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Abstract

This thesis presents Ballet, a lightweight, feature engineering framework that allows
users to contribute to an open-source data science project. Specifically, it provides
a framework for users to easily write flexible and high-quality features from a raw
dataset. In addition, it provides a series of tests to ensure that all features in a project
follow a consistent API and all provide some level of predictive power towards a target
column.

For the latter task, we modified and implemented GFSSF, a feature selection al-
gorithm designed specifically for grouped, streaming features. This included building
a performant entropy and mutual information estimator for datasets, as well as inte-
grating this algorithm into Travis CI, a popular continuous integration tool. We then
evaluated our framework on a popular test dataset for data scientists, evaluating for
performance and ease of development.
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Chapter 1

Introduction

In recent years, data has been collected in increasingly larger scales on every aspect

of our lives, from disease monitoring in patients to user tracking on websites. How-

ever, data collection is not the end of the story; processing and data science are

necessary to gain insight or make predictions from a corpus of data. In particular,

many organizations and companies hire large teams of data scientists to tackle such

problems.

However, many data-sets exist outside the focus of for-profit organizations; for

example, the Fragile Families challenge [9] is a project that analyzes the results of

interviews and questionnaires with different families over the course of many years.

The goal is to link traits in a family’s behavior and background with the child’s later

years. These projects rely on outside data scientists to contribute and collaborate in

a public setting. This mode of development is close to open source software develop-

ment, which has seen success in combining the efforts of many authors incrementally

into coherent software; the most successful examples include the Linux Kernel, with

a still-active contributor base of over thousands of software engineers and used by

millions of consumers worldwide.

Open data science projects are a subset of open source software in which commu-

nity members contribute to the analysis and engineering of public data-sets. However,

these open data science projects are not nearly as prevalent as other open source soft-

ware projects despite how much more prevalent public data-sets have become. One
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issue is that there are few frameworks that help users effectively collaborate on dif-

ferent data science tasks.

In this chapter, we introduce and provide context for Ballet [16], a lightweight

framework that allow users to contribute collaboratively to an open-source data sci-

ence project on the task of feature engineering. We first present a high-level overview

of Ballet and define feature engineering and the sub-tasks associated with it. Fi-

nally, we elaborate on the feature selection process, which is the main contribution

of this thesis.

1.1 Current Collaborative Data Science

There currently exist a handful of platforms that allow for collaboration towards

a data science project. We will discuss these platforms and their feasibility of use

towards open-source data science projects.

1.1.1 Commercial Data Science Platforms

Kaggle [8] and other sites geared towards data science competitions often provide

areas for collaborators to contribute their work publicly; specific to Kaggle, users can

create “kernels” that can be viewed by others. These kernels are generally formatted

as computational notebooks [10] and usually either provide the implementation of a

certain aspect of the data science project, either to showcase a winning strategy or

to provide tutorials for beginner data scientists. Using these kernels, users can share

their work and also use the work of others to improve their data projects.

One large issue with Kaggle is that these kernels are specific to each user that

created them and themselves do not contribute to a centralized project. Because of

this, there usually exist many kernels that contain redundant work. Furthermore,

because kernels themselves are not necessarily end-to-end data science projects, the

formatting and readability can vary from kernel to kernel. For example, one kernel

may explicitly share the code used to pre-process data while another simply describes

the steps they took in an essay and leaves the implementation as an exercise to the
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reader. This lack of common API detracts from the learning experience for beginners

and makes it difficult to integrate different kernels together.

Furthermore, Kaggle itself is not meant for collaboration; it is a data science

competition site. As such, collaboration and public kernels are limited and generally

released post-competition. While Kaggle competitions sometimes provide motivation

for users to contribute to public good data science problems, it is different than open-

source data science; because it is a competition, each group works separately, which

means that much of the work put towards building an end-to-end data pipeline is

redundant between groups and that only a small fraction of the competition base is

rewarded for their effort.

There also exist commercial data science platforms such as Domino Data Lab 1

and Daitaku 2 that aim to provide platforms for data scientists to support all aspects

of data science product infrastructure and deployment. However, similar to Kaggle

these platforms do not explicitly provide scaffolding for collaborative, incremental

models.

1.1.2 Research in Collaborative Data Science

There has been much interest in facilitating increased collaboration in machine learn-

ing, though most existing work does not provide a structured way to ensure an effec-

tive division of labor. In some approaches, unskilled crowd workers can be harnessed

for feature engineering tasks, such as by labeling data to provide the basis for further

manual feature engineering [3]. Other proposed solutions include real-time editing

interfaces, like that of [6, 7, 10], facilitating multiple users to edit a machine learning

model specification at the same time. While these have led to state-of-the-art mod-

eling performance, there is no natural way for competitors to integrate source code

components in a systematic way.

Finally, FeatureHub [17] is a precursor to Ballet built to solve the issues sur-

rounding collaborative, incremental data science projects. Many design aspects from

1https://www.dominodatalab.com/
2https://www.dataiku.com/
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Ballet come as a result of research related to FeatureHub and will be introduced in

detail with Ballet.

1.2 Feature Engineering

Feature engineering is the task of taking raw data and creating features that are

suitable for a predictive model to use and relevant to a predictive target. There are

several reasons for feature engineering in real-world data-sets:

Figure 1-1: The first few columns out of the Airbnb New User Booking Dataset [1].
The gender and age of most users is unknown.

∙ Data Cleaning and Processing: In real-world data-sets, raw data-sets often

have missing values and other issues that make prediction problematic. For

example, in the Airbnb New Bookings Dataset, user data can only be collected

on users who have logged in; however a considerable amount of the data-set

pertains to actions taken by browsing users who have not logged in, as seen in

Figure 1-2. It is in the best interest of data scientists to "clean" these columns by

creating features that impute the values of missing data. It takes considerable
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effort to fill in missing values and extract information from incompatible data

columns.

∙ Relational Databases: Data is often broken into multiple tables with rela-

tional columns that connect or link them, with the relational values providing

little information without the context of other data sets. For example, the

Airbnb new bookings data set contains a “sessions” table that contains informa-

tion about the actions a user takes (e.g. how long they browse, the device they

use etc.). The value in this table’s user column is a foreign key to the main

“user” table. It takes time and effort to create features that link users to their

sessions and extract meaningful data [20].

∙ Engineering Challenges: Even after a data set is pre-processed and cleaned,

it may be prohibitively slow to run the predictive model on the entire data-set;

for example, the Webb Spam Corpus [18] contains over 16,000,000 data rows

collected from 350,000 web sites and is unsuitable for use as is. It falls upon

Domain Experts to identify and create useful features from the existing data.

Each of these tasks is difficult to automate and often become bottlenecks in data

science projects. The goal of Ballet is to reduce the time taken on each of these

tasks by having users work together to solve these challenges.

1.3 Ballet

Ballet is framework for creating predictive models, with an emphasis on feature en-

gineering. Within Ballet, one can instantiate a project, develop features, and validate

their work [16] . Ballet projects live as git repositories and enforce API correctness

and feature quality through Travis CI, a continuous integration tool that ensures

every change to the project still allows the project to run smoothly and produce a

high-quality feature matrix. The use of open-source tools such as git and Travis keeps

in line with the lightweight and availability constraints for open source projects.
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Figure 1-2: The first few columns out of the Airbnb sessions data-set [1]. The user
column is a foreign key that is meaningless without the context of another data-set.

1.3.1 Background and Previous Works

Ballet is based off previous work done in the Data to AI group; specifically, it is the

descendant of a previous framework called FeatureHub.

Similar to Ballet, the goal of FeatureHub is to allow for multiple contributors to

incrementally contribute to a centralized data science project through building fea-

tures in a consistent API [17]. However, unlike Ballet which emphasizes a lightweight

framework built off of available open-source tools, FeatureHub is a hosted platform

built on the cloud designed for real-time collaboration.

While the FeatureHub platform provided more scaffolding for collaborators, ulti-

mately several factors constrained the ways it could be used and who could use it.

Of these factors included the maintenance and other costs of running FeatureHub;

organizations using FeatureHub take on the burden of keeping infrastructure for the

platform up-to-date and in-shape, which can sometimes be more cumbersome than
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Figure 1-3: An example of a simple Ballet feature. This feature adds three columns
together.

the feature engineering itself. Additionally, hosted platforms are generally not free

software, which makes them inappropriate for open-source projects.

The work done with FeatureHub and previous projects motivate many of the

design goals for Ballet. For example, to address the issue of financial costs, Ballet is

built entirely on free, open-source tools such as GitHub and Travis CI. This continues

to be a major design goal as we build more infrastructure for Ballet.

1.3.2 Overview of Ballet

For Ballet, the Feature abstraction provides a way for contributors to collaboratively

build features in a Ballet project. Feature objects are transformers that follow a

“fit/transform” paradigm that allows for data to be “fit” on training data before the

“transform” stage is applied on other data, ensuring that transformations happen in

a leakage-free manner. The general life-cycle of a Feature is as follows:

1. Individual contributors clone a Ballet project from GitHub and write features,

submitting their work as a pull request. Each feature is formatted as an indi-

vidual module located in the project’s contrib directory.

2. Travis CI performs feature validation on the candidate features. This includes

API coherency, project structure correctness, and a feature acceptance subrou-

tine that ensures that features are not redundant and contributes information
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towards the target feature. If a feature fails validation, it is rejected and no

further action is taken in its life-cycle until it is updated.

3. Once Travis CI accepts the feature as correct and relevant, a maintainer of the

project reviews the features and decides whether or not to merge.

4. When new features are accepted, another service determines if any existing

feature has become redundant or irrelevant and prunes them.

This process ensures that only error-free, high quality features are accepted. This

approach also scales well in the number of features; here, maintainers are the slowest

step in validation and the CI tests beforehand ensure that they are not slowed down

by well-meaning but low-quality contributions.

1.4 Main Contribution

The main contribution of this thesis is the improvement of feature selection in

Ballet— the selection and rejection of features based on their usefulness to a predic-

tive model. While we expect that most contributors to open source projects do not

have malign intent, it is possible that well-meaning contributors can submit features

that are not useful or even detrimental to the performance of a predictive model.

We will first outline the problem statement and then a brief overview of what this

entailed for the Ballet feature engineering life-cycle.

1.4.1 Problem Statement: Feature Selection

Definition. A logical feature 𝑓 of a data set D as a function that maps raw data

to a vector of values: 𝑓D : V𝑝 → R𝑞 where V is the set of feasible raw data values, 𝑝 is

the dimensionality of the raw data, and 𝑞 is the dimensionality of the feature vector.

The problem statement for feature selection is to create a feature matrix of logi-

cal feature columns F(𝐷) = [𝑓1(D), 𝑓2(D), . . . , 𝑓𝑛(D)] from a given set of candidate

features that maximizes predictive power towards a target column and minimizes the
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Table 1.1: Summary of Mathematical Notation

Notation Mathematical Meaning
D Training Dataset, with dimensions 𝑁 × 𝑑
𝑑 Dimension (number of columns) of the D

𝑥D𝑖 The i-th element of the data-set D, of dimension 1 ×𝑁
𝑦 Target column, with dimensions 𝑁 × 1
𝑦𝑖 The i-th element of the target column 𝑦
V The set of all possible raw data values. Including the real numbers R,

this also includes strings and “null” or missing values.
𝑓𝑖, 𝑓

D
𝑖 A logical feature (of the data-set D)

𝑓𝑡, 𝑓
D
𝑡 A candidate logical feature, proposed at time 𝑡

𝑓𝑖(D) The feature matrix produced by 𝑓𝑖 transformed on D

𝑞𝑖 Number of columns in 𝑓𝑖(D)
F𝑡 The set of accepted features at time 𝑡
Γ𝑡 The set of arrived features at time 𝑡
| * | The size of a set.
𝜆1, 𝜆2 Relevance threshold hyper-parameters.
𝐼𝑇 Threshold information for feature selection.

dimensionality of the feature matrix. We break this down into two sub-problems:

feature acceptance and feature pruning.

Recent research in feature selection has included feature selection for streaming

features — features that arrive one by one, in a streaming fashion. This is because it

has become expensive to store entire data sets in one location. Additionally, previous

feature selection methods that consider the entire feature set at once are generally

more computationally expensive. This is fortunate for Ballet, as features necessarily

arrive in a streaming fashion as contributors write them. In such a setting, it is

important to consider a feature 𝑓𝑖 with respect to the set of accepted features that

came before it, the current feature matrix F𝑡 at a time 𝑡.

Feature Acceptance

An important quality for features is relevance, whether or not the feature adds new

information about the target column. The following definitions are taken from Wu

et. al.[19] .
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Definition. A feature 𝑓𝑖 is considered irrelevant to a target column 𝑦 if 𝑃 (𝑦|𝑓𝑖(D)) =

𝑃 (𝑦)

Definition. A feature 𝑓𝑖 is considered strongly relevant to a target column 𝑦

relative to an already existing feature set F if 𝑃 (𝑦|𝑓𝑖(D),F(D)) ̸= 𝑃 (𝑦|F(D)).

Definition. A feature 𝑓𝑖 is considered weakly relevant to a target column 𝑦 relative

to an already existing feature set F if it is not strongly relevant and there exists some

subset 𝑆 of F such that 𝑃 (𝑦|𝑓𝑖, 𝑆(D)) ̸= 𝑃 (𝑦|𝑆(D)).

The problem of Feature Acceptance is whether or not to accept a candidate

feature 𝑓𝑖 into our feature matrix, taking into account relevance, dimensionality, and

the already accepted features. We emphasize dimensionality as we are still looking to

minimize our feature matrix size, logical features that produce matrices with fewer

columns are preferred.

Note here that we may choose to accept a weakly relevant feature if it is considered

more valuable to the feature matrix than the accepted features that prevented it from

being strongly relevant; for example, a new feature that provides the same information

as an older feature but with lower dimensionality may be accepted to take the place

of the older feature. Feature Acceptance deals mostly with the acceptance of the new

feature, while the removal of the existing feature is part of the next sub-problem:

feature pruning.

Feature Pruning

As features arrive in a streaming fashion, we may find that new features are “improved”

versions of previously accepted features. There are two main cases; the first is that an

accepted feature’s information is a subset of the candidate feature, and the candidate

feature is more relevant. Another case where we may prune accepted features is if the

new feature provides the same information as the accepted, but with fewer columns.

In either case, it may be necessary for Ballet to remove existing and redundant

features when a candidate feature is accepted.
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For example, in a data-set for temperature prediction we may find that a feature

representing the day of the year is relevant to the target (represented as an one-hot

encoding 𝑥 ∈ {0, 1}365), and may be accepted. While useful, this singular feature

contributes 365 columns to our feature matrix. Later on, if a feature representing the

month of the year is accepted (similarly represented as 𝑥 ∈ {0, 1}12), it is possible that

the information the new feature provides almost as much information as the previous

feature (it is possible that temperatures stay relatively constant on a month-to-month

basis). Then, it makes sense to remove the older feature from our feature matrix as

the new feature provides the same information in much fewer columns.

The problem of Feature Pruning is to remove features {𝑓𝑖, . . . } ∈ F that are no

longer strongly relevant to the target after a candidate feature is accepted.

1.4.2 Listing of Contributions

Over the course of this thesis, we achieved the following:

∙ Created a library for data-set entropy estimation and data-set mutual informa-

tion estimation for data-sets containing both continuous and discrete columns.

∙ Created a validator for feature acceptance that judges candidate features for

relevance using the GFSSF [13] algorithm.

∙ Created a validator for feature pruning that judges accepted features for redun-

dancy using the GFSSF algorithm.

∙ Implemented infrastructure to allow for Ballet and Travis CI to run pruning

subroutines.

∙ Created a GitHub App that uses the GitHub API to automate portions of the

feature engineering life-cycle, improving ease of using a Ballet project on both

the contributor and maintainer side.

∙ Tested the usefulness of Ballet by simulating how a data science competition

might be translated to a Ballet project.
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Overall, these contributions allow for Ballet to maintain its feature pipeline in-

variant with little overhead for the project maintainers. As such, they help the success

of Ballet as both an open source framework and a data science framework for large-

scale projects.

1.5 Thesis Organization

The structure of this thesis flows from design, to implementation, to experimental

results. Chapter 2 discusses the design goals we require of Ballet. Its existence

as both an open-source and data science framework puts unique constraints that

have shaped its development and design choices. We then discuss the Ballet feature

engineering life-cycle in the context of these constraints and how users and maintainers

interact with the Ballet framework.

Chapter 3 discusses the Feature Selection portions of the Feature Engineering

Life-Cycle, and how Ballet defines and tests for high quality features. It discusses

Grouped Feature Selection for Streaming Features (GFSSF), a feature selection algo-

rithm we modified to fit the Ballet context.

Chapter 4 discusses instances of Ballet projects that we have created to test and

simulate collaborative data science projects. It goes over key findings from real-world

data science problems and the benefits of using Ballet in such a context.
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Chapter 2

Ballet Overview

2.1 Design Considerations

As Ballet exists in both the open-source and data science communities, there are

unique constraints that have influenced its design. Many of these constraints, espe-

cially dealing with redundancy and relevance, are shared but will still be discussed in

both contexts.

2.1.1 Open Source Considerations

Many design goals arise because Ballet is designed to be used as an open-source

framework. As, such, many of these design goals relate to ease of use, on the end

of both the project owner (as well as other project moderators) and the project

contributors.

It is important to consider what kinds of collaborators would take part in a Ballet

project. In the open-source community, collaborators come from all different back-

grounds and domain expertise; one contributor could be a senior data scientist well

versed in feature engineering but with little domain knowledge, another could be a

researcher in the exact field that the data-set comes from but has little experience

coding. Yet another collaborator may be just well-meaning internet denizen trying

to contribute however they can. With such a wide variety of collaborators, it is
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important that Ballet caters to all backgrounds.

1. Collaboration: The ability for multiple authors to contribute to the same

project and have their work integrate smoothly together. While each author will

create unique content, their work must be consistent with a flexible and simple

API. Additionally, it should be intuitive and simple to find and understand the

work of other contributors.

2. Lightweight: While it is tempting to develop a sophisticated web app backed

by large cloud compute instances and managed by dedicated DevOps profes-

sionals, this approach is simply not sustainable for open-source development.

Isolated projects may secure sponsorship from cloud providers or funding agen-

cies, but this is the exception, not the rule. Instead, Ballet projects must be

built only on lightweight infrastructure: common components like open-source

software libraries, free source code hosting, and free continuous integration test-

ing

Fortunately, there already exist many tools that are trusted in the open-source

community and provide free solutions to otherwise expensive problems; GitHub

is commonly used for version control, and Travis CI is popular for ensuring that

contributions meet the standards of the project through unit tests and other

“check suites”. As such, our design of Ballet relies heavily on these technologies

to ensure that our framework is both lightweight in cost and also built upon

tools that contributors are already comfortable using.

3. Scalability: The ability for a framework to support multiple authors efficiently.

Open source projects can reach many hundreds or thousands of collaborators.

Having a maintainer review each and every contribution would be infeasible and

would cause slow development. In addition, it is important that the checks run

on the Ballet project are fast as well.
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2.1.2 Data Science Considerations

In addition to the constraints of open-source development, it is important to ensure

that the Ballet project is able to create a high-quality feature matrix that can be

readily used by predictive models. Many of these considerations relate to feature

selection and the nature of how features arrive and are processed in Ballet.

1. Robustness: Our “adversary” in such a context is a collaborator that is well-

meaning but unintentionally submits code that is frail and errors when used

on certain inputs — if accepted into a project, it could be potentially time

consuming to find and remove poor code. As such, it is part of the design

Ballet to ensure that all contributions are syntactically correct and follow the

rules of the framework. This is analogous to a unit test in traditional software

development.

2. Relevance: It may be the case that a collaborator submits a feature that they

think is useful for prediction but in reality provides no useful information. Also,

it is likely that different collaborators share similar mindsets and create features

that are essentially the same. It is important to ensure features in a Ballet

project are relevant and not redundant with respect to each other.

3. Compactness: In addition to relevance, one of the goals of feature selection is

to minimize the size of the resulting feature matrix. As a single feature could

create multiple data columns and not all of them are necessarily relevant, fea-

tures with a large number of columns should be penalized in favor of features

that provide similar information but are smaller. We consider two types of

compactness here: compactness in the number of features accepted, and com-

pactness in terms of number of feature columns total.

2.1.3 Security Design Considerations

Ballet is not built with security as a top priority; as such, the security of a Ballet

project relies mainly on the security of the agents that comprise Ballet. GitHub and
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Travis CI each provide security guarantees for different aspects of projects, though

open-source software is often engaged in struggle against all sorts of malicious attacks

[14, 2, 15]. Because Ballet caters to open source data science projects, accidentally

leaking data is not as large of an issue as the data is already public.

As mentioned before, the main threat model of Ballet is well meaning collab-

orators that submit frail or broken code — we will have to check these features do

not end up in the feature matrix. There are still possibilities of attackers submitting

adversarial features or submitting harmful code in an attempt to break the validation

routine — this will be in part the maintainer’s duty to make sure such code does not

make its way into the project.

2.2 Design Overview

This section is an overview of the different components of the Ballet framework.

We begin with installation and project overview, and end with how contributors and

moderators interact with Ballet. In the end, the framework provides a feature en-

gineering pipeline invariant — at any time, the project is able to preform efficient,

high-quality, end-to-end feature engineering on a new data points. Maintaining this

invariant in the face of numerous and varied contributors is the responsibility of the

feature engineering life-cycle, which ensures that any features currently in the

project meet the standard of the invariant.

2.2.1 Project Structure

A Ballet project exists as a GitHub Repository with three main components:

1. A ballet.yml that contains information about the project.

2. A load_data.py file that contains a function that is used to load a data points

that the features will fit and transform upon.

3. A contrib directory that contains the work of all the contributors. Each con-

tributor creates their own sub-directory titled user_{$name} in which they write
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their features. Features files are required have the format feature_{$feature_name}.py.

See Figure 2-1 for an example structure of a Ballet project.

Figure 2-1: The example ballet project structure of a project called “ballet_project”
and with slug (or package name) “ballet_slug”. Blue elements are directories with
pointers to their contents. Green elements are file objects. This project has 2 con-
tributors (micah, kelvin) and 3 features.
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2.2.2 Startup

On startup, Ballet renders a new repository from a template, with the three main

components. It is then registered with GitHub and a CI provider, usually Travis CI

for an open-source project. They will also be directed to install the Ballet GitHub

app, which provides more automation for the project.

When a contributor joins a project, Ballet provides a template to write a new

feature. This helps ensure API consistency and ease of development. For both main-

tainers and contributors, the documentation provides a quick-start command to teach

both how to write and to identify quality features and also best practices in feature

engineering.

2.2.3 Feature Engineering Life-Cycle

Figure 2-2: The life-cycle of a new feature, from proposal to impact on the model to
potential removal [16]. The focus of this thesis is on steps 2 through 4.

The Feature Engineering Life-Cycle is the process by which features go from

being proposed to contributing to the feature matrix. This also includes the process
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by which accepted features are removed to ensure only the highest quality features

are kept by the project. This is illustrated in Figure 2-2 and detailed in the following

section.

1. Feature Development At any point, data scientists can observe the current

performance of the pipeline and be motivated to write new features and contribute

them to the repository. To contribute a new feature, collaborators first write source

code that instantiates a single Feature object. They then submit their code to the

project through one of several mechanisms, depending on their skill level and back-

ground. For contributors who desire maximum control, they can manually create new

source files in the correct sub-directories, commit the addition to their own fork of

the project, and open a new pull request on GitHub. Those who desire an interactive

workflow can import a Python client library that automatically generates source code

to recreate a live Feature object and creates a new feature proposal under the hood.

2. Feature Validation Once a feature has been proposed by a collaborator, Ballet

must ensure that only high quality features are merged into the project and that the

feature engineering pipeline invariant is kept. Ballet enforces quality using auto-

mated CI testing that consists of several checks. These will be further detailed in the

following section, as it discusses the automated portions of the feature engineering

life-cycle.

3. Maintainer Validation After Travis CI finishes the automated feature validation

step, it is time for maintainers to review the features before they are merged to the

repository. While the Travis CI tests ensure the feature follows the API and is of

high quality, it is the responsibility of the maintainer to ensure the code quality is to

standard — a feature can follow the API and still follow poor coding practices.

Because this step runs after the Travis CI automated testing, there are fewer

features that reach the maintainer review step than actually are proposed. This

allows Ballet to be scalable even if there are few maintainers to watch over the

project. This also ensures the maintainer has less work to do per review.

4. Feature Pruning Bot After a feature is merged, another set of Travis CI tests

trigger. This time, the tests are not meant to target the newly merged feature but
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rather the features previously accepted to the project. It is possible that the addition

of the new feature has made another feature redundant. This step runs redundancy

checks against previously accepted features and then suggests features for removal if

they are found to be redundant.

Similarly to the Feature Acceptance step, this step uses a variation of the GF-

SSF feature selection algorithm to determine redundancy. This is further detailed in

Chapter 3. After Travis CI tests suggest features for removal, a GitHub Application

handles removing the features from the repository. Depending on the configuration

of the project, this application may either directly commit to the master branch,

propose the removal in a pull request, or simply do nothing. The level of automation

is dependent on the maintainer and how involved they wish to be in this process.

5. Continuous Metrics Finally, a continuous metrics bot rebuilds the pipeline,

evaluates a predictive model, and updates metrics like accuracy and feature com-

pactness. This provides insights as to how effective the accepted features are for

predictive models. This feature engineering life-cycle is continued for new features

and the project features are gradually improved.
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Chapter 3

Feature Selection Process

The feature selection process includes the specific parts of the feature engineering

life-cycle that ensure that our features are “high quality” and meet the relevance and

compactness standards that Ballet requires. In this section, we go over the main fea-

ture selection algorithm, Grouped Feature Selection for Streaming Features (GFSSF)

[13]. We focus on its implementation in Ballet, specifically how it was modified to fit

the needs of the framework. We begin by discussing efficient entropy and information

estimation for data-sets, which are important for use in feature selection algorithms.

3.1 Mutual Information and Entropy

Definition. The Shannon Entropy of a discrete random variable 𝑋 with support

X and probability distribution 𝑃 (𝑥) is 𝐻(𝑋) = −
∑︀

𝑥∈X 𝑃 (𝑥) log(𝑃 (𝑥))

Definition. The Differential Entropy of a continuous random variable 𝑋 with

support X and probability distribution 𝑃 (𝑥) is 𝐻(𝑋) = −
∫︀
𝑥
𝑃 (𝑥) log(𝑃 (𝑥))𝑑𝑥

Definition. The Mutual Information between two random variables 𝑋, 𝑌 is de-

fined as 𝐼(𝑋;𝑌 ) = 𝐻(𝑋) + 𝐻(𝑌 ) − 𝐻(𝑋, 𝑌 ), where 𝐻(𝑋) is the entropy of the

random variable. Alternatively, mutual information between variables 𝑋, 𝑌 with sup-

ports X,Y, individual probability distributions 𝑃𝑋(𝑥), 𝑃𝑌 (𝑦), and joint distribution

𝑃𝑋𝑌 (𝑥, 𝑦) can be calculated as:
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𝐼(𝑋;𝑌 ) =
∑︁
𝑥∈X

∑︁
𝑦∈Y

𝑃𝑥,𝑦(𝑥, 𝑦) log(
𝑃𝑋𝑌 (𝑥, 𝑦)

𝑃𝑋(𝑥)𝑃𝑌 (𝑦)
) (3.1)

Definition. The Conditional Mutual Information between two random variables

𝑋, 𝑌 given a third random variable 𝑍 is defined as 𝐼(𝑋;𝑌 |𝑍) = 𝐻(𝑋,𝑍)+𝐻(𝑌, 𝑍)−

𝐻(𝑋, 𝑌, 𝑍) −𝐻(𝑍), where 𝐻(𝑋) is the entropy of the random variable.

From their definitions, Shannon and Differential entropies are both non-negative

quantities and are measures of how difficult it is to predict the next drawn value from

a particular random variable. By the definition and properties of entropy, mutual

information and conditional mutual information are also non-negative quantities that

depend on the joint distributions of the random variables.

Intuitively, mutual information is a measure of how much “information” we learn

about 𝑌 if we know 𝑋 and vice versa. Similarly, conditional information is a measure

of how much information we learn about 𝑌 from knowing𝑋, on top of any information

we already know about 𝑌 from 𝑍. We see from equation 3.1 that if two variables

X, Y are mutually independent, then we have 𝑃𝑋𝑌 (𝑥, 𝑦) = 𝑃𝑋(𝑥)𝑃𝑌 (𝑦) and that the

mutual information is zero. Similarly, if X and Y are conditionally independent given

Z, then the conditional mutual information 𝐼(𝑋;𝑌 |𝑍) is also zero.

3.1.1 Mutual Information as a Statistic for Relevance

From the previous definitions, we can draw analogies between mutual information

and relevance. For a data-set D with dimensionality 𝑁 × 𝑑, we assume that each

of the n samples is drawn i.i.d. from a probability distribution 𝑃 (𝑥) such that each

sample 𝑥 ∈ R𝑑 has 𝑑 columns. Then, we can make the approximation that each

logical feature creates a feature matrix 𝑓𝑖(D) whose rows are drawn i.i.d. from a

distribution.

Definition. A feature 𝑓𝑖 is irrelevant towards a target column y if 𝐼(𝑓𝑖; 𝑦) = 0

Definition. A feature 𝑓𝑖 is strongly relevant towards a target column y, given a

set of previously accepted features F, if 𝐼(𝑓𝑖; 𝑦|F) > 0.
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Definition. A feature 𝑓𝑖 is weakly relevant towards a target column y, given a set

of previously accepted features F, if it is neither strongly relevant nor irrelevant.

As such, we can use mutual information as a useful statistic for feature relevance

and selection. Our goal is to select the best possible feature set F𝑡 as features come

in a streaming fashion, using mutual information-based heuristics to determine which

features to accept and which to reject.

Because we cannot observe the distributions directly and instead are estimating

from the feature columns, it is often the case that the information of an irrelevant

feature is non-zero only due to estimator and rounding errors. As such, we generally

test to see if the information 𝐼(𝑓𝑖; 𝑦|F) is above a threshold 𝐼𝑇 instead of zero. The

definition of this threshold allows us not only to reduce estimator errors, but also

to penalize high-dimension features and set a “minimum information contribution” a

new feature must provide to be accepted.

3.2 Lightweight Entropy Estimation in Ballet

From their definitions, the most flexible way of calculating mutual information and

conditional mutual information is by calculating the entropies of each variable. There-

fore, an important subroutine for the many feature selection algorithms is the calcu-

lation of data entropy. For these data-sets, we assume that they consist entirely of

real-valued numbers such as a feature matrix. If we assume each matrix is drawn i.i.d.

from a probability distribution, the task is to estimate this distribution’s entropy from

the samples.

However, this is a challenge in Ballet, as a feature matrix can contain both

columns with discrete values and columns with continuous values. We make this

distinction between continuous and discrete random variables because some columns

(e.g. one-hot encoding columns, categorical variables, etc.) make more sense as

discrete random variables and others (e.g. columns representing a person’s height,

house price, etc.) as continuous random variables. Furthermore, applying the wrong

estimation process for a column can yield wildly different results, so we must consider
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both types of entropies for the best accuracy. We will refer to both Shannon entropy

and differential entropy as “entropy” when referring to a data-set that contains both

logically discrete and logically continuous columns.

3.2.1 Entropy of Fully Discrete Data-Set

Definition. The Empirical Probability 𝑃D(𝑥) of a value 𝑥 in a data-set D is the

frequency of appearance of 𝑥 in D.

If a data-set D contains only discrete columns, we can estimate the entropy by

estimating the probability distribution 𝑃 (𝑥). For each unique data entry 𝑥 ∈ D, we

can estimate the empirical probability 𝑃 (𝑥) by counting the number of instances that

entry appears in the data-set and then dividing by the total number of entries. This

provides an efficient and accurate method of calculating the data-set distribution and

in turn the data-set entropy.

3.2.2 Entropy of Fully Continuous data-sets

If, instead, our data-set contains only continuous columns, we need to find a way to

estimate the integral 𝐻(𝑋) = −
∫︀
𝑥
𝑃 (𝑥) log(𝑃 (𝑥))𝑑𝑥. While many other algorithms

opt to roughly bucket values and treat them similarly to discrete data-sets, we have

chosen to use better entropy estimators.

Another estimator for continuous data-sets is the Kozachenko-Leonenko En-

tropy Estimator [11], or K-L estimator for short, which estimates a data point’s

“bucket” size using its k-nearest neighbors. If a point’s neighbors are far away, then

the data-set is more spread out and entropy is higher, whereas a data point with

close neighbors contributes much less entropy. This allows for more accurate entropy

estimation with a smaller asymptotic bias [5].

Definition. The digamma function 𝜓(𝑥) is defined as the logarithmic derivative

of the gamma function:

𝜓(𝑥) =
𝑑

𝑑𝑥
ln(Γ(𝑥)) =

Γ′(𝑥)

Γ(𝑥)
(3.2)
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Where the Gamma Function Γ(𝑥) is the extension of the factorial function to real

numbers and follows the recursion Γ(𝑥) = 𝑥Γ(𝑥− 1).

Definition. For a continuous data-set D with dimensionality 𝑁 × 𝑑 and data en-

tries 𝑥1, 𝑥2, . . . , 𝑥𝑁 , the Kozachenko-Leonenko Estimator for data-set entropy is

calculated as:

𝐻𝐾𝐿
𝑘 (D) = −𝜓(𝑘) + 𝜓(𝑁) +

𝑑

𝑁

𝑛∑︁
𝑖=1

log(𝜖𝑖), (3.3)

where 𝜖𝑖 is twice the distance from 𝑥𝑖 to its k-th nearest neighbor and 𝜓(𝑥) is the

digamma function. For this estimator, k is a hyper-parameter that should be set

before-hand.

For the k nearest neighbors, we use the Chebyshev metric (maximum norm) for

calculating distance. This allows for easier computation of the estimator and because

the Chebyshev metric is used later on for other estimators. The use of the digamma

function and the derivation of this estimator can be found in [11] and [5].

3.2.3 Entropy of Mixed data-sets

It is often the case that a data-set will consist of some columns that represent discrete

variables and some will represent continuous features. It is important that we are able

to accurately estimate the entropy of such cases as well.

Definition. Consider a continuous random variable𝑋 and a discrete random variable

𝑌 of dimensions 𝑑𝑥, 𝑑𝑦 and supports X = R𝑑𝑥 , Y = Z𝑑𝑦 respectively. If they have

joint distribution 𝑃𝑋,𝑌 (𝑥, 𝑦), then the Joint Entropy is defined as:

𝐻(𝑋, 𝑌 ) = −
∑︁
𝑦∈Y

∫︁
𝑥

𝑃𝑋,𝑌 (𝑥, 𝑦) log(𝑃𝑋,𝑌 (𝑥, 𝑦))𝑑𝑥 (3.4)

Using the definition of conditional probability that 𝑃𝑋,𝑌 (𝑥, 𝑦) = 𝑃𝑋|𝑌 (𝑥|𝑦)𝑃𝑌 (𝑦),

we can rearrange our equation to be:
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𝐻(𝑋, 𝑌 ) = −
∑︁
𝑦∈Y

∫︁
𝑥

𝑃𝑌 (𝑥)𝑃𝑋|𝑌 (𝑥|𝑦) log(𝑃𝑋|𝑌 (𝑥|𝑦))𝑑𝑥

−
∑︁
𝑦∈Y

𝑃𝑌 (𝑦) log(𝑃𝑌 (𝑦))
(3.5)

We see that we can simplify this equation by using the definitions of Shannon

and differential entropy. Let 𝐻(𝑋|𝑌 = 𝑦) be the entropy of the random variable 𝑌 ,

conditioned on 𝑋’s value. Note that this is similar to but different from conditional

entropy. Using this definition and the previously defined entropies, we have:

𝐻(𝑋, 𝑌 ) =
∑︁
𝑦∈Y

𝑃𝑌 (𝑦)𝐻(𝑋|𝑌 = 𝑦) +𝐻(𝑌 ) (3.6)

We can take advantage of the last equation to calculate the entropy of a mixed

data-set. Let our data-set D of dimensions 𝑁 × 𝑑 be partitioned into a purely con-

tinuous data-set X with dimensions 𝑁 × 𝑑𝑥 and a data-set of discrete values Y with

dimensions 𝑑𝑦. For each unique entry 𝑦𝑖 ∈ Z𝑑𝑦 in the discrete data-set, find the

subset of the continuous data-set with entries at the same index, X𝑦𝑖 . This data-set

has the underlying probability 𝑃 (𝑋|𝑌 = 𝑦𝑖). Estimating the continuous entropy of

each subset and multiplying it against the empirical probability of 𝑦𝑖 in the discrete

data-set gives us
∑︀

𝑦∈Y 𝑃𝑌 (𝑦)𝐻(𝑋|𝑌 = 𝑦), and 𝐻(𝑌 ) can be estimated directly from

the discrete portion Y.

3.3 Mutual Information Estimation

To find the mutual information between two data-sets D1,D2, we need to calculate

the entropies of three data-sets: D1, D2, and the data-set made by concatenating

the two data-sets. While the K-L estimator provides an acceptable entropy estimator

for a single data-set, this estimator is imperfect when calculating mutual informa-

tion between two data-sets as the biases from each estimator do not cancel out [12].

Therefore, for continuous entropy estimation in the context of mutual information
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estimation, there is a motivation to find a better estimator.

3.3.1 Kraskov Estimator

Let there be two continuous data-sets D1,D2 with dimensions 𝑁 × 𝑑1 and 𝑁 × 𝑑2.

Let D be the data-set with dimension 𝑁 × (𝑑1 + 𝑑2) created by concatenating the

two data-sets together. Similarly to the K-L estimator, define 𝜖𝑖 as twice the distance

of a data entry 𝑥𝑖 to its k-th nearest neighbor in D. Like the K-L estimator, 𝑘 is a

hyper-parameter.

Finally, let 𝑘𝑖(D) represent the number of data entries within a distance 𝜖𝑖 to 𝑥𝑖

in the data-set D. Note that this varies from data-set to data-set: for D, 𝑘𝑖(D) = 𝑘

for all 𝑁 data points by definition. However, it is different for D1,D2 as the 𝜖𝑖 are

calculated from

Definition. The Kraskov Estimator [12] for continuous data-set entropy of a

dataset with dimensions 𝑁 × 𝑑 is defined as:

𝐻𝐾
𝑘 (D) = − 1

𝑁

∑︁
𝑖

𝜓(𝑘𝑖(D)) + 𝜓(𝑁) +
𝑑

𝑁

∑︁
𝑖

log(𝜖𝑖) (3.7)

Essentially, each data-set D1,D2,D uses the same 𝜖𝑖 values. In practice, this is

an improvement in estimator bias for mutual information. Additionally, a partial

estimator may also be calculated to save computation costs:

Definition. The Partial Kraskov Estimator [12] for continuous data-set entropy

is defined as:

𝐻𝑃
𝑘 (D) = − 1

𝑁

∑︁
𝑖

𝜓(𝑘𝑖(D)) + 𝜓(𝑁) (3.8)

We see that this entropy estimator has bias 𝑏(𝐻𝑃 (D)) = 𝑑
𝑁

∑︀
𝑖 log(𝜖𝑖). While this

is problematic for a single data-set entropy estimation, this bias cancels out when

calculating mutual information. Let 𝑏(*) be the bias of an estimator. We see that

the bias of a mutual information estimator based on the partial estimator is:
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𝑏(𝐼𝑃 (D1;D2)) = 𝑏(𝐻𝑃 (D1)) + 𝑏(𝐻𝑃 (D2)) − 𝑏(𝐻𝑃 (D))

=
𝑑1
𝑁

∑︁
𝑖

log(𝜖𝑖) +
𝑑2
𝑁

∑︁
𝑖

log(𝜖𝑖) −
𝑑1 + 𝑑2
𝑁

∑︁
𝑖

log(𝜖𝑖)

= 0

Relative to the original Kraskov Estimator, the Partial Estimator for mutual in-

formation provides no extra bias with the benefit of cutting down computation. As

such, we opt to use the Partial Estimator when calculating mutual information.

As alluded to before, the Kraskov Estimator necessarily uses the Chebyshev metric

for calculating k nearest neighbors distance. As such, all knn’s in Ballet employ this

metric as well.

3.4 GFSSF

These estimators for entropy and mutual information give us the tools necessary

to introduce GFSSF. Grouped Feature Selection with Streaming Features [13], or

GFSSF, is a streaming feature selection algorithm that uses mutual information as

a proxy for feature relevance. This algorithm uses a heuristic based on both the

information the feature provides and the size of the feature, to penalize unnecessarily

large feature matrices. We use a variant of GFSSF in Ballet to test for feature

relevance and redundancy, changing steps to fit the constraints of our system.

3.4.1 GFSSF Algorithm Outline

When a new feature 𝑓𝑡(D) of dimensionality 𝑞𝑡×𝑛 is proposed to GFSSF, it is tested

against the target column 𝑦 as well as the currently accepted features F𝑡. If the

feature is found to be strongly relevant or weakly relevant, it will be accepted based

on its size and relationship with the currently accepted features.
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To test for strong relevance, GFSSF calculates the conditional mutual informa-

tion 𝐼(𝑦; 𝑓𝑡(D)|F𝑡(D)) between the target and the candidate feature given the current

accepted. Intuitively, this is the new information 𝑓𝑡 provides about 𝑦 over the current

features. We compare this information statistic against a threshold 𝐼𝑇 = 𝜆1 + 𝜆2 × 𝑞𝑡

and accept if the information is higher. 𝜆1 and 𝜆2 are user-specified hyper-parameters

that will be discussed more in the implementation of GFSSF in Ballet. This thresh-

old increases as the dimensionality of the candidate feature increases, so this penalizes

large features and ensures that the feature matrix remains relatively small in dimen-

sion.

However, if a candidate feature is not strongly relevant we may still want the

feature in replacement for a currently accepted feature. We may find that the can-

didate feature is a more relevant version of the old feature, or it expresses the same

information in fewer columns. If GFSSF finds that a feature is not strongly relevant,

it will iterate through all features 𝑓𝑖 ∈ F𝑡 to find a “weaker” feature. To do so, it looks

for a feature such that 𝐼(𝑓𝑡(D); 𝑦|F′
𝑡(D)) − 𝐼(𝑓𝑖(D); 𝑦|F′

𝑡(D)) > 𝜆2 × (𝑞𝑡 − 𝑞𝑖), where

𝑞𝑖 and 𝑞𝑡 are the dimensions of 𝑓𝑖 and 𝑓𝑡 and F′
𝑡 = F𝑡 ∖ 𝑓𝑖 is the set of all accepted

features minus 𝑓𝑖, the candidate for removal. If such a feature is found, it is removed

and the candidate feature is accepted.

Once a feature is accepted, all accepted features are now pruned for redundancy.

Each feature is checked to make sure to be strongly relevant; that is, that for each

𝑓𝑖 ∈ F, that it satisfies 𝐼(𝑓𝑖(D); 𝑦|(F ∖ 𝑓𝑖)(D)) > 𝜆1 + 𝜆2 × 𝑞𝑖. The full algorithm can

be viewed in Algorithm 1.

3.4.2 Modifications and Implementation of GFSSF

As originally described, the GFSSF algorithm cannot be built in the Ballet frame-

work. There are two main reasons for this; one reason is that the original algorithm

proposed removing columns from each feature, which is near-impossible to do au-

tomatically in Ballet. The other is because Ballet requires a separation between

acceptance and pruning, which GFSSF also does not have.

The original GFSSF algorithm had two parts: InGFSSF and AgGFSSF. The In-
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input : A stream of feature columns Γ = 𝑓1, 𝑓2, . . . , 𝑓𝑡
output: F, a compact and relevant feature matrix

1 F = {};
2 for 𝑓𝑡 ∈ Γ do
3 if 𝐼(𝑓𝑡;𝑌 |F) > 𝜆1 + 𝜆2 × 𝑞𝑡 then
4 F = F ∪ 𝑓𝑡;
5 else if ∃𝑓𝑗 s.t. 𝐼(𝑓𝑡;𝑌 |F ∖ 𝑓𝑗) − 𝐼(𝑓𝑗;𝑌 |F ∖ 𝑓𝑗) > 𝜆2 × (𝑞𝑡 − 𝑞𝑗) then
6 F = F ∪ 𝑓𝑡 ∖ 𝑓𝑗;
7 else
8 continue;
9 end

10 for 𝑓𝑗 ∈ F do
11 if 𝐼(𝑓𝑗, 𝑌 |F) < 𝜆1 + 𝜆2 × 𝑞𝑗 then
12 F = F ∖ 𝑓𝑗;
13 end
14 end
15 end

Algorithm 1: AgGFSSF routine for GFSSF

GFSSF subroutine compared columns inside a logical feature and deleted columns

found to be irrelevant, thus making each feature more compact. However, it is in-

feasible within Ballet; to automatically “delete” feature columns in a logical feature

would require directly changing the source code of the Feature object. This would

either require having the collaborator or maintainer change the code themselves or

find a way to automate source code editing. Both are cumbersome, as the former

adds an extra step for a human agent and the latter adds machine generated code

to a repository — often with poor readability for other collaborators. As such, the

GFSSF implemented in Ballet and described earlier is the AgGFSSF subroutine and

the InGFSSF subroutine is skipped entirely.

The other issue with the original GFSSF algorithm is that there is not a good

separation between acceptance and pruning. In the original algorithm, it is possible

that an accepted feature gets pruned while evaluating a candidate feature for accep-

tance. This is not practical for Ballet, as it may be the case that the maintainer

does not want to remove redundant features.

To solve this issue, we modify the algorithm slightly: when a feature 𝑓𝑗 would be

pruned during the acceptance stage of a candidate feature 𝑓𝑡, we instead keep it. In
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the feature pruning stage, we also enforce that the newly accepted feature is not a

candidate for pruning. The second constraint is necessary, as in the original algorithm

the newly accepted 𝑓𝑡 is only weakly relevant while 𝑓𝑗 is still in the feature set. We

expect the performance and behavior of this modified GFSSF algorithm to be similar

to the original AgGFSSF algorithm, as we expect 𝑓𝑗 to be pruned in the pruning stage

anyways. In Algorithm 2, we now have a concise splitting of the algorithm between

a “acceptance” stage (lines 3 — 9) and a “pruning” stage (lines 10 — 14), which we

implement separately in different stages of Ballet as a GFSSFAcceptanceValidator

and GFSSFPruningValidator, respectively.

Finally, we also wanted to place a higher value on features that were already

accepted over newly proposed features; in line 5 of the original algorithm (algorithm

1), there is a possibility that the candidate feature 𝑓𝑖 is almost redundant with an

accepted feature 𝑓𝑗, such that 𝐼(𝑓𝑖;𝑌 |F ∖ 𝑓𝑗) − 𝐼(𝑓𝑗, 𝑌 |F ∖ 𝑓𝑗) is slightly above zero.

In the original algorithm, 𝑓𝑖 would replace 𝑓𝑗.

In the context of Ballet, we want to avoid this situation because contributors are

likely to write logical features that are very similar to one another. In this situation,

we would want to keep the older feature if the new feature does not provide substantial

information for several reasons; firstly, we would want to rightly credit the original

contributor’s work by keeping their work in the project. additionally, we would want

to avoid needless “feature swapping” as it would be confusing for maintainers to see

changes to the project that did not improve model performance. To solve this, we

change the threshold in line 5 from (𝜆2 × (𝑞𝑖 − 𝑞𝑗)) to (𝜆1 + 𝜆2 × (𝑞𝑖 − 𝑞𝑗)), so that

𝑓𝑖 is only accepted if it provides either more information or the same information in

fewer columns.

3.4.3 Hyper-Parameter Specification

GFSSF relies on two hyper-parameters to be specified: 𝜆1 and 𝜆2 which can be

understood as a relevance threshold and a dimension penalty, respectively. As we

would not expect maintainers to know the intricacies of the GFSSF algorithm prior

to starting a Ballet project, these parameters are set by Ballet itself.
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input : A stream of feature columns Γ = 𝑓1, 𝑓2, . . . 𝑓𝑡
output: F, a compact and relevant feature matrix

1 F = {};
2 for 𝑓𝑡 ∈ Γ do
3 if 𝐼(𝑓𝑡, 𝑌 |F) > 𝜆1 + 𝜆2 × 𝑞𝑖 then
4 F = F ∪ 𝑓𝑡;
5 else if ∃𝑓𝑗, s.t. 𝐼(𝑓𝑡, 𝑌 |F ∖ 𝑓𝑗) − 𝐼(𝑓𝑗, 𝑌 |F ∖ 𝑓𝑗) > 𝜆1 + 𝜆2 × (𝑞𝑡 − 𝑞𝑗)

then
6 F = F ∪ 𝑓𝑡;
7 else
8 continue;
9 end

10 for 𝑓𝑗 ∈ F ∖ 𝑓𝑡 do
11 if 𝐼(𝑓𝑗, 𝑌 |F) < 𝜆1 + 𝜆2 × 𝑞𝑗 then
12 F = F ∖ 𝑓𝑗;
13 end
14 end
15 end

Algorithm 2: Ballet-GFSSF, modifications in line 5 and 6

The original authors opted to use 𝜆1 = 𝐻(𝑦)
4|Γ𝑡| and 𝜆2 = 𝐻(𝑦)

4(
∑︀

𝑓𝑖∈Γ𝑡
𝑞𝑖)

, where Γ𝑡 is

the set of all arrived features, 𝐻(𝑦) is the entropy of the target column 𝑦, and 4

is a normalization constant found after experimentation. Thus, |Γ𝑡| is the number

of arrived features and
∑︀

𝑓𝑖∈Γ𝑡
𝑞𝑖 is the total number of columns amongst arrived

features. The notion of a “rejected” feature is fuzzy in Ballet— Even if a pull

request is closed, the user can open it again with modifications to their feature - in

which case it is difficult to determine if this feature should count towards the number

of arrived features twice.

As such, we opted to replace Γ𝑡 with F𝑡: the set of accepted features. This is

better defined for a Ballet project and is easier to query. As we expect most features

to be rejected, we also increased the normalization constant from 4 to 32. Similar to

the original paper, we experiment with changing this value and will discuss this later.

3.4.4 Other Considered Algorithms

In the process of developing Ballet, the GFSSF algorithm was not the first algo-

rithm we considered. Many other feature selection algorithms were considered and

46



ultimately not used due to some of the constraints that Ballet imposes in terms

of feature quality and memory usage. We detail them here to explain why we use

GFSSF as our baseline algorithm even though there are arguably more performant

algorithms in the state of the art.

Alpha Investing: 𝛼-investing [22] is an algorithm that uses a likelihood ratio test

and compares it against a parameter 𝛼 to see if it has enough relevance to be accepted.

The core idea is that the 𝛼 parameter changes as features are accepted or rejected to

fit the needs of the feature matrix: we are more lenient towards low-quality features

if we have recently accepted many high-quality features, and we are more picky about

feature selection if we have recently rejected many low-quality features.

This is an attractive algorithm for Ballet because the hyper-parameter 𝛼 and the

adaptive penalty allows Ballet to upper bound the false positive rate of accidentally

accepting a poor quality feature. Furthermore, there is flexibility in the type of

statistic test used, and can be adapted for different uses. In our previous work [16],

we found that 𝛼-investing did comparably to a batch algorithm trying to accomplish

the same goal.

In the end, we decided against alpha investing due to availability constraints

- because Ballet projects exist as GitHub repositories and candidate features are

proposed as pull requests, it is difficult to define the idea of “rejecting” a feature as

in section 3.4.3. Additionally, this requires the Ballet project to keep track of the

𝛼 parameter as it changes in time. This would pose an issue for security storing this

value of 𝛼; if it is stored within the project repo, it is vulnerable to tampering by

malicious contributors. However, more secure solutions would require adding more

infrastructure to Ballet, increasing the complexity of startup and potentially adding

cost to maintaining a Ballet project.

Group-SOALA: Group-SOALA [21] is a streaming feature selection algorithm that

is similar to GFSSF in that it uses mutual information as a proxy for relevance. How-

ever, instead of considering the conditional mutual information of an entire feature,

Group-SOALA tests a feature column by column against a set of heuristics to see if

each column is relevant. As entropy calculation scales poorly with dimension, this is
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significantly more efficient than GFSSF.

However, we opted against Group-SOALA due to constraints of the Feature ab-

straction and the feature engineering pipeline invariant: instead of penalizing high

dimension features, Group-SOALA opts to remove irrelevant feature columns. This

would have been cumbersome for our users but without would potentially mean ac-

cepting many irrelevant feature columns, so we opted against this method as well.

3.5 Feature Selection Architecture

There are three main agents in the feature selection that work together to ensure that

the project invariant is kept. We will go over an overview of all three parts and their

roles, and discuss their detailed interactions in the following section.

3.5.1 git/GitHub

Ballet projects live as git repositories, developed on top of GitHub. As discussed

earlier, this is because GitHub is already used by open source developers and provides

a platform for version control and incremental development. As Ballet projects are

meant to be open-source projects and GitHub allows for the free creation of public

data-sets, the expected use case of Ballet incurs no cost to maintainer or contributor.

In the Feature Selection process, GitHub maintains permissions so that only main-

tainers make the final decision to merge a proposed feature into the project. GitHub

is also responsible for triggering builds and web-hooks to Travis CI and the GitHub

App, respectively.

3.5.2 Travis CI

Travis CI is a continuous integration service for software projects such as Ballet

projects. They provide free CI testing and computation for open source projects,

which allows for open source projects to grow at scale without worrying about the

cost of CI testing.
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For Ballet projects, Travis CI is responsible for running the feature validation

checks to ensure candidate features follow the API and are sufficiently relevant. For

each pull request and merge, Travis CI runs a check suite where each job is a different

stage of validation for features, including the GFSSF acceptance and pruning stages.

As Travis CI provides free services for open-source project, this is the most sensible

part of the architecture to run the computationally intensive GFSSF algorithm.

3.5.3 GitHub App

Part of Ballet is a GitHub App custom made to interact with Ballet projects.

GitHub Apps are services run by organizations that, when installed by a user or or-

ganization onto their repositories, listens to specific events triggered by other GitHub

services and acts inside that repository as its own agent. For example, Travis CI is

implemented as a GitHub app that listens to when pushes are made on pull requests

and then can modify the pull request’s check suite accordingly.

The Ballet GitHub App is in charge of miscellaneous automation tasks related

to GitHub. Currently, one of its larger roles is taking action for pruning - after the

Travis pruning check finishes running, the GitHub App takes action to remove the

redundant features. As this app runs as a server owned by the Data to AI group, we

want to ensure that the app preforms as few computations as possible. We discuss

how we achieve this later on in how it interacts with Travis and GitHub.

It is important to note that the GitHub App runs on a server owned by the Data

to AI group and therefore incurs a cost to the lab and no cost to the maintainer of

the project. Currently, the App is hosted on an Amazon Web Service computation

instance. As we avoid heavy computation on these servers, we use a relatively small

machine that incurs a cost of $10/month. These can also be switched to computers

owned directly by the Data to AI group if such costs become infeasible to support.
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3.6 Feature Acceptance

The feature acceptance process can be broken into three concrete steps: Travis CI

testing, maintainer review, and an optional GitHub app step to automate feature

acceptance.

First, when a feature is proposed in a pull request, GitHub triggers Travis CI to

start a build. For the acceptance build, this build has three main checks:

a. Project Structure Check Collaborators that propose features are only al-

lowed to do so in the contrib folder in the correct sub-directory, and nowhere

else. This prevents users from tampering with the project metadata or how the

project loads data. To do so, the first set of checks creates a diff of what files

have been changed in the pull request. We expect that each feature proposal

contains exactly one module that exports a Feature object. If not, the pull

request is rejected.

b. Feature API Check In this stage, the candidate feature is fitted and trans-

formed against the data-set provided in load_data.py. If errors are raised while

fitting or transforming, the check fails as the feature is not able to to produce a

viable feature matrix. Afterwards, the resulting feature matrix is tested against

a set of heuristics to ensure predictive models will be able to use it - these checks

include a check for no missing values and no infinite values.

c. Feature Acceptance Check Even if a feature follows the API, it may not be

relevant to the target column and therefore useless for any predictive model.

The Feature Acceptance Check set uses GFSSF to determine whether or not

a feature is either strongly or weakly relevant, and then determines whether it

has enough relevance to be accepted.

These three checks are built as sub-modules into the ballet.validation module -

specifically, Ballet provides a script for Travis that calls either a FeatureAPIValidator,

ProjectStructureValidator, or GFSSFAcceptanceValidator depending on the check
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being run. Once all the checks have finished running, Travis sends the results back

to GitHub to display on the pull request.

On GitHub, the maintainer then reviews feature pull requests that pass the checks.

While Travis ensure the feature passes the Ballet project invariant, there may be

other invariants the maintainer would like to uphold - for example, good documenta-

tion of code or good coding practices.

Optionally, the maintainer may configure the project to have the GitHub app

automate more parts of the acceptance process. If the maintainer does not have

enough time to review every passing feature, they may opt to have the GitHub app

automatically accept and merge these features into the project. The application

can also close proposed features that fail specifically the acceptance check - while it is

relatively easy to fix the API and structure checks, it is difficult to increase a feature’s

relevance.

3.7 Feature Pruning

Once a candidate feature is accepted into the project, the feature pruning process is

triggered. Travis and the GitHub app are mainly responsible, while GitHub itself pro-

vides web-hooks that trigger and notify each service. The numbers below correspond

to the same step on Figure 3-1.

1. The first step of the pruning process is the merging of the new feature - this is

the only event that triggers the process.

2. Once a feature is merged into the project, GitHub triggers a build on Travis. For

pruning, the feature validation checks are ignored and only a feature pruning

check is run, using the ballet.validation.GFSSFPruningValidator object.

As Travis itself cannot prune features from the project, it instead stores the

output of the pruning routine into its logs and returns a “passing” check back

to GitHub.

3. Once GitHub receives a “passing” check, it sends a web-hook to the GitHub
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Figure 3-1: The pruning process, starting from the merging of the candidate feature
to the pruning of the redundant features.

app. On receiving this, the app uses the Travis API to retrieve the logs of

the pruning routine. It then parses the log and figures out which features to

remove. The app can then create a commit using the GitHub API on top of the

master branch that removes the redundant features if any exist. From here, the

next action depends on the project configuration: the app can either update

master to this commit, add the commit to a new branch and submit a PR, or

do nothing.

52



Figure 3-2: An example output of a Travis CI log for a pruning subroutine. High-
lighted in green are log lines pertaining to features that passed and stayed in the
project, while highlighted in red are log lines pertaining to features that failed and
were pruned. Features whose information score did not exceed the threshold (a statis-
tic based on the current features and size of the feature 𝑞𝑖) were pruned.
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Chapter 4

Simulation and Evaluation

To test the effectiveness of Ballet and how well it aligned with our design goals,

we simulated what collaboration in a Ballet project might be like with multiple

collaborators. To do so, we took real-life instances of group-based data science and

simulated what the process would have been like in Ballet instead of the original

context. Then, we analyze the performance of the feature matrix Ballet provides and

compare the feature engineering process in Ballet with the original context. Because

we run the Ballet project as a simulation of collaboration, we will focus design goals

related to data science and scalability over goals related to collaboration, as there are

no real human agents collaborating.

4.1 Ames Housing Prediction Overview

The Ames Housing Prediction Competition [4] is a popular starting problem for be-

ginner data scientists on Kaggle. The goal of the problem is to accurately predict the

price of a house given different qualities of the house, such as square footage of the

first floor and the age of the house.

To do so, users are given a single data table containing a target column for house

prices in Ames, Iowa and many columns pertaining to different qualities of the house.

This is where feature engineering is important; the data-set contains many missing

values that should be filled in. Also, data-set columns are potentially redundant or
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irrelevant - for example, a column pertaining to the type of pool a house had ended up

being useless for predictive models because a majority of houses did not have a pool.

The relevant task for a Ballet project designed for the Ames Prediction Problem is

to take the original data table and transform it into a compact and more relevant

feature matrix.

As discussed earlier, Kaggle provides kernels for users to share and discuss their

data science methods with the Kaggle community. As the Ames Prediction Problem

is a practice problem that has been online for over two years, many kernels have been

built describing different features that users have found to be relevant to house price.

Users are allowed to use the works of other kernels to build their own, which provides

a simple collaboration model for this problem.

4.2 Experiment Details

As the kernels allow for users to publicly share their work, we wanted to simulate

what their work would have been like if they were working collaboratively on a Ballet

project.

To do so, we identified nine kernels for the Ames Prediction Problem that were

popular in the community and had a focus on feature engineering. Each kernel

was made by a different Kaggle user, so this would translate to nine different users

contributing features in a Ballet project. Once we identified the kernels, we set about

translating each feature described to fit the Ballet API. This involved reading each

kernel, identifying each feature, and manually implementing a Feature object that

performed the same transformations on the data-set that the original kernel feature

did. Overall, we identified 311 logical features from the eight kernels.

Once we had our Feature objects implemented, We repeatedly simulate a scenario

in which each Kaggle member separately submits their features to a Ballet project.

In each scenario, we simulate collaboration by having users submit features one at a

time at random intervals. We then allow for the Ballet app to automatically merge

or reject pull requests based on the feedback from the validation step, then allow the
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app to automatically remove features found redundant after a new feature is accepted.

4.3 Key Findings

While analyzing the simulation of the Ames demo we found some interesting discov-

eries that helped us understand better the Ames data-set and the feature selection

algorithm.

Of the original 311 logical features proposed to the data-set, 12 features were

accepted into the project when they were proposed. 6 of those features were eventually

pruned by new features entering the project, resulting in 6 total features left by the

end of the simulation.

4.3.1 Mutual Information Limit

Figure 4-1: A graph of the simulation project’s dimensionality and information with
the target column, as features are accepted. Time is measured since start of project
simulation in minutes. Points only appear after a feature is accepted or a feature is
pruned. Pruning generally occurs several (2-3) minutes after a feature is accepted.
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Figure 4-2: The same graph as Figure 4-1, but spaced out to better visualize each
feature’s contribution Ticks represent the state of the project immediately after a
feature is accepted, and points between ticks represent the state of the project if the
pruning routine detects and removes redundant features.

Mutual Information between X and Y is calculated as 𝐼(𝑋;𝑌 ) = 𝐻(𝑋)+𝐻(𝑌 )−

𝐻(𝑋;𝑌 ). As the entropy 𝐻(𝑋, 𝑌 ) is lower bounded by max(𝐻(𝑋), 𝐻(𝑌 )), the mu-

tual information between two data-sets is upper bounded by their entropies.

For Ballet prediction problems, that means that the mutual information between

the feature matrix and its target column 𝑦 is upper bounded by the entropy of the

target y. For the simulation Ames data-set, we find this number to be close to 6.3. We

see this reflected in Figure 4-2: After the first four features are accepted, the mutual

information between the feature matrix and target column stays relatively the same

for the rest of the simulation.

After that point, features that are accepted generally force another to be pruned.

We see that these features do not change the mutual information score or dimen-

sionality of the feature matrix appreciably, so this can be thought as a “swapping” of

similar features.
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We also see that features proposed earlier were more readily accepted than features

proposed later in Figure 4-1. This is most likely due to a combination of the mutual

information limit and the level of redundancy in the features — by the middle of

the project, not many features can contribute new information, and so the project is

much less active.

4.3.2 Effects of Varying Hyper-Parameters

To test the effects of varying hyper-parameters, we ran the simulation for different

values of 𝜆1 and 𝜆2, keeping the features and order of submission constant. We expect

more features to be accepted at lower values of these parameters and fewer features

to be accepted at higher values.

When decreasing the values of each hyper-parameter by a factor of 2, we found

that the total number of accepted features increased, but so did the number of pruned

features. By the end of the simulation, the number of accepted features still in the

project did not increase appreciably. Similar to the original simulation, the simulation

with lower hyper-parameters quickly accepted a handful of features without pruning

any features. After that, the simulation exhibited the same “feature-swapping”.

We decide to keep the normalization constants for the hyper-parameters to be 32,

as it allowed for relevant features to be accepted and had relatively little “feature-

swapping” to occur. As mentioned earlier, this is not a desirable effect — every

change should improve the project’s relevance, so these swaps are unnecessary and

confusing for maintainers and contributors.

4.3.3 Pruning Graphs

As mentioned earlier, the goal of pruning is to remove redundant features; usually,

this is because a new feature shares the same information but is more relevant or

compact.

In figure 4-3, we see a graph of which features (represented as nodes) prune which

other features. The size of the node corresponds to the information shared with
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the target column and therefore also is correlated with the feature’s relevance. As

expected, usually a feature that gets pruned has less information than the feature

that prunes it.

However, there is one large counterexample in the graph where a much less relevant

feature prunes a much more relevant feature. Looking into the Travis CI logs to see

the results of the pruning check, it seems that the more relevant feature, while having

more mutual information overall, had very little information conditioned on the other

features. Essentially, the feature was already partially redundant and the acceptance

of the less relevant feature made it fully redundant.

We also noticed deep nesting of pruning in the features; often, it may be the case

that the feature that pruned a feature 𝑓𝑖 may itself be pruned as well. This can be

understood as users constructing similar features; because Kaggle members generally

do not collaborate during feature engineering, there is a high level of redundancy in

the features we collected. Features that perform similar transforms and are built on

the same data columns in the raw data-set are often similar and tend to prune each

other if the new feature is found to be better.

4.3.4 Understanding Pruning

As the data columns in the Ames data-set logically represent different qualities of each

Iowan house, we should be able to find relationships between the inputs of features

that prune and were pruned.

In one case, we found this relationship: in our simulation, two features proposed

methods related to the Garage Area column and the acceptance of one of these

features caused the pruning of the other. This is to be expected, as two features that

share the same input are likely to be redundant in the information they provide.

In most cases, it is difficult to see why one feature might prune another - even if two

features are built off different inputs and do different tasks, they still might provide

redundant information for the project. Similarly, many features may be rejected

from the project because of their redundancy with an already accepted feature that

seems different. This may be frustrating for users who do not understand why their
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Figure 4-3: A directed graph representing features pruning one another. Green nodes
represent features that have been accepted and orange nodes represent features that
were accepted but then pruned later on. The size of the node is proportional to the
mutual information score of that feature with respect to the target. Edges pointing
from 𝑓𝑖 → 𝑓𝑗 represent that the acceptance of 𝑓𝑖 caused 𝑓𝑗 to be pruned. Feature
nodes at the top of the graph were introduced to the project earlier than features
lower on the graph, hence why directed edges only point upwards.

features are being removed. For future simulations, better logging and reporting of

information statistics should be implemented to make the feature selection process

easier and clearer to understand.

4.3.5 Clustering of Features

In Figure 4-4, we take a subset of the first 45 proposed features and graph their

relevances with respect to each other. To build this, for this feature subset we calcu-

lated each feature’s mutual information score with every other feature and created a

“relevance edge” between high information sharing features.

Of the first 45 features, we see that features tend to cluster amongst each other

and closely share information. We see in Figure 4-4 that a majority of the features

are part of one large cluster that consists of a singular larger feature at the center
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Figure 4-4: An undirected graph representing feature relevance between one another.
Green nodes represent features that have been accepted, orange nodes represent fea-
tures that were accepted but then pruned later on, and red nodes represent features
that were rejected in the feature acceptance stage. The size of the node is propor-
tional to the mutual information score of that feature with respect to the target.
Edges represent features that share information with each other, with shorter edges
representing more information shared. As every feature has some information with
each other, only a subset of edges have been shown here.
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of a star. This implies that many of the features submitted by Kaggle users shared

much of the same information and were redundant with respect to each other.

4.4 Concluding Remarks

As previously discussed, we expected a high level of redundancy and irrelevancy within

the features constructed from the Kaggle kernels, as these users are not working

collaboratively. Even for this hypothesis, the number of features selected by GFSSF

is surprisingly low; a similar simulation done using 𝛼-investing accepted an order of

magnitude more features [16].

While we can visualize the redundancies between features in the simulation, un-

derstanding the interactions in the GFSSF algorithm are tougher because of the lack

of interpretability in the algorithm. As such, it is a main motivation for future work to

be able to understand the Ballet validators at each step of the Feature Engineering

Life-Cycle.
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Chapter 5

Conclusion

5.1 Future Work

Though the feature selection pipeline for Ballet is in good shape, there are still more

tasks at hand to ensure that Ballet is useful for open source data science projects.

The selection helps address many data science oriented goals for Ballet, but the

framework must also consider the open source community.

5.1.1 Better Acceptance/Pruning Reporting

Considering the current Ballet framework, it is difficult to figure out why a feature

is accepted, rejected, or pruned. Currently, the only source of information about a

feature’s acceptance exists in Travis CI, though many lines of logging code. Not only

is this cumbersome to find, but figuring out what the logs mean is near impossible

without understanding the GFSSF algorithm.

For Ballet to be successful, it should be easier for maintainers and collaborators

to find, interpret, and understand the different stages of the feature selection process.

This could mean using mutual information scores to let users know if their feature

is similar to other features, or using the GitHub app to comment directly on pull

requests different statistics of their feature.
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5.1.2 Configuration / Detection of Continuous and Discrete

Columns

One major issue with the current validators is the use of heuristics to determine

whether a certain dataset should be treated as discrete or continuous. Currently,

Ballet uses a set of simple heuristics to determine if a column is discrete or not; if

the column is integer-valued or has few unique values, Ballet marks the column as

discrete and marks it continuous otherwise.

However, the estimations can vary wildly depending on which estimator is used;

for example, if 𝑋 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑋 ∈ {0, 1} is the 0-1 result of a coin flip and

𝑌 = 10 ×𝑋, 𝑌 ∈ {0, 10}, a discrete estimator would treat their samples to have the

same entropy and a continuous estimator would treat 𝑌 to have a higher entropy

as the range of the values is higher. More complex issues arise when attempting to

calculate information scores with the wrong type of estimators applied for entropy.

This is potentially a problem in the simulation; in the documentation for the

Ames Dataset, the target column (Sales Price) is listed as a continuous data column

but is treated as a discrete value in Ballet as it contained integer values. While

user configuration is best for any project, this can be cumbersome as datasets may

contain many thousands of columns and having users mark logical feature columns

as continuous or discrete may not be effective. However, finding a better solution for

determining data column type is necessary for Ballet to improve.

5.1.3 Feature Discovery and Contribution

While the project structure of Ballet is useful for partitioning work amongst con-

tributors, it is difficult for users to easily discover the features that other contributors

have made. In a project of hundreds of features, this increases the risk of redundant

proposed features and reduced efficiency for the project. As such, Ballet would even-

tually need a method by which users can quickly and easily browse the features of a

project. This solution could take the form of test in a GitHub repository’s readme.md

file, a lightweight website, or hosting through GitHub pages.
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Similar to the first goal, it is important for contributors to know the weight of their

contributions. The benefit is twofold; firstly, giving users a contribution “score” both

increases their satisfaction and reward for contributing. It also allows other contrib-

utors to identify “good” logical features, potentially learning behaviors in the dataset

and good practices for data science. Like feature discovery, showing a contributor’s

score can be achieved through several lightweight solutions.

5.1.4 Implementation of other Relevance Algorithms

While GFSSF is a useful algorithm for some predictive models, it is possible that

other algorithms for feature selection may be more useful for different use cases. For

example, the features chosen by GFSSF for the Ames simulation have a high mutual

information score, but a linear regression model fitted on the features preforms poorly

(𝑟2 ∼ 59%). In the future, it may be useful to implement different feature selection

algorithms based on the prediction problem and the optimization/loss function being

used.
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