
Generating and Adjudicating Digital Legal
Agreements Using Ethereum Smart Contracts

by
Kevin Y. Liu

S.B., Mathematics, Massachusetts Institute of Technology (2018)
S.B., Computer Science and Engineering, Massachusetts Institute of

Technology (2018)
Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2019

© Kevin Y. Liu, 2019. All rights reserved.
The author hereby grants to MIT permission to reproduce and to

distribute publicly paper and electronic copies of this thesis document
in whole or in part in any medium now known or hereafter created.

Author .
Department of Electrical Engineering and Computer Science

May 24, 2019

Certified by. .
Lalana Kagal

Principal Research Scientist, Computer Science and Artificial
Intelligence Lab

Thesis Supervisor
May 24, 2019

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee
May 24, 2019

Generating and Adjudicating Digital Legal Agreements Using

Ethereum Smart Contracts

by

Kevin Y. Liu

Submitted to the Department of Electrical Engineering and Computer Science
on May 24, 2019, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

Across the world, countless legal agreements are drafted, signed, and disputed every
day. In most cases, the drafting process consists of costly and lengthy revisions of
paper-based legal agreements. Furthermore, once finalized and signed, these legal
agreements are hard to track, manage, and arbitrate, as there is no standard system
for storing and sharing paper-based legal agreements. Regardless of their purpose,
these legal documents must be carefully managed and approved by teams of lawyers
for all parties listed in the agreement, resulting in lengthy face-to-face meetings, and
in the case of breaches, in-person disputes over resolutions.

In this thesis, we designed and implemented a novel blockchain-based alternative
for generating, tracking, managing, and adjudicating legal agreements using Ethereum
smart contracts. Through a front-end web-app, users can piece together common con-
tract clauses with custom parameters to generate their own natural language legal
agreements. Our interface then automatically creates equivalent digital smart con-
tracts representing these parameters and clauses, deploying the smart contracts as
permanent records onto the Ethereum blockchain. These smart contracts are for-
mally verified with various techniques to ensure that they reflect the intents of the
drafted contract and are free from execution vulnerabilities. To hold violators ac-
countable, breaches by any signatory of the contracts can then be arbitrated digitally
using secure voting by external arbiters. These violators can then be subject to
monetary penalties paid in digital Ether tokens for breaching the agreement.

Thesis Supervisor: Lalana Kagal
Title: Principal Research Scientist, Computer Science and Artificial Intelligence Lab

Acknowledgments

I would like to thank my advisor Lalana Kagal for giving me the opportunity to

work on this project for my Master of Engineering thesis. The outcome has been the

result of a two-year collaborative process, starting in 2017 when Lalana advised my

Advanced Undergraduate Research Opportunities Program (SuperUROP) project.

Working on this project has been an incredibly enriching experience, and I am very

thankful for Lalana’s guidance, intellectual support, and patience.

I would also like to thank Ravi Rahman, the undergraduate researcher working

on his own SuperUROP project in parallel with my thesis. His contributions to

the Python language representation and the Z3- and KEVM-verification of the legal

contracts were crucial to the success of this project. I really enjoyed the late night work

sessions we held, iterating over the exact specifications needed to represent a legal

contract in Python. I really appreciate Ravi’s reliability, dedication, and willingness

to voice his ideas in guiding the direction of the project.

Furthermore, I would like to thank Harsh Desai and Murat Kantarcioglu of the

University of Texas at Dallas’s Data Security and Privacy Lab. I had previously

collaborated with them for my SuperUROP project, and they remained on board to

provide feedback and guidance for my thesis project this past year. I really appreciate

the time and encouragement that they offered me, as well as their wholehearted

interest in seeing where this project would lead.

Lastly, I would like to thank my family and friends for their endless support. I

could not have made it this far without them, and for that, I am eternally grateful.

Contents

1 Introduction 15

1.1 Scope . 16

1.1.1 Data Sharing Contracts . 16

1.2 System Goals . 17

1.3 Contributions and Thesis Overview 18

2 Technical Background 19

2.1 Blockchain Technology . 19

2.1.1 Proof of Work . 20

2.1.2 Block Linkage and Efficiency 21

2.1.3 Applications . 22

2.2 Ethereum . 23

2.2.1 Smart Contracts . 23

2.2.2 Vyper . 24

2.3 Verification Techniques . 25

2.3.1 Z3 . 25

2.3.2 KEVM . 26

3 Related Work 27

3.1 Templated Legal Contract Drafting 27

3.2 Programmatic Legal Contract Representation 28

3.3 Blockchain Data Sharing . 29

3.4 Smart Contract Privacy and Verification 32

7

3.5 System Uniqueness . 33

4 Front-End Interface 37

4.1 Contract Metadata . 37

4.2 Adding Clauses . 38

4.2.1 Pre-Existing Clauses . 38

4.2.2 Custom Clauses . 39

4.3 Contract Submission . 41

4.4 Post-Submission Maintenance . 41

5 Python as a Higher Level Contract Representation 43

5.1 Classes . 44

5.1.1 Parties . 44

5.1.2 Arbiters . 44

5.1.3 Actions . 45

5.1.4 Clauses . 46

5.2 Contributing to the Clause Library 47

5.3 Python Contract Representation . 48

5.4 Z3 Verification of Python Representation 49

6 Converting Python to Vyper 51

6.1 Python to Vyper Compiler . 52

6.2 KEVM Verification . 52

7 Deployment on Ethereum Blockchain 53

7.1 Tools . 53

7.1.1 Rinkeby Test Network . 53

7.1.2 MetaMask . 54

7.1.3 Remix for Smart Contract Compilation and Deployment . . . 55

7.2 Contract Deployment . 56

7.2.1 Querying Contracts . 57

7.3 Adjudication Process . 57

8

7.3.1 Proposing a Breach . 58

7.3.2 Arbiter Voting and Resolution 58

8 Evaluation 61

8.1 System Coverage . 61

8.1.1 Drafting Using the Web Interface 62

8.1.2 Drafting Using Python . 63

8.1.3 Limitations . 63

8.2 Clause Re-use Efficiency . 65

8.3 Formal Verification . 66

8.4 Blockchain Deployment and Adjudication 67

9 Future Work 69

10 Conclusion 73

A Example Legal Contracts 75

A.1 Simple Data Sharing Agreement . 75

A.2 Complex Data Sharing Agreement . 77

B Select Source Code Files 83

B.1 Python Representation of a Legal Contract 83

B.2 JSON Representation of a Legal Contract 88

B.3 Python to Vyper Compiler . 93

B.4 Vyper Smart Contract . 100

B.5 SMT2 Proofs . 107

Bibliography 113

9

10

List of Figures

2-1 Blockchain architecture . 21

3-1 Key data sharing agreement clauses 35

4-1 Front-end web interface . 38

4-2 Custom clause modal . 40

7-1 MetaMask Interface . 54

7-2 Contract Deployment via Remix . 56

7-3 Querying a Deployed Legal Contract 60

8-1 Effectiveness of clause repository . 66

11

12

List of Tables

5.1 Example Z3 Proof and Satisfiability Truth Table 49

13

14

Chapter 1

Introduction

In today’s era of inter-connectivity, collaboration, and dependence, there is almost

always a written legal basis for any interaction that occurs between individuals, com-

panies, or entities. This might be a terms-of-service agreement, a payment for services

contract, a trade record of financial securities, or an employment contract. These

agreements are almost always filled with legal jargon and must be drafted by teams

of lawyers over the course of many paper-based iterations. This process is very cum-

bersome and costly, and there may be unnecessary time delays related to the transfer

of written paperwork between parties.

The above problems are only those that occur during the legal drafting process,

before any party has even agreed to the terms. Once signed, multiple copies of these

paper-based legal agreements are stored independently by each party. These copies

are difficult to keep track of, and individual clauses of these contracts are difficult to

look up and reference later. Furthermore, in the case of a suspected contract breach,

lawyers must reevaluate the contract text to determine whether or not the breach

actually occurred, and if so, what the consequences should be.

Given the difficulties with the current state of writing, managing, and adjudicating

legal contracts, we propose a modern, digital alternative for generating, tracking,

managing, and especially resolving breaches with legal contracts. This alternative

will hopefully ease logistical problems related to the paper-drafting of legal contracts,

as well as store all digitized contracts as permanent records that are immutable and

15

easily auditable.

1.1 Scope

The scope of all legal agreements is simply too large for a single thesis, so we chose to

focus on legal data sharing contracts when evaluating our system. The choice of fo-

cusing on data sharing contracts was influenced by my previous work in the healthcare

space during my Advanced Research Opportunities Program (SuperUROP) project,

as well as the significantly increased need for security, privacy, and adjudication for

these types of contracts. However, it is important to note that the system we devel-

oped can be harnessed to draft and model any type of legal contract as a digital smart

contract on the Ethereum blockchain. Some other fields where our developed system

can be heavily utilized are the financial space, enterprise software licensing contracts,

and homeowner mortgage loans. Section 1.1.1 elaborates on why a digitalized legal

contract system would vastly improve the current data sharing space.

1.1.1 Data Sharing Contracts

Every day, more and more data is generated around the world. Regardless of its

purpose, for most data the sharing of it becomes paramount to increasing its value.

Many applications ranging from personalized health care to crowdsourced traffic re-

ports to pharmaceutical research require individuals and organizations to share data

at an unprecedented scale. In healthcare, patient data is shared among institutions

for improving treatment decisions [1]. First responders and aid workers share data

between them to better coordinate disaster relief efforts [2]. Cities share the data that

they collect about commute patterns with different stakeholders such as transporta-

tion companies to reduce traffic jams during rush hour [3]. Data sharing is crucial in

today’s world, but due to privacy reasons, security concerns, and regulation issues,

the conditions under which the sharing occurs need to be carefully specified.

In many use cases, a basic data sharing scenario would involve a data requester

(e.g. a medical research clinic), a data provider (e.g. a healthcare patient), and

16

the data itself. Data sharing can be a constructive concept to improve collaboration,

analyze and utilize data to generate significant value, and maintain accountability and

transparency. At the same time, the misuse of such shared data can create significant

problems such as the leak of patient confidentiality and identity theft.

To prevent misuse, reduce liability, and comply with regulations, many organi-

zations sign legal agreements before sharing data. These legal agreements serve to

protect the interests of both parties. For example, the data distributor would likely

wish to be notified if the data requester’s data server is breached, and these conditions

could be specified via a data sharing agreement. Likewise, the data requester would

want to have some recourse if the data provider shares corrupted or falsified data.

Many other restrictions and precautions are introduced in a data sharing contract to

ensure that the collaboration between the two parties is as smooth as possible.

The necessity to draft and sign so many legal agreements in the data sharing field is

a perfect application of our system. By digitizing all these contracts and maintaining

them as permanent records on the blockchain rather than in email threads or file

cabinets, users and institutions involved with data sharing can more easily draft,

access, verify, and dispute these contracts.

1.2 System Goals

The goals of the system that we developed are two-fold:

First, the system created must be easy to use, without any required knowledge

of the back-end Ethereum blockchain technology. There is a steep learning curve

and set-up entry barrier with using the blockchain, and thus by eliminating these

obstacles, many more users will be able to develop digital contracts using our system.

The system will need to be designed in a way to abstract away the back-end technical

layers while still maintaining the back-end’s intended and provided functionality.

Second, the system created has to be robust in terms of legal contract modeling.

If only a few specific contracts can be modeled with our digital system, there will

not be any willingness or incentive for adoption of it. It is acceptable if the initial

17

iterations of the system only support the construction of a few specific data sharing

clauses for prototyping purposes. However, the system must be easily extensible and

adaptable, so that more functionality and clause support can be added by either

system administrators or users of the system.

Whether our developed system accomplishes these two goals will determine its

success and usefulness to lawyers and legal contract writers worldwide.

1.3 Contributions and Thesis Overview

In this thesis, we present a framework for lawyers and other users to digitally draft le-

gal contracts. An automatic process then formally verifies and deploys these contracts

onto the Ethereum blockchain. After being committed to the blockchain, the con-

tracts are immutable, and can be easily adjudicated in the case of a suspected breach.

A key contribution of our system is the creation of a crowd-sourced clause repository

to promote clause re-use, saving time and effort in drafting legal contracts. Another

contribution is the development of an easy-to-use front-end, abstracting away the

blockchain and programming-based back-end so that anyone can use our system. A

third contribution is the creation of a Python-based library of classes and functions to

model a higher-level code-based representation of legal contracts. Users that are more

programming oriented can develop their own contracts directly using this library. A

final contribution is the creation of a democratic arbitration process residing digitally

on the blockchain for easy dispute resolution.

Chapter 2 provides an overview of the technical background of frameworks and

tools used in this thesis. Chapter 3 presents previous literature and related work.

Chapters 4 through 7 detail our system’s technical pipeline, including using the front-

end interface to draft a legal contract, representing the written contract programmat-

ically in Python and Vyper, and deploying the contract to the Ethereum blockchain.

Chapter 8 contains an in-depth evaluation of our developed system. Chapter 9 dis-

cusses future work that we hope can further improve our system’s functionality and

usefulness. Chapter 10 concludes the thesis and reiterates our contributions.

18

Chapter 2

Technical Background

The following sections provide an overview of the various technologies we used to

develop our system, as well as any background knowledge related to these technologies

that is key to understanding the functionality and robustness of our system.

2.1 Blockchain Technology

First introduced in 2008 by Satoshi Nakamoto, blockchain technology is a means

to introduce trust to a distributed and decentralized system. By using peer-to-peer

transactions and audits without the need for a central authority or governing body,

the goals of blockchain are to decrease costs, increase speeds, and increase security by

eliminating potential vulnerabilities that stem from having a central point of trust.

In essence, the blockchain can be thought of as a distributed database, except no

individual party can alter or tamper with the content of data or time stamps in the

log without a majority of other nodes agreeing to the changes. In the case of legal

contracts, the restriction of time stamp and log editing is crucial, as each action by

every party must be certified and auditable. Should a breach ever be suspected in the

future, the permanent transactions committed to the blockchain can be revisited to

determine exactly where and when the breach occurred. For new nodes joining the

blockchain, there is not a single party they must trust, but rather they only need to

trust that the majority of existing nodes in the network are non-malicious [4].

19

2.1.1 Proof of Work

Most blockchains rely on a process called “Proof-of-Work” (PoW) to maintain the

legitimacy of transactions. When two nodes on the network enact a transaction, the

transaction is broadcast to all nodes and recorded in a “block.” These blocks are the

building structures of the system, hence the name blockchain, and each block stores

a certain number of bytes of information. Once a block is full, nodes independently

perform PoW to commit the block to the permanent blockchain.

PoW involves solving a complex cryptography problem, the simplest example

of which is factoring a large integer 𝑛 = 𝑝𝑞 into the product of its two primes 𝑝

and 𝑞. These problems require large amounts of computational power to solve but

are easily verifiable by other nodes on the network. This discourages attempts to

commit fraudulent blocks, as well as deters denial-of-service attacks by rate-limiting

the number of transactions that can be committed to the blockchain. Each node’s

proposed solution to the problem is broadcast to all other nodes, which then check

the correctness of the solution. Only when a majority of nodes have approved of

the solution is the commitment deemed legitimate and the block permanently stored

in the blockchain. Thus, the only way for a malicious party to commit fraudulent

transactions is to control 51% of the computational power of the network, which is

unfeasible and cost-prohibitive.

The incentive for solving these cryptography problems and committing blocks

is that the first node to legitimately commit each block receives a share or token

of reward associated with the blockchain. For example, on the Bitcoin blockchain,

the first node would receive a payment of one Bitcoin, which has monetary value.

This incentive has given rise to the term “mining,” where nodes solve these PoW

problems to “mine” for rewards [5, 6]. This has led to the rise of a whole ecosystem

of blockchain mining related entities. As for profit businesses, many individuals and

companies run server farms dedicated to solving these cryptographic problems in

locations with cheap electricity. Other firms have arisen to develop software and

hardware technology solely for blockchain and Bitcoin mining [7].

20

The technical soundness of PoW legitimizes our system as a means to digitize legal

contracts, as there is almost no chance a malicious party can submit false transactions

to or mutate legal contracts that are deployed on the blockchain.

2.1.2 Block Linkage and Efficiency

Figure 2-1: Architecture of a blockchain. Each block is comprised of many committed
transactions, and stores its own hash and the hash of the previous block.

In order for nodes on a blockchain to verify that transactions are legitimate, one

might think that all nodes on the blockchain would need to store a record of every

transaction in the blockchain’s complete history. This would be extremely inefficient

and redundant, and waste valuable disk space. Instead, blocks on the blockchain

are linked together by hashing, shown in Figure 2-1, where consecutive blocks in the

blockchain store the previous block’s hash [6].

For a node to verify the integrity of its local copy of blockchain information, it

would need to only compare the stored hash of its last known block to information

21

stored by another node. If its stored hash matches with the knowledge of other

queried nodes, the original node can be certain that the information it has stored

locally about the blockchain is still verified and up-to-date. This is because the hash

of the latest block depends on the hash and transactions of the previous block, which

depend on the hash and transactions of the block before, etc [4]. At any given time,

only a few nodes must store the complete transaction history of the blockchain in

order for all transactions to be recoverable by all nodes. The rest of the nodes simply

need to verify that their hashes are correct, thus ensuring that their chain is still

legitimate.

To determine whether historical blocks can be discarded in exchange for only

storing their hashes, a node simply checks the latest transaction time stamp for all

accounts that transacted in that block. If this time stamp exceeds a certain threshold

in the past, the accounts can be deemed dormant and the block transactions can be

discarded from storage. In his paper, Nakamoto estimates that storing only block

headers would cost each node about 4.2 megabytes per year, an insignificant amount

compared to the local disk storage of existing servers today [8].

2.1.3 Applications

Nakamoto intended for the blockchain to serve as the basis of a digital currency and

financial transaction system called Bitcoin. His vision was to create a “purely peer-

to-peer version of electronic cash [to] allow online payments to be sent directly from

one party to another without going through a financial institution” [8].

Since 2008 however, research and development in blockchain technology has sky-

rocketed, and many more uses for this technology have emerged. Financial companies

and banks are now investigating using the blockchain to manage and audit transac-

tions. Transport companies are using the blockchain to track shipments, imports, and

exports. Food producers and restaurants have adopted the blockchain to assess the

freshness of products in their supply chains. Due to the blockchain’s permanent and

auditable nature, many companies have turned to it to store everything from house

deeds to birth certificates to academic degrees [5, 6, 9].

22

The applications for blockchain are endless, and we hope that this system will

contribute as one of the many beneficial uses of this technology.

2.2 Ethereum

Ethereum is a separate blockchain technology from the blockchain that powers Bit-

coin. It was proposed in 2013 and developed in 2014 by Vitalik Buterin, who later

open sourced the project. Ethereum introduces the concept of smart contracts, which

we elaborate on in Section 2.2.1, and is the most popular blockchain framework today

for creating decentralized applications (DApps). A DApp is defined as any applica-

tion using the decentralized blockchain rather than a centralized server to serve its

back-end functionality. This project develops a DApp on the Ethereum blockchain.

The major development languages for smart contracts on the Ethereum blockchain

are Solidity, and more recently, Vyper.

2.2.1 Smart Contracts

Smart contracts are snippets of digital code deployed on the Ethereum blockchain

that control and permission the transfer of cryptocurrency or other data transac-

tions. Like the way a traditional legal contract defines rules and penalties in an

agreement between two parties, a smart contract defines similar rules with an added

benefit of being able to enforce these obligations. Because contracts reside on a dis-

tributed public ledger and all transactions are known to all nodes, the requirement

of a trusted third party is removed [10]. The permanent and immutable nature of

the blockchain also allows for legal contracts to maintain an audit trail. This trail

can enable arbiters to easily vote on breaches that parties have reported, and could

possibly even allow smart contracts to automatically detect these breaches should

they occur via other transactions on the chain. Smart contracts have already enabled

companies and individuals to establish autonomous banks, keyless access to online

resources, crowdfunding platforms, and trading of financial derivatives, to name just

a few applications [6].

23

Each smart contract that is committed to the Ethereum blockchain is assigned an

address on the chain, just like an account. Smart contracts can be triggered or queried

by sending transactions to this address, whereupon the contract will perform some

predefined action depending on how it was programmed and possibly return data in

a transaction back to the querent. Another benefit of smart contracts having their

own addresses is that they can act as unbiased “middlemen” between the parties of a

digital legal agreement on the blockchain. Instead of the parties having to transact

with each other, parties can transact solely with the contract, which can then execute

its code and forward the relative transaction data to the other parties. This increases

the auditability of the contract and protects the address anonymity of each party

participating in the legal contract.

Although smart contracts are deployed publicly on the blockchain, access controls

can be programmed to protect the sensitive data contained inside these contracts.

The smart contract code can check the address of the user querying the contract, and

if this address is not in a list of permitted addresses, the contract will not return any

info to the user. This way, although every node on the network maintains a hashed

copy of the smart contract, only parties and arbiters who are a part of the contract

can access the its contents.

2.2.2 Vyper

Vyper is a relatively new language used to write Ethereum smart contracts. Developed

and then open-sourced in 2017 by Buterin, Vyper aims to model writing Ethereum

smart contracts in a Pythonic-typed language. This is generally considered easier than

writing smart contracts in Solidity [11], Ethereum’s default development language,

because Python is known for its ability to fast-prototype various projects and there

is no need to learn a completely different programming language.

Vyper aims to provide three benefits to smart contract developers: ensuring that

smart contracts are free from vulnerabilities, simplifying the language and compiler

learning curve, and maximizing human-readability of developed code. To fulfill these

goals, Vyper’s built-in features include array bounds and overflow checking, provable

24

computational upper bounds for function calls, strong typing, and declared constant

variables. These features help ensure that smart contracts are easy to develop and

audit in Vyper, while still being secure from vulnerabilities.

Of course, there are trade-offs to making the code more readable and secure. Vyper

is unable to provide class inheritance, function and operator overloading, recursion,

and infinite loops. Adding any of these features would introduce the potential for

attacks on the smart contract that could use up all the Ether within the contract by

causing the contract to execute indefinitely [12]. Because our system is designed to

model sensitive legal contracts, these trade-offs seem reasonable to ensure its security.

2.3 Verification Techniques

Two different verification techniques are used in various steps in our system.

Z3 is used to check if the Python representation of the contract accurately reflects

the contract drafter’s intentions for each clause. Z3 will also check whether all clauses

can be satisfied at the same time, or whether the contract contains conflicting clauses.

KEVM verification, based on the K-framework, is applied at the Ethereum byte-

code level. It tests the same objectives as Z3, except it is directed towards a lower-level

language and is closer in the pipeline to where the contracts are actually deployed

onto the blockchain.

2.3.1 Z3

Z3 is a Satisfiability Modulo Theories (SMT) solver open-sourced by Microsoft Re-

search. It takes in a “formula,” which in our case is a linkage of the clauses in a legal

contract, and generalizes the boolean satisfiability of this formula. Logical formulas

are represented by bit-vectors, and different boolean values are assigned to these bit-

vectors to see whether the combination of these vectors passes validity and duality

unsatisfiable tests [13]. These tests are used to assess whether the digital contract’s

clauses evaluate to the correct values given different hypothetical events that might

occur after the contract’s deployment.

25

Z3 is used by many developers of software verification and analysis tools to verify

that their programs function as intended. One of the major strengths of Z3 is that

its input proofs can be written in Python. This is highly beneficial as the higher-level

representation of contracts in our system is also Python-based. [14–16]. We use Z3

verification early in our system, right after the Python version of the contract has

been generated, so that later compilations of the contract do not need to be performed

if any of the Z3 proofs fail.

2.3.2 KEVM

KEVM is an executable formal specification of Ethereum’s bytecode-based stack lan-

guage, based on the K-framework. The K-framework allows programming languages

to be defined as a combination of “configurations, computations, and rules.” It is used

to build and test a mathematical model of a program to formally verify its accuracy

[17]. KEVM harnesses this potential specifically for Ethereum, giving developers

of smart contracts a method to formally verify their contracts before permanently

deploying them on the blockchain. It does so by programmatically modelling the

Ethereum Virtual Machine (EVM), which is the virtual stack machine within each

Ethereum node that is responsible for executing the bytecode of smart contracts [10,

18].

Some of the guarantees that KEVM provides are type checking and domain-

specific access control checking. Specifically, the framework allows smart contract

developers to be sure that their smart contracts are not vulnerable to third-party

access attacks, unlike early versions of Ethereum smart contracts. This vulnerability

was most notably for the 2016 hack that exploited it, when a smart contract on the

Ethereum blockchain was hacked for $50 million [19].

Similar to Z3, KEVM can also be used to check whether a smart contract out-

putted by our system functions as intended and accurately represents the legal clauses

that the lawyer intended to include. Python can also be used to write the input proofs

to KEVM, so there is little difficulty in translating proofs in our Python representation

to be used in KEVM verification.

26

Chapter 3

Related Work

Our framework spans the topics of templated legal contract drafting, programmat-

ically representing legal agreements, and formal verification of smart contracts. To

our knowledge, no other single system integrates these three domains into one uni-

fied framework. Due to our project’s scope discussed in Section 1.1, our system

also relates to blockchain data sharing solutions. Existing research in each of these

individual fields are addressed in Sections 3.1 to 3.4.

3.1 Templated Legal Contract Drafting

Multiple services have already tried to digitalize the legal contract writing process,

seeking to eliminate the tedious task of drafting contracts on paper. Most of these

services exist online, and provide users with templates for different legal use cases

which are pre-filled with placeholder text. Some sites even extend past just serving

lawyers, enabling individuals and small businesses with no legal experience to draft

legal contracts without having to pay costly legal fees.

The three best known examples of these services are LegalZoom [20], Rocket

Lawyer [21], and HotDocs [22]. Each of these sites enables users to simply sign into a

web interface, use a template to draft their own legal contract, and generate a PDF

or DocuSign secure digital document that they can either print or send electronically

to other parties. These three services have proven to be commercially successful and

27

instrumental in saving significant time in the legal contract drafting process.

Our system’s front-end web interface was based off the success of these platforms.

We designed the web interface with ease-of-use as a key focus. The locations to add

parties, arbiters, clauses, and clause parameters are easy to spot, and a user needs

only to point-and-click to fill out a draft for a contract. Our web interface was also

developed so that clauses could be templated and repeatedly used between contracts,

drawing from the re-use of templates that these services provide.

3.2 Programmatic Legal Contract Representation

In the past few years, much work has been done in finding ways to represent legal

contracts programmatically. This seems to be a very hard task, as there needs to be a

way to develop a code-based system with a finite amount of object types to represent

an infinite space of natural language texts that might appear in a legal contract. The

work in this field influenced the design of our Python library.

In terms of converting natural language data sharing contracts into deployable

smart contract code, the closest work has been done with Ergo as part of the Accord

Project. Ergo is an open-sourced project looking to create a collection of legal contract

schemas. Users fill in certain parameters to be included in the natural language data

sharing contract, and the written language contract is populated with fields that act

as placeholders for these parameters [23–25]. Some examples can be viewed on the

Ergo Playground site [26]. In Ergo’s case, although the platform is advertised as

being for the blockchain, the final natural language legal contract is only converted

to Ergo’s intermediate logic language, rather than to Ethereum smart contract code.

Our implementation will convert parameterized contracts into Vyper code that can

be directly compiled and deployed onto the blockchain.

Researchers at the Treasury Department’s Office of Financial Research have de-

veloped a computational representation of financial agreements. In their paper, Flood

and Goodenough formalize the fundamental legal structure of a financial contract as

a finite-state machine. They define the different states that the contract can be in,

28

as well as different actions that will transition the contract between these states. By

enumerating all possible events that might occur and affect the contract, the authors

were able to automatically model the state of the contract at any point in the fu-

ture. In their paper, they list the key pieces of programmatically representing legal

contracts as the list of actions that may be taken, outside world events, and logical

strings that link chains of actions and events together to determine the final state [27].

Drawing from this, our system defines various actions that parties can or cannot take

for the duration of the contract, as well as clauses that link sub-clauses and actions

together to evaluate whether the contract still holds. These action and clause objects

are further elaborated upon in Section 5.1.

Daskalopulu and Sergot researched logical-based tools for the analysis and rep-

resentation of legal contracts, focusing predominantly on contracts relating to large-

scale engineering projects and long-term trading agreements. From conducting an

analysis of what was needed in the legal contract drafting process, they found that

the best tools to programmatically generate contract representations were those which

“determined whether given agreements were legally binding, enabled parties to spec-

ify their requirements and checked whether these requirements were compatible, and

assisted drafters in writing the final outputted legal document.” The presence of all

three of these characteristics would result in the most helpful legal contract drafting

tools. Daskalopulu and Sergot did not find any existing tools which satisfied all three

requirements [28]. Our system aims to fill this void by providing a built-in Python

library to represent legal contracts in which natural language descriptions can be eas-

ily recovered. Our system also provides automatic formal verification of the contracts

to check whether their internal clauses are compatible, and that the clauses match

the intended requirements of the user.

3.3 Blockchain Data Sharing

Because our project uses data sharing contracts as its scope for evaluation, it makes

sense to review some prior work concerning data sharing over the blockchain. To our

29

knowledge, much of the past literature in blockchain data sharing has been in the

area of healthcare, so we discuss this field below.

In terms of genomic data, Koepsell and Covarrubias have attempted to use a

multi-chain blockchain platform as a medium to share anonymized genomic data for

scientific research. This blockchain implementation protects sensitivity of data by

only allowing researchers to view the metadata of the genomes rather than the per-

sonal information of the genome donors. However, a drawback is that only researchers

are allowed to sign up as nodes on the blockchain. Data providers may not sign up,

and must instead provide their genomic data to a researcher on the network. Re-

searchers then upload the genomic data that they have collected to share with other

researchers in the network [29]. This severely restricts the utility of this blockchain

as data providers must still sign an off-chain agreement with researchers on the usage

of their data.

In the field of medical imaging data, researchers at UCLA have developed their

own implementation of a private chain to share data. Data providers upload their

own data, which is then shared among physicians and personal heath record vendors.

Although this implementation does support constraints on the data sharing that limit

which vendors can view what data, it requires data providers to write their own data

access smart contracts and deploy them themselves on the blockchain [30]. This is

a complex task with a steep learning curve, so many data providers might become

discouraged and less willing to share their data on this platform.

MedRec is a platform developed by MIT’s Media Lab for medical record sharing

based on the Ethereum blockchain. It allows health care providers to share medical

records between themselves and with their patients, letting patients view an aggregate

of their personal records from all health care providers that they have previously

visited. Health care providers maintain control over the patient data stored on their

servers, but enter patient-provider relationships for data access via smart contracts.

These relationships are similar to the generalized data sharing agreements that our

system enables. All patient data access and data sharing by health care providers

is logged in an immutable ledger [31]. MedRec contains many privacy and security

30

features built into Ethereum smart contracts, but lacks the adjudication mechanism

that our system provides in case of a data breach or data misuse.

Enigma is another project by the MIT Media Lab that researches protocols for

decentralized personal data management on the blockchain. This system allows for

automated access-control to data stored on the blockchain. The peer-to-peer net-

work also allows multiple parties to store and run analysis on data while keeping

the contents of the data private without the need for a central authoritative party.

Enigma functions as a hybrid blockchain, with a specialized blockchain connected to

a public mainstream blockchain. This specialized blockchain serves to manage access

control, identities, and a permanent record of data sharing transactions, while the

public blockchain handles payments and all the public metadata of the data sharing.

Computation on this data is performed off-chain, and the data itself is stored in a

distributed hash table. Enigma addresses many of the issues related to sensitive data

sharing over the blockchain by including methods to restrict access to the actual data

being shared, but does so by creating its own “Enigma blockchain” [32, 33]. Our

system also enables users to securely share data by means of an enforceable legal

contract, but does not require the use of a hybrid-blockchain model.

To determine what types of legal clauses and parameters we should include in

the first iteration of our digital legal contract drafting system, we used Grabus and

Greenberg’s work studying data sharing agreement attributes. In it, they determine

six higher-level categories that key attributes in data sharing agreements fall into,

with these six categories being broken down further into 15 mid-level and 90 lower-

level categories. A selection of these clause types is shown in Figure 3-1 [34]. We

used this research and included a subset of these parameters and attributes in our

first iteration of our system.

Many of these previous works provide a means to restrict data access based on

preferences set by the data provider, but none give the ability to indicate a suspected

breach of the agreement after the data has already been shared. This decreases the ro-

bustness of these systems as there is no recourse to data providers or requesters when

agreements are breached. This project extends the above solutions for blockchain

31

based data sharing and not only provides an easy-to-use contract creator for gener-

ating natural language data sharing contracts, but also allows all parties a means to

suspect a breach and enforce the contract terms. Also, data storage on our system is

truly decentralized, with individuals storing their data in their own locations instead

of in a central database. This makes the system very robust, scalable, and adaptable

to different use cases.

3.4 Smart Contract Privacy and Verification

Now that we have seen work related to the drafting and functionality of blockchain

smart contracts, it is important to note that these smart contracts would be mean-

ingless if no effort is made to formally verify them before they are deployed. It is

also paramount that the information contained in our system’s outputted contracts

remains private to only the parties and arbiters included in the contract.

An initiative to develop a hybrid blockchain system that preserves privacy in

data sharing contracts is Ekiden, a collaboration between UC Berkeley and Cornell

researchers. Ekiden aims to use hardware-based Trusted Execution Environments

(TEEs) in combination with a blockchain to move execution of code and smart con-

tracts off the chain into these isolated hardware modules to enable privacy preserving

smart contracts. To do this, the smart contracts which are stored on the blockchain

are encrypted, and to execute them they must be decrypted within secure hardware-

based enclaves. The result of this execution is then again encrypted and stored onto

the blockchain, where other secure enclaves can decrypt these results to reach a con-

sensus on execution validity [35].

Other research conducted in smart contract privacy on the blockchain has ex-

perimented with storing the documents offline in secure servers, and only using the

blockchain to verify that the documents exist and have not been tampered with.

Known as “Proof of Existence,” this technique involves storing the hash or fingerprint

of the document on the blockchain, linked to the time-stamp that the user submitted

the document for approval. This fingerprint is irreversible, meaning that no mean-

32

ingful information can be extracted from it even if all nodes on the blockchain can

view the public fingerprint. Instead, to check that the off-chain document has been

unmodified and is still valid, the same hash function is applied to the document at a

later date and the hashed fingerprint is compared to the one stored on the blockchain

[6, 36, 37]. This method protects the privacy of the sensitive contents of the docu-

ment, but is not very useful for our system. Our system needs to enable parties and

arbiters who are in the contract to view and audit the contents of the legal agreement,

so only storing the hashed fingerprint of the contract on the blockchain would not be

that helpful.

In terms of formally verifying smart contracts, most work has dealt with using one

of three frameworks: KEVM, F*, and Isabelle/HOL. All of these frameworks formally

verify smart contracts by creating programmatic representations of the EVM, and

then executing inputted proof statements within this EVM model. Each individual

proof is checked to see whether it always holds within the Turing-complete model.

All three frameworks depend on the input proofs being written systematically and

correctly, but are excellent in finding security and implementation vulnerabilities

given these proofs [38–41].

Our framework relies on KEVM for formal verification of its automatically gener-

ated smart contracts. More details about how KEVM works can be found in Sections

2.3.2 and 6.2.

3.5 System Uniqueness

Although each of the topics addressed in this chapter has seen impressive research

conducted in it, whether it be contract drafting services or formal smart contract

verification, none of them address all the challenges that our end-to-end digital legal

contract framework attempts to solve.

Templated legal contract drafting services provide nice user-interfaces for devel-

oping these documents, but still only output static legal documents that are either

printed out or stored on a hard-disk somewhere. There is no potential for an electronic

33

adjudication process afterwards. Our system aims to change this by automatically

deploying the contracts onto a decentralized blockchain, where they can be accessed

and audited at any point in the future.

The previous work done in programmatically representing legal contracts and

in blockchain data sharing all require the user to have knowledge of how to code,

either in a proprietary language such as Ergo, or in a smart contract development

language such as Vyper or Solidity [11, 12]. Our system eliminates this requirement

and turns it into an option for advanced users, whereas regular users without this

technical background can directly use the point-and-click web interface to draft their

contracts.

Finally, although the various smart contract verification tools are similar to what

we use in our system, in previous work the proofs for these verifications are only

written after reading through the smart contracts in question. What makes our system

unique is that the proofs are written before the smart contracts are even generated, in

the legal contract’s higher-level representation drafting stage. The advantage of this is

that no intended meanings of the contract are lost in the translation and compilation

process from higher-level language into smart contract code. Rather, users agree to

the complete list of proofs to be formally verified, and then leave it to our system to

guarantee the correctness of generated smart contracts in two independent steps of

our framework, first with Z3 and then with KEVM.

34

Figure 3-1: A selection of the most frequently appearing clauses in legal data sharing
contracts as found by Grabus and Greenberg.

35

36

Chapter 4

Front-End Interface

The entry point for most users of our system will be the front-end web interface. This

interface serves to abstract away all the technical parts of the blockchain back-end,

such that the only knowledge necessary to use our system is how to use a computer

and modern web browser. Users will access the web interface by navigating to a URL

in their browser, and either logging into a preexisting account or registering for a

new one. Each party that intends to be a signatory on a digital legal contract should

create a separate account. Upon creating a new contract, users will be presented with

the view shown in Figure 4-1.

4.1 Contract Metadata

On the left side of the web interface, users will add all the parties who will be signato-

ries of the contract. Each party will be assigned an address on the blockchain. These

addresses will be given permission to access and query the final deployed contract on

the blockchain.

There is also space to add arbiters of the contract. These arbiters are neutral,

third-party mediators of the contract should any party suspect a breach of the terms.

Usually, these arbiters are governing bodies or institutions with authority in their

fields. For example, a health care related data sharing contract might have the Na-

tional Institutes of Health, American Medical Association, U.S. Department of Health,

37

Figure 4-1: A screenshot of the front-end web interface that allows users to draft legal
contracts.

etc. listed as its arbiters. Given this however, an arbiter role can also be granted to

any entity agreed upon by all parties of a contract.

Finally, there is a space for a party to upload a digital signature file, such as a

Secure Sockets Layer (SSL) key. This will authenticate the party’s identity and serve

as the party’s digital signature in signing the legal agreement.

4.2 Adding Clauses

When drafting contracts, users of our system have the option to either select pre-

written clauses with custom parameters, or to create their own completely custom

clauses. Both options are discussed in the following subsections.

4.2.1 Pre-Existing Clauses

One option that users have is to select pre-written clauses from a library of common

clauses, shown on the right in Figure 4-1. This library is populated with the most

popular types of contract clauses that have been used in contracts created by other

38

users, aggregated across all users and with parameters removed to preserve anonymity.

The library will automatically appear on the right-side of the contract drafting view.

Users fill in the custom parameters of the clauses that they wish to include in their

contracts, which are populated based on the parties and arbiters that have been added

to the contract. Once a clause is added to a contract, the left side of the web interface

will display the natural language text of this clause. Future iterations of our interface

will also introduce search functionality to the clause library, as well as filtering clauses

by type of legal contract or by how frequently they are used by other users of our

system.

The library of common clauses shown to every user of the interface is crowd-

sourced from other users of the system. Contributing to this library will be addressed

in Section 5.2. Creating new clauses solely for one’s own contract is covered in Section

4.2.2.

4.2.2 Custom Clauses

Contract drafters have the additional option of creating their own custom clauses

should no suitable ones be found in the clause library. These custom clauses will be

built from other previously defined clauses present in the library, or from the boolean

building blocks of clauses, which we will refer to as “actions.” These actions are simple

descriptors and conditions to be checked in terms of a legal contract, such as whether

a date has passed, whether a payment has been made, or whether data has been

shared to third parties. Each action evaluates to a boolean value of True or False,

and its value can be easily checked by any party or arbiter.

To create a custom clause, users click on the button at the bottom of the clause list

and are presented with the modal shown in Figure 4-2. In this modal, five different

clause types can be created:

• OR clause: A linkage of two existing clauses or actions with an OR modifier.

In the newly created clause, at least one of the two linked clauses or actions

must be satisfied.

39

Figure 4-2: A screenshot of the modal that guides users through the creation of a
custom clause.

• AND clause: A linkage of two existing clauses or actions with an AND mod-

ifier. In the newly created clause, both of the linked clauses or actions must be

satisfied.

• NOT clause: A single clause or action, prefixed with a NOT modifier. In the

newly created clause, the original clause must not be satisfied.

• IF-SHALL clause: A linkage of two existing clauses or actions such that if

the first clause or action is satisfied, the second one must be satisfied too.

• IF-MAY clause: A linkage of two existing clauses or actions such that if the

first clause or action is not satisfied, the second one must also not be satisfied.

The modal guides the user through the clause creation process by restricting the

prefix and linkage types depending on what the user has selected in other fields. Drop-

downs allow the user to select the clauses and/or actions to include in their custom

clause. These clauses and actions display parameter placeholders for variables such

as party, duration, date, etc., so that the user knows which parts of the clause can

40

be customized further when inserting it into the contract. Actions and clauses are

described in further technical detail in Sections 5.1.3 and 5.1.4, respectively.

Once a user has developed their custom clause, they must also write the param-

eterized natural language text associated with the clause. This will be the text that

is displayed on the left side of the interface when the clause is added to the contract.

This text will also appear in the final committed contract.

After a user develops their custom clause, clicking save adds it to the user’s per-

sonal library of clauses. It is now available to be added to the contract or included

in additional custom clauses. Note that including the clause in the user’s personal

library does not add it to the global library that is shown to other users. This both

serves to protect the privacy of information revealing clauses that the user may de-

velop, as well as reduce the clutter on other users’ dashboards. Adding to the global

library of clauses is addressed in Section 5.2.

4.3 Contract Submission

Once the user is satisfied with the contract, they must upload their digital signature

file, and then submit the contract for review. Parties who have been added to the

contract can then log in to their accounts and view the current state of the contract.

Once all parties have agreed to the most recent revision of the contract by each

signing with their digital key file, our system’s back-end will automatically compile

the contract down to Ethereum bytecode and deploy it permanently on the blockchain.

This process requires multiple steps, which are addressed in Sections 5 to 7.

4.4 Post-Submission Maintenance

After a contract has been deployed on the blockchain, users can log in to the web

interface to view existing legal agreements that they are participating in. Upon log

in, users can query the current state of the contract, which is covered in Section 7.2.1.

Users can also submit a suspected breach notice and ask the arbiters of a contract

41

to vote on whether this breach has occurred. Breach requests and the arbiter voting

process are covered in Section 7.3.

42

Chapter 5

Python as a Higher Level Contract

Representation

One of the goals for this project was to develop a code-based higher-level represen-

tation of legal contracts that is not restricted to the blockchain. The motivation was

that if users of our system want to export their legal contracts off the chain into an-

other form of digital media, they could export the code-based representation of their

contracts. We decided to use Python for this representation, as Python is known for

its success in code prototyping and is also a very text-like, readable programming

language. Furthermore, the learning curve for Python is not as steep as other pro-

gramming languages, so users of our system who wish to bypass the web interface

and write contracts directly using our Python library can choose to do so without

much upfront investment.

Our system uses this Python representation as its backbone. From Python, we

serialize and de-serialize the digital contracts into and from the JavaScript Object

Notation (JSON) format for easy storage and retrieval. We use the Python repre-

sentation of contracts to write Z3 and KEVM proofs for them. We also compile

the Python to Ethereum’s Vyper smart contract language for deployment onto the

blockchain.

43

5.1 Classes

We created a few classes in our Python library to represent each part of a legal

contract. They are described in Sections 5.1.1 to 5.1.4. We capitalize the names

these classes when referring to them in this chapter to distinguish between the class

types.

5.1.1 Parties

A Party object represents an individual or entity who has an interest in the fulfill-

ment of terms in a contract. Party objects must have a name when they are initial-

ized, and are either initialized with or assigned a unique address on the Ethereum

blockchain. Using the example in Appendices A.1 and B.1, a Party could have a

name of “Rhode Island Department of Health,” and an Ethereum address identifier

of 0x2B5634C42055806a59e9107ED44D43c426E58258.

5.1.2 Arbiters

An Arbiter object represents an individual or entity assigned to mediate and decide

disputes when the Parties of a contract cannot come to a mutual agreement. Most

of these disputes are presented in the form of contract breaches, when one Party in a

contract suspects that another Party or Parties have violated the terms of the legal

agreement.

The Arbiter class shares many of the same attributes as the Party class. Arbiter

objects must have their own names and unique addresses on the Ethereum blockchain.

Using the example in Appendices A.1 and B.1, an Arbiter could have a name of

“Centers for Disease Control and Prevention,” and an Ethereum address identifier of

0x689C56AEf474Df92D44A1B70850f808488F9769C. Unlike Party objects, Arbiters

do not have any interest in the fulfillment of terms in a contract. They are simply

neutral third Parties used to manage disputes.

44

5.1.3 Actions

Action objects are the building blocks for all legal Clauses produced using our sys-

tem. Actions are defined as specific behaviors or deeds that Parties can perform.

Each Action must evaluate to a binary value of True or False, representing whether

or not the deed it represents has occurred. During a legal agreement’s lifespan, var-

ious Parties and Arbiters can vote on the current state of each Action, which would

determine if the overall contract has been breached or remains in good standing.

Each Action is assigned an identifier name in our Action repository when it is

initialized, and also a description of what the Action represents. Also, when an

Action object is instantiated, two optional Python lists of Party and Arbiter objects

are passed in to the constructor.

The Party list contains all Parties that have an interest in the value of that Action.

This list usually includes all Parties of a contract, so it is by default set to all Parties if

no optional list is passed in. However, in the case of a multi-Party legal agreement, it

could be the case that one or more Parties does not have any interest in the outcome

of some of the Clauses in the contract, and do not mind if those Clauses are breached.

Then, for the Action objects contained solely in these Clauses, their Party lists would

be subsets of all Parties in the contract.

The Arbiter list contains all Arbiters that have the power or ability to judge the

truth value of that Action. Similar to the optional Party list, it is by default set to

all Arbiters for each Action object. However, there are cases where not all Arbiters

are able to vote on the truth value of an Action, due to jurisdiction laws or lack of

information access. In these cases, the Arbiter list for these Actions is set to the

subset of Arbiters that do have the power to accurately and fairly judge the truth

value of these Actions.

Each Action object also takes in an optional boolean value when it is initialized in

our Python module. This boolean value will be the starting truth value of that Action

the moment the contract is signed and deployed on the blockchain. By default, this

value is set to False if no optional boolean parameter is passed in.

45

Finally, each Action object takes in an optional Arbiter quorum value. In the

case of a suspected breach of contract, when Arbiters are voting on the truth value of

each Action that they have been requested to vote on, it is possible that one or more

Arbiters either abstains from voting, does not have enough information to vote, or

simply is unreachable to vote on an Action(s) truth value. In this case, the Action’s

current boolean state value can only be overturned by an Arbiter vote if the minimum

quorum of Arbiters have submitted a vote on the issue. Otherwise, the boolean state

for the Action will remain what it was prior to the vote request. Breach voting is

covered further in Section 7.3.

For example, an Action object representing that the Department of Health (doh)

must comply with state laws can be written in Python as:

ComplyWithLawsAction(doh, "State", arbiters, parties, default=True,
quorum=3)→˓

5.1.4 Clauses

Clause objects model complete legal statements to be included in the legal contracts

created by our system. They are represented as linkages of Actions and other Clause

objects. Each Clause or Action in a Clause object is linked by a logical operator.

Five different Clause objects can be created, which all inherit from the parent Clause

class. The available Clause types were listed in Section 4.2.2, and are repeated here

with their Python module names for convenience. Note that each Clause class below

inherits from the parent Clause class:

• OrClause: A linkage of two existing clauses or actions with an OR modifier.

In the newly created clause, at least one of the two linked clauses or actions

must be satisfied.

• AndClause: A linkage of two existing clauses or actions with an AND modi-

fier. In the newly created clause, both of the linked clauses or actions must be

satisfied.

• NegatedClause: A single clause or action, prefixed with a NOT modifier. In

the newly created clause, the original clause must not be satisfied.

46

• IfShallClause: A linkage of two existing clauses or actions such that if the

first clause or action is satisfied, the second one must be satisfied too.

• IfMayClause: A linkage of two existing clauses or actions such that if the first

clause or action is not satisfied, the second one must also not be satisfied.

The constructor of each Clause object takes in an arbitrary number of Actions

or Clauses, depending on the Clause object being created. For example, the Negat-

edClause constructor specifies that exactly one Action or Clause object should be

passed in. The IfShallClause and IfMayClause constructors take exactly two Actions

or Clauses. The OrClause and AndClause can be passed an arbitrary number of at

least two Actions or Clauses.

The newly created Clause object can then be passed into other constructors to re-

cursively create more complex Clauses. Examples of Clauses can be seen in Appendix

B.1.

5.2 Contributing to the Clause Library

If a user wishes to create a generic Action or Clause object that can be used by other

users, they are welcome to add to the web interface’s public repository, described in

Section 4.2.1. Note that Python knowledge is required to contribute to this library.

To add a Clause or Action, users have two options. The first is to start from

scratch and write their own Action and/or Clause object definitions. Users may also

combine various Action and Clause objects predefined in the downloadable Python

file that our system provides containing all Action and Clause objects currently in the

public library. Users can then upload a Python file to the web interface containing

their defined Action or Clause object that they wish to add. This file must also

contain the natural language English text of what the Action or Clause represents,

to help other users understand its meaning when incorporating this Action or Clause

into their own contracts.

When contributing to the repository, users must also write proofs to guarantee

47

that a Clause evaluates as intended. The specifications for writing these proofs and

what they guarantee are covered in Section 5.4.

Note that publicly contributed Action objects to the repository will not appear

on any user’s dashboard. Rather, to reduce clutter, the dashboard will only show

contributed Clauses. However, Actions added to the repository will appear in the

downloadable Python file that the server provides contributors. Contributed Actions

will also appear as selectable components when the user uses the web interface’s

custom Clause creation tool, described in Section 4.2.2.

5.3 Python Contract Representation

Combining all the classes defined in Section 5.1, we can construct a Python object

representation of every contract that is drafted using our system. This Python rep-

resentation is either written as a whole by users more accustomed to drafting their

contracts using our Python library, or is automatically compiled by our system from

the contract details that the user has filled in on the web interface. A full example of

a legal contract converted to its Python object representation is shown in Appendix

B.1.

This Python representation is then automatically converted into four separate

formats. The first is a simple serialized JSON file containing the contract details for

easy storage and machine-readable export. An example of this JSON file is reproduced

in Appendix B.2. The second is a human-readable Portable Document Format (PDF)

document in case users wish to view the traditional form of the legal agreement they

had drafted. The third output is an automatically compiled .smt2 file used for

Z3 verification, which is addressed in Section 5.4. The final output, dependent on

whether Z3 verification passes, is an automatically compiled Vyper file representing

the deployable smart contract version of the legal agreement. The Vyper format is

covered in depth in Section 6.

48

5.4 Z3 Verification of Python Representation

The first of two formal verification systems built into our framework, Z3 is used to

check the Python representation step of our system. Every legal agreement repre-

sented in Python is automatically compiled to a .smt2 file, the input format required

by the Z3 Theorem Prover. An example of the contents of this file is replicated in Ap-

pendix B.5. Each proof, whether it was written by the Clause contributor, or whether

it is a generic proof for the type of Clause being added, is checked individually by Z3.

A proof for an individual Clause fixes the result of one or more sub-clauses or sub-

actions and the result of the Clause itself. A proof also contains the expected outcome

of whether the Clause is satisfiable or unsatisfiable based on these fixed components.

By combining proofs with both satisfiable and unsatisfiable outcomes, we are able to

assert that a Clause functions correctly under all possible states. For example, for a

generic IF-MAY Clause, some results and satisfiability assertions that can be written

are:

IF value MAY value Clause Result Satisfiable?
True True True True
True True False False
True False True True
True False False False
False True True False
False True False True
False False True True
False False False False

Table 5.1: Table of fixed results and the Z3 proofs’ expected satisfiable outcomes for
a generic IF-MAY Clause object.

The English representation of the above truth and satisfiability table is as follows:

• If the IF portion of the Clause is True, then the whole Clause must always eval-

uate to True regardless of the truth value of the MAY Clause. This is because

when the IF condition of the Clause is satisfied, the Parties in the contract are

not bound anymore by any conditions set forth in the MAY Clause. Thus, in

49

our Z3 proof we can assert that in this case, the whole Clause evaluating to True

is satisfiable, but that the whole Clause evaluating to False is unsatisfiable.

• If the IF portion of the Clause is False, then the whole Clause must always

evaluate to the opposite of the MAY Clause’s value. This is because the Clause

as a whole is True if and only if the MAY condition does not occur when the

IF portion is False. Thus, in our Z3 proof we can assert that in this case, the

whole Clause evaluating to the same parity as the MAY portion is unsatisfiable,

but that the whole Clause evaluating to the opposite parity as the MAY portion

is satisfiable.

After running the theorem prover, Z3 will return a solution of possible Action

states if the proof is satisfiable, or return a proof showing why no such combination

of states exists if the proof is unsatisfiable. Any discrepancies in the satisfiability of the

proofs compared to the expected results are displayed to the user. Discrepancies raised

by the theorem prover can signal various problems with the drafted legal agreement.

First, the Python representation of a Clause might be incorrect. Second, it is possible

that there is a contradiction between Clauses in the legal agreement. Lastly, it is

possible that one or more of the Clauses that the user has included in the contract

draft actually guarantees something other than what the user had intended. From

the outputted discrepancies, a user could go back to the drafting process and fix these

errors before submitting an updated contract for verification.

It is important to note that Z3 verification does not guarantee certain properties

of the contract. Namely, Z3 does not guarantee that the natural language text of a

Clause matches its Python language representation. Z3 also does not guarantee that

parameters such as Parties or dates inputted by the user into the placeholder fields

are specified as intended [13, 42].

50

Chapter 6

Converting Python to Vyper

Once the Python representation of the contract has been formally verified by Z3, it is

automatically compiled into Vyper. Vyper is the programming language used to write

the Ethereum smart contract representation of our legal agreements so that they can

be deployed on the blockchain.

The predominant language used to write Ethereum smart contracts is Solidity [43].

We chose Vyper over Solidity when designing our system for multiple reasons. First,

Vyper was developed based on Python, so it shares much of the same syntax and

many of the same object representations as Python. Second, Vyper was developed

with a focus on security and protection against unintended contract vulnerabilities,

as well as a focus on the readability of produced code. When dealing with smart

contracts representing digital legal contracts, we need our system to be as secure as

possible, and the generated smart contract code should be as readable as possible

for easy checking to see whether it matches the lawyers’ intentions. Vyper language

details are discussed in Section 2.2.2. Some features supported by Solidity are not

present in Vyper, but we considered the trade-offs and determined that the presence

of these features was not worth the increased potential for the contract execution

vulnerabilities that they introduced.

51

6.1 Python to Vyper Compiler

Vyper is generated by our system using our Python to Vyper compiler. The source

code for this compiler is replicated in Appendix B.3. This compiler takes in as in-

put a Python object representing the complete legal agreement, including Parties,

Arbiters, Actions, and Clauses. It then outputs a .vy file on the server representing

the Ethereum smart contract. An example of a produced Vyper file is replicated in

Appendix B.4.

6.2 KEVM Verification

Before the generated Vyper code can be deployed on the blockchain, we introduce

another formal verification step in our system. The purpose of this additional step

after Z3 verification has already passed is to check whether the legal contract repre-

sentation was corrupted in any way by our Python to Vyper Compiler. Once a smart

contract is deployed on the blockchain, it becomes immutable and self-executing, so

it is important to correct bugs or other implementation mistakes before the legal

contract is deployed.

We use KEVM, an Ethereum Virtual Machine execution simulator based on the

K-framework, described in Section 2.3.2. KEVM verifies at the Ethereum bytecode

level, which is generated by inputting the Vyper contract into the Vyper language’s

built-in compiler [12]. The same proofs that were used for Z3 verification are then

converted to the K-framework. KEVM then validates in a similar fashion to the Z3

Theorem Prover that each proof holds, except on the Ethereum bytecode level. This

verification ensures that the generation of Vyper source code and the Vyper compiler

work as expected, and that the contract logic specified in the generated byte-code

both is free of security vulnerabilities and matches the lawyers’ and parties’ intents.

By using the same proof format, our framework does not require additional work by

users to benefit from this additional verification step.

52

Chapter 7

Deployment on Ethereum Blockchain

After the automatically generated Vyper smart contract has been formally verified,

the digitized legal contract is ready to be permanently deployed onto the Ethereum

blockchain. This section will cover the process of taking the compiled Vyper file and

committing it as a blockchain smart contract, as well as post-contract submission

querying and the breach process.

7.1 Tools

This section addresses the tools that our system uses to deploy Vyper smart contracts

to the Ethereum blockchain and that we used to test our system implementation.

7.1.1 Rinkeby Test Network

To test our system, we deployed the smart contracts onto Ethereum’s Rinkeby Test

Network. The Rinkeby Test Network is a blockchain designed to model the main

Ethereum blockchain, but runs on a disjoint set of nodes. It serves as a public

test network, where developers can deploy their drafted smart contracts and test

interactions with them at no cost and without having to worry about vulnerabilities

related to monetary attacks. This is because the Ether tokens distributed on the

Rinkeby network can be obtained for free from the Rinkeby Ether faucet. To avoid

53

malicious overuse of the Rinkeby Ether faucet and accumulation of unneeded tokens,

the faucet requires users to authenticate by publicly posting a unique string to one

of their social media profiles. Only after the posting has been confirmed and seen by

the Rinkeby faucet is the testnet Ether awarded to the requester’s account [44, 45].

The main difference between Rinkeby and the main Ethereum network is that

Rinkeby functions with a Proof-of-Authority rather than a Proof-of-Work consensus

algorithm. This means that the nodes on the Rinkeby network are all controlled by

the Rinkeby organization, rather than by decentralized parties. Functionality wise,

Rinkeby acts the same as the main Ethereum network for testing smart contracts

because the contract confirmation process by the various nodes does not affect the

contract once it is deployed [46].

7.1.2 MetaMask

Figure 7-1: The MetaMask Chrome extension, shown here connected to the Rinkeby
Test Network.

54

We used MetaMask to test deploying the compiled Vyper contracts that our system

outputs to the Rinkeby testnet blockchain. MetaMask is a Google Chrome extension

that simulates running an Ethereum node directly within one’s browser. Users are

able to run DApps using MetaMask without having to install a full Ethereum node.

MetaMask supports having multiple accounts, which enables us to test the various

interactions that each party and arbiter can have with a deployed contract. The ex-

tension can simulate a node on the real Ethereum blockchain, a decentralized testnet,

or a locally hosted private blockchain [47]. Figure 7-1 shows the default user screen

for MetaMask.

7.1.3 Remix for Smart Contract Compilation and Deployment

Remix is an online smart contract integrated development environment (IDE) devel-

oped by the official Ethereum organization. It supports writing smart contracts in

both Solidity and Vyper, as well as a multitude of other less popular smart contract

development languages. Using built-in compilers for these languages, Remix can com-

pile the smart contract code into universal Ethereum bytecode. Via the MetaMask

extension, Remix can then connect directly to the various blockchain networks sup-

ported by MetaMask and deploy the Ethereum bytecode onto the chosen blockchain.

During compilation of the smart contract code, Remix automatically checks for

various security vulnerabilities and implementation errors such as transaction origin

restrictions, contract execution exhaustion, dynamic array iteration, and lack of re-

turn statements. Severe errors stop compilation and are pointed out as errors to the

user, while warnings and other non-critical errors appear in the log at the bottom of

the IDE window [48]. We used Remix to test both the correctness of our system’s

outputted Vyper contracts, as well as the querying and arbitration of deployed legal

contracts on the Rinkeby testnet.

55

Figure 7-2: An example Vyper contract generated by our system being deployed onto
the Rinkeby testnet via Remix using the MetaMask browser extension.

7.2 Contract Deployment

To demonstrate deployment of the Vyper file automatically compiled by our frame-

work, we copy the file contents into the Remix IDE, and then use the built-in Vyper

plug-in to compile this code into Ethereum bytecode. As seen in Figure 7-2, this

plug-in displays the compiled bytecode and any compilation or syntax errors. After

making sure the MetaMask extension is set to the Rinkeby Test Network, clicking

the red “Deploy” button brings up a MetaMask confirmation window. This window

displays the estimated transaction cost to deploy the contract to the blockchain. This

minimal cost is a fee paid to the Ethereum miners to confirm the contract and add

it to a block. In future iterations of our system, this fee will be paid for by the

parties listed on each contract. After confirming the transaction details in the Meta-

Mask screen, the contract is sent in a transaction to be deployed on the blockchain.

56

Finally, a contract is committed to the blockchain after at least six miners confirm

the accuracy of the transaction, and a confirmation message displays in the Remix

interface.

Note that Remix and MetaMask provide a visual and manual method to deploy

our system’s legal contracts to the blockchain. This is for demonstration purposes

only. In our actual system framework, all of this deployment is automatic and the

transaction is sent directly from an Ethereum node running on our web server. The

Vyper compiler plug-in is also not used to compile the Vyper contract. Rather,

a locally installed Vyper distribution and compiler on the server-side compiles the

smart contract code into Ethereum bytecode.

7.2.1 Querying Contracts

In future iterations of our system, after the legal smart contract has been deployed

onto the blockchain, if users wish to query or review the contents of the contract, they

can simply log-in to the web interface to see a list of deployed legal contracts that

they are listed as a party on. This functionality has been designed and prototyped

but not yet implemented.

We again use the front-end Remix interface to show a more elaborate version of

what the user will be able do. As shown in Figure 7-3, the user is presented with a list

of function calls in the deployed contract, as well as methods to access the values of

different variables in the contract. The user simply fills in the necessary parameters

to call the specific function or method, and the result is returned in Remix. The

two grey grids at the bottom of Figure 7-3 show queries to check whether the second

and sixth clauses of an example deployed legal contract still hold, and the checkmark

represents a successful result of True.

7.3 Adjudication Process

This section details the events that occur should any party listed on a contract suspect

a breach of terms during the lifetime of the legal agreement.

57

7.3.1 Proposing a Breach

The party representing the accuser must first submit a breach proposal, stating that

they believe a breach to the contract’s terms have occurred. To do so, the party can

log-in to our front-end web interface, where they will see a list of all legal contracts

they are listed as a party in. Clicking the “Problem with this contract” button next

to the contract allows the party to submit a breach proposal. In the proposal, the

party first selects which clause or clauses of the contract they believe the violator

has breached. They then fill out the reason why they suspect there is a breach, any

evidence they might have found to support their theory, an amount for monetary

compensation that they are requesting the breaching party pay, and a deadline for

arbiters to vote on this breach. Clicking “Submit” automatically submits a transaction

to the blockchain smart contract notifying it about the possible breach.

A breach request notification is also sent out to all other parties on the contract.

Before the arbiters begin investigating the breach, the other parties on the contract

have a pre-determined amount of time to add additional evidence and reasoning to

the dispute. This design enables the defendant(s) to bring counterclaims, similar to

physical legal proceedings. This additional evidence and reasoning is also sent to the

smart contract.

7.3.2 Arbiter Voting and Resolution

After the pre-investigation time has expired, our system automatically sends all ar-

biters of the contract a notification that a party has requested a breach vote. At the

same time, the deployed smart contract creates a breach proposal on the blockchain

for arbiters to vote on. This breach proposal contains the contents submitted by the

victim party in the initial request as well as any counterclaims, and opens voting on

the proposal for the pre-defined time chosen by the victim party.

Once notified, arbiters can log-in to our system’s web interface and review the

submitted evidence and reasoning for the suspected breach. They can then conduct

both an on-chain and off-chain investigation of the matter. The vote request then asks

58

all arbiters to vote on the True or False state of each Action object present in the

disputed clauses. Based on their investigation, arbiters may then vote on this state by

submitting either True, False, or Abstain. An arbiter may choose to abstain from

voting on the state of one or more actions should they feel that there is not enough

evidence to make a sound ruling, or that they do not have enough expertise on the

specific action to determine its fair state.

After the voting period, all votes are tallied, and Action states are updated as

appropriate. In order for the arbiters’ votes to hold, the minimum quorum specified

in each Action object has to have been met, and the arbiters who voted must have

a simple majority in agreement on the new state. If these conditions are not met,

the state of the Action remains what it was before the breach vote. This closing and

tallying of the votes, and updating of Action states, are all performed automatically

by the blockchain smart contract.

After each Action has been updated to its new True or False state, the smart

contract then reevaluates the value of each disputed clause. Should it detect that

the clause previous evaluated to True but now evaluates to False, the compensation

requested by the victim is automatically deducted from the breacher’s account and

paid to the victim.

59

Figure 7-3: Using the online Remix IDE to query a legal contract deployed on the
blockchain. The two queries at the bottom of the figure show that those specific
clauses have not been breached for this specific contract.

60

Chapter 8

Evaluation

To measure the success our system, we needed to evaluate it on four different metrics.

The first was how many clauses in natural language legal texts could be accurately

represented by our system. The second was how effective our contribution of a clause

repository was to saving drafters’ time in writing the contracts. The third was to

evaluate the success rate and run-time of our automatic formal verification steps.

Finally, we needed to evaluate that the blockchain deployment and adjudication pro-

cesses work as intended.

8.1 System Coverage

Although we were influenced by the data sharing legal contract scope when designing

our system it is important that our system is able to model many different clauses

from any legal field with our Action and Clause structure. If the system were unable

to model a substantial percentage of clauses that appear in real-world paper-based

legal contracts, our framework’s utility would be severely decreased.

Evaluation was performed by randomly selecting five pages of legal text from two

sample data sharing agreements, which are reproduced in Appendices A.1 and A.2.

We then attempted to reproduce each of the clauses and actions in these agreements

on both our front-end web interface, to simulate a normal user, and our Python library

module, to simulate a more advanced user.

61

8.1.1 Drafting Using the Web Interface

Before beginning to draft the contracts on the web interface, the clause repository

was pre-filled with common data sharing agreement clauses and actions chosen from

Grabus and Greenberg’s work in Figure 3-1 to simulate the crowd-sourced library

of clauses present on every user’s front-end web interface [34]. Some examples of

these clauses are limitations in data sharing to only approved parties, data sharing

compliance with existing laws, monetary payment to be made on a specified date or

after a specified time, etc. The default five clause types explained in Section 4.2.2

were also included in the repository.

Working through the different contract clauses, we first noticed that a lot of con-

tract text is merely filler text or background information. These paragraphs did not

hold any legal meaning, but did help the reader understand the context of the con-

tract and the definitions within it. Because our system’s goal is to only model the

legal clauses of a contract, we do not have the capability to include this filler text

in the final contract. It would have to be added in between clauses after our system

outputs the contract.

For the remaining text, there were a total of 93 actions and clauses we needed

to model with our system. Unfortunately, a limitation of the front-end interface is

that it only lets users create new custom Clause objects, but not new custom Action

objects. The Action objects that users wish to include in their contracts or custom

clauses must already be written in the crowd-sourced repository. The reason for

this restriction is that Action objects require a lot of input in their Python object

representation, detracting from the ease-of-use of the front-end. We hope that this

problem will be mitigated as more and more users use the system, so that the Python

back-end clause repository can be populated with many different Actions for users to

choose from.

Given this limitation, out of the 93 actions and clauses we evaluated on, we could

accurately represent 61 of them for a 65.5% coverage rate using the front-end web

interface. This represents moderate coverage, and should be suitable for users wishing

62

to draft simple contracts. Note that this value should be interpreted with some

caveats. First, as more and more users use and contribute to the repository, the

coverage should increase as more usable Action and Clause objects will exist in the

repository. Second, we only evaluated on legal data sharing contracts because this

was the scope we chose. It is quite possible that other legal fields might require other

types of clauses, although we believe that the five default clauses we allow should cover

most legal clauses from any field. Other legal fields will definitely require a whole set

of different Action objects to exist in the repository before the web interface can be

used to draft contracts, but we hope that as lawyers from those fields begin to use our

system they will help populate the repository with the most common Action objects

from these fields.

8.1.2 Drafting Using Python

We then evaluated our system’s coverage on the same 93 actions and clauses drafted

using our provided Python library. The Python method of contract drafting does

not have the limitation of users not being able to create custom Action objects, so

more coverage of the sample contracts was observed. Out of the 93 actions and

clauses we evaluated on, we were able to accurately represent 77 of them for a 82.8%

coverage rate. This is a significant improvement over the 65.5% rate found when

evaluating on the web interface, showing that with the simple contribution of more

Action objects to our back-end clause repository, the web-interface could drastically

improve its coverage rate. Again, this will come with more and more users using our

system.

8.1.3 Limitations

In addition to the web interface limitation of not being able to draft custom Actions

stated in Section 8.1.1, other limitations of our system were the reason for less than

full coverage of the example contracts we tested on. In both the web-interface and

Python methods, we were unable to represent three types of clauses using our system:

63

The first type of clause was that which allowed parties listed in the contract

to specify mutable roles. Consider the following example, taken from clause 6 in

Appendix A.2:

6. ROLES AND RESPONSIBILITIES. The Camden Coalition and the
CFS agree to provide notice to all other parties of changes to any of the
roles listed below:

c) The following staff member(s) is/are assigned to roles related to the
proper management, processing, and distribution of data under this
Agreement:
[John Doe, Lead Data Analyst]

d) Principal Investigators or Lead Data Analyst(s) will abide by any
protocols and procedures established by the governance structure de-
veloped by the Camden Coalition, CFS, and all other parties.

This clause allows for the party John Doe to change roles during the lifetime of

the legal agreement, as long as proper notification is made by two other parties, the

Camden Coalition and the CFS.

Due to our Python representation of a clause as well as a contract’s immutability

after being deployed on the blockchain, we are unable to accurately represent or allow

changing roles for parties during the lifetime of a smart contract. One solution would

be to specify a generic “Lead Data Analyst” party when drafting the contract and

then maintain an off-chain list of all names attached to that role, although this would

decrease some important information stored in the deployed contract.

Another type of clause that our system’s current implementation is unable to

model is a clause which specifies proxies to perform an action. For example, a party

might specify in a legal contract that in the case that the original party is unable to

receive payment for services on a certain payment date, the payment is to be sent to

a third-party that will be specified closer to the payment date. There is no way to

accurately represent this clause in either our web interface or Python model, as our

system assumes that all entities and specifications of the contract are known at the

time of signing.

A final type of clause we are unable to represent is a clause which permits only

explicitly specified actions, but not any others. Consider the following example, taken

64

from clause 1 in Appendix A.2:

1. PURPOSE AND INTENDED USE OF DATA SHARING. The
data will be used for the following purposes:

(a) For inclusion in the Camden Promise Neighborhood case management
system.

(b) For research and evaluation purposes.

Though not explicitly stated, this clause implies that using the data for any pur-

pose other than the two listed is a breach of contract. Our Python representation of

clauses only allows for checking if specific actions occur, rather than an infinite set

comprising of any possible action except the two listed. One workaround to repre-

senting this clause would be to represent it all as one action, and then rely on arbiters

during the adjudication process to vote on whether other uses occurred. The chal-

lenge with representing this clause is that the set of unpermitted actions is subjective,

as some parties may consider some unlisted behaviors as permitted while other par-

ties may not. Including this clause would make the interpretation of the final legal

contract more debatable, which detracts from the intentions of our concrete code-like

contract representation.

We hope that these limitations can be addressed in future work, which is discussed

in Section 9.

8.2 Clause Re-use Efficiency

We evaluated our contribution of the clause repository by measuring the frequency of

reuse or shared logic between clauses in the two sample contracts. After analyzing the

77 actions and clauses we were able to represent with our system, we found that only

17 distinct clauses and actions needed to be in the repository in order to represent all

77. Figure 8-1 shows the frequency that each distinct action and clause was reused

in constructing the representation of these 77 actions and clauses. The top four most

frequently used clauses and actions in our repository are labelled in the figure. The

amount of reuse demonstrates the usefulness of our system’s clause repository, as

65

Figure 8-1: Frequency of Clause and Action reuse from the built-in repository when
evaluating on the 77 actions and clauses our system is able to represent.

each clause that does not have to be written from scratch will save the end-user vast

amounts of time and effort compared to drafting legal contracts by hand.

8.3 Formal Verification

Using the same two data sharing agreements, we formally verified 203 individual

proofs concerning these actions and clauses. The Z3 Prover achieved a 100% proof

validation success rate, and required fewer than two seconds to check all proofs se-

quentially when running on a low-power dual-core tablet computer. The KEVM

verification also passed all proofs in around the same time frame.

These results show that the logical implementations of each clause we evaluated

and of the generated legal agreements as a whole are valid. Timing wise, the proofs ran

extremely fast, and will not be an issue even for extremely lengthy legal agreements.

66

8.4 Blockchain Deployment and Adjudication

To evaluate our system’s blockchain deployment and adjudication capabilities, we

manually tested using Remix and MetaMask as described in Section 7.1. We tested

by deploying on both the Rinkeby testnet and the live Ethereum blockchain. De-

ploying a contract on Rinkeby took on average ten seconds to achieve the necessary

six node confirmations, whereas deploying on the real Ethereum blockchain took on

the magnitude of minutes depending on the length of the contract, the network load,

and the miner incentive fee paid. The transaction cost was a few U.S. dollars per

deployment, which is negligible compared to the legal cost savings that users of our

system will gain.

To test querying the deployed contract, we successfully used Remix and MetaMask

to interact with the deployed contract. Some successful queries performed were the

checking of clause states, checking of action states, and seeing which arbiters were

listed on a contract. Querying a contract should not change a contract’s state at all,

so after each query the contract was checked to see if it was still fulfilled.

To evaluate adjudication, we manually submitted six breach requests, three for

each sample contract that we tested on. The breach requests were set to payment

requests of 0 Ether tokens. We then had arbiter accounts linked via MetaMask vote

on the action state variables contained in these breach requests. The three different

breach requests tested the cases of having no arbiter quorum, quorum but no majority

for changing the validity of the contract, and the case where a breach was decided

to have actually occurred. In the first two cases, the breach votes resulted in no

changes to the contract state as a whole and no payment was made to the breach

requester’s account. In the last case, the contract was successfully marked as breached

by evaluating to False after tallying votes, and a payment transaction could be seen

incoming to the breach requester’s Ethereum account.

Because each contract query and transaction on the blockchain requires a small

fee to be paid, it was hard to scale tests for many different contract queries and breach

votes. For future work, exhaustive tests should be run on the Rinkeby testnet, but

67

the manual tests we performed show that the deployment and adjudication processes

function as intended with no observed errors. Each transaction took on the magnitude

of minutes to return a result, so there is no issue in terms of delays in either contract

deployment or adjudication voting.

68

Chapter 9

Future Work

In terms of future work, there are many improvements aesthetically, functionally, and

evaluation-wise that we hope to add to our project.

On the aesthetics side, we wish to add drag-and-drop functionality to the front-

end web interface. This will improve the ease-of-use of our system even further than

the current point-and-click implementation. Users would be able to simply drag-

and-drop clauses into the contract draft, as well as rearrange the order of clauses in

the contract with simple mouse movements. Users will also be able to drag parties

and other frequent parameter values to the selected clauses to fill in the parameter

placeholders. Improving ease-of-use is an important goal of our system as it will

increase its adoption in the legal field. A higher adoption rate will not only mark a

higher success of our system, but also improve its functionality because the public

clause repository is crowd-sourced from users.

In terms of functionality, some modifications to our Python higher-level language

can introduce support for more types of clauses and increased flexibility of existing

clauses. While reading through sample legal contracts, we noticed that a few of them

contained clauses where a party of the contract could designate a proxy to perform

an action should the original party not be able to. For example, in a goods exchange

contract, the party receiving the goods might specify a third-party to handle delivery

of the goods should the primary party be unable to receive them. Our current Python

representation of clauses does not support this. Another feature we wish to add is

69

the ability for party parameters in clauses to represent roles instead of only specific

parties. For example, in a healthcare data sharing contract, if there are multiple

hospitals listed as parties on the contract, a single clause should be able to reference

all the hospitals collectively rather than listing each of them separately. The list of

hospitals should also be able to change during the lifetime of the contract. Both of

these improvements to the contract drafting process will allow our system to support

additional clauses, increasing the robustness of our system and its adoption potential

by lawyers.

In terms of functionality on the blockchain, each smart contract that our system

currently deploys only tracks its expiration time and the current agreement between

parties and arbiters on the truth value of each Action that the contract contains. For

future work, the smart contracts can be improved to perform automatic fulfillment of

some contract clauses. For example, in a contract requiring periodic payments, future

iterations of our smart contracts might automatically request Ethereum blockchain-

based payments for each payment installment. For legal contracts relating to trust

funds or escrowing money, a smart contract modelling this legal agreement might

require the parties on the blockchain to send these escrow funds to the contract

address, after which the smart contract can manage the funds until they are supposed

to be distributed. Again, these improvements will add functionality to our system,

hopefully making lawyers more willing to adopt our framework.

Evaluation-wise, the true test of our system’s success will be its usability and

helpfulness to our target audience of legal contract writers. For future work, we hope

to user test our system with legal professionals, and ask them to assess whether our

system can help speed up and ease their contract drafting process. We also hope to

showcase the formal verification and adjudication features our system provides, to

see how valued our contract managing system is. With user-test feedback, we can

determine what additional features and improvements will be most suited for our

system.

For this thesis, our scope was limited to data sharing contracts, as addressed

in Section 1.1. For future work, we hope to evaluate our system on other types of

70

legal contracts to see whether its functionality coverage will remain the same. This

additional evaluation can also reveal additional clause types that our system might

need to support.

71

72

Chapter 10

Conclusion

The current state of technology in legal contract drafting lags far behind some of the

fields that these contracts are meant to service. This thesis successfully produced a

system to digitize paper-based legal contracts and deploy them onto the Ethereum

blockchain, where they can be easily managed, audited, and adjudicated. Although

we focused on data sharing contracts when evaluating our system, the framework we

have developed is applicable to any type of legal contract.

By adopting this system, lawyers will easily be able to draft legal contracts us-

ing either a point-and-click front-end or an easy to learn Python library. Both of

these methods are connected to a built-in crowd-sourced clause repository, promoting

the efficiency of clause reuse between contracts. Once written, our system automati-

cally handles the complete back-end process to verify, compile, and deploy the digital

contract onto the Ethereum blockchain in the form of a smart contract. The trans-

lation of the contract language from its front-end natural language representation to

Ethereum bytecode is guaranteed in accuracy by both Z3 and KEVM mathematical

proofs in two separate steps of the compilation process.

After contract deployment, users can easily use the front-end to query the smart

contract at any time for details on the agreement conditions or to check whether

the contract still holds. During the lifetime of a contract, if any party suspects that

another party has breached the contract, they can request predefined arbiters to vote

on whether the breach has occurred and a proposed monetary settlement. Arbiters

73

can then conduct both on-chain and off-chain investigations to determine the existence

of a breach. Once the voting period passes, the smart contract governing the legal

agreement will compile the arbiter votes and automatically issue monetary penalties

should a breach been determined to have occurred.

Evaluating our system on real-world legal contracts, we found that the contri-

bution of a crowd-sourced clause repository drastically sped up the contract draft-

ing process, as many clauses are shared between contracts governing the same field.

This observation held no matter if the user developed contracts using the front-end

web interface or our provided Python library. Testing the smart contracts on the

Rinkeby Ethereum testnet, we found that there was minimal delay between when

the user submitted a legal contract and when the smart contract became confirmed

on the blockchain. The adjudication process was tested using manual voting on the

Ethereum testnet. Future iterations of this project will involve automatic and ex-

haustive testing of the voting process.

Overall, the system we developed in this thesis provides lawyers with a fresh, more

technologically advanced, and more efficient way to draft, track, manage, and adjudi-

cate legal contracts. Adoption of it will drastically decrease the cost and time needed

for creating the important legal contracts that govern almost all formal interactions

in today’s interconnected world.

74

Appendix A

Example Legal Contracts

This appendix section contains a subset of example legal contracts we used in devel-

oping and evaluating our system. They are presented in PDF form in their original

text.

A.1 Simple Data Sharing Agreement

The following is a simple, one page data sharing agreement between The Rhode Island

Department of Health and The Providence Plan. This was the very first contract our

system was evaluated on, and the first clauses that we tried to model with both our

front-end interface and Python library.

75

Sample Data-Sharing and Usage Agreement

Rhode Island Department of Health and the Providence Plan

This agreement establishes the terms and conditions under which the Rhode Island Department of Health

(RIDOH) and The Providence Plan (TPP) can acquire and use data from the other party. Either party may

be a provider of data to the other, or a recipient of data from the other.

1. The confidentiality of data pertaining to individuals will be protected as follows:

a. The data recipient will not release the names of individuals, or information that could be linked to

an individual, nor will the recipient present the results of data analysis (including maps) in any

manner that would reveal the identity of individuals.

b. The data recipient will not release individual addresses, nor will the recipient present the results

of data analysis (including maps) in any manner that would reveal individual addresses.

c. Both parties shall comply with all Federal and State laws and regulations governing the

confidentiality of the information that is the subject of this Agreement.

2. The data recipient will not release data to a third party without prior approval from the data provider.

3. The data recipient will not share, publish, or otherwise release any findings or conclusions derived

from analysis of data obtained from the data provider without prior approval from the data provider.

4. Data transferred pursuant to the terms of this Agreement shall be utilized solely for the purposes set

forth in the “Partnership Agreement”.

5. All data transferred to TPP by RIDOH shall remain the property of RIDOH and shall be returned to

RIDOH upon termination of the Agreements.

6. Any third party granted access to data, as permitted under condition #2, above, shall be subject to the

terms and conditions of this agreement. Acceptance of these terms must be provided in writing by the

third party before data will be released.

IN WITNESS WHEREOF, both the Rhode Island Department of Health, through its duly authorized

representative, and The Providence Plan, through its duly authorized representative, have hereunto

executed this Data Sharing Agreement as of the last date below written.

Medical Director, Division of Family Health

Rhode Island Department of Health

Date: __________________________________

Executive Director

The Providence Plan

Date: __________________________________

Source: www2.urban.org/nnip/ds_sample.html

Simple Data Sharing Agreement

76

A.2 Complex Data Sharing Agreement

The following is a more complex, multi-page data sharing agreement between the

Camden Coalition of Healthcare Providers, the Center for Family Services, and a

customizable third party. Only the first five pages are replicated, as these contain

the clauses of the contract. The remaining pages of the contract are reserved for

signatures and appendices.

77

Page 1 of 14

Master Data Sharing Agreement

This Master Data Sharing Agreement (“Agreement”) is entered by and among the Camden

Coalition of Healthcare Providers (“Camden Coalition”), located at 800 Cooper St. 7th Floor,

Camden, NJ 08102, Center for Family Services (“CFS”) located at 584 Benson St., Camden, NJ

08103, and ____________________, that provides Solutions and support to the Camden Promise

Neighborhood, and is located at __________________, collectively “Parties”. This Agreement

shall be effective as of May 1, 2017 (“Effective Date”).

1. PURPOSE AND INTENDED USE OF DATA SHARING. The purpose of this Agreement

is to facilitate the submission of data to the Camden Coalition for the creation, use, and

maintenance of a system of integrated social, health, and educational data concerning citizens

of Camden City, Southern New Jersey, and the broader state of New Jersey in order to obtain

a more complete understanding of the service needs, service gaps, and impact of services

(“Camden ARISE”). The data will be used for the following purposes:

a. For inclusion in the Camden Promise Neighborhood case management system, which is a

component of Camden ARISE and is used by Camden Promise Neighborhood Solutions

(“Solutions”) to coordinate, manage, track, and report on the services provided by all or

some of the other Camden Promise Neighborhood Solutions to individuals and families.

[NAME] agrees to allow the disclosure of personally identifiable information to the

entities shown in Exhibit A to this Agreement provided that (i) appropriate consent or

authorization, if required for use, has been obtained from the individual or the

individual's parent or guardian; and (ii) a role-based access control is assigned as

specified in Exhibit A.

b. For research and evaluation purposes to study and report on the impact of services

provided by Solutions and other organizations contributing data for inclusion in Camden

ARISE (“Data Contributor(s)”) to citizens of Camden City and Southern New Jersey on

individuals and families in the area and to study and report on factors related to service

provision, assessment of need, and topics relevant to innovating new approaches to

benefit the citizens of Camden City and Southern New Jersey.

2. DEFINITIONS

a. Camden ARISE - A system of integrated social, health, and educational data concerning

citizens of Camden City, Southern New Jersey, and the broader state of New Jersey

b. Camden Promise Neighborhood – A project led by CFS which aims to create a

comprehensive pipeline of services and a cradle through college to career path leading to

positive change for the children and families

c. Confidential Information – the [NAME] Data Set, Primary Data Set(s), the Case

Management Data Set, Camden ARISE data or any part thereof

d. Data Contributor(s) – Organization(s) that provide data for inclusion in Camden ARISE.

e. Case Management Data Set – A data set comprised of data from all Solutions.

Complex Data Sharing Agreement

78

Page 2 of 14

f. Solutions– Organizations which form a part of the Camden Promise Neighborhood and

who (1) have active data sharing agreements with the Camden Coalition and; (2)

contribute data for use in the Camden Promise Neighborhood case management system

and Camden ARISE. The Parties anticipate that these organizations/programs will

include insert names of partner organizations here. The Solutions that form a part of the

Camden Promise Neighborhood may change during the term of this Agreement. The

Coalition will maintain an active list of Solutions which will be made available upon

request.

g. [NAME] Data Set – Data set comprised only of data provided by [NAME]

h. Primary Data Sets – Data sets provided by Solutions other than [NAME]

3. TERM AND TERMINATION.

a. Term. This Agreement shall be in effect for five years from the Effective Date and

thereafter shall renew for one year terms until terminated in accordance with 2b.

b. Termination. This Agreement may be terminated by any party with thirty (30) days

written notice to the other parties. In the event of the termination of the Agreement, the

Parties shall, upon request, (1) delete all data containing individually identifying

information obtained under this Agreement; and (2) certify in writing within ten (10)

business days that all copies of the data stored on cloud-based or local servers, backup

servers, backup media, or other media have been permanently erased or destroyed.

4. DESCRIPTION OF DATA

a. [NAME] Data Set. [NAME] shall share with CFS and the Camden Coalition data

according to the specifications set forth in Exhibit B. The data shared shall be limited to

the data elements mutually agreed upon by the parties. The designated representative of

each party will agree on specific data elements and data and record and file formats.

b. Agreements with Solutions. Solutions will contribute and be given access to the Promise

Neighborhood Case Management System and Camden ARISE after executing data sharing

agreements with the Camden Coalition that contain substantially similar provisions as

those contained in this Agreement.

c. Other Data Sources Eligible for Linkage.

i. Each Solution will contribute a data set that shall be made part of the Promise

Neighborhood Case Management System. The [NAME] Data Set will be linked with

Primary Data Sets from all Solutions that choose to participate in the Case

Management System to create a Case Management Data Set. The Primary Data Set

from each Solution and/or the Case Management Data Set may be linked with data

from Data Contributors that is available in Camden ARISE.

Complex Data Sharing Agreement

79

Page 3 of 14

ii. A data dictionary containing a list of all data elements in the [NAME], Primary, and

Case Management Data Set will be available to Solutions and Data Contributors

upon request.

d. Adding to the [NAME] Data Set. Subject to applicable law, and provided there is mutual

agreement of the Parties to this Agreement, content of the [NAME] Data Set may also

include other records mutually agreed upon by the Camden Coalition, CFS and [NAME]

to be necessary and appropriate for the proper execution of this Master Data Sharing

Agreement or any approved Data Use Agreement executed under this Master Data

Sharing Agreement.

5. CUSTODIAL RESPONSIBILITY AND DATA STEWARDSHIP.

a. The Camden Coalition and CFS will be joint Custodians of the raw and linked data sets

and will be responsible for the observance of all conditions for use and for establishment

and maintenance of security arrangements as specified in this Agreement to prevent

unauthorized use.

b. Unless otherwise stated or modified in this Agreement, the Camden Coalition and CFS

shall manage, link, and store data as specified in Exhibit C to this Agreement.

c. [NAME] will not use Confidential Information for any purpose other than the purposes

specified in this agreement. The Camden Coalition and CFS will fully cooperate with

[NAME] in the event that an adult individual or the parent or guardian of a minor under

18 years old requests the opportunity to review his/her personally identifiable information

disclosed to the Camden Coalition and/or CFS by [NAME] or wishes to revoke their

consent to data sharing with the Camden Coalition and/or CFS. [NAME] will notify the

Camden Coalition and CFS in the event it obtains written consent for data sharing with

the Camden Coalition and CFS, a revocation of consent to share data with the Camden

Coalition and CFS, or a request to review personally identifiable information stored by

the Camden Coalition and CFS from an adult or parent/guardian of a minor under 18

years old.

d. [NAME] will not release any data it receives as a result of its participation in this

Agreement to any third parties not specifically authorized to have access to such data

under this Agreement.

6. ROLES AND RESPONSIBILITIES. The Camden Coalition and CFS agree to provide

appropriate staff support to execute its data stewardship, data management, custodial

responsibilities, and analysis under this Agreement. The Camden Coalition and CFS agree to

provide notice to [NAME] within thirty (30) days when additional Solutions or Data

Contributors join Camden ARISE. [NAME] agrees to provide appropriate staff support to

create and transmit the [NAME] Data Set to the Camden Promise Neighborhood case

Complex Data Sharing Agreement

80

Page 4 of 14

management system, which is a component of Camden ARISE, as specified in Exhibit C to

this Agreement. The Camden Coalition and CFS will notify [NAME] and all other Solutions’

staff member(s) of changes to any of the roles listed below within 30 days of receiving notice

of the change. Notification via electronic mail to [NAME] and all other Solutions’ staff

member(s) will be sufficient.

a. The following Camden Coalition staff member(s) is/are assigned to roles related to the

proper management, processing, and distribution of the data under this Agreement:

Role Name, Title, and Organization Contact information

b. The following CFS staff member(s) is/are assigned to roles related to the proper

management, processing, and distribution of the data under this Agreement:

Role Name, Title, and Organization Contact information

c. The following [NAME] staff member(s) is/are assigned to roles related to the proper

management, processing, and distribution of the data under this Agreement:

Role Name, Title, and Organization Contact information

d. Principal Investigator(s) or Lead Data Analyst(s) are individuals conducting research and

evaluation, who will be vetted and approved through a governance structure developed by

the Camden Coalition, CFS and all Solutions. All Principal Investigators or Lead Data

Analyst(s) are Users, as defined in Exhibit C. Principal Investigators or Lead Data

Analyst(s) will abide by any protocols and procedures established by the governance

structure developed by the Camden Coalition, CFS and all Solutions. In addition, Principal

Investigator(s) or Lead Data Analyst(s) may involve one or more researchers or student

research assistants, working under the close supervision of the Principal Investigator(s) or

Lead Data Analyst(s), to assist in a support role with various tasks under this Agreement

and any approved data use agreements executed under this Agreement. Principal

Investigator(s) will require any of its researcher(s) and/or student research assistants that

create, receive, maintain, or transmit data to provide reasonable assurance, evidenced by

written contract, that researcher(s) and/or student research assistants will comply with the

same privacy and security obligations as Principal Investigator(s) with respect to the data.

7. PERMISSIBLE DATA USE, LINKING AND SHARING UNDER THIS AGREEMENT.
All data shared as part of this Agreement and/or any related data use agreements remains the

property of the supplying Solution. This Agreement represents and warrants further that data

covered under this Agreement shall not be disclosed, released, revealed, showed, sold, rented,

leased, or loaned to any person or organization except (1) to other Solutions or Data

Contributors; (2) as specified herein; (3) as approved in an executed data use agreement; (4)

as otherwise authorized in writing by [NAME] or; (5) as required by law. Access to the data

covered by this Agreement shall be limited to the minimum number of individuals necessary

to achieve the purpose stated in this section and to those individuals on a need-to-know basis

only.

a. Authorized Linkage and Data Transfers for Program and Site Management. Access to

Complex Data Sharing Agreement

81

Page 5 of 14

limited identifiable individual-level data will be restricted to a tightly controlled data

stream of “need to know” users at end service points and carefully selected organizational

administrators (as specified in Exhibits A and C to this Agreement). Only records with a

signed consent or authorization agreement will be transmitted for this purpose.

b. Authorized Linkage and Data Transfers for Research and Evaluation. Uses of Confidential

Information for research and evaluation shall be limited to the Principal

Investigator(s)/Lead Data Analyst(s) with whom a signed data use agreement exists. Only

de-identified data shall be released for this purpose. The Camden Coalition will manage all

identifiable data contained with the Case Management Data Set as well as other Camden

ARISE data. CFS will support the Camden Coalition in the management of the identifiable,

linked data, as part of the broader data administration needs of the Camden Promise

Neighborhood initiative. The Camden Coalition will establish external data sharing

protocols with approval from the Solutions or Data Contributor(s). A data governance

board, which will be established by the Camden Coalition, CFS, and the Solutions, will

decide upon the process for de-identification. Data use agreements with Principal

Investigator(s)/Lead Data Analyst(s) will include information about the de-identification

process.

8. NO WARRANTY FOR DATA OR LINKAGE QUALITY. Both the accuracy of record

linkage and the utility of administrative data for research and analytical purposes are dependent

on the quality and consistency of the source data. Although the Camden Coalition and CFS

will use reasonable efforts to promote accurate record linkage and the creation of appropriate

data sets for analysis, no warranty is made as to the achievement of any particular match rate

nor as to the ultimate accuracy or utility of any data contributed under this Agreement.

9. PUBLICATION AND DISSEMINATION OF RESULTS. The Camden Coalition and CFS

shall provide [NAME] copies of written reports, analysis, or visuals produced or derived in

whole or in part from [NAME]’s data prior to public dissemination. [NAME] will also be

provided with final copies of these publications. Copies shall be submitted to the [NAME]’s

primary contact for the administration of this Agreement as specified in Section 6 to this

Agreement.

10. MODIFICATION. The Parties may amend this Agreement by mutual consent, in writing, at

any time. This Agreement may be terminated by either party with thirty (30) days written

notice.

11. SIGNATURES. By the signatures of their duly authorized representatives below, the Camden

Coalition, CFS, and [NAME] agree to all of the provisions of this Master Data Sharing

Agreement.

[Signatures on following page]

Complex Data Sharing Agreement

82

Appendix B

Select Source Code Files

This appendix section contains select source code files that are instrumental to the

functioning and understanding of our project.

B.1 Python Representation of a Legal Contract

The following is an example of a contract written in Python using our Python library.

It is a contract between two fake entities named “Department of Health” and “Research

University,” with the sole arbiter being the United States Federal Court. The clauses

represented in Python are based on the clauses in the simple data sharing agreement

from Appendix A.1. Import statements have been removed for brevity.

83

Python Representation of a Legal Contract

doh = Party(name="Department of Health",
address="0x2B5634C42055806a59e9107ED44D43c426E58258")

ru = Party("Research University",
address="0x37396B8A6242DD2ab08Db4160dD93Bb9580bdBA5")

parties = [doh, ru]
arbiters = [

Arbiter(name="United States Federal Court",
address="0x37396B8A6242DD2ab08Db4160dD93Bb9580bdBA5")]

third_party = "any third party"
the_public = "the public"

register_serializable(Party, "party")
register_serializable(Arbiter, "arbiter")
register_serializable(IfMayClause, "if_may_clause")
register_serializable(AndClause, "and_clause")
register_serializable(NegatedClause, "negated_clause")
register_serializable(IfShallClause, "if_shall_clause")
register_serializable(OrClause, "or_clause")
register_serializable(OwnDataAction, "own_data_action")
register_serializable(GrantApprovalAction, "grant_approval_action")
register_serializable(ShareDataAction, "share_data_action")
register_serializable(ReturnDataAction, "return_data_action")
register_serializable(ComplyWithLawsAction, "comply_with_laws_action")
register_serializable(TerminationAction, "termination_action")
register_serializable(ExecuteAgreement, "execute_agreement_action")

clause1 = AndClause(
NegatedClause(OrClause(

ShareDataAction(
parties=parties,
arbiters=arbiters,
user=ru,
data_action="release the names of individuals or

information that could be linked to an individual",→˓

data_audience=the_public),
ShareDataAction(

parties=parties,
arbiters=arbiters,
user=ru,
data_action="release results of data analysis (including

maps) that would reveal the identity of individuals",→˓

data_audience=the_public),
)),
NegatedClause(OrClause(

ShareDataAction(

84

Python Representation of a Legal Contract

parties=parties,
arbiters=arbiters,
user=ru,
data_action="release individual addresses",
data_audience=the_public),

ShareDataAction(
parties=parties,
arbiters=arbiters,
user=ru,
data_action="release results of data analysis (including

maps) that would reveal individual addresses",→˓

data_audience=the_public),
)),
AndClause(

ComplyWithLawsAction(ru, "Federal", arbiters, parties,
default=True),→˓

ComplyWithLawsAction(ru, "State", arbiters, parties,
default=True),→˓

ComplyWithLawsAction(doh, "Federal", arbiters, parties,
default=True),→˓

ComplyWithLawsAction(doh, "State", arbiters, parties,
default=True)→˓

)
)
third_party_use_action = ShareDataAction(

parties=parties,
arbiters=arbiters,
user=ru,
data_action="releases",
data_audience=third_party)

clause2 = IfMayClause(
if_clause=GrantApprovalAction(

parties=parties,
arbiters=arbiters,
granter=doh,
grantee=ru,
approval_type="third party release"),

may_clause=third_party_use_action
)

clause3_if_clause = GrantApprovalAction(
parties=parties,
arbiters=arbiters,
granter=doh,

85

Python Representation of a Legal Contract

grantee=ru,
approval_type="public release")

clause3_may_clause_shares = ShareDataAction(
parties=parties,
arbiters=arbiters,
user=ru,
data_action="shares analyses or findings",
data_audience=the_public)

clause3_may_clause_publishes = ShareDataAction(
parties=parties,
arbiters=arbiters,
user=ru,
data_action="publishes analyses or findings",
data_audience=the_public)

clause3_may_clause_release = ShareDataAction(
parties=parties,
arbiters=arbiters,
user=ru,
data_action="otherwise releases analyses or findings",
data_audience=the_public)

clause3 = IfMayClause(
if_clause=clause3_if_clause,
may_clause=OrClause(

clause3_may_clause_shares,
clause3_may_clause_publishes,
clause3_may_clause_release

)
)

clause4 = NegatedClause(Action(
parties=parties,
arbiters=arbiters,
name="misuse",
description="Recipient uses data for purposes other than agreed

upon"))→˓

clause5 = AndClause(
OwnDataAction(doh, "data", arbiters=arbiters, default=True),
IfShallClause(

if_clause=TerminationAction(
actor=None, arbiters=arbiters, parties=parties),

shall_clause=ReturnDataAction(ru, doh, item="data",
arbiters=arbiters, parties=parties))→˓

)

86

Python Representation of a Legal Contract

clause6 = IfShallClause(
if_clause=third_party_use_action,
shall_clause=ExecuteAgreement(Party(third_party,

address="0x37396B8A6242DD2ab08Db4160dD93Bb9580bdBA5"),→˓

"this agreement in writing",
arbiters=arbiters,
parties=parties)

→˓

→˓

)

document = Document((clause1, clause2, clause3, clause5, clause6))

87

B.2 JSON Representation of a Legal Contract

The following is an excerpt from an example of a contract represented using our

JSON specification. The contract used to generate this JSON file was the simple

data sharing agreement from Appendix A.1. The “actions” and “clauses” lists

have been truncated for brevity.

88

JSON Representation of a Legal Contract

{
"parties": [

{
"name": "ridh",
"long_name": "Rhode Island Department of Health",
"address": "0x2B5634C42055806a59e9107ED44D43c426E58258"

},
{

"name": "pp",
"long_name": "The Providence Plan",
"address": "0x37396B8A6242DD2ab08Db4160dD93Bb9580bdBA5"

}
],
"arbiters": [

{
"name": "aha",
"long_name": "American Public Health Association",
"address": "0xBaa6c254dD5498A608186E9De1057E21128a4836"

},
{

"name": "uscourts",
"long_name": "The Federal Court for the District of Rhode

Island",→˓

"address": "0x0c31411a63419b0a5ebed2d4e3e6cce1e9ac819d"
},
{

"name": "cdc",
"long_name": "Centers for Disease Control and Prevention",
"address": "0x689C56AEf474Df92D44A1B70850f808488F9769C"

}
],
"actions": [

{
"name": "name_release",
"description": "Recipient releases individual names

publicly",→˓

"parties": [
"ridh",
"pp"

],
"arbiters": [

"aha",
"uscourts",
"cdc"

],

89

JSON Representation of a Legal Contract

"default": false,
"arbiter_quorum": 3

},
{

"name": "pii_release",
"description": "Recipient releases individual information

publicly",→˓

"parties": [
"ridh",
"pp"

],
"arbiters": [

"aha",
"uscourts",
"cdc"

],
"default": false,
"arbiter_quorum": 3

}
],
"party_votes": {

"provider_public_release": false,
"recipient_public_release": {

"ridh": false,
"pp": true

}
},
"arbiter_votes": {

"recipient_public_release": {}
},
"clauses": [

{
"uri": "if_may_clause",
"checksum": null,
"data": {

"if_clause": {
"uri": "action",
"checksum": null,
"data": {

"name": "provider_third_party"
}

},
"may_clause": {

"uri": "action",
"checksum": null,

90

JSON Representation of a Legal Contract

"data": {
"name": "recipient_third_party"

}
}

}
},
{

"uri": "if_may_clause",
"checksum": null,
"data": {

"if_clause": {
"uri": "action",
"checksum": null,
"data": {

"name": "provider_public_release"
}

},
"may_clause": {

"uri": "or_clause",
"checksum": null,
"data": {

"clauses": [
{

"uri": "action",
"checksum": null,
"data": {

"name": "recipient_public_release"
}

},
{

"uri": "action",
"checksum": null,
"data": {

"name": "recipient_publish"
}

},
{

"uri": "action",
"checksum": null,
"data": {

"name":
"recipient_otherwise_publish"→˓

}
}

]

91

JSON Representation of a Legal Contract

}
}

}
}

]
}

92

B.3 Python to Vyper Compiler

The following is the code file used to compile contracts written in our provided Python

library to Vyper code that can then be further compiled into Ethereum bytecode for

deployment on the Ethereum blockchain.

Note that although the syntax highlighting might look incorrect, the dark red

text is a lengthy multi-line string that this code is writing to a new file containing

the Vyper code.

93

Python to Vyper Compiler

from typing import TYPE_CHECKING, TextIO, List, Set, Dict
from datetime import timedelta

from action import Action
from clauses.and_clause import AndClause
from .vyper import Vyper, VYPER_PREFIX

if TYPE_CHECKING:
from document import Document

contract_duration: used to set self.expiry
pre_voting_duration: after a dispute is created, the minimum amount

of time before arbiters can vote→˓

min_evidence_submission_duration: how long, before voting opens, the
parties will be able to submit evidence.→˓

As such, no actions can be added to a dispute during this period
voting_duration: how long, after the pre_voting_duration, the

arbiters have to vote. No new evidence will be→˓

considered during this period
def py2vy(document: 'Document', f: TextIO, contract_duration:

timedelta, pre_voting_duration: timedelta,→˓

min_evidence_submission_duration: timedelta,
voting_duration: timedelta) -> None:→˓

actions: Dict[Action, int] = document.actions_to_int
clauses = document.clauses

f.write(f"""#!/bin/vyper
struct DisputedAction:

in_dispute: bool # need a flag to differentiate an action not in
dispute from one that is and simply has no votes→˓

voteCount: int128
votesTrue: int128
votesFalse: int128

struct Action:
state: bool
arbiter_quorum: int128
action_hash: bytes32
num_parties: int128 # One more than the maximum (meaningful)
index of ordered_parties→˓

struct Dispute:
creation_time: timestamp

94

Python to Vyper Compiler

action_parties: map(int128, map(address, bool)) # first key = action,
second = party, True if party is valid→˓

action_ordered_parties: map(int128, map(int128, address)) # first
key = action, second = index, value is the party→˓

action_arbiters: map(int128, map(address, bool)) # first key =
action; True if party is valid; false otherwise→˓

action_party_votes: map(int128, map(address, bool)) # first key =
action; defaults to default→˓

dispute_counter: int128
disputes: map(int128, Dispute) # key is dispute number, value is the

deadline→˓

disputes_disputed_actions: map(int128, map(int128, DisputedAction))
first key = dispute number, second key = action number, third key =

arbiter, value is true voted→˓

disputes_disputed_actions_voters: map(int128, map(int128, map(address,
bool)))→˓

expiry: public(timestamp)

""")
for i, clause in enumerate(clauses):

actions_in_clause: Set[Action] = set()
stack = [clause]
while len(stack) > 0:

current = stack.pop()
for child in current.get_children():

if isinstance(child, Action):
if child not in actions:

actions[child] = len(actions)
actions_in_clause.add(child)

else:
stack.append(child)

f.write(f"""
actions: Action[{len(actions)}]""")

f.write(f"""

@public
def __init__():

self.expiry = block.timestamp +
{int(contract_duration.seconds)}""")→˓

for action, i in actions.items():
f.write(f"""

95

Python to Vyper Compiler

self.actions[{i}] = Action({{state: {action.default}, # name:
{action.name→˓

}; description:
{action.description.format(parties=action.parties) if
action.description is not None else None}

→˓

→˓

arbiter_quorum:
{action.arbiter_quorum},→˓

action_hash: 0x{"0" * 64}, # TODO
num_parties:

{len(action.parties)}}})""")→˓

for j, party in enumerate(action.parties):
assert party.address is not None, f"party {party} must

have a valid address"→˓

f.write(f"""
self.action_parties[{i}][{party.address}] = True
self.action_ordered_parties[{i}][{j}] = {party.address}
self.action_party_votes[{i}][{party.address}] = {action.default}

""")
for arbiter in action.arbiters:

assert arbiter.address is not None, f"arbiter {arbiter}
must have a valid address"→˓

f.write(f"""
self.action_arbiters[{i}][{arbiter.address}] = True""")

f.write(f"""
self.dispute_counter = 0""")

var_names: List[str] = []
clause_to_var_name: Dict[Vyper, str] = {}
lines: List[str] = []
contract_clause = AndClause(*document.clauses)
contact_clause_name = "c"
for line in contract_clause.generate_vyper(actions):

var_name = line.var_name.replace(VYPER_PREFIX,
contact_clause_name)→˓

var_value = line.var_value.replace(VYPER_PREFIX,
contact_clause_name)→˓

var_names.append(var_name)
line_eval = line.evaluable
assert isinstance(line_eval, Vyper)
clause_to_var_name[line_eval] = var_name
lines.append(f"{var_name}: bool = {var_value}")

reverse the ordering, since the output is in reverse ordering
var_names.reverse()

96

Python to Vyper Compiler

clause_var_to_i: Dict[str, int] = {} # One clause / variable per
line→˓

for var_name in var_names:
clause_var_to_i[var_name] = len(clause_var_to_i)

f.write(f"""

@public
def computeContract() -> bool[{len(lines)}]:

assert block.timestamp <= self.expiry
""")
for line_str in lines:

f.write(f"""
{line_str}""")
f.write(f"""

return [""")
for var_name in var_names:

f.write(f"""
{var_name},""")
f.write(f"""
]

""")

f.write(f"""

First step of the dispute process:
Create a dispute. Anyone can do this. This just creates a deadline

and assigns an ID→˓

@public
def createDispute():

self.disputes[self.dispute_counter].creation_time =
block.timestamp→˓

self.dispute_counter += 1

Second step of the dispute process:
Bind actions to the dispute. Any party can do this
@public
def disputeAction(dispute_id: int128, action_id: int128):

assert self.action_parties[action_id][msg.sender] # assert that
the originator is a party→˓

assert 0 <= dispute_id and dispute_id < self.dispute_counter #
assert the dispute exists→˓

dispute: Dispute = self.disputes[dispute_id]
assert block.timestamp +
{int(min_evidence_submission_duration.seconds)→˓

97

Python to Vyper Compiler

} < dispute.creation_time +
{int(pre_voting_duration.seconds)} # assert there is sufficient
time

→˓

→˓

assert 0 <= action_id and action_id < {len(actions)} # assert
that the action exists→˓

self.disputes_disputed_actions[dispute_id][action_id].in_dispute =
True→˓

Third step is voting
@public
def vote(dispute_id: int128, action_id: int128, side: bool):

assert 0 <= dispute_id and dispute_id < self.dispute_counter #
assert dispute_id is valid→˓

dispute: Dispute = self.disputes[dispute_id]
assert dispute.creation_time + {int(pre_voting_duration.seconds) +

int(voting_duration.seconds)} <=
block.timestamp # assert voting is open→˓

assert block.timestamp < dispute.creation_time +
{int(pre_voting_duration.seconds) +→˓

int(voting_duration.seconds)} # assert voting is not yet closed→˓

assert 0 <= action_id and action_id < {len(actions)} # assert
action id is valid→˓

disputed_action: DisputedAction =
self.disputes_disputed_actions[dispute_id][action_id]→˓

assert disputed_action.in_dispute # ensure that a party asked the
arbiters to rule on this one→˓

assert self.action_arbiters[action_id][msg.sender] # assert
caller is an arbiter→˓

disputed_action.voteCount += 1
if side:

disputed_action.votesTrue += 1
else:

disputed_action.votesFalse += 1

Fourth step is closing the dispute and registering the states
@public
def closeDispute(dispute_id: int128):

assert 0 <= dispute_id and dispute_id < self.dispute_counter #
assert dispute_id is valid→˓

dispute: Dispute = self.disputes[dispute_id]
assert dispute.creation_time + {int(pre_voting_duration.seconds) +

int(voting_duration.seconds)} <=
block.timestamp # assert voting has closed→˓

98

Python to Vyper Compiler

TODO would it be better to store exactly which actions are in
this dispute?→˓

for action_id in range({len(actions)}):
disputed_action: DisputedAction =

self.disputes_disputed_actions[dispute_id][action_id]→˓

if not disputed_action.in_dispute:
continue

if not disputed_action.voteCount >=
self.actions[action_id].arbiter_quorum:→˓

continue
TODO check that the parties do not agree
if disputed_action.votesTrue > disputed_action.votesFalse:

self.actions[action_id].state = True
else:

self.actions[action_id].state = False
""")

99

B.4 Vyper Smart Contract

The following is the compiled Vyper contract based on the simple data sharing agree-

ment from Appendix A.1 that is outputted by our Python to Vyper compiler. The

initialization of Action objects in the Vyper code has been truncated for brevity.

100

Vyper Legal Smart Contract

struct DisputedAction:
in_dispute: bool # flag to differentiate an action not in a

dispute from one that is and simply has no votes→˓

voteCount: int128
votesTrue: int128
votesFalse: int128

struct Action:
state: bool
arbiter_quorum: int128
num_parties: int128 # One more than the maximum index of

ordered_parties→˓

struct Dispute:
creation_time: timestamp

first key = action, second = party, True if party is valid
action_parties: map(int128, map(address, bool))
first key = action, second = index, value is the party
action_ordered_parties: map(int128, map(int128, address))
first key = action; True if party is valid; false otherwise
action_arbiters: map(int128, map(address, bool))
first key = action; defaults to default
action_party_votes: map(int128, map(address, bool))

dispute_counter: int128
disputes: map(int128, Dispute) # key is dispute number, value is the

deadline→˓

disputes_disputed_actions: map(int128, map(int128, DisputedAction))
first key = dispute number, second key = action number, third key =

arbiter, value is true voted→˓

disputes_disputed_actions_voters: map(int128, map(int128, map(address,
bool)))→˓

expiry: public(timestamp)
actions: Action[18]

@public
def __init__():

self.expiry = block.timestamp + 0

description: Research University
(0x37396B8A6242DD2ab08Db4160dD93Bb9580bdBA5) release the names
of individuals or information that could be linked to an
individual with the public

→˓

→˓

→˓

self.actions[0] = Action({state: False,

101

Vyper Legal Smart Contract

arbiter_quorum: 1,
num_parties: 2})

self.action_parties[0]
[0x37396B8A6242DD2ab08Db4160dD93Bb9580bdBA5] = True

self.action_ordered_parties[0][0] =
0x37396B8A6242DD2ab08Db4160dD93Bb9580bdBA5→˓

self.action_party_votes[0]
[0x37396B8A6242DD2ab08Db4160dD93Bb9580bdBA5] = False

self.action_parties[0]
[0x2B5634C42055806a59e9107ED44D43c426E58258] = True

self.action_ordered_parties[0][1] =
0x2B5634C42055806a59e9107ED44D43c426E58258→˓

self.action_party_votes[0]
[0x2B5634C42055806a59e9107ED44D43c426E58258] = False

self.action_arbiters[0]
[0x37396B8A6242DD2ab08Db4160dD93Bb9580bdBA5] = True

description: Research University
(0x37396B8A6242DD2ab08Db4160dD93Bb9580bdBA5) release results
of data analysis (including maps) that would reveal the
identity of individuals with the public

→˓

→˓

→˓

self.actions[1] = Action({state: False,
arbiter_quorum: 1,
num_parties: 2})

self.action_parties[1]
[0x37396B8A6242DD2ab08Db4160dD93Bb9580bdBA5] = True

self.action_ordered_parties[1][0] =
0x37396B8A6242DD2ab08Db4160dD93Bb9580bdBA5→˓

self.action_party_votes[1]
[0x37396B8A6242DD2ab08Db4160dD93Bb9580bdBA5] = False

self.action_parties[1]
[0x2B5634C42055806a59e9107ED44D43c426E58258] = True

self.action_ordered_parties[1][1] =
0x2B5634C42055806a59e9107ED44D43c426E58258→˓

self.action_party_votes[1]
[0x2B5634C42055806a59e9107ED44D43c426E58258] = False

self.action_arbiters[1]
[0x37396B8A6242DD2ab08Db4160dD93Bb9580bdBA5] = True

Initialization of Actions truncated for brevity

self.dispute_counter = 0

@public
def computeContract() -> bool[32]:

assert block.timestamp <= self.expiry

102

Vyper Legal Smart Contract

description: {parties[0]} release the names of individuals or
information that could be linked to an individual with the
public

→˓

→˓

c_and0_and0_negatedClause_or0: bool = self.actions[0].state
description: {parties[0]} release results of data analysis

(including maps) that would reveal the identity of individuals
with the public

→˓

→˓

c_and0_and0_negatedClause_or1: bool = self.actions[1].state
c_and0_and0_negatedClause: bool = c_and0_and0_negatedClause_or0 or

c_and0_and0_negatedClause_or1→˓

c_and0_and0: bool = not c_and0_and0_negatedClause
description: {parties[0]} release individual addresses with the

public→˓

c_and0_and1_negatedClause_or0: bool = self.actions[2].state
description: {parties[0]} release results of data analysis

(including maps) that would reveal individual addresses with
the public

→˓

→˓

c_and0_and1_negatedClause_or1: bool = self.actions[3].state
c_and0_and1_negatedClause: bool = c_and0_and1_negatedClause_or0 or

c_and0_and1_negatedClause_or1→˓

c_and0_and1: bool = not c_and0_and1_negatedClause
description: {parties[0]} complies with all Federal laws and

regulations governing this agreement→˓

c_and0_and2_and0: bool = self.actions[4].state
description: {parties[0]} complies with all State laws and

regulations governing this agreement→˓

c_and0_and2_and1: bool = self.actions[5].state
description: {parties[0]} complies with all Federal laws and

regulations governing this agreement→˓

c_and0_and2_and2: bool = self.actions[6].state
description: {parties[0]} complies with all State laws and

regulations governing this agreement→˓

c_and0_and2_and3: bool = self.actions[7].state
c_and0_and2: bool = c_and0_and2_and0 and c_and0_and2_and1 and

c_and0_and2_and2 and c_and0_and2_and3→˓

c_and0: bool = c_and0_and0 and c_and0_and1 and c_and0_and2
description: {parties[0]} grants approval for {parties[1]} to

third party release→˓

c_and1_ifClause: bool = self.actions[8].state
description: {parties[0]} releases with any third party
c_and1_mayClause: bool = self.actions[9].state
c_and1: bool = c_and1_ifClause or not c_and1_mayClause
description: {parties[0]} grants approval for {parties[1]} to

public release→˓

103

Vyper Legal Smart Contract

c_and2_ifClause: bool = self.actions[10].state
description: {parties[0]} shares analyses or findings with the

public→˓

c_and2_mayClause_or0: bool = self.actions[11].state
description: {parties[0]} publishes analyses or findings with

the public→˓

c_and2_mayClause_or1: bool = self.actions[12].state
description: {parties[0]} otherwise releases analyses or

findings with the public→˓

c_and2_mayClause_or2: bool = self.actions[13].state
c_and2_mayClause: bool = c_and2_mayClause_or0 or

c_and2_mayClause_or1 or c_and2_mayClause_or2→˓

c_and2: bool = c_and2_ifClause or not c_and2_mayClause
description: {parties[0]} owns data
c_and3_and0: bool = self.actions[14].state
description: The agreement is terminated
c_and3_and1_ifClause: bool = self.actions[15].state
description: {parties[0]} returns data to {parties[1]}
c_and3_and1_shallClause: bool = self.actions[16].state
c_and3_and1: bool = (not c_and3_and1_ifClause) or

c_and3_and1_shallClause→˓

c_and3: bool = c_and3_and0 and c_and3_and1
description: {parties[0]} releases with any third party
c_and4_ifClause: bool = self.actions[9].state
description: {parties[0]} executes this agreement in writing
c_and4_shallClause: bool = self.actions[17].state
c_and4: bool = (not c_and4_ifClause) or c_and4_shallClause
c: bool = c_and0 and c_and1 and c_and2 and c_and3 and c_and4

return [c, c_and4, c_and4_shallClause, c_and4_ifClause, c_and3,
c_and3_and1, c_and3_and1_shallClause, c_and3_and1_ifClause,
c_and3_and0, c_and2, c_and2_mayClause, c_and2_mayClause_or2,
c_and2_mayClause_or1, c_and2_mayClause_or0, c_and2_ifClause,
c_and1, c_and1_mayClause, c_and1_ifClause, c_and0,
c_and0_and2, c_and0_and2_and3, c_and0_and2_and2,
c_and0_and2_and1, c_and0_and2_and0, c_and0_and1,
c_and0_and1_negatedClause, c_and0_and1_negatedClause_or1,
c_and0_and1_negatedClause_or0, c_and0_and0,
c_and0_and0_negatedClause, c_and0_and0_negatedClause_or1,
c_and0_and0_negatedClause_or0]

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

First step of the dispute process:
Create a dispute. Anyone can do this. This just creates a deadline

and assigns an ID→˓

@public

104

Vyper Legal Smart Contract

def createDispute():
self.disputes[self.dispute_counter].creation_time =

block.timestamp→˓

self.dispute_counter += 1

Second step of the dispute process:
Bind actions to the dispute. Any party can do this.
@public
def disputeAction(dispute_id: int128, action_id: int128):

assert that the originator is a party
assert self.action_parties[action_id][msg.sender]
assert the dispute exists
assert 0 <= dispute_id and dispute_id < self.dispute_counter
dispute: Dispute = self.disputes[dispute_id]
assert block.timestamp + 43200 < dispute.creation_time + \

0 # assert there is sufficient time
assert 0 <= action_id and action_id < 18 # assert that the action

exists→˓

self.disputes_disputed_actions[dispute_id][action_id].in_dispute =
True→˓

Third step is voting
@public
def vote(dispute_id: int128, action_id: int128, side: bool):

assert dispute_id is valid
assert 0 <= dispute_id and dispute_id < self.dispute_counter
dispute: Dispute = self.disputes[dispute_id]
assert dispute.creation_time + 43200 <= block.timestamp # assert

voting is open→˓

assert block.timestamp < dispute.creation_time + \
43200 # assert voting is not yet closed

assert 0 <= action_id and action_id < 18 # assert action id is
valid→˓

disputed_action: DisputedAction =
self.disputes_disputed_actions[dispute_id][action_id]→˓

ensure that a party asked the arbiters to rule on this one
assert disputed_action.in_dispute
assert caller is an arbiter
assert self.action_arbiters[action_id][msg.sender]
disputed_action.voteCount += 1
if side:

disputed_action.votesTrue += 1
else:

disputed_action.votesFalse += 1

105

Vyper Legal Smart Contract

Fourth step is closing the dispute and registering the states
@public
def closeDispute(dispute_id: int128):

assert dispute_id is valid
assert 0 <= dispute_id and dispute_id < self.dispute_counter
dispute: Dispute = self.disputes[dispute_id]
assert dispute.creation_time + 43200 <= block.timestamp # assert

voting has closed→˓

for action_id in range(18):
disputed_action: DisputedAction =

self.disputes_disputed_actions[dispute_id][action_id]→˓

if not disputed_action.in_dispute:
continue

if not disputed_action.voteCount >=
self.actions[action_id].arbiter_quorum:→˓

continue
if disputed_action.votesTrue > disputed_action.votesFalse:

self.actions[action_id].state = True
else:

self.actions[action_id].state = False

106

B.5 SMT2 Proofs

The following is an excerpt from an automatically generated .smt2 file containing

proofs to be formally verified by Z3. These proofs are based on the simple data

sharing agreement from Appendix A.1. The majority of this file has been truncated

for brevity.

107

SMT2 Proofs for Z3 Formal Verification

(declare-fun bool_to_int (Bool) Int)
(assert (= (bool_to_int false) 0))
(assert (= (bool_to_int true) 1))
(define-fun max ((x Int) (y Int)) Int (ite (< x y) y x))
(declare-const a_0 Bool) ; defining action as bool
(assert (not a_0))
(declare-const a_0_party_0_vote Bool)
(declare-const a_0_party_0_voter Bool)
(assert a_0_party_0_voter)
(declare-const a_0_party_1_vote Bool)
(declare-const a_0_party_1_voter Bool)
(assert a_0_party_1_voter)
(declare-const a_0_party_num_true_votes Int)
(assert (= a_0_party_num_true_votes (+ (bool_to_int a_0_party_0_vote)

(bool_to_int a_0_party_1_vote))))→˓

(declare-const a_0_party_num_false_votes Int)
(assert (= a_0_party_num_false_votes (+ (bool_to_int (not

a_0_party_0_vote)) (bool_to_int (not a_0_party_1_vote)))))→˓

(declare-const a_0_party_num_voters Int)
(assert (= a_0_party_num_voters (+ (bool_to_int a_0_party_0_voter)

(bool_to_int a_0_party_1_voter))))→˓

(declare-const a_0_party_resolution_true Bool)
(assert (= a_0_party_resolution_true (and (= a_0_party_num_voters 2)

(> a_0_party_num_true_votes 0) (= a_0_party_num_false_votes 0))))→˓

(declare-const a_0_party_resolution_false Bool)
(assert (= a_0_party_resolution_false (and (= a_0_party_num_voters 2)

(> a_0_party_num_false_votes 0) (= a_0_party_num_true_votes 0))))→˓

(declare-const a_0_arbiter_0_vote Bool)
(declare-const a_0_arbiter_0_voter Bool)
(assert a_0_arbiter_0_voter)
(declare-const a_0_arbiter_num_true_votes Int)
(assert (= a_0_arbiter_num_true_votes (+ (bool_to_int

a_0_arbiter_0_vote))))→˓

(declare-const a_0_arbiter_num_false_votes Int)
(assert (= a_0_arbiter_num_false_votes (+ (bool_to_int (not

a_0_arbiter_0_vote)))))→˓

(declare-const a_0_arbiter_num_voters Int)
(assert (= a_0_arbiter_num_voters (+ (bool_to_int

a_0_arbiter_0_voter))))→˓

(declare-const a_0_arbiters_meet_quorum Bool)
(assert (= a_0_arbiters_meet_quorum (or (>= a_0_arbiter_num_voters 1)

(> (max a_0_arbiter_num_true_votes a_0_arbiter_num_false_votes)
0))))

→˓

→˓

(declare-const a_0_arbiter_resolution_true Bool)

108

SMT2 Proofs for Z3 Formal Verification

(assert (= a_0_arbiter_resolution_true (and a_0_arbiters_meet_quorum
(> a_0_arbiter_num_true_votes a_0_arbiter_num_false_votes) (>
a_0_arbiter_num_true_votes 0) (> a_0_party_num_voters
a_0_party_num_false_votes))))

→˓

→˓

→˓

(declare-const a_0_arbiter_resolution_false Bool)
(assert (= a_0_arbiter_resolution_false (and a_0_arbiters_meet_quorum

(> a_0_arbiter_num_false_votes a_0_arbiter_num_true_votes) (>
a_0_arbiter_num_false_votes 0) (> a_0_party_num_voters
a_0_party_num_true_votes))))

→˓

→˓

→˓

(assert (= (or a_0_party_resolution_true (and (not
a_0_party_resolution_false) a_0_arbiter_resolution_true)) a_0))→˓

(assert (= (or a_0_party_resolution_false (and (not
a_0_party_resolution_true) a_0_arbiter_resolution_false)) (not
a_0)))

→˓

→˓

(declare-const a_1 Bool) ; defining action as bool
(assert (not a_1))
(declare-const a_1_party_0_vote Bool)
(declare-const a_1_party_0_voter Bool)
(assert a_1_party_0_voter)
(declare-const a_1_party_1_vote Bool)
(declare-const a_1_party_1_voter Bool)
(assert a_1_party_1_voter)
(declare-const a_1_party_num_true_votes Int)
(assert (= a_1_party_num_true_votes (+ (bool_to_int a_1_party_0_vote)

(bool_to_int a_1_party_1_vote))))→˓

(declare-const a_1_party_num_false_votes Int)
(assert (= a_1_party_num_false_votes (+ (bool_to_int (not

a_1_party_0_vote)) (bool_to_int (not a_1_party_1_vote)))))→˓

(declare-const a_1_party_num_voters Int)
(assert (= a_1_party_num_voters (+ (bool_to_int a_1_party_0_voter)

(bool_to_int a_1_party_1_voter))))→˓

(declare-const a_1_party_resolution_true Bool)
(assert (= a_1_party_resolution_true (and (= a_1_party_num_voters 2)

(> a_1_party_num_true_votes 0) (= a_1_party_num_false_votes 0))))→˓

(declare-const a_1_party_resolution_false Bool)
(assert (= a_1_party_resolution_false (and (= a_1_party_num_voters 2)

(> a_1_party_num_false_votes 0) (= a_1_party_num_true_votes 0))))→˓

(declare-const a_1_arbiter_0_vote Bool)
(declare-const a_1_arbiter_0_voter Bool)
(assert a_1_arbiter_0_voter)
(declare-const a_1_arbiter_num_true_votes Int)
(assert (= a_1_arbiter_num_true_votes (+ (bool_to_int

a_1_arbiter_0_vote))))→˓

(declare-const a_1_arbiter_num_false_votes Int)

109

SMT2 Proofs for Z3 Formal Verification

(assert (= a_1_arbiter_num_false_votes (+ (bool_to_int (not
a_1_arbiter_0_vote)))))→˓

(declare-const a_1_arbiter_num_voters Int)
(assert (= a_1_arbiter_num_voters (+ (bool_to_int

a_1_arbiter_0_voter))))→˓

(declare-const a_1_arbiters_meet_quorum Bool)
(assert (= a_1_arbiters_meet_quorum (or (>= a_1_arbiter_num_voters 1)

(> (max a_1_arbiter_num_true_votes a_1_arbiter_num_false_votes)
0))))

→˓

→˓

(declare-const a_1_arbiter_resolution_true Bool)
(assert (= a_1_arbiter_resolution_true (and a_1_arbiters_meet_quorum

(> a_1_arbiter_num_true_votes a_1_arbiter_num_false_votes) (>
a_1_arbiter_num_true_votes 0) (> a_1_party_num_voters
a_1_party_num_false_votes))))

→˓

→˓

→˓

(declare-const a_1_arbiter_resolution_false Bool)
(assert (= a_1_arbiter_resolution_false (and a_1_arbiters_meet_quorum

(> a_1_arbiter_num_false_votes a_1_arbiter_num_true_votes) (>
a_1_arbiter_num_false_votes 0) (> a_1_party_num_voters
a_1_party_num_true_votes))))

→˓

→˓

→˓

(assert (= (or a_1_party_resolution_true (and (not
a_1_party_resolution_false) a_1_arbiter_resolution_true)) a_1))→˓

(assert (= (or a_1_party_resolution_false (and (not
a_1_party_resolution_true) a_1_arbiter_resolution_false)) (not
a_1)))

→˓

→˓

(declare-const a_2 Bool) ; defining action as bool
(declare-const a_2_party_0_vote Bool)
(declare-const a_2_party_0_voter Bool)
(assert a_2_party_0_voter)
(declare-const a_2_party_1_vote Bool)
(declare-const a_2_party_1_voter Bool)
(assert a_2_party_1_voter)
(declare-const a_2_party_num_true_votes Int)
(assert (= a_2_party_num_true_votes (+ (bool_to_int a_2_party_0_vote)

(bool_to_int a_2_party_1_vote))))→˓

(declare-const a_2_party_num_false_votes Int)
(assert (= a_2_party_num_false_votes (+ (bool_to_int (not

a_2_party_0_vote)) (bool_to_int (not a_2_party_1_vote)))))→˓

(declare-const a_2_party_num_voters Int)
(assert (= a_2_party_num_voters (+ (bool_to_int a_2_party_0_voter)

(bool_to_int a_2_party_1_voter))))→˓

(declare-const a_2_party_resolution_true Bool)
(assert (= a_2_party_resolution_true (and (= a_2_party_num_voters 2)

(> a_2_party_num_true_votes 0) (= a_2_party_num_false_votes 0))))→˓

(declare-const a_2_party_resolution_false Bool)

110

SMT2 Proofs for Z3 Formal Verification

(assert (= a_2_party_resolution_false (and (= a_2_party_num_voters 2)
(> a_2_party_num_false_votes 0) (= a_2_party_num_true_votes 0))))→˓

(declare-const a_2_arbiter_0_vote Bool)
(declare-const a_2_arbiter_0_voter Bool)
(assert a_2_arbiter_0_voter)
(declare-const a_2_arbiter_num_true_votes Int)
(assert (= a_2_arbiter_num_true_votes (+ (bool_to_int

a_2_arbiter_0_vote))))→˓

(declare-const a_2_arbiter_num_false_votes Int)
(assert (= a_2_arbiter_num_false_votes (+ (bool_to_int (not

a_2_arbiter_0_vote)))))→˓

(declare-const a_2_arbiter_num_voters Int)
(assert (= a_2_arbiter_num_voters (+ (bool_to_int

a_2_arbiter_0_voter))))→˓

(check-sat)

111

112

Bibliography

1. Malin, B., Karp, D. & Scheuermann, R. H. Technical and Policy Approaches

to Balancing Patient Privacy and Data Sharing in Clinical and Translational

Research. Journal of Investigative Medicine 58, 11–18. issn: 1081-5589 (2010).

2. Bharosa, N., Lee, J. & Janssen, M. Challenges and obstacles in sharing and

coordinating information during multi-agency disaster response: Propositions

from field exercises. Information Systems Frontiers 12, 49–65. issn: 1572-9419

(Mar. 2010).

3. Shibata, N. et al. A Method for Sharing Traffic Jam Information using Inter-

Vehicle Communication in 2006 3rd Annual International Conference on Mobile

and Ubiquitous Systems - Workshops (July 2006), 1–7. doi:10.1109/MOBIQW.

2006.361760.

4. Pierro, M. D. What Is the Blockchain? Computing in Science Engineering 19,

92–95. issn: 1521-9615 (2017).

5. Ammous, S. Blockchain Technology: What is it good for? Available at SSRN

2832751 (2016).

6. Crosby, M., Pattanayak, P., Verma, S., Kalyanaraman, V., et al. Blockchain

technology: Beyond bitcoin. Applied Innovation 2, 71 (2016).

7. O’Dwyer, K. J. & Malone, D. Bitcoin mining and its energy footprint (2014).

8. Nakamoto, S. et al. Bitcoin: A peer-to-peer electronic cash system (2008).

9. Carlozo, L. What is blockchain? Journal of Accountancy 224, 29 (2017).

113

10. Wood, G. et al. Ethereum: A secure decentralised generalised transaction ledger.

Ethereum project yellow paper 151, 1–32 (2014).

11. Solidity. The Contract-Oriented Programming Language version 2a716ad.

Ethereum. https://github.com/ethereum/solidity.

12. Vyper. Pythonic Smart Contract Language for the EVM version d72e998.

Ethereum. https://github.com/ethereum/vyper.

13. Bjorner, N. & Jayaraman, K. Checking cloud contracts in Microsoft Azure in

International Conference on Distributed Computing and Internet Technology

(2015), 21–32.

14. De Moura, L. & Bjorner, N. Z3: An efficient SMT solver in International con-

ference on Tools and Algorithms for the Construction and Analysis of Systems

(2008), 337–340.

15. De Moura, L. M. & Bjorner, N. Proofs and Refutations, and Z3. in LPAR Work-

shops 418 (2008), 123–132.

16. Z3. The Z3 Theorem Prover version 9f1b8db. Microsoft. https://github.com/

Z3Prover/z3.

17. Rosu, G. & Serbanuta, T. F. An overview of the K semantic framework. The

Journal of Logic and Algebraic Programming 79, 397–434 (2010).

18. Hirai, Y. Defining the ethereum virtual machine for interactive theorem provers

in International Conference on Financial Cryptography and Data Security

(2017), 520–535.

19. Mehar, M. I. et al. Understanding a revolutionary and flawed grand experiment

in blockchain: The dao attack. Journal of Cases on Information Technology

(JCIT) 21, 19–32 (2019).

20. Knapp, S. Can LegalZoom Be the Answer to the Justice Gap. Geo. J. Legal

Ethics 26, 821 (2013).

21. Barton, B. H. Some early thoughts on liability standards for online providers of

legal services. Hofstra L. Rev. 44, 541 (2015).

114

22. McGinnis, J. O. & Pearce, R. G. The great disruption: How machine intelligence

will transform the role of lawyers in the delivery of legal services. Fordham L.

Rev. 82, 3041 (2013).

23. Introduction to Ergo version 0.6.2. Accord Project. https : / / docs .

accordproject.org/docs/ergo.html.

24. Template Specification version 0.7. Accord Project. https : / / docs .

accordproject.org/docs/accordproject-specification.

25. Coblenz, M. User-Centered Design of Principled Programming Languages PhD

thesis (University of British Columbia, 2018).

26. Template Studio version 0.10.0. Accord Project. https : / / studio .

accordproject.org/.

27. Flood, M. D. & Goodenough, O. R. Contract as automaton: the computational

representation of financial agreements. Office of Financial Research Working

Paper (2015).

28. Daskalopulu, A. & Sergot, M. The representation of legal contracts. AI & SO-

CIETY 11, 6–17 (1997).

29. Koepsell, D. & Covarrubias, V. G. The rise of big data and genetic privacy.

Ethics, Medicine and Public Health 2, 348–355 (2016).

30. Patel, V. A framework for secure and decentralized sharing of medical imaging

data via blockchain consensus. Health informatics journal, 1460458218769699

(2018).

31. Azaria, A., Ekblaw, A., Vieira, T. & Lippman, A. Medrec: Using blockchain

for medical data access and permission management in 2016 2nd International

Conference on Open and Big Data (OBD) (2016), 25–30.

32. Zyskind, G., Nathan, O. & Pentland, A. Enigma: Decentralized computation

platform with guaranteed privacy. arXiv preprint arXiv:1506.03471 (2015).

115

33. Zyskind, G., Nathan, O., et al. Decentralizing privacy: Using blockchain to pro-

tect personal data in 2015 IEEE Security and Privacy Workshops (2015), 180–

184.

34. Grabus, S. & Greenberg, J. Toward a Metadata Framework for Sharing Sensitive

and Closed Data: An Analysis of Data Sharing Agreement Attributes in Research

Conference on Metadata and Semantics Research (2017), 300–311.

35. Cheng, R. et al. Ekiden: A Platform for Confidentiality-Preserving, Trustworthy,

and Performant Smart Contracts (1804).

36. Nugent, T., Upton, D. & Cimpoesu, M. Improving data transparency in clinical

trials using blockchain smart contracts. F1000Research 5 (2016).

37. Foroglou, G. & Tsilidou, A.-L. Further applications of the blockchain in 12th

Student Conference on Managerial Science and Technology (2015).

38. Hildenbrandt, E. et al. KEVM: A complete formal semantics of the ethereum

virtual machine in 2018 IEEE 31st Computer Security Foundations Symposium

(CSF) (2018), 204–217.

39. Park, D., Zhang, Y., Saxena, M., Daian, P. & Rosu, G. A formal verification

tool for Ethereum VM Bytecode in Proceedings of the 2018 26th ACM Joint

Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (2018), 912–915.

40. Bhargavan, K. et al. Formal verification of smart contracts: Short paper in Pro-

ceedings of the 2016 ACM Workshop on Programming Languages and Analysis

for Security (2016), 91–96.

41. Amani, S., Begel, M., Bortin, M. & Staples, M. Towards verifying ethereum

smart contract bytecode in Isabelle/HOL in Proceedings of the 7th ACM SIG-

PLAN International Conference on Certified Programs and Proofs (2018), 66–

77.

42. Bjorner, N. Taking satisfiability to the next level with Z3 in International Joint

Conference on Automated Reasoning (2012), 1–8.

116

43. Dannen, C. Introducing Ethereum and Solidity (Springer, 2017).

44. Rinkeby: Ethereum Testnet Rinkeby. https://rinkeby.io/.

45. Rinkeby: Authenticated Faucet Rinkeby. https://faucet.rinkeby.io/.

46. Hu, Y.-C., Lee, T.-T., Chatzopoulos, D. & Hui, P. Hierarchical interactions be-

tween ethereum smart contracts across testnets in Proceedings of the 1st Work-

shop on Cryptocurrencies and Blockchains for Distributed Systems (2018), 7–

12.

47. Metamask. Brings Ethereum to your browser version 6.3.0. Metamask. https:

//metamask.io/.

48. Remix. Solidity IDE Ethereum. http://remix.ethereum.org/.

117

