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Abstract

A three-dimensional panel method is used to solve the Neumann-Kelvin linearized
ship-motions problem. The initial-boundary-value problem is recast as an integral
equation using the transient free-surface Green function. This integral equation is
discretized in space using planar panels, on which the potential is assumed to be
constant, and in time using the trapezoid rule. Collocation is performed at the
centroids of each panel.

It is argued that the integral equation (in either its potential formulation or as
a source-only formulation) has a Rankine-type kernal and therefore has a unique
solution, in contrast to the analogous frequency-domain integral equation. Discrete
solutions of the transient integral equation however, contain a non-physical oscillation
which, at zero forward speed, persists indefinitely in time but has a frequency content
which is localized around the irregular frequencies in a way which is nearly identical to
what is observed in discrete frequency-domain solutions. At non-zero forward speed
the oscillation becomes of finite duration in time, and of increasing bandwidth in
frequency, as the speed is increased so that it is no longer clearly associated with the
irregular frequencies. These errors are removed from the solution by refinement of
the spatial and temporal discretizations.

A technique of asymptotic continuation is developed in order to extend a relatively
short calculation to large time in a rational way. The asymptotics of the transient
numerical solution are analyzed and found to support the theory that the linearized
problem has a finite solution (in general) at the critical frequency corresponding to
r =2l = %. A technique for improving the satisfaction of the body boundary
condition without the need for numerical spatial derivatives is also preserted.

Calculations of the steady and the unsteady hydrodynamic forces on two ship hulls
are included and compared to experiments, as well as to calculations made in the
frequency domain. The hydrodynamic coefficients are used in the transient equations
of motion to perform a simulation of a ship traveling through a Pierson-Moskowitz
sea.

Thesis Supervisor: J. Nicholas Newman
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Chapter 1
Introduction

The classical problem of predicting the hydrodynamic forces on a ship as it travels
through a seaway has been an active topic of investigation for over a century. William
Froude [11]in 1861 appears to have been the first to tackle the unsteady oscillations of
a ship in waves. 26 years later, Lord Kelvin [51] produced a mathematical explanation
for the wave pattern observed behind a ship in steady translation through a calm
sea. Since the turn of the century this approach, based on linearization along with
the neglect of viscous and surface-tension forces, has been refined and applied to a
variety of problems in Marine Hydrodynamics. An enlightening review of the Science
of Naval Architecture from the time of Froude until the 1960’s may be found in the
Biographical Memoirs of Sir T. H. Havelock [47] (although the work of Krylov and
Haskind [14] has been neglected). More detailed presentations of the modern theory
of ship motions may be found in Ogilvie [46] or Newman [41].

With the advent of the high speed digital computer in the 1950’s numerical so-
lutions of the linearized formulations for general bodies began to appear, first us-
ing the two-dimensional strip theories [28] [45] [49] and more recently using three-
dimensional methods. Several approaches have been followed in the effort to obtain
three-dimensional numerical solutions to the sea-keeping problem and each exhibits
its own advantages and limitations, in addition to those inherent in the mathematical
statement itself. Typically these solutions are obtained using boundary-element (or

panel) methods, where the boundary-value problem is recast as an integral equation
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and solved at discrete points on the boundaries of the fluid domain. For solving nrob-
lems where the mean position of the ship is traveling at a steady forward speed, the
most promising panel methods fall into two categories: solutions using the transient
free-surface Green function, where only the ship surface is discretized (e.g.: [24]; [30];
[23]; [3]; [33]; and [34]); and Rankine (or Dawson-type) methods, where simple source
and dipole singularities are distributed on both the hull and a portion of the free
surface. (e.g.: [39],[40],[4]).

The approach taken here is to use the transient free-surface Green function to
derive a boundary-integral equation to be applied on the mean position of the body
surface. This integral equation is discretized spatially using planar panels, upon
which the potential is assumed to be constant, and enforced at the centroid of each
panel, while the trapezoid rule is used for the integration in time. Linearization allows
us to separate the effects of the ship’s steady forward motion (the steady problem)
from the scattering of the incident waves (the diffraction problem), and from the
radiation of waves due to the unsteady motion of the ship (the radiation problem).
Havirg been computed individually, the soluticns to these three problems may be
superimposed (and combined with an actual history of incident wave elevation) to
construct a simulation of the ship’s motion while traveling in a seaway.

In Chapter 2 the mathematical formulation of the problem is reviewed. Existence
and uniqueness of solutions i» the initial-boundary-value problem is assumed, and
a proof is proposed for uniqueness of solutions to the integral equation. This is in
contrast to the equivalent (zero speed) frequency-domain integral equation which
does not }t.ave a unique solution at an infinite discrete set of frequencies (the irregular
frequerncies). The argument is based on showing that the kernel is formally of Rankine-
type and therefore a non-trivial homogeneous solution to the integral equation does
not exist. This argument applies equally well to the integral equation in either a
potential or a source-only formulation.

The radiation problem is generalized using a series of canonical problems, related
to each other through time derivatives, any of which can be used to obtain the impulse-

response function. This generalization makes it clear that the steady problem can
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be made identical to the surge radiation problem by regarding it as the steady-state
limit of an impulsive acceleration of the ship to a forward speed U. The diffraction
problem is discussed briefly, but emphasis is put on the forced motion problems.

Chapter 2 also contains a discussion of the asymptotic behavior of the solution
at non-zero forward speed. This is intimately related to the resonance at the critical
reduced frequency of 7 = 9‘;@ = 1/4. The 7 = 1/4 resonance manifests itself in
the time domain as a slowly decaying oscillation in the solution. The resonance is a
physically observable phenomenon whose presence means that transients, at forward
speed, require substantially more time to decay than they do at zero speed. At
steady forward speed, the asymptotic behavior of the Green function is proportional to
%e“"“, corresponding to a logarithmic singularity at the critical frequency in Fourier-
space [8]. It is known that the solution for an accelerating distribution of singularities,
confined to the center-plane of a thin ship, behaves in the same way as t — oo [52], and
it is widely thought that the same behavior should be exhibited by three-dimensional
solutions. Most of the numerical evidence also appears to support this view. It has
been recently suggested however, that when singularities are distributed on the surface
of a body of non-zero volume (which also satisfies certain geometric constraints) the
solution in the frequency-domain is finite [13] [35], and that the decay rate of the
transient solution is actually o< % [36]. In Chapter 3 a numerical experiment is
presented which supports this theory.

Chapter 3 contains a description of the numerical implementation of the theory
outlined in Chapter 2. Convergence of the calculations is shown using the computer
code TIMIT (TIme-domain wave analysis, MIT). TIMIT was originally developed
for bodies with zero forward speed as part of the dissertation by Korsmeyer [24). It is
based on efficient algorithms for calculating the transient free-surface Green function
developed by Newman [42], and has been extended to bodies with a steady forward
speed as part of this thesis. The tasks involved in this effort include inclusion of
a waterline integral, repositioning the ship at each time step (either in a fixed or a

moving coordinate system), and modification of the body boundary cordition with the

linearized effect of the steady forward velocity (the m-terms). This has been done in a
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way which is essentially identical to what is described by Liapis [30]. In addition, the
steady forces on the body are calculated both in an Earth-fixed coordinate system, as
has been done by Lin and Yue [33] for example, and in the moving coordinate system
using an impulsive acceleration. These two calculations are shown to agree to within
0.2%.

A technique of asymptotic continuation of the solution is developed which allows
a truncated calculation to be extended to large time in a rational way. The Fourier
transform of the asymptotic continuation is done analytically, and combined with
a numerical transform of the calculated portion of the impulse-response function to
obtain the complete frequency-response function.

Although the initial conditions prevent a non-trivial homogeneous solution from
existing in the continuous integral equation (and this is shown in Appendix C), dis-
crete numerical solutions show an irregular behavior when the discretizations are
overly coarse. This irregular behavior manifests itself in the transient solution as
a non-physical oscillation which, at zero forward speed, persists indefinitely and is
the Fourier transform of the behavior which has been well documented in solutions
obtained directly in the frequency domain. At non-zero forward speed the numerical
irregularities are confined to a finite duration in time, and are absent from the solu-
tion after the ship has traveled approximately one ship length. This compression of
the oscillation in time leads to an expansion in the frequency content until, at very
high speed, the entire spectrum may become contaminated. This effect is removed by
refining the discretizations in both space and time, but it may be desirable to attempt
to reduce these effects by another means since they appear to be magnified by certain
geometries and at high speeds. This is suggested as a topic of further research.

Chapter 4 presents calculations of the steady and the unsteady wave forces on two
hulls traveling at steady forward speed. Calculations of the steady and the unsteady
hydrodynamic forces agree well with experiment, and with calculations made using
other linearized methods. Realistic ship forms, which usually have significant flare,
are found to accentuate the numerical irregular effects in the solution, and the proper

treatment of flare is suggested as another topic of further research. This chapter
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also contains a transient simulation of the Wigley hull traveling through a Pierson-
Moskowitz sea. A spectral analysis of this response produces response-amplitude
operators which are in good agreement with experiment, as long as the equations of
motion are solved accurately.

Chapter 5 contains some concluding remarks as well as suggestions for further

research.
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Chapter 2

Mathematical Formulation

2.1 Equations of Motion

During normal operating conditions the ship’s weight, along with the steady hydrody-
namic sinkage force and trim moment acting on it, are all balanced by the hydrostatic
pressure acting on the hull, while its steady resistance is overcome by the propulsion.
Assume these forces to be in balance, and consider small unsteady perturbations
about this equilibrium condition. Through Newton’s law, the dynamics of a ship’s
unsteady oscillations are governed by a balance between the inertia of the ship and
the external forces acting upon it. This balance is complicated by the existence of
radiated waves, as a consequence both of the ship’s own motions and its scattering
of the incident waves. This means that waves generated by the ship at any given
time will persist indefinitely and, in principle, affect the ship at all subsequent times,
a situation which is described mathematically by a convolution integral. As long as
the unsteady perturbations to equilibrium are small, it is reasonable to consider the

system to be linear, in which case the equations of motion may be written

26: [ (M + aji)Er(t) + bixze(t) + (Ci + cj)zi(t)

k=1
t d*z
(n) k —
+ /_de K, (t—1) - (1')] = X;(t),
j=1,2,..,6. (2.1)
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This is essentially identical to the model proposed by Cummins [7] except that the
radiation impulse-response function has been generalized (see Section 2.8.1). King [22]

proposed an analogous form for the exciting forces on the right-hand side

X,(t) = /_ Zdr K;p(t — 7)¢(7). (2.2)

In equation (2.1), the ship’s displacement from its mean position in each of its six
rigid-body modes of motion is given by i, and the overdots indicate differentiation
with respect to time. The excitation of the ship is provided by ((t), a time history of
the incident wave elevation at some prescribed reference point on the free surface. The
ship’s inertia matrix is My, and the linearized hydrostatic restoring force coefficients
are given by Cj. The hydrodynamic coefficients and the kernel of the convolution on
the left-hand side of (2.1), and the kernel of the convolution on the right-hand side
of (2.2), make up a set of radiation and diffraction impulse-response functions: the
combination of a;k, bjk, ¢k, and Kg:)(t) is the force on the ship in the j** direction
due to an impulse in the nth derivative of the ship’s motion in mode k. The function
K;p(t,B)is the force on the ship in the j** direction due to a uni-directional impulsive
wave elevation incident from a heading angle of 3.

In the following sections an integral representation of the hydrodynamic coeffi-
cients will be developed based on the assumptions of a potential flow, along with
wave and body motions which are small enough that the boundary conditions can be
linearized. With the hydrodynamic and hydrostatic coefficients in hand, a simulation
of the ship translating in an ambient wave field may be carried out by integrating in

time the above system of six coupled differential equations.

\

2.2 The Exact Boundary Value Problem

Consider a three-dimensional body in a semi-infinite fluid with a free surface, as shown
in Figure 2-1. The ship moves through an incident wave field with velocity U (t), and

is allowed to perform small unsteady oscillations about its mean position in any of
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Figure 2-1: The reference frames and surfaces of the problem.

its six degrees of freedom. The fluid is assumed to be ideal and the flow irrotational,
free of separation or lifting effects. Two coordinate systems will be employed in the
ensuing derivations: the Zj sys‘em is fixed in space, and the Z system is fixed to the
mean position of the ship. At ¢t = 0, these two coordinate systems coincide.

Subject to the above assumptions, the fluid velocity may be described by the
gradient of a scalar velocity potential, V(:i:'o,t) = 6@(5:'0,t). Conservation of mass

requires that this potential satisfy the Laplace equation everywhere in the fluid:
V3% = 0. (2.3)
The pressure in the fluid, p(Zo,t), is given by Bernoulli’s equation,
1,2
p=—p(®+ V" +g20) + pa, (24)

where g is the acceleration due to gravity, p is the fluid density, and p, is the atmo-
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spheric pressure, which is assumed to be constant. (Partial differentiation is indicated
when the independent variables z,y, z,t appear as subscripts.) If surface tension is
neglected and the pressure on the free-surface is set equal to zero, a combined free-

surface boundary condition may be written:
1
®,+2VE -V, + EV*I’ -V(V®-V®)+g®,, =0 onz =(, (2.5)

where ((zo,%0,t) is the unknown free-surface elevation. Since the free-surface condi-

tion is second order in time, two initial conditions are required, and it will suffice to

let
d=0

onz=0,t<t (2.6)
@g - 0

where tq is some arbitrary starting time for the fluid motions which will be taken to
be zero in the radiation problems and —oo in the diffraction problem.

On the submerged portion of the hull the normal components of the fluid velocity
and the ship’s velocity must be equal:

—

#-Ve=V, .7 on S(t), (2.7)

where Sj(t) is the exact position of the ship surface directed out of the fluid domain,
17,(50,t), is the velocity of the point &, on the ship, and 7 is the unit vector normal to
the ship surface. Because of the initial conditions, fluid motions caused by the ship

will go to zero at spatial infinity for all finite time,

Vd -0, |Z]—> oo fort < oo.

2.3 Linearization

In order to make further progress towards a solution, both the free-surface and the
body boundary conditions, as well as the Bernoulli equation, will be linearized. Con-

sider the coordinate system fixed to the mean position of the ship, which is traveling
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along the zo-axis with a constant speed U. We will think of the problem in two
stages: First the ship is accelerated to a steady speed U, and all transients due to
this initial acceleration are allowed to decay to zero; then the unsteady problem is
solved, ideally with the ship in its equilibrium position (i.e. taking into account the
sinkage and trim due to the steady forward speed). The total velocity potential, in

the ship-fixed reference frame, is decomposed as follows:

7=

e B =B+ 3 by + b1 + ¢s. (2.8)

k

1

The combination of ®(Z) and #(&) is the potential due to the steady-state limit of
the ship’s uniform translation at forward speed U. This will be referred to as the
steady problem. The radiation problem ensues when this translating ship is forced
with some prescribed motion in a single rigid body mode k. The potential due to
this motion is ¢x(Z,t). If the steadily translating (but otherwise motionless) ship
encounters an incident wave system with potential ¢;(Z,t), the scattering of those
waves by the ship will be described by the potential ¢gs(Z,t). The combination of
¢s and ¢; will be referred to as the diffraction potential, and solving for either the
scattering or the diffraction potentials will be called the diffraction problem. Note
that in the moving coordinate system, the fluid velocities in the far field will tend to

those of the free stream and the undisturbed incident wave:
V® — —Ui+ Ve, as |Z] — oo,

where i is the unit vector in the z-direction. Far from the ship the basis flow repre-
sented by ®, must tend to the free stream, and this potential is assumed to represent
the bulk of the steady flow around the ship. All of the remaining potentials represent
flows which produce normal components of velocity at the ship which are small per-
turbations to those produced by the basis flow. The choice of ® is not unique, but
the most common choices are the free-stream and the double-body flow.

If the decomposition of equation (2.8) is used in equations (2.7) and (2.5), the free-

surface and body boundary conditions may be linearized about the mean positions
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of the ship and free-surface boundaries. The simplest choice of a basis flow, and the

one that will be used here, is the free-stream alone:

&=_Uz.

This choice leads to the familiar Neumann-Kelvin linearization of the pressure, the

free-surface condition and the body boundary conditions:

p=—p(¢—U¢:) (2.9)
9 8\’ o
(E_UE;) d)-}-g-a—fz(], onz=20 (2.10)
iV = Un,y on S, (2.11)
- V(gr+ ¢s) = 0

-V = npZr + mpzs

In equations (2.9) and (2.10), ¢ is 2gain used to represent any of the perturbation
potentials. The linearized body boundary conditions in equation (2.11) are to be
applied on 5, the mean position of the ship surface, and the generalized unit normal

ny is defined by

(nl,nz,n;;) = n (2.12\’

(n4, ns,ne) = 7 Xmn.

The steady and the unsteady potentials are coupled through the presence of the so-
called m-terms in the body boundary condition. For this linearization the m-terms

simply reduce to

my = (0,0,0,0,Uns, —Uny)

Other linearizations can be derived by making a different choice of basis flow, ®. (See

section 2.11 for example.)



2.4 An Integral Equation Representation

The foregoing initial-boundary-value problem can be recast as an integral equation
by making use of the transient free-surface Green function. The three perturbation
problems described above all satisfy the same boundary-value problem, with the
exception of the body boundary condition. Consequently, the same integral equation
may be used to solve for any of these potentials. The appropriate Green function is

derived in Wehausen and Laitone [53] and can be written as

G(&;6,t) = GO(&; €) + H(F,t) (2.13)
where
G = (% - %) , H= 2_/(;°°dk [1- cos(\/g_kt)] e*? Jo(kR),
) } =a- e+ -+ (=70,
,

Z=(z4¢), R=y(z-8+(y—n)

and J, is the Bessel function of order zero. It is straightforward to verify that this func-
tion satisfies the initial-boundary-value problem without a body, except at the point
z = E, and hence is a Green function for this problem. Applying Green’s theorem
to the time derivative of the potential, ¢,(7), and the Green function, G(:Z:',E,t - T),
and integrating over the time history, results in the following integral equation for

the potential at the present time

— —

2 §(3,1) + [ /Sgé‘ (4(£,) GO(&,6) — GO, €) $n (6, 1)) (2.14)
- d / /gge” (B(6,7) Grng(8,6,t — 7) = Gol(@, 65t = 7) $u(E,7))

"% far fdt i) [HE7) (Gor(@,6t 1) = UGng(& 61t = 7))
—Go(&,E,t — 1) (¢:(E,7) - Uge (€,7))] =0
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where the ship waterline T is the intersection of S, and the z = 0 plane, and 7i2p is the
two-dimensional normal to the body waterline lying in the plane of the free-surface.
(The details of this derivation appear in Appendix A.) This equation is identical to
that used by King et al. 23] among others.

2.5 A Source-Only Integral Equation

If fluid velocities are of interest, particularly on the body surface, then a source for-
mulation may be preferred in order to avoid taking spatial derivatives of the potential
numerically. The source formulation may be derived in the usual way by defining a
flow in the region interior to the body speciiicd by the scalar potential ¢'. The in-
tegral equation for ¢' is identical to the one for ¢, except that the normal is defined
in the opposite direction. These two equations may be added (the details are in

Appendix B.1), and the source and dipole strengths defined as
1 ' _ 1 '
0= 47‘,(¢n_¢n)) K= 47r(¢ ¢)'

A source-only formulation is obtained by choosing ¢’ = ¢ on the body boundary, and
the result is a first-kind integral equation on Sj for o if the potential is known (or an

expression for the potential if the source strength is known):

8@ = [[, & cO@HAEN+ [ ar [[ dECuEEL-)oEn)

2 t . .
_%/to dr A(ﬁzo 2l Gu(F; €t — ) o(£,7) (2.15)

A more useful second-kind equation is obtained by operating on Equation (2.15) with

—

ﬁx'vz

—

21ra(:i-',t)+//§b dfG&Z)(i;ﬁ)a(f,t)+_/t: dr -//.S:. dEGn, (6,8 — 7) 0(£,7)

U? rt L. e . L
—7-/;0 d- /F(nw A2 AGn (T3 €, — 7)) 0(€,7) =7 - VH(Z, 1).
(2.16)
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A vector expression for the fluid velocity is obtained by operating on equation (2.15)

with the operator V.. This yields:

[ [, #9608 aEn + L[] EY.GuE - 7)o(E7)

‘U? / ar /p(”iw AP dIV.GY(E €t — 7)) o(E,m) = V(3 1).
(2.17)

To obtain the velocity vector at any field point, equation (2.16) is first solved
for the source strength, and then the source strength is used in equation (2.17) to
calculate the three components of the velocity. In Appendix B the radiation source
strengths and integral equations corresponding to the decomposition discussed in

Section 2.8.1 are also developed.

2.6 Uniqueness of Solutions

There are two distinct issues of uniqueness connected with the problem which has been
formulated in the preceding: the first concerns existence and uniqueness of solutions
to the initial-boundary-value problem, and the secoend has to do with uniqueness of
solutions to the integral equation.

A general proof of the existence and uniqueness of solutions to the linearized
initial-boundary-value problem in an unbounded domain is not available. Stoker [50]
however, provides a proof of uniqueness for transient motions in a bounded domain,

and he writes:

“... it seems clear that the uniqueness of the solution of the initial value

problem is to be expected if the water fills an unbounded region, provided
that appropriate assumptions concerning the behavior of the solution at

oo are made.”

For the special case of simple harmonic motion, at zero forward speed, John [19] has

shown that trapping modes can exist for special geometries. This does not necessarily
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suggest any non-uniqueness in the initial value problem however, and following Stoker
we will assume that a unique solution exists.

In the following, a proof is proposed to show that the integral equations developed
in Sections 2.4 and 2.5 have unique solutions. On the other hand, discrete numerical
solutions are well known to exhibit an irregular behavior which, at zero speed, has
a frequency content which is very clearly associated with the irregular frequencies
and this is discussed in Section 3.6. In appendix C the motions of a two-dimensional
barge of infinite draft are considered as an example of how the initial conditions bar
the existence of non-trivial homogeneous solutions to the integral equation. This is
expected to be true in general and suggests the that an imperfect satisfaction of the
initial conditions may be responsible for introducing an irregular behavior into the

discrete solution.

2.6.1 The Transient Integral Fiquations

Consider Equation (2.14) for the unknown potential ¢(&,t) due to a prescribed dis-

tribution of normal velocity ¢,(Z,t). This equation can be written

mg + [ 660 = [ar { [ oG (2.18)

U L.
+ 5 [l ) [0 G~ Gy (26, - Upn(-) - U (53

=/Lg€a<°)¢n— dr {//gg{mc: ———jdl fiap - ) }
€S,

Hl

where the z-derivative of the potential along the waterline has been expressed in
coordinates which are tangent and normal to the hull at the waterline (see Section 3.1
and Figure 3-1). Also the term on the waterline involving ¢ and G,, has been
integrated by parts and combined with the term involving ¢, and G.. This is a
Fredholm second-kind equation in the spatial variables, and appears to be a Volterra
second-kind equation in time. Because of the symmetry properties of the kernel

and the causality of the solution however, it is more properly described as simply a
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Fredholm second kind equation with time as a parameter and a forcing which depends
upon the solution over the previous time history. More formally, consider just the
surface integral inside the convolution on the left-hand side of Equation (2.18). Since
tite spatial integral in this expression, which we will call f(t) for the moment, is a

continuous function of time we can use the definition of a definite integral to write

/E//dw(&)a (& 6t—7)= lm fjf(t*)At
o §b ) tng 16 Fr e n nl.

maxAnpt—0 n=1

Here t, for n = (0,1,..., M) is a sequence of times over the interval such that 0 =
to < t; < o. <ty =1t, Apt = t, — t,_1, and the value t} is any time satisfying
tn-y < t* <t,. [For convenience we have taken {y = 0.] The choice of t is arbitrary

within each interval, but in the limit the last evaluation point in this sum will become

the current time ¢}, — ¢t. This makes f(¢};) = 0, since G, (;£,0) = Grne (T £,0)=0
(the symmetry property), and consequently the last interval of this summation does
not contribute to the integral. Thus the integral over the closed interval [0,t] can be
replaced by the integral over the semi-open interval [0, t) in which the current unknown
value of the potential ¢(Z,t) does not appear. This argument applies equally well to
the waterline integral since G¢(&,¢,0) = 0, and allows Equation (2.18) to be written

—

2w ¢(,) + [ 4 6(E:0) G 6) = £1(31) (219)

where f;(&,t) is known, provided that the solution has been advanced to the present
from the initial-conditions. Equation (2.19) is the integral equation representation of
the exterior Neumann problem, with ¢ antisymmetric about z = 0, and this equation
is known to have a unique solution [48][18][21].

Daoud [9] reached a similar conclusion in two dimensions, using the physical ar-
gument that between the time ¢ — At and the time t, gravity has not had time
to take effect. He argued that this made the integral over the interval [0,t] ap-
proximately equal to the integral over the interval [0,¢ — At], and that the integral

equation was therefore approximately of the form shown in Equation (2.19). Adachi
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and Ohmatsu (2] refer to Daoud’s work in support of their claim that the transient
potential foriiulation is free of irregular-frequencies, while the transient source-only
integral equation is not. Both formulations, when solved numerically, are known to
produce an irregular oscillation in the solution but we argue here that this is not
related to any non-uniqueness in the transient integral equation.

Consider the two source-only integral equations for this problem Equations (2.15)
and (2.16). The argument outlined above applies equally well to these equations,

since G.,.,,,(:i:',g,ﬂ) =0, and justifies writing them in the following forms:
[ [ (060G = £E0) | (2:20)
b
and,

ama(,t) + [ [dE o(€,0) GI(E,€) = A1) (2:21)

where again the functions f,(Z,t) and f3(Z,t) are known. Equation (2.20) is the
difference of the integral equation representations of the interior and the exterior
Dirichlet problems, with both ¢ and ¢’ anti-symmetric about z = 0. Equation (2.21)
is the difference of the gradients of the same two Dirichlet integral equations. All
four of these Dirichlet integral equations have unique solutions [48] [18] and therefore

Equations (2.20) and (2.21) also have unique solutions.

The same conclusions about uniqueness do not apply to the analogous (zerospced)

frequency-domain integral equations, as is briefly reviewed in the following section.

2.6.2 Time-Harmonic Oscillations at Zero Speed

The frequency domain discussion will be limited to zero speed in order to simplify
the analysis, and because the Grezn function and the integral equation representation
have been studied extensively in this case. If the unsteady motion of the fluid is

assumed tc be time harmonic at frequency w then in the limit as ¢ -+ oo the potential
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will become R{@(Z,w) e**} where ¢ is the solution to:

V% = 0 inV (2.22)
—w?d + g,

0 onz=0

ﬁ-Vq;: V. onS,.

As iong as the boundary-value problem of Equation (2.22) is supplemented by a
radiation condition to ensure cutgoing waves as B — oo, then this is also a well-posed
problem with a unique solution (with the possible exception of certain pathological
geometries for which a unique solution has not been proven ts exist). In this case é

and ¢ can be considered to be a Fourier transform pair

$(E,w) = /_ Zit $(F,t) e, #(E,1) = R /_ Zdw HFw)e™.  (2.23)

The appropriate Green function for this problem is

&(z,EK) == + L / dk Jo(kR), (2.24)

where the contour of integration must be indented above the pole in order to satisfy
the radiation condition, and gK = w?. [The other quantities are identical to those
defined in Equation (2.13).] An integral equation representation of the boundary-

value problem in frequency space may be derived as a distribution of wave sources

and normal dipoles:

2w(,0) + [ [ $(Ew) Cu (@ E0) = [ [ $E)GGEED),  (229)

or as source-only formulations:
[ [d€ 5(E0) G(&,60) = 95,0, (2:26)
o5 (Z,w) + / /s & 5(€,w) G, (3, €,w) = 7 - V(F,w). (2.27)
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It can be shown in several ways that these frequency-domain integral equations do
not have unique solutions at an infinite discrete set of frequencies, the irregular fre-
quencies (see e.g. [2][29] or Appendix C). Away from these frequencies the solutions
are unique and coincide with the quantity of interest (4, or &). At the irregular
frequencies however, the potential formulation has an infinity of solutions, while the
source-only equation has no solution at all (in general).

While the soiution to the transient initial-boundary-value problem developed in
Section 2.3 is uniquely represented in integral equation form (Equation (2.14)), the
harmonic solution to the boundary-value problem of Equation (2.22) is not uniquely
determined from the solution to its integral equation representation (Equation (2.25))
at the irregular frequencies. The solutions of the respective boundary-value piroblems
are a Fourier transform pair, but a more subtle relationship apparently exists between
the solutions of the corresponding integral equations. This is attributed to the lack

of initial conditions in the harmonic problem and is discussed further in Appendix C.

2.7 Asymptotic Behavior of the Solution

When a body has a non-zero forward speed the large-time asymptotic behavior of
the perturbation problem we have been discussing becomes fundamentally different
from the zero-speed case. This is due to the resonance at the critical frequency of
oscillation corresponding to 7 = g;g = 1/4. This resonance is a physically observable
phenomenon and has been the subject of many investigations.

Dagan and Miloh [8] have shown that the frequency domain Green function (when
U # 0) has a logarithmic singularity as the critical frequency is approached from

below. In the time-domain, this result corresponds to an oscillation at the critical

1
¢

frequency which decays like Newman [42] has shown, through steepest descent

analysis, that the transient free-surface Green function (Equation 2.13) has a large

time leading asymptotic behavior near the free surface as follows,

—2it 2 2
\:31 VRr'(|Z]| +iR) exp (Zt ) expt [t R + lt::m~1 (i) + E]

G~ B 412 4r12 2
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[The variables are non-dimensionalized by the appropriate combinations of the ship
length L and the gravitational acceleration g.] When the body has a steady forward
speed U, then as ¢ — oo both R and 7' will tend to F,t, where the Froude number

F, =U/+/gL, while tan™! (%) — %, which reduces the leading behavior to

V2 AW
Gg’\' -ﬁzexp 4_F‘3 sm(w,_. t)

n

in agreement with the results of Dagan and Miloh.

Wehausen [52] (while extending the work of Havelock [15] and Maruo [37]) showed
that the wave resistance felt by an accelerating distribution of singularities (which is
confined to the center-plane of a thin ship) has this same behavior as ¢t — oc. Based
upon this work, it has been generally assumed that a distribution of singularities over
the ship’s surface should exhibit this same sort of asymptotic behavior. Most numer-
ical evidence to date appears to support this contention as well. However, Grue and
Palm [13] have presented calculations of the wave forces felt by a submerged circular
cylinder in a free-stream which approach a finite value as + — 1/4. And, subsequently,
Liu & Yue [35], analyzed a source-distribution boundary-integral equation solution to
the frequency-domain sea-keeping problem in both two and three-dimensions. They
find that the solution is finite as 7 — 1/4, as long as the geometry and speed depen-

dent parameter I' # 0, where

= / dz(—in, + na)ez"‘,
Sy

and kK = 4—‘;12. The same condition applies for both submerged and surface-piercing

bodies. An analogous analysis for the transient problem of a body which is accelerated
to a constant forward speed [36] leads to a leading asymptotic behavior of the transient
solution which is dominated by a decaying oscillation about a constant mean value.

The decay of the oscillatory behavior is found to be

at

e” . 1 .
q‘) ~ R{Cl——t elwet + Czt—ze“‘,‘t}
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where C; and C, are complex constants, and the time constant a will be non-zero as
long as T' # 0. The parameter a is difficult to put into explicit form but, like T', it
depends upon both the Froude number and the geometry of the ship.

In Section 3.4 a numerical experiment is carried out to investigate the asymptotic

behavior of the numerical solution.

2.8 The Radiation Problem

The steady perturbation potential, when solved as the limit of a transient problem,
and the radiation potentials are all solutions to similar (and in some cases identical)
forced motion problems. The only differencc is that in the steady problem it is
the steady-state limit which is of interest, while in the radiation problem we seek a
transient response.

For each radiation problem, the steadily translating ship is moved impulsively
in mode k, and the force on the ship in mode j (i.e. the corresponding radiation
impulse-response function) is calculated. Define a general radiation potential, due
to an arbitrary motion of the ship in mode k to be ®(Z,t). This potential can
be calculated from any derivative (or integral) of the ship’s motion, as long as the
response of the ship to an impulse in that quantity is known. Define the set of
canonical potentials, ¢£n), to be the potential due to an impulse in the nt* derivative
of the ship’s motion in mode k. The general radiation potential can now be expressed
in terms of the canonical potentials through convolution,

drzi(T) .

&, = / dr ¢t - ) 4 (2.28)

The force on the ship in mode j due to this arbitrary motion in mode k is found by

integrating the consequent linearized pressure over the body surface

Fj = —-p// (-‘2@—" —~ UB;; ) n;. (2.29)

The canonical radiation potentials qbi") are related to each other through time

32



derivatives by the expression
a¢(k") _ d)(kn—l).

5 (2.30)

This follows directly from Equation (2.28). The canonical potential ¢("~!) can be

written,

#o0) = [dr o) TEO (7 g e 1))

where 6(t) is the Dirac delta function, but also

o0 (n)
#0) = [Tar ¢t 2O [ 4 gy sy = 28
where 6'(t) is the derivative of the delta function. This relationship is also clear
from the body boundary condition. As an example, the body boundary condition

corresponding to an impulsive acceleration of the ship is
- Ve = ny h(t) + my r(2), (2.31)

where h(t) is the Heaviside step function and =(t) is the ramp function r(t) = t h(t).
The body boundary condition produced by an impulse in the ship’s velocity is the

time derivative of equation (2.31)
- Vo) = ny 6(t) + mu h(t) (2.32)

and because this is a linear system, the two solutions are related in the same way.

It is worth noting that the radiation problem can also be solved using a non-
impulsive motion of the body, as long as a convenient Fourier transform of the mo-
tion exists with which to reconstruct the impulse response from the non-impulse
response [23].

In practice, calculating the impulse-response function directly from Equation (2.29)

is inconvenient, since it involves a spatial derivative of the potential, and this calcula-
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tion may be simplified by using a variant of Stokes’ theorem attributed to Tuck [45]:

/ /s as [m®x - n;(VE- V&) = - /lgu n; &u(x 7)-V®,  (2.33)

where [ is the unit vector tangent to the mean waterline. For a wall sided ship, the

line integral is identically zero and we may write
0%
= —p/ (—"n, ®, m,-) : (2.34)

2.8.1 Impulse-Response Functions

Since the canonical radiation problems do not (in gcneral) provide a continuous veloc-
ity which can be used in the integral equation, it is usually necessary to decompose
each radiation potential into solvable pieces. The following development is a gen-
eralization of the theory of impulse-response functions as applied to linearized ship
motions which appears in Cummins [7], and Ogilvie [44].

The body boundary condition for the canonical radiation potential can be written

Vé(E,t) = na() (t) + ma() o(t)

§

where z(t) and Z(t) represent the generalized functions which are appropriate to an
impulse in the n** derivative of the body’s motion. It is natural then to consider an

analogous decomposition of each radiation potential:
SNE L) = Nu(@) 2(t) + Ma(@) 2(t) + ${(E, ) h(2) (2.35)

The time constant potentials NV,(Z) and My(Z), are solutions to pressure release type

problems, and they solve the following pair of boundary value problems:

ViNe= 0, VIMy= 0 (2.36)



These are waveless problems for which the Green furction is simply G(®), as defined
in Equation (2.13). Applying Green’s theorem results in the following pair of integral

equations.

2N + / /s df (MG -, G®) =0 (2.37)

2t M, + //;df (MI, G&o) — My G(o)) =0.

The transient or memory potential, '«b,(,"), solves an initial-boundary-value problem
which depends upon the choice of n. All of the memory potentials are harmonic, and

satisfy a homogeneous boundary condition on the body:

V™= 0 inV (2.38)
7-Vp™ = 0 onS,.

The free-surface boundary condition and the initial conditions satisfied by the memory
potential are inhomogeneous in general.

In the following we will discuss three particular values of n, (n = 0,1,2) corre-
sponding to an impulsive displacement, velocity, and acceleration of the ship in mode
k respectively. The same analysis can be applied at any n if desired. The free-surface
boundary conditions satisfied by the memory potentials follow from substituting the
decomposition of each potential into Equation (2.5), while the initial conditions may
be derived by integrating ¢, + g¢. = 0 across ¢t = 0. Let L represent the linearized

free-surface boundary condition operator (Equation 2.10) then

L) = 0
() = —yagjk
L (¢,(¢2)) = —g (agi‘k + a‘;\jk t) onz=20,t>0, (2.39)
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and the initial conditions are

©_ _ 0N
L 0z
=0
=0

L

at 9

Ap

ot 7

0¥ _

ot 0

oM,
0z

ON.
0z

onz=0,t=0. (2.40)

Integral equations for the memory potentials may be derived by repeating the

derivation of Equation (2.14) (in Appendix A) and using the appropriate free-surface

and initial conditions. The same results can also be obtained by simply substituting

the appropriate decomposition of both the potential and the body boundary condi-

tion into integral Equation (2.14) and using the conditions (and integral equations)

satisfied by the pressure release potentials. The results of these manipulations are

the following three integral equations.

Impulsive displacement:

2 + [ [ 9060 - [ar [ [ 496,
: ,,

_% /(;iir /f‘dl ('fizD - 1) [1/,(0) (G" U Grf) —Q, (¢1(_0) _ U¢go))]

= //,;‘:ig [(nk Gﬂ-(t) - Grrn(t) Nk) - (mk Gr(t) - G‘m(t) Mk)]

Impulsive velocity:

) + / /S dE GO _ /cjif / /S £ G,
b b

_% Jd iz -5) Gt (0)

_%/(;:i‘r ./l;il (72D - 1) [¢(1) (Grr — U Gre) — Gr (¢£1) _ U¢§1))]

- / /S :1{ (74 G (t) = Gra(t) M) — (s H(t) — Ha(t) M)
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Impulsive acceleration:

— t -
i g0t~ i | [sw.
Sb [} Sb
__q/:l‘r /dl (f2p - 2) [¢(2) (Grr —UGy¢) — G, (¢(2) _ U¢(2))]
gJo Jr ¢ {
e t -
= //;dﬁ (ne H(t) — Ha(t) Ni) —/dr //;d{ (mi H — H, M)
b 0 s
It is clear from the initial conditions that the impulsive displacement memory
potential %(°)(Z,0) is non-zero at ¢ = 0, in contrast to the memory potentials at any

other n. As with any other ¢ = 0 problem this function may be calculated using a

Rankine Green function given the relation

G.r(,€,0) = Zg% (1)

1.[

which follows directly from the definition of G. The integral equation for %(%)(Z,0)

may be written

2y (£,0) + | fs_:ié' P0G =29 [ ./sdg [”kb% (':_) —Me 3?('29n (%)]
(2.41)

The numerical solution to these integral equations is discussed in Chapter 3.

Note that for n > 2 the ship’s velocity is a continuous function of time and there is
no need to decompose the radiation potential at all. In this case Equation (2.14) may
be used directly to solve for the potential. For n < 2, however, the body’s velocity is
discontinuous and the above decomposition is always necessary.

The six-by-six matrix of impulse-response functions which appears on the left
hand side of the equations of motion (2.1) is calculated from the combination of
(2.28) and (2.34), using the six canonical radiation potentials at any n. By inserting
the decomposition of the potential into Equation (2.28), a general radiation potential
can be written as

d":z:k(‘r)
drn

@, = Niz(t) + Myz(t) + /_;dT ’»”;(cn)(t — )
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and the time derivative of this potential as

0%
ot

(") d zi(7)

kM) + Mi(t) + 97 (0) 5 m"(t) f dr -7

When these two expressions are inserted into Equation (2.34) the complete radia-
tion impulse-response function can be expressed in terms of the canonical radiation

potentials as follows:

au(#) = p [ 4 Nin;
bu@) = o f [dS (Min; ~ Nim)
(@) = o [ [:ds 20)n;
cin(8) = _p / / dS Mym; (2.42)
KQ) = p//dS (atd’(") ;= 1!’:(.")('5)"%')
Forn > 0

The new coeflicient, cg-(,:), is present only when n = 0 and should be included with c;

in this case. This term appears because ¢£°)(5, 0) # 0, while the corresponding terms
for n > 0 do not appear because ${")(Z,0) = 0 for all = > 0.

It has been pointed out in the past that the coefficien! a; is a genuine added-mass
coefficient which is independent of both time (or frequency) and forward speed. The
coefficients b;, and c;i are, on the other hand, functions of the forward speed. The

constants bj, satisfy the following relations,

bjk = 0 fOI‘j =k (243)

bjk-}-bkj: 0 fory;ék

This result follows from an application of Green’s theorem to N, and M;, combined
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. with the same operation using A; and M,.

) )
//;zs (Mja—nNk —A/,.EZM,-) =0

Both A and M vanish at infinity and are zero on the free-surface so the integrals

over those surfaces vanish leaving only an integral over the body,

8 )
//S_:iS (M,-—a—;/\fk —Nka—nMJ‘) = 0.
Similarly,
/ s (M2N N2 =0
A kon ign’ k) T

Adding these equations and using the body-boundary conditions satisfied by the

pressure-release potentials gives the desired resuit.

2.8.2 Frequency-Response Functions

If the motion of the ship is considered to be time harmonic at frequency w, (i.e.

zr o ) then the force on the ship may be written in complex form as
ij =R z; (—w2 Ajk(w) +iw B_.,-k(w) + Cjk)

and the time-dependent impulse-response functions may be related to the analogous

frequency-dependent coefficients as follows

—szjk(w) + injk(w) + Cjk = (244)
_wzajk + w bjk + Cjk + (zw)ﬂ [)00 K§2)(t)e—iwt dt

forn >0,

where cg-z) must be included with c;, when n = 0.
In this section we have posed a general radiation problem, based on a series of

canonical problems, which can be used to calculate the impulse-response functions
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appearing in the transient equations of motion. These impulse-response functionscan

in turn be used to obtain the equivalent frequency-response functions. The details

of calculating the canonical radiation potentials are worked out for three particular
cases corresponding to impulses in the ship’s acceleration, velocity, or position. Any
two of the canonical potentials can be related through time derivatives, and the
corresponding impulse response functions are related in the same way (as long as
the non-zero value of K(°)(Z,0) is not neglected). In principle, given K" for n =
N, the impulse-response function at any n < N can be calculated by taking the
appropriate number of time derivatives. In practice, a balance must be struck between
the errors introduced by rendering the function well behaved at ¢ — oo, and the errors
introduced into the initial-conditions by the discontinuity of the motion at ¢t = 0. (See
Sections 3.5 and 3.6.) The results which appear in this thesis have all been made using
calculations of ¢(?) to obtain K(?), which is then numerically differentiated up to two
times to obtain a memory function which goes to zero at large time. This choice has
the advantage that the steady potential can be obtained directly from the mean value

of the large time surge potential (as is discussed in the following section).

2.9 The Steady Problem

2.9.1 Impulsive Acceleration

The steady perturbation poiential, #(Z), can be calculated as the steady-state limit
of a particular radiation problem: that of an impulsive acceleration of the ship to a

forward speed U. This problem is defined by the boundary conditions

4 2\ @, 9
(E-Ua_z) ¢1 +g$¢1 - 0 onz=0

¢P = Unyh(t) onSy,
which in the limit as £ — oo will become the steady-state Neumann-Kelvin conditions

Ul¢er +9d.= 0 onz=0
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¢, = Un; onSy.

Solving a transient problem for a steady-state quantity may appear to be some-
what inefficient, especially since the steady-state Green function for this problem is
known [53]. The most direct way of calculating the steady potential would be to apply
Green’s theorem, with the steady Green function, and to solve the resulting integral
equation directly for ¢. However, efforts to calculate the steady Green function in
a robust and efficient way have not yet been entirely suc:essful [6], and a transient
approach, while somewhat computationally expensive, has been found to produce
reliable results (See Chapter 4).

The wave forces on the body due to it: steady translation may be calculated by

integrating the consequent pressures over the body surface.

_ o (087 04 \
Fj_—p/ 45 ( Byt )., (2.45)

In the steady-state limit this will provide a value for the steady forces Fj,

_ 6P (Z,t — oo
F; =pU/J/;:iS o1 ((9:1: )nj. (2.46)

Notice that force expressed by Equation (2.46) is a quantity which has been ne-
glected in the calculation of the surge radiation impulse-response function. [When
the convective term in the total pressure is replaced by a combination of the potential
and the m-terms using Tuck’s theorem, and then the Neumann-Kelvin m-terms are
used, this term is identically zero for surge.] In the steady problem we are looking for
a steady-state force which is smaller than the preceding transient response, and we

should expect this calculation to be more sensitive than the corresponding radiation

problem. This can be especially true for the wave resistance calculation where large
pressures at the bow and stern are being combined to produce a relatively small total

force.
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2.9.2 Non-Impulsive Acceleration

If it is desired to consider something other that an impulsive acceleration of the body
to a forward speed U, then it is necessary to work in a frame of reference which is
fixed in space (the & coordinates). An integral equation for the potential in this
frame of reference appears in Appendix A and the corresponding source formulation
is derived in Appendix B. This equation may be used with an arbitrary velocity of
the ship along the z-axis. In Section 3.7.1 a smooth acceleration of the ship defined
by the velocity

U(t) =Us e——t‘;l
is used in Equation (B.4) to investigate the influer~e of the initial acceleration on the
calculation of the steady wave forces. [to is a constant.] The ship’s position along the

z-axis due to this acceleration is related to the complimentary error function

z(t) = Usto %e_?’l —merfc (%)] .

2.10 The Diffraction Problem

In principle the soluticn of the diffraction problem is identical to the solution of the
forced motion problems discussed in Sections (2.8) and (2.9). There are however
subtle points concerning the definition of the impulsive incident wave, as well as its
use in following seas; these topics will not be discussed in t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>