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ABSTRACT

Topology optimization is a field extending to the built environment. Traditionally, optimization
focuses mainly on monolithic structures but recently, developments have been made toward
determining algorithms for multi-material optimization. A preexisting algorithm is modified to
broaden the type of design possible with the method. The algorithm uses a three-phase design
problem, a void phase and two other materials, and implements Heaviside Projection Method
(HPM) and Rational Approximation of Material Properties (RAMP) method and employs the
Method of Moving Asymptotes (MMA) as the gradient based optimizer. Three distinct object
projection shapes are proposed, a horizontal, a vertical and a diagonal. The horizontal shaped
inclusion enables designs such as, longitudinal reinforced concrete beam design of variable
length bars. The vertical shaped inclusion enables designs of columns. The diagonal shaped
inclusion allows for design of rebar within more slanted sections of optimized topology. The
proposed algorithm is tested on two examples, the cantilever beam and the MBB beam, showing
that it works as expected.

Thesis Supervisor: Josephine Voigt Carstensen
Title: Lecturer, Civil and Environmental Engineering and Architecture
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Introduction

Bendsoe and Sigmund [1] describe topology optimization as finding an optimum layout

of structure by determining the features, such as element connectivity or number and shape of

holes, of solid structure in a domain. It is a design approach that uses mathematical algorithms

and computational methods to determine the best possible design in a domain subjected to

constraints. It allows engineers to develop innovative designs because it does not require an

initial guess from the designer. Topology optimization is a growing field currently being

extended to the built environment. Examples include Stromberg et al. [2], that used topology

optimization to design high-rise exoskeleton diagrids. Dombernowsky and Sondergaard [3] have

also used topology optimization in the design of a reinforced concrete frame, and Jewett and

Carstensen [4] discuss the design and constructability of topology-optimized concrete beams.

The recent interest in optimizing construction elements and larger civil structures stems

from the goal of decreasing the amount of material used to build infrastructure in the world

today. The built environment is said to be a major cause of various environmental problems,

including excessive consumption of global resources and pollution from construction as well as

material production [5]. According to Gonzilez and Navarro [6], the construction industry is

responsible for almost 50% of energy costs in developed countries. The material volume used in

building construction needs to be reduced due to the amount of emissions that buildings are

currently approximated to release. De Wolf [7] outlines the impact that structures have on the

environment, specifically in term of emissions, and how this knowledge should improve the

current approach to the design of buildings.

While topology optimization is an excellent tool being used to achieve the previously

stated goal, it is currently most focused on monolithic, single material, structures. Few existing

algorithms account for the vast array of multi-material structures, like reinforced concrete beams

or fiber-reinforced composites, used in construction. Multi-material topology optimization has

been proposed [8,9] and methods to implement the discrete nature of such structures within the

design framework have been developed [10,11]. Koh and Guest [10] worked toward this

extension of traditional structural topology. optimization to multi-material structures by

considering implementation of discrete object projection (DOP) using prescribed fixed shape

circular primitives as structural inclusions. A primitive here refers to a unit of the discrete object.

In the case of a circular primitive, this consists of the discrete object itself enclosed in the
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secondary material that determines the spacing between objects. For example, this could be the

cross-section of a reinforced concrete beam with the circular discrete objects as the circular

reinforcement bars and the minimum spacing between objects defined by the required rebar
spacing used in practice. In this case, the algorithm proposed by Koh and Guest [10] would allow
simultaneous design of the concrete shape and the rebar placement within the section.

The purpose of this thesis is to develop an algorithm that will add some more complexity

to the framework proposed by Koh and Guest [10] by changing the prescribed shape and
orientation of the previously circular primitives. The idea is to allow variation in shapes

proposed for the primitives to aid the development of more constructible topology-optimized

solutions. The algorithm aims to produce continuous elements of stiffer material and varying
length embedded within the optimized structure instead of the prespecified inclusion shapes as in
the results previously obtained [10]. The algorithm proposed in this thesis thus allows for design

of long discrete objects of varying lengths which for instance can be beneficial in the design of
longitudinal rebars.

The remainder of this thesis is organized as follows: A literature review is given, showing
the context and motivation behind this work and the methodology section discusses the
mathematical models used to generate the algorithm. This section is further divided into problem
formulation, objective function calculations and sensitivity analysis. The proposed framework is
demonstrated on the topology optimization benchmark problems of a cantilever and a simply
supported beam and the obtained results are discussed. The final section discusses the benefits of
this approach and potential areas for future extensions.

Literature Review

Structural optimization, the process of making an assembly of material carry load in the
best way [12], is not a new concept. Through past experience and intuition, the trabeated
architecture of ancient Greek temples consisted of beams with members as long as they could be
and cross-sections largest at midspan [13] indicating an understanding of structural efficiency.
Similarly, in the design of the Pantheon, the use of lighter weight concrete as it approaches the
points of least stress [13] shows its designer was thinking of ways to place material only where it
was needed. The use of formal optimization, which involves the use of mathematical models to
predict optimal conditions based on some criteria that must be satisfied, is a more recent
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development. Formal optimization presents itself in a few different ways. One of theses is size

optimization [1] which consists of finding the best size for elements within a domain of preset

connectivity, that is the arrangement of the structure is predetermined and only the local element

sizes have the potential to be changes. Another is shape optimization [1] where the elements of a

structure have a predetermined size but the final placement of those elements within the domain

is allowed to change. An issue associated with the shape or size optimization is the need for a

good initial guess in one aspect of the design, whether the shape, the arrangement or the sizes of

the elements.

Topology optimization, which involves the simultaneous optimization of shape and size

of a structure, is a step toward solving this problem. Within topology optimization, there are two

main types, truss topology optimization and continuum optimization. Truss topology

optimization refers to optimization of a domain containing a fixed set of nodal points connected

by truss elements, creating a ground structure, which have variable cross-sectional area as the

design variables [1]. On the other hand, continuum optimization is based on continuum finite

element meshing; instead of the truss elements described above, it utilizes small fractions of the

whole volume of the domain [1]. Within the density-based approach, the optimal design is

determined by assigning a 0 or 1, i.e. void or material, value as the density to each element,

where density is the design variable in this method. The common theme in the work done thus

far is the homogeneity of the materials used in optimization. As part of the simplification,

material properties, such as Young's modulus, of all the elements are typically assumed to be the

same, or at least constant within a single element. In reality, many structures are constructed by

the combination of material, for instance, reinforced concrete beams, fiber reinforced composites

to name a few.

Several researchers have proposed multi-material topology optimization as a means to

improve applicability of topology optimized designs in practice. Bendsoe and Sigmund [8]

proposed a methodology to implement material interpolation between two or three material

structures. Gaynor et al. [9] proposed a hybrid truss-continuum optimization technique to

simultaneously optimize the concrete and required tensile steel rebar in reinforced concrete.

Zhang et al. [14,15] proposed an algorithm for multi-material optimization of truss structures

using the ground structure method and implementing level sets.
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In practice, most multi-material structures have a discrete nature associated with one of

its phases. Again, an example is reinforced concrete, where the concrete is distinct from the steel

reinforcements bars. To ensure that the discrete nature of these structures is accounted for within

the algorithm, the discrete object projection method was developed. Guest [16] presents this

topic in detail and delivers an algorithm to optimize object layouts within a user defined

structure.

As mentioned, Koh and Guest [10] developed an extension that performs topology

optimization such that both structure and layout of circular inclusions is designed

simultaneously. This paper seeks to extend the work Koh and Guest began. The methodology is

taken directly and modified to fit new shapes of desirable discrete objects.

Methodology

Setting up the topology optimization problem takes a few steps. First, the design domain

needs to be determined. In the context of topology optimization, that refers to the possible

support conditions of the domain, the applied loads, and potential design restrictions, for instance

structural weight [1]. Next is to define the problem formulation, including determining the

objective function, the specific constraints for the problem and the method of optimization to be

utilized. This work discusses the development of an algorithm that optimizes a structure using

two materials. As its basis, it uses density-based continuum topology optimization of a structure

with compliance as the objective function and material volume as the constraint [17]. A

fundamental requirement for any structure, optimized or not, is equilibrium, and as a result, the

finite element method will be used to ensure static equilibrium. The typical compliance objective

problem formulation used, is given in Eq. (1).

minimize C = FT d

subject to KGP)d = F

pe ()ve < Vmax for i = 1, ... , N
VeEn

0 (ib5i max ViE 1

where C is compliance, F is the global vector of the nodal forces and d is the global vector of

nodal displacements. K is the global stiffness matrix, pe is the element phase indicator, Ve is the
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element volume and Vmax is the overall structural volume constraint. (Pi is the design variable

assigned to each element in the domain and Pmax is the upper bound on the design variables.

Here, pe is the variable that indicates whether an element is void or contains material so

it can take only a value of 0 and 1. The stiffness of an element, K', is determined by multiplying

the element stiffness if material is fully present, K', with the density variable, p'. In order to

enforce the 0-1 binary, a penalty function is used. Typically, the Solid Isotropic Material with

Penalization (SIMP) [18] method or Rational Approximation of Material Properties (RAMP)

[23]. Both methods work by making the intermediate densities inefficient causing the optimizer

to choose the more efficient densities.

Using a penalty function typically causes the optimizer to produce results with checkerboarding.

To avoid checkerboarding, the density variables are filtered [18]. The filtering is done by

introducing a different variable, (p, which is used as the design variable. (P is then filtered to

obtain p'. These filters make each element's density dependent on the density of the elements

surrounding it thereby preventing elements in the same vicinity from continuously varying

between void and full. There are multiple ways of doing filtering, for an in-depth view, see the

paper Topology Optimization approaches by Sigmund and Maute [19]. The algorithm in this

work uses the Heaviside Projection Method (HPM).

The problem formulation, developed by Koh and Guest [10], utilized in this paper is

given below in Eq. (2). It is derived from the problem for a typical compliance objective problem

as described above in Eq. (1). It combines the DOP optimization method outlined by Guest [16]

with the tradition compliance minimization problem. However, to achieve the optimization of the

topology while simultaneously optimizing the placement of discrete objects within the structure,

the element density pe is defined as the function of two variables, pr, describing a topology

phase and p', that refers to an inclusion phase. For instance, a reinforced concrete beam, where

the "topology" refers to the concrete and the "inclusion" the stiff steel rebars enclosed within it.

The variables controlling the topology p' are essentially the same as pe in Eq. (1). The discrete

object densities p' are equal to pe from [16]. Like pe, the set of desired values for pr and pe is

[0,1]. A second volume constraint is added to the problem to give the designer control over the

total mass of the discrete objects to be included. The updated problem formulation is given in Eq.

(2).

minimize C = FT d (2)
(PD,4T
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subject to K(PD, T)d = F

pT(0 T)ve < VT for i = 1,...,N
VeEn

PD (#PD TPrT S f 0r i = 1, ... , N
Veefl

0 5 4)i ! max Vi E fl

where C, F, d, K, ve I(i and Omax are as described above, OD, (T are the inclusion and topology
design variables respectively, pr is the topology phase variable, pe is the inclusion phase
variable, VT is the maximum allowable volume of material in the structure and Vs is the
maximum allowable volume of stiff material.

Because of the distinction between topology and inclusion densities, the number of

design variables doubles. Now each element has a variable assigned to those aforementioned

phases. The densities are determined by filtering the design variables. The filtering is done twice

for each element; one for the topology design variables and once for the inclusion design

variables. The element density, pe, is determined by combining these two projects using
pe(1 + pe)/2. All the steps taken here are the same as the ones taken by Koh and Guest [10]
except the inclusion filters are modified to give the algorithm more breath on the kinds of
solutions that can be achieved. The following subsections will describe the methods used to
calculate the objective function and constraints as well as their sensitivity analyses.

Filtering for Circular Inclusions

The functions showing the inclusion filter function that separates the compliant enclosure
from the stiff inclusion are described as follows. These equations were adapted mainly from Koh
and Guest [10].

The implementation of designing discrete objects with topology optimization is done by
defining two sets. A local set is defined as NL' and an enclosure set by NE. The local set is
representative of the discrete objects to be inserted in the topology. The enclosure set is
necessary to prevent the discrete objects from overlapping and provides the designer with control
over the minimum spacing between objects. These sets are shown in Figure 1 and given by Eq.
(3).

14
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Figure 1. Circular Inclusion Primitive that consists of a circular object
(red) of radius rmin, an enclosure (green) that controls the minimum

object spacing tE and a void (blue) that is not affected by the element e

i E NL ifI1X-II rminD

i E Ne if rminD X II!rminD + tE (3)

where xi is the location of the design variable in question and ye is the centroid of element e.

The combined discrete object element phase, pD, can indicate one of two material phases; (i) the

enclosure phase that has a compliant material, or (ii) the inclusion phase that has a stiff material.

In Fig. I the compliant phase is displayed as green and the stiff phase is red. The combined

discrete object phase is determined by Eq. (4) [10,11,16].

e p(2 - pe)
eP L 2 (4)pD ~ 2

where, pf indicates the inclusion or local phase and pe indicates the enclosure phase. The values

of these local and enclosure phases are calculate using the heaviside projection method [20] as

shown in (5).

e YL4(OD)
f = 1 - e-fL ULD) + e-f3Pmax

L max (5)

p= 1 - eOEE D) + -Emax

Omax

where flL and /3 E are the heaviside exponents for the local and enclosure phases respectively. The

density filter is used to find ep nd (D) that are the filtered design variables [21,22]. It

forces an elements final density value to be dependent on the value of the elements surrounding

it. Each elements density is therefore determined as a weighted average of the design variables
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A1

close to it. The values considered close are determined from the local and enclosure sets
described earlier (see Eq. 3).

S i C-Ne (PDJWL(Xi - je
eL= XeNf eWL(Xi - je)

Z i C N L_ y e )( 6 )
e iENe 4DiWE(Xi- (6)
eE~E e>NWE (Xi - X)

where bDi is the design variable related to enclosure phase, WL (Xi - e4) and WE(Xi ~e are
the weights assigned to all design variables as a function of the design variables in question. The
set describing the variables of interest per element, N , is given below, shown in Figure 2 and Eq.
(7).

Figure 2. Topology Filter Region consists of a circular region (green) of
radius rminT that controls the minimum length scale of the structure and

a void (blue) that is not affected by the element e

iENj if NxT -L |I;rminT (7)

where xi and ye are the same as described above and rminT is the user defined minimum length

scale of the topological feature. It can for example be determined as the smallest sized element
manufacturable. The element densities indicating the topology phase, pe, is determined using
heaviside projection as well:

= 1 - e-TOT) + e- -T'max (8)
P max
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where PT is the heaviside exponent relating to the topology. Pr (OT) is the filtered topology

design variable, determined as a weighted average of neighboring elements.

I O 'T,LWT (Xi - 3e)
er = _E(9

T i e~ WT (Xi - 3ee)(9

where T,i is the topology design variable, and wT(xi - 3e) is the weight assigned to all design

variables as a function of the design variables in question. It's given for all phases as described in

Eq. (10).

0 otherwise(

where R can be L, E or T.

The combined stiffness of each element, Ee, is a function of both the inclusion and the topology

design variables, OD and OD, respectively. It is given by Eq. (11) that uses the multi-material

formulation suggested by Bendsoe and Sigmund [8].

Ee(PD,(PT) = pTPT)(Ej + pe(#D (E2 -E 1 )) (11)

where E and E2 are the varying young's moduli for the compliant and stiff phases. Where E is

the stiffness of the concrete and E2 is the stiffhess of the steel rebar for a reinforced concrete

section.

Every element will be assigned on of the three aforementioned phases (void, topology,

inclusion) displayed in Figure 1 and Figure 2. The algorithm is defined such that the optimal

topology is determined, and then stiffer material is efficiently included within the topology. As a

result, the stiff material is prescribed to necessarily fall within the topology. To enforce this, the

density function in Eq. (11) always results in 0 if the topology phase, pe, is 0.

When an element has no inclusion, i.e. pe = 0, the element stiffness, E, is El, the

compliant material stiffness. If an element does have inclusion, i.e. pe = 1, E resolves to E2 , the

stiffness of the stiff material. As determined based on Eq. (4) with values summarized in Table 1

below, pD can have a value of 0.5 which indicates a mixed-phase stiff and compliant material. In

order to achieve the desired binary, the element stiffness, Ee, is calculated using a penalty

function on the topology and inclusion phase variables. The penalty function used in this work is

the RAMP method [23]. To prevent matrix singularity and other problems associated with zero

value pe, a small number, P is added [24].
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e /
Ee ( D TOT) E 1 + D ( (E 2 - El) + pe (12)(O, T)=1 + 17(l _ p er) 1 + 17(l - p (e) " mi

Table 1. pD value summary table for topology optimization of structures with discrete
inclusions. Reproduced from Koh and Guest [10]

Pe Pe pD Material Phase

0 0 0 Compliant

0 1 0 Compliant

1 0 1 Stiff

1 1 0.5 Mixed

To improve efficiency and decrease complexity of the problem, the nested method is

adopted. Here, the equilibrium constraint, Kd - F = 0, is embedded within the compliance

function. This means in every iteration, the displacement, d, is calculated as, KIWF before

multiplying it with the transpose of the force vector to determine the structures compliance.

Though optimizing multi-material structures with varying young's moduli, the stiffness matrix is

determined first by assigning an arbitrary constant young's modulus to every element and then

calculating an initial stiffhess, Ke [25]. This stiffness is multiplied by the stiffness factor, E ,

determined in Eq. (12) to obtain the element stiffness.

= Ee(OD, T)KO (13)

Sensitivity Analysis

As with any density-based topology optimization problem that is solved using a gradient

based optimizer, the sensitivities of the objective function and the constraints are required. The

following equations will show how these values are determined for the algorithm described

above. Since there are two design variables, the sensitivity of the objective is taken as a partial

derivative with respect to both:

ac a- c 19pI,

= I D Vi E OPD (14)
veen D
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aC aC Opf
aP a(I)T'i Vi E 'T (15)

VeET

As shown above, these are determined using the chain rule. The objective function

sensitivities can be calculated using the adjoint method [1,12]. The partial derivative of the

compliance with respect to the phase densities is given in Eq. (16).

ae -d d (16)
apRpR

where R is D or T. The partial derivative of stiffness with respect to the phase densities is given

in Eq. (17).

aK E*

ae K (17)

The partial derivative of stiffness factor with respect to the phase densities is given in Eq. (18)

and are determined by direct differentiation of Eq. (12):

DE 1 +0 7pD
El + (E 2 - E()ape (1 + 71(1 - pe))2 1 + 17(l - pe)

e Eep 1+r (18)
- PT 77 -(E2- El)ep3 1 + 17(1 - pe) (1 + 17(1 - pe)) 2 2

The sensitivity of the filtered variables with respect to the phase densities is derived using the

chain rule and given in Eq. (19)

ape 1 api e peD__ -p _ __ e E (19)-= - (2 - p) -pl (9
a PD,i 2 ( (J(PDJ a pOD

The partial derivatives of the local and inclusion phase densities are given by differentiating the

heaviside projection equations in Eq. (5).

_ _ _ _ _e ~ R R_ _D_ _ g - R ' m a x " _ _

43DJ= fR!R R(PD) + Omxe-JRPa / 9 (20)
a$D~~i max Di

where R is L or E. The sensitivity for the filtered enclosure variables, ye, using a uniformly

weighted function, are w = 0 or 1, is in Eq. (21).

a'D,l yiee) (21)

where R is the same as listed above. A similar expression for the topology specific density

sensitivities is given in Eq. (22).
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T__ -flTMI't) eTkmax"P
= }Te TT)+ e (22)

L0TJi Omax 4TJ

Likewise, the inner partial derivative for the filtered topology design variable, ptr, is given in Eq.

(23).

S 1(23)

' T,i e r WT(Xi -ye (

Optimization Method

This algorithm utilizes the method of moving asymptotes (MMA) as the gradient-based

optimizer [26]. The continuation method is used where the RAMP exponent, rl, varies from 0

and to 40 and the value of the heaviside exponents, J, varies from 5 to 50. All projections use the

same p value. Both variables change over 12 iterations.

Cantilever Beam Design

This test case is a simple cantilever beam with a single gravity load applied on the far end

at mid-height. Shown in Figure 3 with length, L, at 40 units, height, H, at 25 units, thickness, t, at

1 unit, and load, P, at 10 units. The finite element mesh used is 160 x 100. The minimum

inclusion scale, rmnD is 0.25 units, the minimum distance between objects, tE, is 0.5 units and

the topology length scale, rminT, is 0.75 units. The maximum volume of material, VT, is 50% of

V, with a maximum inclusion volume, Vs, of 10% of V for the first example and 7.5% for the

subsequent ones. The Poisson's ratio, v, is 0.3, initial Young's modulus, E, is 100 with material

young's modulus factors, El and E2, at I and 3 respectively. The design variable upper bound,

9max, is 1.

P

H

L

Figure 3. Cantilever Beam Design Domain
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Figure 4 shows the solution obtained for the conditions stated above. Based on these results, the

replicated algorithm appears to work the same as the original. Toward the areas of higher stress

in a cantilever beam, it does have more trouble separating inclusions and hence fulfilling the

spacing requirement. This was also observed in the original work [10]. The obtained compliance

for the design in Fig. 4 is 32.76.

~6.I4+ ++++ 4. 4+ 4-

L-+ +.:~.4

Figure 4. Cantilever Beam with Circular Inclusions at 10% Volume ratio

Figure 5 shows a cantilever design obtained with a smaller inclusion mass allowed. The

compliance is not surprisingly increased to 33.76. As expected, the algorithm placed stiff

material around the

.4. +++++t '7

Figure 5. Cantilever Beam with Circular Inclusions at 7.5% Volume
ratio
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Extending Discrete Object Filters to Allow New Inclusion Shapes

As stated earlier, the purpose of this thesis is to develop an algorithm that allows for long
variable length discrete objects using different shape primitives. To achieve this, only the
discrete object filter defined in the algorithm needs to change. Three distinct object filters are
proposed in this work; horizontal inclusions, vertical inclusions and diagonal inclusions sloped at
an 450 angle. The next subsection discusses the changes this prompts to the topology filter. The
following three subsections discuss the herein suggested enclosure filters.

Topology Filter

As will be seen in the following sections, the newly proposed inclusion have square outlines.
Though the shape outline of all the proposed primitives is square, the topology filter needs to
stay circular in order to preserve the smooth curves along the boundary of the topology solution.
The topology region is determined as described in Eq. (7) with an added restriction on rminT

given in Eq. (24). This ensures the inclusion geometry fits within the minimum length scale.

Oe

Figure 6. Topology Filter Region consists of a circular region
(green) of radius r,,in that controls the minimum length scale of
the structure and a void (blue) that is not affected by the element e

rMinT ! (rmin + t E 24)
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Horizontal Primitives Filter

The herein presented horizontal primitives indented to aid longitudinal beam design. It

allows the beams to be designed with long discrete elements of varying length. By freeing up

both ends of the enclosure, the discrete objects are allowed to be overlap end-to-end.

r +tE E

tE

N rmin

tE

ri + tE

Figure 7. Horizontal Inclusion Primitive consists 0fa horizontal
rectangular object (red) of radius rmin, an enclosure (green) that
controls the minimum object spacing tE and a void (blue) that is

not af/fcted by the element e as in Figure 1

Figure 7 shows the local and enclosure phases for a new horizontal primitive. The

neighborhoods are now determined using Eq. (25).

- e f f, - rminD +tEi C -N L I y - y e I ! ; r , ,( 
5

i E NE if I_ rmjnD+tE
E rminD< y, - yeI< rmjnD+ tE

where xi and ye are the x-coordinates of the design variable and the element respectively, and yi

and ye are the y-coordinates of the design variable and the element respectively.
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Figure 8. Cantilever Beam with Horizontal Inclusions

In Figure 8, the solution to the cantilever design problem with longitudinal inclusions is

displayed. The optimizer places the inclusions in the regions of higher stress in the cantilever

beam, around the supports and point load. In this case, compliance decreased drastically to

29.83. This is as a result of the horizontal inclusions placed at the point of highest moment and

with the inclusions continuous in the direction reactions are expected.

Vertical Primitive Filter

Some design domains, including column design problems, would need stiff material

designed in the vertical direction. Like the horizontal filter, the vertical filter has no compliant

material on the top and bottom to allow material to lengthen through the structure.
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1~am~k rmin
te

Irmin +tE

Figure 9. Vertical Inclusion Primitive consists of a vertical rectangular object
(red) of radius rmin, an enclosure (green) that controls the minimum object

spacing tE and a void (blue) that is not affected by the element e as in Figure ]

The vertical filter, displayed in Figure 9, is determined by interchanging the x and y

regions for the intervals determined for the horizontal filter in Figure 7 given in Eq. (26).

I - if I X minD
ieE ( yyIe 1 miD+ tE

-e (26)
i E Ne if + tE

. I yI rminD + tE

Il hI I

Figure 10. Cantilever Beam with Vertical Inclusions

Figure 10 shows the results obtained from the cantilever beam example described above

using vertical filters. The optimizer places material around the load and supports in this case as

25
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well but the compliance remains similar to that of the circular inclusions. The compliance is
33.16 in this case. This is because as the reaction lines, which are horizontal approaching the
supports, are continually interrupted by compliant material induced by the minimum spacing
between inclusions.

Angled (45Q) Primitive Filter

The angled filter is useful because structure may be slanted. Ideally, the inclusions would
fit parallel to the portion of structure they are in, and thus be able to rotate. This particular filter
does not have the capacity to achieve that yet, but is part of a building block to get there.

Figure 11. Angled Inclusion Primitive consists ofan angled
rectangular object (red) qf radius rmin, an enclosure (green) that

controls the minimum object spacing tE and a void (blue) that is not
qffected by the element e as in Figure 1

The angled filter interval was determined using the equation of a line. After inspection,
the stiff inclusion was determined to be the elements whose vertical distance, from a line drawn
from the specific element at a desired angle, 6, was less than or equal to the minimum radius,

rminD, this is expressed by the intervals given in Eq. (27).

JAY - AX * mI < rminD
e cos 6iNL f A x rminD + tE

m - cos6

rminD rminD + tE (27)

ieN if cos 0 cos 0
A x rminD + tE

m - cos0
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where m is the slope of the boundary line of the inclusion calculated as the tan of the angle from

positive x-axis.

m = tan 6

Ax = X, - ke

Ay = y, - ye

(28)

Figure 12. Cantilever Beam with Diagonal Inclusions

Figure 12 shows the 450 inclusions solution for the cantilever design problem. Just as the

previous examples, the optimizer places the stiff material around the supports and the load. Here,

near the bottom support, it appears the inclusions "walks over" so it goes from the farthest edged

into the slanted member. This reaction occurs as a result of the inclusion wanting to fall within

the slant. A similar situation occurs on the far end as well. The compliance in this case is 32.49.

The solutions for the different examples mentioned are summarized in Table 2.

Table 2. Cantilever Beam Results Summary

Inclusion Shape Vs (%) Figure Compliance

Circular 10 Figure 4 32.76

Circular 7.5 Figure 5 33.76

Horizontal 7.5 Figure 8 29.83

Vertical 7.5 Figure 10 33.16

Diagonal 7.5 Figure 12 32.49

As summarized in Table 2, when the volume constraint on inclusion is decreased, the compliance

increases. While comparing the designs using the same volume constraint, it appears the
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horizontal inclusion shape provides a much stiffer design by about 12%. Though, the vertical and

diagonal designs are only slightly better. This implies that the change in filter shape can be

beneficial in design but also provide simpler construction conditions. Though, it also points to

some specific orientation of filters being more efficient in specific designs than others. Here, the

horizontal inclusion is most efficient.

Simply Supported (MBB) Beam Example

This second test case is an MBB beam with a single gravity load applied on the mid-span.

The design domain is shown in Figure 13.

P

H

L L

Figure 13. Full MBB Beam Design Domain

To simplify the problem, symmetry is imposed on the beam and it is optimized using the
half-beam design domain shown in Figure 14. The half beam length, L, is 60 units, height, H, is
20 units, thickness, t, is I unit, and load, P, is 10 units. The finite element mesh used is 240 X 80.

The minimum inclusion scale, rminD is 0.25 units, the minimum distance between objects, tE, is
0.625 units and the topology length scale, rmin,, is 1.0 unit. The maximum volume of material,

VT, is 40% of V, with a maximum inclusion volume, Vs, of 6% of V. The Poisson's ratio, v, is
0.3, initial Young's modulus, E, is 100 with material young's modulus factors, El and E2, at 1
and 3 respectively. The design variable upper bound, (Pmax, is 1.
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Figure 14. Half MBB Beam Design Domain

The design is performed with all four previously described primitive types; that being circular,

horizontal, vertical and diagonal, respectively. The solutions are summarized in Table 3 and

shown in Fig. 15-17.

Table 3. MBB Beam Results Summary

Inclusion Shape Figure Compliance

Circular Figure 15 52.88

Horizontal Figure 16 46.72

Vertical Figure 17 56.10

Diagonal Figure 18 54.42

*

Figure 15. Full MBB Beam with Circular Inclusions

Figure 16. Full MBB Beam with Horizontal Inclusions
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Figure 17. Full MBB Beam with Vertical Inclusions

Figure 18. Full MBB Beam with Diagonal Inclusions

In the simply supported beam case, the optimizer places the stiff material mostly in the
center at the top and bottom. This is due to the stress distribution of a simply supported beam.

It's maximum moment occurs at midspan and therefor its maximum stresses. Here, the

horizontal inclusion still proves to be the best solution, this is because it provides the means to

apply the most stiff material in the locations the beams need it to be. The portions of the solution

that are not as green or blue as the rest occur as a result of the minimum length scale chosen. The

rest of the structure has attained the 0-1 binary enforced but due to a combination of the
minimum length scale as well as the material volume constraints, those members don't get either

fully applied or moved to another region in the design space.
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Conclusions

This thesis aimed to develop an algorithm to add complexity to the design completed by
Koh and Guest [10]. The algorithm used the combination of HPM and RAMP to obtain multi-

material designs using discrete object projection. The discrete objects used where specified stiff

circular inclusions surrounded by more compliant material to control minimum object spacing.

The algorithm discussed was first reproduced and verified. Then the discrete object filters

modified to provide three different object types. The three inclusions used were horizontal filters,

vertical filters and diagonal filters. This allows for designs of longitudinal inclusions within some

optimized topology. The algorithm was run on the cantilever beam and simply supported beam.

It was discovered that the horizontal inclusions were best for both examples. This is not

surprising as this is the form of reinforcing used in practice. A shortcoming of the algorithm is it
does not always strictly fulfill the spacing requirement and can require tuning to avoid

overlapping objects. This problem gets is more pronounced when the spacing is small compared

to the inclusion size and a large inclusion volume is permitted.

For future work, a filter that would allow for the inclusions to slope at varying angles. An

implementation of this can be using an additional variable, 6, within the preset inclusion

geometry and letting 6 dictate which is the local set and which is the enclosure set.
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