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Abstract

Confusion over how to account for symmetry numbers when reactants are identical

can cause significant errors in isotopic studies. An extraneous factor of two in the

reaction symmetry number, as proposed in literature, violates reaction equilibrium

and causes huge enrichment errors in isotopic analysis. In actuality, no extra symmetry

factor is needed with identical reactants.
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1 Introduction

The rate of consumption of molecule A, rA, in a bimolecular reaction can be calculated with

rA = −k[A][B]. If the two reactants are identical, a stoichiometric coefficient of two appears

in front of the equation for the consumption of A: rA = −2k[A]2. The rate coefficient k is

often computed using transition state theory (TST) at the high pressure limit:1

k(T ) = κσrxn
mTS

mAmB

kBT

h

q‡†TS/V(
q†A/V

)(
q†B/V

)e(−Eo
kBT

)
(1)

where κ is the tunneling factor, σrxn is the reaction symmetry number, m is the number

of accessible optical, or ‘mirror image’, isomers of a molecule or transition state, kB is

Boltzmann’s constant, h is Planck’s constant, Eo represents the difference in zero point

energy between the transition state and reactants, q represents the partition function of

molecule or transition state with E = 0 at its zero point energy, † indicates removal of the

symmetry in the rotational partition function to form σrxn, and ‡ indicates the removal of

one degree of freedom corresponding to the reaction coordinate.

This article focuses on a discrepancy in defining the reaction symmetry number, σrxn,

when used in TST with two identical reactants. With different reactants, σrxn is defined

according to eq 2 with σX being the rotational symmetry number of X.

σrxn =
σBσA
σTS

(2)

Competing theories exist for the correct value of σrxn when the two reactants are identical.

A highly-cited article by Pollak and Pechukas in 1978 argues that σrxn should be increased

by a factor of two when A and B are identical, since the reactants could be translationally

interchanged.2 This assertion conflicted with the previous recommendation by Bishop and

Laidler who used an alternative method to correct for reaction symmetry, reaction path de-

generacy (RPD).3 RPD is the number of ways a reaction can proceed with different atoms
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and is equivalent to the combination of symmetry and optical isomers terms in eq 1. When

reactants are identical, the RPD algorithm will interchange the two molecules and count

the number of possible pathways twice. To prevent double-counting due to molecule inter-

changeability, Bishop and Laidler recommend dividing the RPD by two when the reactants

are identical.3 These two competing perspectives on how to deal with identical reactants

have persisted in the literature. A widely-cited review4 recommends multiplying the reac-

tant symmetry numbers by a factor of two, referencing Pollak and Pechukas, though many

studies involving identical reactants do not mention, and likely do not include, this factor of

two.5–9

Though a factor of two mistake can impact many phenomena, it causes huge errors in

isotopic enrichment since the disputed factor of two is much larger than most non-hydrogen

kinetic isotope effects.10

This paper uses two methods to explain proper symmetry treatment in reaction kinetics.

We first show that the factor of two proposed by Pollak and Pechukas causes thermodynamic

inconsistencies in the equilibrium constant and then describe how this error creates huge

discrepancies in isotopic enrichment, using Cl + Cl −−→ Cl2 as an example.

2 Methods

When estimating rate coefficients, we use TST, shown in eq 1. Reactions in this paper

are analyzed at the high pressure limit, since errors in the reaction symmetry number would

impact reaction rates at both the low and high pressure limit. When reactions are barrierless,

the transition state structure is defined along the reaction path by variational TST.11 This

approach leads to the same relative rate coefficients for O + O2 −−→ O3 as an alternative

approach which involved analysis of metastable O3.
12

To evaluate the correct method for treating symmetry numbers, this work varies the

reaction symmetry number, shown in eq 2, by either adding or not adding a factor of two.
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The two different rate coefficients derived from the different treatments of eq 2 are evaluated

for thermodynamic equilibrium and for determining isotopic enrichment. To isolate the

effect of symmetry numbers, examples are chosen which highlight the variation introduced

in reaction symmetry number.

The usage of symmetry numbers in this work leads to the same rates as the full treatment

of rotation with nuclear spin degeneracy at the classical limit.4,13

3 Results and Discussion

3.1 Thermodynamic Derivation

The extra factor of two recommended in Ref. 2 leads to inconsistencies in equilibria. To show

this, we plug eq 1 into the definition of equilibrium constant for the reaction 2 B −−→ BB

and compare that to the equilibrium constant for this reaction derived from the Gibbs free

energy. We can then determine if an extra factor of two appears when evaluating the forward

reaction symmetry number, σf,rxn.

The equilibrium constant, Kc, is the ratio of forward, kf , and reverse, kr, rate coefficients.

Substituting kf and kr obtained from eq 1 results in

Kc =
kf
kr

=
σf,rxn
σr,rxn

mBB

mB
2

q†BB/V(
q†B/V

)(
q†B/V

)e(−Erxn
kBT

)
(3)

where σf,rxn is the reaction symmetry number in the forward direction, σr,rxn is the

equivalent in the reverse direction, and Erxn is the difference between the zero point energies

of the product and reactants. The tunneling factors and transition state partition function

cancel out since neither affects equilibrium.

To determine whether σf,rxn contains the factor of two recommended by Pollak and

Pechukas,2 we derive the equilibrium constant in a different way based on the definition

that at equilibrium the Gibbs free energy, G, is at a minimum in a constant temperature

4



and pressure system. The change in G can be represented by a constant temperature and

pressure chemical potential, µ.

dG = −2µB + µBB = 0 (4)

The chemical potential of a pure species j, µj, can be derived from its partition function,

Qj. Neglecting intermolecular forces with the ideal gas assumption, the partition function

can be put in terms of a single molecule’s partition function, qj, and the number of those

molecules, Nj. Since the molecules are also indistinguishable, a factor of Nj! appears, which

can be simplified by Stirling’s approximation, Nj! ≈
(
Nj

e

)Nj

, as shown in eq 5.14

Qj =
qj
Nj

Nj!
≈
(
eqj
Nj

)Nj

(5)

If species j represents a mixture with mj optical isomers of equal concentration, energy

and reactivity, then the partition function (Qj) can be separated into the product of each

isomer i, Qj = Π
mj

i Qj,i = (Qj,i)
mj , which is simplified with Stirling’s approximation in eq 6.

Qj =

(
qj
Nj/mj

(Nj/mj)!

)mj

≈

((
eqj

Nj/mj

)Nj/mj

)mj

=

(
mjeqj
Nj

)Nj

(6)

Since µj can equivalently be defined using Gibbs or Helmholtz free energy,14 µj can be

found using Qj and eq 6.

µj =

(
δA

δNj

)
T,V,Ni

= −RT
(
δ lnQj

δNj

)
T,V,Ni

≈ −RT ln
mjqj
Nj

(7)

Substituting the chemical potentials for B and BB from eq 7 into the equilibrium rela-

tionship in eq 4 results in

NBB

NB
2 =

mBBqBB

mB
2qB2

(8)

Since the partition function of an ideal gas molecule is proportional to volume, each term
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in eq 8 can be divided by volume to obtain concentrations, Cj =
Nj

V
, and the equilibrium

constant, Kc.
14

CBB

CB
2 =

mBB (qBB/V )

mB
2 (qB/V )2

= Kc (9)

There is no special factor of two in eq 9 due to translational indistinguishability, and this

equation is analogous to the equilibrium constant for a reaction with two different reactants.

We then extract the symmetry and zero point energy from the partition functions, qj =

q†j
σj
eEo,j/kBT , to get eq 9 into the same form to compare with eq 3.

Kc =
σB

2

σBB

mBB

mB
2

(q†BB/V )(
q†B/V

)2 e(−Erxn
kBT

)
(10)

Equating eq 10 with eq 3 results in

σB
2

σBB

=
σB

2/σTS
σBB/σTS

=
σf,rxn
σr,rxn

(11)

By equating these two equilibrium constants, no factor of two appears in the definition

of σf,rxn even if A = B. Ref. 14 includes a derivation for Kc when A 6= B, which results in

the same conclusion.

Interchange of the identical reactants, postulated by Pollack and Pechukas as the reason

for the factor of two,2 is already accounted for when going from an ensemble partition

function to a molecular partition function in eq 5. Since the RPD algorithm accounts for the

interchange, it must be removed by halving the RPD for reactions with identical reactants,

as recommended by Bishop and Laidler.3

Due to this thermodynamic inconsistency, kinetic simulators that estimate reverse ki-

netics using equilibrium and forward kinetics will also incorrectly double the reverse rate of

reaction if the factor of two recommended by Pollack and Pechukas is used for the forward

reaction. Section S2 of the Supporting Information shows how including an erroneous factor
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of two affects reverse reaction rates in ethane pyrolysis.

3.2 Isotopic Enrichment

In many fields a factor of two error in a computed rate coefficient can have modest effects,

but when studying isotopic enrichment, it dominates any realistic enrichment. Increasing

the rate coefficients of reactions with identical reactants by the extra factor of two proposed

in some literature2,4 leads to unphysical behavior which is significantly inconsistent with ex-

perimental isotopic enrichment values of identical reactant reactions.15 As a simple example,

consider chlorine atom recombination involving 35Cl and 37Cl which has three distinct reac-

tions depending on the isotopes involved. By analyzing the rates of these three reactions,

we show that adding the factor of two to eq 2 creates unrealistic isotopic enrichment.

To isolate the effect of the factor of two, this example makes several simplifying assump-

tions:

1. The reactions occur at the high pressure limit, so variable lifetimes of excited states,

like in atmospheric ozone,16 would not be expected, and we can use canonical TST (eq

1) to estimate the rate coefficients.

2. Mass-dependent kinetic isotope effects for isotopic chlorine are negligible (< 5% change

in rate coefficient for non-hydrogen isotopes10) when compared to deviations expected

by doubling a rate coefficient, so they are omitted from this simple model.

3. Non-symmetry based mass-independent isotope effects, e.g. nuclear field shift and mag-

netic properties, are also negligible when compared to deviations expected by doubling

a rate coefficient,10 so they are also omitted from this model.

Suppose we start with a system of Cl atoms at a 37Cl abundance of α =
37Cl

37Cl+35Cl
. When

they finish recombining, we expect to have a system full of Cl2 molecules. If no kinetic

isotope effects occur, the products should be in isotopic equilibrium shown by reaction R1

with the equilibrium relationship given in eq 12.
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35Cl35Cl + 37Cl37Cl −−⇀↽−− 2 35Cl37Cl (R1)

Kc =
[35Cl37Cl]2

[35Cl35Cl][37Cl37Cl]
≈ σ3535σ3737

σ35372
= 4 (12)

Solving eq 12 for α, given isotopologue concentrations of [37Cl37Cl] = cα2 and [35Cl35Cl] =

c(1−α)2, results in isotopologue ratios [35Cl35Cl] : [35Cl37Cl] : [37Cl37Cl] ≈ (1−α)2 : 2α−2α2 :

α2. Note that this ratio is exactly the same as predicted by combinatorics if one randomly

chooses pairs of balls from a population where Pblue = α and Pred = 1− α.

These values can be compared with the products obtained from a kinetic model using

TST rate coefficients to see the impact of adding the extra symmetry factor. Reactions

R2-R4 show three chlorine recombination reactions using different isotopes of chlorine. The

symmetry numbers of the reactants, product, and transition state, σ, are used to find the

ratio of reaction rate coefficients, ki, using eqs 1 and 2. Here all the σ = 2 factors are from

rotational symmetry; the extra factor of two proposed by Pollack and Pechukas has not been

included.2

35Cl + 37Cl
35Cl···37Cl−−−−−−→ 35Cl−37Cl k2

σ = 1, 1 σ = 1 σ = 1
(R2)

37Cl + 37Cl
37Cl···37Cl−−−−−−→ 37Cl−37Cl k3 ≈ 1

2
k2

σ = 1, 1 σ = 2 σ = 2
(R3)

35Cl + 35Cl
35Cl···35Cl−−−−−−→ 35Cl−35Cl k4 ≈ 1

2
k2

σ = 1, 1 σ = 2 σ = 2
(R4)

If we assert that there is an initial system with 50% 35Cl and 50% 37Cl, eq 12 would

predict a product distribution of 25% 37Cl– 37Cl, 50% 35Cl– 37Cl, and 25% 35Cl– 35Cl based

on thermodynamics. From a kinetics perspective, this same product ratio occurs when k2 is
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twice as large as k3 and k4, which is caused by changes in the rotational partition functions

due to molecular symmetry. In this example, the transition states for reactions R3 and R4

are symmetric (σ = 2) whereas the one for reaction R2 is not (σ = 1), creating the difference

in rate coefficient.

This lack of enrichment caused by molecular symmetry agrees with previous analysis

which indicates that the difference in rate coefficients in reactions R2-R4 just represents

relative probabilities of forming symmetric and asymmetric molecules17 which cancels out in

the classical limit when determining fractionation and enrichment factors. Some compounds,

like O3, do achieve fractionation between symmetric and asymmetric isotopologues. However,

these observed enrichments are not caused by the symmetry factor discussed here. Instead

the observed small enrichments are likely due to other effects, such as tunneling.18

If the method of Ref. 2 is applied to reactions R2-R4, k3 and k4 would be doubled,

and all three reactions would have equal rates leading to a 33% accumulation of each Cl2

isotopologue. This would significantly favor symmetrical products and deviate from isotopic

equilibrium in reaction R1. Having an asymmetric transition state, described in Section S1 of

the Supporting Information, provides the same conclusion as for the chlorine recombination

system.

3.3 Enrichment Error

Given that substituting non-hydrogen isotopes typically modifies rate coefficients by only

a few percent,10 the introduction of a factor of two to some rate coefficients can lead to

significant errors at natural abundance. To quantify this error, we compare the change in

enrichment between reactants and products with and without the factor of two proposed by

Pollak and Pechukas.2

For the chlorine recombination reaction described above whose reactants have an isotopic

ratio of Rr =
37Cl
35Cl

, the rates of reactions R2-R4 without the factor of two, given by eqs 13-15,

can be used to find product enrichments.
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rR4 = kR4[
35Cl]2 (13)

rR2 = kR2[
35Cl][37Cl]≈ 2RrkR4[

35Cl]2= 2RrrR4 (14)

rR3 = kR3[
37Cl]2 ≈ Rr

2kR4[
35Cl]2= Rr

2rR4 (15)

A factor of two appears in eq 14 since the rate coefficient for reaction R2 is twice that

of reaction R4. Using eqs 13-15, the ratio of the nonstandard to standard isotope in the

products is

Rp =
37Cl
35Cl

=
rR2 + 2rR3

2rR4 + rR2

=
2Rr + 2Rr

2

2 + 2Rr

= Rr (16)

Since Rp is equal to Rr, no enrichment occurs without the factor of two suggested by

Pollak and Pechukas.

If the factor of two is applied, the rate coefficients of all three reactions R2-R4 are equal,

leading to the factor of two disappearing in eq 14. The subsequent eq 16 would become

Rp =
37Cl
35Cl

=
rR2 + 2rR3

2rR4 + rR2

=
Rr + 2Rr

2

2 +Rr

(17)

which does not simplify down to Rr indicating some type of enrichment error is created.

Since enrichment is defined as the ratio of sample to standard minus one, the change in

enrichment from including the error would just be a function of the standard enrichment,

Rstd and the original sample enrichment, Rr.

δproducts − δreagents =
1

Rstd

(
Rr + 2Rr

2

2 +Rr

)
− Rr

Rstd

=
Rr

2 −Rr

(2 +Rr)Rstd

(18)

Given a starting enrichment near the standard enrichment, Rr ≈ Rstd, eq 18 reduces to

(Rstd − 1) / (2 +Rstd).

Though the example here uses chlorine, this equation can be applied to different atomic

10



recombination reactions by using the corresponding Rstd. For 37Cl/35Cl, 13C/12C, 15N/14N,

and 34S/32S with Rstd of 0.320, 0.0111,19 0.0037,20 and 0.045,21 the enrichment errors from

Pollak and Pechukas’s doubling of the symmetry number are 293h, 491h, 497h, and

467h respectively. These predicted enrichments are much larger than typically observed

experimentally.10

This enrichment error is of similar magnitude to the 500h enrichments recently computed

to occur in S2 + S2 −−→ S4 and S4 + S4 −−→ S8.
22 This suggests that these vary large

enrichments22 associated with the X + X reactions might arise from a factor of two mistake

like that identified in this paper (though these reactions are more complicated than the

simplistic examples presented here; see Supporting Information S3). We suspect that in

reality the isotopic enrichment due to the reactions S2 + S2 and S4 + S4 is much smaller than

the recently reported value.22 This insight opens the field to investigate other explanations

for the anomalous sulfur enrichment in Archean earth.

In addition to the errors caused by estimating reaction symmetry in Refs. 2 and 22, a

similar factor of two error for B + B reactions can arise when doing kinetic Monte Carlo

simulations if the conversion from bulk rate coefficients to probabilistic rate coefficients is

not done correctly (see Section S4 of the SI for the proper implementation).

3.4 Non-isotopic Impacts

In addition to isotopic studies, a factor of two error in rate coefficients of B + B reactions

obtained from TST can create substantial changes in non-isotopic phenomena. This factor

can alter major product concentrations by over 15% in pyrolysis simulations of hydrocarbons

(shown in Section S2 of the Supporting Information). Even in the atmosphere, where many of

the reactions have been quantified experimentally, detectable concentrations of large peroxy

dimerization products,23,24 whose formation rate in models would typically be estimated

using TST, indicates that including an extra factor of two could also impact estimation of

how much a substance forms lower volatility products, affecting secondary organic aerosol
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formation.

4 Conclusion

• The interchangeability of identical reactants, which justified doubling the reaction sym-

metry number in Ref. 2, is already accounted for when determining the reactant con-

centrations.

• Including a factor of two in reaction symmetry number for identical reactants causes

thermodynamic inconsistency when applying transition state theory in both forward

and reverse directions.

• Adding a factor of two in reaction symmetry number for reactions with identical re-

actants causes unphysical predicted isotopic enrichments well over 100h for many

elements.

• For B + B reactions, the rate calculation method of Ref. 2 is incorrect; the method of

Ref 3 is correct.
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Overview of Supplemental Information

S1 Shows how the factor of 2 affects reactions with non-symmetric transitions states

S2 Evaluates the impact of applying a factor of 2 to B + B reactions on ethane pyrolysis

S3 Discusses the causes of sulfur isotope enrichment

S4 Clarifies the difference between the two methods used for defining probabilistic rate

coefficients in B + B reactions
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S1 Asymmetric B+B reaction

Reactions with an asymmetric transition state have more possible reaction channels than

reactions with symmetric ones, which could potentially affect how we treat isotopic reactions.

Here we use the asymmetric recombination of NCO radicals, which is analogous to propargyl

recombination important in aromatic formation.8 NCO radicals have two resonance forms,

•O–C–––N ←−→ O––C––N•, which allows a radical recombination reaction to occur with an

asymmetric transition state, giving an asymmetrical product, O––C––N–O–C–––N. There are

four possibilities for asymmetric radical recombination with two carbon isotopes, 12C and

13C, shown below.

•O−12C−−−N + •O−12C−−−N
O−−12C−−N···O−12C−−−N
−−−−−−−−−−−−−−→ O−−12C−−N−O−12C−−−N k5

σ = 1, 1 σ = 1 σ = 1
(R5)

•O−13C−−−N + •O−12C−−−N
O−−13C−−N···O−12C−−−N
−−−−−−−−−−−−−−→ O−−13C−−N−O−12C−−−N k6 ≈ k1

σ = 1, 1 σ = 1 σ = 1
(R6)

•O−13C−−−N + •O−12C−−−N
O−−12C−−N···O−13C−−−N
−−−−−−−−−−−−−−→ O−−12C−−N−O−13C−−−N k7 ≈ k1

σ = 1, 1 σ = 1 σ = 1
(R7)

•O−13C−−−N + •O−13C−−−N
O−−13C−−N···O−13C−−−N
−−−−−−−−−−−−−−→ O−−13C−−N−O−13C−−−N k8 ≈ k1

σ = 1, 1 σ = 1 σ = 1
(R8)

The symmetry numbers, σ, are used to find the ratio of reaction rate coefficients, ki,

using transition state theory (Equations 1 and 2 in the main text). These σ’s are from the
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rotational partition functions and do not include the extra factor of 2 proposed in some

literature.2,4 The four reactions are expected to have approximately identical rates, since the

symmetry numbers of reactants and transition states are identical across the reactions. The

only difference is in a heavy isotope which is not located at reaction center.

A 50:50 mixture of starting reactants, •O– 12C–––N and •O– 13C–––N, would yield the four

products with approximately equal concentrations. The two products with exactly one 13C,

from Reactions R7 and R6, together make up 50% of the total products in this system. This

would lead to 25% of products with no 13C atoms, 50% of products with one 13C atom, and

25% of products with two 13C atoms, as one would expect from combinatorics.

If a factor of 2 was added to reactant symmetries that had the same labeling, as proposed

in literature,2,4 the rate coefficients for Reactions R5 and R8 would be twice as big as those

for Reactions R7 and R6. This would lead to the fraction of products with no 13C atoms,

one 13C atom, and two 13C atoms to each be 33%. Like the chlorine recombination case, this

leads to much more isotope segregation than would be expected from random collisions or

kinetic isotope effects.

S2 Impact on ethane pyrolysis

Isotopic systems are not the only systems which could be affected by mistakes in rate coeffi-

cients. Large kinetic mechanisms, where many rate coefficients are estimated using symmetry

numbers, could also have a substantial impact. To quantify the effect of doubling the rates

of B + B reactions, the Reaction Mechanism Generator software package was used to create

an ethane pyrolysis model with the specifications of the example ‘minimal’ included in the

software package.25 This model was used to simulate pyrolyzing a mixture of 10mol% ethane

in helium at 1273 K and 2 bar for 0.1 seconds.

This model was then compared to one where each reaction involving identical reactants

had the rate doubled. The difference in predicted production of methane is shown in Figure

15



S1.

0.00 0.02 0.04 0.06 0.08 0.10
time (s)

0.0

0.2

0.4

0.6

0.8

methane
(mol/m3)

actual rates
doubled rates

Figure S1: The difference in methane concentration between the original model and the one
with doubled self-reaction rate coefficients.

The model with the doubled rates produced 19% more methane than the standard model.

This is caused by the methyl recombination reaction, CH3 + CH3 −−⇀↽−− C2H6, which had

twice the rate of the control in both forward and reverse directions. Despite not having two

identical reactants, the rate of reverse reaction ends up doubled since it is estimated from

the forward rate and equilibrium constant in common chemical kinetic solvers like Chemkin

and Cantera. The methyl radicals formed from ethane degradation then abstract a hydrogen

from other molecules to form methane.

Since the model only had a few reactions involving two identical reactants, the change in

other properties, like the overall ethane conversion, shown in Figure S2, is very minor.

S3 Symmetry analysis of S2 and S4 self-reactions

This section is intended for readers interested in more details about the causes of the appar-

ent symmetry effect in a 2017 paper published in Proceedings of the National Academy of

Science,22 which is referred to as ‘the PNAS paper’ in this section.

Symmetry effects on enrichment were noted in two reactions, SS + SS −−→ S4 and S4 +

16



0.00 0.02 0.04 0.06 0.08 0.10
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

ethane
conversion

actual rates
doubled rates

Figure S2: The difference in ethane conversion between the original model and the one with
doubled self-reaction rate coefficients.

S4 −−→ S8. Here we describe why we think these reactions should not cause nearly as much

enrichment as originally proposed. In both of these reactions, we first represent S4 as the

minimum energy acyclic form (i.e., C2v symmetry with σ = 2), which is separated from

another acyclic form by a small barrier as described in the PNAS paper. We then discuss

the case for cyclic S4 and for a non-rigid S4 which can switch between different structures

at room temperatures. We use S to represent the most abundant sulfur isotope and Q to

represent any other sulfur isotope. Like the original work, we assume that there is a very

low abundance of Q, so reactions between two molecules containing Q can be neglected.

S3.1 SS + SS −−−→ S4

The PNAS paper analyzes three reactions involving SS self-reaction, shown by Reactions R9

to R11 with symmetry numbers assigned based on the rigid and linear S4. Here we analyze

these three reactions using reaction symmetry described in Equation 2 of the main text and

then compare with what the PNAS paper suggested.

SS + SS
SS···SS−−−−→ SSSS k9

σ = 2, 2 σ = 2 σ = 2
(R9)

17



SS + SQ
SS···SQ−−−−→ SSSQ k10 ≈ k5

σ = 2, 1 σ = 1 σ = 1
(R10)

SS + SQ
SS···QS−−−−→ SSQS k11 ≈ k5

σ = 2, 1 σ = 1 σ = 1
(R11)

Since there is a loss of symmetry in both a reactant and the transition state in the labeled

Reactions R10 and R11 relative to Reaction R9, all three reactions have a reaction symmetry

number of 2. Since heavy-atom kinetic isotope effects are small, the rate coefficients for all

three reactions would be approximately equal, and no enrichment would be expected from

symmetry, which corresponds to the relative rates used in previous models, which the PNAS

paper discusses.22,26

One hypothesis in the PNAS paper states that the rates of Reaction R9 should be twice

of either Reaction R10 or Reaction R11 by arguing that metastable S4 has all the con-

formational possibilities present in forming SSSQ and SSQS. This leads to counting both

indistinguishable reaction pathways that form SSSS.22 The sulfur system discussed in the

PNAS paper is rather complicated and does not use exactly the same methods for estimating

rate coefficients as discussed in the main text of this manuscript. However, it appears to us

that the PNAS paper made a similar factor of 2 mistake as one would make if one used the

Pollak and Pechukas method.2 Our paper has shown that rearrangements which result in

indistinguishable conformations do not lead to an increase in reaction symmetry number or

a change in the final reaction rate. Since this rearrangement should not change the kinetics,

the rate coefficient for formation of isotopically enriched SSSQ and SSQS should be equal to

that of SSSS.

The PNAS paper also notes that S4, SSSQ, and SSQS are not rigid molecules, which

can make the rigid rotor approximation for finding the symmetry number incorrect. Using

this non-rigidity, the PNAS paper arrives at a hypothesis that the partition functions for S4,

SSSQ, and SSQS are equal, which appears to result from a decrease in the symmetry of S4.
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Looking at this viewpoint from the perspective of reaction symmetry, we do not obtain the

same result, and find our result consistent with previously reported rate coefficients.

Contrasting the argument in the PNAS paper, non-rigid molecules can still have sym-

metry.13 If there is an effect of non-rigidity on molecular symmetry, it would likely increase

the number of symmetry operations, as is the case with many non-rigid compounds like

NH3 and H2O2,
27 lowering the corresponding molecules’ partition function. Using NH3 as

an example, NH3’s most stable form is non-planar, but since it can undergo low barrier

inversion tunneling, it switches between its two non-planar forms by going through a planar

transition. With this inversion tunneling, the symmetry properties of NH3 become identical

to that of the planar BF3,
27 increasing the number of symmetry operations. Similarly, S4’s

most stable conformation is not cyclic, but it can interconvert between two forms through

a cyclic transition. Counting this non-rigid effect would likely give S4 the same symmetry

operations available in its cyclic structure, increasing its symmetry number as well.

If we analyze S4 as non-rigid, using the similar analogy to NH3 (or equivalently analyze

the direct cyclic formation, which creates the same effect), S4 would have a symmetry number

of 8, and SSQS ←−→ SSSQ, which are no longer distinct species, would have a symmetry

number of 2, with their corresponding transition states having symmetry numbers of 4 and

1 respectively. This would give the labeled reaction twice the rate constant of the unlabeled

reaction, as shown by Reactions R12 and R13.

SS + SS
S S

SS

−−−−−−→ S S

SS

k12

σ = 2, 2 σ = 4 σ = 8

(R12)

SS + SQ
S Q

SS

−−−−−−→ S Q

SS

k13 ≈ 2k8

σ = 2, 1 σ = 1 σ = 2

(R13)
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To compare with the rigid analysis, we can count SSQS and SSSQ as separate species

by halving the combined species’s partition function, halving the rate constant of Reaction

R13, and creating a duplicate reaction forming the other structure, as is done in the PNAS

paper. This would lead to three reactions with equal rate constants, which is the same as

using the rigid structures in Reactions R9 to R11. Using this analysis in this instance, the

rigid and non-rigid structures lead to the same relative rate constants since the non-rigidity

proportionally increases the symmetry numbers of these three isotopologues.

S3.2 S4 +S4 −−−→ S8

For the set of reactions forming S8, the PNAS paper uses three reactions, S4 + S4, S4 +

SSSQ and S4 + SSQS, and mentions that equal rate coefficients would correspond to no

mass-independent fractionation.22 Looking more deeply at this reaction may indicate more

complexity. Instead of three reactions, we represent this system as a set of 5 elementary

reactions which form a linear eight sulfur compound. The linear S8 compound, which has

been well-characterized,28 would likely form before any ring closure occurs, so this would

more accurately represent elementary kinetics. The set of five reactions are shown below.

SSSS + SSSS
SSSS···SSSS−−−−−−→ SSSSSSSS k14

σ = 2, 2 σ = 2 σ = 2
(R14)

SSSS + SSSQ
SSSS···SSSQ−−−−−−−→ SSSSSSSQ k15 ≈ k8

σ = 2, 1 σ = 1 σ = 1
(R15)

SSSS + SSSQ
SSSS···QSSS−−−−−−−→ SSSSQSSS k16 ≈ k8

σ = 2, 1 σ = 1 σ = 1
(R16)

SSSS + SSQS
SSSS···SSQS−−−−−−−→ SSSSSSQS k17 ≈ k8

σ = 2, 1 σ = 1 σ = 1
(R17)
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SSSS + SSQS
SSSS···SQSS−−−−−−−→ SSSSSQSS k18 ≈ k8

σ = 2, 1 σ = 1 σ = 1
(R18)

Based on standard transition state theory used in other parts of this work, which results

in no mass-independent fractionation, Reactions R14 to R18 should have equal rates.

If the set of five reactions is lumped into the three reactions used in the PNAS paper, the

two reactions involving a non-abundant isotopes, SSSS+SSSQ and SSSS+SSQS, would have

a rate coefficient twice that of the reaction with only 32S isotopes. Applying this difference

in rate coefficients to Equation 14 in the PNAS paper22 leads to no enrichment.

Overall, this section provides multiple perspectives which indicate that the large en-

richments described in the PNAS paper may have been due to some factor of 2 mistake in

estimating molecular symmetry leading to similar enrichment errors as found by our analysis

of the method by Pollak and Pechukas.2

S4 B+B treatment in kinetic Monte Carlo

There are two ways to formulate the conversion from bulk kinetic rates to stochastic rates

for B + B reactions, and both are internally consistent. However, if one is half implemented,

then an erroneous factor of 2 would be created for rate constants. This section describes the

background and difference between the two methods of implementation. We first discuss how

the A + B reaction was originally formulated by Gillespie, then describe how he implemented

A + A reaction, and conclude with a valid alternative representation used in other work.

In the original Gillespie papers,29,30 he formulates the rate coefficient, c, for a stochastic

reaction as the average probability that a unique combination will react in a given system

per time. The total number of reactions over a given time dt in a volume V for a reaction

with reactants A and B is ABcdt/V , given A and B are the number of reactants A and B

respectively. For an ensemble of systems, the rate can then be described by the average,

〈AB〉cdt/V . Comparing this with the deterministic rate k〈A〉〈B〉dt/V 2 yields the relation-
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ship k = V c〈AB〉/〈A〉〈B〉. At the deterministic limit, where 〈AB〉 = 〈A〉〈B〉, c = k/V .29,30

Gillespie discusses this framework for a B + B reaction. The stochastic description of

reaction rate becomes (B(B − 1)/2!)cdt/V . The factor of 2 prevents the doubling counting

of pairs of molecules. When the ensemble of stochastic rates is set equal to the deterministic

rate coefficient, we get k〈B〉2/V 2 = 〈B(B − 1)〉cdt/2V . At the deterministic limit for a

Poisson distribution, where 〈B〉2 = 〈B(B − 1)〉, this comes out to c = 2k/V .30

One interesting thing to note about Gillespie’s formulation is that the factor of 2 which

is used in converting the k to c is then eliminated when going from c to the probability

of reaction, with the addition of 1/2. Some people have eliminated both factors entirely,31

which is also a valid way of implementing kinetic Monte Carlo, though it changes Gillespie’s

definition of c.

If one were to only use the factor when determining c from k or when going from c to

the reaction rate, the B + B reactions in that system would be off by a factor of 2, leading

to errors similar to those discussed in this paper.

Bibliography

(1) Karas, A. J.; Gilbert, R. G.; Collins, M. A. Rigorous Derivation of Reaction Path

Degeneracy in Transition State Theory. Chem. Phys. Lett. 1992, 193, 181–184.

(2) Pollak, E. L. I.; Pechukas, P. Symmetry Numbers, Not Statistical Factors, Should Be

Used in Absolute Rate Theory and in Brøsted Relations. J. Am. Chem. Soc. 1978,

100, 2984–2991.

(3) Bishop, D. M.; Laidler, K. J. Symmetry Numbers and Statistical Factors in Rate The-

ory. J. Chem. Phys. 1965, 42, 1688–1691.

(4) Fernández-Ramos, A.; Ellingson, B. A.; Meana-Pañeda, R.; Marques, J. M. C.; Truh-
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