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ABSTRACT

Composites with transversely aligned piezoelectric fibers in an epoxy matrix were
developed toward the goal of highly distributed structural actuation and sensing. These
active composites have addressed the need for anisotropic actuation in a form that reduced
the many problems inherent in current monolithic ceramic systems. Response of the
composites was predicted through the advancement of five micro-electromechanical
models. These models include three Uniform Fields approaches and two elasticity
approaches, based on the Self Consistent Scheme and Finite Element Method. These
models predicted the effective material properties of the piezoelectric fiber composite for in-
plane structural loading problems. Comparison of the models showed good agreement and
established a good understanding of the dominant material system design-level issues that
needed to be addressed in the program.

Conformable piezoelectric fiber composites were manufactured to investigate the
various material level issues. The composites were manufactured using many of the
materials and procedures utilized in the graphite/epoxy composite industry. Specimens
were manufactured by hand, cured, electroded, and poled to produce active composite test
articles. Testing of these articles provided experimental effective material properties, which
were compared to models. Good agreement was seen between the predicted and tested
piezoelectric and dielectric properties. The mechanical properties exhibited the correct
trends predicted by the models, but better constituent material characterization must be
carried out before conclusions may be drawn in this area.

At the structural mechanics level, an investigation was made intc the field of planar
structural actuation with anisotropic active materials. The mechanisms for creating
anisotropic actuators were discussed, and the impact of anisotropy was shown at the
individual lamina level and at the laminated structure level. Models for laminated structures
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were developed using an augmented Classical Laminated Plate Theory incorporating
induced stress terms to accommodate anisotropic actuator materials. A twist-extension
coupled laminate was used to exemplify how twist can be directly induced into isotropic
host structures using anisotropic actuation. Four anisotropic actuators with different
material anisotropies were compared using this example. Finally, a laminate incorporating
piezoelectric fiber composite actuators was manufactured and tested. Excellent agreement
was found between the predicted and experimental response.

Thesis Supervisor: Dr. Nesbitt W. Hagood
Title: Professor of Aeronautics and Astronautics
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1.0 Introduction

1.1 Motivation

Actuation and sensing is a vital component in the application of controlled
structures. Sensors provide information about the structure’s state, which may be fed
back through a control algorithm to create the appropriate response enacted on the
structure by the actuator. More recently, active materials have seen increased application
in this area, replacing the traditional electromechanical means for actuation and sensing.
Applications of active materials such as shape memory alloys, magnetostrictives, and
piezoelectric have given investigators a new means for controlled structures technology.

Piezoelectrics are perhaps the most widely used of the active materials. Their
high stiffness gives them high actuation authority, and they can be easily controlled
through an applied voltage. They also have high bandwidth, which allows a greater range
of applications. Piezoelectrics have typically been utilized as actuators in vibration
suppression systems in structures. Coupled electromechanical models of beam and plate
structures that incorporate piezoelectrics have been developed. These models have been
successfully applied to the problems of piezoelectric passive damping[1] and self-sensing
actuation of piezoelectric active structures[2]. Experimental results in closed-loop
control of structural vibration[3-7], aeroelastic response[8,9], and acoustic transmission
of plates and shells[10,11] havc demonstrated the feasibility of active structural control
using piezoelectric actuators and sensors.

Despite the past successes, these studies have highlighted the difficulties with
piezoelectric materials in structural applications. These difficulties exist at two distinct
levels: the material level issues and the siructural level issues. The material issues
include difficulties inherent in the piezoelectric materials themselves, associated with the
generic properties of brittle ceramic materials. Integration into structural applications
provide further difficulties, especially when working toward the goal of highly
distributed, large scale actuation and sensing.

The material level issues are apparent when working with piezoelectric materials.
As with any sintered ceramic, the material is very brittle and easily damaged. Typical
applications of piezoelectrics to structures involve very thin monolithic ceramic wafers
which do not conform to irregular surfaces, and are often broken during bonding to the
structure. A further difficulty is the lead-based nature of piezoceramic, which creates
good stiffness properties, but may add a significant penalty to the total structural mass.
Distribution of the ceramic into a soft polymer material to form an active composite may



provide a solution to these material issues. This would replace the need for single
monolithic pieces of ceramic. If the ceramic in the composite was fine enough, the
specific strength would be much higher, and approach the strength of the unflawed
ceramic. This would create a lighter and more conformable actuator that would be robust
to the structural environment.

Monolithic ceramic actuators also suffer difficulties at the structural level.
Conventional means of actuation has usually necessitated bonding the piezoelectric
wafers to the outer surface of the structure [3,6]. Future applications will more likely
embed the wafers in between regular graphite/epoxy plies in composite structures[7,12].
Incorporation of the monolithic ceramic in the structure can create stress concentrations
and significantly reduce the overall strength of the composite[12]. Furthermore, for each
actuator embedded, graphite/epoxy must be removed both for the ceramic and for the
leads which must deliver electric field. Scaling up of the technology to large structures
would require a prohibitive number of leads and inclusions[13]. The introduction of an
active layer, in the form of a piezoceramic/polymer composite, would create a strong
cohesive structural unit. The active layer could span the entire structure, and be cured
into the composite, producing a structure with integrated actuators and sensors. With a
single actuator/sensor, only a single electrode is needed, and power could be delivered to
the edge of the structure without removing material.

Another issue that spans both the material and structural aspects of actuation is
material orthotropy. Presently, it is difficult to distinguish and actuate only a single
component of in-plane strain using monolithic ceramics. Due to its isotropic nature, the
material actuates all normal components of in-plane strain equally. There is potential for
controlling structural deflections independently, in different directions, using high
stiffness anisotropic actuators. The current methods require a tailored composite
host[14], or complex piezoelectric attachment techniques[15]. This could be simply
accomplished using a single uniaxial actuation ply. The anisotropic actuation allows
more efficient control of independent structural deflection shapes and could greatly
enhance structural control performance. In particular, torsion could be easily induced in
even isotropic hosts through the use of different actuator orientations, or a bimorph
arrangement of the anisotropic actuators.

Thus, there is a need for conformable distributed actuator/sensor materials which
can be easily incorporated into composites and still retain much of the actuation
capability of the original ceramic. Continuous PZT fiber composites have been suggested
to satisfy this need. The technology now exists to produce continuous piezoelectric fibers
with diameters less than 120 microns, and as small as 5-10 microns [16}. These fibers,



when combined with an epoxy matrix, will provide active composite plies that will
eventually replace the present monolithic actuators in many applications.
Conformability, strength integrity, and anisotropic actuation will now be available to the

designer for upcoming structural actuation and sensing needs.

1.2 Objectives

The objective for this project is to study a new technology for highly distributed
structural actuation and sensing. This new approach needed to improve on the
weaknesses of the current methods without introducing complexities that might otherwise
deter its use. Thus, the focus became twofold. The first was to develop the ability to
predict effective material properties given the individual phase properties, and carry out
design studies to answer questions to key issues. The second was to develop the ability to
manufacture the actuator/sensor composite from its constituent materials, and determine
the best materials and processes to meet the criteria.

The ultimate goal is to enable large scale structural control applications by
controlling the shape and vibration of composite structures using active laminates
incorporating electroceramic fiber-reinforced composite plies.

1.3 Background

Piezoelectric fiber composites for structural actuation has its roots in several
related research fields. Composite manufacturing and modeling has been evolving for
several decades and provides an excellent starting point for the generalization required by
active composites. Active composites themselves have been developed in many forms,
primarily for ultrasonic transducer applications. The uniqueness of the present objectives
will necessitate an understanding of these concepts, but with an emphasis on new
methods and materials to achieve the goals of planar actuation.

Three main areas can be identified that are key in the background to development
of PFC’s: development of actuation materials in the area of adaptive structures,
manufacture of active composites for ultrasonic applications, and traditional composite
modeling methods. Each of these has a wealth of previous research, some of which is
relevant to this problem. The following three sections briefly describe these works.

1.3.1 Active Materials for Adaptive Structures Applications

There is a wide range of active materials that could be used for the active element
in a composite. Most of these materials are well established and understood, as many of
them were developed 20 years ago or more. However, a few new materials are still



emerging. Some of these materials are obviously better suited for the structural actuation
application than others, due to the particular activating field, availability, or ease of use.
Specifically, ceramic actuators have been shown to be well suited for structural actuation
and sensing applications. Some possibilities include piezoelectrics, electrostrictives, and
shape memory ceramics. All of these materials offer high actuation authority through
their high Young’s modulus. All are easily controlled by the application of an electric
field, and due to their quick response speed, these ceramic materials are excellent for high
bandwidth actuators. Unfortunately, all are lead based, resulting in a very high density,
and all are brittle in the monolithic form.

Electrostrictive materials (PMN or Lead Magnesium Niobate is the most
common) are similar to piezoelectrics in that they are a lead-based ceramic, actuated with
an electric field. However, the similarities end there. Electrostriction is a nonlinear
effect, where the resulting strain depends on the square of the applied electric field. This
nonolinearity can increase the difficulty in modeling. Not only are electrostrictive
materials dependent on field, they are very sensitive to temperature fluctuations, requiring
either a still more complex model or an isothermal environment. Electrostrictives,
however, have very low hysteresis, providing high set-point accuracy[17], and the
achievable strain levels are relatively high - up to ~0.1%.

Another potential material is shape memory ceramics. At high electric field
levels, the ceramic undergoes a phase transition from antiferroelectric to ferroelectric,
accompanied by a net volume change in the material. Large strains are observed (on the
order of 0.2% to 1%), and the material exhibits the shape memory effect, as it remains in
a meta-stable phase after the field is removed. Materials which utilize this phase
transformation of antiferroelectric to ferroelectric where explored by Berlincourt[18] in
the early 1960’s, but are only now being considered for possible use as structural
actuators [19]. Despite the exciting possibilities, shape memory ceramics are very
difficult to model, requiring rate laws to represent the degree of polarization in the
ferroelectric material.

Piezoelectric ceramics are ferroeleciric materials that exhibit linear strain
relationships with electric field at low field levels. The linear field relationship and small
dependence on temperature enable easy modeling of piezoelectrics. PZT materials are
also widely used, easily available, and have a whole family of types from which to
choose. However, the strain associated with piezoelectrics has a large amount of
hysteresis, limiting the applications to those in the dynamic range. The peak strain is also
much lower than the shape memory ceramics, approximately 0.1% in the poling



direction). Nonetheless, the ease of use and modeling afforded by piezoelectric ceramics
has made them the material of choice for piezoelectric fiber composites.

1.3.2 Active Composites for Ultrasonic Transducers

The purpose of manufacturing composites is almost always to produce a new
material with properties superior in some fashion to those of either starting material. The
addition of a second phase instantly increases the number of parameters available to
customize the material. Not only can the designer specify the materials, but also their
relative amounts, shapes, orientations, and manufacturing methods. In this way, it is
possible to make use of the best attributes of each material to get a structural
characteristic not achievable previously.

Some excellent improvements have been realized with composites. For example,
structural composites have made use of strong stiff fibers and softer epoxy matrix
materials. The combination guarantees strength and stiffness through the fibers while the
matrix provides load transfer capability, shear properties, and conformability. Particles
have also been used as the additional phase in various matrix materials to optimize for
properties such as permittivity, thermal expansion, and electrical or thermal conductivity.

Composites with active elements have also been optimized to achieve better
properties. Two good examples are hydrophones and ultrasonic transducers used in
medical imaging. Both are made with piezoelectric ceramic material suspended in a soft
epoxy matrix. The introduction of the matrix material [20] reduces the density of the
transducer giving better acoustic coupling to water and better buoyancy. The increased
compliance not only allows conforming to curved shapes, but increases resistance to
mechanical shock and increase damping in the device. In the case of the medical imaging
transducer, the two phases allow tailoring to match electrical impedance to the drive
electronics and acoustic impedance to that of tissue.

The combination of piezoelectric ceramics with another phase has been coined
“piezocomposite.” There are many different variations, with the above examples being
only two. Key to the discussion on the various types of combinations is the connectivity
of each phase[20]. This indicates the manner in which the material is connected along
any one axis, and greatly influences the overail properties. The connectivity is indicated
by two numbers, the first of which indicates the number of directions of ceramic
continuity while the second indicates the same for the second phase. Thus, PZT particles
in a matrix is an example of 0-3 composite, while PZT rods in a matrix would be a 1-3
composite. Hydrophones and ultrasonic transducers are typically 1-3 composites.



There are a great many methods of fabrication. For 1-3 “rod” composites, three
techniques that have been commonly used include rod alignment, dice-and-fill, and a
lamination process, all of which are described in greater detail in Ref[21]. However,
none of these techniques produce composites which can be used as structural elements.
The rods are aligned out-of-plane of the structure and are incapable of carrying in-plane
loads. Thus, the manufacturing process to be developed for the current work must move
towards techniques comparable to those in standard graphite-epoxy manufacturing.

One such move in that direction has been attempted by Waller and Safari [22],
through a patented technique known as “relic processing.” Templates of woven carbon
fiber were covered with PZT by soaking the template in a precursor solution. Heat
treatment was used to burn out the carbon, leaving a hollow piezoceramic relic of the
same form as the original template. The relic is sintered, then impregnated with polymer
using a vacuum to gently pull the polymer into the fiber array. Good results were
obtained for some of these composites, but there were some difficulties as well. For
example, the sintered relic was very fragile and not easy to handle. Also, it was
necessary to sand the composites to obtain piezoelectric connectivity between the
electrodes. Finally, no modeling to predict these properties was carried out, nor was there
any measurements of mechanical properties. Thus, there is still a significant amount of
work to be done in carrying over the expertise developed for the acoustic devices to the
area of structural actuation.

1.3.3 Modeling of Composites

The third area that this project draws upon is modeling of traditional composites.
Composites have been modeled to predict the overall properties, knowing the properties
of the materials that comprise the composite. Many methods have been developed that
predict effective Young’s modulus, Poisson’s ratio, shear modulus, thermal expansion
coefficients, conductivity, and many more. These models are continualiy being
developed in an attempt to find a better way to represent the bulk response of a diphasic
material. Typically, models have been derived for mechanical properties, or for electrical
(transport) properties. Modeling of multi-field materials that are coupled electrically and
mechanically can be done through a generalization of the techniques that were developed
for the single field models. Only recently have investigators begun to develop the ability
to predict coupled material response.

A good overview of the field of effective mechanical response is given in Jones
[23]. Here, various modeling methods are described for determining the effective
material stiffness constants. Probably the most basic approach is the Mechanics of



Materials approach, which uses the one-dimensional parallel and series spring analogy for
the effective longitudinal and transverse stiffness, respectively. Gross approximations are
made regarding the fields within the structure and the geometry of the fibers, resulting in
a low estimate of the transverse properties.

Elasticity models such as those presented by Hermans[24], Hashin and Rosen[25],
and Whitney and Riley[26] attempt to improve on the transverse property prediction.
These models are a boundary value problem and involve solving for the stress/strain
fields within a typical fiber and its surrounding matrix such that the fields are consistent
with those of the bulk material. Considerations of fiber contiguity (fibers touching in
some locations) and packing geometry next lead researches to consider semi-empirical
methods. Perhaps the most widely used are the Halpin-Tsai relations. This method is an
elasticity technique that gives bounds for the moduli depending on whether the fibers are
isolated and resin contiguous, or, fibers contiguous and the matrix isolated. The principle
is very similar to the discussion of connectivity given in the previous section.

Models have also been pursued for effective transport properties. These include
the permittivity, permeability, heat conductivity, and electric conductivity. (The solution
for one of these yields the solution for all of them, as the problems are analogous). A
brief but excellent summary of the available models is presented in [27]. Interestingly
enough, many of the methods used in the mechanical modeling have also been applied to
the electrical models. A parallel series approach is taken by Thornborough and Pears[28]
to model the effective conductivity, but with a somewhat arbitrary method of specifying
geometry fractions. A multitude of researchers utilized some form of the consistent fields
elasticity approach, with variations on geometry and equivalent volume fractions, to yield
the effective conductivity.

Some of the more noted works were conducted for particulate composites and
include authors such as Lord Rayleigh[29], Landauer[30], Kerner[31], and Hashin[32].
An extension to fibrous composites was done by Farmer and Covert [33] using methods
similar to the elasticity approach by Hashin for particulate composites. Variational
methods by Hashin and Shtrikman[34] give bounds to the particulate problem that
correspond to the curves by Kerner and by Hashin. Finally, a discrete numerical
technique termed boundary collocation was employed by Han and Cosner [35] that
matches the boundary conditions in the problem only at discrete locations in the
representative volume element.

Extending these methods to the couplea field analysis is a non-trivial matter. As
section 2.2 will show, there now exists two governing equations to describe the electrical
and mechanical field distributions in-a piezoelectric material. These equations are



coupled to one another through the piezoelectric coefficients. Simplifications in the
geometry or the field distributions can and have been made to allow the solution of these
problems. There are also certain classes of problems where the mechanical and electrical
problems decouple due to the choice of loading and poling directions. In these cases, the
two problems may be solved separately and are only coupled through the constitutive
equations.

Key research in these area of modeling has been performed by only a few
researchers. Newnham et al.[20] seem to be the first to apply the parallel-series approach
to piezocomposites. They developed one-dimensional models that largely ignored
material coupling in other directions and made assumptions as to the relative stiffness and
volume fractions of the two phases. Nonetheless, the work made important points as the
governing factors that contributed to the bulk properties. An extension of this work to the
three-dimensional spherical inclusion problem was done by Banno[36]. He again made
many of the same approximations. The move to fibrous composites was made by Smith
and Auld[37] to determine the effective stiffness, dielectric, and coupling coefficients for
31 connectivity rod composites in ultrasonic transducers.

Elasticity approaches to piezoelectric problems are extremely rare. Two such
models are given in Pak[38] and Honein et al.[39] for the anti-plane piezoelectricity
problem. In this problem, the authors consider a piezoelectric inclusion in an infinite
media with far-field applied electric field and out-of-plane shear. Due to the particular
geometry and loads, the problem is coupled only through the piezoelectric material
constitutive relations, and a closed form solution is possible. Pak uses a series expansion
for the displacement and electric fields, while Honein et al. use complex potentials and
conformal mapping to produce a solution. A further elasticity model has recently been
developed by Sottos[40].

1.4 The General Approach to Piezoelectric Fiber Composites

The difficulties associated with monolithic ceramic actuators were outlined in the
Motivation section of this chapter, and include poor conformability, strength, and
reliability. These derive from the more fundamental issue of a segmented system, where
the ceramic elements are actually intrusive to the overall structure. A new, more systemic
approach is needed for the development of structural actuation and sensing on a large
scale. Such a solution is shown in Figure 1.1. Rather than embedding single
actuator/sensors into the structure, a continuous active ply may be incorporated between
standard graphite/epoxy composite plies. An interlaminar electrode acts as an interface
between plies and delivers electric field to the active component. Following cure, this
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Figure 1.1: General approach to built-up active structures

active ply becomes a part of the structure, preserving the continuity, and creating an
integrated built-up structure.

The active subply is electroded on the top and bottom surfaces (Figure 1.2), so
that poling aligns the dipoles through the composite thickness (3-direction). After poling,
an applied field results in primary strain in the 3-direction, and strain in-plane (1- and 2-
directions) due to the transverse piezoelectric effect. In the built-up structure these
electrodes would have to be insulated from adjacent graphite epoxy plies, but may have
to be porous to allow resin flow;. Resin flow is necessary for compacting of the laminate
during cure and to create a bond with the active sub ply.

The problem then becomes the need to develop a method by which
sensor/actuator material can be distributed within a matrix to create active composite
plies. In the past, configurations for ultrasonic transducers have ranged from PVDF film
and particulate ceramics where the ceramic has no connectivity in any direction, to
replamine ceramics with ceramic connectivity in all 3 directions. A brief overview of this
field was given in the previous section. Structural actuation and sensing, unlike previous
acoustic applications, must couple to structural stresses and strains which are typically in-
plane and transverse to the thickness. To actuate transverse structural deflections, the
ceramic connectivity should be in the plane of the structure. The chosen configuration
features the electroceramic in fiber form, which results in a fiber composite material of
uniaxial actuation and in-plane sensing. Such a configuration is shown in Figure 1.2.
This option is particularly attractive since it allows tailoring of anisotropic actuation in
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Figure 1.2: Piezoceramic fibers in active composite sub ply

the plane of the structure. Such anisotropic actuation is essential for inducing twist in
laminated structures, and is an important property for acroelastic surface control.

Manufacturing techniques for the piezoceramic fibers have been established and
piezoceramic fibers have been produced in diameters small enough to incorporate into a
structural ply. Although, at present, these fibers are typically fabricated at a fixed length,
several novel techniques including PZT relic processing[22] and sol-gel processing[16]
hold promise of continuous fibers for future applications. Eventually, such continuous
fibers will allow processing similar to that of conventional graphite/epoxy composites,
where pre-impregnated plies can be laid-up with varying ply angles.

1.5 Key Design Issues

There are several major issues that are integral to the design of the active
structure. These may be separated into two general categories: issues at the material
level, and issues at the structural level. Issues at the material level deal primarily with
the active subply, and its constitutive phase materials. Integration into a larger, built-up
structure is also a concern and makes up the structural level issues. These issues are
presented here because they motivate some of the decisions made early in the design
process, and help to outline the difficulties facing the development of this new
technology.

1.5.1 Material Issues

The benefits of composite materials is to provide tailorable properties whose
attributes are advantageous over those of each material type alone. Obviously, the
effective mechanical and electrical properties will lie somewhere between those of the
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Figure 1.3: Two one-dimensional cases for material connectivity in
piezoceramic (p) and matrix (m) combinations

two phases, and it is the job of modeling to provide a better idea of where this may be.
More often than not, however, the design is actually a tradeoff. The favorable properties
of a particular material are inevitably lessened as more of the second material is
introduced. In this instance, the high piezoelectric properties are traded for a more
conformable anisotropic actuator.

How the tradeoff occurs is largely governed by the relative sizes of the various
properties. Although a large mismatch between the properties increases the range of
tailoring possibilities, it also presents certain difficulties that are not always obvious. The
materials being combined here are strongly mismatched. The polymer may be 20-100
times more compliant, and have a dielecric between 500 and 1000 times less than the
piezoelectric ceramic.

The effect of this stiffness mismatch is not hard to predict: the much stiffer
ceramic will govern the behavior in any direction it has connectivity (ie., along the
fibers), but the polymer will have a much larger influence in the other directions
(transverse to the fibers). The importance of the dielectric mismatch is not as obvious,
but can be illustrated with a simple example.

Figure 1.3 shows two possible cases of simple one-dimensional material
connectivity between the electrodes. Ignoring stress coupling, the problem becomes that
of two capacitors in either parallel or series. From a basic physics text, it is possible to
write the electric field in the piezoelectric, Ep, as a ratio of the electric field applied, E.
For the parallel case, Figure 1.3 (a), it is obvious that

11
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p
%:1 (L.1)

That is, the field applied to the whole material is also that applied to the
piezoelectric, by virtue of the electrodes. Thus, the piezoelectric will have the full field
available to it for actuation. In the series case (Figure 1.3 (b)), however, the electric field
in the piezoelectric is not that of the overall field:

EPf £/ €}
E €]/ e5x+(1-x)
where x is the ratio of piezoceramic thickness to total thickness. The field in the
piezoelectric is some fraction of the overall field, and is dependent on both the amount of
piezoelectric (x) and the dielectric mismatch (¢]'/£3). A plot of the field is shown in
Figure 1.4 and it quickly becomes apparent that the diclectric mismatch between
materials has a significant effect. For high mismatches, very little of the electric field
actually reaches the piezoelectric, drastically reducing the potential for actuation.

This example serves to highlight one of the key issues in the design of a
composite actuator, and much of the effort has been directed toward maximizing the
actuation through lower dielectric mismatch. In Chapter 4.0, a study is described that

(1.2)
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deals with modifying the matrix material in order to increase its dielectric, thus, reducing
the dielectric mismatch. Chapter 6.0 outlines the manufacturing techniques and describes
methods used to maximize the percentage of piezoelectric between the electrodes.

1.5.2 Structural Issues

Application of the piezoelectric fiber composites will see the incorporation of the
active subply inin regular graphite/epoxy plies, creating the built-up active structure. For
successful integration, it w1l be necessary to consider issues of material compatibility,
strength, load transfer, and overall reliability. One critical zone that influences all of
these aspects will be the interface joining the graphite/epoxy plies with the active
composite. Since this interface will include the interlaminar electrode, it is important to
consider how the choice of electrode will affect the structure.

The interlaminar electrode serves the primary purpose of delivering electric field
to the active composite. As such, it must include a layer of highly conductive material
(i.e. a metal). Initially, the electrode material could consist of metal vapor-deposited onto
the active composite surface. This would be sufficient for studies of the active composite
response, but may not serve well for incorporation into other plies. The graphite fibers
are also conductive and may provide paths that will short-circuit the applied fields.

This problem can be overcome by using sheets of metalized polyimide ( available
as thin as 0.5 mil) as an insulating electrode. The polyimide substrate would serve to
electrically separate the two conducting materials. Another benefit of these types of
electrodes is the possibility for etching the metal, so that certain electrode patterns may be
utilized. Some novel electrode patterns been advantageous in active vibration
suppression [41] and in improving transverse actuation anisotropy [42]. It is unlikely that
paiterned electrodes could be applied onto the active composite through a vapor
deposition process.

The majority of the reliability and strength of the final integrated composite will
depend on the adhesion at the interlaminar surface. Loads will be transferred between the
adjoining plies through the interface layer. An incompatible electrode material will
promote poor adhesion, and tend to delaminate under low loads. One way to encourage
better adhesion will be to cure the active and passive composites together (co-cure), and
allow the resins to cure to one another. This occurs in regular graphite/epoxy composites,
and creates a very strong bond between the adjoining plies through this interface layer.
The only difficulty here will be the electrode layer separating the plies. A possible
solution is to finely perforate the polyimide/metal sheets with very small holes. This will
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maintain the electrical conductivity, but allow the resins to flow between the various plies
and create a strong integrated structure.

1.6 Overview of Thesis

This first chapter has served as an introduction into piezoelectric fiber composites.
It provided a motivation for the study and showed how this new direction can make vast
improvements over the current actuation technology. The near and long term goals were
summarized with an emphasis on the main thrust for the present study. The Background
section provided a framework for building upon these goals by discussing previous
research tn related areas as they pertain to the materials, composite manufacturing
process, and material modeling. The general approach to built-up active structures
followed, whose geometry is driven by the technology’s purpose: the need to couple to
in-plane structural behavior. Finally, some of the difficulties and key design issues were
highlighted, providing a path in the development of piezoelectric fiber composites.

Chapter 2.0 deals with the mechanics of piezoelectric materials in order to lay the
foundation for future modeling of piezoelectric fiber composites. Equations of elasticity
and electrostatics for describing the field distributions in matter are presented. The
coupling among elastic and electric fields is introduced through a development of the
constitutive relations from the energy considerations. The reduced problems of plane
stress and modified plane strain are derived, starting from the basic forms of the
presented relationships. These reduced relations are utilized in future chapters.

Chapter 3.0 develops the models for predicting the bulk composite response using
the foundation built in Chaptzr 2.0. Two different approaches to modeling, Mechanics of
Materials and Elasticity, are used to determine the effective properties of the fibrous
composite. Assumptions are validated through comparing the various models, and the
tradeoffs occurring between the two phases are shown in design curves. Finally, a return
is made to the key design issues first dealt with in section 1.5. These issues are discussed
in light of the new models presented.

Chapter 4.0 centers around the matrix material and the importance of its
properties to the processing and bulk properties of the composite. In particular, material
mismatches introduced in section 1.5.2 and discussed in section 3.6 are once again dealt
with here. However, the emphasis is on how the matrix material may be modified to
make it optimal for combining with piezoelectric fibers. High dielectric particulate and
surface modifying agents are added to the matrix material to make a hybrid matrix with
new stiffness and dielectric properties. Experimental results for hybrid matrix materials
are compared to various simple transport and elasticity models.

14



Chapter 5.0 investigates the mechanics of anisotropic actuation. The concept of
induced stress actuation is introduced and related to actuation of structures through
Classical Laminated Plate Theory. A special twist-extension laminate is chosen to
exemplify anisotropic actuation in isotropic substrate structures and highlight a
comparison of available and hypothetical anisotropic actuators. This laminate example is
carried over experimentally in Chapters 6.0 and 7.0.

Chapter 6.0 outlines the manufacturing techniques for piezoelectric fiber
composites. Preliminary manufacturing findings are summarized and used to define the
needs for a successful process. The properties that are important in a manufactured
specimen with respect to uniformity and geometrical arrangement are also defined. Next,
the manufactured procedure is detailed from mold setup and lay-up techniques, to the
actual curing process. Electroding and poling are described in the final steps of sample
preparation prior to testing. Finally, some more recent methods of manufacturing are
described for the manufacture of the fiber composites used in the twist-extension
laminate.

Chapter 7.0 presents the experimental methods used for the testing of
piezoelectric fiber composites and the results obtained from the testing. The first part of
the chapter describes the methods used to determine the effective mechanical, electrical,
and piezoelectric properties of the fiber composite. The results are shown and discussed
with reference to one of the Uniform Fields models. The last section details the testing
and results of the twist-extension coupled laminate.

Chapter 8.0, the final chapter, closes the thesis with a summary of the presented

work.
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2.0 Introduction to Piezoelectric Materials

2.1 Overview

Chapter 1.0 provided the motivation for the study of piezoelectric fiber composites,
and outlined the improvements that can be derived form the development of this new
technology. A necessary step in this development is the modeling of active composite
response, which is given in Chapter 3.0. However, prior to dealing with the interaction of
the various material phases, it is necessary to understand the mechanics of piezoelectric
materials. Chapter 2.0 sets the stage for further analysis of active composites that
incorporate piezoelectric materials.

The chapter begins by presenting the equations that govern the distribution of
electric and elastic fields in matter. These are complemented by the necessary boundary
conditions to describe the constraints at the material interfaces. Piezoelectric materials are
introduced next, with a description of the piezoelectric conventions and material
characteristics. Relationships between the field variables given in the field equations are
derived from the energy considreations, and reduced to the well known constitutive
relations. This is generalized to matrix notation for easier manipulations in later sections.
Various constitutive forms are presented, with an example that shows relationships
between several of the forms. Finally, special forms of these relations are developed that
describe the reduced problems of plane stress and modified plane strain. The relations
shown in this chapter may be applied also to non-active materials.

2.2 Analysis of Continuum in Matter

The term micro mechanics, as defined by Jones[23], is "the study of composite
material wherein the interaction of the constituent materials is examined in detail as part of
the definition of the behavior of the heterogeneous composite material." The present work
considers micro mechanics in a more general sense, whereby a model of the material
provides relations that govern the response of that material. This model may be derived in
an analytical or empirical manner. If empirical, then the properties are simply measured. If
analytical, then the material is studied at a level where it appears heterogeneous and it is
necessary to consider the interaction between the individual pieces. (For a composite, these
would be the matrix and fiber; for a crystalline material, this would be the individual crystal
grain structures.) Either method may be used to obtain the model for the material's
response. In the current work, the models for the piezoelectric and matrix materials are
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assumed known through empirical methods. These models are represented by the
material’s constitutive relation. However, the model of the composite response is found
both analytically (Chapter 3.0) and empirically (Chapter 6.0).

How the fields vary from location to location within a body necessitates a
continuum mechanics viewpoint. Stresses and strains cannot distribute themselves
randomly, but are subject to the constraints of equilibrium and compatibility. Likewise,
equations of electrostatics govern the distribution of electrical fields and charges. The
proper combination of elasticity and electrostatics, with the introduction of the material
constitutive equations, provides the coupled governing equation for the piezoelectric
problem, presented in Chapter 3.0.

The first step is to consider the equations that govern the field distributions within a
body.

2.2.1 Mechanical and Electrical Field Relations

Electric Field Equations:

The foilowing equations of electrostatics, given in Tiersten[43], govern the
distribution of charge and electric field within a homogeneous body. The charge
distribution is described by the charge flux, D, also known as the electrical displacement.
Its distribution is given by:

divD=V -D=p; (2.1)
where p; is the net free charge of the body, and V(del) is the first order operator,
d d d
V=e +e +e 2.2

'ox,  20x, 0, (2-2)

The electric field distribution can be similarly defined as:

curlE=VxE=0 (2.3)
These two equations are the primary equations of electrostatics. Further analysis
requires a relationship between the two field variables. For a simple media of dielectric €,
this is
D=¢E (2.4)
This is also known as the electrical constitutive relationship for the material. This
may be combined with equation (2.1) to give Gauss’ Law for dielectrics:
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V.E=PL (2.5)
£

Equations (2.3) and (2.5) now uniquely describe the distribution of electric fields
within a body of dielectric €. Solution of the problem is often presented through the use of
the field potential equation, which defines the electric field in terms of a scalar potential
function, @, which satisfies equation (2.3).

E=-V® (2.6)
Combining equations (2.5) and (2.6) provides the familiar Poisson’s equation:
Vi = —% 2.7)

The appropriate boundary conditions are found by considering the junction of two
materials, a and b. Air may be treated as a limiting case for his problem. The derivation is
not given here, but may be found in Ref[43]. The boundary conditions are:

n-(D,-D,)=0 - ppormal = ppormal

where n is the outward normal vector, and subscript a and b represent the two

(2.8)

materials. The first boundary condition states that the normal components of the electrical
displacement must remain constant across the boundary interface. The second shows that
the scalar potential along the boundary of each material must be equal. These boundary
conditions, applied to the solution of equation (2.7), allow for the solution of the electrical
field distribution in dielectric materials.

Elastic Field Equations:
A similar approach may be taken for the elastic field distribution in materials. The

distribution of forces is governed by the stress equilibrium equation [43]:

V.T=-f+pii (2.9)
where T is the vector of material stresses, f the body forces, and ii the vector of second
derivative displacements. Constraints are placed on the resulting strains so that they
describe an admissible displacement field. These conditions are given by the equations of
compatibility, for which a single vector form is not available. Instead, it may be given in

tensor form:

9%S,, N 0*Sy Sy 98y

ox, 0%, Ox, 0%, OX,dx, OIx,0x,

These two equations are the primary equations of elasticity. A further analysis
requires a relationship between the stresses and strains, which come from a knowledge of

=0 (2.10)
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the material constitutive relationships. A typical problem in elasticity allows some
simplification from a full three dimensional analysis. In these cases, it is possible to
consider derivation of the governing differential equation in terms of a single potential, just
as was done in the electrostatics problem. At the present level, this is not possible, and will
be discussed in Chapter 3.

Just as the electric field could be related to a potential function through a differential
relationship, the strains may be related to the displacements through the following:

1
Sij=’2'(ui,j+uj,i) (2.11)

The boundary conditions may be stated for the full elasticity problem. These can
also be simplified to represent a reduced problem.
e 1:“'“" =h (2.12)
u; =
The first boundary condition states that the tractions, t, which may be found from
the components of stress T; and the outward normal n;, must be equal to the prescribed
traction, fi. The second boundary condition specifies that the displacements u; at the
boundary must be equal to the prescribed displacements, ;. In both cases, the prescribed

conditions may be defined by the presence of a second material.

2.2.2 Piezoelectric Materials

Material Conventions

Piezoelectric materials, like all poled ferroelectric ceramics, are transversely
isotropic. That is, one plane of the material is isotropic, while the out-of-plane direction
has properties different from the other two. This anisotropy is caused by the poling of the
material, which aligns the dipoles in a specific direction. Prior to poling, the material is
isotropic and actually exhibits no piezoelectric effect. By the convention given in Ref[44],
the plane of isotropy is labeled the 1-2 plane, and the out-of-plane direction is always
labeled the 3 direction (Figure 2.1). Thus it is along the 3 direction that the dipoles align,
causing an increase in the material compliance, dielectric, and piezoelectric constants.
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1

Figure 2.1: Material axes definitions for piezoelectric crystals

The poling process occurs through the application of a high electric field, aligning
the dipoles as shown in Figure 2.2. During the poling process, the alignment causes
strains to occur in all three directions. If a sufficiently high field was used, much of the
strain will remain, even after the field is removed. Further application of an electric field in
the same polarity will cause elongation in the 3 direction, accompanied by a shortening in
the 1 and 2 directions. A field in the opposite direction will produce equivalent strain, but
of the opposite sign. However, a high field of polarity opposite to the original poling field
will tend to depole the material and begin poling in the other direction.

Before Polarization After Polarization

Figure 2.2: Alignment of material crystal dipoles due to application of polarization field,
from Ref[45].
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Constitutive Relations

The following development of the constitutive relations is given in more detail in
Ref[46]. The derivation is based on a consideration of the total contribution to an increase
in strain energy of a system by a change in the equations of state of that system. [For
piezoelectric materials, this includes both electrical and elastic contributions!:

where T;; are the material stresses, S;; the material strains, E, the electrical field,
and D, the electrical displacement. A change in the dependent state variables is made

through a Legendre transformation. The resulting energy expression is defined as Gibb’s
Free Energy, G:

G=U-T;S; —E,D, (2.14)
Taking the derivative of Gibb’s energy produces the following
dG =dU - T;;dS; ~ S;dT;; - D,dE, — E,dD, (2.15)
and after simplification,
dG =-5;dT; — D, dE, (2.16)

Examining the change in the free energy with respect to a field variable, with all
others held constant, defines the relationships between the states. The following variables
are cefined as the dependent equations of state:

D, = a6 E constant
dE, J

(2.17)
T. = —d—G— S constant
Y 1ds
i /g
and the following relationships are found for the state variables:
dT;; dT

kl /JE k /s

(2.18)

ds, E dE, S

For piezoceramic materials, the assumption of small deformations permits the
linear form of the above, providing further simplification. The terms relating the

1 Isothermal case
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independent and dependent field variables are defined by the following well known material

constants:
dT, dT. dD.
-F; = —4 o —u S =| —L
Ciikl (dskl) €iki (dEk] i (dEk) (2.19)

The stiffness tensor, cﬁk,, relates the stress and strain fields for a constant electric
field. The electric displacement and electric field are related through the dielectric tensor,
eisk. Coupling of the mechanical and electrical fields is represented through the
piezoelectric induced stress tensor e;,,. The constitutive relations may then be summarized
in the following form:

s
D, =6E +ey,Sy
E (2.20)
T =-eiE, +¢uSu

Constitutive Forms:
These tensors (Eqn 2.19) may be more conveniently written in matrix form through

the use of Voight notation convention. The mechanical fields can be represented by 6
independent components, while the electrical fields are represented by 3:

S S, (T,)] (Ti)

S S T T

D, E, 2 2 2 2
p={p,} E={E,} s={ 2l g T0l_|Ts

Il E=lg b s={ 3 LIS o Tel Tl ggy

D E 2823 S4 T23 T4

3 3 28]3 SS T|3 TS
(252)  (Ss (Tia) (T

The matrix form of equation 2.20 becomes:

{l’;}z[f:, ;]{]sz} (2.22)

where the superscripts S and E denote the constant mechanical and electrical field
boundary conditions, and t indicates matrix transpose. Since there are four field variables,
there are actually four separate forms of the constitutive equations for piezoelectric
materials, standardized by Ref[44]. These are the following:
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Form 1:
In tensor form:

D, =eiskEk +epSy
E (2.23)
Tjj =—eE, +cjuSy

{l'l)‘} =[_8: ;]{5} (2.24)

D; = E?;Ek +dy Ty

In matrix form:

Form 2:

In tensor form:

(2.25)
S = diGE, +siu Ty

{ls)}=[i s‘i]{f} (2.26)

E; = ﬁi{Dk — 8l

In matrix form:

Form 3:
In tensor form:

D (2.27)
S = 8D, +siwTu

BE

E = Biska =Sy

In matrix form:

Form 4:
In tensor form:

D (2.29)
Tyj=—hyD, +ciSy

{?} =[_B:, ;1; ]{]s)} (2.30)

Simple matrix algebra provides relationships between the material property
constants of the various forms. The two most utilized of the above are forms 1 and 2,
because the electric field is an independent variable in these. Piezoelectric materials are

In matrix form:
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often used in this capacity, where the electric field is either applied or short circhited (zero).
For these two forms, the following relationships may be derived. From form 2, solve for

the stress:
T=(s*)"'S-(s*)"'d,E (2.31)
Substitute into the equation for D,
D =d(s¥)'S-d(s*)'d,E+£"E (2.32)
and, compare to form 1:
cE=(sE)! e=dc® € =e"-dchd, (2.33)

These first relationship shows that the short circuit stiffness (c®) is simply the
inverse of the short circuit compliance (s&). The second relation demonstrates that the
induced piezoelectric stress depends on the magnitude of both the stiffness and the
piezoelectric free strain (d) constants. This is similar to the induced thermal ‘stress’ due to
a clamped thermal expansion. The final relation shows that the clamped dielectric is smaller
than the free dielectric.

A second set of relations may be derived by considering the other equation
contained in form 2. Solving for the electric field gives

E=(")"'D-(e")dT (2.34)
Substitute into equation for S:
S=stT+d,(e")'D-d,(e")'dT (2.35)
and, compare to form 3:
BT=(e")"! g=(")"'d s°=s"-d,(e")"'d (2.36)

The above shows relationships for the various electrical properties and their
inverses. The third of these is important and demonstrates that the material is less
compliant with open circuit electrical boundary conditions.

The primary form to be used in the study of the effective material constants is form
2, where the electric field and stress are the independent variables. This has been chosen
because these independent variables are the ones most easily controlled in both physical
experiments, and hypothetical experiments for analysis. The full matrix form for
piezoelectric materials is presented:
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Dyp=f0 0 0 d5 O 0*,1.. e+ 0 g, 0 [KE,

D, dj; dy dj3 O 0 O T: [0 0 5 ||E;
([ Ts |

This same description may be used for the polymer phase with two exceptions: all
d;; are zero (no coupling), and the material properties are isotropic (s, =$33, S;3 =5,
etc.). During later derivations, compliances and dielectrics for the polymer phase can be
distinguished from those of the piezoelectric by their lack of superscripts which otherwise
indicate the mechanical and electrical boundary conditions (see notation in the Appendix).

2.3 Reduced Problems in Piezoelectric Materials

Up to this point, the constitutive equations have been presented for the response for
a three dimensional structure, without assumptions of either plane stress or strain.
Modeling in subsequent chapters will require the constitutive relations for a reduced
problem. Chapter 3.0 deals with electromechanical modeling of piezoelectric fiber
composites, and will need the formulation for a modified plane strain problem. Chapter
5.0 will make use of the plane stress constitutive relations for modeling the response of
structures that incorporate piezoelectric fiber composites. This first subsection examines
the simple plane stress assumption, and how they must be enforced with respect to the
constitutive relations. The following subsection details the modified plane strain
assumption.

2.3.1 The Plane Stress Problem

Typical applications of piezoelectric fiber composites will include plate and shell
structures with and without various substrate materials (aluminum, glass, graphite/epoxy,
etc.). In this case, an important assumption is made about the state of stress in the material.
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Namely, the normal stress through the thickness and its corresponding shear stresses are
Zero:

This is the common Kirchoff assumption in simple plate and shell theory[47]. To

apply this condition, the constitutive equations must be in the compliance form (i.e. with
stress as the independent field variable). After reduction, the constitutive equations are as

follows:
D, r8§'3 dyy dy, O ] E,
S, _|dsy SF] SFz 0 (T,
Se) [0 6 0 sg|(Ts

The remaining strains S,,S,, and S, are not necessarily zero2. but may be
calculated after the primary system is solved. Note that the above form includes a more
general case of anisotropy, both piezoelectrically (d,, # d,;) and mechanically (c,, #c¢,,)
than that for monolithic PZT.

In some cases it may be important to represernt the piezoelectric properties in a form
other than that used to enforce the plane stress assumptions. A common alternate form is
form 2, given below:

D;) [ € €, ep 0| (B
Ty | _[-eq cE e 0]]S
T,| —ey Cp ¢ 0[S, (2.40)
Teg) L0 0 0 cgl(Se

where e;; are the piezoelectric induced stress constants. This form provides the
mechanical stress terms as the dependent variable. Such an expression is important when
modeling the response of a structure to a load applied by an actuator, and will be used in
the subsequent sections. As the comparison of the two above forms has shown:

CE' = (SEl')-l e' = d*CE‘ 88* = GT. - d‘cE‘dt* (241)

Since the relations are based on the plane stress assumptions, the above constants
(designated with a ‘*’ to show plane stress) will not have a one-to-one correspondence to
those constants derived from a fully three dimensional analysis. The relationship between
the full three-dimensional constants to those above are given below:

2 S,and S; are zero, however, for the piezoelectric fiber composite problem
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2.3.2 The Modified Plane Strain Problem

Consider a body of arbitrary cross-section, such as in Figure 2.3, with geometry
and loading invariant along its length (x; direction). Assume that this body has constitutive
equations of piezoelectric material with axes aiigned along the geometry as shown. Since
elastic symmetry exists in orthogonal axes, plane sections will remain plane with loading.
However, this body is not necessarily infinite in length so that, although there is no
variable dependence on x, the problem is not one of pure plane strain. Strain along the x,
direction exists, aid is very important, especially in the piezoelectric problem. These type

of conditions are not unique and are often termed the "modified plane strain" analyses [25,
26)3. Given the present assumptions, S; ,S¢ and D, must be zero. This is true since the

out-of plane loads ,Ts ,T¢ and E, are assumed zero.

With strain in the x; direction constant, it is possible to re-write the constitutive
equations in a form that considers S, an independent variable. In this way, it appears as an
applied loading. From above, using the formulation for S,, solve for T,:

Sy =dy By +5 T +8,,T, +5,3T5
T, =isl "9“3"1'1'33'2'1‘2 "§£T3 (2.43)
Sn St Siu St

In this new form, stress is the dependent variable in the 1 direction. Applying this
relationship to the remaining equations, and rénaming the material constants to simplify
leaves:

Ty =B4S; = B.To = BpT3 — B.Es

S, =BisE3 + BTy + B T3 +B,S,

S; = BssEs + BiaT2 + B T3 + Sy
S4 = Bi4Ey +BesTs

D, = B4Es + 14Ty

D = fssE3 + 5T, + BseT3 + BcSy

(2.44)

3 Contrast this to Lekhnitskii [48] who refers to "generalized plane strain" as those problems where cross

sections warp, but all identically, caused by more general anisotropy (non orthogonal elastic axes).
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Figure 2.3: Modified plane strain axis and load definitions

where the modified plane strain material constants are:

sE sE d
ﬁ 12 ﬁb I3 ﬂ 3l
Sn 511 ¢ Su S

d3|(s,, Snz) d33s“ dsnsF:s 8; s;p —d3
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St Sii S
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S;p —Si2 512 (Su 312)513 511533 813 T E
By = B, =2 Py =" Bus =€ Bes =5ss

Sn 11 u
(2.45)

2.4 Summary

Chapter 2.0 has provided an introduction into the mechanics of piezoelectric
materials. Understanding these materials relies not only on the material property relations,
but also a knowledge of the principles that govern fields within the materials. In this
chapter, both were presented, beginning with the equations of elasticity and electrostatics,
and their accompanying boundary conditions. The property relations of piezoelectric
materials were also presented, both in full form, and in reduced forms for particular
problems. These components provide all the necessary pieces that comprise a solution to
fields in continuum.

The stage is now set for the modeling of piezoceramic fiber composites in Chapter
3.0.
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3.0 Modeling Piezoelectric Fiber Composites

3.1 Overview

The design of active structures and the answers to key issues in the microstructure
require the ability to predict effective material properties. Although materials are easily
characterized through experimental procedures, only isotropic materials are well served by
this method. The introduction of two and three phase materials prompts us to look for
ways to predict, rather than measure the bulk properties. Purely experimental results,
although important for a qualitative understanding, are too narrow to be applied to the
endless combinations of matrix and filler.

Largely beginning in the 1960’s, mechanical models were investigated to find the
overall stiffness, and electrical analogy models were developed for various transport
properties. The two types of models were independent, as coupling between the fields did
not exist in any of the constituent phases. With the introduction of piezoelectric crystals,
the need for multi-field analysis to predict effective properties became apparent. This
chapter details the various modeling techniques used to predict effective properties. In the
background, the method of determining macroscopic properties from a microscopic look at
the geometry, or micro-electromechanical modeling is presented. Following this, three
individual modeling techniques are described and their results shown for material
parameters in the region of interest. Finally, the various models are compared to validate
assumptions, and provide insight into the problem.

3.2 Background

Constitutive relations provide a means for relating complementary mechanical and
electrical fields within a homogeneous material. The constitutive equations for piezoelectric
and for epoxy are two such examples. The response of each monolithic material is
straightforward, with the understanding that the fields are the same at each location.
Heterogeneous materials, however, are subject to localized behavior occurring within the
material phases. The constitutive equations then become a way to describe the averaged
response of the material, using mechanical and electrical fields that are uniform only in a
macroscopic sense.

The manner in which these averaged, or effective, properties are found involve
understanding the mechanisms at the micro level. At this level, the individual phases can
be distinguished and form, ideally, a series of repeating elements called representative
volume elements (R.V.E.). Itis the response of these individual elements that determines
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the response of the overall structure. In turn, the macroscopic loads and boundary
conditions applied to the overall structure are reflected at the microscopic level.

There are numerous methods to determine the effective properties, all of which fall
into two general categories: Mechanics of Materials and Elasticity Approaches. A model
from each of these categories is presented in this chapter. The Mechanics of Materials
method is characterized by largely simplifying assumptions in the way the field
distributions are treated and with the geometry of the internal micro structure. Elasticity
Approaches use equations of elasticity and electrostatics to govern the field distributions,
and as such, are much more complicated than a Mechanics of Materials approach. For this
reason, the geometry is often simplified to make a solution possible. Numerical elasticity
models, such as the finite element, use a discrete description of field distributions within
the material. The results are usually very good and the method allows accurate
representation of the internal geometry. One downfall in an implicit method such as this
one, however, is the lack of a closed form solution that allows physical insight into the
dominant parameters. Nonetheless, it provides a means to validate previous assumptions
and a basis for comparing the various models.

As pointed out above, each model takes a different approach to representing the
problem at the micro structure level. It is possible to define three main elements that must
be considered in the modeling approach:

1. The individual phases and their constitutive properties
2. A method for governing the field distributions in the material
3. Reference to the microstructure geometry

It is the manner in which each is dealt with that differentiates the various approaches
to modeling. These three elements are discussed further below, and a comparison of the
models to be presented here is shown in Table 3.1.

Material Phases and Constitutive Properties

All of the models consider the fiber and matrix material phases, as shown in the
figure depicting the microstructure (Fig. 3.1). The Self Consistent Fields model also
introduces a third phase, representing the smeared effective properties of the composite.
Obviously, these properties are initially unknown, and are determined through the solution
of the elasticity problem. The constitutive equations of the material phases are also
necessary, for they relate the different field variables of a material at every point within the
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Table 3.1: Comparison of models developed in chapter 3

CFUF: Closed Form Uniform Fields SCF: Self Consistent Fields
NUF: Numerical Uniform Fields FEM: Finite Element Method
DUF: Discrete Uniform Fields

MODEL CFUF NUF DUF SCF FEM
TYPE Mech Matls Mech Matls Mech Matls  Elasticity Elasticity
Section 3.3 3.3 3.3 3.4 3.5
Consistent Fields no no no yes yes
Closed Form yes no no yes no
RVE Type a a b c b
Model Considers:
size, orientation yes yes yes yes yes
shape no no yes yes yes
contiguity no no no no no
packing geom no no yes no yes

body. For the Mechanics of Materials models, where the fields are assumed uniform
throughout the phases, the constitutive relations also describe the materials response
everywhere in the body. However, models which describe field distributions through a
continuum approach, such as the Elasticity models, utilize the constitutive relations to
couple the field equations. The Self Consistent Fields requires a third constitutive relation,
which is introduced for the effective material. The degree of anisotropy for this material is
higher than that for the piezoelectric material because it represents the composite relations.

Governing Field Distributions

Field distributions within matter are governed by the electric and elastic field
equations presented in section 2.2.1. For a material of infinite extent, these materials will
simply describe a uniform distribution. However, for any problem describing the
interaction of materials with disimilar material properties and complex geometries, the fields
within the phases will no longer be uniform. Such is the case for any of the models here,
because they examine the composite at the microstructure level where phase boundaries are
apparent. The Uniform Fields models (CFUF and NUF), however, make the assumption
that the fields within each of the materials is actually constant. The consequence of such an
assumption is discussed when comparing the models (section 3.6). The Discrete Uniform
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Fields (DUF) model also assumes uniform fields, but the microstructure is discertized, so
that the fields vary in a discrete manner across the materials.

The elasticity approaches incorporate at least some level of the field distributions.
The Self Consistent (SCF) assumes uniform fields within the fiber, but models varying
fields within the matrix material. The Finite Element Method (FEM) allows for fully
varying field distribution within each phase.

Microstructure Geometry

Another way in which models are very different is in the way the microstructure of
the composite is represented. The actual geometry is a unidirectional, continuous fiber
composite lamina. Several of these lamina will eventually be bonded together to produce
the built-up active structure, but only one lamina needs to be analyzed. Once the
orthotropic properties have been found, Classical Laminated Plate Theory can be used to
find the overall structure properties from a summation of the individual ply properties.

Due to the unidirectional fibers, the composite has no geometrical variation in the
direction along the fibers. Thus, although physically a 3-D problem, the problem can be
represented with a two dimensional model by examining the microstructure perpendicular
to the fibers, as shown previously in Figure 2.3. Strains and stresses still occur along the
fiber direction but do not vary with this direction. This class of problem is often termed
modified plane strain and is independent of the assumptions in the various modeling‘
approaches. This type of problem was introduced in section 2.3.2.

Zooming in on the microstructure of an actual composite would reveal randomly
distributed fibers packed in various arrangements. Since it is impossible to model random
geometry, representative volume elements are used to capture the interaction between a
typical fiber and its surrounding matrix. Volume elements can vary widely between the
various models and may or may not consider all of the following attributes: size and
orientation of fibers, shape of fibers, packing geometry, and contiguity between fibers.
Size and orientation of fibers is considered in all the models discussed here, with the size of
fiber accounted for with the volume fraction of fiber, vf. This is simply a volume ratio of
fiber to total volume in the representative volume element, and is equal to the overall
percentage of fiber in the bulk material.

The other attributes of the volume element, however, are not the same and are
indicative of the different approaches. For example, the shape of the fiber may be
simplified to a square, such as in the case of the Mechanics of Materials approach shown as
RVE (a) of Fig 3.1. Another consideration involves the volume element packing. Two
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Figure 3.1: Two dimensional representation of micro structure in
fibrous composite for three types of Representative Volume Elements:
(a) CFUF and NUF, (b) DUF and FEM, and (c) SCF.

common packing arrangements, square and rectangular, are shown in Figure 3.2. A
square array assumes that the amount of matrix material is equal around the fiber. In this
way, a composite with equal spacing of fibers in the 2 and 3 directions can be represented
using only the volume fraction. This is likely a correct representation of any composite
where the thickness of the ply is much larger (>10 times) than the fiber diameter, and
manufacturing does not create a preferred direction. For this reason, all the models
developed in this chapter will utilize the square packing array, so that they will best
represent a multi-fiber layer composite. This provides a good basis for comparison
between the models, given in section 3.6. The other packing arrangement, the rectangular
array, has the added freedom of specifying unequal amounts of matrix around the fiber.
This can be used to model composites with manufacturing that causes preferred directional
spacing, such as the techniques used to manufacture the mono-fiber layer composites,
outlined in section 5.3. In this case, the Uniform Fields models and Finite Element models
may be adapted to allow such rectangular packing. Other such differences that distinguish
the models will be further discussed in the development of each. Throughout, it may be
useful for the reader to refer to the summary chart (Table 3.1) that compares the various
models.
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(b)
Figure 3.2: Representative Volume Elements for rectangular (a) and square (b) packing
arrays

Assumptions

Before continuing on to discuss each model individually, it is important to state the
assumptions. These assumptions are irrespective of the model, and can be divided into two
groups: material assumptions and structural assumptions. For the materials themselves, it
is assumed that the two phases are in good contact and are perfectly bonded everywhere.
That is, there is negligible effects due to interfacial phenomena such as poor wetting and
water adsorption. In addition to this, deformations and electric fields are considered small
enough that the linear forms of the constitutive equations (Eq 2.3) adequately describe the
field relationships. This is likely the case due to the practical limits set on deformations and
fields by the low failure strain and dielectric breakdowns, respectively, of the material.
Finally, it is assumed that all the piezoelectric materials are uniformly polarized in the 3 axis
direction. This is not exactly true because the polarization will be directed along the field
lines present in the fiber. As some of the models show, this is not completely accurate.
However, as it turns out, the field lines are close enough to uniform in the fiber that the
assumption is a good one.

The structural assumptions deal with the response of the composite as a whole.
Although the composite is three dimensional in nature, there is no variation in geometry or
properties along the fiber length. If this composite is "long" (i.e. 1 direction dimension
large compared to the others), then there will also be no variation in electrical or mechanical
fields with this dimension? . Thus, since this composite problem is dependent only on the

4 Away from the ends
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coordinates describing the location in a plane perpendicular to the fiber, the formulation in
section 2.3.2 for the modified plane strain problem is applicable here.

It is important to understand that strain along the fiber does exist, and is central to
the discussion of piezoelectric fiber composites. Away from the ends, each plane of fiber
and matrix acts as a disk and remains a plane after loads are applied. Out of plane shear
stresses and strains, therefore, do not exist, and all loads are in the plane of the structure
except the normal load, T,. In a physical sense, this situation must occur or there will be a
large accumulation of out-of-plane displacement over the length of the material. To
guarantee such a situation, the composite element must be long. The effect of ihe ends will
create local warping out of plane around the fiber, and the local existence of shear stresses
due to the three dimensional stress equilibrium conditions. High percentages of fibers and

small spatial scales reduce such an effect.
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3.3 Uniform Fields Models

3.3.1 Introduction to Uniform Fields

The class of model used here is a Uniform Fields approach, where the mechanical
and electrical fields are assumed uniform within each of the material phases. Several
previous researchers have utilized this technique for modeling both particulate[36], and rod
composites[37]. Of particular relevance is this last work, that looked at the problem of
finding the effective material properties for an ultrasound transducer where piezoceramic
rods are embedded through the thickness of the composite (Figure 3.3). Both the poling
and electric field direction are aligned with the ceramic rod, so that the composite is
transversely isotropic in nature. In the present work, a higher degree of anisotropy is
present because the direction of poling is perpendicular to the direction of fibers, rather than
along the fiber length.

The Uniform Fields approach is developed through a generalization of the
Mechanics of Materials method which deals with purely mechanical system responses. A
good description of this model is given in Ref[23]. The basic premise can be expressed
through a mechanical spring analogy where the fiber is a spring of high stiffness, and the
matrix material is a spring with low stiffness. Effective stiffness in directions along the
fiber and perpendicular to the fiber are found by addition of these springs in parallel and
series, respectively. Naturally, a parallel addition gives a system response dominated by
the stiff fiber phase, while the series addition gives a response more dependent on the
matrix phase.

Y
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Figure 3.3: Representative volume element of rod composite [37].

38



“<—|
v,
p m
T el 2
| ¥ | 2 .| L2
l p
y
Case A 3 Case B
1 1
Ve
7 P PP
/ V =V,¢V;
T
m | 2
m -
P .
V3I p .
P
. v,

1 Combination

Fig. 3.4: Representation of the possible phase geometry in the
piezoceramic fiber problem (p - piezoceramic, m - matrix)

Typically, longitudinal mecnanical properties have shown good agreement with
predictions based on a parallel model. This is understandable, since the fibers are
. continuous in the longitudinal direction and ensure an essentially uniform strain. In
contrast, transverse properties are underestimated using the series model. The assumption
of equal stresses in both phases is inaccurate. This has been shown in classic studies of
stress concentrations around a hole or inclusion in a plate subjected to far-field applied
loads.

Some improvements in the modeling of transverse properties can be realized by
using a combination model. ‘The combination model can be described as a generalization of
the mechanics of materials approach for which the parallel and series models are bounds.
Here, columns of matrix are modeled in parallel with columns of matrix and fiber that are in
series with each other. The possibility now exists for adjusting two fiber volume fractions.
A volume fraction value of one in either direction will result in effective properties predicted
by the series or parallel models alone. A generalization of this method to electrical-
mechanical coupled fields is the focus of this section.

39



As with any model, the objective is to find the response of the material as a whole,
so that the description of the material may be represented by properties of an effective
homogeneous media. The basis of this model, as the name implies, is that all of the fields
are uniform in the individual phases. This is assumed true, even at the microstructure
level. The stress, strain, electric field, and electrical displacement in any one direction can
be represented by a single average value. As previously mentioned, this description has
been used successively in the past[37], and its accuracy depends largely on the spatial scale
of the phase distributions. For finely distributed phases, it is likely that these assumptions
will provide a good estimate of the response in an averaged sense.

These assumptions make it possible to treat the piezocomposite in an efficient
manner. Although the ply is actually three dimensional, there is no geometrical variation
along the fibers (the 1-direction). This leaves two possible descriptions of the piezoelectric
and matrix phases: one with material connectivities in the 1- and 2-directions, and the
second with connectivities in the 1- and 3-directions. The uniform field assumption makes
it possible to refer to the phases without regard to the individual coordinates of the
distributed material. Thus, the same effect is obtained if all the piezoceramic were grouped
together and represented as one area. This provides the interpretation given in Figure 3.4
Each of the two cases, A and B, act as building blocks for the combination model and are
examined separately.

3.3.2 Fully Coupled Analysis

Case A Combination

The geometry and loading for case A is shown in Figure 3.5. Looking more
closely at this case, the internal stresses, strains and electric fields can be understood
through the application of the previous assumptions. In the 1-direction, the av=rage strain
must be equal to the strain in each of the ceramic and matrix.

S, =8P =8 (3.1)
The average stress, however, is some combination of stresses in the two phases.
The contribution of each material to the average stress is in proportion to the fraction of
each in the 1-direction. This is apparent from a free body diagram. Thus,
T, =VviT? +v3'T" 3.2)
where v§ is the fraction of piezoceramic measured across the element in the 3-

direction. Stresses and strains in the 2-direction, and in-plane shear are treated in the saine
manner. In the 3-direction, the average stress T, must be equal to the stress in the matrix,
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Piezoceramic

Figure 3.5: Case A material combination for the Uniform Fields
models

and therefore, also in the ceramic. The average strain will be an addition of strains
provided by each phase, again in proportion to the amount of each material:

T,=T,=T% (3.3)

S, = vjSE + vi'ST. (3.4)
The average electrical displacement (units of charge per unit area) must be equal to
that in the matrix and in the ceramic. Finally, the voltage applied across the specimen in the
3 direction must be equal to the sums of voltage across each phase. Since the voltage is the
product of electric field and thickness, the expressions obtained are

D, =D} =D} (3.5)

E; = V§E§ + v§'E7' (3.6)
The uncoupled problem of out-of-plane shear strains and transverse electric fields is
not of interest , and is therefore ignored here. Solution for the effective properties involves
the constitutive equations (2.37) for both materials, and the conditions imposed by
equations (3.1) to (3.6). The procedure involves the simultaneous solution of a large

number of equations through elimination of the non-averaged field variables. A more
unified approach is possible if the conditions are assembled into matrices.
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p

3.7

(3.8)

Note that there are only two types of conditions, those that average the field

variables in proportion to each material phase, and those that provide for equal fields
carried across the phase. The constitutive equations are then rewritten in the following

form:

a, 2ap
4 Ay
O o Ik
0 0
pm L35 A5

a3 0 as] [S)]
a; 0 ag S,
a3 0 ag| <Ts;
0 a, O Se
—a3s 0 ass| . (Ds

P p'm

p,m

where the q;are given in the Appendix. Substitution of (3.9) into (3.7) averages all

of the necessary fields in one step.

T, (S,) 8
T, Sy Sy
18 1=VEA{Tat +VviA{ T3¢ (3.10)
Ts S Se
E; D) > Ds)
Finally, applying (3.8) equates the necessary field variables, leaving:
(T, | S,
T, S
1S, >=(V§Ap+v§“Am)1 T, ¢ (3.11)
T, Se
E,, D,

The last equation describes the averaged response to uniform averaged

inputs, thus the term in the parenthesis contains all the effective properties. If the final step
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is to rewrite the effective constitutive equations and return to the original forms, the
following describes the Case A combination of piezoceramic and matrix:

Sl‘ Sy Sz 83 0 dy T,

S, Si2 S 83 0 dy | |T,

1S50=[s3 si3 s 0 dyy| Ty (3.12)
S| |0 0 0 s 0T

D3] [dy dy dy3 0 &5, (E;]

Since our interest is in the ply properties:

S, s S 0 dy | |T,
S, S, Sy 0 dy | |T,

= — 3.13
S;[ 10 0 s 0T (-13)
D, dy dy 0 &3], E,
where:
sA = $11V5 (E(sty +50) —2d3,v3')(spy —sp3) + VB (Espy — vi'd3, )(sfp = 1)) (3.14)
- - 7 .
(=512 + 51 )(EG +5,)) - 2d§1"'3“ )
A =_s,2v§“(‘is"'(s,'=‘2 +sE)—2d2 vP)(sE —sE) + vE(Esp, — vird3, )(sh, —sE) (3.15)
- —._ - 2 .
(=512 +5)E G, +§,;) - 2d3,v5)
E
A S¢6566
Sgp = ——20-00 3.16
5 vSgs + V3 'Ses 19
d. Vi€ (S, +5
dﬂAl =— —3l 3_33( 12 21!3"2 (317)
T (= - 2 ..m
E3:(S, +5;,)—2d5,v
ER = €4 _33_( 2 — ) 3 (3.18)
8(8]2 + S“)—'2d3|V3
and
E = £3,V8 + £5,V) (3.19)
813 =8yoVh +ShVY (3.21)
Case B Combination

Combining properties for the Case B geometry (Figure 3.6) is done in a completely
analogous manner as Case A. The differences come about from the differing connectivity
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N

T, Piezoceramic

Figure 3.6: Case B material combination for the Uniform Fields models

in the two cases. This is reflected in the different set of field variables that are equal in the
two phases. In this case, strains in the piezoceramic and matrix are equal for the 1 and 3
directions, stresses are equal in the 2 and 6 (in-plane shear) dir=ctions, and electric field is
maintained the same across the materials in the 3 direction. Thus,

5] (S) (s,
T,| |T, T,
1S, =18t =1{8;¢ (3.22)
Te| [Te T,
Es] (B3, (Bs),
The remaining field variables are averaged according to the fraction of each phase:
T,) T, T,)
S S S,
AT, =BTy +v3<Ts¢ (3.23)
S Se Se
| D; ) D3, D),

where v} is the fraction of piezoceramic measured across the case B element in the

2-direction. Rewriting the constitutive equations in the appropriate form gives



(T | (b, by b3 0 blg- S ] S,
S, -b;, by byy 0 by T, T,

9 T3 g = b|3 "b23 b33 0 b35 4 83 4 =Bp'm< 83 4 (3.24)
S 0 0 0 by O Tg Te

ey p.m |—b;s by —bys O bsst'm (E3) p.m (E3) p.m

where the b;; are again left to the Appendix. Applying both conditions (3.22,

3.22) yields:

T,| S,
S, T,
{Typ= (vgBp +v§“Bm)< S, ¢
Se Ts
D) Es ]

(3.25)

Finally, rewriting the effective constitutive equations in the original form and
simplifying to only the ply properties results in the case B effective properties:

S sy S 0 dy | [T,
S, Sz S 0 dyp| [T,
Se[ 10 0 s 0]]T,
D, dy dy, 0 &5 5|E;s
where:
sB = sVE (st -Sfi )-_l-s”v-z"; (51183 —3532)
S11533 — 513
B =v} da (51533 _31251_3)_"' d33_"2'2n(3125:3| —5,1513)
S11533 — S13
and

- p E.m
811 =811V2 51V,
5. =5,,v0 +sEyM
13 =812V +813V)

T p E m
S33 =811V2 +833V3

(3.26)

(3.27)

(3.28)

(3.29)
(3.30)
(3.31)

The remaining effective property terms are too long to be expressed here, and are

left for the Appendix.
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3.3.3 General Methodology

Both case A and B follow the same approach in obtaining effective material
properties in terms of a general methodology which can be applied to cases of any
connectivity. It involves two main steps. The first is to recognize those field variables that
are equal in both phases as independent variables and reorganize the constitutive equations
from (Eqn 2.37) to be functions of those variables.

MD_ C, Cy M) 3.3
{E}_Cz Cz{E} (:32)

where D and I represent dependent and independent field variables of the
mechanical (M) and electrical type (E). The second step is to substitute these constitutive
relations into the general form of the phase averaging equations:

o =l el
b o=v +v (3.33)
) = le) e

Since the independent field variables in each phase are equal to each other, and to

— D — 1
{114} =(VP[CI cz] +v‘“[cl Cz] ]{1!'} (3.34)
E C; C3j, C; G, JLE

As previoulsy mentioned, cases A and B serve as building blocks for the

the average field:

Combination Model. Each separate case predominantly captures some aspects of the

overall response. For example, Case A alone is able to capture the dominant terms in the

effective elastic constants st' and sii, as well as the effective dielectric ey and

longitudinal piezoelectric free sirain constant, dgf,f. Case B, however, better captures

transverse effects like the transverse compliance s5 and free strain d$ . Together the two

cases are combined to give the combination model. In this way, the combination model
captures all effects and coupling, and more nearly represents the actual geometry.

To derive the combination model using the cases already developed, the properties
of the ceramic (phase p) in Case B are replaced with the effective properties from Case A.
In this way, Case B becomes the combination of matrix (phase m) with an effective
piezoceramic/matrix slice (phase A) from Case A. To actually carry this out, the following
substitutions would be made in the equations for Case B (Eq 3.27, 3.28, and those given

in Appendix A):
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E A
Sj1 € 8yy
E A
S;2 €812

S3y < S (3.35)

dj; < dj,

Except for the in-plane shear, this gives unwieldy equations for which the important
dominating terms are impossible to identify algebraically. In fact, the full analysis is better
suited to numerical computation of the effective constants. This has been done for all
effective properties, and the results for the ply properties have been plotted in section 3.6,
where all of the models are compared.

3.3.4 Closed Form Solutions:

A numerical solution, although complete in the sense that all coupling terms are
included, does not provide insight into the mechanics of the response. It would be
advantageous to have closed form solutions to give another means for evaluating the
effective constants of the combination model. The question is, to what level of
approximation must the analysis be taken to allow a tractable solution?

Returning to the original cases, A and B, the next logical assumption is to ignore
induced stresses caused by differing Poisson’s ratios in the two materials. For example,
the induced stresses T, and T, are assumed zero for a load applied in the 1- direction, T;.
This is likely a good approximation, especially when the loads are applied along the 1-
direction, due to the large fiber and matrix mismatch in stiffness.

In order to neglect the induced stresses, it is necessary to equate, a priori, two of
the stresses to zero within each phase, not just the averaged stress. In addition to
eliminating the induced stresses, this allows only a limited set of effective properties to be
found for any particular loading. In order to find all of the effective properties, it is
necessary to apply a series of hypothetical tests. The various loading cases are shown in
Figure 3.7. The premise for each is an applied stress in one direction, zero stress within
both phases in the other two directions, and an applied electric field, E;. Note that the
electric field is applied in all cases to maintain the electrical coupling terms.

This procedure is carried out here for the first loading case shown in Figure 3.7, the
longitudinal test. The first step is to write the constitutive equations (Eq 2.3) to reflect the
lack of mechanical coupling. For each phase, T, and T, are zero, so that the only applied
loads are T, and E;. The corresponding strains in the constitutive equation are removed
as well and kept separate. Equation 2.37 becomes:
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E3 I - T2 =T3 =O (a)

T, =T, =0 (b)

T, =T, =0 ©

Figure 3.7: Loading configurations for the closed form combination
model.

{Sl} =[Sﬁ “3'] {T'} (3.36)
D, p.m Y 8; pm E, p.m

Since the in-plane shear is completely uncoupled from all other loading, its form is
not affected by this approximation and equation (Eq 3.10) still applies. Case A is applied
first. The pertinent conditions are taken from (Eq 3.7) and (Eq 3.8):

T _ [T m [T

{Es} B vg{E3}p i {E3}m G371
S, Sn} {Sn } 33
b= = .38
{D3} {D3 o, (3.38)

Rewriting the constitutive equatiors results in

el -l ] o 639
E, pm L3122 322 D, p.m

where, for the piezoceramic,

T E
& ' d,, ’ S11

i€ —ds, s;1€3 —ds

’
aj,

=ET 2
s;1€3 —ds,
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Setting d,, to zero and removing the superscripts in the above will give
corresponding terms for the matrix material. Note that the aj; given here do not have a
one-to-one correspondence with the a;; in equation 3.9.

These relations are substituted into the conditions (Eq 3.37) and are combined and
inverted, as before, to give the effective constitutive equations in the original form:

§| Sn d3|:| {T;}
— = — 341
{D3} [d3l & A’ Ea ( )

where A' represents the effective properties in this case A combination with no
induced stress coupling. From this, the following effective properties are extracted:

13‘; = d3|S”V3p£33 (3 42)
T E 2 . .m2 ’
(VBEyy + VI'ER (S VE +51V3 ) — d3 vy
E/\,P m,T m_q2
. ;1 (St (VEEr + VI E37) — V3 d
Sﬁ — ll( II( 3¢33 3 33) 3 31) (343)

- T E 2 m?2
(V3Esa + V3 E33)(syV] +511v3) —d3y V3’
The dielectric constant, 8-3‘3 , is taken from the vertical load test (Figure 3.7c),

which provides the most compact form of the equation. To find s;‘;,' , it is necessary to

return to the unused portion of the original constitutive equations and extract the expression

for S,. In case A,
S, =8} =87 (3.44)
Thus, from the original constitutive equations (Eq 2.37) with T3™ = 9™ =0,
there are two possible expressions for S,
S, =S8 =s,T! +d;Ef (3.45)
or,
S, =87 =5, 1"
Substitutions for the fieids in the two phases are made from (3.39), giving either:
A su(sh(vien+ ViEs,) — vid3)

12 = m,T E.m 2 .,m
(V0E€s3 + V3 €33 )(8y V5 +81V3 ) —d3 V3

: (3.46)

or

E m.T m 32
A _ $12(811(VEEqs + V3 €33) — vy d3))
12 — 2 . m2

m.T p E.m (3.47)
(VBEys + V3 E33)(S) V3 +511v3 ) —d3 V3

This difficulty arises from the fact that the assumption of equal strains in the matrix
and ceramic can no longer exactly hold because components due to the induced stresses
have been neglected. However, the two terms will produce nearly identical results because
the following is true for the nearly equal Poisson's ratios in the two materials:
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SIS = S1oSi; (3.48)
Also important is the fact that the coupling term v, d3 | is comparatively small. This

term represents the effect of matrix clamping on the fiber properties, and is multiplied by
either the sF; or s, terms, depending on the the test case from which the effective property

comes. Effective compliance s, is the only ply property for which this inconsistency

appears, and from this point on, equation (3.48) is used.

Case B is developed in the same manner as case A, with T, and T, remaining

zero. The constitutive equations remain the same as (3.24), and from (3.22) and (3.23) the
needed conditions on the field variables become:

T, =v} R +v"‘{TI (3.49)

D,/ ’|bsf, ?|Dsf, ’
2~ {6, " {e
el oL =) (.50

Reorganizing the constitutive equations is straightforward and results in:

{T.} =[ f 14] {Sl} 3.51)
D, pm LT 14 by p.m E, pum

where,
1 dy, 5:3133T3 - d§|
n=g bu=-—J% by=—"3F— (3.52)
S S Si

Substituting into (3.49), and returning the effective constitutive equations to the

S e
D, dy, & [y E,

Again, to determine the effective s,,, it is necessary to return to the unused part of

original form gives:

the original constitutive equations. For case B, the condition for S, is:

S, = v3SE + v3'SY (3.54)
Substituting for the strains in the matrix and piezoelectric gives:
S, = VB(s[ TP +d5E8) + v3 (s, TT") (3.55)

Stresses TP and T} can be found in the reorganized constitutive equations (3.51),
and since E, is an independent variable the following equation is derived
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E p E.m
T S12S11Va T 512811V

S T 3.56
? syvi+spvy (3:50)
Summarizing:
E
sF = U __ (3.57)

- P E_m
$1 V2 T8V

E E_m
F = S1581; V5 + 82811 V2

2 L (3.58)
S,V +81Vy

P
B _ _ SuVydy

3.59
. S11V5 '*'3:51"'2“ ( )

Closed Form Combination Model

Combining Cases A and B may be accomplished by replacing the piezoceramic
properties in case B with the effective case A material properties. If the other two tests
shown in Figure 3.7 are carried out in a similar manner, all the ply properties can be found
for the closed form Combination Model. These are given below:

Longitudinal test:
off - dy,vEviess,, (3.60)
(§,v‘2’ +spvy )E - v;“dgl(vgv';‘ + v‘2“)
E= 2
Sf{f= sll(slls—v;ndSI) (3 61)
— E_ . m\= m 32 m m ‘
(vgs, +5,1Vy )8 -3 d3,(v§v3 +v; )
E E m\z m 42 p m
off _ (51 S12V5 +512811V2 )3 - V3 d3,(s“v2 +5S13V7 ) (3.62)
12 = - E.m\= m 42 m m :
(Slvg + Sl lV2 )8 - V3 d3l(V'2)V3 ‘+ V2 )
Transverse test:
= E = 2..m m_,m
off (s,vg“ +s“v2")e —d3v3 (v‘z’ +vy'vy )
sff =g (3.63)
22 = 8q1 ——  2.m2 :
PyP
eff _ G31V3V3ExS),
d3 TN (3.64)
S €—Vy dy
Vertical test:
mg paT mg mg,pq2 m,, m p
S“V2p + V2 Sz V2833 + v2 8 - V2 V3d33 V3 Vz + V2)
€55 = £33 ( A ) ( (3.65)

— - 2
8(51 v+ Szv'zn) — vy vy vidj,
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In-plane shear modulus:

E P P m_E \,,m
sef{ _ S66566 V2 + S“(V3866 + V3 846 )V2

%~ vBses + VIsE (366)
where:
£ =(viey +vien) (3.67)
5 = (s“vg +sﬁv§“) (3.68)
§ = (353"5’ +Sn"'3n) (3.69)

Note that the effective in-plane shear compliance (s&o ) is completely uncoupled

from any electrical effects. This is a result of poling perpendicular to the in-plane shear.

In each equation, the coupling terms are easy to identify. The compliance constants
now contain electrical terms, and the strain-to-voltage and dielectric constants contain
eff

1

mechanical terms. A closer examination of the d5; constant provides insight into the

factors that contribute to the actuation along the fibers. If the equations are normalized by

s; and £3,,the expression involving 5" becomes

dy _ €33 A\Su (3.70)

d,, - S €
p 1 m 2 .,m m m
511 €33

where Kk, is the familiar material coupling factor given by:

K3 =7 3.71)

The actuation capability is a direct function of the elastic and dielectric mismatch
ratios located in the numerator of the above eguation. Higher mismatches in dielectric are
detrimental to the actuation, as the term €,3/€3; becomes very small. Improved actuation
benefits from a high mismatch in compliance s;,/st; » because the matrix material is soft
and does not clamp the fibers. These mismatch ratios also contribute to the denominator
terms, but in a less direct manner. The material coupling factor serves as an indication of
the ability of the piezoelectric material to exchange electrical and mechanical energy. Since
all other terms are positive in the denominator of equation 3.70, larger values of k3, lead to
better effective actuation capability. PZT-5H type ceramic has a relatively high k3, (0.15)
compared to other piezoceramics, but the term that contains it is still small compared to the
other denominator term. This is a direct consequence of the high dielectric mismatch
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between the fiber and matrix. Lowering the mismatch is likely to be a key issue in future
work.

3.3.5 Discretization Model

Overall, the combination model is well represented by the closed form equations.
The use of the numerical solution seems unnecessary for the material property regimes of
interest. There is, however, one facet of the modeling that has yet to be addressed, for
which the numerical solution will be well suited. Up to this point, the models have ignored
the details of the actual phase geometry and assumed a square piezoceramic fiber. This was
necessary to allow description of the ceramic fraction through the use of only two
variables, v§ and v!. However, through the numerical solution, cases A and B can be
applied any number of times, suggesting that a discretized approach may be possible.

Such an approach could be used to model circular fibers. The method involves
dividing the matrix/fiber element into thin rectangular slices which can be added together to
give a discrete version of a circular fiber. Due to symmetry, a quarter model is adequate to
represent the volume element, shown in Figure 3.8.

Note that the volume element is not necessarily square. Slices of matrix and fiber
are combined using the case A equations, and then each of these slices are combined
through applying the case B geometry equations. The previous definitions of volume
fractions, v§ and v} are retained to deal with the individual slices. However, to deal with
the overall circular nature of the problem, define a width line fraction, x,, and a thickness
line fraction, X,. These line fractions give the maximum percentage of fiber for a line
drawn across the volume element in each of the two directions. Note that the actual volume
fraction will be some value lower than the product of the two line fractions and that the
maximum possible volume fraction is actually 7/4, and nct one.

The following is a summary of the steps used for finding the effective properties
using the discretizing method:

. Divide the element irto N slices of fiber and matrix of width
dx =22 (3.72)
N
° Find the volume fraction of fiber in each slice by finding the average

height, h, at each slice:

h= (3.73)
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Figure 3.8: Volume element for the discretization model

where h; and h, are found from the geometry of the element.
Rewrite the constitutive equations in the form for Case A
combination. For the ith slice, apply Case A to matrix and fiber:

A =hA +(1-h)A, (3.74)
This provides the effective constitutive equations for the ith slice.
These are rewritten in the original form to give s, s, etc.
Rewrite the constitutive equations in the form for Case B
combination. Each slice is then combined with the others and the
final column of pure matrix using:

N
B, = ZBidx+(1-—x2)Bm (3.75)

Rearranging B, to the original form of the constitutive equations

will yield the final effective properties.

These effective properties represent the fully coupled combination model, now with
discrete slices that model the circular geometry in the true specimen. The Uniform Field
assumption still applies within each slice, but the individual slices imply slightly
inconsistent fields at the boundaries. In a sense, fields are allowed to vary (discretely)
across the volume element. This type of model is expected to provide better agreement
with experimental measurements. The reason for this stems from the fact that the current
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specimens have only one fiber layer across the thickness. The dielectric and strain-to-
voltage constants are extremely sensitive to the amounts of matrix above and below the
fiber, and the averaged thickness in the square fiber models is simply not adequate in this
case. For this reason, experimental results are compared to this discretized model.

This is not to say that the models based on square fibers are of limited usefulness.
On the contrary, these models will be valuable for piezoceramic fiber composites with
multi-fiber layers through the thickness. In these cases, the homogeneous nature of the
Uniform Field model will be better represented in the composite, and the volume fractions
will be a statistical measure of the number of fibers in each direction. These models will
form the basis for comparison with other models, such as self-consistent approaches and
energy methods to determine effective properties. Note also that the Uniform Field models
are able to account for volume fractions above 7/4, where the fibers may be in a hexagonal
packing arrangement. The discretized model cannot, and merely represents an extension of

the current models io better represent the present experimental geometry.
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3.4 Self Consistent Scheme

3.4.1 Introduction

The Self Consistent Scheme (SCS) as a means for evaluating effective material
constants has been around since 1946, when Polder and van Santen [49] first considered
the problem of effective permeability of a particulate composite material. The actual naming
of the method as Self Consistent, however, is attributed to Hill [50] and refers to a model
where a fiber is assumed to behave as though it were embedded in an effective media of
infinite extent. The properties of this effective material are chosen to lead to a solution that
is consistent between the material phases. Since that time, the terms self consistent,
concentric cylinders (spheres), doubly embedded cylinders (spheres), and cylinders
(spheres) assemblage model have all been used tc describe the various microstructure and
approaches taken to model the effective properties for fibrous (particulate) composites.
Often the terms are misused, and there are important differences discerning the two basic
approaches to elasticity solutions.

Self Consistent Approach

When Hill first introduced the term Self Consistent Scheme [50] in 1965, he
proposed to model a particulate composite by solving a boundary value problem of a single
inclusion of radius ‘a’ in an infinite effective media, subject to far-field applied loads (Fig.
3.9 (a)). Solution of the boundary problem provided the material constants for the
composite. Hill admits the work was based on an earlier application of this method to the
modeling of polycrystalline aggregates by Hershey [51], which is a different problem than
that of a two-phase composite. He states, however, that “not withstanding this difference
in viewpoint, the entise [present] analysis is found to remain structurally close to that for a
crystal aggregate.” A fellow researcher, Hashin [52] was lcss convinced, and suggested
that a better approach would be to consider the matrix material as another material phase in
the boundary value problem. Thus, the element to be modeled was an inclusion
surrounded by matrix material, which was subsequently surrounded by an infinite effective
material (Fig. 3.9 (b)). This was termed the Generalized Self Consistent Scheme?.

5 Also known as the doubly emnbedded model
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Figure 3.9: Representative Volume Elements of (a) Self Consistent and (b) Generalized
Self Consistent

Figure 3.10: Typical repeating element for fibrous or particulate
composite (concentric model)
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Repeating Element Approach

A very different approach was undertaken at approximately the same time for the
solution of effective properties. The difference lies not in the modeling techniques (i.e.
direct vs. variational approaches), but with the volume element and boundary conditions
chosen. These differences in models virtually always were founded in disagreemenis with
the manner in which the composite microstructure could be best represented. Instead of
modeling an inclusion encapsulated in an infinite effective media, this approach was to
model the response of a repeating element of the composite and equate its response with
that of the overall composite. Such a repeating element is shown in Figure 3.10, where the
matrix material surrounds a fiber or particulate material. Another repeating element
example is the one used in the Uniform Fields or Finite Element models. The rationale
behind this approach was that the entire composite is made up of these repeating elements,
each of which behaves in the same manner, so that it is only necessary to analyze a single
one.

The difference may seem slight, however, the principle is significantly different. In
the Self Consistent Scheme, the loads were applied far field, at infinity. In the repeating
element approach, the conditions experienced by the composite macroscopically are applied
to the repeating element itself. Models by Whitney & Riley [26], Hill [53], and Hashin &
Rosen [25], all utilize this element. In Whitney & Riley and Hill, the effective properties
are found by equating the total strain energy of the element (due to applied macrescopic
loads) to the strain energy in the matrix and fiber. Hashin & Rosen use the principles of
minimum and complementary potential energy to determine bounds on the effective
constants. These bounds correspond for the special case of randomly distributed cylinders
of varying size, where each cylinder has the same proportion of fiber/matrix volume.6

Both raethods have been successful in generating reasonable estimates of the
various effective material constants. Hashin, in a more recent survey paper [54], however,
cautions the user of the Self Consistent or Generalized Self Consistent approaches. He
states that the basic premise violates the MMM principle’ , where dimensions at each level
must be substantially larger than the one prior to it. The embedding of the inclusion in an
effective media is meaningless since “the latter are averages of the former”, and that it is
incorrect to have varying elastic (electric) fields in the equivalent body.

6 For fibers, this is called the concentric cylinders assemblage (for particulate, concentric spheres)
7 Micro-Mini-Macro

58



Xs
T, s,
X, -,
i
|
X, /':
|
effective / :
fiber | T
matrix —|

Figure 3.11: Present approach to Self Consistent Scheme for piezoelectric fiber
composite

Current Approach

A variation of both approaches is suggested for the present analysis. Consider a
repeating element, as in Figure 3.11, that represents a fiber surrounded by an appropriate
amount of matrix material, and whose response is typical of the entire composite.
However, rather than use energy summations or weighted averages (as in Uniform Fields),
use the idea that this element is surrounded by many more of these elements that will have
the same response as the modeled element. These other elements will appear as a
homogeneous material with unknown effective properties, just as in the standard Self
Consistent. The key difference lies in the interpretation of the effective media. Just as in
the true Self Consistent, the effective material will have material properties equal to the
properties that describe the macroscopic response of the composite. However, the effective
material here is truly homogenous, so that everywhere the fields are uniform and equal to
those predicted by the macroscopic response. The introduction of the repeating element
inclusion should not effect the field distributions or cause varying fields within this
effective material.

The appropriate conditions that fulfill this point of view translate into assuming the
far-field boundary conditions are applied at the matrix/effective material interface, rather
than at infinity. Thus, the initial problem is similar to the repeating element approach. The
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notion of the surrounding effective material, although the role it plays is passive, is
convenient for establishing the premise of effective response. In this way, the model is
similar to Self Consistent approach. Here, the boundary value problem is still solved
subject to the consistent fields requirement at the outer interface, but the (bi)harmonic
equations do not apply in the effective material. Due to its similarity in general and the
presence of an effective material, the term “Self Consistent” is kept to describe this new
method.

3.4.2 Analysis of Piezoelectric Continuum

This section continues from the mechanical and electric field equations introduced in
section 2.2.1. The conditions of modified plane strain that describe the piezoelectric fiber
composites problem are enforced upon these equations to reduce the order of the problem.

Electrical Problem:
The equation governing charge distribution in matter was given in equation 2.1.

This can be thought of as the electrical equivalent of elastic equilibrium, and may be
expressed in tensor form[43] as

D;;=0 (3.76)
or,
dD,  dD,
9D, s g 3.77
o, | on (3.77)

since field variables are invariant in the longitudinal (1) direction. The net free charge, p¢,
may be set to zero in the interior. The electrically equivalent compatibility conditions are
given by equation 2.3, and summarized as
ExEjx =0 (3.78)
where g, is an anti-symmetric tensor (€23 = £33y = &312 =1, and &3, = €3y, = &3 =1,
all others zero). Reducing this set of three equations results in only one non-zero equation
9E, K _
dx3 0%,
which can be satisfied by the scalar potential ® defined in equation 2.6.

0 (3.79)
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Elastic Problem:

The equilibrium equations, which were defined in equation 2.9 may also be
expressed in the following tensor form:

dT(1) _
TH)‘(t)_p

J

d%y,
Ed

The above equation generates three equations of equilibrium. Ignoring time

(3.80)

dependence and body forces, and remembering that derivatives with respect to dimension
x; are zero, equilibrium equations become:

T, T,
Z24%4-9

X, OX, (G.81)
ﬂ.'..i;.r_i:o '
dx,  Ox;

Conditions of compatibility arise from the fact that six strains are derived from only
three displacements, indicating that the strains are inter-dependent [47]. The tensor
equation from equation 2.10 generates six equations of compatibility. Since all out-of-
plane strains (S ,S¢) are zero, and there is no dependence of strains on the x, direction,
only one compatibility equation remains:

9%s, N %S, __o%s,
o Ix; 9,0,

which is satisfied by the strain-displacement relations given in equation 2.11.

(3.82)

Stress and Electric Potential Functions:

One possible formulation of the combined problem is done using two functions
defined in terms of the independent variables, T and E. For the stress problem, the
components can be expressed in terms of a single stress function, F, that exactly satisfies
equilibrium (Eqn 3.81):

FE g ¥R O
 ox? 37 ox? 47 9x40%,

In the electrical problem, it is possible to represent the electric fields by the electric

T, (3.83)

function, ®:

g,=-32 g,--92 (3.84)

ax, 1T 9x,
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This function is more commonly known as the electric potential. Note that the
definition above exactly satisfies equation 3.79.

All that remains is to formulate the two remaining field equations (3.77) and (3.82)
in terms of the stress and electric functions. To achieve this, the modified plane strain
constitutive equations (2.44) are substituted into (3.77) and (3.82), so that the equations
are written solely in terms of T and E (with the exception of S,). The like terms are
grouped together and replaced with the above defined functions. Tlen,

L,F+L,®+L.S =0
L,F+L,»+L,S, =0
where the L, terms are linear differential operators defined as:

a4 a4
Bna 4+(2B17+Bl6) o"‘B

a a’
= BlSa 1"‘( Bse + Bm)a a %

a2 82
L,= Bssax_z'*' BM?
3 2

a2 82 (386)
Li=Bis=+B==
a Ba ax§ + ﬁb ax§

d

€ 0x,4

(3.85)

--a4

L,=-P

The modified plane strain material constants were given in equation 2.45. Since S,
does not vary with x, or x;, L S, =L,S, =0 and the problem becomes two coupled
fourth order differential equations in two variables:

L,F+L;0=0
L.,F+L,¢=0
where coupling is caused by the L, operator.

(3.87)

Analogy to Coupled Purely Mechanical Problems:

The appearance of th= third order differential operator, L, creates coupling of the
electrical and mechanical problems. This operator exists due to the existence of the

piezoelectric constants:
9

ﬁls 3x3 +( ﬂsa"‘ﬂm)m (3.88)
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where

B _(Sﬁ‘sfz)dm
15= SE
1
d..sE —d. sE
ﬂ56 = 33°11 = 31°13 (3.89)
Sii
314 =d,s

For materials without coupling parameters the two equations would be uncoupled,
leaving the two problems to be solved independently.

Interestingly enough, there exists another situation whereby the problems are again
coupled, this time for purely mechanical reasons. Materials of a degree of anisotropy high
enough to couple the extensional and shear strains will also exhibit coupling of the above
nature. An example of such a material is one that has non-orthogonal materiai principal
axes. Lekhnitskii [48] gives the complete problem formulation for a material of arbitrary
anisotropy. In such a case, the operator L, would have the complementary differentials

33 33
—8x§ ox, and m

These do not appear in the piezoelectric problem because the poling process creates

(3.90)

a preferred direction, leaving the 'd' matrix virtually unpopulated for electric fields other
than those in the poling direction.

Special Cases:

The coupled problem is a difficult one to solve. Even through complex variable
techniques, Lekhnitskii [48], provides solutions to similar problems for only very special
cases of materials with rectilinear anisotropy. These include stress distribution around
elliptical and circular cavities in materials, and stresses in an infinite plate with circular core.
In all cases, the solutions are found for problems which are uncoupled arising from
assumptions of isotropy, or special geometry and loading. Is it possible to make some
similar assumptions to the current problem to allow easier solutior?

The first possibility is to assume isotropy in the piezoelectric. Compliance in the 2
and 3 directions are typically 20% different for short-circuit conditions, allowing for the
possibility that the in-plane properties may be made isotropic. However, it is easy to show
that the very important piezoelectric stress terms (e = cEd) are very sensitive to small
changes of compliance, resulting in errors from 25% to 50% with assumptions of isotropy.
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In addition to this, the material has strong electrical anisotropy and can never be assumed
electrically isotropic. Furthermore, the governing equations still remain coupled.

One possible assumption may be that the fields are uniform in the materials. Such
an assumption was used in all the Uniform Fields approaches presented in section 3.3.
This not only uncouples the problem but ignores the continuum derived governing
equations and relies on constitutive equations and combining rules above (All derivatives
are zero, so that there is no continuum problem to solve).

A less drastic assumption is one of uniform fields, but only in the fiber material. It
has been shown in various studies [48,55] that the stress distributions must be uniform for
an inclusion in an infinite maierial. This is the well known 'inclusion problem' and holds
for even anisotropic cores. One can assume that for matrix materials with less than infinite
extent (i.e. other adjacent fibers), these fields will not be exactly uniform, but may be
close. This approach is taken here.

This leaves only the matrix material to be considered. The matrix is non-active,
therefore L, =0, and the problem is uncoupled. In addition, the material is exactly
isotropic so that there is a simplification of material parameters that leads to a further
simplifying of the governing equations. Since

S11 =8
S;2 =83 - By = B (3.91)
355=2(S|1—S|2) ﬁss=2( n—ﬁm)
and the problem becomes:
VF=0
(3.92)
Vi =0

Thus, the electrical and mechanical equations are in the familiar harmonic and

biharmonic forms, for which solutions are well known.

3.4.3 Boundary Conditions and General Approach

The premise of the self consistent, described in the previous section. relies on
finding the response of the material to a given set of inputs in order to determine the
effective material properties. Those applied loads are the longitudinal strain, S;, the
transverse stresses, T, and T, and the electric field, E,, as shown in Figure 3.11. As
will be explained later, these four loads allow derivation of the entire three-dimensional
material property matrix for the fully orthotropic effective material.



The coupled governing equations (Eqn. 3.87) for the piezoelectric material are
difficult to solve, and an approximation was made as to the field distribution inside the
piezoelectric fiber. Both the electric and elastic fields are assumed to be uniform within the
center (piezoelectric) cylinder. This will be a good assumption, as the Finite Element
model will show, especially at lower volume fractions. For a cylinder embedded in an
infinite medium these fields are exactly uniform, even if the cylinder is elastically
anisotropic [55]. However, since the surrounding matrix sheath is not infinite, the fields
will be somewhat non-uniform. This nonuniformity, no matter how slight, will pose some
difficulties when the problem is rigorously formulated. In the present analysis, the
problem will be overconstrained, and it will be necessary to ignore some of the less
important boundary constraints. The solution of the overall problem is first summarized as

follows:

1. Examine the elastic problem:

(a) Assume stresses are known in the fiber:
T,, T, T,

Transform stresses to polar coordinates:
Tr’ TG ’ Tlﬂ

(b) Solve boundary value problem (V*F =0) in the matrix, subject to stresses at
the fiber/matrix interface, and subject to uniform “macroscopic” stresses, T,
and T, on the matrix/effective material interface:

r=a:

TP =Tl and TH=Ti

r r

-
1l
e

TP =T;" and TH=Ts

where a and b are the fiber and matrix outer diameters (same as shown in Figure
3.9 (b)). This provides a description of stresses throughout the matrix and fiber
as functions of fiber stresses , T, T,, T, and applied stresses T, and Tj.

(c) Determine strains S,, Sg, and S in the matrix and fiber using constitutive

equations.
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(d) Integrate strains to determine displacements u_ and uy in both materials.

(e) Equate displacements at boundaries to generate 3 equations relating unknowns
(E,, E,, T,, T;, T,)to applied loads (T,, T4, E,, S)):

r=a:

f

- m_
=u Ug = Ug

-

2. Examine the electric problem:

(a) Assume electric fields are known in the fiber:
E,, E;
Transform fields to polar coordinates:

Er’ EO

(b) Solve boundary value problem (V2® =0) for the matrix, subject to electric
potential boundary conditions at the fiber/matrix interface and the

matrix/effective material interface:
r=a

o™ =o'

-
]
=2

d)m = d)eff

(c) Determine the electrical displacements, D, in the matrix and fiber using

constitutive equations.

(d) Equate the electrical displacements to generate 2 equations relating unknowns
(E,, E;, T,, Ts, T,)to applied loads (T,, T,, E;, S)):

r=a:

3. Solve the system of S equations for 5 unknowns:

(a) Solve for the assumed stresses and electric fields in the fiber in terms of the
applied loads, T,, T,, E;, S,
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Up to this point, the problem has been formulated in exactly the same manner as the
repeating-element approach. The loads have been applied to the exterior of the matrix
sheath (the matrix/effective material interface) without regard to the effective material. This
was possible because the macroscopic loads applied (T,, Ty, E;, S, and T4 =E, =0)
were the independent variables in the analysis, and the complementary macroscopic fields
(T,, S,, S;, S,, D,, D;) did not appear. Thus, it was not necessary to specify the
nature of the relationship between these field variables, and the problem has been kept
general.

At this stage, there are several options that may be pursued. One typical approach,
as discussed in section 3.4.1, is to equate the strain energy of the repeating element with
that of an effective material that undergoes the macroscopically uniform deformations due
to the macroscopic applied loads. However, the approach used here, is the use of an
effective material surrounding the repeating element, as in the traditional self consistent.
Here, the fields are consistent between the matrix/effective material interface as well as the
fiber/matrix interface. The enforcing of these consistent fields brings into the analysis the
unknown effective material constants through the effective material constitutive equations.
Solution of a final system of equations determines the effective constants for the
piezoelectric fiber composite.

4. Examine the effective material:

(a) Formulate the fully orthotropic constitutive equations for the effective material
in the same manner as for the other two materials (Eqn. 2.43-2.45).

(b) Determine strains S,, Sy, and S in the effective material using constitutive

equations.

(c) Integrate strains to determine displacements, and equate displacements
in matrix and effective material:
r=b:
u" =u ug = ugﬂ
(d) Determine electrical displacements , D,, in the effective material using

constitutive equations.
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(e) Equate electrical displacements in matrix and effective material:
r=b:

m __ eff
Dr _Dr

(f) There remains only one applied load whose complementary field has not been
used. This is the applied strain loading, S,. During the problem formulation,

this strain was written as an independent variable with the constraint that it is
uniform across the entire volume element. To accomplish this load requires a
special stress, Tl, which may be found from a force summation. This
summation is simply a requirement that the overall longitudinal force of the
repeating element must be equal to that of the effective material:

THA e, = [(TI+TMdA

elem —
Aelem

(2) The equations generated in steps (c), (€), and (f) describe a system of equations
for the effective material constants in terms of the matrix and fiber material
constants and the volume fraction. Solution of this system is done simply by a

matrix inversion.

3.4.4 Self Consistent Analysis

The section follows the problem summary given in the previous section and
elaborates on the steps given there. The first step is to examine the elastic problem:

1. The Elastic Problem:

For the time being, assume that the stresses within the fiber cylinder are knowr.
Since they are to describe uniform fields, they can be immediately written as follows:

T =T, Ti =T, T =T, (3.93)

The stresses T, and T, are the normal stresses in the 2 and 3 axis directions. The
stress T, is the shear stress in the 2-3 plane. Since all boundary conditions are to be

imposed in the polar coordinate domain, the stresses are converted to polar coordinates:
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T! = LT ) (T =Ta )02+ T, sin26
2 2 !

T! =(T3;T3)—(T2;T3 )00329—T4sin26 (3.94)

T,-T
Tf —_| 22 3
0 ( 2

)sin 20+ T, cos20

Macroscopic loads are applied to the overall body through the effective material
sheath. These stresses are also unifcrm. In this material, only the normal stresses are
applieds.

T =T, T=T, T5"=0 (3.95)

These are also transformed to polar coordinates:
T, = (T2;T3)+(T2;T3)60826

Te=(TZ;T3)—(T2;T3)cos.29 (3.96)

Tro=0
These two materials surround the matrix and provide the boundary conditions for
the biharmonic problem in the matrix material. The general solution of the biharmonic
problem ( V*F = 0) is an infinite series:

F=a,logr+bgr? +cor’logr+d,r’0 +ay0
+%r9sin6 +(b,r* +ajr™' 4-birlogr)cosd

-1

-%‘recose-t- (d,r* + ¢} ' +drlogr)sin@®

(3.97)

+3 (a,r" +b,r" +alr™ +bjr™"**)cosnd
n=2

+3 (et +d,r™? + e +djr"*?)sinnd
n=2

8 The shear stress and transverse electric field are part of an uncoupled system that may he determined
separately
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However, the fields in the matrix will only be a function of terms that are of the
same order as the materials surrounding it (i.e. constant and 26 terms). Higher order
terms will drop out, as will the lower cos0 and sin® terms. Other terms are inadmissible,
such as the 8 terms dennted by the aj,a,,c, constants. These are used to model
singularities and do not upply here. The elastic fields in the matrix material may be
described by the reduced potential with renamed constants:

1
F=a,logr+b,r? +(a3r2 +b,r* +c, —,+d2)00526+
2

| (3.98)
(e3r2 +f,r* +g,—+h, )sin 29
2
From this stress potential comes the stresses within the matrix:
m ao c'.’. d2 . g.’! h2 H
TP =—+2b, +| —2a, —6—5 —4— |c0s20 +| —2e, —6=5 -4 — |sin20
r- r r r re

™= "oy 2b, +(2a2 +12b,r? +6£§—)cos20-{-(2e2 +12f,r* + 6g—§)sin 20
r- r r

™ = (232 +6b,r% 62 —2d—3)sin 2e+(—2e2 —6f,r* + 652 + 25;1)cosze
r re r r-

(3.99)
Since the stre, ses are “known” in the two materials surrounding the matrix, these
stresses act as boundary conditions for the matrix boundary value problem. The
appropriate conditions for stress equilibrium on the interfaces are:

=T and TR=T at r=a
(3.100)
T:“ = Tr and T:.'(‘) = Tm at r=>b

Solution for the constants is straightforward and results in:

- a‘b? (T2+T3)_ T2 +Ta
072 _y? 2 2

by = 75— —a°| = [+b =
0 2(b"—a’)[ 2 2
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. =b2(4a“+a b? +b4)(T2_T3) 2(éizl"'-!-azb:"+b4)('1‘2._'1*3)
T 2 2 2(a> - b?) 2

ab“ [ 2—Tq 2T3)]
Rt

2 ;;2)[(T25T3]‘(T25T3)]
a’b?(a* +a2b2+b4)|_(T2—Tq) (Tz—T;,)

d2=- 2 2

i (a" —b')

az(a4 +a’b* + 4b4)

O“

Cz—

(3.101)

TS B
22
f, = (aza- b2 )3 T,
g, = _a4b4(a2 + bz) )
) 2(a2 - b2)
b o :12b2(a4 +a’b?+ b")

(a2 -b? )3 T

The stresses throughout the fiber and matrix are now known as a function of the
macroscopic applied loads and the assumed stresses in the fiber. To eliminate these lafter
terms, and be able to describe the problem solely in terms of the applied loads, it is
necessary 1o also match the displacements at the two interfaces. The displacements are
derived from an integration of complementary fields, the strains. Once again, the fields
need to be converted to polar coordinates to allow matching of boundary conditicns along
the circular interface. The transformation for the strain matrix is given by

Sr S2
Se t =Rs4S; (3.102)
S, S,

where Ry is the second order transformation matrix given in section 5.2.2. The Cartesian
strains can then be replaced by the independent field variables (E,, E;, §,, T,, T4, T4)
through the constitutive equations for each material. In this way, the strain can also be
written as functions of the same loads as the equations developed thus far.

In the matrix material, the strains are simply:
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S¢ =B\ 17 +Bi T8 +B7'S,
Sg =B Tr + BT +B7'S, (3.103)
Sto =Pee Tro
It is possible to show that these strains satisfy compatibility. The polar form of the
two dimensional compatibility equation is given in REF{48]:
0%s, aS,  9°(rSp) 9°(rS,)

30 "o " Tor ol . (3.109)

Introduction of the stresses (Eqn. 3.99) into the polar constitutive equations (Eqn.

3.103) will satisfy the above compatibility. The next step is the determination of the
displacements. The strain-displacement relations in polar coordinates are:

du,
=
u  1dug
=—4-2e 3.105
Se r r do ( )
1u,  duy U
S'e—r 89+ar r

from which the displacements are found by integration:
ur = JS,dr+Fgy
ug = J(reg —u)d0 - [Fgd0 + G,

where Fy and G, are constants of integration that are functions of 6 only and r only,

(3.106)

respectively. To determine these constants of integration, the above displacements may be
substituted into the final equation in equation 3.105 for S 4 and compared to the value of

S, in equation. 3.103. The following differential equation is found for the constants:
19F, 36 |

1
+—L 4+ =[F.d® --G.=0 3.107
rdd or r'[ o r ’ ( )

The only solutions that satisfy the above are:
Fg =Hsin8+Kcos6  and G, =1, (3.108)

Conditions of symmetry force H and K to be zero, because the first order 6 terms
do not preserve the geometry and loading symmetries. The term G, must also be zero

because it represents a rotation of the material element about the 1-axis, which again
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violates symmetry. These arguments are true for both the fiber and matrix displacements.
For an applied macroscopic shear load, T, these terms may not necessarily be zero? .

For the matrix material, the following terms comprise the displacement:

constant:

c0s20:

ul" = [B;*;(-za2r+ 2‘;—_3+49;2—)+ B.“;(2azr+4bzr’ -2%)]00829

) X (3.109)
ud = —[[S:':(2t32r+6f2r3 + 2%-—272)+B;‘;(—2e2 -2f,r° —2% - 2—%)]00829
sin20:
ul =[ :';(—2ezr +2%+4h—;)+[3:';(2e2r+4f2r3 - 2%)]sin 26
m m 3 C, d2 m 3 ) d3 i
uf’ = —{ B}| 2a,r +6b,r +ZF—2—r' +Pa| —2a, —2b,r” - 'r'3“_2T sin 20

Since the fiber material is rectangularly orthotropic, the polar constitutive equations
are somewhat less concise, and have an angular dependence:

f . of {_of [
S£=(32;S3)+(SZ 283)c0826+%sin29

f f f_Qf f
Sg,:(Sz*S-‘)-(S’ S-‘)cosze—%sinze (3.110)

2 2
Sf, =S, 0820 — (S, — S3)sin 20
where
S; + S; = Es( {5 + Bgs) + Tz(ﬁf. + sz) + T3(B:2 + B;z)

9 The shear modulus s¢¥ is not of interest here, since the application is of planar structures
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S; _Sg = Ea(BIS _B;6)+T2(B{l - B:2)+T3(B:2 _B;2) (.111)

Si = Bf4E2 + B;«;T4

Integration for the displacements in the fiber gives:

constant:
ur = ’;‘[Es(ms +Bss) + Ta(Br) +Bia) + Ty(Bl +Bz) +Sy(By + Btf»)]
up=0

c0s20:

ur = %[Es(ms ‘Bge)"'Tz(Blfl - {2)+T3(B1‘2 - B;2)+SI (Bf. —B{,)]COSZG
(3.112)
up = %[B,’Jﬁ2 + BT, |cos20

sin20:

uf = %[3{452 +BL,T,]sin26

up = _%[Es(ﬁlfs —626)+T2(B{l _B{2)+T3(B{2 ~B%)+Si(B; —BL)]sin29

The next step is to equate the displacements in the fiber and matrix at r=a. This
gives 5 equations, which when added to the 2 from the electric probiem gives 7 equations
in only 5 unknowns (E,, E,, T,, T;, T,). An examiration of the displacement
equations reveals that two of the displacement terms for the fiber (3.112) are redundant,
while two for the matrix (3.109) are almost redundant. When the displacements are
equated, the equations for the u, displacements are almost exactly the same as those for u,.

This derives from the fact that the fields were assumed uniform within the fiber,
when actually they will be slightly nonuniform due to the finite extent of the surrounding
material (matrix). The fields within the fiber need additional terms to describe the
variations, and it is possible (although lengthy) to show that an infinite series is necessary
to rigorously formulate the problem. However, the uniform assumption is close to the
actual distributions so that the extra terms were originally ignored. Had the matrix been
infinite in dimension, these equations would likely be redundant, and the uniform fields
would exactly describe the fiber distribution, as predicted by Eshelby [55].
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The extra equations act to overconstrain the problem. The decision at this point was
to ensure the most important equations are satisfied. Here, the radial displacements u_ are
more fundamental to the problem, as loads are applied in the transverse direction. The
tangential displacements, ug, are not as important, and ignoring them will result
(potentially) in slight interface sliding. However, these equations are very similar to those
for the radial displacement, so that this sliding will be very small. The equations are

summarized in equation 3.126.
2. The Electric Problem:

Uniform electric fields are assumed in the fiber material:

E'=E, and E|=E, (3.113)

In order to enforce the electrical boundary conditions, the fields will need to be

written in polar coordinates. Since electric fields are first order tensors, transformations are
carried out using a first order transformation matrix, R,;, whose form is given in section

5.2.2.
E E,
B
The transformation gives:

E! =E,cos8+E,sin6
E! =-E,sin0+E,cos0
One of the boundary conditions to be satisfied for this electrical problem is that of
equal scalar potentials along the interface. The potential is related to the fields through

ad 1 dd

(3.115)

Er=—-— and Eo=——7— 3.116
' or " 1 o0 ( )
Integration of equation 3.115 reveals the potential in the fiber to be:

@' =-rE, cos8—rE,sin6 (3.117

The macroscopic loads are applied to the overall body through the effective material
surrounding the matrix. These applied loads are uniform:

Ef"=0 E{" = E, (3.118)
Note that the macroscopic electric field is restricted to be only in the 3 axis
direction, due to the electrode placement on the composite. However, transverse fields,
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E2, may exist in the fiber or matrix material. Transforming these fields to polar coordinates
and integrating for the potential gives:
E" = E,sin6
E;" =E,cos0 (3.119)
@ = —E,rsin@

The electric field distribution within the matrix is governing by the harmonic
equation V>® =0. The general solution is an infinite series, but the matrix potential will
only contain terms similar to that in the two phases surrounding it. Thus, the potential in
the matrix is described as:

q)“‘=(a,r+—lz'—)cosﬂ+(c,r+ﬁ)sin9 (3.120)
r r

The electric potential at the matrix boundaries must be equal to that of the
surrounding materials. Thus, the potentials in equations 3.117 and 3.119 serve as
boundary conditions for the matrix problem. The conditions are:

o"=Pf at r=a
(3.121)
o™ = o at r=b

Solution of the above equations provides the values of the constants a,...d, in

" terms of the fiber and macroscopic effective fields:

a2 a’ b2 =
al—-bz—azﬁ2 bl=bz—azﬁa_bz—a2E3
(3.122)
a’b? a’b? a’b? =
Cl"‘ﬁ‘i‘Ez d1=-b2_azEa+bz_azE3

The electric fields are now known through the fiber and matrix in terms of the same
field variables. Enforcing the second boundary condition of equal electrical displacement
will allow the problem to be described solely in terms of the applied macroscopic loads.
The polar electrical displacements may be written using the transformation:

oo} = Relon}
Do/ E|D, (3.123)

D, =D, cos0+ D,;sin0
The Cartesian electrical displacements are related to the stresses and electric fields
through the constitutive equations. For the matrix:
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D =B, E!" =[3f,"4[—(a, —Pr—')cosﬁ—(c,r—d—r’)sine] (3.124)

and for the fiber:
Df = (BYE, + B}, T,)cos0 + (BLE; +BIT, +BL T, +BLS,)sin® (3.125)

Equating the electrical displacements at r=b gives two equations (one from sin®

and one from cos0) of the 5 total needed to determine the 5 unknowns (E,, E,, T,, Ty,
T,) in terms of the applied macroscopic loads (T,, T, E;, S)).

3. Solve the System of Equations:

The 5 equations are best summarized in matrix form. The terms from the matrix
material, a,...h,, have been combined and condensed as much as possible:

-All Al?. “'13 0 0 ) 'T2‘ —Dll Dl?. Dl3 0 ] §

AZI A22 A23 0 0 T3 D2| D22 D23 0 r‘r‘l

Ay, Ay, Ay 0 0 HE,'=ID,, 0 0 D,RK.°
31 32 33 3 31 41 T3 (3126)
0 0 0 A, AgllT, 0 0 0 0|

|0 0 0 Ay A |E) [0 o o o]

where the terms Aj and Dij are given in the Appendix.

Note that the separate equations in the matrix describe two separate, uncoupled
systems. The first of these involves fields T,, T,, and E,, which may be named the
normal system. The second set involves T, and E,, or the shear system. These two
problems are uncoupled. Furthermore, for the applied macroscopic loads, there is no
forcing in the shear system. Thus, the fields within the fiber, T, and E, must be zero.

The remaining, normal, system may be reduced to:

Al Az Apl(T: Dy D2 D3 O ||
A2z An An|{T3¢=|Da Dxn Dn O T (3.127)
Ax A Axn]lEs Di 0 0 D E

The system is easily solved:

S S

T, Tl T|

Typ=A"'D{_*t=Cy 2 (3.128)
Ta T3

Ta . —
Es Es



4. Examine the Effective Material:

The effective material will have orthotropy of higher degree than the piezoelectric or
matrix materials. Since the constitutive equations for the effective material will be needed,
the next task is to determine the modified plane strain property relations. This follows the
discussion accompanying equations 2.43-2.45. Note that the following are not the same as
those equations for the piezoelectric.

S = n Tz + ngz Bngz'*' Bc"§|

= ff — ff —
S =B}, To+ P T3 +B% B + R,

(3.129)
- ff — = eff =
D;=Bjs T+ :g Tst :g E3+B; rrSl
Tl - _BszTz effT3+ B"“E".'*' BZ“SI
where
E E
S g oSu g _9u g _1
Pe SFI Py SFI Pe SlEl P SFI
d,sE dy% —d.qsE eLsE —d?
Bys =ds, — 3| 12 By = n 31513 Bss = 33 uE 3 (3.130)
n Sll Sii '
E2 E E E
St s S S1iS2z — S
B =55 - & Be= s =gt By =R At
Sn S Sii

The independent field variables (T,, T,, E;, S)) in the above equations are the
macroscopic, uniform loads applied to the effective material. In accordance with the
premise of the model, these formed some of the boundary conditions at the matrix outer
boundary. The resulting complementary fields (S,, S;, D,;, T,) must match between the
matrix and the effective material at r=b. These complementary fields are related to the
applied loads through the above constitutive equations. In this manner, tue effective
material constants become introduced to the problem, and may be solved for. The
mechanical boundary conditions are satisfied by equating displacements at the interface.
Displacements for the matrix are known (Eqn 3.109). Displacements for the effective
material may be found in the same manner as for the fiber, where the polar strains are
integrated to determine the polar displacements. The radial displacement of the effective
material is:

constant:
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ot = -;—[(BIS +Bs)Es + (Ba +By)S1 +(Byy +Bi2)T2 + (B +B2)Ts]  (3.131)

cos20:

" = Z{(Bis ~Bse)Ea + (B, ~By)Si + (Byy ~Bro T2 + (Bra B Tacos26

Once again, only the radial displacements of the materials are used. Equating the
displacements of the matrix and effective material at r=b gives two cquations, where the
fields in the matrix that were described in terms of the assumed fiber fields (T,, T, and
E,) can be replaced with the macroscopic loads solved for in equation 3.128. This is
summarized shortly, in equation 3.133.

The electrical boundary conditions are satisfied by equating the radial electrical
displacements at the interface. The electrical displacement for the matrix is given in
equation 3.124. The electrical displacement for the effective material follows from the
constitutive equations (Eqn 3.130) after converting to polar coordinates:

DE" = [BSTEs + B S +B{Y T2 + B5§ T3]sin® (3.132)

The result of satisfying the final boundary conditions is three equations that relate
fields in the effective material, that are a function of the macroscopic loads and effective
material constants, to fields in the matrix, that are functions of the macroscopic loads and
material constants for the matrix and fiber. They appear as follows:

(B, +B12) (Br2+Bxn) (Bis+Bss) (Ba+By) ;i] M, M, M; M, [;i
(Bn - Bl2) (BIZ "Bzz) (BIS - Bso) (Bn - Bb) E; =My My My My, Ez
Bis Bse fis Be Ly 5, M, M; My, My, §1

(3.133)

This final matrix allows for the simple solution of (all but one of) the effective material
properties by comparing corresponding matri.. erms. The final effective mauerial constant

ol = 1 (3.133)

eff
11

cannct be found from looking at the solution to the in-plane (2-3 axis) problem.
Instead, it must be determined by considering the longitudinal response of the matrix/fiber
element, and comparing it to the response of the effective material Since the applied
macroscopic load in the 1 axis was the uniform longitudinzl strain, S,, the complementary

79



field is the axial stress, T,. Thus, the responses are compared by equating the total
longitudinal stress T, in the matrix and fiber element, to the macroscopic stress T,
developed by the same longitudinal strain S, in the effective material. Since the stress

fields vary within the matrix, they need to be averaged over the element by integration.

Ti=v,T| +(I- vf);L [T]"dA (3.134)
mAm

The longitudinal stresses for the effective, fiber, and matrix materials may be found
from the respective constitutive equations (Eqn 2.44 for the matrix and fiber, and Eqn
3.128 for the effective material). Finally, the effective material constants may be easily
determined finterms of the modified plane strain constants, equation 3.130:

eff eff2
e _ 1 e _ By off _ qeft , Pa

0 =ger 512 S gem S22 = PNt
d d d
ffpeff ff2
sel'f B_t?__ st.ff cff BL B gc.ff eff Bc
13 = Bcff 23 = Beff 3= »nt Bm
ff ff neff off eff fr2
dt.ff e dt.ff t,ff +Fa Fe Bc Be deff eff + B; BZ et.ff cff BL
= err = Beff = Ps6 Bcff 33 =Pss * o
d d d
(3.135)

where ihe effective P&

i » solved from equation 3.133, are given in Appendix C.
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3.5 The Finite Element Model

3.5.1 Introduction

The finite element method (FEM) is an extremely effective method to modeling
structures, dynamics, and transport phenomena. It is very easy to develop models that
represent simple systems and provide solutions that act as another check in calculations. It
can also provide answers to the response of systems that are so complicated that finite
element is the only means for such a response prediction. Popularity for this method
derives from the fact that extremely accurate results can be obtained when the user designs
a model that properly represents the system.

This method has been widely used for the purpose of calculating the effective
material properties of multi-field media. However, the basic elements (discussed in
sections 3.2 and 3.4) have not changed since the mid 1960’s, and the same disagreements
remain as to the ones that best represent the composite microstructure. Thus, the same
assumptions that limited the analytical approaches, such as fiber contiguity and packing
arrangement, still exist in the formulation of the problem for the finite element solution.
The point, however, is not to use the FEM to evaluate different volume elements, but rather
to confirm the approaches taken in modeling, based on a particular microstructure
representation. Thus, the value of an implicit approach such as this one lies in the
validation of assumptions used in the simpler models.

Few examples of finite glement modeling of coupled field materials have been
published [42,56], although the method is well suited to such materials. Only recently
have FEM software packages been extended to include “multi-field” solids in the more
general sense that allows modeling of electrical-mechanical coupled materials. Previous
methods utilized directional-specific thermal expansion coefficients to approximate the
piezoelectric effect. The method is classed as an elasticity type of solution because it
approximately satisfies the coupled electrical-mechanical governing equations. The
problem is formulated in terms of displacement and voltage degrees of freedom, so that the
compatibility and potential distrioution equations are exactly satisfied. The energy
formulation, however, only approximately satisfies the equilibrium and charge distribution
field equations through a minimization of the total potential energy. More detail about the
solution procedure is given in section 3.5.3.
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Figure 3.12: Quarter model representation of the composite microstructure for the Finite
Element Method

3.5.2 Model Description

The premise behind the model is similar to the Uniform Fields approach. A
repeating element is selected to represent the response of the entire composite. Again, the
volume element is taken to be a representative single fiber with surrounding matrix material
in proportion to the volume fraction being modeled. Due to symmetry, it is only necessary
to model a quarter section of this basic element. This is shown in Figure 3.12 (a) and (b).
In accordance with the discussion in 3.2, the amount of matrix surrounding the fiber is
taken to be equal in the 2 and 3 axis directions. This will match the other models, and best
represent a multi-fiber thickness composite. The finite element approach, like the Uniform

Table 3.2: FEM Quarter model Boundary Conditions

Face Mechanical Boundary Conditions Electrical Boundary Conditions
1 displacements coupled in x; D, =0
2 displacements coupled in x, D,=0
3 displacements coupled in X, voltage potential coupled
4 zero displacement in X, D, =0
5 zero displacement in X, D, =0
6 zero displacement in X, voltage potential coupled
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Table 3.3: FEM Load Cases to Determine PFC Effective Material Properties

Load Case # Mechanical Loading | Electrical Loading | Properties Obtained
| T =0 on faces 1,2,3 | Apply electrical field | &, di, da
(zero stress) V, on face 3
2 Apply displacement | V5 =0 on faces 3, 6 st sE
u, on face | (short circuit)
3 Apply displacement | V3 =0 on faces 3, 6 s sh
u, on face 2 (short circuit)

Fields models, is very flexible, and may be adapted to model geometry more appropriate to
the experimental specimens.

The volume element is comprised of six faces which each have appropriate
mechanical and electrical boundary conditions. The 1,2, and 3 faces are the x,, X,, and
x4 faces with positive (outward) direction normals. These faces are free to strain,
restricted only by coupled displacements in that face’s respective direction. In the 1
direction, this represents the assumption that the plane perpendicular to the fiber must
remain plane after deformation!?. In the 2 and 3 directions, this represents the requirement
that the repeating element must have uniform deformations that satisfy those of the
composite macroscopic response. The faces 4, 5, and 6 are the faces with negative x,, x,,
and x, orientation. These represent the planes of symmetry for the quarter model, and
have symmetry electrical and mechanical conditions. The electrical symmetry is enforced
through equating the normal electrical displacement to zero, while the mechanical symmetry
is enforced by setting all normal mechanical displacements to zero. Finally, although they
are not modeled explicitly, the electrode surfaces are generated by electrically coupling the
nddes on face 3 together and the nodes on face 6 together. The boundary conditions for all
faces are summarized in Table 3.2. These are invariant with load case.

Like the Uniform Fields approach (especially the Closed Form model), the material
properties are found by posing a series of hypothetical experiments. In the finite element
method, a series of separate load cases are applied to the repeating element. For this
model, only the ioad cases that provide the planar properties are applied, and are presented
in Table 3.3. The first load case (#1) applies an electric field to the element, while all faces
(1-3) are stress-free. This is accomplished by placing the potential on the top electrode to

10 See section 2.7 for a description of the PZT Fiber Composite Problem
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some arbitrary voltage V,. Given this set of loading conditions, the solution to the
problem returns values of displacement (u,,u,) and surface charge q, on the electrode:

Load Case #1:

From the constitutive equations,

where W is the depth of the model, and L is the dimension of the model in both the

2 and 3 directions. The second and third load cases involve applying known displacements
u; and u, to the faces, and determining the forces developed to keep the model in

equilibrium. Since the electrodes are shorted, the electrical field is macroscopically zero.
The compliances are then calculated as follows:

Load Case #2:
— T 0
Dl_fe d _} (3.137)
§) Ldy 7] T
E_S
Sii T,
E_S,
=—= 3.138
Si2 T, , ( )
where:
1 LFIL SF%
(L-L) (3.139)
u
T,=0 S, =—2
2 257
Load Case #3:
S
s{52=?'-
2 (3.140)
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Table 3.4: Model Statistics for Finite Element Fiber/Matrix Quarter Model

Line Fraction, X; -# Elements # Nodes # Active DOFs

0.1 325 726 2177
0.3 349 758 2305
0.5 325 720 2165
0.7 254 593 1725
0.9 310 697 2081
0.95 273 624 1837
0.98 438 938 . 2874

S,

Spp =

where:
Tl = O Sl = % i
R, u, (3.141)
Teewy) L

Automatic mesh generation was used to discretize the quarter model. A typical
mesh is shown in Figure 3.13 (a) and (b). Figure 3.13 (a) shows the front view (face 1) of
the fiber/matrix quarter model for the particular fiber line fraction (X;) of 0.90. The
number of elements varied between 254 and 438, depending on the fiber line fraction. A
variation in volume fraction was accomplished by setting the fiber line fraction to values
between 0.1 and 0.98, corresponding to volume fractions between 0.0079 and 0.754 (the
maximum for square packing is z/4, or 0.785). For each of these cases, the model
statistics are summarized in Table 3.4. Higher concentrations of elements did not
significantly affect the effective properties. The exploded three-dimensional view of the
same model (X, =0.90) is shown in Figure 3.13 (b). From this figure, it is possible to
see the element packing and the higher concentration of elements near the top electrode,

where the model is most sensitive.

3.5.3 Finite Element Theory and Analysis

The finite element method for piezoelectric static and linear dynamic analysis can be
found outlined in Ref[57]. The paper develops the general method of electro-elastic
analysis by incorporating the effect of piezoelectrics into a finite element formulation. The
basis of the theory is the variational principles, extended to the piezoelectric case. The
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Figure 3.13: Element mesh for fiber/matrix quarter model at 0.90 line fraction
(X; =X, =X,); (a) Front face (#1) view, (b) 3D Exploded view
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authors develop a three dimensional tetrahedral element based on an assumed displacement-
potential degrees of freedom, so that the formulation is an extension of the Principle of
Minimum Potential Energy. It is from this theory that the elements in the chosen analysis
software are derived.

Energy Formulation

The theory begins with the definition of the virtual work density:
dW =38U
W = {u} {F} - 5®c

where {u} is the displacement, @ the electric potential, {F} the mechanical force density,

(3.142)

o the charge density, and 6 the virtual quantity. To apply the principle of variations for
the above formulation requires form 1 of the constitutive relations, from equation 2.23:

{T}=[c"[{S} - [e] {E}
{D}=[e]{S}+[e"}{E}

Applying the principle of Minimum Potential Energy immediately produces the

(3.143)

following matrix form:
[ ({88}, [c= }is} - {58}, [e], {E} ~ {5E} [e]{S} - {3E}, [e"{E} - {Bu} {F} + s005, )av

~ [{ou} {T}da+ [ 895 ,dA - {Su}{P}+50Q =0

(3.144)

where the prescribed quantities are: {F}, the body force, {T} the surface traction,
{P} the point force, G® the body charge, G* the surface charge, and Q the point charge.
The integrals are performed over the volume (vol), and the surfaces Al and A2 which
denote those areas where tractions and charge are prescribed, respectively. '

To formulate the relations for a finite element method, it is necessary to describe the
displacements and potentials through the nodal degrees of freedom u; and V;, and the
interpolation functions N, and Ny :

{u} =[N, Hu;}
V=[N, [{vi}
The prescribed body and surface forces (or charges) may be expressed in a similar

(3.145)

manner:
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(Fl-[NHF) <[, o)
T}=NaJT} ot =[Nt

Relating the assumed displacements and potentials to the formulated strains and

electric fields is described by the strain-displacement and scalar potential relations, givea in
section 2.2.2. In matrix form:

(3.146)

{S}= [BU]{ui}
{E} =B, [V}

where B, and By are the linear differential operator matrices that capture the

(3.147)

derivative relationships. Substitution of 3.145, 3.146, and 3.147 into the variational form,
and evaluating for all virtual displacements yields the following two coupled equations:

[Kou {oi} +[Kiy {Vi} = {Fo}+{F,} +{F;}
[Kvo i} +[Kow {Vi} ={Qs} +{Q4} +{Qs}

The additional kinetic term [m}{ii;} may be added to the first of the above

(3.148)

equations to accommodate dynamic problems. The electro-elastic matrices for the above
are defined as:

[Kuu] = I[Bu ]| [CE][BU hv [KuV] = I[Bu ][[e]t [BV }iV

[Kvu]=:};[3v],[e][3u]dV [Kw1=11[nv1,[e*1[nv1dv o
{Fg}= vJm[N o) [NeJaV{F:} {Qs}= -VIO l[N v [Ngs Jav{s?}
{Fa}= J[N.] [Nz JdA{T;} {Qa}=-JINV] [N, Joa{s!}

(R} =[N, Q=N

Solution of the problem requires an iterative technique. The coupled field
interaction is introduced through the load vector with an iterative solution procedure [59]
that recalculates the load at each step. For a thermal-elastic problem, the analysis requires
two iterations. The first iteration solves the heat transfer problem and calculates the
corresponding thermal free strain. The second iteration uses this as an input and solves the
structural problem. For a coupled multi-field problem (such as piezoelectrics), a further
iteration would follow, inputting the structural results from the second iteration into the re-
solution of the thermal (electric potential) problem. For this case, the elastic solution lags
the electric potential solution at each step. For the particular program chosen for this
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analysis, the number of iterations is controlled internally by a convergence criteria that
ensures convergence for each nodal degree of freedom within a specified amount.

Following solution, it is straightforward to calculate the field distributions using the
constitutive relations and the interpolation functions:

{1} =[c"[[B.Jui}+ (e} [B KV}
{D} =[e][B, Ju} - [e" By }{V}

The complementary fields, T and D, will only approximately satisfy their respective

(3.150)

governing equations.
The Electro-elastic Tetrahedral Finite Element

A commercially available finite element analysis software package , ANSYS!!, was
used for modeling of the fiber composite. This software could support multi-field
elements, allowing solution of mechanical-electrical coupled materials. Both brick (8 node)
and tetrahedral (10 and 4 node) elements were available, but tetrahedral elements were
chosen for their flexibility in automatic mesh generation schemes. Tetrahedral elements are
also less susceptible to aspect ratio difficulties, so that they work well in complicated
geometry or locations of sharp corners. In particular, areas of matrix/fiber interfaces are
critical, especially near the top electrode where the matrix area is very small for large fiber
volume fractions.

The reference that provided the above variational formulation [57] also provides a
discussion on this element type. However, a more thorough discussion, including
tetrahedral elements with quadratic and cubic interpolation functions may be found in
Ref[58]. The element used here is the four node element, so that the interpolaticii functions
can describe only a linear field distribution between any two nodes.

The tetrahedral element used in this model is shown in Figure 3.14, with nodes
1..4 and corresponding opposite faces 1..4. The poling direction is defined in the z
direction. For formulating the element matrices, a substantial simplification may be
obtained through the use of Natural, rather than Cartesian coordinates. These coordinates
are defined with respect to the element instead of a fixed, global system so that element
manipulations are simplified. These natural coordinates can then be referenced to the global

system.

11 ANSYS, Version 4.4A, Swanson Analysis, PO Box 65, Houston, PA 15342
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Figure 3.14: Four noded tetrahedral multi-field element used in this finite element
analysis showing nodes (1..4), and element faces (1...4) defined by volume
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elements.

The natural coordinates are dimensionless, and describe positions through a ratio of
quantities. For a three dimensional element, these are denoted volume coordinates. Thus,
the coordinates are ratios of volumes, that when combined, describe a unique position
within the element:

9 9 9
Er=—" §2=—ﬂ'2‘ 5:.3:?3 §4=F4 ) (3.151)

where 9 is the total tetrahedron volume and 9, is a portion of the total volume that is
subtended by some arbitrary point P and the surface E; =0. This is the surface opposite
the vertex of node i. The combination of the four volume coordinates describe the location
of point P (Figure 3.14). Using these relations it is possible to derive the formulation
relating the Cartesian and volume coordinates [57,58]:

11 1 17

_| X X2 X3 X4 g, (3.152)
Yi Y2 Y3 Y4 §3J
Zy 2, Zy z4 (&,

Each node has four degrees of freedom: u, v, w, and V. Linear interpolation

N < X

functions are chosen so as to describe compatible and continuous behavior in the element.
From Ref[59], the following are used:
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u=u,(2, - §,+...4+u, (2, - E,
v=v, (28, - D& +...+v,(2E, - DE,
w=w, (28, - 1§, +...+w,(2E, - 1)E,
V=V,(2§, - 1§, +...+V,(2E, - DE,
Note that the interpolation function for the potential V is identical to that of the
elastic displacements, u, v, and w. This formulation provides the basis for solution of the
electro-elastic finite element problem incorporating tetrahedral multi-field elements.

(3.153)
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3.6 Model Comparison

3.6.1 Basis for Comparison

A comparison may be made of the five models presented in sections 3.3 to 3.5.
There are a number of ways these models may be compared, and it is important to justify
the premise upon which each model is judged. Differences lie primarily in the volume
element assumed for each of the models derived. For example, the closed form (CFUF)
and numerical (NUF) uniform fields models face basic constraints due to the fact that they
model round fibers as square. The Self Consistent Fields (SCF) is limiting to modeling
composites with an equal distribution of fibers in every direction. The Discrete Uniform
Fields (DUF), and the Finite Element Model (FEM) have more freedom in specifying the
directional geoinetry, and can model circular fibers.

The premise upon which the models are based are that of a periodic composite
structure, with square element packing such that there is an equal distribution of fibers in
both directions. This is more typical of composites with a thickness significantly greater
than the fiber diameter. In such cases, the spatial scale is fine enough that the assumption
of square fibers in the two models is unimportant, and the composite may be described by a
single parameter - the volume fraction. The basis for such a comparison is important
because it will allow a common ground with which to compare future models, and
eventually a comparison with piezoelectric fiber composites with multi-fiber layers.
Naturally, the present models do not preclude a comparison with the current specimens, as
several of the models may be adapted to better model the experimental geometry.

The comparisons made of the models will present plots of the effective material
constant, nondimensionalized by the corresponding material constant of the piezoceramic.
These graphs will show the effective constants plotted versus the volume fraction of fiber
in the composite. The plots could also have been made as a function of line fraction;
however, this quantity is not as widely recognized, and is actually more appropriate in
discussion of mono-layer fiber composites. Nonetheless, the line fraction remains an
important description of the geometry in some of the models.

Since the packing is a square array, the maximum theoretical volume fraction is /4
(0.785), which occurs when the circular fibers touch the outer boundary of the volume
element. This is portrayed in Figure 3.15, in the representative volume element of the
Discrete Uniform Fields and Finite Element Model. In this case, the line fractions X, and
X, are equal to 1. The maximum packing is not as easily specified in the remaining
models. In these cases, the fiber touching the outer boundary would represent a maximum
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Figure 3.15: Representative Volume Elements and volume fractions for five models

compared in this chapter. Geometry shown for maximum fiber volume fraction.

volume fraction of 1, rather than ©t/4. The appropriate action is simply to enforce that the
total fiber area in these models is the same as that for the first case. For the NUF and
CFUF models (Figure 3.15) this is achieved by defining the parameters v, and v, as the
following:

v, =V, =[M/4X, = [n/4X, (3.154)
where X, and X, are defined by the DUF and FEM model element. This is achieved in
the Self Consistent Field model by setting the ratio a?/b? to that of the volume fraction v;.
In this way, the maximum volume fraction in each case is /4, and the models may now

be compared on a common basis.

3.6.2 The Models Compared

Electric Potential Distribution

Before turning to the comparison of the effective composite properties, it is useful
to take a look at the field distributions within the volume elements of the various models.
The electric potential distributions provide an excellent illustration of how each model is
fundamentally different, in both the geometry of the various phases, and how the field
distributions are modeled in each of these phases. The distributions also offer an
explanation for the differences that become apparent when comparing the effective
properties.
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The four different plots, shown in Figures 3.16 (a) through (d), are the electric
potential distributions for a fiber volume fraction of v; = 0.97/4, and a dielectric mismatch
of &3, /833 =10. Here, the lines signify values of equal potential, so that closely spaced
lines indicate a large change in potential. All of the models capture the basic effect of the
mismatch, shown as a field potential concentration in the matrix above the fiber, and a very
reduced potential in the fiber. It is this low potential in the fiber that makes poling difficult,
and high levels of actuation harder to obtain. Each model also captures the more even
spacing of potential lines in the pure matrix, as the distance from the fiber is increased.
These similarities capture the predominant effects that shape the effective material properties
that are seen in the upcoming plots. However, significant differences exist in these models
which require further understanding. These differences will define certain regimes of
volume fraction where a particular mode! more accurately captures the macroscopic
response.

The simplest models are the Closed Form and Numerical Uniform Fields
approaches, shown in Figure 3.16 (a). These models are almost identical, the only
difference being in the amount of elastic coupling present. Since all of these plots (a) - (d)
are shown for a stiffness mismatch of s, /sf; =20, there is little clamping and the problem
is almost a purely electrical one. Both of these models use the combination model
approach, where a slice of fiber and matrix is combined with a slice of pure matrix. The
fields in each material phase is assumed uniform, so that the equipotential lines are straight.
The square fiber assumption allows equal levels of potential into parts of the fiber that
would normally be further away from the electrode in a circular fiber. This is
approximately offset by the fact that the square fiber is moved further away from the
electrode by the condition that the overall volume fraction be equal.

The Discretized Uniform Fields model (DUF) uses the combination model
approach, but in a discrete manner. Many slices of matrix and fiber are added together to
give a distribution of fields that vary discretely across the element. In this way, the model
is able to capture the circular geometry of the fiber. This is reflected by the equipotential
lines that vary within the fiber and matrix. In particular, as the fiber material becomes
further from the electrode, the potential across the fiber becomes less and less. This may
more accurately model the zone of fiber that is inactive, and that tends to clamp the
piezoceramic during actuation, resulting in a reduced effective d;f. Another benefit of this
approach is obvious at the maximum packing, where the model captures the correct fiber-
electrode interaction, enabling better representation of the electric and piezoelectric
properties at high volume fractions (for the assumed square packing geometry).
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Figure 3.16: Equipotentials for fiber fraction v; =0.9 7/4, and mismatch of 1, /€43 =10
(a) Closed Form (CFUF), Numerical (NUF) Uniform Fields, (b) Discrete Model (DUF)
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(d)
Figure 3.16: Equipotentials for fiber fraction v; =0.97/4, and mismatch of €], /£, =10

(c) Self Consistent Fields (SCF), (d) Finite Element Method (FEM)
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The Self Consistent Fields model (SCF), shown in Figure 3.16 (c), is similar to the
DUF model in that it can model circular fibers and allows some nonuniform field
distributions. It also bears some similarity to the CFUF and NUF models because it
assumes uniform fields in the fiber and has the same geometric limitation where the fiber is
not touching the electrode at the maximum volume fraction. However, the field distribution
is allowed to vary within the matrix material. This captures the concentration of elastic field
within the fiber phase, where field lines are drawn into the fiber due to the field variations
around it. This results in higher electric potential in the fiber than that predicted by the
CFUF and NUF models which did not allow field variations. As the effective material
constant comparison will show, this causes a significant increase in the dielectric and
piezoelectric properties at low fiber volume fractions.

The potential distribution of -the Finite Element Model (FEM), shown in Figure
3.16 (d), is likely the most accurate portrayal for the given packing geometry. This model
incorporates full material coupling, and allows field variations within each material phase.
Interestingly enough, some aspect of this model is represented in each of the simpler
models. For example, the FEM shows almost uniform potential distributions within the
fiber, validating the assumption in the CFUF, NUF, and SCF models. It also hints at the
reduction in electric potential at the fiber edges that was strongly seen in the DUF model.
Equipotential distributions in the matrix material are also somewhat similar between the
FEM and the DUF and SCF models. Like the SCF model, the FEM will predict the
concentration of potential within the fiber. However, like the DUF model, the FEM is able
to correctly portray the geometry at high volume fractions.

Effective Material Constants

The previous section provided insight into the geometry of modeling differences
present within each model. A better understanding of the model differences is valuable
when assessing the results of the comparison of the effective material constants. This is
esper lly important for the electrical and piezoelectric properties because the composite
response is not as well understood for these as it is for the mechanical properties. The
piezoelectric properties are very important to model accuratcly because they are used as a
measure of actuation capability, and as a comparison to other material systems. In this
section, the six important in-plane material properties are shown as a function of volume
fraction, and are compared for the five models.
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Figure 3.18: Comparison of effective nondimensionalized 22 compliance. All models are
for €3;/€,; =100, with compliance ratios si/st; of 3, 8, 20 for curves 1, 2, 3.
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Figure 3.19: Comparison of effective nondimensionalized 12 compliance. All models are
for £;5/€5; = 100, with compliance ratios s,,/s;; of 3, 8, 20 for curves 1, 2, 3.
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Figure 3.20: Comparison of models for effective nondimensionalized 33 dielectric. Models
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Figure 3.21: Comparison of effective nondimensionalized 31 piezoelectric free strain. All
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The first model comparison is made of the effective compliance in the longitudinal
direction (insert), shown in Figure 3.17. Comparison is made for three compliance ratios
[insert] of 20, 8, and 3. There is excellent agreement between all of the models, as is to be
expected for longitudinal elastic property predictions in a fibrous composite. For this
geometry, it is well known that even a simple mechanics of materials, two springs in
parallel, give a good estimate of this property. All the plots show that a small amount of
fiber reinforcement quickly reduces the compliance. The first four models directly
overplot, while the FEM model is slightly more compliant. This effect is unexplained, but
may simply be due to the different model constraints placed on this volume element.

Overall, the good agreement acts as a check for each of the models.

The transverse compliance, sy, offers a much more varied distribution of

predictions. The curves, given in Figure 3.18, are again shown for three different
compliance mismatches (20, 8, and 3), and the effective compliance is nondimensionalized
by sﬁ. The general trend shown here is that a much higher percentage of fibers is needed
to significantly decrease the composite compliance. All of the models provide a better
prediction than the simple mechanics of materials model, which would simply be a straight
line between the pure matrix and fiber properties for each ratio. This method has always
underestimated the transverse stiffness (overestimated the compliance). In comparing the
individual models, the DUF and NUF models are overly stiff, likely because the uniform
fields assumption introduces inconsistent strain fields in the phases, which have a
stiffening effect. The NUF model gives essentially the same prediction as the DUF model,
except that the latter can model circular fibers so that the compliance reflects touching fibers
at maximum ﬁacking. The CFUF model has the same premise as the NUF model, but
without the constraint of material clamping which introduces stresses in directions other
than the loading axis. Thus, it predicts a more compliant system. The Self Consistent
Fields (SCF) model more accurately predicts the general trend, as seen in the FEM model,
with exception of high volume fractions. This is, of course, due to the geometry assumed
at maximum packing. The FEM is the most compliant system throughout the majority of
volume fractions, but tends to decrease sharply at the maximum volume fraction nears.

The effective st compliance term is shown in Figure 3.19. This material
parameter is similar to the longitudinal compliance in that it can be predicted by a simple
Mechanics of Materials approach to within reasonable accuracy [23]. This is reflected in
the close agreement between the models. There is a slightly larger variation between the
models than for the s{|, particularly in the Self Consistent Fields (SCF) and the Finite
Element Method (FEM) which allow concentrations of stress within the matrix material.
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Both of these models are less compliant (stiffer) throughout the range of fiber volume
fractions. The FEM is the least compliant, especially at high volume fractions.

The cornparison of the electrical properties begins with a discussion of the
composite dielectric, eggf. In the plot of Figure 3.20, three comparisons are shown of
effective dielectric for material mismatches of €3, /e,, of 100, 20, and 10. The effective
dielectric has been nondimensionalized by the piezoceramic dielectric. For effective
dielectric, it is evident that a large percentage of high-dielectric fibers must be present
before a large increase is seen. This is especially true at larger mismatches. All uniform
field models (CFUF, NUF, and DUF) provide the same prediction, with the exception of
the DUF model at high volume fractions. This model, as discussed earlier, has fiber
contact with the electrode at maximum packing, while the other two do not. The FEM and
SCF models exactly compare until volume fractions of about 0.5, after which the FEM
model follows DUF prediction. The good comparison between the FEM and SCF is due to
the accurate electric field representation in the material phases.

The effective dgﬁf, shown in Figure 3.21, almost exactly echoes the comparison
for dielectric, in terms of the models that are similar. This is explained by the large
dependence of the effective piezoelectric constants on the field distributions within the
fiber. Like the dielectric comparison, three comparisons are made for dielectric mismatches
of 100, 20, and 10 between the fiber and matrix. The compliance mismatch is held at 20
for these comparisons. Little change in effective piezoelectric constants is seen until
compliance mismatches of 3 or lower!2, which is very unlikely for a piezoelectric fiber
composite system. Once again, the FEM and SCF models compare very well until higher
volume fraction, when the DUF model better represents the through-thickness line fraction
X3. Atlow volume fractions, the electric potential concentration in the fiber, as predicted
by the FEM and SCF models, makes a significant departure from the other models. The
difference is as much as 20% in some cases.

The final comparison to be made is that of the transverse piezoelectric free strain

constant, dgg, given in Figure 3.22.. This comparison is made on the same basis as that

for the d5 and €55 constants. The disparity between the models is much less than that for
ds¥, with the exception of the FEM model. At high volume fraction, the FEM model
breaks away from the other models, again followed by the DUF model. At low volume
fractions, however, an interesting phenomenon occurs. The FEM model predicts that the
sign for dgg actually switches, and the plots for the three mismatch ratios cross over as the

sign changes back. a positive value for dggf is caused by the longitudinal contraction of the

12 See section 4.2.2 for a brief discussion of the compliance dependence of dgﬁf.
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fiber that forces the matrix to expand transversely more than the fiber contracts. For a
uniform fields assumption and equal Poisson’s ratios, this will not occur. However, the
field concentrations in the SCF and FEM model do capture this phenomenon. This effect
would be further enhanced in a mono-fiber layer composite because the matrix would not
be constrained to move with the fiber in the vertical direction. Evidence of this is seen in
the experimental results. The benefit of such a phenomenon is an increase in actuation

anisotropy.
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4.0 Optimization of Matrix Material Properties

4.1 Overview

Tailoring anisotropic materials includes the freedom to choose parameters at the
material, lamina, and laminate levels of manufacturing. Thus, such choices also include the
properties of the matrix and fibers materials. Fewer options are available with the fibers,
because the choice is limited to ceramic type, the matrix material offers a much broader
range from which to choose.

Matrix materials can be metal, ceramic, or organic, depending on the reinforcing
material and the purpose of the composite. For the present application, an organic matrix
system is chosen for the role it must play in piezoceramic fiber composites. - The matrix
material must support and protect the brittle fibers, and provide load transfer and load
distribution between the fibers. Although the matrix is usually much lower in density,
stiffness, and strength than the fibers, it is this mechanism of load transfer that is key to the
composites success. It is the means by which the composite is capable of carrying load far
above that allowed by the matrix alone, yet at a much reduced cost in weight.

Some of the properties desired for the matrix are obvious. The matrix material
should have relatively low stiffness to minimize clamping of the piezoelectric fibers, and be
non-conducting to allow the necessary voltage potcntial distributions between the electrodes
and around each fiber. Other material properties are not so obvious. An added complexity
is the addition of certain filler materials which will influence these properties and involve a
tradeoff between the desired mechanical and electrical properties. An optimization of the
matrix material must consider both the mechanical and electrical effects on the overall
composite properties. This is the purpose of this chapter.

This chapter investigates the possibilities for influencing the properties of the
composite through the matrix material. It begins with a look at the key issues that dominate
the choice of material parameters, both at the manufacturing level, and at the performance
level of the composite. The introduction of high dielectric filler is the focus of much of this
work. Simple models are compared to experimental data to analyze the effect of the filler.
Surface modifying agents are also employed as a chemical additive to vary the effects of the
particulate filler. Finally, the matrix properties are summarized for use in manufacturing of
the fiber composites.
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Figure 4.1: Examples of polymer types: (a) A thermoplastic,
Polyvinylchloride; (b) A thermoset, two-part epoxy where R and R’
are complex polyfunctional molecules

4.2 Key Issues

There are several issues that will drive the choice for a suitable matrix material.
These are primarily involved with the ability to manufacture ‘good’ composites, and the
goal of higher actuation capability. The ability to manufacture good composites includes
issues of polymer type and family, and how these will affect manufacturing. The actuation
capability deals with the parameters that are favorable to high actuation. Both mechanical
and electrical properties of the constituent phase materials will play a role in the level of
effective composite actuation.

4.2.1 Available Polymer Materials

The basis of all polymers [60] is an organic backbone molecule of only carbon
atoms to which other atoms attach. These other atoms include hydrogen, oxygen, chlorine,
fluorine, sulfur, and nitrogen to name a few. Although the presence of these other atoms
determine the families of polymers, the two main types of polymers, thermoplastics (TP)
and thermosetting (TS) materials, depend on the structure of the carbon backbone itself.

In thermoplastics, the carbon atoms create a single chain with branches which
assume a snakelike form in space. When a thermoplastic material is heated, the Van der
Waals forces between the molecules weaken and the individual molecules slide and separate
from each other (the material melts). The advantage of this type of polymer is that it can be
injection molded, and then remelted and reused. Disadvantages, however, result for the
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same reason. Although easy to fabricate, thermoplastics are not as rigid or strong as
thermosets. The rigidity is very dependent on temperature and it is not uncommon to see
an order of magnitude change in the modulus over 40°C. A common example of a
thermoplastic is polyvinylchloride (PVC), whose basic structural group is shown in Figure
4.1 (a).

Instead of a single chain, thermosetting materials comprise a network of carbon
atoms that crosslink with other carbon atoms. Unlike thermoplastics, this material uses
heat and pressure to set, and cannot be remelted. Thus thermosets are generally stronger
and more rigid, even at elevated temperatures. Another consideration is manufacturing.
Thermosets can typically be used to manufacture at room temperatures, while
thermoplastics cannot. For this reason, and others that become apparent with preliminary
manufacturing, a thermosetting material is chosen as the matrix material for this project. A
familiar example of a thermosetting compound is a two-part epoxy shown in Figure 4.1
(b). In this case, the actual epoxy is combined with a “hardener” material that serves to
crosslink the epoxy molecules.

4.2.2 Properties for High Actuation Capability

Both mechanical and electrical properties of the matrix material will influence the
actuation capability of the composite. A good measure of this capability is simply through
the piezoelectric free strain constant d,,. Figure 4.2 shows the variation of the composite
dj, versus volume fraction. This figure is very similar to the figures in Chapter 3.0, but
now includes the influence of various stiffness ratios between fiber and matrix material as
well.

Although the majority of variation in d,, is directly from the dielectric ratio, some
influence on d,; can be attributed to the epoxy stiffness. However, a typical compliance
for common epoxies is 20:1. At mismatches above even 8:1, very little change is seen in
the actuation capability with matrix stiffness. Matrix material this soft offers very little
restraint to the expanding fibers, so that the clamping effect is almost negligible. It is this
assumption that enabled the solution of the closed form combination model.

Matrix dielectric, however, strongly influences the composite actuation capability.
This influence comes abtout from the strong reliance of electric field distributions on relative
dielectric. A simple one-dimensional model was presented in section 1.5.1 that clearly
shows that high dielectric mismatch is detrimental to the actuation when the materials are in
a series arrangement with respect to the 3 axis direction. This is echoed in Figure 4.2, The
most obvious solution is the selection of a matrix material with high dielectric. Since
virtually all polymers have very low dielectric constants, a method to increase the matrix
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dielectric must be found. This same method, as it turns out, has the potential to greatly
change the stiffness of the matrix, so that the consideration of actuation capability due to
matrix stiffness becomes important.

A second concern for high actuation lies in the ability to reach full poling field levels
within the fiber. The ceramic does not assume piezoelectric properties upon manufacture.
Instead it is necessary to actually apply an electric field to polarize the ceramic before any
piezoelectric effect may be achieved (see section 2.2.2). Thus, in order to attain the full
piezoelectric properties , this field must be above the coercive field of the particular
piezoceramic type. This coercive field is a strong function of temperature, so that
piezoceramics are often poled at temperatures substantially above room temperature.

Figure 4.3 is a design curve for piezoelectric fiber composites, generated using the
fully coupled Numerical Uniform Field (NUF) model. It shows the necessary through-
thickness line fraction (X,) that must be achieved in manufacturing, for a given matrix
material dielectric. This is shown for three levels of piezoceramic coercive field, where the
areas to the right of each line are regions of attainable poling levels in the fiber. The criteria
set by these design curves are the ability to reach the coercive field within the fiber without
reaching the breakdown field of the epoxy matrix (500 volts/mil). This is a problem due to
the electric field intensification within the matrix material above the fiber at its closest
approach to the electrode. This was demonstrated in the comparison of the various models
(see section 3.6).

The three separate curves indicate the uncertainty of the necessary poling field in the
piezoceramic. The room temperature value is approximately 17 volts/mil (7 kV/cm), but
this changes significantly with temperature, decreasing to values around 12 volts/mil (5
kV/cm) or lower for 80°C poling [61]. The difficulty is that the polarization levels also
depend on time, and the dependence of poling on these two parameters is not well
understood. Further work is being done to quantify the phenomena. At the present, the
usual method is to pole at levels above the coercive field for substantial time periods (20
min, for example) to ensure full poling.

The maximum X, line fraction achieved in manufacturing (without specimen
sanding) has been approximately 0.98. Figure 4.3 shows that at a coercive fieid of 15
volts/mil, it will be necessary to have a matrix with quite a high dielectric, at least 55-57.
This will require a tenfold increase over the pure epoxy, whose dielectric relative to air is
around 6. Lower coercive fields require lower matrix dielectric. For a reasonable coercive
field which may be attained at 80-100 °C, such as 10 volts/mil, the matrix material will need
to have a dielectric in the vicinity of 35. It is not unfeasible that the coercive field may be as
low as 5 volts/mil. In such a case, it would be possible to pole composites with lower
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Figure 4.2: Effect of matrix dielectric and stiffness on the nondimensionalized composite
d;, constant. Predictions made using Numerical Uniform Fields (NUF).
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matrix dielectric and quite low line fractions. One common conclusion from each of these
curves is that it will definitely be necessary to increase the matrix dielectric from its pure
epoxy level.

A mismatch of another sort is present in the composite. This stems from the
existence of another phase in the matrix - small inclusions of air, also called voids. These
voids are either originally present in the matrix, induced into the material by mixing, or
caused by the formation of gas as a result of cure. To understand the effects of voids,
reference can be made to the various transport models derived for inclusions in a dielectric,
briefly described in section 1.3.3. Of note is the paper by Polder and Van Santen [49].
Using the model of an isolated particle in an effective homogeneous material, they derive
the effective dielectric for spherical inclusions as:

v m
e = s“‘(l +3v, L—;ﬂ) 4.1)
where m and v denote the matrix and void. The only restriction is that v,, the
volume fraction of voids, must be small. This will definitely be true for voids in a polymer
matrix. Next. they present the clectric field in an empty spherical hole for a medium with

effective dielectric constant, £°;

3 eeff _
E'=———E 4.2
26 +1 (4.2)
Since the volume fractions of voids will be small, it is evident from equation (4.1)
that £ = £™. From equation (4.2), given that polymers have relative dielectric between 3

and 6, that:

EY 3
Thus, there is an intensified field within the void. This effect, combined with the
low dielectric strength of air, may cause localized breakdown of the material at high electric
field levels. Such high field levels may be necessary for poling of the composite material.
As a result, manufacturing for various dielectric mismatches must be done to minimize the
occurrence of voids, and Chapter 6.0 outlines some methods by which this is

accomplished. Even with these steps taken, voids still exist to some extent.

4.3 High Dielectric Particulate Inclusions

Just as the addition of high dielectric fibers will produce an effective dielectric for
the composite above that of the matrix alone, the addition of high dielectric particles into the
matrix should do the same. The key difference in the introduction of this new phase to the
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matrix material will be its size. If the particulate filler used is small enough, its spatial scale
will be far finer than that of the microstructure of the fibers. Given such a fine scale, the
resulting medium can be viewed simply as a homogeneous matrix material with new
effective properties. Thus, the composite modeling and optimization further divides into
modeling and optimizing of the matrix material, which will itself be a composite material.
The addition of the particulate now allows tailoring of the stiffness and dielectric properties.
However, it will soon be apparent that the result is a tradeoff, as more particulate increases
both the stiffness and dielectric, and reduces the ease of manufacturing.

Naturally, a first step in understanding the effects of particulate filler is to utilize
modeling methods to determine the effective material constants. A large number of models
are available and were briefly described in section 1.3.3. Since the particulate composite
has 0-3 connectivity, the response of the composite is not dominated by the filler phase in
any one direction. Should the filler be piezoelectric, this electric-mechanical coupling may
be ignored for relatively low fractions of filler. Thus, the independent models for
mechanical and electrical effective properties will suffice here.

4.3.1 Effective Permittivity for Particulate Composites

For the case of effective permittivity (dielectric), the work of Hashin [52] is chosen.
This work is one of the clearest presentations of the conductivity problem, presenting the
problem based on a Self Consistent approach. He shows the solution for the most general
case, and specializes to other cases whose solutions were reached by other researchers as
well. Important discussions on geometry and good comparisons to previous research
complete the work.

The representative volume element is similar to that for the Self Consistent Model
presented in Chapter 3.0, where a representative particle is surrounded by a matrix sheath,
encapsulated by an infinite effective media. Solution of the harmonic equation in each of
these phases, subject to consistent field boundary conditions, yields the effective material
constants. By examining two special cases of material connectivity, Hashin produces the
best upper and lower bounds for a “statistically homogeneous and isotropic two phase

material of arbitrary phase geometry”:

(Lower) (v, v)=¢|1+ (4.4)




Vi
6 W
81_82 3

(Upper) & (v, V) =8, 1+ (4.5)

The terms v,, v, represent the volume fractions of phase 1 and 2, respectively. The
equations presented are actually special cases of a more gencral framework, where for the

present discussion, Hashin has assumed that the ratio

3
, 4
c = F ' (46)

is equal to the volume fraction of particulate, v,.

The lower bound (4.4) corresponds to the case where particulate (phase 2) is
completely surrounded by matrix (phase 1), shown ir Figure 4.4. This case pertains to
composites where the percentage of particulate is not so high as to create high dielectric
paths between the far field potentials. The upper bound (4.5), on the other hand, describes
the other extreme of complete particulate connectivity, where the matrix (phase 1) is
completely surrounded by particulate (phase 2). This case is not shown, but represents
composites with very high particulate volume fractions. The equation for this case (Eqn
4.5) is simply a reversal of material phases from the first equation (Eqn 4.4).

An intermediate curve is given if the following assumption is made:

’ a3
Ty

This is the boundary value problem for an infinite medium that contains a single

particle inclusion. Hashin remarks that this special case of the present work has been

=1 4.7)

reported previously by Landauer [30], and results in the following implicit expression for
the effective dielectric:

g-"(v,) . & -eT(y,1)

= 4.8
g +2eM(vy, 1) 2, +2e(1y,1) (45)

Middle) v,

This curve begins tangent to the lower bound at low volume fraction of filler and
finishes tangent to the upper bound at high volume fractions. If the ratio of dielectric
between the two phases is not too large, the two bounds are relatively close, and describe a
small region. Such an example is given in Figure 4.5 where the dielectric mismatch is only
1:10. For large dielectric mismatch, as in this problem, these bounds are very far apart.
These bounds are the best possible, however, given information only on the volume
fractions. There exists a certain arbitrariness represented by the parameter c¢’, whese
nature Hashin admits is unknown. Further information on the phase geometry is needed.
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Figure 4.5: Prediction of effective dielectric for a two phase particulate
composite with dielectric mismatch of 1:10.
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One might surmise that the parameter ¢’ may actually represent the connectivity and
could be statistically founded. For small volume fractions, low probability exists of high
dielectric paths between the potentials, and ihe effective dielectric will be that of the lower
bound. As the volume fraction increases, so does the probability of connectivity, until a
‘critical volume fraction’ is reached, whereby the effective dielectric more closcly follows
the upper bound. Several works [62,63], have been published that attempt to predict
critical volume fractions based on particulate geometry and statistical analysis. However,
the volume fractions used here will be low enough so as to permit comparison to the lower
and intermediate bounds presented in this work.

4.3.2 Effective Modulus for Particulate Composites

Not only do the addition of high dielectric particles affect the permittivity, but if the
stiffness is significantly different from that of the matrix, the overall stiffness will be
affected. This is likely the case here, as all high dielectric materials are typically ceramic or
metal, with much higher stiffness than the polymer. The discussion of effective properties
for stiffness is very similar to that of dielectric and deals with both bounding and
approximate solutions. Again, the difficulty of specifying phase geometry creates difficulty
with determining accurate predictions.

The work of Paul [64] is described by Jones [23] as being one of the first to use
variational techniques to examine the bounds of multi-phase materials. The work uses the
minimum potential and minimum complementary energy approaches to form the upper and
lower bounds on the moduli of isotropic 2 phase media (i.e. particulate composites).
Interestingly enough, the two bounds are virtually the same as the Mechanics of Materials
solutions for the longitudinal and transverse moduli of fibrous composites!3:

(Lower) E> EnEq (4.9)
VmEq + V4E,,
(Upper) E<v E,+VE, (4.10)

A further solution is one that follows in the same spirit as the Combination Model in
section 3.3.3. This method applies the Mechanics of Materials approach to a cube of
matrix material containing a cubic inclusion. The same assumptions of uniform fields are
used, and the same inconsistency among the fields exist, due to the assumption of equal
strains in the material phases. The model is similar to the Combination Model presented in
this work, except that there is no direction where the inclusion material has connectivity.
The effective Young’s Modulus is easy to derive, and is reported in Jones (pg 122):

13 When the assumption of equal Poisson’s Ratios is made
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Figure 4.6: Prediction of effective Young’s modulus for a two phase
particulate composite with modulus mismatch of 1:10.
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The three curves are compared in Figure 4.6 for a stiffness mismatch of 10. Note
that for all of these solutions, no information is provided on the aspects of phase geometry.
For mechanical properties, the term contiguity is often used to describe the likelihood of

Middle) E 4.11)

particle interaction equivalent to connectivity in discussions of conductivity problems.
Only more complicated models, such as the semi-empirical methods of Halpin-Tsai [65] for
fibrous composites take this effect into account. However, also like the conductivity
problem, the volume fractions used here will be low enough that the present models will
suffice.

4.4 Experimental Methods for High Dielectric Particulate Matrix

The material chosen for the high dielectric was a piezoceramic, type PZT 5H. This
ceramic has one of the highest dielectric constants of the piezoelectric family (&3, = 3400),
and is easily obtainable in very fine powder form. Very fine metallic powder or graphite
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(carbon black) could also have been used, as its dielectric is essentially infinity, and a wide
body of literature is available on its use in materials for electrical purposes. However,
since these materials are actually conductive, there is the added danger of dielectric
breakdown. The more such powder is added, the lcwer the dielectric strength of the
resulting matrix material. The critical volume fraction at which the effective dielectric
sharply increases is also likely to signify a sharp drop in resistivity. Furthermore, the
model does not easily distinguish between materials with dielectric 500 times that of the
matrix, and materials with infinitely higher dielectric. With respect to the original matrix,
piezoceramic appears to have infinite dielectric.

The manufacturing setup is shown in Figure 4.7. Three specimens were
manufactured in each lot (batch) to ensure redundancy in manufacturing and measurement
techniques. Aluminum mold pieces were bonded to aluminum/mylar electrode material
with double-sided tape to contain the epoxy flow within the mold. The two part epoxy
matrix was first mixed in the proper ratio of 4:1 (part A to part B), followed by the addition
of the required amount of piezoelectric filler!4. After mixing the epoxy and filler together,
the mixture was placed in the mold and covered with a top electrode and cover plate. The
epoxy was cured for 1 hour at 65 °C under low pressure (approximately 15 psi) using
applied weight. Following the cure, the specimens were cut from the mold and dimensions
measured with a micrometer and calipers. The thicrkness was measured in three places
using micrometers with 0.001 mm precision, and the width and length were measured in
two places using calipers with 0.02 mm precision. Capacitance was measured and the
dielectric calculated from

e C
£, gA

where C is the capacitance, t the thickness, A the area, and g, the permittivity of
free space (8.85e-12 F/m).

The results are shown in graphical form in Figure 4.10. These values are the data

(4.12)

(4]

shown as ‘without dispersant’. The amount of piezoceramic was varied from 20% to 80%
by weight (3.38% to 35.86% by volume). Due to its high density (7800 kg/m3), high
mass ratios of PZT only correspond to moderate volume fractions. However, amounts
much above this were impossible, as mixing became difficult and the resulting material
would be useless as a matrix for manufacturing with fragile PZT fibers.

The addition of piezoceramic filler was able to increase the effective dielectric
significantly, from approximately 6 with pure epoxy to 27 with 80 wt% of filler (36 vol%),

14 PZT 5H Powder, Lot 128B, Morgan-Matroc, average dia=1.10 um
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Figure 4.7: Manufacturing setup for particulate/epoxy study

an increase of 4.5 times. However, the values are perhaps not as high as expected when
comparing with the models presented. Values of 30 vol% of filler is likely to be near to the
critical fraction [63], and a more dramatic rise in dielectric should perhaps occur. Instead,
the values seem to follow a path just slightly above the lower bound (Eqn 4.4).

Measurements of the mechanical properties were done using a tensile testing
machine!> and data acquisition system!6. The tests were conducted under displacement
control with the slow extension speed of 0.2 mm/min (0.008 in/min). This was used to
avoid matrix viscoelastic effects. The test machine load cell provided the load data, while
the strain information was provided by a strain gage measurement system!? . Specimens
were cut to a width of approximately 5 mm, just wide enough to apply a single strain gage
to the specimen. This was done to ensure an accurate assessment of the average strain field
across the specimen. The test length was approximately 30 mm.

The benefit of an increase in dielectric also brought an increase in stiffness. This is
shown in Figure 4.11. The matrix Young’s Modulus is increased from 2800 MPa with
pure epoxy to 7800 MPa at 80 wt% (36 vol%) filler loading, an increase of 2.8 times. The

15 Model 4505, Instron, 100 Royall St, Canton, MA 02021
" 16 Labview for Macintosh, National Instruments, 6504 Bridge Point Parkway, Austin, TX 78730
17 Model 2210, Measurements Group Inc., PO Box 27777, Raleigh NC 27611
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Figure 4.8: SEM Photo of PZT fiber composite with particulate filler in

epoxy matrix, exhibiting poor dispersion properties

gencral trend of stiffness with volume fraction seems to follow equation (4.11), describing
the cubic inclusion model.

In addition to an increase in stiffness and dielectric, the matrix material became
much harder to process due to the much increased viscosity, particularly at high particle
fractions. This naturally will make the fiber composite manufacturing more difficult in
terms of matrix flow, compaction, and void removal. After cure, the matrix was far more
brittle, less conformable, and susceptible to easy fracture. Although these attributes will
not affect the fiber composite performance directly, they will play a large role in the quality
of the final composite.

Many of the difficulties mentioned above, both clectrical and mechanical, may
possibly be explained by interfacial effects. Virtually all models assume perfect matrix-
filler bonding and do not consider the possibility of poor adhesion or additional chemical
components separating the filler and matrix, such as water. Furthermore, if the particles
are to behave, at least in a statistically averaged sense, as individual inclusions with a
representative amount of surrounding matrix, then they must be properly dispersed.
Dispersing of particles involves the separation of filler particles such that they do not tend
to aggregate and form larger sccondary particles. Evidence of poor dispersion is scen in
Figure 4.8. This SEM photograph shows a piezoclectric fiber surrounded by filler/epoxy

matrix. Notice that the particles tend to form clusters and do not move well into confined

118



areas (around fiber). The next section discusses methods for improving the dispersion
characteristics of filler/epoxy systems.

4.5 Effect of Surface Modifying Agents On Effective Properties

4.5.1 Surface Modifying Agents

Surfation, as defined by [66], is "the result of the chemical reaction of an organo-
compound with a filler, pigment, or reinforcement surface to permanently alter the
organophilic nature of the surface." Thus, surface modifying agents are those compounds
that change the chemical nature of a filler system that is to be used in an aqueous media.

The body of literature and extent of patents on surface modifying agents is huge.
This is typically because the choice of surfactant will be extremely application-dependent,
and many specific types have been developed. Surfactants can be classed through the
nature of their primary purpose, surface interaction mechanisms, and active groups to name
a few. However, two very broad classifications based on interaction mechanisms are often

made. These are coupling agents and dispersing agents.

Coupling Agents

Coupling agents, of which organofunctional silanes are the most widely utilized are
used primarily to reduce the degradation of properties associated with the introduction of
filler into a media. Normally, when mineral fillers are added to a polymer without surface
treatment there can be serious embrittlement of the material, degradation of strength, and
increased moisture sensitivity. This increased moisture sensitivity may result in a loss of
strength in the composite and deterioration of electrical properties [67].

If the filler surface is first treated with an organo-functional silane, there is
significant improvement in flexural strengths and toughness, and better retention of these
properties over time, even when subject to adverse environmental effects. The basis of the
interactions is a silicon atom to which is attached a hydrolyzable group (such as chloride,
methoxy, ethoxy, etc.). This group reacts with water on the surface of the filler material
and becomes highly reactive, and in a chemical structure that will bond to the filler. The
nature of the bond is a covalent one, and leaves the filler with a surface treatment that
contains a long molecular chain. These structures typically promote entanglement with the
polymer chains of the matrix material and may also be involved in cross linking or even
strong covalent bonding with reactive sites on the polymer. Such reactions provide the
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composite with dramatically improved interfacial adhesion, resulting in the aforementioned
improvements in properties.

Dispersing Agents

Dispersing agents are different from coupling agents in the interfacial mechanisms
and the primary purpose they serve, even though the consequences of using dispersants are
very similar to coupling agents. Unlike coupling agents, dispersants are not focused on the
adhesion between filler and matrix, or the improvement of mechanical properties. Rather,
as the name suggests, dispersants serve to disperse, or separate, filler particles from one
another in an aqueous system. They are often used to reduce the viscosity and stabilize
mixtures, improving the flow properties for various spraying and coating applications. A
common application that relies heavily on the dispersion of fine pigments is household latex
paint. Dispersing agents keep the particles dispersed, allowing higher concentrations,
uniform color, and low viscosity.

For the present work, a dispersing agent was chosen for its ability to separate
particle filler, and more nearly approach the conditions assumed in micro modeling. As it
turns out, the dispersant chosen has attributes not only typical of dispersants, but also those
of coupling agents that promote adhesion and reduce embrittlement.

4.5.2 Wetting and Dispersing

Reference [68] offers the following definition:

“Wetting, by itself, generally means the spreading of one substance, usually
a liquid, over a substrate such as a solid....Dispersion is really the
mechanical process of moving pigment or inert particles apart. The term
"wetting and dispersion"” refers to the displacement of air or moisture from
pigment particle surfaces to facilitate mechanical separation of the primary
particles, distribute the pigment particles, and to keep the pigment particles
from coming back together immediately."

The need to consider these processes may be understood by a description of the
physical chemistry at the filler surface [66]. Most inorganic fillers have very high surface
energy (which is often measured by surface tension and the difficulty of wetting the
material) due to an imbalance of bonding forces at the surface. Surfaces such as these are
very receptive to moisture (hydrophilic) and water tends to adsorb, reducing the surface
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energy of the particle. However, as the particle size decreases, the activity at the surface
increases proportional to particle area. Very small particle have little mass, and the van der
Waals!8 forces are quite large between the particles. As a result, small particles tend to
adhere to others, creating larger effective particle diameters.

These groups of particles (secondary particles) are usually held together weakly by
the moisture, and are only primary particles that have contact along edges or at points.
Tertiary particles are those that have face to face contact and cannot usually be separated,
except by using large amounts of energy that will often break the original crystal structure
of the primary particle. The key then, is the separation of these secondary particles into the
original form of primary particles. Highly polar polymers are able to displace air and
adsorbed water from filler surfaces, but require a lot of time and energy to do so.
Nonpolar or slightly polar polymers (such as epoxy) cannot easily perform this function,
so that use of a dispersing agent is very important Thus, the main function of the
dispersing agent is to decrease the time and energy for the complete dispersion process.

There is a large number of available dispersants, some of which overlap in function
and mechanism with coupling agents. Of five major classes [68], probably the most
common is of bifunctional form, and is the type used here. These bifunctional dispersants

18 Sum of dipole, dispersion, and hydrogen bonding.
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do ot directly reduce surface tension, but facilitate wetting and dispersion by having two
chemical groups with very different tasks. One end is hydrophilic and readily adsorbs to
the surface of the filler at edges, corners, and surfaces. The second end, a hydrophobic
tail, orients itself away from the particle and either bonds readily with the polymer through
polymerization, or is entangled in the polymer chains. This is depicted in Figure 4.9. The
added attraction of bifunctional dispersants, then, is the promotion of adhesion in addition
to the primary function of dispersion.

The exact nature of the surface chemistry is controversial. Methods of bonding
include covalent, ionic, chemisorption, van der Waals, and other related chemical bonding.
The significance of each depends not only on the exact constituents that react, but also on
the various opinions of the reactions that take place at interfacial sites. Perhaps the most
widely accepted theory for intermolecular interactions in solution and at interfaces has been
the Donor-Acceptor Theory (or Acid-Base Interactions),described in Ref[69]. Fowkes
[70,71] has been a strong proponent of this theory, and has shown that the forces of
attraction "operate only when the acidity of one phase can interact with the basicity of the
other phase." His experiments showed that acidic polymers adsorb only on basic fillers
and not at all on acidic fillers, and that basic polymers adsorb on acidic fillers and not at all
on basic fillers. Thus, another way to perceive the function of a dispersant or coupling
agent is to view it as a means to change the particle acidity/basicity to better interact with the
polymer. Electrons transfer from the basic phase to the acidic one, causing an attraction
between the two materials similar to a hydrogen bond in nature.

The actual ability to disperse comes from the fact that each particle is now
surrounded by dispersing agent with like orientation. Previously, the particles had
localized build-up of charges with opposing polarities, causing attraction. The introduction
of dispersant now creates filler with particles that have little affinity for one another. A
difficulty arises with the introduction of excess dispersant, because the availability of
unused sites can cause the phenomena known as bridging. This is also known as
flocculation and is characterized by particles closely joined by bridges of solvent (in this
case dispersant). This will cause higher viscosity and poor adhesion, and should be
avoided.

4.5.3 Experimental Results

The dispersing agent Hypermer KD-2!9 was chosen for the high-dielectric
particulate study. This is a 'polymeric dispersant made specifically for ceramic filler

19 Supplied by Surfactants Group, ICI Americas, Inc., Wilmington, DE 19897.
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Table 4.1: Initial Study of Mixing Order on Matrix Dielectric

€33

Batch # Mixing Order % PZT % Disp. % Epoxy N
0

1 A—-B—-DISP—-PZT 30 4 16 33.7

applications. This particular agent is actually made for polar solvents (epoxy is slightly
polar), and is basic with a hydrophilic tail. The exact amount needed is difficult to assess,
but 2% of dispersant by weight to the filler has been suggested as the theoretical mono-
layer coverage [72]. Instead, the larger amount of 5% by weight (20:1 for PZT:dispersant)
was chosen due to the uncertainties in possible competitive reaction with the epoxy. There
is the possibility that the amino group of the dispersant will occupy some of the available
sites in the polymer. This is not easily analyzed because the exact structure of the agent is
proprietary. The competitive reaction is likely, however, as the dispersant is post-added to
the system. Preliminary work showed a significant increase in dielectric with 5% by
weight compared to 2% by weight when the dispersant was post-added.

Two initial studies were done to investigate the effects of manufacturing procedures
with dispersant on the matrix dielectric. The first involved the order in which various
components of the matrix system were added. Four lots, each of three samples, were
manufactured according to the method outlined in section 4.3, with the exception of
dispersant. All four batches comprised PZT 5H particulate (80% by weight), epoxy parts
A and B (16% by weight), and dispersant (4% by weight). Note that the amount of
dispersant to PZT filler is still 5% by weight. Table 4.1 summarizes the dielectric for four
different mixing orders. In each case, the dispersant is post-added, that is, the PZT filler
comes in contact with the epoxy system prior to the dispersant. At each step, the solution
was mixed by hand for one minute, except at the introduction of the particulate, where the
solution was mixed for five minutes by hand. Only a small difference in dielectric was
found for the first three batches (1-3), indicating that if a competitive reaction takes place
between the epoxy and dispersant, it is due to part A of the epoxy20. The last batch (#4)
shows a significant difference, probably due to the fact that it was virtually impossible to

20 Epoxy mix ratio is 4:1 (part A to B), thus part A had to be present to provide adequate solvent for the
filler.
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Table 4.2: Initial Study of Moisture Effects on Matrix Dieiectric

——
Batch # Mixing Order % PZT % Disp. % Epoxy f
(o]
5 A—DISP—PZT-B 75 3.75 21.25 23.7
6 A—DISP—-PZT(dried)—B 75 3.75 21.25 23.9
7 (PZT+DISP)—»A-B 78.75 21.25 21.4

thoroughly mix all of the PZT into only part A. Some of the dispersant had to be added
just to finish the first step. Overall, not much variation in dielectric was found (6.8%
maximum variation) for the different mixing patterns.

The second initial study investigated the effect of moisture and filler pre-treatment.
Again, batches of three samples were manufactured using the sam~ methods as above,
except that the amount of PZT was lowered to 75% by weight of the total solution. Batch
#5 served as the control and was mixed in the same order as batch #3. Batch #6 was pre-
dried in an oven at 230°F for one hour to remove moisture. Following the drying, this
batch was immediately mixed in the same manner as Batch #5. Both of these batches again
hud a dispersant-to-filler ratio of 5% by weight. Batch #7 used pre-treated filler mixed with
the epoxy. The pretreatment was accomplished by mixing one gram of dispersant with
nine grams of alcohol, to which 10 grams of PZT filler was subsequently added. After the
alcohol had evaporated, the treated filler was mixed with the epoxy such that the total
PZT/Dispersant fraction was 78.75%.

Little difference is seen between the dielectric of batches 5 and 6. Thus, the
dispersant is able to remove the water left on the particle surface so that it appears
electrically the same as pre-dried filler. The pre-treatment process of batch 7 actually
lowered the dielectric, compared to the previous batches. In hindsight, it is unlikely that
only the necessary amount of dispersant was attached to each particle. Instead, the excess
dispersant deposited itself to each filler particle, causing poor dispersion and electrical
properties. Batches of pre-treated filler with less dispersant should be examined in a
further study to more conclusively examine pre- versus post-adding.

The next step was to evaluate the overall effect of the dispersing agent on the
electrical. mechanical, and rheological properties of the filler/epoxy system. Batches with
dispersant were madc in the same manner as previously described, with the same mixing
order as batch #2 (pt. A — pt.B — dispersant — PZT). The batches were again mixed by

hand for one minute between each step, except for after the addition of PZT, when the
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solution was mixed for 5 minutes. After cure, the specimens were removed from the mold,
sanded, and the dimensions measured.

Scanning Electron Micrographs show the effect of dispersant on filler dispersion in
a fiber composite application, shown in Figure 6.3 (Chapter 6.0). Note the better
separation of the particles, indicated by the apparent increase in particle density. The
particles were also able to get into the regions close to the fiber more often. However, in
some instances, it still appears as though regions of high pressure force the particles to
evacuate these areas. The better dispersion was also felt physically, as the addition of the
dispersant had an effect on the rheology of the mixture. The viscosity of the mixture was
definitely reduced, but this was never quantified by measurements. The most obvious
effect was the smoothness of nixture compared to the very grainy texture of the previous
mixtures without dispersant. Filler fractions above 80 wt% were never attempted, although
this may have given an indication as to whether the dispersant would allow higher
particulaie loading. After cure, the change in specimen brittleness was remarkable,
reilected in much higher flexural strengths. Previous batches without dispersant easily
cracked during cutting or fractured when bending moments were applied.

The effect on the measured mechanical properties was far less noticeable. Although
only two specimens were tested, it seems that the dispersant had little effect on the Young’s
modulus. This is shown in Figure 4.11. The specimens with dispersant have
approximately the same modulus as those without. For the use of coupling agents, rather
than dispersants, several references [66,73] report that an increase in Young’s modulus is
standard. However, the same has not been reported for particulate composites utilizing
dispersants.

The effect on the measured dielectric properties is much more apparent. The more
effective dispersion of the particles promotes better permittivity of the filler/matrix material.
The dielectric of the specimens with dispersant was consistently higher (15% - 30%) than
those without, for the tested volume fractions. The exact mechanism is unclear, but it may
be due to a smaller average particle size which allows for a more uniform electric field
distribution and smaller field concentrations around inclusions. Thus, the material appears
more homogeneous. Another consideration may be the absence of water at the interfacial
sites, which may impede the ability to transfer electrons between material phases.
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Table 4.3: Material Properties of Filler/Epoxy Matrix Material

Sy S12 S22 Se6 Cyy Cj, Cyp Ce6 —=

New Matrix [ 154 -46.2 154 400 874 3.75 8.74 250 27.3

(Units: s;;: 10712 m2/N, c;;: 109 N/m2)

4.6 Summary

Since the introduction of the dispersing agent has had only beneficial results, it will
be used in the manufacturing of the new particulate matrix material. It provides increased
dielectric with lower viscosity and a much improved toughness. What remains is the
determination of the appropriate amount of filler material to use. Referring back to Figure
4.2, it is obvious that the stiffness of the matrix will not be a governing factor in actuation
capability. At the maximum particulate loading achieved (80 wt%), the stiffness increase
was less than a factor of three, so that the fiber to matrix ratio is still at least 8:1. Since the
dielectric ratio is 100:1, virtually no influence on the effective d, will be seen for the new,
stiffer matrix.

The question then becomes one of manufacturing. Higher concentrations of filler
inevitably mean higher viscosities, even with good dispersion. Experimentally, a filler
fraction of 75 wt% (29 vol%) has shown to be of low enough viscosity that good
manufacturing can be achieved with fiber composites. For this fraction of filler, it is still
possible to obtain compaction and uniformity under cure pressure, and the viscosity allows
the application of the matrix to the brittle fibers without damage. The matrix properties for
this percent of filler and appropriate dispersant level are summarized in Table 4.3. The
results of the study in this chapter are now applied to manufacturing. The twist-extension
laminate example, presented in the next chapter, will utilize this new matrix material for
increased actuation capability. The manufacturing and testing for this laminate are then
discussed in sections 6.5 and 7.4, respectively.
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5.0 Mechanics of Anisotropic Actuation

5.1 Overview

Chapter 5.0 deals with the topic of anisotropy. Although mechanical and
piezoelectric anisotropy exist in poled piezoelectrics, the standard applications can only
make use of the actuator in the plane of isotropy. However, through various techniques
(compositing, unique attachment schemes or interdigitated electrodes), it is possible to
obtain anisotropy in the plane of interest. The anisotropy may be mechanical, electrical, or
both. The benfits derived from such anisotropy has not been quantified previously, but is
done so in this section. Augmented Classical Laminated Plate Theory (ACLPT) provides
the vehicle for examining induced twist through anisotropic actuators. Induced-twist is
recognized as an important parameter for high authority control of aeroelastic structures,
and other applications where bend-twist coupling is of interest. The final section
introduces the twist-extension coupled laminate which is referred to throughout the
remaining chapters.

5.2 Design of an Anisotropic Actuator

5.2.1 Benefits of Anisotropic Actuators

The field of structural control using active materials has received much attention in
recent years. A multitude of models have been developed for the actuation and sensing of
beam [74], plate [14], and shell [75] structures that employ a variety of active elements.
Experimental results in closed loop control of a variety of applications (see section 1.1)
have verified these models and demonstrated the feasibility of active structural control using
active materials. As the field has matured, attention has turned toward increasing the
performance of these systems. However, the basic active materials have not changed in the
past twenty years, so that increasing performance will rely on using current materials in
unique ways, or combining materials to create new technologies.

One means of improving the level of structural control performance is the use of
tailorable anisotropic actuator materials. Tailoring gives the designer added freedom to
specify varying degrees of structural coupling. However, current methods of actuation and
sensing that utilize piezoceramics must use monolithic ceramics that exhibit in-plane
isotropy. Thus, it is impossible to distinguish and actuate any single component of in-
plane strain with these ceramics. Present methods to induce anisotropy require a composite
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host structure [14], or special piezoelectric attachment techniques [76] to produce the
desired degree of coupling.

Piezoelectric fiber composites, however, have a large potential for independently
controlling structural deflections in different directions. This arises from the ability to
choose parameters at the material, lamina, and laminate levels of manufacture. Matrix and
ceramic combinations, volume fractions, and ply angles all contribute to the tailorability of
the actuator. As a result, the designer can minimize or maximize various coupling
parameters that influence the structural behavior. Various torsional, bending, and
extensional modes can now be separated, allowing for more efficient control of
independent deflection shapes and the enhancement of control performance.

In some cases, material coupling may be quite beneficial. For example, standard
graphite/epoxy materials have been used to modify aeroelastic characteristics of wings. In
particular, careful orientation of the fiber direction couples wing-bending and torsional
deflections, delaying divergence and increasing lift. Naturally, this technique could be
extended to wings incorporating active elements. Ehlers and Weishaar [77] have
demonstrated the role of elastic coupling in various aeroelastic structures such as forward
and aft swept wings. They report that small amounts of coupling will reduce the actuator
strength necessary to increase lift, while enhancing performance by using energy already
present in the airstream.

5.2.2 Material Properties

One possibility for tailoring at the laminate level includes placing the principal
actuator axes in directions other than the global structural axes. Since the problem is solved
in the global coordinates, it is necessary to rotate the material properties to align with these
directions. Consider the in-plane rotation about the 3-axis of a [+8] angle laminate from

\\ - Maternial
\ 1 Axis
\ >

\ " \0 . Global
L~ 1 Axis

Figure 5.1: Axes definitions for laminated structure modeling
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the material axes (I—i) into the global axes (1—-2), shown in Figure 5.1. The

relationship between the field variables is:

D=R,D E=RgE S=RS T=(R)'T 5.1)

where subscript ‘t’ refers to matrix transpose. Rotations of the material properties
about the 3-direction can be achieved using first and second order transformation matrices:

cos2 0 sinZ @ cosBsin 0 cosf@ sinf O
Rg = sin 6 cos? 6 —cos@sin 0 Rg =|-sinf cosf O (5.2)
—2cosOsin® 2cosOsin® cos>6—sin’ 6 0 0 1

Simple matrix algebra brings about the rotated material matrix:
,: ES e J _ I: REtESRE REtéRS :,
E - 3 =E 5.3
~e " | iobal -Rg&Rg Rg, ¢ Rg (5.3)

5.2.3 Anisotropy at the Lamina Level

The investigation of anisotropy at the lamina level considers the effects of parameter
variations on the single-ply actuator. Anisotropy at this level may be present in the actuator
material in one of two ways:

1. Mechanical anisotropy: shown in the stiffness constants (C,, #¢,,),
2. Piezoelectric anisotropy: shown in the free-strain constants (d4, # d,,)

The piezoelectric induced stress constant, €;, is an effective measure of anisotropy
at the lamina level because it embodies both origins of anisotropy in a single constant:
= _=E3 L, =E7
€3 =Cyydy; +Cppdyy
o _AE3 L AES (5.4)
€3, =Cjady) +Cpdyy
A large amount of induced stress anisotropy will exist when €, and €,, are very
different. Another measure of anisotropy becomes apparent if this lamina is rotated so that
the principal axes are not coincident with the structural axes. In this case, an additional

nonzero piezoelectric term is created:
e =RgeRg
_a 20 +8..5in2 6
€3, =€;,c08" 6 +¢€4,5in
- . ~ 5.5
€4, = &3,5in> O + &3, cos’ O (53)

€35 = €05 Osin B(€;, —€5,)
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The extra term, e, is the piezoelectric induced shear stress term created through a
rotation of the lamina. Its existence depends on the presence of anisotropy and the ply
angle. This single term can be used to represent all the effects at the ply level that
contribute to anisotropic behavior. Thus, maximizing its magnitude maximizes the
anisotropy of the lamina. The maximum values are reached at ply angles of £45°. This is
easily understood since the ply rotation is completely analogous to a Mohr’s circle
transformation of stresses, where the maximum shear stress is always realized at this angle.
Note that €,, and €,, may have opposite signs. Recent work by Hagood et. al. [42] on
Interdigitated Electrode piezoceramics (IDE) has shown that this type of free-strain
anisotropy is possible.

5.2.4 Anisotropy at the Laminate Level

The ultimate objective for piezoelectric fiber composites is their introduction into a
laminated, built-up active structure for control. Thus, it will be important for design
purposes to predict overall structural properties and response to various loading conditions.
Classical L.aminated Plate Theory lends itself well to design studies of laminated structures,
and has already proven its value when augmented with actuator-induced forces and
moments to extend the analysis to active structures [14,75]. A caveat of the theory is its
limitation to a local description of the plate behavior. That is, it does not capture variations
in loading or structural geometry within the plane of the structure. Nonetheless, it is able to
provide accurate predictions of macroscopic deformations for several important cases, and
allows for the examination of important laminated structure parameters.

A typical laminated plate section is shown below in Figure 5.2. Axes coincident
with those described in the previous section are maintained. Possible loading conditions
include edge moments M,, M,, and M, and in-plane forces N,, N,, and N,. The
underlying assumption of this theory is the manner in which the deformations of the typical
section are characterized. These are the remaining Kirchoff assumptions for plate
structures, and closely parallel the Bernoulli-Euler derivation for beams Jones[23]:

1. The strains are assumed continuous between lamina boundaries so there is no
slip between plies.

2. Plane sections perpendicular to the midplane remain plane and perpendicular to
the midplane after extension and bending.

132



The second assumption above is equivalent to requiring that the out of plane shear
strains (S,,S;) be zero. i.e. no shear deformation - only pure bending. The result of such
assumptions is to allow the laminate to be treated as a single material, whose properties are
based on some collection of the individual ply properties. Thus, the problem is actually the
formulation of the laminate constitutive equations, where kinematic quantities are related to
force quantities, given certain assumptions on the strain deformation fields.

To formulate these relations, the displacements of a point P in the material are
examined when the material undergoes deformation (shown in Figure 5.3). For this point P
at height x, from the midline, its displacement may be described by:

Ju (5.6)

where subscript ‘o’ denotes displacements of the midplane. Introduction into the
strain-displacement relations provides:

du ou® o*u?

S =21 1 _ 3

=K, ~ o, o

g _ 9 AT

Q_axz - ax2 X3 axi (5.7)
S, du M oul Pu?

S =—L4 2 -1 2 1{-2 3

T, x| (ax”ax) " Ox,ox,

The first term of each strain represents the strain at the midplane, while the x,

dependent term describes the curvature, so that the above may be written:

Si = S? + X3 Ki (l = 1’2’6) (5.8)

To relate the applied loads (resultant forces and moments) to the internal states of
stress, it is necessary to carry out equilibrium through a summation of forces across the

laminate thickness. The resultant forces (N;) and moments (M;) per unit length are given
by:

h/2 h/2
N; = I(Ti )dx; M; = .‘(Tixs)dx3 (i=12,6) (5.9)
b2 ~h/2

where ‘h’ refers to the laminate thickness. The stresses may be rewritten using the
constitutive equations given in (2.23). Representing all components together in matrix
form allows easier manipulation of terms:
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Figure 5.3: Definitions of Kirchoff deformation in laminated structures
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/2

Y2
N= [(~e,E+ctS)dx, M= [(~eE+cES)xdx,

s -2 (5.10)
(i=12,6)
Using the assumed strain fields gives,
/2 /2 /2
N=—¢E [dx,+c®8° [dx,+cK [x,dx,
-2 -2 -1/2

/2 1/2 /2
M=-¢E Ix,dx, +cfs° Ix3dx3 +cK Ix§dx3
-t/2 -t/2 -2

(5.11)

Performing the integration may be divided into a discrete summation over the
laminates 1 to n, leaving,

N =-NA +[A]S° +[B]K
M = -M* +[B]S°® +[D]K

where NA and MA represent the actuator induced forces and moments. The stiffness terms

(5.12)

are

[A]= X (B ((Xa) = (X3)iy)
k=l
1 n
[B] =5k2=l(cs)k((x3)§ ‘(’h)i-l) (5.13)

(D)= 5 2 (xR ~(xa3)

and the actuator induced forces and moments are

NA = ﬁ(etE;,)k ((X3)k _(x3)k—l)
k=1

. (5.14)
MA = % 2(0153)1( ((x3 )i = (x3 )i-l)
k=l

The number of total laminates is ‘n’, and the number of active laminates is ‘np’.
Use of equations (5.12) requires knowledge of two of the three possible loading cases
(either mechanical forces, total strains, or actuator forces). The loading conditions easiest
to implement from a practical standpoint are those of a free?! expansion where the resultant
mechanical loads are zero, and the field voltage applied to the actuators is known. In such

21 “free’ in the sense of no net applied mechanical loading. Actuator is not undergoing free strain.
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a case, the equations (5.12) can be inverted to solve for the resulting strains and curvatures,
which are easily measured through conventional methods.

So A B -1 NA
(7B Dp| 1M~ (5.15)
Solution for the midplane strains and curvature strains will provide information on
the global laminate deformations. Such information can be used to examine the twist,

extension, and bending that can be obtained for an applied electric field and particular
structural parameters.

5.3 A Twist-Extension Coupled Laminate Example

A simple laminate case has been chosen for the purpose of comparing the various
actuators. Absolute conclusions on the actuator types cannot be drawn from any one case,
because the performance is application-dependent. However, the analysis of this case does
provide excellent insight into the fundamentals of anisotropic actuation, allowing easier
application to other laminates and loading cases.

The laminate chosen for this study is [45, /05/—45, ], an antisymmetric angle-ply
laminate. For positive actuation on both active laminae (i.e. applied electric field coincident
with poling direction), the result will be a coupled extension and twist deformation. A +45°
angle was chosen to maximize the piezoelectric stress constant e;,,. An extension-twist
coupled laminate is also amenable to experimental verification. Since nominally no bending
takes place, clamping will not compromise the actuation, allowing the CLPT model to
accurately predict the twist while neglecting end effects.

Calqulation of the A, B, D matrices shows a form typical of antisymmetric angle-
ply laminates:

-

(NA] [A, A, O 0 0 By (s9 )
NA 0 0 A¢ B By O Sg
YagA [~ P (5.16)
MA 0 0 B¢ D, D, 0 |[lK '

M4 0 0 By D, Dp 0K,
M2 | Bg By O 0 0 D | K )

This matrix identifies the coupling present between various deformation modes and
represents the passive properties of the laminate. Thus, these parameters are independent
of mechanical or actuator imposed loads. The above matrix shows that coupling does
indeed exist between extension loads [N,,Nz] and twist curvature [K‘6], due to the ‘B’
terms. These terms also couple shear loads [N and bending curvatures [ K, K, .
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The mechanical loads may be applied completely independent of the material
properties of the laminate chosen, implying that any loading combination [Ni ,Mi] is valid.
However, actuator induced loads are dependent on the material configuration chosen for the
laminate, for it is the very lay-up used that determines the possible induced moments and
forces. For this particular case with positive actuation on each actuator,

Ng =Mf =Mj = (5.17)
These induced loads are zero because the antisymmetric nature of this laminate
balances the induced shear forces and applied bending moments. The remaining loads and
deformations may be shown as the reduced system:
Ay Ap B || SV
N?’_‘ =|1A;p Ap By S3 (5.18)
Mg Bis By Des )| Ks

Z
->

Since the antisvmmetric ply angle chosen is +45°, several additional geometrical
symmetries exist. Positive actuation on both actuators also results in symmetry of actuator
induced forces:
A A
Ajy=Ayn Big=By Ni =N; (5.19)

Inverting the above relations (5.18) and solving for the twist curvature yields:
K, = —2BN!' +(A, +A;,)ME 520

—2B% + Dgs (A, +Apy) (5.20)

where the following geometric and actuator terms are given with the plane stress material

constants expressed in the local (ply) coordinates:

< = <E _A=E , <E
AptAp= (ts(cu +Cpy) +ta(Cpy +2Cp “"czz))

|
Bjs = Z(CFI -5 )(tAtS + ti)

i [t 2¢3 A 5.21
D66=2[(CF|"20:52 +C§2 (-";—S-Hits +_3_A)+-6i(c“—c|2)} ( :

- - 1 - -
N{ =Eqt, (83 +&3) M = ‘2‘E3(33| —€3)(tptg + th)

It is easy to see the important terms that contribute to the twist curvature, [K},].
The twist moment, Mg, directly induces twist and is dependent on the existence of
piezoelectric stress anisotropy (&, # &;,), as discussed in the section on anisotropy at the
lamina level. If stiffness isotropy also existed ([} # €5, ), the term B,s would be zero, and
the twist would simply be a function of M§ and Dg,. Twist can also be generated by the
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actuator induced extensional force N{* because it is coupled through the B¢ term. This
term does not depend on piezoelectric induced-stress anisotropy, but requires stiffness
anisotropy in order to exist.

It is important to note that these constants cannot be independently specified and
that ci';? and e; are interrelated. For this reason, it is difficult to draw conclusions about the
contributions of the individual terms when both effects are present. Thus, actuation will be
compared on the basis of stiffness, c,!j;, and piezoelectric free-strain constants, d;. These
constants are also easier to measure, and the free-strain d-constants are a better understood
quantity. However, the concept of induced stress remains essential in the discussion of
actuators, and will be dealt with further.

Replacing the e; constants with those of equation (5.4), and nondimensionalizing
with respect to actuator quantities yields an expression for nondimensional twist curvature:

Keta _ Ancr (T+ l)(4RA(l = =RV}, ) +2Ty(1+ 1, )(Cg — R, (1- Upp )1+ C)))

2 a—
Avon AMON _(p 4 121 R, 2 +2(C, + Tyl + v,z))(cB(—Tz—+T+§)+T3w——“ ”'2))

6
(5.22)
where the nondimensionalized ratios are defined as
T_tS w_-ll R _~E2 4‘_532 A_a E
=T =7E ATTF == =431k3
ta e oy d3; (5.23)

Cg =2Rp Vi3, +Ry +1 Cp ==2RA V125 +Rp +1

The terms R, and { are the ratios of transverse to longitudinal properties in the
actuator, for stiffness and piezoelectric free strain, respectively. T is the ratio of substrate
thickness (tg) to actuator thickness (t,), while Y provides information on the relative
stiffness of the actuator and substrate materials. Quantities Cg and Cg are the non-
dimensional stiffness terms derived from the bending (D) ard extensional (A +A)p,)
groups in the original equation (5.20). It is important to note the significance of the A
terms. A is the commonly used free-strain actuation term (d,,E,), where Ayon refers to
the actuation capability of a monolithic piezoceramic. The term A, takes into account the
possibility that a particuiar actuator may have a different free-strain actuation capability than
a monolithic piece of the same material (PZT type). One such case is the interdigitated
electrode piezoceramics where the poling direction is actually along the geometric 1-axis
used here.

Investigating the effects of anisotropy on the twist can be done by varying one
parameter, while the others are held constant. In particular, the effect of the stiffness and
piezoelectric anisotropy ratios on the twist curvature will be shown as a function of
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thickness ratio (T). The laminae stiffness ratio (), will be assumed to have the value of
one. Stiffer substrate materials will only slightly increase the curvature twist. For the most
part, the larger induced actuator stresses will be offset by the larger geometric terms
(Bg,Dgg-tC.).

Figure 5.4 examines the effect of free-strain anisotropy on the nondimensionalized
twist curvature. In general, larger free-strain anisotropy enhances the twist. The exception
is the case of ideal stiffness anisotropy (R, =0). This curve shows that if the transverse
stiffness is zero, it is impossible to induce any transverse actuator stress loads (€5, =0),
and thus, the twist is independent of d,, and ¢. Therefore, a fundamental limit on
actuation potential exists for actuators with high levels of stiffness anisotropy.
Furthermore, without a substrate material, the twist caused by the extensional induced
loads (2B\¢N[') exactly cancels the twist caused by the twist moment term
((A,, + Ay )MZ) in the numerator of equation (5.20).

The four graphs in Figure 5.4(a-d) show the progression of twist for decreasing
levels of stiffness anisotropy. The last graph is the special case of stiffness isotropy
(R4 =1). For this special case:

Kota _ (T+1)1~ )1 = Vyp, )
B 1-vy) (5.24)

3
Awon (l—v,ZA)(T2+2T+%)+—W (6

Interdigitated piezoceramics (IDE) are an example of this special case. Note that the
substrate with optimal thickness is actually no substrate at all. The stiffness of the system

increases in a cubic manner with substrate thickness, while actuation authority increases
only linearly with thickness (increasing the moment arm). Since the actuators in this
special case have adequate transverse stiffness, (R, =1), they need not rely on the
substrate to provide stiffness for inducing stress. Instead, each actuator pushes against the
transverse stiffness of the opposing actuator.

Figure 5.5 examines the effect of stiffness anisotropy on the curvature twist at
various levels of piezoelectric free-strain anisotropy. As expected, for a particular free-
strain anisotropy, increasing levels of stiffness anisotropy enhance the twist. For very high
levels of free-strain anisotropy (£ =—0.5), this enhancement is small, and is similar to the
discussion above, for the case when R, =0.

The four graphs in Figure 5.5(a-d) show the progression of twist for decreasing
levels of free-strain anisotropy. The last graph is the special case of equation (22) for { =1
(free-strain isotropy):
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Figure 5.4: Actuator with free-strain anisotropy for various stiffness ratios
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Keta 2TY(T + 1)1+ v,)(1-R,)

A - ) 2 —
YN TR +2(Ce +Tl/’(l+1912))(CB(T7+T+%)+T3W“—(1 60'2)J

(5.25)

Directionally Attached Piezoceramics [76] are an example of actuators employing
stiffness anisotropy with isotropic piezoelectric free strain. An interesting aspect of this
special case is again the reliance of twist on the presence of a substrate material. For the
special case of no substrate (tg =0) and stiffness anisotropy only ({ =1), the two
numerator terms in (5.20) again exactly cancel one another. This effect is echoed in
equation (5.25) for T=0. Thus, there is an optimal substrate thickness for an
anisotropically stiff laminate having isotropic free-strain actuation.

5.4 Anisotropic Actuator Comparison for a Twist-Extension
Laminate

Up to this point, discussion has been limited to the examination of generic
actuators, and the effect of stiffness and free-strain anisotropy on laminated structure
actuation. Several different types of anisotropic actuators based on piezoceramic materials
exist, and have already been referred to in section 5.3. This next section details the
attributes of each of these actuators, and is an excerpt from Ref[80]. The purpose is to
facilitate a comparison of the fundamental differences in the types of available actuators.
The understanding gained from such a comparison can then be extended to other cases of

actuation and laminates.

5.4.1 Piezoelectric Fiber Composites

For the present comparison, the properties used are those of the current material
systems and manufacturing capabilities. Bulk piezoelectric properties for SH-type PZT are

Table 5.1: PFC Plane Stress Material Properties

S
E E E E £
Cri 12 22 Ce6 €3 €33 _333
[¢)

Fibers 66.2 19.2 66.2 23.5 -234  -234 1950

Matrix 3.74 1.12 3.74 1.31 0 0 27.3
(Units: sE: 1012 m2/N, cff: 109 Nim2, dyjz 10712 m/V, e N/Vm)
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Figure 5.6. PFC design curves of anisotropy ratio and nondimensionalized
curvature (for T=0.5)

used for the fibers, and the measured properties are used for the particulate-loaded epoxy.
These are given in Table 5.1. The closed form combination model presented in section 3.3
is used to generate predictions for the actuator parameters. The maximum through-
thickness line fraction ( X,) that has been experimentally achieved is 0.98. The width line
fraction (X,) is a free parameter that may be chosen to tailor the composite properties.
Figure 5.6 shows the model predictions for { and Rp for a range of X, based on the
properties given. Nondimensional twist curvature is also shown for a constant thickness
ratio of 0.5. This serves only to illustrate the general trend with X,. An X, of 0.5 (equal
spacing of fibers and matrix across the width) provides high anisotropy and stiffness, and
is chosen for the comparison. In this case, the composite piezoelectric free-strain and
stiffness anisotropies are 0.52 and 0.18, respectively. Actuation capability of the PFC
actuators is taken to be that of monolithic piezoceramics, as the maximum free strain level
in the longitudinal direction is not changed?2.

22 431 is not the same as that for monolithic ceramic, but the same level of free strain may be reached by

applying higher field levels. Thus A is the same as that for monolithic ceramic.
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Figure 5.7. Anisotropic actuators compared in this analysis

5.4.2 Other Anisotropic Actuators

An Interdigitated Electrode (IDE) piezoceramic directed toward structural actuation
was introduced by Hagood et. al. [42]. As shown in Figure 5.7, this novel electrode
pattern is comprised of electrode fingers with alternating polarities, on both sides of the
piezoceramic. As a result, the majority of electric field components are actually in the plane
of the actuator, so that poling is in-plane, rather than through the thickness. This creates a
high level of free-strain anisotropy because the two free-strain piezoelzctric constants are of
opposite sign. The model predicts a free-strain anisotropy ratio of {=-0.5, although
experimentally, much higher values were seen due to material nonlinearities and electric
field geometric effects. Not only is high anisotropy caused by this electrode pattern, but
the in-plane polarization also increases the actuation capability to 1.8 times that of the
monolithic piezoceramic. However, these actuators have nearly isotropic stiffness.

The introduction of Directionally Attached Piezoceramics (DAP) is attributed to
Barrett [76]. The concept, shown in Figure 5.7, incorporates monolithic piezoceramic
actuators bonded in special attachment patterns. The bond pattern is typically along a thin
line, creating high longitudinal stiffness, but very low transverse stiffness. Barrett reports
large levels of stiffness anisotropy (as large as 1/50 to 1/80), but has been limited by
practical constraints to values of R, between 1/7 and 1/20. A value of 1/20 is assumed for
the comparison. Since the free-strain piezoelectric constants remain the same in the two
directions, the DAP elements are actuators that can be thought of as demonstrating stiffness
anisotropy only. The actuation capability of the DAP element is that of the monolithic
piezoceramic.

To complete the comparison of actuators, a hypothetical Unidirectional Actuator
(UDA) is proposed. This actuator is comprised of a monolithic piezoceramic bonded to an
ideal, anisotropically stiff reinforcement material. As an example, this reinforcement
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Figure 5.8. Comparison of nondimensionalized curvature vs. thickness ratio for four
actuators

material could be composed of extremely stiff fibers embedded in a very soft matrix. The
limiting case would be an actuator with an infinite transverse stiffness, giving a stiffness
ratio (R, ) of infinity. In addition to creating high stiffness anisotropy, the actuation in the
transverse direction would be zero, making the free-strain ratio ({) zero. The transverse
clamping effect also serves to enhance the longitudinal free-strain piezoelectric constant
(33,) by a Poisson’s term, so that the actuation capability of the UDA is approximately 1.3

times that of a monolithic piezoceramic.

5.4.3 Comparison

It is now possible to compare the various actuator types for this antisymmetric
laminate case. Comparison is made on the basis of similar substrate materials (=1 in
each case), but each with its individual actuation capability. The comparison is shown in
Figure 5.8, in the same format as the previous graphs with nondimensional twist curvature
versus thickness ratio. Values of the actuator parameters are summarized in the figure.

The figure exemplifies the rather different characteristics of each actuator. For thin
substrates (T — 0), the IDE and UDA actuators provide very high levels of twist, while
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the PFC and DAP elements are unable to produce much twist due to their dependence on
the substrate to induce transverse stress loads. Slightly thicker substrate materials result in
a dramatic drop in twist for the IDE and UDA actuators, while the PFC and DAP elements
provide twist that reaches a peak at approximately T=0.5. Medium size substrates (1<T<5)
will have the most twist when IDE actuators are incorporated, although the differences in
twist become less apparent between the four types. Finally, as the substrate reaches larger
thicknesses (T>10), the twist approaches zero for all actuators. The differences in
actuators at this point (T~10) can be attributed to the different actuation capabilities
(Apon)» and to the fact that the UDA twist approaches zero as 1/T, while the other three

approach zero as l/ T2,

5.5 Summary

This chapter was an investigation into the mechanics of actuation in structures that
incorporate anisotropic actuators. It provided a strong motivation for the use of tailorable
actuators, especiaily in structures with isotropic substrates. Anisotropic actuators are able
to directly induce shear stress loads, so that twist deformations are possible, even on an
isotropic host. This study highlighted the difference in the possible origins of actuator
anisotropy, and showed how they contribute to the overall actuation anisotropy. The
introduction of the concept of induced stress in structures provided a convenient means for
evaluating how a particular actuator will perform.

A twist-extension coupled laminate provided the basis for an actuator comparison,
and was developed from Classical Laminated Plate Theory with induced stress actuator
terms. The comparison of the actuators showed fundamental differences in the manner in
which actuators are able to induce stress loads. These differences are not only exemplified
through the models, but may be logically understood through the induced-stress concepts.

This chapter has laid the groundwork for an experimental study of laminated
structures using piezoelectric fiber composites. Future sections will show the manufacture
and testing of a twist-extension coupled laminate, and results will be compared to the
theory developed in this chapter.
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6.0 Manufacturing Piezoelectric Fiber Composites

6.1 Overview

There has been little previous research into manufacturing of piezoelectric fiber
composites (compared *o other composites), and virtually none of the established methods
pertain to the current application of structural actuation. Thus, there is a need to establish a
manner for manufacturing that reliably produces piezoelectric fiber composites with known
properties and physical attributes. At this initial stage, the more immediate goal is to
develop methods for making mono-layer piezoelectric composites that may serve to validate
the model predictions. This first step will help provide an expanded knowledge of the
manufacturing process that will contribute to more refined techniques in the near future.

This chapter begins with a description of manufacturing objectives for conformable
mono-layer fiber composites. Some preliminary investigations into manufacturing provide
an understanding of the requirements for a successful composite specimen. These are
expanded to create a manufacturing procedure outlined in Section 6.3. Here, the mold
setup, lay-up techniques, and curing process are described, and similarities between these
methods and those for standard graphite/epoxy composites is discussed. Finally, the
sample preparation for experiments is explained, including electroding and polarization
techniques. The last section, 6.5, describes the more recent techniques used to
manufacture the extension-twist coupled laminate, including improvements developed in
the standard methods of lay-up, cure, and electroding.

6.2 Manufacturing Objectives and Requirements

The primary objective was to produce conformable single-fiber layer composites to
allow comparison of experimental effective properties to those predicted in the various
analytical models. these composites were to be manufactured by hand, using individual
piezoelectric fibers and a two part epoxy resin system for the matrix material.
Manufacturing techniques would borrow from those developed for graphite/epoxy
composite manufacturing.

Other secondary objectives for manufacturing become apparent when the geometry
of the composite specimens are considered. Since the thickness of each specimen will be
one fiber layer, the usual reliance on statistical averaging to reduce the efftect of
inhomogenities no longer holds, and specimen uniformity cannot be ignored. In order to
get a reasonably accurate representation of the overall composite properties, it is important
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to have uniformity in several aspects. First, it is necessary to have uniform spacing of
fibers, so that the measurement of properties is location -independent. Uniform thickness
across the specimen was also important for this reason, and uniform thickness along the
fiber length was imperative due to the two dimensional nature of the models.

Spacing and line fractions were dictated by other important requirements.
Maximum levels of actuation can be accomplished for maximum through-thickness line
(X,) fractions. Minimum amounts of low dielectric matrix in series with the piezoelectric
will allow significant field in the fiber for both poling and actuation. Eventually, the use of
multi-fiber layer composites at high volume fractions will result in random, high-dielectric
pathways across the thickness, known as contiguity, or percolation effects. Such effects
will reduce the need for ultra-high X, fractions, although high volume fractions will
always be advantageous in terms of actuation capability. In the other direction, spacing of
the fibers, represented by the transverse line fraction (X,), will largely affect the transverse
properties and act as a property tailoring parameter. The discussions in anisotropic
actuation (Chapter 5.0) cover this in more detail. For the purposes of manufacturing, this
value is varied to compare trends in properties for experiment and models.

Several other objectives dealt with the process of manufacturing itself. One of these
was void content. Often, gas is trapped in the resin due tc handling or mixing, or forms
when the heat of cure is applied. Following cure, these trapped gases leave bubbles known
as voids throughout the matrix system. Voids represent weak spots, both mechanically and
electrically (detailed in section 4.2.2). High void concentrations would render the
specimen useless, by making the necessary poling voltage impossible to achieve due to
arcing cross the voids. Finally, it was important to minimize fiber breakage. Although
none of the key mechanisms occurring in fibrous composites is load transfer, longitudinal
stiffness and actuation (occurring though the fibers) is greatly reduced for even small
amounts of epoxy in series with the fibers.

Preliminary manufacturing provided several insights that contributed to the final
manufacturing technique. Surface tension of the fiber/epoxy system was very high, so that
the fibers tended to be drawn tightly together, creating overlapping and difficulties with
specifying fiber spacing. A top surface in the mold reduced surface tension, and provided
better uniformity in specimen height. A low viscosity epoxy system was also important in
reducing the surface tension problem, and improved the flow characteristics, reducing fiber
damage. This also enabled easy removal of voids with applied vacuum and moved excess
epoxy away from the composite, increasing the through-thickness line fraction (X,).
I'inally, a very slow cure process at room temperature eliminated void build-up due to gas

formation.
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Figure 6.1: Experimental setup for the manufacturing of piezoelectric fiber
composites

6.3 PFC Characterization - Manufacturing Methods

Techniques and imaterials standard to the curing of graphite/epoxy composites were
used as a basis for developing the manufacturing process. The setup is shown in Figure
6.1. The entire mold was assembled on an aluminum cure plate that inclucded fittings for a
vacuum system. Guaranteed non-porous Teflon (GNPT) formed the top and bottom
surfaces of the mold to facilitate specimen removal after the cure. Mold side and end pieces
were manufactured for each cure from stainless steel shim stock, and coated with mold
release. The thickness of mold pieces could be changed to allow variations in epoxy flow
and direction. The standard setup used, shown in the figure, consisted of thinner (0.09
mm) shim stock at the ends to facilitate the flow of excess epoxy away from the specimen,
along the fiber direction. The sizes chosen were found to work well with the fiber diameter
supplied.

The mold pieces were attached to the Teflon base using 0.06 mm double sided tape.
This ensured no resin leaked out from beneath the mold, and that any excess epoxy had to
travel out above the end pieces, and in the fiber direction. In this way, there would never
be a shortage of epoxy for the specimen. Porous Teflon lead away from the mold to the
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vacuum port, and acted as a path for liquid or gas. This provided maximum vacuum to the
specimen while creating a reservoir for the excess epoxy.

Following the above preparations, a low temperature-cure epoxy23 was mixed, and
a thin layer laid into the mold. Piezoelectric fibers of 120 micron diameter?* were cut to
length and straightened by hand. These were laid individually into the mold at measured
intervals, and held in place with the thin epoxy layer. Following the fiber lay-up, a
covering layer of epoxy was applied sparingly to the fibers. The GNPT top was set onto
the specimen, and the entire assembly was sealed with vacuum tape and bagging materials.
Full vacuum and added pressure (approximately 15 psi, applied with weights ) was applied
to the specimen. This condition was held at room temperature for 12 hours, until the epoxy
was fully set, and the danger of void formation by heat was passed. The specimen was
then heated to 65 °C for one hour to ensure the epoxy had fully occurred (complete cross
linking) and the maximum properties were achieved. The sample was kept under vacuum
and pressure during this step. A scanning electron microphotograph of an initial specimen
with relatively low X3 is shown in Figure 6.2.

Ten samples in total were manufactured, each 1.5 inches (38 mm) in length and 1
inch (25 mm) wide. Each specimen had a thickness very close to that of the fiber diameter,
so that X, was approximately 0.98. The transverse line fraction X, was varied among the
specimens between 0.15 and 0.57. Several specimens were not used due to poor
uniformity or damage during handling.

6.4 PFC Characterization - Sample Preparation

Following the cure, the specimen was allowed to fully cool before proceeding. The
specimen was removed from the mold, and the dimensions measured. The width and
length were measured using calipers with 0.01 mm precision, and the thickness was
measured using micrometers with 0.002 mm precision. The sample was lightly sanded to
increase surface roughness and ceramic connectivity between the electrode faces, and
electroded with 2000 A to 3000 A of pure silver. Silver was chosen for its high
conductivity (compared to aluminum), and its good adhesion (as compared to gold).
Electroding was done with an electron beam evaporator?3 , operating at low power to
reduce the heat generated. Sputtering vapor deposition techniques proved impossible as the
heat generated caused damage to the matrix and tended to warp the specimen.

23 EPO-TEK 301 epoxy, Epoxy Technologies Inc., 14 Fortune Drive, Billerica, MA. 01821
24 pZT Fibers, CeraNova Corporation, 14 Menfi Way, Hopedale, MA. 01747
25 Microelectronics Technology Central Facility, MIT, Cambridge, MA. 02139
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Figure 6.2: Photograph of early specimen with relatively large thickness

line fract'on (magniftied 300x)

Poling of each specimen was performed in a heated, silicon oil environment®®. The
presence of oil acted as an electrical insulator, and reduced the opportunity for electrical
breakdown (arcing) around the edges of the specimens. The oil was also heated to 80C to
add internal energy to the material dipoles, and enable easier alignment with the applied
field direction. For each specimen, the dc field of approximately 80 volts/mil (32 kV/cm)
was applied for 15 minutes at this temperature. Then, the specimen was removed, cooled,
and the electric field removed. Removing the field prior to cooling the specimen would
otherwise result in a loss of polarization.

6.5 Manufacturing for a Twist-Extension Coupled Laminate

Up to this point, the techniques outlined have been used in the manufacturing of the
composite specimens for comparison of effective properties with models. More recently,
improved methods have been used for manufacturing of piezoelectric fiber composites.
They include improvements in lay-up and cure methods, various new electroding
techniques, and the introduction of the improved matrix material to the composite. These
methods were utilized for the manufacture of the specimens used for the twist-extension

coupled laminate example, and are outlined here.

26 Exacal EX-250HT Bath, Neslab Instruments Inc., 25 Nimble Hill Road, Newington, NH 03801
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Figure 6.3: SEM Photo of PZT fiber composite with particulate filler in

epoxy matrix, with copper/kapton interlaminar electrodes.

The first change involved the techniques used for the lay-up of piezoceramic fibers.
Previously, a thin layer of epoxy was spread into the mold as the first step, and used to
hold the fibers in place during the lay-up. With this method, it was often difficult to
maintain uniform spacing of the fibers. Instead, a very thin strip (~1 mm) of double-sided
tape was positioned at each end of the mold, next o the end mold picces shown in Figure
6.1. The fibers could then be laid into place precisely, with cach fiber end adhering to the
tape. In this way, a more uniform spacing could be achieved, and this spacing would be
maintained when the matrix material was applied. This was necessary due to the
introduction of the much more viscous filier/cpoxy matrix for this application.

A 15 mm by 94 mm strip was laid up by hand, using 170 micron fibers oriented at
45 degrees. The matrix used for the twist-extension laminate contained 75 wt% of PZT
filler and 3.75 wt % dispersant. The methods for manufacturing the matrix were outlined
in section 4.5.3, and the properties were summarized in section 4.6. This matrix was
spread evenly onto the fibers, and the specimen prepared for vacuum in the usual manner,
Curing, however, was now done in an autoclave curing system?7 so that vacuum and 80

psi additional pressure could be applicd to the composite. This increased the compaction,

27 Model BAC 35, Baron-Blakeslee, TELAC, MIT



reduced excess epoxy, and gave excellent specimen uniformity in thickness. After cure,
the composite was slowly cooled, removed from the mold, and the dimensions measured.

Three types of interlaminar electrodes have been investigated. One type, shown in
the photograph of Figure 6.3, is 0.0005 inch Kapton with a 2500 A layer of sputtered
copper which is bonded onto the active subply at the time of cure. This material is easily
etched and has the potential for use as a patterned electrode. The second type involves
manufacturing the PFC’s without electrodes, lightly sanding to increase surface roughness,
and depositing a 3000 A silver layer on each surface through a thermal-vapor deposition
process. This is the original process used in the manufacturing of specimens for the
effective property study (section 6.3). The third type is similar, except that air-dried silver
paint is applied by hand. The present laminate application employs this method of
electroding.

In order to achieve the maximum piezoelectric properties of the composite, it is
important to ensure complete poling. The specimens used for effective property
measurements , detailed in section 6.4, were sanded enough so that the tops of fibers were
exposed to the sputtered electrodes. As section 7.3 will show, this permitted a low
coercive field for poling equal to that of bulk PZT 5H ceramic. In more recent applications,
where the specimens are only very lightly sanded, or specimens utilize thin film polyimide
electrodes, this will not be the case. In these cases, there will not be direct connectivity
between ceramic and electrodes. Instead, it will be necessary to measure or predict the
coercive field for the specimens. An excellent indication of the degree of ceramic
connectivity is effective dielectric, and a simple relation between effective dielectric and
coercive field likely exists. In fact, it is easy to show using the methods in the Closed
Form Combination Model, that the field within the fiber can be expressed as a function of
fiber volume fractions v, and Vs, and the effective dielectric £33 :

Ei _ R +Vi'vp) — Vel

6.1
E, D

As an example, for a through thickness fraction of v, =0.95 and a width fraction
of v, = 0.50, the effective dielectric €55 /€, predicted by the Closed Form model is 248.
Using equation 6.1, the field reaching the fiber is found to be only approximately 15% of
the applied field. This is a large reduction, and would require a field of 46 kV/cm (117
volts/mil) just to reach the coercive field within the PZT 5H28, Fortunately, there is a
means to lower the coercive field by raising the temperature of the piezoceramic material.
This allows for easier movement of the crystal dipoles, effectively reducing the coercive

28 Given that the coercive field for PZT 5H is assumed to be 17.5 volts/mil at room temperature
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Figure 6.4: SEM Photo of 45¢ PZT fiber composite ply laminated to steel

substrate

ficld. The difficulty of this process, however, is the current inability 1o predict the
piczoceramic response in the nonlinear regime (i.c. at poling field levels) and its
dependence on temperature. Work is currently heing done to investigate this issue [81],

The most accurate and direct method to obtain the coercive field is through
experiment, and is the means used here. For a new specimen, it is possible to determine
the coercive ficld by measuring the butterfly or hysteresis (polarization) curves at the
desired temperature. The coercive field is the value of field at strain reversal on the
butierfly curve, or the value of field at the axis crossing on the polarization curve. The
points tend 1o correspond very well for a particular piczoceramic specimen [81], although
the polarization method is preferred because it is generally more accurate and does not
require application of a strain gage to the specimen.

After poling, and prior to any further steps, the composite was aged for 72 hours (o
climinate the possibility of any time-dependent polarization effects, The composite was cut
into two picces, cach of which were bonded 10 a 0.025 mm (1 mil) stainless steel substrate,
with the poling directions oriented outward, The plics were bonded to the steel substrate
using an cpoxy adhesive (Young's Modulus of 2.8 GPa) and cured at room temperature 1o
avoid possible depolarization. The resulting bond layers measured approximately 0,01 mm
(<0.5 mil). A photograph of a section of the assembly is shown in Figure 6.4, Testing of

the specimen is described in section 7.4,
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6.6 Summary

Chapter 6.0 dealt with the second of two original subtasks for piezoelectric fiber
composites: To develop the ability to manufacture conformable active composites that
incorporate transversely aligned piezoelectric fibers. A hand lay-up technique was
developed for manufacturing mono-fiber layer composites from individual PZT fibers and a
two part epoxy resin system. These methods involved procedures that were applied in an
attempt to create a uniform, reliable, and conformable actuator with good actuation
properties. Curing under vacuum and incorporating materials form standard
graphite/epoxy manufacturing helped to reach this goal. These standard techniques were
used to manufacture the specimens used for experimentally evaluating the effective material
properties. More recent techniques were applied to the manufacture of the specimens for
the laminated structure in the anisotropic actuation study, and incorporated the improved
matrix material from Chapter 4.0. The next chapter picks up the discussion, with the test
procedures and results for the manaufactured specimens.
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7.0 Experimental Methods and Results

7.1 Overview

The value of experimental results lies not only in the verification of analytical
models, but also in an increased understanding of the material systems and processes being
used. Experiments often bring to light various aspects that may not have been considered
when dealing with the purely analytical results. Such aspects include issues of practicality
and manufacturability that may limit the range of possible performance. Another issue is
the acceptance of various assumptions in the analysis that may not be well founded. Such
an example is the assumption that the fiber properties were those of the bulk ceramic.
Results found during the effective property experiments indicate that this may not be the
case, and prompted further investigation into material property characterization.

The major objective of experimental methods, however, is for the verificaticn of the
analytical models developed for the particular system. This chapter describes the
experimental procedures undertaken and presents the results for the study of piezoelectric
fiber composites. Section 7.2 details the methods for obtaining the effective material
constants, including the compliance, dielectric, and piezoelectric free-strain. The results of
those tests are given in section 7.3. An adaptation of the Discrete Uniform Fields (DUF)
model is also presented in order to account for the current geometry of the experimental
specimens. The final section, section 7.4, describes the experimental results for the twist-

extension coupled laminate.

7.2 PFC Characterization - Experimental Procedures

In order to compare experimental results with those predicted by the model, it is
necessary to carefully consider the manner in which these results are obtained. Not only is
it necessary to measure the electrical, mechanical, and coupling properties, but they must
also be measured under the correct boundary conditions. Fortunately, the constitutive
equations have been chosen in the form most amenable to experimental verification, given
in equation 2.37 and repeated here:

D, -8;3 d3; dyp 1(E

0
Sl d3| SFI SFZ 0 T] (7 1)
S d E E 0 )
2 2 S S»

S6 0 0 0 556_ T6

The mechanical properties, represented by short-circuit compliances (sg) are
easily measured for mechanical loads when the electrodes are shorted. The electrical
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properties, represented by the free-dielectric (£3T3), are easily measured for electrical loads
when no stress is applied. Finally the coupling terms, represented by the piezoelectric free
strain constants (dij), are measured by obtaining free strain when an electrical load is
applied. It is important to note that all the properties to be obtained are plane stress
properties. These are the most relevant, as virtually all applications will include thin planar
structures. However, since this constitutive equation is in compliance form, these
properties are also those for the full three dimensional representation of the material.

For measurement of the electrical and piezoelectric properties, the specimens were
held at point contact with a spring grip mechanism, whose grips also delivered electric
potential. The dielectric (£3T3) was measured at zero stress

T,=T,=Te=0 —  D;=¢;E, (7.2)
The measurement was taken with a digital multimeter in the form of capacitance,
from which the dielectric could be calculated;

C"t

where CT is the capacitance at zero stress, t is the specimen thickness, and A is the

specimen area. Reporting of the data is actually done in the form of the dielectric relative to
vacuum:

T _ £ CTt

B T Ae,

The term &, is the permittivity of free space (8.85 e-12 F/m). The piezoelectric free

strain constants (ds,;,ds, ) were also found by applying electric field to the specimen at zero

(7.4)

stress, and measuring the resulting strain:
§2 = d32E3
Electric field was applied up to the poling voltage (32 KV/cm), in the direction of

(7.5)

poling. Strains were measured using a strain gage system!7, where gages were aligned
with the longitudinal and transverse (1 and 2) directions, as shown in Figure 7.1. Values
for the property constants were calculated from the strain-electric field slope at zero field, in
order to obtain the low-field values. Sinusoidal voltage tests were also carried out to
characterize the poling attributes of the composites. Curves of varying electric field versus
strain well into the nonlinear response region are a useful indication of polarization trends.
Comparisons of the classic “butterfly curve” with those of the monolithic piezoceramic lend
insight into the relative coercive fields, and are discussed in the next section.
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Figure 7.1: Specimen dimensions and strain gage placement for experiments

Tensile tests were conducted to determine the effective compliance properties.
Specimens were tested by applying mechanical loads in the longitudinal direction, and
measuring strain in the longitudinal and transverse directions. All other stresses were zero,
and the electrodes were shorted to achieve the short circuit condition:

T,=T,=EF,=0 — §=sT,
S, =spT,

The transverse compliance was not found at this time. Stainless steel tabs were bonded to

(7.6)

each end of the specimens using cyanacrolate adhesive. These tabs served as points for
gripping the specimens in the testing machine. A small scale test machine?? with pneumatic
grips was used to apply the load, while a strain gage system again provided the strain data.
Each specimen was cut to a narrow strip (approximately !0 mm x 30 mm), to ensure a
uniform stress (and therefore strain) distribution across the specimen.

7.3 PFC Characterization - Experimental Results

Manufacturing provided highly conformable piezocomposites of line fractions X,
varying from 0.15 to 0.57, and testing provided the effective material constants that
characterize the material.

29 Instron Model 4201, Instron, 100 Royall St., Canton, MA 02021
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The first data to be evaluated were the AC test curves. Figure 7.3 shows the strain
response of a typical specimen along the fiber direction for a sinusoidal voltage input.
Surprisingly, this response is very close to that of a monolithic piezoceramic, and is often
termed the "butterfly" curve. This curve shows the poling/depoling trend typical of
sinusoidal inputs at voltages above the coercive field. More remarkably, the coercive field
necessary to depole the specimen is low, at about 70 Volts, or 15 Volts/mil. Such low
coercive field levels show that most of the electric field is actually reaching the ceramic,
indicating some connectivity in the 3-direction. This is likely the case, as sanding prior to
electroding removed the thin layer of epoxy above the fibers. Also, if most of the field is
reaching the piezoelectric then the strain-to-voltage constant, d,,, should be very close to
that of the monolithic ceramic. This is also predicted by the two Uniform Fields models for
even low values of v} when v§ =1.

In actuality, the experimental values for effective d,; are much lower than the d,,
of the ceramic alone, suggesting an ‘pparent inconsistency between the data and models.
However, it is proposed that the difference is not an inconsistency, but rather a result of the
analysis that models round fibers as square. Even with some connectivity in the 3-
direction, the majority of the fiber actually has matrix above and below, which prevents
much of the electric field from reaching it. This effectively creates a "dead zone" of inactive
fiber. The reduction in d3; is due not only to the inactivity of these portions, but also to
their high stiffness. Resulting actuation is less than that which would occur if the inactive
section was replaced with pure epoxy, representing a square fiber.

The discretized combination model approach can be used to model this phenomenon
after making a small aiteration. If it is assumed that some small portion of the fiber top, of
length "t," was removed during sanding, then the actual specimen is that shown in Figure
7.2. Only a minor modification to the previous discretized method need be introduced.
The method presented in equations 3.72-75 remain the same with the exception that the
slices of matrix and fiber are added to a column of matrix and column of fiber in equation
3.75.

This model is used for comparison to the experimental data, shown in Figures 7.3
to 7.8. Graphs show the effective properties versus width line fraction X, for a "t"-value
of 0.1 (10%). The value for "t" was chosen by varying "t" until the best fit was obtained
for the effective relative dielectric (KiJ = £ /¢,) data, shown in Figure 7.4. As discussed
in section 5.5, the dielectric is a good indicator of the thickness in an average sense. This
is especially important in the current specimens because variations in thickness below the
ability to measure accurately can greatly affect the properties. Uniformity in manufacture
would need to be on the order of microns for reliable a priori predictions.
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Figure 7.2: Modifications to the discretized model for accurate specimen
representation.

For this value of "t", the strain-to-voltage data is compared to the model.
Reasonable agreement is seen in the d;; constant with points on either side of the predicted
response (Model 1). The lower curve (Model 2), shown for comparison, is a prediction by
the discretized model if all the slices are replaced by pure matrix. This illustrates the effect
of the inactive part of the fiber.

The d,, data, however, shows a striking departure from the model values. While
the model predicts negative values, d,, experimentally assumes low positive values. This
discrepancy is most likely caused by the assumption of uniform strains in the 3-direction.
The d,, effect causes a high strain in the fiber which is probably localized around the fiber
area only. However, the model assumes that the matrix and fiber actually have the same
strain in the 3-direction, causing significant stresses to build up to satisfy this condition.
This affects the 2-direction through the mechanical Poisson’s ratio, and contributes to the
effective d4,. A first order approximation for modeling this phenomena is to release the
matrix from the piezoceramic by treating the matrix as transversely isotropic (using the
equations developed for the piezoceramic throughout this paper) and setting its s,; (= s5,5)
to zero. This is equivalent to removing the stresses in the 3-direction that would otherwise
keep the strains in the two phases equal. The result is a marked change in the predicted 32
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strain-to-voltage constant, shewn by the dashed line in Figure 7.6, and hints at the trend
given by the experimental data. Smaller such trends were also seen in the Self Consistent
and Finite Element models (section 3.6, comparison), even when the matrix and fiber were
coupled in the 3 direction.

The figures for effective s¢i' and st show the experimental compliances higher
than those predicted by the model (Model 1). Typically, longitudinal properties are
expected to be in good agreement. A likely explanation for the discrepancy was a
difference between the stiffness of piezoceramic fibers and bulk ceramic. Model I assumes
bulk properties for the fiber in the discretized model. An investigation was carried out to
characterize the piezoceramic fibers, but due to the difficulty of the fineness and brittle
nature of the fibers has not been conclusive as of yet. However, initial results seem to
indicate that the fibers may be almost a factor of two less stiff than the bulk ceramic [82].
For the sake of comparison, the model prediction for such fiber properties are included,
and shown as Model 2. This provides much better agreement with the experimental

results.

7.4 Results for a Twist-Extension Coupled Laminate

This section describes the testing performed for the laminated structure
incorporating piezoelectric fiber composite actuators. Following the final manufacture, the
capacitance was measured and the dielectric constant was found to be 154. The width (X4)
and the thickness (X,) line fractions measured after manufacture were 0.78 and 0.84,
respectively. From this dielectric constant, and the measured value for X,, it was possible
to calculate an averaged value for X,, and use this to calculate all the composite properties.
This is the single most accurate method to evaluate the through-thickness line fraction (X3).
Small nonuniformities in thickness, sanding and fiber waviness, and the limitations on
measurement accuracy make it virtually impossible to measure the true X, for a mono-fiber
layer composite. Properties of the composite were predicted using the Closed Form
Combination Model derived in section 3.3.4, and are summarized in Table 7.1.

Table 7.1: Manufactured Laminate Properties

MEASURED CALCULATED
X X T X E d c T
; . TOR=R =t ve
£, i 3 i
0.78 0.84 154 0.86 0.43 0.80 3.53 0.125
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The experimental setup is shown in Figure 7.9. The [45, /05/~45, | laminate was
clamped at its base, and fitted with a laser target. The active plies were actuated quasi-
statically (0.005 F.z) to eliminate the majority of viscoelastic effects that may have been
present from the matrix material. Actuation was in-phase, with a 100 volt peak-to-peak
(0.5 kV/cm) triangular waveform. Tip displacements were measured using two laser
displacement sensors30, with 10 micron resolution. The differential outputs provided twist
information, and average outputs provided bending information. Using this information
and the laminate dimensions, the resulting twist and bending curvatures were calculated:
2(D,-D,) K = (D +Dy)/2

1= 2

Ke=2K, =
6 12 LW [

(26)

Measurements D and D, are the laser displacements, and L and W are the active
length and width shown in Figure 7.9. Comparison of the experimental curvature strains
with the CLPT model is given in Figure 7.10, where a single entire loop is shown.
Excellent agreement is seen for both curvatures. The small magnitude of K shows that
almost pure twist actuation was obtained. Deviation from the model is observed at higher
field levels, as nonlinear effects become more important. Viscoelastic properties of the

matrix material also play a role.
7.5 Sumaary

Chapter 7.0 described the experimental work carried out in the development of
piezoelectric fiber composites. This work served two main purposes. It provided
experimental values for the effective material parameters so that comparisons could be made
with the developed models. It also examined the experimental response of the first
laminated structure incorporating PFCs. Excellent agreement between the observed and the
predicted curvatures showed that Classical Laminated Plate Theory was a valuable tool in
examining these structures. This increased confidence also in the micro models from
which the effective material properties were based. Finally, these experiments showed the
feasibility of piezoelectric fiber composites for structural actuation.

30 LB-70/LB-11 Proximity Sensors, Keyence Corporation

167



168




8.0 Conclusions and Recommendations

This chapter highlights the conclusions generated from the development of
piezoelectric fiber composites for structural actuation. These conclusions draw from the
insights learned both at the material, and at the structural levels. The upcoming sections
follow the course of development that occurred in this study and this document,
progressing from modeling to manufacturing, and to the application of the material to
structures. The final section summarizes the accomplished work and makes

recommendations for future research in this area.

8.1 Micro Electromechanical Models

Several micro-electromechanical models were advanced for the prediction of
effective ply properties of a piezoelectric/matrix actuator material using a Uniform Fields
approach. These models include a fully coupled numerical combination model, and a
closed form combination model solution, the second of which lacked the induced stress
terms but compared very well to the first model in the material regimes considered. A
general methodology was also developed, so that materials of any connectivity could be
analyzed through individual cases. These cases could then be combined to give the
combination model for that material. In particular, these models were applied to the case of
piezoelectric fiber composites with the fibers oriented in the plane. Finally, a discretized
method was developed from this general approach which allowed for discretely varying
fields across the volume element. An additional benefit derived from the model is the
ability to model circular fibers, and adapt the scheme to approximate the actual experimental
composite geometry.

Two elasticity models were also developed that allow continuous field variations
within one or more material phases. The basis of the first of these elasticity models was
developed from first principles using equations of elasticity and electrostatics. The two
governing differential equations are shown to be coupled through the mechanical-electrical
coupling present in the piezoelectric material. Assumptions applied to the governing
equations led to the Self Consistent model which solved a boundary value problem to
calculate the effective material constants. An approximate elasticity solution of the fully
coupled equations was achieved by applying a Finite Element method.

Comparison of the five models provided excellent insight into the issues that
dominate the response of the PZT fibcr composite system. A high dielectric matrix system
with low stiffness, and a very high through-thickness fiber line fraction is necessary to
achieve substantial actuation. All of the models predict these trends, and compare very
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well. The Self Consistent method agrees extremely well with the Finite Element method,
especially for fiber volume fractions below 0.5. This is due primarily to the ability of these
models to allow varying field distributions. At higher volume fraction, the best comparison
with the Finite Element model is seen with the Discrete Uniform Fields model, which is
best able to capture the modeled geometry at maximum volume fractions.

8.2 Optimizing Matrix Materials

A study was undertaken to examine the possibilities of modifying the properties of
the ma‘rix material to better serve the needs of the PZT fiber composite system. The issues
of compliance and dielectric mismatch were discussed, and related to the goal of high
composite actuation capability. The objective became to develop a matrix of high dielectric
with compliance that remained low enough that the PZT fibers would not be significantly
clamped. To accomplish the increase in dielectric, a fine PZT particulate filler was added to
the epoxy. Predictions of increased dielectric and stiffness were made using simple
uncoupled models for particulate systems. A substantial increase in dielectric was
experimentally found, with the dielectric increasing 4-5 times over the pure epoxy for a
filler fraction of 35%. An increase in stiffness was also found, as predicted by the models.
A large difficulty arises from the unpredicted effects of particulate filler: serious
embrittlement, lowered flexural strength, and much higher viscosity. The cause of these
effects was attributed to interfacial phenomena at the filler-epoxy boundary, including
adsorbed water and poor surface bonding chemistry.

The effect of surface modifying agents on the effective properties was next
examined. A polymer dispersant was used as an agent to improve filler-matrix adhesion,
by replacing water at the interface. Electrical properties of the composite were found to
improves considerably, with the dielectric further increasing by 15-30% over the filler
systerr;' without dispersing agents. Little or no change was observed on the Young's
Modulus of the matrix. The chemical additive also allowed for a better dispersion of
particles, and reduced the incidence of aggregation into larger particle systems. An
improvement in viscosity was qualitatively observed, and would allow introduction of the
new matrix into the brittle fiber systems without damage. A final benefit of the agent was a
tremendous reduction in brittleness of the matrix material after cure.

8.3 Manufacturing and Materials

Several methods of manufacturing were investigated toward producing conformable
piezoelectric fiber composites. All of the methods used thus far involved hand lay-up of
single PZT fibers into a mold designed for the particular shape and size of the specimen.
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This is unlikely to change until the time comes when the technology exists for producing
continuous PZT fibers. Cure materials and procedures have also been standard throughout
the methods, and derive their origins from the curing of graphite/epoxy composite panels.
This includes the use of a mold top and vacuum during cure to provide specimen
uniformity and better compaction. The vacuum alsc helped reduce voids and remove
excess epoxy, which could be collected in the porous cure materials. These procedures
provided the specimens used for the effective property study.

As the manufacturing process became better understood, the techniques became
more advanced. An autoclave system provided a better control over the cure process and
allowed extra pressure on the composite, which was reeded after the addition of the
particulate-doped matrix. Different methods of electroding were also examined. The first
specimens were sanded, exposing the piezoelectric and providing ceramic connectivity
between the electrode faces. Electrodes were then deposited through a vapor deposition
process. This method worked well and provided high actuation capability for the
composites, and a maximum strain level comparable to that for monolithic PZT. Thin film
polyimide electrodes were also examined, and this process holds promise for the
advancement of PFC’s to integrated composite structures. Difficulties lie in adhesion to the
specimen at elevated temperatures, and the inability to pre-sand the specimens, thereby
reduced the actuation capability. Nonetheless, such materials may hold the key to advanced

manufacturing of piezoelectric fiber composites.

8.4 Mechanics of Anisotropic Actuation

The move to applications was undertaken to better understand the issues relating to
structures, and to test the concept of piezoelectric fiber composites as structural actuators.
This was accomplished through an investigation into the actuation of laminated structures
with anisotropic active materials, and provided a motivation toward using tailorable
anisotropic actuators such as PFCs. The study found that actuator anisotropy, which stems
from different in-plane stiffness or actuation properties, contributes to an actuator’s ability
to induce unequal in-plane stress loads. The presence of this anisotropy in actuators
enables shear stress to be induced for ply orientations not aligned with the principal ply
axes. The incorporation of several of these active plies into laminated structures introduces
the possibility of twist deformation in isotropic substructures. The predictions for this
study were easily and effectively modeled using an augmented Classical Laminated Plate
Theory which included actuator induced-stress terms, and the effective material properties
from the Uniform Fields models.
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A twist-extension coupled, antisymmetric laminate was chosen as an example for
the study of induced twist. Induced twist was described as a function of structure
thickness and actuator material anisot ‘opies. Comparison of four separate actuators
highlighted the fundamental difference between stiffness anisotropy and free-strain
anisotropy effects. Actuators that have a relatively low transverse stiffness, such as PFC
and DAP elements, are unable to induce large transverse loads without a substrate material
to provide the structural stiffness. Optimizing the twist actuation requires a particular
substrate-to-actuator thickness ratio. Actuators that have high transverse stiffness. such as
the IDE and UDA, do not require substrate materials to induce high levels of twisi.. High
levels of free-strain anisotropy enhance the twist actuation in these cases. Actuators that
have very high stiffness anisotropy, such as DAP elements, would not benefit from added
free-strain anisotropy. PFC’s have the additional freedom of tailoring material geometry so
that the optimum levels of anisotropy may be used for a particular set of material properties.

In order to demonstrate twist actuation in isotropic substrates, a [45, /05/~45, ]
laminate was manufactured and tested. This laminate incorporated PFC actuators to induce
the actuation loads. Excellent agreement was found between the experimental response and
the response predicted through the CLPT model. The results show the feasibility of
modeling PFC laminates with laminated plate theory, and further demonstrates the
opportunities for anisotropic actuation using this new type of actuator.

8.5 Summary and Recommendaticns

This thesis has described the work undertaken toward the goal of large scale
structural actuation and sensing using piezoelectric fiber reinforced composite plies. The
subtasks identified in this study, composite property predictions and manufacturing
technology development, have been carried out in order to meet this goal. Modeling of
composites through micro electromechanical approaches has been well established, and the
mechanics of these composites are now understood. These models are able to make
reliable predictions for the effective mechanical, electrical, and coupled composite
properties, and highlight the predominant effects that contribute to increased actuation
capability. A means for piezoelectric fiber composites manufacturing was also developed,
based on an extension of knowledge learned through graphite/epoxy composite
manufacturing. These techniques have been advanced so that mono-fiber layer composites
may be manufactured for the experimental characterization of composite properties and for
initial use in laminated active structures.

The future directions will involve improvements aimed at the material level and at
the structural level. Increased actuation performance will be the focus of the material level
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investigations. Improvements should be made in the manufacturing process that will allow
consistent composite quality with higher actuation. This will involve a better understanding
of cure kinetics to optiniize temperature, time, and pressure for increased compaction and
higher through thickness fiber fractions. Further optimization of the matrix should also be
pursued with the goal of high.r dielectric and lower viscosity in mind. This may be
possible by investigating other surface modifying agents for a better match with the present
filler/epoxy system. An substantial improvement in dielectric may be achieved by an
application of electrophoresis techniques to the manufacturing methods. In this way, it
may be possible to create high dielectric pathways between the electrodes and the fibers,
more uniformly distributing the electric field lines.

Future work will also continue to impirove piezoelectric fiber composites toward
structural applications. The present work has shown that high twist actuation is achieved in
thin structures with transversely stiff actuators, whereas high actuation capabilities discern
the actuators used with thicker structures. Interdigitated electrode piezoceramics have these
characteristics and demonstrate good twist actuation throughout the range of structure sizes.
However, issues of conformability, reliability, and the benefit of tailoring still point to
piezoelectric fiber composites as an attractive alternative to monolithic ceramics. The next
step will be to combine these two technologies. The use of etched copper/Kapton
electrodes will permit interdigitated electrodes on piezoelectric fiber composites. This new
approach, in conjunction with improved matrix material properties, has the potential to
make piezoelectric fiber composite actuators extremely advantageous for structural control

applications.
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Appendix A: Nomenclature

The folowing nomenclature is used throughout this manuscript:

s,.f ijth piezoceramic compliance, short circuit condition

d; ijth piezoceramic voltage-to-strain coeficient

8,.,T. ijth piezoceramic dielectric, constant stress conditions

8; ijth matrix compliance

£; ij'h matrix dielectric

\Y ith direction material strains

T, ith direction material stress

D, i% direction electrical displacement

E, ith direction electric field

p piezoceramic material phase superscript

m matrix material phase superscript

v/ volume fraction of piezoceramic in i'* direction

A superscript for fully coupled case A material combination
B superscript for fully coupled case B material combination
A superscript for closed form case A material combination
B superscript for closed form case B material combination
A reorganized matrix of constitutive constants for case A

B reorganized matrix of constitutive constants for case B
eff  superscript for closed form combination model

Note that ‘p’ and ‘f” are used interchangeably for the piezoceramic (fiber) phase
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Appendix B: Uniform Fields Formulations

The terms of the reorganized constitutive equations for Case A (equation 3.9) are as follows:

E.T 2
$11€x3 — dy

E  Ev T ,.E 3 3
(51, = 5 N(—€5(sp, +s|b|)+ 2d;1)

ay =

T 2
35833 - d;,

a, =
(55 = S5 (—€n (s + s5) +2d2)
E_.T
a, = $13€3 — dydys
E_E T, E . E 2
(813 = $1))(=&53(sp5 + 57) + 2d;)
E , .E E
a, = ds, 5 = —dyy(8), +87,) +2dy5;
T, .E . E 2 T, E . E )
—&3,(8); +9,) +2d;, —E33(8), +5,,) + 245,
E E 2 E .T E2_T E
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E, E
a44=L ass = —(S|2+S”)
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The terms of the reorganized constitutive equations for Case B (equation 3.24) are as follows:
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The remaining effective property terms for the fully coupled case B combination of piezoceramn

B = folfiof s + fiafas) + fo(fiifan = f3) + Fon(fiifon + fiofia)
2 (fnfas"flza)
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where, for the b; given above:
[y =vibl + Vb
Appendix C: Seif Consistent Fields Formulations

The terms of the A and D matrices from equation 3.126 are as follows:
Ay =X,BT -Bh+Bl +Bl A =XoB Bk +BlL +Bn Ay =Bls+Bs
Ay ==XBl+BB +B1 —Bl, Ap =XBl} ~BB+Bl~Ba Ay =PBis B

Ay = Blfﬁ Ap = B{e. Ay =—XBg + Bgs
Ay = 2X.Bi‘l - 25;‘5 - Bga Ay = '"Blf4
Ag = B{‘t | Ass =X "‘[324

2B7] 2B
D, =2 -Bf-pf D, ==FL p, =—FL
n =28 =B, —Bs 21 I-v, 21 —v,

D,, =—B£ +Btf) D,, = (I—Xl)Bﬁ Dy =—(1 —XI)BIH:

2 m
D, = ‘ﬁi Dy, = —_l 13‘1,4
f

The effective material constants may be expressed in terms of the C matrix in equation 3.128, t
strain material constants, and the fiber volume fraction:

Bﬁ" =X,C, +X3Cy +B7 E“ = X;3C) + X,Cy, +B7
% = X3Cip +X4Cx 75 =X4Cip +X3Cp
ﬁf =X4Cp3 + X;3C + X5 fg = X;Cp3 + X,Cyy — X3 +B12

gfzf =X;3Cy + X,Cy + X

B = v (Cy,BE + CyoBf + CyoB) + Cia (XBy' + XoBy) + Con (X5B7 + X4Bp')
5 = ve(C, B} — CpiBy — C3iBe) + Cyy (=X By — XoBy)

+Cy (=XB7 — XeBp ) + Bfi"r +Bg (1-v¢)
where
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(1-v;)} T -y,

vr(vf +4v; -i-3)B

v;(3v} +5)[3 _ 2v} +3v? +2vi+1,m
(I=ve)? "

_ vf(2v§ +3v; —4) X. = Ve(ve +2)
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Appendix D: FEM Analysis File

/COM,ANSYS REVISION 4.4 UP437 A125 15.1614 8/11/1993
/COM  FILE: PFCal8.dat

/COM Last Revision: Dec. 27, 1993

/prep7

/show,x11

/PNUM,KPOI,1

/PNUM,LINE, 1

/PNUM,AREA, |

/PNUM,VOLU,1

/TITLE,Piezoelectric Fiber Composite

KAN,0

KAY,10,1

ET,1,98

/COM

/COM * Fiber - Full 3D properties

/COM

c11=79.4e9

cl2=32.4e9 * (All c's used only for matrix defn)
c44=23.5e9 * NOTE: Ansys has c44 what should be c66
K33T=3400 * (K33T - not used except for matrix defn)
NL,1,271,127e9,80.2e9,84.7¢9

NL,1,277,127e9,84.7€9

NL,1,282,117e9

NL,1,286,23.5¢9

NL,1,289,23e9

NL,1,291,23e9

NL,1,145,-6.5,-6.5,23.3

NL,1,103,15e-9 * (K11S=1700)

NL,1,157,15e-9

NL,1,211,13e-9 * (K33S=1470)

NL,1,138,17.0

NL,1,143,17.0

/COM

/COM * Matrix

/COM
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Re=100 * Dielectric Ratio
Rc=20 * Stiffness Ratio
cllm=cl1/Rc

cl2m=cl12/Rc

c66m=c44/Rc

K33m=K33T/Re*8.85¢e-12

NL,2,103,K33m

NL,2,157,K33m

NL,2,211,K33m

NL,2,271,cllm,c12m,cl12m
NL,2,277,cl1m,c12m

NL,2,282,cl11m

NL,2,286,c66m

NL,2,289,c66m

NL,2,291,c66m
NL,2,145,-0.0000065,-0.0000065,0.0000233 * Tiny matrix piezoelectric const
NL,2,138,0.000017

NL,2,143,0.000017

Xf=0.98 * Line Fraction of Fiber
E3=100 * Electric Field (volts/mil)
V3=(E3/25.4*%1e6) * Voltage across 1 m thickness
dep=0.10 * Depth of Model
Ax=1%]

Ay=dep*1

Az=dep*1

K,1 * Keypoints

K,2, Xf

K.,3,,1

K.4,1,0.5

K,5,1,1

K,6,,0.5,1

K,7,,0,1

K.,8,Xf

KGEN,2,1,8,,-dep

A,1,2,109

VROTAT,I,,.,,,1,9,-90,4 * Volumes
VATT,I1,,1

v,2,3,4,17,10,11,12,18

v,17,4,5,19,18,12,13,20
v,19,5,6,21,20,13,14,22
V,21,6,7,23,22,14,15,24

VLSEL,VOLU,5,8

VATT,2,,1

VLALL

KDVS,ALL,0.2 * Element Size Specs
KDVS,6,0.15
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KDVS,14,0.15

KDVS,7,0.1

KDVS§,15,0.1

/COM KDVS,19,0.15

/COM KDVS,20,0.15

/COM KDVS,23,0.1

/COM KDVS,24,0.1

LDVA

VMESH,1,8 * Mesh

CPSIZE,398

NSEL,Z,C * Select nodes for wavefront reordering
WSTART,ALL

WAVES

/COM

/COM Load Case #1 Boundary Conditions and Loading - Apply E Field
/COM

NSEL,Z,0 * Apply ground electrode electrical BC
NT,ALL,VOLT,0

NSEL,Z,1 * Apply top electrode electrical BC
NT,ALL,VOLT,V3

CP,3,UZ,ALL * Couple top face nodes in Z

NSEL,X,0 * Couple front face nodes in X
CP,1,UX,ALL

*GET,N1,NMIN

NSEL,Y,1 * Couple right face nodes in Y

/COM CP,2,UY,ALL

*GET,N2,NMIN

NSEL,X,-dep * Apply symmetry to back face nodes in X
SYMBC,0,1,ALL

NSEL,Y,0 * Apply symmetry to left face nodes in Y
SYMBC,0,2,ALL

NSEL,Z,0 * Apply symmetry to bottom face nodes in Z
SYMBC,0,3,ALL

NALL

LWRITE

/COM

/COM  Load Case #2 Boundary Conditions and Loading - Apply Ux Displ
/COM

D,N1,UX,0.01 * Apply front face displacement Ux
NSEL,Z,1,0

NT,ALL,VOLT,0 * Apply Short-Circuit Conditions

NALL

LWRITE

/COM

/COM Load Case #3 Boundary Conditions and Loading - Apply Uy Displ
/COM
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DDELEN1,UX
NALL
NSEL,Y,1
CP,2,UY,ALL
D,N2,UY,0.1
NALL
LWRITE
AFWRITE
FINISH
/COM
/INPUT,27
FINISH
/COM
/POST1
NFILE

/COM
SET,1,3
NSEL,Z,1
FSUM

* Remove front face displacement Ux

* Apply right face displacement Uy

*** Solution Phase ***

*** Post Process ***

*** First Loadcase ***

*GET,chgl FSUM,AMPS

NALL
*GET,ux1,UX,N1
*GET,uyl,UY,N2
/COM

SET,2,3
*GET,ux2,UX,N1
NSEL,X,0

FSUM
*GET,fx2,FSUM,FX
Tx=fx2/Ax
*GET,uy2,UY,N2
/COM

SET,3,3
*GET,ux3,UX,N1
NSEL,Y,1

FSUM
*GET,fy3,FSUM,FY
Ty=fy3/Ay
*GET,uy3,UY,N2
/OUTPUT,Const
K33=chgl1/Az/V3
d31=ux1/dep/V3
d32=uy1/V3
s11=ux2/dep/Tx
sl2a=uy2/1/Tx
s12b=(ux3/dep)/Ty

*** Second Loadcase ***

*** Third Loadcase ***
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$22=(uy3/1)/Ty
/OUTPUT
/SHOW Plots,, |
/VUP,1,Z
/VIEW,1,2,2,1
/TYPE,1 4
NALL

SET,1,3
/CONTOUR,1, AUTO
/CLABEL,1,-1
PLNSTR,VOLT
PLNSTR,SIGE,0
FINISH

*** Plotting ***
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