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For fome time it has been realized that the analytical approach to
solutions of many engineering nroblems necessarily limits the problems
considerably in scope, and in some cmseq vrejudices the practical sig-
nificance of the conclusions drawn frpm the idealized analytical solu-
tions. One of the earliest issues 1n\s011 mechanics to be examined
nathematically was that of the settle\ent of clay soils under loazd, and

since the solution to a simplified proulem of this nature was obtained,
little further practical advance has been made.

Yith the increasing interest of the engineer in approximete methods
of analysis, these methods and their apvlication to the consolidation
of clay have been examined in this investigation. The methods of “iteration"
have been developed and applied to 2 number of common problems of consoli-
dation, some of which have not been critically examined previously because
of their complexity, and approaches heve been indicated to more advanced
sitnations. Some examples have been investigated with a view to clerifying
the text, but no exhaustive evaluestion of the many problems outstanding
has been attempted. One-, two-, and three-dimensional consolidation with
the addition of radial drainage has been discussed, including various
aspects of the lack of isotropy, and the presence of soils possessing
differing properties.

Tt was concluded that in spite of the labor involved, dependable
solulions to many practical problems could be obtained by these methods
of successive approximeation.
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NUMERICAL ANALYS1S OF CONSOLIDATION PROBLEMS .

INTRODUCTION.

The governing eauation of one of the fundamental preoblems in
soil mechanics, that for the variation of hydrostatic excess préssure
with time, in the pore water of a saturated clay stratum under vertical

*®
load, was first formulated by K. von Terzaghi in 1925 (32), after
certain simplifying assumptions had been made. The solution of this
equation, which is a2 diffusion equation common to fluid, heat, and
electricsl flow problems, was obtained by the rigorous analytical
method of mathemstics. Apart from the soil properties, the assumptions
involved one-dimensional pore water movement, drainage at the top and
bottom surfaces of the clay layer, and instantaneous application of the
load, which is also assumed to be initially distributed throughout the
pore water alone, the pressure in the pore water due to the suverimmosed
lond being termed the hydrostatic excess pressure.

The assumptions appear very much idealised, but it has been found
that in meny cases in actual practice the time-settlement curve of the
soil may be roughly predicted by the avprooriate use of curves obtained
from the analytical solution (31).

Tor cases other than those involving one-dimensional pore water
flow, a few analytical solufions have been obtained, after tihe exercise
of considerable mathematical dexterity and a great deal of computational

labor. These solutions are limited to two=-dimensional consolidation,

Numbers in parentheses refer to the Bibliography, Appendix I



of which Me A. Biot (4) and R. A. Barron (2) give examples. By an ex-
tencsion of the simple one~dimensional case solution, A. B. Newman (20)
originally, and, later N. Carrillo (6) show the possibility of obtaining
results for more complex two and three-dimensional problems. The com=-
plexity of Barron's solutions for cases of variable soil properties well
illustrates the dissdvantages of an analytical approach.

K. von Terzaghi (33) mentions that the consolidation curve for
loading other than instantaneous can be drawn by the methods of super-
position, but this cannot be applied to situations where release of
load, or excavation, occurs, unless very approximate assumptions re-
garding the soil properties are made.

However, the very nature of compressible soil, with its inherent
heterogeneity, tends to discourage the widespread developmert and appli-
cation of rigorous analytical solutions. This was recognised by K. von
Terzaghi (33) in suggestirg the application of "Methods of Succesctive
Approximation" (Southwell (29)) to problems in Soil Mechanics. Until
1949, however, when S. T. Yang completed a thesis (34) at Harvard
University, little or no work was done along these lines, to the author's
knowledge. Yang's study was solely related to seepage problems, and the
solution of consolidation problems by approximate methods was first
carried out by X. V. Helenelund (15) in 1951. Cince then one other
paper on cousolidation problems has appeared in the Journal{of the
Institution of Civil Engineers in Greast Britain, written by Gibson and
Lumb in March 1953. (12)

These last two papers did not become known to the writer until
the majority of his work on the numerical analysis of consolidation

problems had been completed.



The following sections present the development and use of the
equat.ions and methods used in numerical analysis. It is demonstrated
how the basic procedures can be extended to consider variable soil
properties and stratification in one-and two-dimensional consolidation
problems, together with the treatment of a variety of loading situations.
With more labor than the simpler cases, the sclution of three-dimensional
consolidation problems can also be accomplished. A special case of
two-~dimensional consolidation, that of radially symmetrical pore water

flow, will also be considered.



PART I

ONE-DIMENS IONAL, CONSOLIDATICN

(8) Derivation of Eguations

The general equation (32) of three-dimensional consolidation

of a clay stratum is

du e c 31'0.. 21
— = — it Cp == -
23 - Grzat CsTa Y rae -1

It will be convenient in this part to treat only the case of one-
dimensional consolidation as certain important aspects of the expressions
and equations derived can be observed more clearly in the simpler form.

Thus the equation

will be considered.

This equation represents the conditions of one-dimensional flow
of pore water in a saturated clay soil under stress, and as such the
equation may be considered to hold over a certain "region", or "domain",
of the stratum being considered. A solution of this equation implies a
knowledge of the hydrostatic excess pore-water pressure, u, at any point
in the clay layer at an instant of time. The expression involves par-
tial derivatives, and thus defines the movement of water in infinitesi-
mally small elements of the soil-water medium. If, now, elements other
than infinitesimal are considered, %then the equation will no longer
hold exactly, but any solution obtained may be good enough for soil
engineering purposes in view of the nature of the assumptions involved
in the derivation of the governing equation. This will be done in the
following sections and such a2 solution will be termed a "numerical"

solution, as distinct from an "analytical" solution.

* list of symbols will be found in Appendix II.



A smell section of the region being considered is shown in
Fig. I-1 and the meaning of the diff{crentlal ecurtion is investigated.

S e
+- H R e e
1 | l 1" Lo uo
-~ l 04
- t - j: :
B e R __L,. A:L4- Uq
(@) ' (b)

Fie.1-1

Fig. 1(a) demonstrates a homogeneous isotrooic clay stratum subjected

to a uniform surface load, and drszined at top and bottom surfaces. The
stratum is divided up into 2 number of horizontal layers of tnickness A-=.
At various points in the stratum the hydrostatic excess pore water pressure
will be investigated and to this end Fig. 1(b) is given illustrating a

section including any three such points from Fig. 1(a). Thus the domain

or region is covered with a "mesh" or "grid" of points.

118
Then the hydrostatic excess pore pressure gradient (5;_02
. - . up = U
at point 02, may be represented approximately by —éji——~—
z

Sirilariy

Q_ ~ Ue —Ug
(bl o4 oz



It followe that

e (?_%)o;— (%%)o

i

Uy — 2Ug + Uy
Dzt

I--3.

I

When eguation I-? is considered it ig seen that time is involved.
Then it will be necessary to associste an hydrostatic excess pore-water
pressure with a time, as well as a space co-ordinate, and to this end the
notetion is used that uy t indicates the hydrostatic excess pore-water
prescure at ooint n and at time t .

Then equation I-2 may be rewritten

>*a Uzt ~ 2ihog + U4t
S2t)ose Bz -3
Also %‘& may be written in finite difference (14) form as
i ~ Uok+dEt —hok
2t Y I -4,
Combining I~3 2nd I-4 as indicated in eaquation I-2
Ugtsde — Uoi ~ c, Yar —2WUor + Uar
Ak z Dzt
or
cz At
Uogrsae = -Z‘—zf[uz't -Zu.,;«t- U»4'g~_] + Uge
- 5.

Thus the hydrostatic excess pore water pressure at any point at a

time t + At , can be obtained from the pressures existing at the point



and its two neighbouring points, at time +t . Thus a numerical method is
given for tracing the distribution of hydrostatic excess pressure in the
pore-water, with time.

It is desirable for purvoses of comparison with analytical solutions
to introduce dimensionless parameters into equation I-5, and it will De
convenient to consider these parameicrs in Part I«b)following, together with
séme aspects of the eguation.

(b) Stability Considerations

- <t
T H
whence At = HZAT I -6
[
and if Z = sH
then AZ SASH I - 7

Now consider the factor

c At _
Azt A

Substitute from I-f and I-7 to get

, say, in equation I-5

A= &T

As? in terms of dimensionless
parameters. Then also the originsl partial differential equation I-2 can

bte written

U = 3w
k34 D5 1 -8

Bouatioh I-3 is 2 partial differential equation of parabolic form,
and as such, is common to problems in many fields in which diffusion occurs,
such as heat transfer and electrical problems. For the derivation and dis~

cussion of equation I-5, s study of References (9), (10), (14), (24) will be

found usefule.



It will be observed that the factor A is dimensionless, and, in
order to make use of equation I~5, some value must be assigned to A.
There are limitations to the values which may be assigned, and these
limitations are not obvious. If a value of 1/2 or greater is given to
A, the comnuted values of excess hydrostatic pressure will be found to
oscillate =- converging in the case of A = 1/2, diverging in the case of
A>1/2. A full mathematical discussion of the oscillation, convergence,
and divergence is given in Refs. (17) (?1). Dusinberre (9) also gives
examnles.

Fowever, values of A = 1/4 or A = 1/3 are immediately seen to be
useful, and give results in good agreement with analytical solutions.
Tusinberre (9) and Gibson and Lumb (1?) demonstrate the variance of the
numerical solution from the analytical one for various examnles in which
analytical solutions have been obtained.

(c) Effect of A Value on Computational Labor

Substituting A = 1/4 and 1/3 respectively, the stable expressions

Woc+ae = ;‘I[.uz,t t2Uoc + Lha,l:] 1-9

and N
Uoke+DE = 3[}4:,& + Uoe + ua.h] I - 10

are given. Eguation I-9 may be used for a graphical solution of the
hydrostatic excess pore-water pressures, and I~10 is more convenient for
hand calculation.

When a value for A is chosen in a particular case, then the
relationshin of AT to As is defined and the time interval between
two successive calculations is decided by the coarseness or fineness of
the mesh adopted to cover the region. To achieve a solution up to a

particular, wanted, time factor ™, regquires the iteration of equation I-5



for each mesh point a number of times, the number being given hy 7%5_ .
It is obvious, then, that the lebor required to achieve a desired solu~
tion depends both on the value chosen for the factor A, and on the size
of mesh adopted. That is, if A is talren equal to 1/& then more steps
are required for a solution up to a given time factor than for an A = 1/3,
when the mesh size in each case is the szme. Cenerally, it has been
found that values of As = 1/3 to 1/5 are adequate for a degree of
accuracy good enoug:h for practical purnoses, although the initial points
may vary considerably from an exact solution. Numerical solutions
plotted acainst analytical solutions are given by Gibson and Lumt (12),
Dusinberre (9), etc. for the values of A and As mentioned. As an
examnle, if both A and Ae are taken equal to 1/4 then

AT = 1/4(1/8)7 - 1-5(a)

[}

1/64 = 0.0156

An example of a calculation based on the above figures may be given here
for clarity. A homogeneous, isotropic clay layer of thickness Z2H 1s taken,
with free drainage at top and bottom surfaces. Initially the pore-water

is subjected to a hydrostatic excess pressure of 100 units everywhere in
the clay, by 2 superimposed, external load. One-dimensional drainage

and consolidation ensures, and the reduction in excess hydrostatic vore-
water oressure can be traced by means of eauation I-9 as applied to the

examnle in Fig. I-2,
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T 0 Q.0156 0.0313 0.0469
N/ Y ) O — = WA/~ Top of
C LAY
100 75 63 55 — —-
100 100 94 88 — —-
100 100 100 99 — —-
¢ — |00 100 100 00 —-- —¢
I00 100 100 100 — - -

VALUES OF U

Fic. [-2

The pore-water pressure becomes zero at the drainage surface
instantaneously, creating the initial gradient which begins the process.

(d) Observestions on Example

Several important points can be observed from the simple example
of Figure I«?.

(1) Since U =1~ u/u; it followes that U, the degree of con~

. . s oo \ . AU >t
solidation also satisfies the equation == =Cgz I - 11
20 22
and that, therefore, values of U could have been used at the mesh points
initially, giving a calculation in terms of the degree of consolidation
at any mesh point.

(2) The solutions are of a type to which is given the name
"marching" solutions, as opposed to Yjury" solutions (1) in which all the
boundary conditions are prescribed (the ultimate time boundary is not
defined in consolidation problems) and the methods of "Relaxation" (29)
are used. The Laplacian ecguation

Py L 2u 4 Bu 2

oyt Bz I-12
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which represents a "steady state" condition such as occurs in seepage
problems may be solved in particular cases by relaration technigues, such
as have been demonstrated by Shaw (30) and Yang (34).

In a marching solution it is necessary to keep developing the
solution until the desired time is obtained; that is, the boundary at the
right of Fig. I-2 is an open one. Allen and Severn (1) demonstrated the
possibility of converting a marching problem into a jury one, but the
procedure involves the solution of a more complex eauation giving rise
to more complicated relaxation expressions and doubt has been expressed
concerning the advantage of such procedures. They may also involve
larger errors in the solution.

(3) If the average degree of consolidation T, is required at
any time, or if the curve of average degree of counsolidation versus time
is reanired, the hydrostatic excess wvore water pressure must be inte=-
grated over the depth of the layer. The average consolidation

(T

— J uaz

=1- [ I -13
fou;dl

In practice this will be accomplished by plotting the curve of
hydrostatic excess pore-water pressure versus depth, for the time con-
cerned, and finding the area under the curve by means of a planimeter.

(4) A case in which the loading is not accomplished instan-
taneously, can be considered merely by adding thg desired load to the
hydrostatic excess pore water pressure at the appropriate time, since the
consolidation due to any one increment proceeds independently of the con-
solidation existing previously. Such a requirement cen be fulfilled in
two ways which can best be observed by means of examples shown in Fig. I-3.
For both cases, & load increasing uniformly with time will be assumed.

In practice this is approximated by a series of step~lozd increments.
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LoabiInGg CURYVE

Loao
TIME -
T o Q0156 0.0313 0.0469
Y//\Y (o} (@] Q Q
100 75 +100 1383 +100 1H93+100
100 00 +/00 ———{194 +100 ——282 + 100 M
100 (00 +100 200 +100 299 +10Q ——— '
¢ 100 100 +100 200 +100 —— 300 + 100 ———
(e o] 10Q +10Q ———1200 + 100 300 +§00
VALUES OF W«
T o Q Q (@
(00 75+/00 ————63+75+100 —S55+63+75+/00
100 100+(00 — 194 +100+/00 —{ B8 + 94+ 100 +(00

(i)

00 ————

100 +100 ——

{00 +100+100

99 + (00 +100 +/00

¢—— |ioo 100 +100 ———00 +/00+(004]00 + 100 +100 + (00
100 {100 +100 ——{/100 + {00 +IQ0H{IOQ + 100 + (00 +I(QQ
Fic.1-3

Fig. I-3(i) Here it is seen that, after each iteration, 100 units
is added to each u value as the load curve indicates and the computation
proceeds using the new value.

Pig. I=3(ii) 1In this example, the usefulness of superposition
is demonstrated, in that only the values obtained from the simple
instantaneous loading case are utilised, and these values at each point

are merely added to the preceding value. Thus, for any case of
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a complicated loading-time curve, it is only necessary to have the
values from the instantaneous case at hand. It is, of course, necessary
at any particular time, to divide the value of hydrostatic excess
pressure by the total load carried by the layer up to that time, in
order to find the amount of pore-water pressure dissipation.
(e) Graphical Solutions
In the study of unsteady-state diffusion and heat flow problems
Schmidt (25) showed how solutions could be obtained graphically. This
work was developed and extended later by Nessi and Nissole (19) and treat-
ments of graphical methods can be found in Dusinberre (9) and Sherwood
and Reed (26). They will Dbe demonstrated here for completeness, and
although Dusinberre points out the disadvantages of graphical methods in
the hezt problem, it is possible that the immediate results in the form
of curves would prove of some value in a situation in soil mechanics where
the curves must be integrated, in generzal, for the complete solution.
A graphical solution may be carried out where A is chosen egual
to 1/2 or 1/4. 1In the case of A = 1/2, a simple averaging procedure only
is required; when A = 1/4 more complex drafting work is concerned, but
better results, as mentioned previously, are obtained. Fig. I-4 (i) and
(ii) shows the two procedures in practice, for the simple case, taken
previously, of instantaneous loading.
The procedure for conmstructing Fig. I-4(ii) together with the

proof will be found on the figure.
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AT = £(&) =0.0313

Key: Points with same numbers exist at same times.

Fie. I-4(i)
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0 U (00
{00 u o
T7AN
! 2 3 4
o . SN
2
o
ry
3
Ol 21%7
e
¢ o2,
OJ2 Y
3

EQUAT\ON'. Uot+At = -};[_uz.t + 2uoe + U-l},t]
AT = 5(F)" = 0.0156

Key: Points @ith same numbers exist ab same Fimes.

Construction: Join moints u and u with a straight line, which
2, % bt

intersects the intervening layer on which uo‘tlies to give

up g Uy g
an average value, —“——2"—"1“ . The point bisecting the

distance between this average value and the value of uy 4

is the new, required point ug,t + At.

dYat

! Uot+AL Uat

Uot

PROOF: Uor+ar = Wok + Al

* (F8
= uo‘t + .\9_[ 4.t +u’2,t — u'ct]

= i‘[uZ,t + Z.Ll.o,(-, + &4,1:] D Eciu.o.tton 1-9

Fie. I- 44
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(f) Variations In Homogeneity

In the analytical solution of the diffusion eguation, one of the
most questionable assumptions, when the sclution is correlated with results
experienced in practice, is that concerning the homogeneity of the soil.

It becomes possible, when numerical methods of solution are used,
to consider the soil variation and so-czlled soil "constants" bylcomputations
adhering more closely to the results observed in either field or laboratory
tests on the soile It will be found that solutions can be obtained in
this manner with very little more labor than is required for the homo-
geneous case. Two cases of variation in homogeneity will be considered.

(1) Stratification considered

If stratification is encountered in a compressible soil, it will
gererally be found possible to represent the boundary between two types
of soil by & horizontal line. Thus, when one-dimensional consolidation
is considered, the pore-water flow will be normal to the line of strati-
fication. The difference in behavior of the soils is represented by
differing values of Cye Each layer, as before, may be covered by a mesh
of voints, but certain conditions have to be satisfied, before calculations
can be made. It will be found desirable to hazve the dimensionless factors,
A, of the same value in the two adjacent layers, as this renders the
individual calculations identical, and, in order to plot satisfactory
curves, the time interval, AT, between any two operations should be

tne same in both soils.

Thus C;.At;.. - Sz At I - 14
&z, Azt
- Az, 2z

and ° . AZz = Cz, I - 15



17

So that the size of the mesh in each case varies as the square root of
the coefficient of consolidation. It would also be possible to transform
the thickmess of one of the layers by the ratio of the sguare roots of
the coefficients of consnlidation, and in this case, the mesh intervals
would be the same in both layers. The results could then be retransformed
to the original dimensions before plctting. |

In this way it is possible to demonstrate the effect of remolding
at the surface layer of a laboratory consolidation test sample. Helenelund (15)
shows the effect on the consolidation of samples, of having layers of
differing coefficients of consolidation in the sample. 1% is necessary,
if the isochrones are to be drawn, to include the effect of refraction of
the isochrone at the interface between two layers, because of the differing
permeabilities of the two adjacent materials. For any one isochrone,
the slope of the isochrone at a point represents the hydraulic gradient
a2t that point. Then} at any interface, the velocity of flow entering
the interface must equal the velocity of flow leaving. Conseauently, for
two materials having permesbilities given by kj and kp, the condition to

‘

be satisfied at the interface is that
V.=V
or R = Ralz I - 16.
where 11, i, are the hydraulic gradients existing in each material at the
interface. If the isochrone meets the interface at angles o, and &,
to the normal to the interface respectively, then the condition I-16 becomes
kR Fand, = Ry Fand, I-17.
This eguation is sstisfied by a simnle construction demonstrated by

FBelenelund (15), in Fig. 14 of his book which is given here for reference.
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Point A represents the hydrostatic excess pressure existing at
time t in zone l. at a distance of A zq from the interface. Similarly
point € is the pressure in zone 2. at a distance of Azz from the interface.
Draw AB perpendicular to the interface, meeting it in B. Draw line H-H
(the "help-line") parallel to interface and at a distance of :_; o Azl
from it in zone 1 to intersect AB in D. Join CD, intersecting_ the interface

in E. Join AE.

Bu ‘_
3 = [= ok
Then the gradient of AE 22 J2ome | = tawniol)
and the gradient of CE = (__...3“ = Fand
& : 2z fZone T andz

. Fand: R
* Fandq R,

Fie. 14 Rer. (I5)
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(2) vVariation of Cy with Intergranular pressure

Conventionally, when the results of a laboratory consolidation
test are shown, a plot of coefficient of consolidation versus intergranular

pressure or log (intergranuler pressure) is also given (Fig. I-5). Then,

Fie.I-5

cz\_/

i) (log scale)

.

if the virgin, straight line, portion of the curve is considered, it will
‘be seen that the coefficient of consolidation varies in some fashion with
intergranular pressure. As a first approximetion it could be assumed
that the coefficient of consolidation varied linearly with pressure over
this part of the curve, or, if an actual case were to be considered, some
average set of values could be taken from typical consclidation curves of
the so0il being encountered.
* In order to apply this information, it is necessary to consider

the iteration process once more.

It has been observed that the intergranular pressure (or the hydro-
static excess pore-water pressure) at a point after a small time increment
bears a relation to the pressure at that point and the two points surrounding

it, at the previous time. The relation depends on the value chosen for

the factor A which contains the coefficient of consolidation. Hitherto,
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once chosen, the factor A has been constant all through an iteration.
Suppose now, that the coefficient of consolidation varies, depending on
'the intergranular pressure gxisting at the point, and that this variation
could be expressed in some function of the intergranular pressure. Then,
once the initial value of A had been selected, there wéuld be a predictable
variation in A, the value for any stage of the iteration calculation
depending in some known way on the value of intergranular pressure existing
at the point a2t the previous instant of time.

For‘?xample, assume that the coef%icient of consolidation varies

linearly with intergranular pressure or a natural scale, Fig. I-6.

Then with soil being considered initially at the intergranular pressure 51.
when a load giving a pressure of 52 at the surface, and, therefore,
throughout the pore water, is applied, the soil begins to consolidate,

so that the degree of gonsolidation may be considered to be O% at points
where an intergranular pressure of pj, exists end 100% where a pressure of
Po exists. Thus, the revised diagram, Fig. I-7, can be drawn to represent

the case being considered,
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Cz 2
Cz

cz,

File. I-7

in which ¢, varies linearly with U.
Then the initiel conditions are:
U=0,¢2= ¢z,
and finally U =100,¢2= ¢z,
The eoquation giving the coefficient of consolidation, cy, at

any degree of consolidation, U, will be

Can Cz,+ (Czp-Co) S
z Zy ( Z2 'L\\oo I - 18.

The iteration expression I-5 can now be rewritien

Use+ae = 9‘2—2‘% [Upe - 2Uq + Use] +Us, I -19.
where U is the degree of consolidation existing at a point due to the
dissipation of hydrostatic excess pore-~water pressure resulting from the
initial applied load.

In I-19 ¢, is no longer a constant, but is given by expression
I~18. This will obviously result in an extremely tedious computation,
wherein ¢, veries with each time increment and also spatially in the
mesh. However, such computations can be greatly facilitated by the con-
struction of 2 set of curves for each particular example considered, in
which curves of Uy, t 4+ At are plotted against an ordinate of (Uz,t+Ub,t)

and an abscissa of Uo,t using an eguation similar to I-19 which will
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depend on the initial value assumed for A. For the assumptions indicated,
appropriate calculations together with sets of curves are given in

Appendix III, Chart I, and a plot of the results obtained by using the
curves in an iteration process is given in Chart IV. These results were
integrated, as indicated by eouation I-13, to give the average copsolidation
curve in Chart V compared with an analytical solution éssuming c, constant,
and the numerical solution, assuming c, constant, with the same initial
value of A.

Chart II in Appendix III gives curves used in obtaining the
numerical solutions of the comsolidation process, when c, ie considered
constant.

Some interesting details about the curves are more fully discussed
in Appendix III.

(3) _Coefficient of Swelling

Previously (4) very few cases have been examined, in which
gradual increase of hydrostatic excess pore water pressure, or swelling
of the soil, has taken place. The problems which have been treated,
have yrimarily been subject to the assumption that the coefficient of
swelling of the soil equals the coefficient of consolidation. This is
seldom, if ever, true, and Terzaghi (33) mentions that to assume the
coefficient of swell egual to infinity would be 2 more valid representation
of actual conditions.

However, in the case of a particular soil, it is possible, in
laboratory tests, to evaluste, by 2 method similar to that used to deter-
mine the coefficient of consolidation, a coefficient of swellinge. The
values obtained are neither egual to the coefficient of consoiidation,

nor infinity. If swelling in a particular case is to be expected, it
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should be possible to run tests to find the coefficient of swelling, which
could be related to the coefficienp of consolidation by simple ratios.
Use of numerical analysis could then give some guide to the behavior of
the soil. |

The same iteration expression used previously, equation I-5,
will hold when swelling is taking place. If no consolidation at all is
to be encountered, but only swelling, then a procedure identical to
that outlined previously may be utilised. |

In cases where load is applied to the soil, and then some portion
of it is released, or where some load is first released, and then additional
stress applied, as occurs frequently in construction work, more care
must be taken. For, here, two iteration expressions are involved, one
including a term for the coefficient éf consolidation, the other, a term
for the coefficient of swelling.

If ¢y denotes coefficient of swelling, then

= Sadt
A &zt

It is desirable to have the intervals Az and Bt eoual, con-
sequently two values of A must be used. If cgz is larger than cg, as
will generally be the case, a value of A must be chosen so that As does
not exceed 1/2, as indicated in Part I-(b). In general, in cases of com-
bined consolidation and swelling, some layers of the soil will be consoli-

dating, while other, at the same time value, are expanding. Thus, two

different equations will be in operation on the same group of mesh points
(points at the same time) and each point must be examined in the light of
its previous behavior, and the loading curve, in order %o determine which

equation must be utilised.
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Such a procedure is best illustrated by an example, given in
Fig. I-8. Similar considerations will prevail when swelling is encountered
in cases of tiwo-dimensional consolidation.

() Initial Times, and More Exact Solutions

Some consideration must be given to the way in which a numerical
solution is initiated. For instance, the initial conditions, i.e., when
T = 0, in the example given in Part I(c) are hydrostatic excess pore
water pressures of 0, 100, 100, 100, eﬁc., at mesh points beginning at
the surface of the compressing layer, and the example proceeds from there
to pressures at AT, ZAT, and so on. It has been demonstrated, however,
by Crandall (8) that the closeness of the numerical solution tc the
analytical one is affected by the method in which the iteration is begun.
It has been found in the case shown that initial, T = O conditions of
50, 100, 100, 100--give a more exact solution. In this case, one iter
ation is carried out giving the distribution 2t T = AT and the boundary
value is reduced at this stage to 0, whereupon the cycles of iteration
are carried out as before. However, the method of initiating the problem
depends upon the nature and initial conditions of each problem, and
some work still needs to be done in this line.

The accuracy of z solution (that is, the closenessz to which the
numerical solution approximates the analytical one) is also very sensitive
to the value chosen for A. The value giving the best solution in a
particuler case within a range of different mesh spacings is termed the
"optimum" value. Crandall (8) shows that the solution obtained using
the "optimum" value of A for one particular problem demonstrates smaller
errors than solutions obtained from smaller A's and finer nets. Again

this varies from problem to problem and no definite guide can be given.
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More exact solutions can be obtained by numerical analysis, with
the application of less labor, if a method of extrapolation is used.
It will be seen, in the derivation of equation I-5 from Taylor's Series
in Appendix IV that an error depending on (Ax)2 is inherent in the
iteration expression. It was demonstrated by Richardson (22) that a so-
called "h?-(or Ax?) —extrapolation" could be made from two solutions to
a given problem using two different mesh sizes to give a result having
a smaller error than either solution individually. In this method, two
different mesh sizes are chosen, and the solutions obtained in the desired
time range. Then for the same point at the same value of time factor,
two values of hydrostatic excess pore water pressure are given from the
two solutions. It is known that both of these values are in error by
an amount depending on the square of the mesh size chosen.

Then, when uy is the solution obtained at a point using mesh size
Axl, u, fromAx,, and Ey and E; are the errors in each solution, res-
pectively,

E, = R(ax)? E, = R(A%Y I - 20.

where k is a proportionality constant

Then a more exact solution for the hydrostatic excess pressure
at the point is

U=t + kAR =0+ R(Ax2) I-21.

Eliminating u from I~21, and considering I-20 gives a solution for k
whence M-,

l_(Alz A
Ox,

U= u+

I - ?20
It must be borne in mind however, that this solution may be applied
to some problems only, and that in certain other cases a two-point extra-

polation is of little value, or may even lead to 2 solution with a greater
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error than obtained from either of the first two solutions. Salvadori (23)

has studied this aspect and gives examples.
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PART 1I

TWO-DIMEUSIONAL CONSOLIDATION

The case of two-dimensional consolidation is ome which occurs
freguently in practice, in the consolidation of hydraulically placed cores
for earth dams, and the settlement of long dams, dikes, levees and embank-
ments founded on compressible soils. Two~dimensional problems cannot be
treated readily by analybtical methods and it follows, then, that a study

of the solution of various cases by numerical methods will be found

valuable.

(a) Derivation of equations.

The genersl eguation of two-dimensional consolidation is

du _ ¢, 2u 'u -
>t = 3 +Cz3= 3 II - 1.
and a solution of this in terms of finite differences may be made available

by the methods and results of Part I.
The situation now being considered is shown in Fig. II-1(a) and

a small element of finite dimensions is demonstrated with the appropriate

notation in Fig. II-1(b).

__‘\ i v 2_

| | t
= .l i1 —1 o2 Az
- : 2 0 U : .1 3 o3 o o |
L_ Tl jal - o

| L 1 o4 Az
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T le—Ax—efe—h%—+|

(a) (b)
- Fic I-1 ’
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With the same assumptions as in Part I, it 1s noted that, in

equation I-3

2'u _ Up-2uo+ua
(37.IL ° NG I~ 3.

By similar rezssoning

(aiu,) ~ W -—-Z2UotUy
° Ax*
is obtained.
Combining these two equations as indicated by equation II-1, an expression

is found in finite differences for the hydrostatic excess pore pressure at

noint o

Uo+at —Uol _ Cx - u €z fu,e —2Uok +ak
At K;z[-u“t Zuo,t+ 5x]+ Az‘&[ 2.‘ ° ‘]

IT - 2.
Making the assumption that the soil is homogeneous and unstratifieqd,

cx = ¢, » 2nd for convenience Ax cen be taken egual to Az.

Then
Cz At -
Wor+ae = 22.1' [u.‘,; +Uzt+Uat+ Uatk 4&@.&} +Uok II - 3.
As in the cese of one-dimensional consolidation, the use of this equation
c, At

is dependent upon the choice made for the value of “AZ Obviously, in
this case, some multinle of 1/4 will give solutions most readily. If 1/b

iteelf is chosen, the equation reduces to the simple expression
Uor+de = J;[_u\,c +tUze +Use +U.q,t:] A 11 - 4.

that is, the hydrostatic excess pore pressure at 2 point at a time (t + At)
is equal to the mean of the values at the four surrounding points at time t.

In most cases of two-dimensional consolidation, the initial values
of hydrostatic excess pore water pressure are not easily defined, or of

simple geometric distribution as in the one-dimensional situation, but must
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be calculated from one of the stress distribution theories; for example, see
Skempton (28). Then it is a natural conseguence that the accuracy or validity
of the numerical solution is dependent on the assumptions involved in the
stress transmission theory utilized. Because of the complexity of the initial
distribution of hydrostatic excess water pressure it will generally be

found necessary to solve the problem over the entire net, i.e., the cénter-
iine of the compressible soil layer is no longe» an axis of symmetry, although
there may exist an axis of symmetry in the actual case studied. One such

axis of symmetry is demonstrated in Fig. II-1(2) in the case of an earth
embankment with equal angles of slope on each side,

As time, t, enters into the solution of these problems, a three-
dimensional situation actually exists in two-dimensional spatial solutionms,
and it will probably be found most convenient to write the successive values
of hydrostatic pcre water pressure at a point as found by iteration, one
below the cther, in a column, each value being obtained for a particular time.

The boundary conditions are not as fully prescribed in certain
types of two-dimensional consolidation as in one-dimensional problems. It
will be noticed that in Fig. ‘I-1(2) the boundaries to left and right in
the compressible layer are not sharply defined. The termination of the
calculations in these directions will be a consideration which depends on
the nature of the problem, the precision required, and the judgment of the
computer. However, it will generally be a fairly simple matter to choose
She number of significant figures desired, and toc terminate the calculations
~vaere values of less than half the last significant figure are encountered.

In certain cases, care must be taken, as the values will tend to spread
outwards. This will occur where one of the boundary layers is impervious,

so that free drainage through its surface is prevented. Thus the dissipation
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of hydrostulic excess pressure in the high pressure regions can only be
accomplished by the raising of pressure in the low pressure regions by flow
of the pore weter. This will result in swelling in those regions into which
the water is flowing. If the coefficient of swelling is assumed equalhto
the coefficient of consolidation, no extra labor is involved in the calcu-
lations, but where a different value is assumed, or obtained from tests,

the computations will be altered in regions where swelling is taking place
as demonstrated in Part I-(£f.) (3).

In the case of two-diimensional consolidation it is no longer
advisable to work with degrees of consolidation rather than with values of
hydrostatic excess pore water pressure, as the initial pressure at every
point will generally be different, and the degree of consolidation at a point
depends on the stress at the pointe. Consequently, although the ultimate
stage will be reached where consolidation is 100% completed everywhere, and
equilibrium has been reached under the applied load, the increase in inter-
granular stress at a point will be that due to the stress transmitted from
the applied load, and strength increases must be calculated on this basise

(b) Variations in Homogeneitv of the Soil

As in the one-dimensional case, in a general solution, variations
in the soil constants will have to be considered for two-dimensional con=
solidation problems. The derivations regerding variation of coefficient of
consolidation will be discussed for the three cases usually encountered;
horizontal cy differing from vertical cg, stratification of the soil, and
variation of coefficient of consolidation with effective or intergranular

pPressure.
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1. cy differing from cg

It is a common occurrence to find that the horizontal and vertical
properties of the soil under consideration are not equal, and this situation
can be dealt with by considering equation II-2 once more. It is given
again here for clarity

Cx At
Uot +Ae —Uoe = "A [Un: Zuoe + U,y r] + CIAC[Uzt 2Uor + U4 t]

II - 2.

In this equation, for the homogeneous, isotropic case, cx was taken equal
to ¢y, and Ax equal to Az. Yow cx has a value differing from that
of cge It is desirasble, as before, to retain the value of At constant
in 21l iterations, and to have the value of A fixed. Consegquently, to

satisfy these conditions

CxAE _ E-Ab
Axt nzt
Ax  _, /Cx
or Az s | II - 5.

That is, the domain under consideration is divided up into convenient
values of Az and equation II-5 is then used to evaluate the length of

the intervals in the x-direction. When a value is chosen for A, say 1/k,
the iteration procedure may be carried out as vefore, using for A = 1/4,
equation II-l4 to calculate the hydrostatic excess pore water pressure. Thus
it will be seen that the presence of aeolotropic soil adds little to the
labor of the calculations.

2. Stratification

The presence of stratification in the soil presents a more difficult
problem in two- than in one-dimensional cases. First of 211, it is assumed

that the soil layers which exist in the problem are homogeneous and isotrovic
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and possess differing soil properties and that a horizontal boundary may

be drawn between any two layers.

The situation under considerstion is represented in Fig. II-2.

a layer (1)
b 2 CZI . h»l
e 3 lo U — -boundary interface.
d 4 loyer ()
< <z, B kl

Fie. I-2

It will be observed that no difficulty is encountered in the calculation
of values of hydrostatic excess pore water pressure at successive times
at points a and b; the iteration expression used is simply II-3, with a
value of A, assumed. A'similar procedure is carried out for points ¢ and
d with, in each case, the new value of hydrostatic excess pore water
pressure depending solely on the four surrounding points. The value
assumed for A, will depend on the value chosen for Ay as it is obvious
that the time increments, At, and the value given to the mesh spacings
Az, must be maintained equal in the two layers. That is, once Az and
A1 are decided upon, At is fixed, and the value of A, depends upon

At, Az, and the relative values of Czq and czz.

Cz,At
A= 7.Az.z

Cz Ot
Azt

P
™~
1]

= DCL.AC
Azt

DA, IT - 6.

{l



3

Thus a value must be chosen for A such that Ay does not become unstable

if D 1. It will be seen that, in gensral, a value of Az which gives

a whole number of vertical mesh spacings in layer (1) will not give a

whole number of spacings in layer (2). This gives rise to a situation

at the base of stratum (2) such as is shown in the case shown in Fig.II-3(a)
which is a particular example of the general case of Fig. I1I-3(b), in which
the distances of the 4 mesh points from the central point are all different.
An iteration expression can be derived for this situation and this deriv-

ation is given in Appendix IV.

—t— T —" [Z
3

| o3
i L4

. (@) (0)

Fie. I-3

However, referring to Fig. II-2 once more, it will be seen that

some difficulty will arise over the calculation of values arising at
points of the mesh such as e on the boundary between the two layers. The
value of hydrostatic excess pressure at such z point at any time will
depend, as before, on the values of the four surrounding points at the
previous time. But one of these points iies in another medium, and this
requires some variation of the existing procedure.

In 2 discussion by F. S. Shaw in R. V. Southwellls book (30)
the czse of stratification is considered for the steady state seepage
problem, and the methods used in that discussion can be adapted for the
case of consolidation. For the sake of continuity only the results are
given here and the relevant derivation occurs in Appendix V. The numbering

of the points referred to is that occurring in Fig. II-2.
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The equation derived is

h‘
I+ = cz, DE 2k, 2ka
Uok+oe = .22 [u.,t + Rtk Ut + Uy + o cUgp—Auox| +Uor
L+ c“-.‘fl az*
cz, R

IT - 7.
This is a2 considerably more complicated expression than any utilised
previously, and it will be observed that it also involves the permeabilities
of the two layers. However, in any one case, the permeabilities and the
coefficients of consolidation will be known, when the equation will reduce
to the expression
Uor+nt = E, DA Lu, +Ezuze o+ Eauag —4uoc]+Uok
11 - 8.
where Eq, Eop, E3 are numerical constants and D is the same constant as
in II-6e The use of this equation does not give rise to much more labor
than previously, as there are only a few points on the boundary compared
to the number inside.
If the two layers are stratified and possess properties differing
in the verticz2l and horizontal directions, the problem becomes considerably
more complex. If the ratio between the vertical and horizontal coefficients
of consolidation and permesbility is approximately the same for both
layers then a horizontal transformation may be effected as demonstrated
in Part II(b) (1), affecting the wesh dimensions in both layers in the:
same manner. If it is not possible to make this simplifying assumption,

then the sole recourse is to cover the section with a mesh of squares
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and to use equation II-Z inside each layer as At snda Az are constant
throughout. At the boundaries it will be necessary to derive an equation
of the type of II-7, but in a much more general form. It is doubtful

if such a computation, which would be exceedingly tedious, will ever.be
mede, and no such general form of equation I1-7 will be derived herein.

3. Variation. of coefficient of consolidation with intergranular
pressure.

In the two-dimensional case of consolidation the variation of the
coefficient of consolidation with intergranular pressure may be considered
in a menner similar to that developed in Part I. However, the labor
involved will increase considerably. It will still be possible to con=
struct a chart showing values of Uo.t + AL plotted for a given up,t and
a given sum of the terms uj g, Up ¢» U3, ¢ W4 ¢ » when the assumption
regarding the variation in the coefficient of consolidation is made. If
both coefficients of consolidetion cy and cgy are considered to exist,
ana both to vary, the solution is made more laborious still, but still
soluble. In this case, as the factor A is varying continuously, no ad-
vantage is to be gained from making the mesh dimensions Ax and Az of
different lengths, and a square mesh can be used convenientlye.

(c) Superposition of solutions

Because of the tedium involved in the production of a solution to
problems other than one-dimensional consolidation, it is convenient to
consider here a method by which two-or three-dimensional problems can be
considerably simplified.

It has been demonstrated by A. B. Newman (20) initially, and in
work later independently developed by Carrillo () that the princinle of

super-position can be applied to the solution of the diffusion equation.
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Carrillo shows that, in a thrce-dimensional domain, governed by the equation

2u - o, Pu o2+ LY
i O U

the solution to the problem can be obtained by the consideration of three

one-dimensional problems, namely

e . D e 4ol dMA (iiy ¢ 2 = cp 2w ().
SE = CIS—;;_ ( . SE- —Ct'—b——'i (ln - &' CL bz‘& ( )
X N ] C a—— Consolidor’ing
Y -7
z

Fie. 1-4

If a point, P, in Fig. I11-4 is considered, ﬁfth the coordinates (x,v,z)
then only the x-coordinate, and the two boundaries perpendicular to the
x-direction are considered in the solution of equation (i); only the
y-coordinate and the two boundaries perpendicular to the y=direction in
equation (ii); and the z—coordinate and two bounderies perpendicular to
the z=direction in equation (1i1); the flow in each casse being taken
parallel to the axis considered.

Tt is demonstrated that, if ux’t is the hydrostatic excess pore
water pressure at point P at time t due to flow in the x-direction only,
Uy, ¢ ie similarly the excess pore water pressure due to y-direction, and

ug, 4 due to z—-direction flow only, then the hydrostatic excess pore water

pressure due to flow 1. three dimensions is

Uygzt _ Yxe | U4qe . Uzt
Uo do Uo Yo I - 9.

where u, is the initial hydrostatic excess pressure.
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Similarly, if u, 2.t is the sverage excess pore water pressure
~ ?*

'Yy

throughout the mess at time %, then

Uygze = Yee w Uye - Yze II - 10

rop X-boundary

jbot-bom 1-boundary
top x-boundary

IhoH-em * ~beundary

where wdx

axr_ =
! U dx

and the other terms follow similarly. Thus it will be observed, that

in certain closed boundary problems,.as in the consolidation of com-
pressible fills in cellular cofferdams or in hydraulically placed cores

in earth embankments, it is vossible to break the problem into its com=
ponent directions and to solve the new problems thus presented, individually.
The final solution will be obtained by a combination of the results, using
equations I[-9 and I1I-10. Care must be taken that the mesh spacings and
A-factors chosen in each direction will give compatible times, although

this will not be necessary for sclutions for average degrees of con-

solidatione.

The solution of problems by this method will be returned to in
Part III, where the case of radial flow is considered.

(3d) Settlement

As the original purvose of many consolidation analyses is to
predict the movement of the ground surface, it is desirable to consider
2 method by which this can be evaluated at any time from a knowledge of
the hydrostatic excess pore water pressures existing in the compressible
layer at that time.

For the analysis in 2 general, two-dimensional case, the layer

is divided up into small, finite blocks, each block surrounding a point
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at which the pressure is being computed successively. In a uniform case
these blocks will be square. The hydrostatic excess pressure existing
at a particular time in the center of a block will be assumed to exist
throughout the block, and this situstion holds for every such block.
Reference may be made to Fig. II=5, where a column of such blocks is

shown.

r T

| r1 |

I T T
r---l

+ 2 3 4

L , ‘: |

l L4+ |

Fie. [I-S

From tn. hydrostatic excess pressure existing at a point, and the total
stress acting at the point calculated from one of the elasticity theories,
due to the applied load causing consolidation, the intergranular pressure
may be computed.

The settlement of Af s or reduction in height of any particular

block, can be celculated from the formula derived in steandard texts: (31)

Ap = TEESE2 (g,-e) L =11

where ej, e, are found from intergranular pfessure—void ratio curves for
the soil, or, more conveniently, as ey - €, is usuelly small, from the
expression derived from eguation II - 11:

Az | 0.434C¢(5L‘Bt)

AP () (pa+PJ)
2
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where 51 is the intergranular pressure at the center of the‘block before
consolidation begins, 52 the intergranulsr pressure at the time being
considered, and Cc is the compression index, according to convention. As
each block exists at 2 different initial intergranular pressure, and
sustains a different incremental increase, the values of el,fl,iz and C,

will differ for each blocke

Summing up the settlements in each block in a column the expression

Az 0.434 Cc(\;l"'—’-)
- i o

is obtained for the settlement at the surface.

It will be necessary, when any particular block has undergone
both expansion and consolidation, to trace the history of the pore water
pressures at the voint since the load was applied, in order to evaluate
properly the movements due to the variations in hydrostatic excess pressure.
Phis investigation must be carried out with constant reference to the

intergranular pressure - void ratio relationship for the soil.
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PART III

RADIAL, CONSOLIDATION

Consnlidation of 2 soil in which drainage is taking place radially
is a special case of one-dimensional consolidation. However, radial
drainage usually occurs in conjunction with vertical drainage and will
be considered in the form appropriate to such a situation. Two-dimensional
radial drainage and consolidation take place when vertical sand drains
are driven into compressible fills in order to accelerate settlement.

(2) Derivation of equations

The governing equation of two-dimensional consolidation when radisl

drainage is taking place isg:

2 o, i du 2t
S% —Cz%—;—f—_‘ +CfLr br+"_°—r—i-} III - 1.

The region being considered is shown in Fig, I1II-1(a) with a region

of finite dimensions enlarged in Pig., II1I-1(b).
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As in Part I

D' - Ur-—2Uo +Ua
ozt Az*
z -3,
' _ W —CUot+ U
and hence v AT
Also
-—Ue
(&), -
au - uo“u5
(3¥)es = " &7
duy o YooY
whence 5’;)0 2AY I1I - 2.

Combiningz the three finite difference eaquations as indicated by equation

II-1 gives:

Uorefc —Hok _ £z fuge —2dor +Uat)

At az? !
+ c"'l_ v, (u-t—us e) + Ug—2Uoe + Ust:_]

III o 3.

Again assuming ¢, = ¢, » then Ar can be taken equal to Az and

equation III-3 reduces to

Cz AL Az bz
Uorrae = ;7_1. [S“" E_Y:.) Ue +Uze+ (- —Z_Yo) Use — 4uo,t.]+ Uot

I1I - L.
This ecuatinon, it will be observed, is similar to equation 11-3,
with the exception of a modifying factor for values of wy ¢ and uj' & due

to the influence of radial flow. This modification has the greatest effect

when r is emall, i.e., on points near the axis.

2fter the mesh dimensions have been chosen, it will be found con-

venient "o compube values of {1 + E@i) and (1 - %—:'*) for each column of
T T



mesh-points at radius r and to tabulate these values at the top of the
relevant colﬁmn for use in the calculations.

Use of the procedure outlined at the end of Part II, in which the
directions of flow are considered separately, is of value in the solution
of problems of combined radial and vertical consolidation. For radial

drainage, in one dimension only, the iteration expression is:

Cy At Av
ogsnt = ot ((+ %50) S (kR LY —2Uog]+ ek

171 - 5.
The solution can be marched out using this equation, and the results
combined with the desired vertical solution by means of equations I1I-9 and
I1-10.
In a practical case, the well considered is one of 2 number of
wells o which the outer boundaries are adjacent (See Ref. (2)) and

in which the “zones of influence,® Fig. 111-2(a) are hexagonal.

PN

(o) (b)
Fic. -2

Equivalent diameters are assumed as indicated, and an analysis

by means of the methods outlined previously can be undertaken. There



will be no flow across the common outer boundaries of the consolidating
cylinders and these boundaries may be considered impervious. Vhen an
iteration process is carried out, it will be observed that a boundary
point such as point 0 in Fig. 111 - 2(b) has two points, 2 and L,
surrounding it on the boundary and one, 3, inside the consolidating
medium. In order to use expression III-4, four poil.ts are required, and
it may be recognised that point 3 has an image point (1), beyond the
boundary, in the adjacent consolidatiing cylinder, at the same value of
hydrostatic excess pressure. Thus in the nse of equation III-4 on the
boundary, the value of hydrostatic excess pressure at point 3 is entered
twice, giving the new value at point 0.

This situation will occur, in general, wherever a 1ine of
symmetry is encountered, and this fact may be used to eliminate needless
calculation in meny instances.

1t has long been observed that the resistance of a pile driven
in clay soils increases with time duve, it is considered, to the consolidation
of the clay round the pile, when thé hydrostatic excess pressures caused
by the driving of the pile decrease by movement of the pore water away
from the pile. It will be possible, if the distribution of the hydrostatic
excess pressures is known, to evaluate the time-consolidation characteristics
of points adjacent to the pile, by numerical analysis, and from the results
to calculate the shee.ing strength increase in the clay.

For the purposes of comparison with field testy, imperviocusness,
or varying degrees of porosity of the pile itself could be assumed in the

calculationse
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PART TV

THREE~DIMENSIONAL CONSOLIDATION

Although three-dimensional consolidation is that case which
probably exists most frequently in nature, little or no attempt (3) to
date has been mede to tackle specific problems. As far as the nunerical
analysis of three-dimensional drainage cases is concerned, the ideas and
procedures differ little from those already presented in preceding Parts,
but the tedium of such procedures increases greatly. Consequently all
available methods for abbreviating the computations should be investigated.
To this end, the supervosition methods outlined in Part II(c) will
probably be found most useful.

(a) Derivation of eguation

The derivation of the iteration expression for the three-dimensional
consolidation case follows directly from the methods and results of
Part I.

The governing ecuation is:

2u -, PU 4 T 4 T
R R TR+ IV - 1.

and the general iteration expression becomes

Ugt+Ac = C"Tl:;:[uu,t—. —CUlot + us.t] + %?"i[usx —2uok +Ug ]

cz At _
+ 5= [U2e -2Uok + Uqt]

in which the points are shown in Fig. IV-l.
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And, as before, if homogeneous, isotropic soil is assumed to exist, then

Cz At

uo.t,i—Ar_ =
(A% 2

[Lue +Lze+Uyp +ug e +Use+ Uee —6Uor] +Uge IV - 3.

In practical comnutational work it is unlikely that this equation will be
used however, necessitating, as it does, the use of various sheets of
paper in order that the points may be plotted in a three-dimensional
form., The analysis will most probably proceed from the consideration of

the three directions of flow individually, with subsequent superposition.
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PART V

TRANSFORMAT ION

In circumstances where certain boundary conditions prevail, a
variation of the direct attack on the problem, as outlined previously, can
be used.

For example, in the case of radial flow (10) it has already been
pointed out that the modifications to the iteration expression have their
greatest effect near the axis of the consolidating mass, and it is in this
region that information is particularly desired regarding pressure conditions.
Therefore, it would be advantageous to use 2 method which gave more in-
formation about the hydrostatic excess pore water pressures existing near
the axis.

It has been shown in Part II that certain problems exist which
have certain of their boundaries ill-defined, when the iteration procedure
must be carried out in regions of little inherent interest, for the sake
of the effect of the movement of the pore water in these regions, on
consolidation adjacent to the loading area.

In the consolidation of hydraulically filled cores of carth dams(12)
it will frequently be found that the mesh points do not intersect con=-
veniently with the sloping boundaries, necessitating use of the cumbersome
expressions derived in Appendix IV along these boundaries.

These situations can bz considered by the use of transformation.

(a) Radial Flow

The equation

bu { bu + alu

2e - lrar T e V- 1.

has already been considered in Part I11I(a) and the direct iteration

expression III-5 has been shown.



Now in equation V-1

let o = logey V-2
Then da . L
dr Y
and 2u . du. 2w
dr ok v
= %.%f_:
Liow
Sy R - Rl
Then Qu = & 2 v - 3.

2t Vi D&t

This demonstrates a simplified form of equation, with the o ~axis
in the same direction as the original r—sxis. The iteration gxpression

becomes

Uogstt = %%El[u.,c—luo.t + Uae] + Uk
o

V-u,

For the sake of clarity, the untransformed and transformed sections of a
sand drain well surrounded by 2 cylinder of compressible soil draining
radially only toward the well are shown in Fig. V-1. The figure also shows
the mesh spacing used in the calculation of values of hydrostatic excess

pore water pressure.
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From the diagram it will be seen that the procedure consists in
plotting from a suitable origin points with ok —=direction ordinates of
logeRy and loggRp. The distance between thece points is divided into a
convenient number of equal mesh spacings A& , and for the points thus
ovtained, the corresponding values of r are calculated using equation V-7.
It will be convenient to have values of —:— tabulated over the mesh

2
points as this figure is utilised as indicated in expression V-4. The

iteration procedure can be carried out as previocusly demonstrated until
a desired time has been reached, when the values can be entered in the
untransformed scale, and combined, if desired, with values obtained from
the case of vertical drainage.

(b) Two-dimensional Flow With an Infinite Boundary

A czse such as shown in Fig. II-1 will be considered here, with

a transformation taling place only in the x-direction. For flow in the
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x-direction, the equation

ou = C;b‘

bt 3%" V and 5.

holds and an arbitrary axis as the origin of x-measurements can be chosen.
This can conveniently be an axis of symmetry which Figure II-1 demonstrates.

If, again, the substitution

o = loge X

V - 6.
is made, eaunation V-5 becomes
- & [a 3“]
dt x=L2x* dx V-7,

and, consequently, the iteration equation developed is

Cx At
uo,t‘i-At = x A‘*L [u & 2u°c +u3)t - .—(u‘ £ — U t‘)] + uo.t.

V"‘8o
In this case, values of %?z and.é§? must be plotted above each mesh point,
(-]

to be used in the calculation. ZEquation V=8 is tedious to manipulate,
but it will generally result in the computation proceeding with fewer
mesh points.

(c) Hydraulically Filled Cores of Earth Dams.

Gibson and Lumb (12) in an analysis of hydraulically filled cores,
point out that in general, the base angic of the core (see Fig. V-2) does

not permit the mesh pointe *- lie on the inclined faces of th2 core,
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The equation governing the hydrostatic excess pore water pressure

in this case is the two-dimensional one

W L ¢, dtu
%k et V-9

Because of the method of filling the material, involving thorough mixing
of the soil in water in this case, it is likely that taking cy egual to c,
is a reasonable assumption.

The substitution

Z=Wran® Vv - 10.

is then made, and equation V-9 is transformed into

du _ dArtu A~ 3
ot = “2(Fa +or 0 55.)

V- 11.
By means of this substitution, all base angles become, in the
x,w-plane, sngles of 5%, and mesh points therefore lie on the inclined

core faces. The finite difference equation in this case is

CyDE
Azt

' 2
Uocrat = [Uﬂ,t. -2Uo + Uz e +cot e(ul,\: -Cuot + ul\,\:)] +Uot

Vv - 12.
In this problem, the outer fill containing the core consists of pervious
material, and in consequence of this, the hydrostatic excess pore water
pressures become eousl to zero on the inclined faces of the core. It
should be pointed out that this case involves outward flow of pore water
in appreciable quantities, affecting the unit weight of the core, znd

hence the total pressure at any point, so that care must be taken in the

evaluation of intergranular pressures.
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It is probable that other problems will be simplified or clarified
by the use of substitutions, and each case should be exanined on its own

merits in order to see if such a simplification can be effected.



CONCLUSION

A method has been presented which can be used to attack various
problems concerned with the diffusion of water in the pores of soil. No
investigation of the accuracy of solutions has been entered into as various
previous authors have examined the procedures from the mzthematiczl point
of view of convergence,

Emphasis must be laid on the fact that the equations and present-—
etions of the previous Parts depend entirely on the velidity of the
partial differential equations developed to define the pore-water pressures.
If these eouations do not hold true, then there is little value in solving
them by any method.

The phenomenon of secondary compression is one on which much
thongrt has been expended, 2nd it would seem 2 promising fu‘ure course
of research to investigete mathematical theories of the action of secondary
compression by means of finite difference methods, as these, though
tedious, will almost certainly demonsirste the validity of any hypothesis,
with greater rapidity than an snalytical approsch. It may be possible

to postulate seversl different formulsaitions for she exnlanation of secondary

]

compression, and by the exerczise of numerical techniocues, to choose those
which give resultsz mozt nenrly spproxim2iing the behavior of laboratory
or field specimens,
By the use of these methods, “‘nformstion derived from soil tests
may be apnlied directly to the 2nalysic of soil movements in actual prectice.
The use of numerical snalysis methods is not likely to be confined
to the investizztion of hypotheses regsrding the mechanics and hydraulics

of s0il and water action, however,; msny other ceses may be considered

eventnally. Among these cases, two are of immediste interest; the problem
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in which a frozen, suversaturated soil is melting, with subsequent con-
solidation and that of the differentisl settlement of a building on
columns supprrted by a consolidating medium. In the first instance, the
case of gradual non-linear melting of the ice lenses, with subsequent
release of water under hydrostatic excess pressure into a soil which may
or may not be homogeneous and isotropic, is one which can perhaps best
be trested by iteration involving both heat transfer and consolidation
in & similar manner.

The second problem, which, classed with all situations involving
the foundation of elastic structures or settling media, has long interested
methematicians 2nd engineers is concerned with the gradual movement of
the foundation, with a subseouent redistribution of the loads upon it,
which in turn influence the consolidation. A step by step procedure here,
correlating the movement of the foundations with the redistridbution of
moments and forces in the structure above, would appear well suited to
the problem.

Because of the tedium involved in solutions by nmumerical analysis
it is to be hoped that the methods themselves may be considered as leading
toward the development, where possible, of automatic computing machine
solutions to the more complex soil problems.

In conclusion, it is felt thet the attitude expressed by the
numerical analysis of soil engineering problems is in keeving with the
whole vhilosophy of engineering science, which is, at best, an empirical

subject and in which knowledge itself has advanced step by step.
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APPENDIZ 11

TLiat of Symbols

Units are given in parentheses: F = Force, L = Length, T = Time

cx.s,z.'A\‘- _ AT (=)

Ax,y,z dimensionless parameter = (Ax.q.z)l = (—A-;)z
ok substitution coordinate (L) .
A,8,2,D,
E,¥,5,H numerical constants (=)
cx.cy,cz,cr coefficient of consolidmtion in x,y,z,r direction (%;)
C, compression index (-)
e void ratio (-)
E error (é%
h constant mesh dimension (L)
B length of longest drainage path in one-dimensional
consolidation (L)
(2] base angle of hydraulic fill core (-)
i hydresnlic gradient (=)
z coefficient of permestility; promortionality constant (%)
D intergranular pressure (f%)
2
T radial coordinate (L)
To radial coordinate at moint 0 (L)
P settlement (L)
r1sT5,S1+82 dimensionless numbers (-)
s ratio of z to HE (=)
i time (7)
T time factor (-)
3 hydrostatic excess pore water pressure in the

voids of the soil (_E)
1,2



=

al

w

Xy¥Ys2

Ax, Ay, Az, A

average u (j;)
L ~

initial u (532-)
o . . F
value of u at point n, at time t. (Eg)

degree of consolidation = 1 - & (=)
a3

average U (=)

superficial velocity of pore water (%)

substitution coordinate (L)

rectangular coordinates (L)

finite distances in x,y,%,r directions (L)
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Appenpix I
VARIABLE C,

CaLcuLaTioNs
Assume Fhat ¢, aoF Final intergranular pressure is Fuice
initial ¢z, with o linear vaviarion in berween.

Then, from cquation 1-18

U . U
Cz=Cz + Czy 75 = CZ‘(|+TO'Q)

Make <Ot - L , initially
Az*

when Ci=Cz 3p=p s U=0.
Then, aF any U,

A - _5‘_C_z‘. Cz, (| + _‘_'[Ql_o)

i/ U
- ()
Now consider any four points as shown n the dic\gro.m.

time L E+AL
Use

Uot — Usrsat

U
AlU,e —2Uar +Uael +Use  —I-19
AlU.e +Uapl + (=2A Uqe
S0 B YU+ Us] v [1- %0+ 2o

Curves were then prepared os indicared in Part 1-4(2)

i

wz hQVC Uo't *,A:

.. Uor+nt

R

For the cose of consrant cz, Fhe Focror A was also

chosen cqual fo s onda As equal o Ya .

z \

Thus, ¥from ¢quation 1-5@ AT = %(Tli) - 80
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EESULTS
¢, constant
T 0.05 0.l
100 100 100 100 100 100 100 100 100 | o
) 20 32 40 L5.8 5045 54.1 5649 59.3| Ya
0 0 L 8.8 15.4 18.9 22,3 25.6 28.5| Y
0 0 0 0.8 2.2 k.5 6.7 9.0 11.3| %
0 0 0 0 0.3 1.1 2.5 L2 6.1} 1
T 0.15 0.2
100 100 100 100 100 100 100 100 [ ©
61.3 63.2  6L.8 66.0 67.1 8.3 £9 .4 70.6| Ya
314 33.9  36.1 38.2 40.3 L2 443 45.91 Yo
13.8 16.1  18.3 20.8 23.2 2545 2747 30.0| ¥
8.0 10,3 12.7 14.9 17.3 19.7 22.1 2 ] A
T 0.25 0.3
100 100 100 100 100 100 100 100 | O
71.6 72.6  73.4 7he3 7540 7547 76l 77.2| Ya
b7.6 49.3 51.C 5246 5L.0 5543 56.6 57.8| ‘R
32.2 3h.2 36.1 38.0 39.9 41,7 b3.5 45.1 | ¥
2646 28.8 31.0 33.0 34.9 36.8 38.7 40.6 | |
T 0435 0.4
100 100 100 100 100 100 100 100 o
7747 76.3 794 79,8 80.6 81.2 81.9 82.51 Ug
59.0 60.3  6l.b 6247 6349 6449 66.1 67.2 | o
b6.6 Lg.2 49.8 51.2 52.8 54,3 556 56.8 | 34
42,5 L .2 L5.6 b7o4 49.0 504 51.9 53.41 1
T 0.45 0.5
100 100 100 100 100 100 100 100 |o
83.1 83.6  84.2 8l.6 85.2 85.4 86.0 86.3 1 Ya
68.2 €9.4  70.1 71.2 71.8 73.C 7346 a7 | Yo
584 59.5  60.8 61.7 63.2 k4.1 65.5 66.2 | ¥4
54.6 5643 574 58.8 59.7 €1.3 623 63.91




cy constant (cont.)

T 0.59 0.6
100 100 100 100 100 100 100 100
86.8 87 B87.6 88.1 £8.5 8849 82.4 59.6
75.2 76.1 76.7 777 783 79.2 79.8 8047
£7.7 68.4 £9.6 70.3 71.5 72 4 734 74,3
Eha 6 66.0 667 £8.1 £9.0 7040 71.0 7241
T 0.5 0.7
100 100 100 100 160 100 100 100
90.1 90.3 90.9 91.1 91.6 91.% 2047 9245
81.2 82.1 82 .6 83.5 83.9 84,7 85.2 85.8
7543 76.1 773 77.8 79.0 79.6 80.6 8142
73.0 7.3 7540 7642 770 779 78.7 79.7
T 0.75 0.8
100 100 100 100 100 100 100 100
9247 93.1 93.4 93.7 9k.C k.3 94,5 L6
863 8740 875 E8.2 88.7 89.3 59.6 90,2
82.7 32.8 B83.6 BL. 55.1 8545 86473 Bé.8
80.5 61.6 82.2 83.0 83.7 Blh,5 85.1 85,7
T N.85 0.9
100 100 100 100 100 100 100 100
94,9 95.1 95.3 95.€ 95.7 9%.0 9h.2 96 b
90.4 90.9 91.3 9147 92.2 92.5 93.0 93,3
E7.l 8749 8546 89.1 89.6 90.2 90.6 91.3
86.2 86.9 B7.4 8842 88.8 89.3 90.0 90.3
T 095 1.0
100 100 100 100 100 100 100 100
96.6 96.7 96.8 97.1 97.3 974 9746 9747
93.7 oL.0 9L.5 9.7 95.0 9543 95.6 95.8
91.6 92.73 92.6 93.3 93.5 9L.0 943 4.6
91.2 91.4 92.2 92.5 93.2 93k 93.8 943
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cg varying
0.05 0.1_“hy
160 100 100 100 100 100 100 100 100 | O
0 20 34.3 43,7 50.0 sl 57.9 60.6 62.8| Ya
0 0 4.0 9.2 1.7 20.0 24,5 28.L 31.9| Yo
0 0 0.0 0.8 2.3 L.6 743 10.0 12.7] ¥4
0 0 0.0 0.0 0.3 1.2 2.6 4,7 7.0 1
0.15 0.2
100 100 100 100 100 100 100 100 |o
6.8 6.6 68.2 £9.6 70.9 72.0 73.2 7h.3] Y
3540 37.9 40.5 42.9 45.3 7.6 49.9 51.9] Y2
15.7 18.7 21.7 2L 6 27.6 30.5 33.3 36.21 ¥4
9.4 11.9 14,7 18,2 21.2 24.3 27.4 30.4] 1
0.25 0.3
100 100 100 100 100 100 100 100 |o
75.4 7643 7742 78.1 79.3 80.3 81l.2 82.1 | Ua
5349 5547 575 59.5 61.3  63.0 64.8 6646 | ‘2
38.9 L1.4 Lh.C Lé.5 48.8 51.2 53.6 55.7 | 34
334 36.3 39.2 1,7 bl 4 47.0 49.6 52.0] ¢
0.35 Ol
100 100 100 100 100 100 100 100 |o
82.9 83.7 8L.b 85.2 85.9 8646 87.7 88.1 | Ya
6842 69.7 71.1 725 73.9 7542 7646 77.7 | '
5749 60.0 61.8 63.7 65.6 €7.5 6942 71.1 |34
54,2 56.4 58,6 £0.5 62.6 64,6 66.7 68.5 141
0.45 0.5
100 100 100 100 100 100 100 100 o
88.6 89.4  89.9 90.6 91.1 91.6 92.1 92.6 | s
79.3 80.2 81l.4 82.k 83.4 8l 85.3 86.1 | "2
72.6 4.3 75.6 7741 78.3 79.6 80.7 82.0 | Y%
70.5 72.1 737 75.1 76.6 7747 79.3 80.3 | 1




cy varying (cont.) 6l
T 0.55 0.6
100 100 100 100 100 100 100 100
92.9 93.3  93.6 9k, el oh.6 94.9 95.2
87.0 87.6 28.L 88.9 89.7 90.2 9047 91.3
82.8 8.1 8.6 85.7 86.3 873 87.9 88.5
81.6 82.4 83.7 84.3 85.3 86.0 87.9 876
T 0.65 0.7
100 100 100 100 100 100 100 100
95.6 95.7 96.1 9642 9€.5 96.6 96.7 97.0
91.7 92.3  92.4 93.1 93.3 93.9 94,1 ka5
89.3 89,7  90.5 90.8 91.5 91.7 92,4 92.6
88.3 89.1 89.5 901 0.6 91.L 91.A 92.3
T 0.75 0.8
100 100 100 100 100 100 100 100
97.2 97.3  97.6 9747 97.7 978 98.C 98.1
947 95.1 95.3 95.6 95.7 9.1 96.2 96.6
93.3 93.4 Q4.0 9.2 oL ¢ oL.7 95.7 95.3
92k 93.2 _ 93.3 93.8 941 | k5 9L .6 G5.0
T ' 0.85 0.9
100 100 100 100 100 100 100 100
98.3 98.L 98.4 98.5 984.6 98.6 98.7 98.7
96.7 96.8 97.0 9742 974 975 97.6 977
95.6 95.7 96.0 96.3 96.4 96.7 96.8 97.0
95.2 95.4  95.6 95.8 9€.2 96.3 96.6 96.7
T 0.95 1.0
100 100 100 100 100 100 100 100
98.7 98.8 9849 99.9 99.1 99.2 99.2 99.3
97.8 97.9 98.0 98.2 98.4 98.5 98.6 98.7
97.2 97.3 97.6 97.7 97.9 98.0 98.2 98.3
96.8 9742 97.3 97.5 97.6 97,8 98.0 98.2
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Some discussion of the methods and results obtained from the
calculations in Appendix III is given in the following paragraphs.

(1) Using the compubation curves.

For the case chosen, that of instantaneous loading of the soil
surface, with subseguent one-~dimensional pore water flow, it will be
seen that the hydrostatic excess pressure 2t any one point, can be
traced along a curve on Charts I and II, as time progresses. This curve
eventually becomes a straight line, line C, on both charts, at different
times for different points, which passes through the point Uo,t + At = 100,
Uy,t = 100. By superposition of the two charts it is found thet the
straight lines are coincident on the two charts. It may be reasoned that
eventually, the successive changes in hydroststic excess prescure are so
small in both the constant and variable cy problems, that the effect of
the variable cyz becomes negligible, although the ssme values of pressure
are reached on the variable c, curve at earlier times. The straight line
is obtained for the reason that,as zero pore pressures sre neered, the
pressure at any point at time t + At depends more on the value of the
same point at &, than on the two neighboring points,as all points attain
nearly the same value and consequently the later pressure becomes a linear
Sanction of the earlier one. This can be utilised to great advantage in
epeeding up the calculations, and relieving the tedium. However, this
will not be possible if fluctuating loads are imposed on the boundary.

It would appear to be possible, when the straight line portion
of the curve is reached to establish on it a time scale for each point
in the adopted mesh, znd by this mezns the pressure at any point at any
time (on the linear portion) could be obtained without recourse tu the

intermediate steps. However, more work requires to be done on this aspect.
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(2) Results
The curves shown on Charts III and IV were integrated, to give
the average consolidation versus time factor curves shown on Charts V
ond VI. Together with the curves obtained by numerical analysis is dis-
played the analytical solution to the same problem, with the assumption
of constant coefficient of consolidetion, for purposes of comparison.
It is seen that in the range in which most interest 1is centered, the
numerical solubtion is not greatly in error, and this error may be de-
creased by the methods of Part I-(g). It is deduced, therefore, that,
for the stated conditions, the numerical solution curve of variable
coefficient of consolidation does not deviate from a correct, or analytical
solution by more than the constant coefficient of consolidation curve does.
In this case, some noteworthy results are observed, which may be
applied to the better interpretation of laboratory data, when more data
is available regarding the variation of the coefficient of consolidation.
For the sake of comparison with one standard 1ab6ratory procedure for
determining the coefficient of consolidation Fig. VI is given showing a
plot of average degree of consolidation versus the square root of time
factor. No deductions will be made from the curve owing to the partic-

ularised nature of the assumptions le~ding to its production.
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Appendix IV

Deriwvation oF GENERAL, Two - DimeNnsioNAL ITERATION EQUATION
Feom TAavLor's DEriES.
Reterences (W) and (8)
h order

n has conFinuous devivatives of high enoug

l¢ o funcrio
furnction may be wrirten:

then & To.silovs Sevies xpansion of Fhe

e oyt = 248 eyl = 3t (x,4.%)
A% 2yt
L > & )
&x;uj( 40 = %;(;ﬂg_? ond veterence s made to Fiq.l

Y1, S, and S Ove

i which h 13 & constant length and v,
sions may be ALV Ived’

Aimensionless numbers  the following expves

>,y +snt)
- \o e
(X~Yh y tYo— l‘-“-“l-"‘ (v + ¥,y )
L‘“I‘A-S"h|t\
;u«—vf‘h\\j ) = S(‘,\S,\’) “+ f'\'\-c‘“(x,%,t\ +5—f 5} L (l\j.b)*'—'f h¥ (“»‘3."’)“"
— (@)
{u—vlh‘%,b) = Flegye) —Yz_\-\ix(\t,\j\:\ 4+ -LTL\"\ {:‘(‘,3,t\ —‘-*r l-\“ <y L)+
. — )
F(x,y+sh E) = fane) + shig(nylk) + ke — «©)

£(x,4-352h,5) Fome) — s,,h&‘ﬁ(‘,\s,t\ + . — (A
and hiagner, mulriply @\ by () ond (&) \')3 v, Y., Sz

4 odd ©) and ®), ) oond ().
lt\ + Lh r\fl_ (Yl‘-‘{L\ s" LY‘ %\
h"-ff,_(‘f TSRO AR

nzglcc.\'mg powars of we
and 5, vespecrwdly, an

9y =" +fo¥u 9
+

Yo § eavin g f) & A FG-Yah,
- @)

saf(xy+sh k) + 5.5(‘,%-52\»\;\ = (S,+ s ey ) + ave. —§)
. x Cy
Mulriply @ by WVL\ , by by TGS PTIRTI oand add
frt ) o FOTha®)] o fECoy i) o §(x,4-3nE)
* flkrl-* Y2) (ILY\ -\-f._\ 3 S, (s, +9) Sz(S A9
= L%‘E*’%ﬂ"“-a-r\ + *“ ey -5—&? L*.ﬂt\
Eﬂ‘__.,_(“ AV LYy -\—._:E‘(* +52) FLoug e —(Q)
+ 24 (¥, +v1\’c () G, + 30 1
YL M
Qlse Rtﬂ taby) = fc'(“g )+ Act c(“.‘j.t\ + B Lt("‘&t\ + %_ Qc‘(f )+ - )
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mu\("lphj (3\ bj %‘ avd subrract fremm (n)

cht [Kwn M8 o f0-Nak, u3t\]
B

- ch& [{,(x q¥sh ) £ Y- $1.k )

. «FL&H,\H—A\:) -

2Bt cy At X, ,t)
+[-Eh*+‘ﬁnh’f" l]k%

| Lot \
= Al (k) - Aelexfe () T b ¥ Sefecan
T W
_ @_::‘_Lb [;c,aflw(_x,-b.t\ G+ C;‘:\’ (x4:) H]

wheve A7 Y (VLAY Bxa(ner)y C =50 +57_\ , D = 520, +52)

E = ‘ftfl ; F= Sl.sl ; G, Y, +f3 . H a 5! +$l
v S + 52

From consolidation equation a-1
g‘t(t,\s,\:) = Cx;u‘(lpj,b\ + Cy f-':t(,\&‘“‘t\
A L‘t(“«‘i-"‘ = ‘-‘1«(:'(‘-‘1\“\ + c.s" &';0.3&\.

Thc.n.usms previous noration

uolt+At Z;CL__[(Lut -+ uil ] ﬁA uﬁ,t]+, Z.At (C!_.\,._i l}uob
B ht D
= @Athfrbcae _ 1 < b\[b Bk _ ] Yy b
ol G]RL*W%—— coapt -H[Fe)s
— ()

This s the c_yz.ne_ro.\ ireration e.quo.kion for two - dimensional
consolidarion.

Ler viave=5=252=1 , & =Cy

- blab‘kﬁt“gﬁbt Lu c +u7_c+u5c*qu—-4u°t]—uolt

c,(‘A;h 6cht |)[§ O‘,‘jt\‘*s Qusb)]-\' —(X)

This is the equation for the particular case of equal mesh dimensions
and coefficients of consolidation in both directions. It is seen,

then, that the principal error is dependent on h2, the mesh-dimension,
and this fact is utilised in Part 1-(g) to effect more accurate solu~

tions to the one-dimensional consolidation case. It 1is interesting
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Cyg At

to observe that a choice of 5 = 1/6 will eliminate the error due

to the term on the right, and it can therefore be deduced that solutions
obtained using this value will be nearer the analytical (or exact) solution
than solutions obtzined with even smaller values, which hitherto tended %o

give better resultse.
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ApPenDIX ¥

RounoArY PoINTS IN THE Two-DIMENSIONAL OSTRATIFIED

CaseE.
R efevence (30)
Consiaer mtsh-pc»m\-s shown in Fig.i(a\.
layer @ z Ry
2 o ] cll
Rz
loyer @ 4 a e
(a) (b) Fie. 1l ()

wolrer pvcsswrc

The chanqing velues of hydvastoric @xctss pore
or point O depend on the octual valugs ar points 1,25, and 4.

Suppose, however, Fhar poinks O\ 2, and 3 axisk wholly nside layer
@ os wn Fig. 1(b), ona point 4 s \nside \ayer
Then chuqun -3 ﬂ'wcs
\
Uot+AL — WoL = 9.5.21'-_' [U-.,t + Ut + Uy +Uqe - 40.1.0,(:] — (@)
Dz

a value of hydvosraric excgss pove water

\ .
wheve Uge 1S Some assume
) is sarisfied.

pressuve exisking ar ponr 4 so that equation (o

Similarly 1f the siraation axsting 1n Fig 1@ halds, with points

O > cnd 4 inside layer @ and point 2 15 in layev

Then
]
Uorc+DE ~ ot = ésac—il-[u'.; + Ut Uz b+t — 4u°,t} — (b)
z

4 Uzt have the same signiticance in borh
4 Ugt \nb) have veal
e ovhev values.

wheve Uor+At , Yo,b, Lt an
quu,oﬁons (o) and (b\| and Uz tn @\ an
siqniticance, but Uzt anad Ugt con hav
Subrrack ) From @) and vepresent U gy Uz, ere, by W, Ug.

\
4u°\ - Az(u.‘-t- U +Uy + g — Auo) — ()

- Atc . . Aec
wheve AL = 'A—i-,?" , Ag “Szfz'

\
Q= A.(L\‘-ﬁ-u’_ +Uy+ Ug -

[£ v, s bhe velociby of flow of bore woker inside one \ayer ok o

paint ana Ve inside crher loayer of o boin\’ then ab Fhe boundary
U=\
ana Au) = 2w —
R (22, - R3R). @)

wheve 1 15 the direction of Fhe normal to Fhe inrerface
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But fvom brevious deuclopment in Part 1

2 U - _
) G,

Then, subskituring @y,

qul, 2 Wy — BEL-(U'J“'UQN - )
‘
Substiruring &Y in (Y,
(Ay+ AR ue = A [Wroz+us+ur ¥ Bxr.ug - 4ao)

"'A?_‘_u + Wy + W 4 —4&01

Substituring (n (®), ana using wxpandead symbvols,

( ) Al [ult. -+ k +h ult"'ug’\: R+ R:Lua't - 4uo,t]

Wok+At =
~ R + Ut
— ()
or R
(+2) C1. Ak 2k, 2
u [ — :.Ugk —4duok|+ Lok,
ot+AL LLL‘F Rtk Lu1t+u3.t *k*bq_ ok
— (L)

Cl\ Rl
(L-7)



