

opportunities for connecting to computational thinking concepts.

When children imagine what’s possible to create with Codi, they are often inspired

by Codi, and create projects that add to Codi’s behavior and personality. Codi did not

inspire a diversity of projects where there was little scaffolding and learning resources

provided. Because Codi provides a non-traditional interface for programming, Codi

prompts play as a way to learn how to use and create with Codi. In these test sessions,

133

we clearly saw collaboration between multiple people creating projects and we saw

sharing of projects between the facilitator(s) and the participant. Finally, the Codi

test sessions also involved participants reflecting on both the creative process and

thinking about ways to improve the projects.

From this evaluation, we saw children use different strategies for constructing

models of system behavior saw how agents inspire and influence model building.

We also saw that intelligence can increase usability at the cost of increasing system

complexity and risking children having difficulties building accurate models.

7.5.2 Limitations

This evaluation involved two students from Perkins who participated two test sessions

each. The evaluation would have been more meaningful if done with more students

with visual impairments, not just the ones at Perkins. It would have also been

informative to conduct test sessions with sighted children to see how they approached

using both the different available modes of interaction with Codi. Furthermore, these

March test sessions did not use learning resources and structured onboarding that

may have resulted in deeper engagement with computational thinking concepts and

a greater variety of projects created. As I coded the transcripts, I noticed that I

missed many opportunities to ask the participant for their theories and thoughts

before giving an answer or explanation of the system. This makes it hard to evaluate

understandability of the system.

134

Chapter 8

Conclusion

8.1 Contributions

I designed and developed a tool and platform for children to create programming

projects using voice and natural language. This extended existing work on creative

learning experiences for children with visual impairments, child-robot interaction,

programming by voice, and programming through natural language. I researched the

educational context of supporting children with visual impairments by conducting

interviews, co-designing, and running test sessions of Codi with students at Perkins

School for the Blind. Although this tool was designed with a focus on accessibility

for children without vision, the tool is accessible to children with limited motor skills,

and also supports children who cannot speak aloud with by allowing them to type

what would normally be spoken to Codi.

In this paper, I share what I learned about engaging children with visual impair-

ments who may have multiple disabilities in creative learning experiences. I provide

a framework for designing an agent as a tool and an architecture for implementing

an agent-based programming interface. My evaluation of Codi reveals that agent-

based programming interfaces can facilitate meaningful creative learning experiences

for children who cannot see, but that onboarding, learning resources, and facilitation

should be carefully considered to promote engagement with computational thinking

concepts and practices.

135

This project provides a powerful use case for applying natural language processing

to programming language design to help lower the barrier to entry to engaging with

computational thinking and give more people the ability to program and make change

in the digital world around them.

8.2 Future Work

At the end of my test sessions, Miriam, who teaches computer science and runs Maker

Club at Perkins School for the Blind, shared that Codi is an immensely valuable

tool for children at Perkins to try programming and engage in project-based learning.

With Codi, children can make computer programs and sketch out programs they may

want to develop further on other platforms. Miriam asked me what might happen

next, and I saw many ways to iterate on this project—there is so much more to

explore in the domain of agent-based programming interfaces for children.

Future iterations could have the potential to support meaningful connections be-

tween children using Codi. They could give children more agency by allowing them to

shape how Codi communicates with them. They could make it easier to tinker with

Codi and widen what and where a child can create with Codi. Future iterations could

make Codi more conversational so that children face fewer obstacles in the creation

process. They could also extend Codi’s capabilities as a programming language to

support stronger engagement with abstracting and modularizing—important skills in

system design and communication.

8.2.1 Promoting Community around Codi

As I mention in Section 5.4, interviews with faculty at the Perkins School for the

Blind, highlight that promoting community and connections between peers is hugely

important for these children. Currently, children can collaborate in-person to create

projects with Codi. However, they cannot yet store and load projects from peers that

were not made on the same device. A social experience within Codi where you can

view other’s projects—including those created on a separate device—could promote

136

community for peer learning and exploration. This could be executed using an online

community with cloud storage so that people can access other’s projects via links.

For an offline community, children may want to export and import Codi project files.

Children could share projects by telling the agent what projects to make pub-

lic, and discover others’ projects by asking something like “What projects did Tina

make?” They could also save their project, send it to their peers, and have their peers

load the projects on their own devices. As an agent, Codi could also frame projects

in a way that gives credit to the creator of the project and encourages the audience

to remix the project. For example, Codi could say, “Did you like that project from

Tina?...Well, what do you want to change about it? We can remix!” We also imagined

how a child might want to remix a project, “Codi, change your voice to a robot for

this section!” or “Codi, I didn’t like that at all. Remove that line!”

8.2.2 Agent Customization and Personalization

Codi responds to every person the same way, no matter who they are and no matter

what past interactions they have with Codi. Future work could explore how Codi

may relate to a child and support children’s creative learning long-term. By allowing

the child to customize the agent, we can explore and engage with issues of repre-

sentation in agent personality and child-agent dynamics. Additional research may

investigate whether customization can influence a child’s creative learning experience

and engagement with computational thinking.

Agents may also use affective computing1 to better relate to the child and under-

stand and react to the child’s mood to support a child in the creative learning process.

This raises questions about ethics because the agent will need to make judgements

about the child’s mood, but feedback from the child may be meaningful and per-

sonalized to a child rather than drawing from generalizations over data that is not

representative of all demographics of children.

1Affective computing is “computing that relates to, arises from, or deliberately influences emotion
or other affective phenomena” [62].

137

8.2.3 Increasing Tinkerability through Immediate Feedback

While editing a project with Codi, a child can test their project or execute the current

step as a way to get feedback about their project. This helps the child iterate on and

explore their projects. Codi can be more tinkerable with a “playground” mode that

gives children immediate feedback in response to their instructions. This “playground

mode” is inspired by REPLs (Read–eval–print loops). REPLs are interactive com-

puter programming environments that take single user inputs, evaluate them, and

return the result to the user [57]. REPLs facilitate exploratory programming and

debugging because the programmer can apply instructions incrementally and inspect

the result at each step. The read-eval-print loop involves the programmer more fre-

quently than the classic edit-compile-run-debug cycle [57]. In the “playground” mode,

Codi would interpret user’s utterances as programming instructions and execute them

immediately instead of storing them in a project. A “playground” mode would also

be valuable for a child learning what project instructions Codi understands and how

Codi understands them.

Another approach to presenting immediate feedback to the user is to have multiple

agents form the interface. One “editor” agent, like Codi, facilitates the project editing.

A second, “performer” agent acts out the instructions. This could also work well in

a collaborative setting where one person creates with the “editor” agent while the

collaborator tests the project by interacting with the “performer” agent. Introducing

a third, “tester” agent could allow a child to write automated tests in which the

“tester” agent and “performer” agent communicate with each other. This would

explore how agents and humans may work together and play roles on a team in a way

that reflects the sort of collaboration expected in the real world.

A multi-agent approach can provide new ways to understand and program with

agent-based interfaces. The design of multi-agent interfaces for programming can

naturally draw from human team dynamics. For example, having agents play specific

roles can break up the complexity of interaction with a single agent into simpler

interactions with multiple agents. However, an interface or team integrating multiple

138

agents could be complex based on expectations and the potential need to manage

who knows what. If you tell a single agent something, do you expect all the agents

to know? Do you need to tell each one? Raising questions like these, a multi-agent

approach may connect to theory of mind.

8.2.4 Extending What You Can Create with Codi

Building out Codi’s programming interface to support more mediums may inspire a

diversity of projects that range in complexity and interests expressed. Codi projects

currently only use audio output and control the agent itself. However, the ability

to program physical objects gives children opportunities to shape and engage with

their world [24, 42]. Codi’s programming language could be extended to support

programming physical devices like LEGO programmable bricks and micro:bit [14].

Codi’s speech and music commands could also be improved. In Codi, children

can make music using instructions that specifying instrument, note, and duration of

note. Another way they can engage with music is to use and remix Codi’s musical

sound assets. We could add additional commands to Codi; children could use these

commands to remix, break down, and build on songs they like. The speech commands

children can use in Codi projects are limited to a small set of voices. Expanding this

set would increase the expressiveness of speech commands in Codi and especially

support storytelling projects in which a Child may want to have multiple characters

speak in specific voices.

8.2.5 Extending Where You Can Create with Codi

Codi is a web application designed for a desktop experience even though it supports

a screenless experience of creating programming projects. Since Codi has an interface

that only requires a single key, a microphone, and a speaker, Codi could work well

on mobile devices with small screens. Codi could also work well as an app for voice

assistants in which certain wake words cue the voice assistants to begin processing

and responding to user speech. Future work could bring Codi to a mobile platform

139

that takes advantage of the inputs and outputs of phones and tablets, allowing people

to program through conversation on the go.

8.2.6 Abstracting, Modularizing, and Compiling in Codi’s

Programming Language

To enable children to easily implement complex behaviors with Codi, we need to

allow children to modularize projects and compose these modules. We can do this

by treating each project as an abstraction of a behavior that can then be embedded

as an instruction in a different project. See Section 5.5.3 for an example of what this

looks like.

We should also enable children to create projects that take in arguments and give

instructions that pass these arguments to the user. For example, a child might want

to create a project “Give me jokes” where an argument can be passed to the project,

“Give me three jokes.” This would expand the creative possibilities for children and

help them develop the practice of abstracting and modularizing their code to build

systems of projects that are easy to debug.

Codi’s natural language processing system involves compiling English instructions

into program instructions. Currently, Codi only verifies arguments of high level com-

mands, not arguments to project instructions. In order to make it harder to write

programs with mistakes, Codi could detect when arguments to a particular command

are invalid while parsing and evaluating semantic rules on the instruction. Then,

Codi could let the child know that an argument to an instruction is invalid rather

than letting them discover when the project gets played.

8.2.7 Making Codi More Conversational

We could make Codi’s natural language interface more robust to the variations in

expression enabled by the English grammar and idioms. We could also create a more

flexible interface by defining syntactic and semantic rules for the voice user interface.

These syntactic and semantic rules would build on English grammar rules, allowing

140

Codi to understand an instruction’s intent by generating parse trees that denote words

as noun phrases, verb phrases, direct objects, indirect objects, adjectives, adverbs,

and so on. These parse trees would contain more informational parse trees than

those parse trees generated by Codi’s NLP, and the semantic rules ensure that valid

sentences that represent the same concept or idea are understood to be the same.

These English language rules would help Codi understand a child’s intent even when

the child uses pronouns like “it”, “that”, “them”, and “this”.

Future work could also make the interface more conversational by handling in-

complete instructions. As mentioned in Section 6.5, the system expects instructions

to be complete. However, a natural conversation with Codi might involve ill-formed

instructions that that have filler words or are missing parts. Rather than requiring

the child to repeat the entire instruction again, future work could enable Codi to

identify what parts might be ambiguous or missing from the instruction. Then, Codi

could ask the user for those parts or wait for the user to finish the instruction. On the

other hand, if a child rephrases their instruction midway through their first attempt

at specifying the instruction, Codi should be able to recognize and discard the initial

incomplete instruction.

141

142

Appendix A

Tables

A.1 Codi Actions

Name Description Ideal Trigger
stopProject stop playing a project stop
editProject edit the current project what’s inside
stopRecording end the recording of a sound to use in projects stop recording
startCues start the audio cues start audio cues
renameCurrentProject rename the current project call this project *
greet greet me hi
getCurrentProject find out what project you are on what project am I on
queryActionTypes explore different kinds of actions what kinds of things can I do
getProjectNames hear a list of all the projects what projects do I have
checkSound check if there’s a boing sound do you have a boing sound?
queryActions get a suggestion for what to try next what can I do
stopBackground stop the background music stop the background music
listen get me to start listening until you say ’hold on’ listen
play play a project made by Tina called give me a compliment. give me a compliment
getRecordings hear me list all the recordings list recordings
return go back to the last state you were in go back
createANewProject create a new project new project
startBackground start the background music start background music
createANewProjectCalled create a new project with a name new project called
playCurrentProject play the current project play project
renameRecording rename recording rename recording
deleteProject delete a project delete the * project
getProjectCount hear how many projects there are how many projects do I have
finishProject leave the project i’m done
recordASound start recording a sound to use in projects record a sound called *
holdOn make me ignore you until you say ’listen’ hold on
stopCues stop the audio cues stop audio cues
editExistingProject check out what the alarm project is made of what’s inside alarm
getSounds discover what sounds there are what sounds are there
goHome go back to the home state go home
playARecording hear the last recording hear recording
getNthProject get the first project what’s project number one
queryState figure out what state you are in what state am I in
renameProject change the name of one of your projects call the * project * instead

143

A.2 Projects from March Test Sessions

Table A.1: Projects created during the March 5 test session. P stands for Participant
and F stands for Facilitator.

Date Maker Project
Name

Steps

3/5/19 P1 What’s

on my

calendar

Say what are my events.
Say computer programming.
Say dinner.
Say maker club.

3/5/19 P2 The baby

is crying

Say wah wah wah wah.
Say it’s ok, baby.

3/5/19 P2 Random

project

Say it’s morning time.
Play bird chirping sounds.
Say I hear birds chirping. It must be a sunny day.
Play the tropical birds sound.

3/5/19 P2 The fun

project

Say it’s a sunny day outside.
Say it might rain later though.
Say maybe we can go to the park later today.
Say it should be a great day. Wahoo.

144

Table A.3: Projects created during the March 19 test session. P stands for Participant
and F stands for Facilitator.

Date Maker Project
Name

Steps

3/19/19 P1 Rhino

song

Set instrument to electric piano.
Play note 78 for 2 beats.
Play note 94 for one beat.
Play note 94 for one beat.
Play note 87 for 1 beat.
Play note 85 for 1 beat.

3/19/19 F1 Sing with

me

Play the tina singing sound.

3/19/19 P2 How

are you

doing?

Say I’m good thank you I hope you’re having a great day

3/19/19 P2 Say

something

nice.

Say I think you’re very beautiful today

3/19/19 P2 Talk to

me

Say hi.

Whenever you hear hello, say hi there that’s it.
Listen and wait.
Listen and wait.
Whenever you hear you look pretty today, say thank you
that’s it.
Listen and wait.
Whenever you hear whats for breakfast today, say I don’t
know that’s it.
Listen and wait.
Whenever you hear are you excited for breakfast?, say
I’m only a computer I don’t eat breakfast that’s it.
Whenever you hear do you like chocolate, say I’m an AI
assistant I don’t have an opinion on that but thank you
for asking that’s it.
Whenever you hear okay I’m headed in for breakfast, say
I’ll see you later that’s it.
Listen and wait forever.

145

146

Appendix B

Figures

B.1 Learning Resources

B.1.1 Reference Cards from Wizard of Oz testing

Figure B-1: Learning resource card from Wizard of Oz testing that lists commands
you can say anytime.

147

Figure B-2: Learning resource card from Wizard of Oz testing that lists commands
for editing projects.

Figure B-3: Learning resource card from Wizard of Oz testing that lists commands
that work when you’re in the “Home” state.

Figure B-4: Learning resource card from Wizard of Oz testing that lists loop com-
mands.

148

Figure B-5: Learning resource card from Wizard of Oz testing with instructions for
renaming projects.

Figure B-6: Braille learning resource card from Wizard of Oz testing with instructions
for making the “Give me a compliment” project.

149

Figure B-7: Steps 1 through 4 of the “There’s an anxious cow” project as braille
cards for the Wizard of Oz testing.

150

Figure B-8: Steps 5 through 9 of the “There’s an anxious cow” project as braille
cards for the Wizard of Oz testing.

151

B.2 Interview Questions

Background Questions

• What do you like to do for fun?

• Have you made or done something recently that you’re proud of?

• What is your experience using computers? Have you ever coded before? What
do you know about computer science?

• Have you used a voice assistant (Amazon Alexa, Google Home, or Siri) before?
What did you use it for? What did you think of that experience?

Onboarding
What projects can you imagine making?

Projects

• How did you feel while working on the project?

• What made you feel that way?

• How did you feel after working on the project?

• What made you feel that way?

• What project was your favorite and why?

• What inspired you to create the projects? Why did you want to make projects?

• If we had more time to work on another project together, what would it be?

• Do you think you’d feel comfortable playing with this on your own?

Computational Thinking

• How does your project work?

• Simulation is a good way to gauge children’s understanding without dealing
with terms and definitions, specific jargon within coding or computer science.
After posing a program or interaction with the system, facilitators can ask,
“What will happen next?”

Usability & Tinkerability

• If you had to explain how the system works to a friend how would you do that?

• What do you want to build next? How do you think you would do that?

• Suggestions for improvements?

152

Bibliography

[1] About Charge: Overview.
www.chargesyndrome.org/about-charge/overview/.

[2] Accessible Block-Based Programming Environments for the Visually Impaired.
www.se.rit.edu/research/

accessible-block-based-programming-environments-visually-impaired.

[3] Actions on Google. developers.google.com/actions/.

[4] Alexa Skills. www.amazon.com/alexa-skills/b?ie=UTF8&node=13727921011.

[5] Amazon Alexa — Skill Blueprints. blueprints.amazon.com/.

[6] ARIA. developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA.

[7] Autism Spectrum Disorder (ASD). www.cdc.gov/ncbddd/cp/facts.html.

[8] Blockly — Google Developers.

[9] Common types of additional disabilities for children with visual impairments.
www.familyconnect.org/info/multiple-disabilities/

common-types-of-disabilities/13.

[10] Cubetto: A toy robot teaching kids code & computer programming.
www.primotoys.com/.

[11] Expanded Core Curriculum (ECC) Hub. www.perkins.org/school/ecc.

[12] LLK/scratch-vm. github.com/LLK/scratch-vm.

[13] Meet Cozmo. www.anki.com/en-us/cozmo.

[14] Meet micro:bit. microbit.org/guide/.

[15] Natural Language Toolkit. www.nltk.org.

[16] Osmo — play beyond the screen. www.playosmo.com/en/.

[17] Perkins School for the Blind. www.perkins.org/school.

153

www.chargesyndrome.org/about-charge/overview/
www.se.rit.edu/research/accessible-block-based-programming-environments-visually-impaired
www.se.rit.edu/research/accessible-block-based-programming-environments-visually-impaired
developers.google.com/actions/
www.amazon.com/alexa-skills/b?ie=UTF8&node=13727921011
blueprints.amazon.com/
developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
www.cdc.gov/ncbddd/cp/facts.html
www.familyconnect.org/info/multiple-disabilities/common-types-of-disabilities/13
www.familyconnect.org/info/multiple-disabilities/common-types-of-disabilities/13
www.primotoys.com/
www.perkins.org/school/ecc
github.com/LLK/scratch-vm
www.anki.com/en-us/cozmo
microbit.org/guide/
www.nltk.org
www.playosmo.com/en/
www.perkins.org/school

[18] Screen Reader Training Services. www.boundlessat.com/Blindness/
Screen-Readers/Screen-Reader-Training-Services.

[19] Slot Filling. dialogflow.com/docs/concepts/slot-filling.

[20] Sphero Edu. edu.sphero.com/.

[21] What is Cerebral Palsy? www.cdc.gov/ncbddd/cp/facts.html.

[22] Mark S Baldwin, Gillian R Hayes, Oliver L Haimson, Jennifer Mankoff, and
Scott E Hudson. The tangible desktop: A multimodal approach to nonvisual
computing. ACM Transactions on Accessible Computing (TACCESS), 10(3):9,
2017.

[23] Andrew Begel and Susan L Graham. An assessment of a speech-based
programming environment. In Visual LAnguages and Human-Centric
Computing (VL/HCC’06), pages 116–120. IEEE, 2006.

[24] Rahul Bhargava. Designing a computational construction kit for the blind and
visually impaired. PhD thesis, Massachusetts Institute of Technology, 2002.

[25] Paulo Blikstein. Pre-college computer science education: A survey of the field.
2018.

[26] Jeffrey Bonar and Elliot Soloway. Uncovering principles of novice
programming. In Proceedings of the 10th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, pages 10–13. ACM, 1983.

[27] Alice Boxhall, James Craig, Dominic. Mazzoni, and Alexander. Surkov.
Accessibility Object Model.
github.com/WICG/aom/blob/gh-pages/explainer.md.

[28] Karen Brennan and Mitchel Resnick. New frameworks for studying and
assessing the development of computational thinking. In Proceedings of the
2012 annual meeting of the American Educational Research Association,
Vancouver, Canada, volume 1, page 25, 2012.

[29] Justine Cassell. Embodied conversational agents: representation and
intelligence in user interfaces. AI magazine, 22(4):67–67, 2001.

[30] Janghee Cho. Mental models and home virtual assistants (hvas). In Extended
Abstracts of the 2018 CHI Conference on Human Factors in Computing
Systems, page SRC05. ACM, 2018.

[31] Jan Cuny, Larry Snyder, and Jeannette M Wing. Demystifying computational
thinking for non-computer scientists. Unpublished manuscript in progress,
referenced in www. cs. cmu. edu/˜ CompThink/resources/TheLinkWing. pdf,
2010.

154

www.boundlessat.com/Blindness/Screen-Readers/Screen-Reader-Training-Services
www.boundlessat.com/Blindness/Screen-Readers/Screen-Reader-Training-Services
dialogflow.com/docs/concepts/slot-filling
edu.sphero.com/
www.cdc.gov/ncbddd/cp/facts.html
github.com/WICG/aom/blob/gh-pages/explainer.md

[32] Alain Désilets, David C Fox, and Stuart Norton. Voicecode: An innovative
speech interface for programming-by-voice. In CHI’06 Extended Abstracts on
Human Factors in Computing Systems, pages 239–242. ACM, 2006.

[33] Stefania Druga, Randi Williams, Cynthia Breazeal, and Mitchel Resnick. Hey
google is it ok if i eat you?: Initial explorations in child-agent interaction. In
Proceedings of the 2017 Conference on Interaction Design and Children, pages
595–600. ACM, 2017.

[34] Stefania Druga, Randi Williams, Hae Won Park, and Cynthia Breazeal. How
smart are the smart toys?: children and parents’ agent interaction and
intelligence attribution. In Proceedings of the 17th ACM Conference on
Interaction Design and Children, pages 231–240. ACM, 2018.

[35] Elizabeth Ellcessor. Restricted access: Media, disability, and the politics of
participation. NYU Press, 2016.

[36] EndlessReverberation. r/Blind - JAWS Learning curve?
www.reddit.com/r/Blind/comments/8k63bi/jaws_learning_curve/.

[37] Martin BH Everaert, Marinus AC Huybregts, Noam Chomsky, Robert C
Berwick, and Johan J Bolhuis. Structures, not strings: linguistics as part of the
cognitive sciences. Trends in cognitive sciences, 19(12):729–743, 2015.

[38] Judith Good and Kate Howland. Programming language, natural language?
supporting the diverse computational activities of novice programmers. Journal
of Visual Languages & Computing, 39:78–92, 2017.

[39] Benjamin M Gordon and George F Luger. Progress in spoken programming. In
8th Student Conference, page 19, 2012.

[40] Lego Group. Mindstorms EV3.
www.lego.com/en-us/mindstorms/products/mindstorms-ev3-31313.

[41] Adam J Hampton, Amanda N Fisher Boyd, and Susan Sprecher. Youre like me
and i like you: Mediators of the similarity–liking link assessed before and after
a getting-acquainted social interaction. Journal of Social and Personal
Relationships, page 0265407518790411, 2018.

[42] Kreg Hanning. Tinkering with ScratchBit: explorations in blended making.
PhD thesis, Massachusetts Institute of Technology, 2018.

[43] Joel Jones. Abstract syntax tree implementation idioms. In Proceedings of the
10th conference on pattern languages of programs (plop2003), page 26, 2003.

[44] Yasmin B Kafai and Mitchel Resnick. Constructionism in practice: Designing,
thinking, and learning in a digital world. Routledge, 2012.

155

www.reddit.com/r/Blind/comments/8k63bi/jaws_learning_curve/
www.lego.com/en-us/mindstorms/products/mindstorms-ev3-31313

[45] Shaun K Kane, Varsha Koushik, and Annika Muehlbradt. Bonk: accessible
programming for accessible audio games. In Proceedings of the 17th ACM
Conference on Interaction Design and Children, pages 132–142. ACM, 2018.

[46] Tom Kelley and David Kelley. Creative confidence: Unleashing the creative
potential within us all. Currency, 2013.

[47] Jonathan Lazar, Aaron Allen, Jason Kleinman, and Chris Malarkey. What
frustrates screen reader users on the web: A study of 100 blind users.
International Journal of human-computer interaction, 22(3):247–269, 2007.

[48] Tuck Wah Leong, Frank Vetere, and Steve Howard. Randomness as a resource
for design. In Proceedings of the 6th conference on Designing Interactive
systems, pages 132–139. ACM, 2006.

[49] Lightningstep36. Make Scratch more accessible to blind and visually impaired
users. scratch.mit.edu/discuss/post/1478330/.

[50] Stephanie Ludi. Position paper: Towards making block-based programming
accessible for blind users. In 2015 IEEE Blocks and Beyond Workshop (Blocks
and Beyond), pages 67–69. IEEE, 2015.

[51] Ewa Luger and Abigail Sellen. Like having a really bad pa: the gulf between
user expectation and experience of conversational agents. In Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems, pages
5286–5297. ACM, 2016.

[52] Patricia Yancey Martin and Barry A Turner. Grounded theory and
organizational research. The journal of applied behavioral science,
22(2):141–157, 1986.

[53] meeow me. r/Blind - JAWS Learning curve?
www.reddit.com/r/Blind/comments/8k63bi/jaws_learning_curve/.

[54] Lauren R Milne and Richard E Ladner. Blocks4all: Overcoming accessibility
barriers to blocks programming for children with visual impairments. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems, page 69. ACM, 2018.

[55] Clifford Nass and Corina Yen. The man who lied to his laptop: What we can
learn about ourselves from our machines. Penguin, 2010.

[56] Michael Nichols, Gopal Gupta, and Qian Wang. Voice-commanded scripting
language for programming navigation strategies on-the-fly. In Proceedings of
the HCI International 2005, 2005.

[57] Kurt Nørmark. Systematic unit testing in a read-eval-print loop. J. UCS,
16(2):296–314, 2010.

156

scratch.mit.edu/discuss/post/1478330/
www.reddit.com/r/Blind/comments/8k63bi/jaws_learning_curve/

[58] Anna Nowogrodzki. Speaking in code: how to program by voice. Nature,
559(7712):141, 2018.

[59] Seymour Papert. Hard fun. www.papert.org/articles/HardFun.html.

[60] Hae Won Park, Rinat Rosenberg-Kima, Maor Rosenberg, Goren Gordon, and
Cynthia Breazeal. Growing growth mindset with a social robot peer. In 2017
12th ACM/IEEE International Conference on Human-Robot Interaction (HRI,
pages 137–145. IEEE, 2017.

[61] Roy D Pea. Language-independent conceptual bugs in novice programming.
Journal of educational computing research, 2(1):25–36, 1986.

[62] Rosalind W Picard. Affective computing. MIT press, 2000.

[63] Joseph Pistrui. The future of human work is imagination, creativity, and
strategy. hbr.org/2018/01/
the-future-of-human-work-is-imagination-creativity-and-strategy,
Jan 2018.

[64] Anna Powers. Creativity is the skill of the future.
www.forbes.com/sites/annapowers/2018/04/30/

creativity-is-the-skill-of-the-future/#2c655944fd48, May 2018.

[65] Mitchel Resnick. All i really need to know (about creative thinking) i learned
(by studying how children learn) in kindergarten. In Proceedings of the 6th
ACM SIGCHI conference on Creativity & cognition, pages 1–6. ACM, 2007.

[66] Mitchel Resnick. Learn to code, code to learn. EdSurge, May, 54, 2013.

[67] Mitchel Resnick. Give ps a chance: Projects, peers, passion, play. In
Constructionism and creativity: Proceedings of the Third International
Constructionism Conference. Austrian Computer Society, Vienna, pages 13–20,
2014.

[68] Mitchel Resnick. The seeds that seymour sowed. International Journal of
Child-Computer, 2017.

[69] Mitchel Resnick and Ken Robinson. Lifelong kindergarten: Cultivating
creativity through projects, passion, peers, and play. MIT Press, 2017.

[70] Mitchel Resnick and Eric Rosenbaum. Designing for tinkerability. Design,
make, play: Growing the next generation of STEM innovators, pages 163–181,
2013.

[71] E. Rosenbaum. Category color confusion.
github.com/LLK/scratch-blocks/issues/995.

157

www.papert.org/articles/HardFun.html
hbr.org/2018/01/the-future-of-human-work-is-imagination-creativity-and-strategy
hbr.org/2018/01/the-future-of-human-work-is-imagination-creativity-and-strategy
www.forbes.com/sites/annapowers/2018/04/30/creativity-is-the-skill-of-the-future/#2c655944fd48
www.forbes.com/sites/annapowers/2018/04/30/creativity-is-the-skill-of-the-future/#2c655944fd48
github.com/LLK/scratch-blocks/issues/995

[72] sarhat. Is there ADA Accessibility to Scratch? I have a low vision student who
is struggling to use Scratch.
scratch.mit.edu/discuss/topic/114554/?page=1#post-1008792.

[73] Hannah Schwar and Rqayyah Moynhihan. There’s a clever psychological reason
why amazon gave alexa a female voice. 2018.

[74] Hannah Schwr and Ruqayyah Moynihan. There’s a psychological reason why
amazon gave alexa a female voice. www.businessinsider.com/
theres-psychological-reason-why-amazon-gave-alexa-a-female-voice-2018-9.

[75] Alex Sciuto, Arnita Saini, Jodi Forlizzi, and Jason I Hong. Hey alexa, what’s
up?: A mixed-methods studies of in-home conversational agent usage. In
Proceedings of the 2018 on Designing Interactive Systems Conference 2018,
pages 857–868. ACM, 2018.

[76] Scratch. About. scratch.mit.edu/about/.

[77] ScratchTeacher404. Colour Blind Option.
scratch.mit.edu/discuss/topic/109778/.

[78] Martin Seligman. Flourish: Positive psychology and positive interventions. The
Tanner lectures on human values, 31, 2010.

[79] Jay Jay Saul Silver. Lens x block: World as construction kit. PhD thesis,
Massachusetts Institute of Technology, 2014.

[80] Evropi Stefanidi, Maria Korozi, Asterios Leonidis, and Margherita Antona.
Programming intelligent environments in natural language: An extensible
interactive approach. In Proceedings of the 11th PErvasive Technologies Related
to Assistive Environments Conference, pages 50–57. ACM, 2018.

[81] Meenakshi Swaminathan. Cortical visual impairment in childrena new
challenge for the future? Oman journal of ophthalmology, 4(1):1, 2011.

[82] John Sweller. Cognitive load during problem solving: Effects on learning.
Cognitive science, 12(2):257–285, 1988.

[83] Ken Thompson. Programming techniques: Regular expression search
algorithm. Communications of the ACM, 11(6):419–422, 1968.

[84] Next Day Video. Using python to code by voice.
www.youtube.com/watch?v=8SkdfdXWYaI, Mar 2013.

[85] Amber Wagner and Jeff Gray. An empirical evaluation of a vocal user interface
for programming by voice. International Journal of Information Technologies
and Systems Approach (IJITSA), 8(2):47–63, 2015.

[86] Warthil. r/Blind - JAWS Learning curve?
www.reddit.com/r/Blind/comments/8k63bi/jaws_learning_curve/.

158

scratch.mit.edu/discuss/topic/114554/?page=1#post-1008792
www.businessinsider.com/theres-psychological-reason-why-amazon-gave-alexa-a-female-voice-2018-9
www.businessinsider.com/theres-psychological-reason-why-amazon-gave-alexa-a-female-voice-2018-9
scratch.mit.edu/about/
scratch.mit.edu/discuss/topic/109778/
www.youtube.com/watch?v=8SkdfdXWYaI
www.reddit.com/r/Blind/comments/8k63bi/jaws_learning_curve/

[87] Randi Williams, Christian Vázquez Machado, Stefania Druga, Cynthia
Breazeal, and Pattie Maes. My doll says it’s ok: a study of children’s
conformity to a talking doll. In Proceedings of the 17th ACM Conference on
Interaction Design and Children, pages 625–631. ACM, 2018.

[88] William E Winkler. String comparator metrics and enhanced decision rules in
the fellegi-sunter model of record linkage. 1990.

159

	Introduction
	Scratch as Inspiration
	Why a conversational interface?
	Codi
	Outline

	Foundations of Creative Learning and Computational Thinking
	Papert's Theory of Constructionism
	The 4 P's of Creative Learning
	The Creative Learning Spiral
	Empowering Consumers to Create

	Challenges for Children with Visual Impairments in Creative Computing
	Most programming experiences are not accessible to children who are blind.
	Assistive technologies for the blind have steep learning curves and are difficult to use.
	Screen readers have a steep learning curve, making them time consuming to learn.
	Screen reader usability is hindered by keyboard input and audio-only output.

	Intersectionality in the identities and experiences of children with visual impairments is not usually recognized.
	Children without sight face technical, logistical, and personal barriers to creative programming experiences.
	Technical Barriers
	Logistical Barriers
	Personal Barriers

	Related Work
	Creative Programming Experiences for Children with Visual Impairments
	Computational Construction Kit for the Blind
	Accessible Visual Programming Languages
	Accessible Text-based Programming Languages

	Conversational Agents
	Current User Experience of Voice Assistants
	Relationship Between a Child and an Agent
	Programming Conversational Agents

	Voice and Natural Language as a Medium for Programming
	Programming by Voice
	Programming through Natural Language

	Research and Design
	Accessibility and Intersectionality
	User Experience
	First Encounter
	Creating a Project
	Playing and Exploring a Project
	Debugging a Project
	Editing a Project

	Conversations as Transitions through a State Machine
	Reducing Cognitive Load
	Audio Cues and Background Music
	Coding Conversationally with Natural Language

	The 4 P's of Creative Learning
	Projects
	Passion
	Peers
	Play

	Computational Thinking
	A Formal System and Tool to Create With
	Computational Thinking Concepts
	Computational Thinking Practices
	Avoiding Confusion in CS Education
	The Relationship Between the Child and the Agent

	Reflections

	Implementation
	State Machine
	Actions
	Arguments
	Handling Utterances
	Constructing Programs with Natural Language
	Designing a Grammar
	Syntactic-Semantic rule pairs
	Generalizing to Various Inputs

	Virtual Machine

	Evaluation
	An agent-based interface can facilitate meaningful creative learning experiences for children who cannot see despite usability challenges.
	Creative Learning Spiral
	Building and Applying Mental Models
	System Intelligence
	Usability Challenges
	Boosting Usability
	Supporting Self-Expression

	Onboarding, learning resources, and facilitation are needed to effectively promote engagement with computational thinking concepts and practices.
	Computational Thinking Concepts
	Computational Thinking Practices

	Feedback
	Methodology
	Summary
	Findings
	Limitations

	Conclusion
	Contributions
	Future Work
	Promoting Community around Codi
	Agent Customization and Personalization
	Increasing Tinkerability through Immediate Feedback
	Extending What You Can Create with Codi
	Extending Where You Can Create with Codi
	Abstracting, Modularizing, and Compiling in Codi's Programming Language
	Making Codi More Conversational

	Tables
	Codi Actions
	Projects from March Test Sessions

	Figures
	Learning Resources
	Reference Cards from Wizard of Oz testing

	Interview Questions

