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Abstract

The biological processes that sustain a complex organism require the orchestrated dynamics of
complex cellular ensembles. Several vital systems - such as the immune system, the digestive
system and more - must process internal and external signals to maintain functional homeostasis
in response to perturbations at the systems-level. To further understand how groups of cells
collectively respond to perturbations, we have applied single-cell RNA-sequencing and
complementary techniques to explore cellular behaviors within complex systems at multiple
relevant biological scales: from within a single organ, to an organ system, to across several human
individuals with differing genetic backgrounds linked by a shared phenotype.

More specifically, at the level of the organ, we have explored acute injury responses in the liver.
We have identified and described a new compensatory phase of the liver response to injury, in
which surviving hepatocytes upregulate their expression of critical liver function genes to maintain
overall organ function. Next, we extended our approach from a focus on an acute injury targeting
a single organ to exploring chronic damage resulting from a long-term high fat diet across multiple
gastrointestinal and immune compartments. Our analysis revealed molecular pathways and
changes in stem gene expression which may contribute to obesity-related disease. Finally, we
characterized shared features across multiple unique human donors with a common phenotype,
elite control of HIV-1. We identified and validated a subset of highly functional dendritic cells, and
developed broadly applicable computational approaches to identify reproducible responses
across donors and to nominate candidate targets for rationally modulating the system. Overall,
our work demonstrates the utility of single-cell RNA-sequencing for uncovering important cellular
phenotypes that inform systems-level responses at any biological scale.
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Lay Summary

Complex organisms, such has humans and mice, are made up of trillions of cells. These cells can
be further categorized into many types and subtypes (immune cells, intestine cells etc.) which
work together to perform the critical functions which support life. Additionally, these cells must
respond to challenges, such as infection or injury, and work together to maintain the function the
organs and systems that they make up in spite of stressors. To better understand how individual
cell responses contribute to larger system or organ response to changes, we use single-cell RNA-
sequencing, which tells us which genes a particular cell is activating. We have profiled responses
of single cells from a single organ, the liver; from multiple related digestive organs; and immune
cells from people with highly effective immune responses to infection.

In the liver, we explore how liver cells respond to liver injury. The liver has extraordinary
regenerative ability, unlike any other organ. The liver is able to fully regenerate itself to 100% its
original size, even after surgical removal of 70% or more of the original liver mass. To learn more
about liver regeneration, we sequenced liver cells after liver injury in a mouse model. We used
two liver injury models: the partial hepatectomy, surgical removal of 70% of the liver mass; and
acetaminophen (the active ingredient in Tylenol) overdose, in which toxicity from the excess
medicine damages cells in specific areas of the liver. We learned that shortly following liver injury,
the remaining liver cells increase their functional output to make up for the work that was
previously done by the liver cells that were killed in the injury. In doing so, the overall function of
the liver as a whole stays about the same as it was before the injury. About 30-36 hours after
injury, the cells in the liver divide to return the liver to its original size. We found that the liver
function output of the individual liver cells that divide is not as high as the liver cells that are not
actively dividing. This suggests a division of labor between hepatocytes that increase their output
to maintain liver organ function, and hepatocytes that direct their output toward cell division to
restore liver size. Finally, we identify proteins secreted from macrophages, a type of immune cell
in the liver, which serve to support the liver cell responses.

We then expand our scope from exploring responses within a single organ to profiling multiple
digestive organs which are all affected by a particular challenge: long term high fat diet. Obesity
is linked to increased risk for many types of disease, including fatty liver and liver cirrhosis, and
inflammation and cancer in the liver and intestines. We maintained mice on high fat diet which
induces obesity for six months, then sequenced cells from the liver, small intestine, large intestine
and immune sites. The high fat diet livers and intestines contained more immune cells and
inflammation, which is known contribute to development of disease in these organs. We identify
molecules which activate pathways in the high fat diet mice that may trigger changes that lead to
disease. In the liver, the population of cells which activate stem cell programs is much higher than
in the control diet. These stem-like cells are primed to grow and may develop into cancer over
time. Additional work may compare immune cells in the liver, intestines and blood and explore
whether these cells may travel between these different areas and facilitate communication
between organs.

Finally, we identify and characterize a subgroup of immune cells that contributes to a highly
effective immune response. In a tiny minority (-0.5%) of people infected with HIV known as elite
controllers, the immune system is able to control the virus, maintaining undetectable levels of
virus in the blood and preventing progression to AIDS, even without antiviral drugs. By learning
more about how the immune system is able to control virus in these rare cases, we may find
avenues to develop new treatments or vaccines. We sequenced a particular type of immune cell,
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known as dendritic cells, from elite controllers. We found that a subgroup of these cells activated
many antiviral pathways. We then devised a way to collect this subgroup of highly functional
dendritic cells to learn more about them. The subgroup of highly functional dendritic cells was
better able to stimulate other immune cells to multiply and fight viral infection than other dendritic
cells not from this subgroup. We found that the highly functional dendritic cells were more
abundant in elite controllers than donors who were not elite controllers. We identified a way to
stimulate dendritic cells in the lab to make more of the highly functional dendritic cells. Our
methods for identifying ways to stimulate cells to be more functional may be therapeutically useful.

Overall, our work demonstrates the utility of single-cell RNA-sequencing for uncovering important
cellular behaviors that contribute to organ- and systems-level responses.
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Chapter 1: Introduction

Proper function of the many biological processes which sustain a complex organism requires the

orchestrated dynamics of complex cellular ensembles. The ability to maintain these functions is

founded upon interactions between the many cell types that comprise vital organs and systems

and their coordinated responses to perturbations. In some cases, these cellular responses to

stimuli may be beneficial (e.g. productive immune responses to pathogens or cancer; recovery

from injury), while in other cases, a response may be inappropriate or go unchecked, ultimately

becoming detrimental to the health of the organism (e.g. development of cancer resistance to

drugs; autoimmune responses). Rapid development of single-cell RNA sequencing technologies

enabling higher throughputs for exploration of many thousands of cells has facilitated

advancements in our understanding of cellular responses. While much wok has been done to

map the cell populations in tissues, organs and even whole organisms in health and disease and

to characterize cellular responses to wide variety of stimuli, much more work remains to be done.

To further understand how groups of cells respond to perturbations, we profile cell populations at

the single cell level to explore how behaviors of distinct subgroups of cells within a heterogeneous

mixture functionally contribute to the system-level response. In the following chapters, we will

cellular explore responses within systems of increasing biological scale: acute injury in a single

organ, the liver; chronic metabolic stress across an organ system, multiple gastrointestinal organs

and immune compartments; and across multiple human individuals with differing genetic

backgrounds and a shared phenotype, elite control of HIV.
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1.1 Opportunities in single-cell RNA sequencing

Over the past several decades, substantial work has been done to catalog the cell types, states,

and interactions that inform systems-level response behaviors'-6. However, more recent studies

have shown that even seemingly identical cell populations can exhibit significant and functionally

important heterogeneities7'-1. While this degree of diversity challenges our understanding of how

systems-level responses are structured, it also presents new opportunities to deepen our

understanding of cellular responses to stimuli with an eye toward realizing strategies to modulate

cellular composition and cell interactions toward a more desirable overall response.

Rapid development of scRNA-Seq approaches over the last decade has positioned this technique

to make major contributions in advancing our understanding of cell types and responses. Other

single cell techniques, such as FACS and smFISH, are limited in the number of genes or proteins

that can be profiled in a single experiment. Population methods, such as bulk RNA Seq, may

mask signals from functionally distinct subpopulations even within a seemingly homogenous

population. While many techniques can only find what the experiment was designed to specifically

look for, unbiased scRNA-Seq can lend surprising new insights. scRNA-Seq approaches have

made possible, for the first time, an unbiased view of expression of all mRNAs over large numbers

of individual cells. This type of data enables identification of unique subpopulations of cells within

the larger population and unexpected transcriptional responses. Further, by examining each

single cell individually, we can uncover important, novel subtypes and response groups of cells.

This opens up exciting new opportunities to explore the cellular make-up of organs and

organisms, reviewed in Chapter 2, and the responses of different cell groups to a perturbation,

which will be the main focus of this work. In deepening our understanding of the cellular behaviors
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that constitute the overall response to a stimulation, such as infection or injury, and the molecular

drivers of these responses, we will develop a more comprehensive picture of how organisms

respond to stressors and rationally identify targets to modulate this response for therapeutic

effect.

1.2 Responses across biological scale

Profiling the relevant cells is essential to understanding cellular responses to perturbations, but

the relevant scale on which these responses occur varies for different systems and stimulations.

In studies regarding highly localized responses the relevant biological scale may be on the order

of a single tissue or organ, while other types of perturbations may impart a larger systemic effect

spanning multiple organs, necessitating profiling cells over a greater biological scale, such as a

system of related organs.

In work on clinical human samples, it is often necessary to consider an even larger biological

scale: characterizing a phenotype which spans across many unique individuals who are also

affected by many other unrelated underlying factors. Compared to model organisms, variation in

human donors is highly uncontrolled - age, sex, race/ethnicity, socioeconomic staus, diet,

lifestyle, BMI, other health conditions, (co)infections and genetic background can all significantly

impact observations in human cohorts. While it is possible to control for some of this variation by

carefully selecting whom to enroll in a study, limitations on what patients and samples become

available for research mean that screening on more than a few variables will likely not leave

enough participants eligible. Further, in humans, access to cells of interest presents a significant

challenge. These studies must often make use of whatever samples are easily obtained (e.g.

peripheral blood) or clinically indicated biopsies and resections, while work with animal models
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Figure 1-11 Increasing biological scale: Single organ, organ system, multiple genetically
unique individuals.
Single cells respond to perturbations, generating responses which must be assessed at the
relevant biological scale. Hepatocytes respond to acute injury in the liver (left). Long-term
consumption of a high fat diet can damage many gastrointestinal organs. We explore the
responses of many cell types from many organs and compare high fat diet to control diet
conditions (center). Dendritic cells from HIV-1 elite controllers (ECs) respond to viral
stimulation in vitro. To more fully understand how DC responses may contribute to EC
phenotype, we profile DCs from multiple ECs and identify reproducible responses, which are
characteristic of the phenotype rather than unique to an individual donor(right).

can readily access cells from any compartment using whatever techniques are available. When

using clonal model organisms under tightly controlled conditions, each organism under a given

treatment condition may be considered a biological replicate; however, in human studies many

uncontrolled factors can contribute to differences even between two relatively similar human

donors. Despite these difficulties, the direct relevance of human samples sustains their continued

appeal. To contend with the challenges associated with variation across multiple human donors

with different genetic backgrounds and health histories, we can use scRNA-Seq data analysis to

identify shared, reproducible responses that contribute to a group of donors' unifying phenotype.
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1.3 Contributions of this work

As appropriate for the system and perturbation of study, we can apply scRNA-Seq methods to

explore cellular responses at varied biological scales. In this work, we explore responses across

different biological scales: from responses largely restricted to one relevant organ, to responses

characterized across human individuals with different genetic backgrounds, histories, lifestyles,

united by a shared phenotype of interest. With the application of scRNA-Seq methods and a suite

of complementary validation techniques, we explore the responses of groups of single cells to

acute, chronic perturbations and phenotypes, and how these cellular behaviors contribute to the

overall systemic response.

In the next chapter, we provide background on the single cell sequencing field. We describe rapid

development and scaling of scRNA-Seq over the last decade, and the benefits and drawbacks of

various techniques. Development of higher-throughput methods have made evermore ambitious

projects possible. We summarize the major efforts in the field to build "cell atlases" to catalog all

cell types present at baseline and to characterize cellular responses to perturbations. We also

explore the limitations and potential pitfalls of scRNA-Seq experiments and data analysis and

approaches to mitigate these concerns.

In Chapters 3, 4 and 5, we apply scRNA-Seq to address biological questions, first directing our

efforts to a localized, acute response - acute liver injury in Chapter 3. The liver possesses a

fascinating, unparalleled ability to regenerate itself following injury. To better understand this

ability, we apply scRNA-Seq methods to characterize responses to classic injury models within

the liver organ at greater resolution and scope than previously achieved. We compare and

contrast compensatory behaviors of hepatocytes in a toxin-induced and surgically-induced injury

model, uncovering many shared features. In both toxin- and surgically-induced injury models,

hepatocyte survivors upregulate liver function gene expression to compensate for functional
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output from hepatocytes lost to injury. Additionally, we characterize the proliferating hepatocytes,

which contribute to cellular and organ recovery. Our work contributes new insight into how a

particular cell type, the hepatocyte, responds to and recovers from an injury perturbation.

In Chapter 6, we expand the scope of our work to more cell types and more organs to study the

effect of a high fat diet on the gastrointestinal and immune system. In contrast to the acute liver

injury study, in which cells respond to injury in a beneficial, restorative way, cellular responses to

the chronic insult of a high fat diet are detrimental to overall system function and organism health

and survival. Mice on a high fat diet can spontaneously develop liver problems - fatty liver,

steatohepatitis, cirrhosis and hepatocellular carcinoma - and intestinal problems including

inflammation and cancer12 . To better understand these responses and to uncover potential

molecular drivers, we apply scRNA-Seq to multiple compartments involved in responding to high

fat diet: liver hepatocytes, liver non-parenchymal cells, proximal small intestine, distal small

intestine, colon, spleen, bone marrow, and peripheral blood. In doing so, we identify cell circuits

and pathways involved in high fat diet response, and identify candidate targets for therapeutic

interventions.

Next, we extend our work from model organisms to humans in search of key cellular and

molecular responses that contribute to a shared phenotype across different donors, thus

expanding our biological scale to span genetically distinct individuals. We study the immune

response to virus in dendritic cells from HIV elite controllers (ECs), a rare subset of the population

which is able to control HIV infection without antiretroviral therapy. By increasing our

understanding of how the EC immune system is able to control the virus, we may realize pathways

to target for HIV therapies or vaccines. Because humans are necessarily less controlled than

mice, with different genetic backgrounds and life histories, we must focus on shared immune

responses of interest, and develop ways to computationally extract these shared features of
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response which are characteristic of the phenotype rather than donor-to-donor variation. We

develop a broadly applicable rational framework for identifying shared responses, isolating cell

subgroups of interest, and nominating candidate targets for system modulation.

In the final chapter, we explore the possibilities for future work. Future studies will expand upon

this work and take on new challenges. Our work described here has made contributions to the

field of liver biology, deepened our understanding of the effects of a high fat diet, developed

methods for identifying uniting characteristics within a phenotype, and applied scRNA-Seq

methods to new problems. With modern high-throughput scRNA-Seq techniques, future studies

will be well-equipped to expand the biological scale of their work to explore all relevant tissues,

as we have done in Chapter 4, rather than focusing on a specific site out of method limitations.

While all of the data presented in Chapters 2, 3 and 4 was collected from male mice or male

human donors, females are known to have differing susceptibility to many types of disease,

especially in the liver13. Future studies could build complementary female datasets to explore the

molecular underpinning of these differences, and Appendix A summarizes some pilot work in this

direction. Evolving computational approaches for data analysis, like the one put forth here in

Chapter 5 will serve to identify meaningful, reproducible responses across donors and nominate

targets for rational modulation of systems in future work. To address emerging challenges

presented in datasets featuring more comprehensive sampling, new ways of integrating

information over multiple tissues and identifying cross-talk signals must be realized. In another

vein, future use of cross-species studies to combine the ease and control of mouse experiments

with the relevance of clinical human samples may yield powerful new results. For example, as a

follow-up to the high fat diet work presented in Chapter 4, a disease trajectory could be built

across multiple time points, capturing all phases of chronic disease development in a mouse

system while clinical human data could be mapped onto it to confirm the relevance of mouse data

and better contextualize human data. More computational tools will be required to effectively
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engage in making these cross-species comparisons, accounting for conserved and non-

conserved elements of key genes, cell types, cell behaviors and pathways.

Single-cell RNA sequencing methods have made great strides in increasing throughput while

analysis methods have developed to handle larger datasets and new problems over the last

decade. The scRNA-Seq field has made and received significant contributions to and from many

wide range of biological, technology development and computational fields as it has evolved.

Numerous studies have shown the utility and power of including scRNA-Seq in their experimental

design1 4-16. Now we can leverage these powerful techniques to learn more about many diverse

systems than was ever possible before.
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Chapter 2: Developments in single-cell RNA

sequencing

Single-cell RNA sequencing (scRNA-Seq) has enabled exciting new insights into cellular diversity

and has demonstrated that functional diversity, even within seemingly homogenous cell

populations, can drive responses to perturbations. Technology for scRNA-Seq has developed

rapidly over the last decade, bringing about amazing new opportunities and challenges. In this

chapter we consider the utility of single-cell RNA sequencing and the development and rapid

scaling of scRNA-Seq methods, leading to the massively parallel, whole transcriptome methods

popular today and detail the factors to weigh when selecting which of many current scRNA-Seq

methods to use in a new experiment. We highlight some of the important work to build cell atlases

as valuable maps of the cellular landscape. Additionally, we discuss how scRNA-Seq can be

applied to understand cellular responses to perturbations, highlighting a few studies which take

this approach. Finally, we discuss the limitations of scRNA-Seq methods and data analysis and

some approaches to address these shortcomings. While far from exhaustive, this brief review

provides an overview of some of the recent contributions and current work in the scRNA-Seq field

and discusses some of the exciting questions and challenges that remain.
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2.1 Utility of single-cell RNA sequencing in profiling systems-level response behaviors

Proper system function requires coordinated behaviors between many different cells. Over the

past several decades, substantial strides have been made in cataloging the cell types and

interactions that drive these behaviors. However, recent work has shown that even seemingly

identical cells can exhibit significant heterogeneity with important functional consequences,

challenging our current cell classification schemes as well as our understanding of how ensemble

dynamics are truly structured. Clearly, identifying the basic cell subsets and responses and their

molecular drivers is essential for understanding and therapeutically manipulating how cellular

systems responds to stimuli.

Fortuitously, the emergence of single-cell RNA-sequencing (scRNA-Seq) now enables profiling

of the individual cells comprising a system of interest at a resolution and scope not previously

possible, facilitating a more detailed picture of how individual cells and groups of cell contribute

to function. scRNA-Seq techniques allows us to profile, genome-wide, the transcriptomes of

individual cells and identify, from first principles, cell types and states that population methods

may mask. In doing so, we may identify previously unappreciated subgroups of cells and uncover

their functional contributions to the overall system. Many other techniques require the

experimentalist to select genes or proteins to profile individually, thereby limiting the scope of

what can be discovered to what the experiment is initially designed to profile. In contrast, scRNA-

Seq provides an unbiased look at all the mRNAs expressed within a single cell, enabling us to

discover surprising expression programs and transcriptional responses we would not have

thought to explore based only on prior knowledge. Moreover, scRNA-Seq can be used to examine

complex mixtures of cells and some techniques are compatible with low sample inputs, making

scRNA-Seq ideal for studying isolates which contain complex mixtures of cell types or rare cell

types (e.g. immune populations and rare proliferative/stem cells). As such, scRNA-Seq gives us
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an exciting new lens through which to catalog the cellular composition of organs, organ systems

and organisms, and to explore system function and dysfunction in health and disease.

We want not only to identify functionally distinct subpopulations of cells, but also to discover

molecular pathways which drive the arising of cell groups and responses. In addition to identifying

unique cell groups and the gene expression patterns that define them, further exploration of

scRNA-Seq data through Gene Set (Enrichment) Analysis (GSA) can make use of existing

biological knowledge in analysis of scRNA-Seq expression data9. The comparative analysis

between a new scRNA-Seq data set and existing publicly available datasets can lead to deeper

insights. For example, GSA can identify pathways and upstream drivers which contribute to the

cellular circuits activated under a particular condition. Several programs, such as Qiagen's

Ingenuity Pathway Analysis (IPA), and the Broad Institute's Gene Set Enrichment Analysis

(GSEA) calculate overlaps between a set of differentially expressed genes that define a cell group

of interest in a scRNA-Seq analysis and a collection of reference gene sets. A significant degree

of overlap between the differentially expressed gene set and the reference gene set indicates that

similar pathways, responses or upstream drivers may be active in both the cell group of interest

in the sequencing data set and the reference experiment9. For example, a significant enrichment

between a particular group of immune cells and a reference gene set of genes activated by

interferon gamma would suggest that that particular group of immune cells may be responding to

interferon gamma. A large collection of reference gene sets is publicly available in the Broad's

Molecular Signatures Database (MSigDB) 0 . These and other reference gene sets may come

from gene expression patterns observed in previous studies, curation from the literature, gene

ontology, or user-generated sets to specifically interrogate responses to a collection of stimuli in

a particular cell type9. Beyond using reference gene sets to identify pathways and responses at

play in a group of cells, by focusing on upstream drivers of these pathways, we can nominate
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potential routes to rational modulation of the system. By drugging to inhibit or stimulating to

activate the upstream regulator, we may respectively up- or down-regulate a pathway that

contributes to a given cellular response, thereby engineering the system to behave more in the

direction of our choosing. In identifying and validating candidates for system modulation, we may

identify targets for therapeutic intervention.

2.2 Increasing the throughput of scRNA-Seq techniques

Application of scRNA-Seq to many systems has led to many new exciting insights, and, in most

cases, more cells means a more detailed, comprehensive view of the system and more statistical

power to draw conclusions. In response to need for more cells and better data, scaling of scRNA-

Seq has risen sharply over the last decade7 (Figure 2-1). The throughput and scope of scRNA-

Seq methods has increased exponentially from only a few genes in a single cell in the earliest

experiments", to today's massively parallel methods capable of profiling the whole

transcriptomes of thousands of cells in parallel' 12 , enabling ever more detailed surveys of the

functional heterogeneity of complex populations of cells.
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Figure 2-11 Increasing throughput of scRNA-Seq techniques
Adapted from Svensson et.aL. 20187
Number of cells in selected scRNA-Seq publications versus time. As new higher-throughput
protocols have been developed, studies sequencing increasing numbers of cells have become
possible. Studies introducing key technologies are indicated.
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To increase the gene coverage of single cell sequencing techniques beyond the handful of genes

profiled in the earliest work", Tang et. al. applied next generation sequencing technology to

profiling the transcriptomes of a single cell and obtained sequence information for 75% more

genes than the microarray techniques popular at the time13 . Building upon use of next generation

sequencing to capture large numbers of genes, subsequent scRNA-Seq technology development

sought improvements over the manual cell capture method used in earlier techniques, with the

goal of improving capture efficiency and overall cell number. Plate-based methods were designed

to generate sequencing libraries from single cells isolated by fluorescence-activated cell sorting

(FACS) cells into multiwell plates. Flow panels for sorting cell types, especially immune

subsets, had already been established for isolation of many targeted cell types, making plate-

based methods an appealing scRNA-Seq technique for many biologists interested in further

defining functional heterogeneity within the cell types already distinguished with FACS

methods.
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One widely adopted plate-based method, SMART-Seq2, initiates reverse transcription with a

poly-T oligonucleotide designed to capture poly-A mRNAs 2'14(Figure 2-2). This oligonucleotide

also contains a universal priming sequence, the SMART primer, which will later serve as a
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handle for PCR. This method minimizes 3' bias by using a template-switching reaction at the

5' end to anneal the SMART primer at that end for PCR amplification such that only fully reverse

transcribed mRNAs can be amplified. It also uses the same SMART priming sequence for both

the forward and reverse reaction PCR directions, minimizing PCR artifacts from different primer

affinities and hairpinning undesirable short templates. Other plate-based methods have also

been developed, such as MARS-Seq which uses an in vitro transcription approach 5 .

Commercial development of scRNA-Seq methods by Fluidigm produced the C1 system in 2012,

which uses microfluidics to capture up to 96 single cells in tiny chambers. However, in many

cases only a fraction of the chambers will successfully capture a cell7 . Subsequent techniques

further improved upon applications of microfluidics to capture cells.

In the In-Drop and Drop-Seq methods, individual cells are isolated in tiny droplets. A stream

containing mRNA-capture beads and reagents for RT is merged with another liquid stream

containing a single cell suspension 12,16 . Microfluidic control separates this stream into reverse

emulsion droplets in oil, capturing one bead and one cell per droplet by poisson loading (most

droplets will be empty and many others will contain only a bead or only a cell). The mRNA capture

beads are functionalized with many oligos containing poly-T primers on their surface to bind the

poly adenylated mRNAs. The bead oligos also contain a cell barcode, which is unique to each

bead, for separating reads in the sequencing data output into the cells from which they came, and

unique molecular identifier (UMI), which is unique to each individual oligo on the bead, to

computationally collapse PCR amplified cDNAs back to the original one RNA molecule from which

they amplified. These droplet-based techniques scaled scRNA-Seq to reach the ability to profile

thousands of single cells in parallel. Due to the necessity of having at most one bead and one cell

per droplet, both beads and cells must be Poisson loaded, resulting in large dead volumes and
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many cells captured without beads lost, making this technique appropriate only for experiments

with large numbers of cells available.

To iterate upon the bead-based, 3'-priming strategy of Drop-Seq, later techniques were developed

to improve cell capture efficiency, making them suitable for lower input samples. Microwell-based

methods, such as Microwell-Seq17 and Seq-Well', pair individual cells and beads by settling them

into tiny wells on a microarray device. By sizing the beads and wells such that only one bead will

physically fit in each well, these techniques do not require Poisson loading of beads and can

achieve bead loading in nearly every well (Figure 2-3). Cells still need to be Poisson loaded to

minimize doublets, but with bead loading efficiency around 90%, few cells are lost to wells with

no beads. In a typical Seq-Well experiment, around 15,000 cells are loaded, though the technique

can also be run with less, and generally high-quality data will be obtained for over 1,000 cells,

greatly improving cell capture efficiency and making this technique suitable for low-input

samples'. Seq-Well further improves upon earlier microwell-based methods by applying a semi-

permeable membrane which allows for buffer exchange, but prevents transfer of cells, beads and

large molecules, such as mRNAs, between adjacent wells'.

Commercialization of high-throughput techniques has already begun. 1oX Genomics' Chromium

platform, a commercialized version of In-Drop, has gained wide popularity. The ease of use of

this system makes it accessible even to those without extensive experience in single-cell

techniques and the ability to run up to eight samples in parallel increases experimental efficiency

by multiplexing several experimental conditions into one run.
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Figure 2-3 | Seq-Well Schematic
Adapted from Gierahn et. al. 1
Complex tissue dissociated into single cell suspension. Beads and cells loaded onto microwell
array and allowed to settle by gravity. Semipermeable membrane applied, cells lysed. Capture
beads are functionalized with oligos containing a poly-T capture sequence, Unique Molecular
Identifier (UMI) and cell barcode. mRNAs hybridize to bead oligos, beads recovered from microwell
array device, reverse transcribed, and undergo whole transcriptome amplification (WTA).
Sequencing libraries prepared from WTA by Nextera. Libraries sequenced and analyzed.

2.3 Selection of most appropriate scRNA-Seq method

With so many scRNA-Seq methods available it is important to consider which method is best

suited for a particular experimental question. The microwell- and droplet-based methods both

offer high-throughput processing and UMI barcoding for quantitative sequencing. Microwell-based

methods are generally better suited than droplet-based methods for samples with limited cell

numbers, as they do not require Poisson loading of cells. Cost is also an important factor, with

high-throughput methods generally delivering a lower cost per cell. Even within high-throughput

methods, cost can vary considerably. Seq-Well, a microwell-based method, processes a sample

at much lower average cost per cell than the popular 1OX Genomics Chromium platform; however,

the Seq-Well processing is more labor-intensive.
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While droplet- and microwell-based methods offer the obvious benefits of higher throughput and

lower cost per cell, in some instances plate-based methods may be preferable. The high-

throughput methods sacrifice coverage per cell for coverage of more cells and provide only 3'-

end coverage of transcriptomes. In contrast, plate-based methods offer full transcriptome

coverage and generally a higher sensitivity and overall coverage per cell. Full coverage may be

desirable for some applications, such as calling splice variants. Some studies have made use of

a combined approach, applying a high-throughput 3' method to sequence huge numbers of cells

at relatively low coverage and cost per cell, and a FACS-enabled plate-based method to gain

deeper information for select poorly-understood cell groups18 . Additionally, in experiments

requiring FACS to enrich for a targeted rare cell population, it may be preferable to sort these

cells directly into plates rather than to further process them through the microfluidics or well

loading steps of another method, particularly if the number of targeted cells available is very low

(hundreds) or when the source material is very fragile.

The rapid development of scRNA-Seq tools has made many exciting studies possible. When

designing a single cell study, it is imperative to carefully consider the merits of each technique

and to select the one best suited the experimental questions and goals.

2.4 Mapping the cellular landscape: Cell Atlases

Thanks to extensive work in single cell genomics over the past several years to improve methods

and survey cellular diversity, we now know more than ever about the cell types present within

organs and some whole organisms at the single cell level. The creation of a comprehensive

reference map - a "cell atlas" - of all the individual cells with a system has become a major pursuit

of the single cell sequencing community. These cell atlases delineate the many types of cells
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found in a particular tissue, organ, or organism, identify novel subgroups of cells with unique

functions, and catalog marker genes for each group. This information deepens our knowledge of

the system and serves as a valuable guide for other researchers needing to call cell types from

their own sequencing data.

Many cell atlases, for mouse, human and other organisms, have been published in recent years,

providing insight into the systems they explore and serving as valuable references for future work.

Advent of high-throughput techniques has made feasible sequencing tens or even hundreds of

thousands of single cells, rendering comprehensive profiling of entire systems of cells possible.

In their 2015 Cell paper, Macoscko and colleagues introduce Drop-Seq and apply it to sequence

and analyze the transcriptomes of over 44,000 mouse retinal cells, identifying 39 distinct

populations and creating a cell atlas of known and candidate novel retinal cell types12 . In the

following years, many more cell atlases for other tissues and organs have been published. For

example, Haber et. al. produced a cell atlas of the mouse small intestinal epithelium, featuring

over 53,000 cells, characterizing previously unappreciated diversity, and uncovering new subsets

in enteroendocrine and tuft cells 19.

Multiple studies have expanded the scope of the atlas to encompass whole organisms, including

C. elegans20 and mouse. Two whole mouse atlases were published in 2018: "Mapping the Mouse

Cell Atlas by Microwell-Seq" covering 400,000 cells published in Cell by Han et. al. 21, and "Tabula

Muris" published in Nature featuring over 100,000 cells and using a combination of high-

throughput 3'-end droplet-based methods and full length transcript, flow-sorting enabled methods

to obtain higher sensitivity data for selected cell types 18
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With the improved throughput of more recent scRNA-Seq techniques and high interest in atlas

datasets, ambitious goals of identifying and describing increasingly extensive collections of cells

at finer granularity have become attainable. The Human Cell Atlas, a coordinated global effort to

create a collection of maps for every human cell, endeavors to "defin[e] the cellular basis for health

and disease"22 . Building theHuman Cell Atlas parallels the Human Genome Project in many ways:

its immense scope and collaborative approach and its potential to transform our understanding of

biology and serve as a rich resource to facilitate future studies. The Human Cell Atlas will help to

identify genes associated with disease, explore what cell types are present and where, uncover

regulatory mechanisms which contribute to cell type development and function, and serve as a

reference for future work.

2.4 Cellular responses to perturbations

To elucidate cellular contributions to systems level responses, we must evaluate how individual

cells and groups of cells work together to respond to perturbations. Cell atlas work has made

great strides in cataloguing the cells present in many systems, but typically focuses on surveying

cell populations and diversity at baseline. Relevant atlases can serve as useful guides to

interpreting data from experiments investigating cellular responses to stress or infection within a

system. When responding to a stimulus, distinct cell groups and subgroups may respond in

different ways, or not at all. In identifying cell types and characterizing the responses of

functionally different groups of cells, we may begin to understand how the system-level response

arises from the coordinated behaviors of all cell types involved.
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scRNA-Seq methods enable us to investigate these cellular responses in greater detail and

discover unexpected cell groups and responses. For example, early work in scRNA-Seq has

shown that not all DCs respond identically to culture with LPS, despite originating from a

seemingly homogenous population5 . Avraham and colleagues used a combined FACS scRNA-

Seq approach to investigate how variation in bacterial factors from invading Salmonella contribute

to observed variation in individual macrophage responses to infection25 . More recently, Kim et. al.

used a combination of bulk and single cell sequencing approaches to investigate the evolution of

chemoresistance in triple-negative breast cancer 6 . With scRNA-Seq, these studies and many

others uncover contributions of previously unappreciated subgroups of responding cells.

2.5 Limitations of scRNA-Seq

While scRNA-Seq is an enormously useful tool, it also has limitations. Due to the very low input

RNA material of a single cell (10-30 pg total RNA27), "drop-out" is a persistent challenge. Generally

speaking, scRNA-Seq methods capture transcripts through a poly-T sequence on a priming

oligonucleotide, which targets the poly-A tail of mRNA. This oligonucleotide then serves as a

primer in the subsequent reverse transcription step. However, mRNA binding to poly-T

oligonucleotides and reverse transcription reaction efficiencies are not 100%, leaving the

possibility that some transcripts will not be captured or reverse transcribed, and, therefore, will

ultimately be excluded from the resulting sequencing library. Since so little starting material exists

in a single cell, missing even a few transcripts in library prep can impact the data, making the

interpretation of a "zero" in the data ambiguous. It is difficult to know whether a zero in the data is

biological (the gene was not expressed) or technical (the gene was expressed but not captured

or not sequenced). Undersequencing a library can also contribute to dropout when sequencing
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depth is insufficient to read all of the transcripts represented in the library. Sequencing to greater

depth can recover more genes in undersequenced samples; however, increasing sequencing

depth for thousands of single cells can be costly and is not always necessary to address the

question at hand. Some computational data analysis techniques have attempted to address

dropout and the sparsity of scRNA-Seq data matrices 28,29, though best-practices remain

uncertain.

Dropout is especially problematic for lowly expressed genes, where a loss of one or two out of

only two or three total transcripts greatly impacts the data (e.g. loss of one out of two transcripts

results in a 50% change in expression quantification; or if all one or two transcripts are not

captured, total loss of expression of the gene), while in more highly expressed genes, losing a

few transcripts out of hundreds will have minimal impact on overall expression data. Additionally,

transcripts which are physically short (e.g. interferon at 501nt30, compared to 1-2 kb for typical

transcripts) are often lost in the processing and purification steps of library preparation which are

required to remove excess primer and generate a library of suitable quality for sequencing. As

such, scRNA-Seq data is largely unreliable for lowly-expressed genes and genes with short

transcripts.

To address challenges related to dropout, an analysis of scRNA-Seq data should characterize

cell types, groups, subgroups and responses by use of gene sets, rather than individual genes,

whenever possible. By focusing on sets of genes that are expressed as a group on a particular

cell type or work together to coordinate a response or up-regulate a pathway, a scRNA-Seq

analysis buffers itself from the effects of dropout. A gene set may include a collection of genes

which are all markers for a particular cell type (e.g. intestinal stem cell markers: Lgr5, Asc2,

Sic12a2, Axin2, Olfm4, and Gkn3l9), members of a transcriptional network of genes with a shared
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upstream regulator which is activated in response to perturbation (e.g. interferon response genes)

or any group of genes with expected co-expression in the targeted cell type or response. While

the transcripts for a single gene may fall victim to dropout within a single cell, if a particular cell

truly does belong to a given cell type or response group, it should express all or most of the genes

included in the relevant gene set and at least some of these genes should be captured. When

looking over the whole gene set, even cells with dropout data can be correctly identified by relying

overall expression of coordinately expressed genes in the gene set.

scRNA-Seq captures an unbiased view of the transcriptional behavior of cells; however, usually

it is the proteins which the mRNAs encode that actively drive the response behavior at the

molecular level. While RNA and protein are usually roughly correlated, temporal differences in

mRNA expression and translation, burst transcription kinetics, differences in RNA and protein

half-lives, regulation of translation, and post-translational modifications can all contribute to

drastically altering the functional output at the protein level from what was suggested in mRNA

transcript space. Since it is possible and relatively easy to sequence all mRNAs in a single cell

by RNA sequencing, but not practical to sequence the full proteome across many single cells,

scRNA-Seq techniques provide valuable insight, but the potential for signal regulation and

modulation downstream of transcription must always be considered. Functional validations should

be used as appropriate to confirm observations made from sequencing data.

While scRNA-Seq methods provide an exciting way to further understand cellular responses and

dynamics in a system, it remains critical to validate discoveries with other techniques. Limitations

of scRNA-Seq due to technical dropout, loss of shorter transcripts and potential differences in

RNA and protein expression make further validation by other methods to more directly measure

selected responses essential to draw strong conclusions. Despite limitations, scRNA-Seq can
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provide great insights and unbiased, whole transcriptome data and can generate hypotheses in

new and exciting directions. The broad scope of scRNA-Seq data enables generation and informs

selection of hypotheses to further validate using more targeted approaches which are typically

much more limited in scope. For example, GSA over differentially expressed genes from

sequencing data may indicate that a particular pathway is upregulated during a cellular response

and identify an upstream regulator. Targeted follow-up experiments may inhibit (by drugs or

knockouts) or activate (by drug or ligand) the implicated upstream regulator, which should in turn

modulate the downstream pathway and alter the response phenotype, validating the predicted

contribution of the pathway from sequencing analysis. In another type of experiment, smFISH

could be used to validate expression of a particular gene, expression patterns (e.g. co- or mutually

exclusive-expression) of small groups of genes or physical spatial distribution of gene expression

to corroborate gene expression patterns identified in scRNA-Seq4'5.

A wide variety of validation techniques may be applied in cross-disciplinary studies to accompany

and validate exciting scRNA-Seq data. This powerful combination of approaches yields new

insights across many fields including infectious disease immunology, cancer, autoimmune

conditions, acute injury and more. As scRNA-Seq becomes a more widely adopted technique, its

contributions to our understanding the complex mixtures cell types and subtypes which contribute

to organism function will continue to grow.
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Chapter 3: Functional Compensation Precedes

Recovery of Cell Mass Following Acute Liver Injury

This chapter is adapted from a manuscript in preparation:

Chad Walesky*, Kellie E. Kolb*, Carolyn Winston, Jake Henderson, Benjamin Kruft, Florian

Mueller, Udayan Apte, Alex K. Shalek, Wolfram Goessling, "Functional Compensation Precedes

Revovery of Cell Mass Folowing Acute Liver Injury," In preparation.

*Denotes equal authorship

The liver is responsible for many essential homeostatic functions, such as glucose homeostasis,

protein and lipd metabolism, bile acid production, synthesis of serum proteins and toxin and

xenobiotic metabolism, and is able to regenerate upon injury. While many factors have been

identified that regulate the cellular proliferation the facilitates regeneration, how the liver maintains

its vital functions preceding cellular recovery remains unknown. Here, we identify a new phase of

functional compensation following acute liver injury prior to cell proliferation. Using single-cell

RNA-sequencing and single-molecule fluorescent in situ hybridization techniques in two

independent murine acute liver injury models, we discover up-regulated expression of injury

response and core liver function genes, dependent on intact WNT/p-catenin signaling. We reveal

that cell compensation and cell proliferation are inversely regulated, explaining the observed delay
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in cell proliferation following injury. Our work describes a new mechanism by which the liver

maintains essential physiological functions prior to the onset of cellular compensation and

characterizes the hepatocytes that contribute to cellular recovery.

3.1 Background

The liver is a vital organ charged with a wide array of functions, including: homeostasis of glucose,

protein, and lipid metabolism; production of bile; synthesis of critical serum proteins; and,

metabolism of endogenous and xenobiotic toxins. To accomplish these tasks, hepatocytes are

organized into lobules across which blood flows from the portal vein and hepatic artery to the

central vein establishing, in the process, oxygen and nutrient gradients. This, in turn, results in a

corresponding zonal distribution and regulation of hepatocyte gene expression to support all of

the liver's function; as a consequence, hepatocytes in the periportal zone have functions and gene

expression profiles distinct from the midlobular and pericentral zones.

As a filter, the liver experiences frequent toxic insults resulting in cellular injury and death. Thus,

the liver has evolved substantial regenerative capacity2 . Extreme injury, however, can lead to

decompensation, acute liver failure (ALF), and death3 . Liver injury is frequently caused by

selective toxins, such as acetaminophen (APAP), which results in zone-specific injury 4, and APAP

overdose is the most common cause of ALF in the United States5 . Another common cause of

injury is surgical resection, which may be necessary to remove liver tumors6 . Understanding the

mechanisms governing liver regeneration in response to injury is crucial to facilitate novel

treatment strategies for ALF.

To date, study of liver regeneration has singularly focused on the mechanisms underlying the re-

establishment of lost cell mass through proliferation. In contrast to injury in other organs, such as
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skin (-12 hrs), cell proliferation typically does not begin until approximately 24 hours and peaks

around 30-48 hours post injury in mice' 8 . It remains unclear how the organism survives the period

immediately after losing massive amounts of functional liver tissue and why cellular recovery

occurs relatively late.

Here, we investigated the functional compensatory responses of the liver during three key phases

of liver regeneration (initiation phase, proliferation phase, and termination phase) in a resection

(partial hepatectomy, PH) and a toxic (APAP) model of liver injury (Figure 3-1A). Utilizing a

powerful combinatorial approach that couples Seq-Well, a platform for massively-parallel single-

cell RNA-seq (scRNA-Seq) of clinical specimens ideally suited to fragile cells like hepatocytes,

with single-molecule fluorescent in situ hybridization (smFISH), we define and validate

transcriptional changes occurring during each of these three response phases9 . We discover that,

following injury, the remaining hepatocytes functionally compensate for lost functional liver mass

preceding the peak of hepatic proliferation by increased transcriptional output of key hepatocyte

genes. Importantly, hepatocytes demonstate an ability to alter their functional identity to maintain

the expression of select genes despite injury-dependent loss of functional mass. By examining

cell cycle signatures at different time points during the regenerative phase, we find that cycling

cells do not participate in functional compensation to the same degree as non-cycling

hepatocytes. We identify up-regulation of Wnt target genes in both cycling and non-cycling cells,

and explore the contributions of Wnt/p-catenin to both proliferation and functional compensatory

responses, demonstrating that hepatocyte functional compensation depends upon

macrophage/Kupffer cell secreted Wnts. Overall, we identify and characterize a functional

compensation phase in hepatocyte response to liver injury which preceeds cellular recovery,

demonstrate that cycling hepatocytes do not functionally compensate to the same degree as

noncycling hepatocytes and establish that macrophage Wnt secretion supports hepatocyte

functional compensation.
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Results

3.2 Transcriptional adaption after liver injury

To assess the global transcriptional responses of hepatocytes following acute liver injury, we used

scRNA-seq (Seq-Well) to examine response dynamics in both the PH and APAP models,

capturing the injury, regeneration, and termination phases of liver regeneration (Figure 3-1 B, C).

A total of 16,019 cells from 19 different experiments were profiled to an average sequencing depth

of over 48,000 reads per cell (Methods). Subsequently, we filtered out immune and endothelial

cell types and low quality cells from the dataset, retaining 10,762 high-quality hepatocytes on

which we focus our subsequent analyses (Methods). Shared nearest neighbors clustering (SNN)

visualized by t-Stochastic Neighbor Embedding (t-SNE) reveals hepatocyte populations that

cluster by injury model and post-injury time point (Figure 3-1D). We observe baseline

heterogeneity in untreated control samples, which form individual clusters by animal,

differentiated largely by pheromone-related genes. The injury samples cluster together by time

point, suggesting that individual livers become more similar to one another in their response to

injury.
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Figure 3-1 1 Hepatocytes respond to toxic and surgical liver injuries.
Previous page.
(A) Time course depicting hypothesized functional compensation and proliferation phases of
liver injury recovery (top). Samples collected from murine livers at multiple time points following
APAP treatment (middle) or PH (bottom). (B) Staining of murine liver slices taken at vaired time
points after liver injury showing apoptotic TUNEL positive (brown, top) and proliferative PCNA
positive (brown, bottom) cells. (C) Bargraphs quanifying the total TUNEL and PCNA positive
area. * p < 0.1; *** p < 0.01 (D) t-SNE of all high quality hepatocytes (Methods) in the scRNA-
Seq data set. Cells are colored by treatment condition. SNN clusters outlined in black. (E)
Heatmap of marker genes for all clusters loutlined in D. (F,G) Pericentral hepatocyte Signature
Score (PCH Signature Score) (left). Violin plot of normalized expression of Cyp2el (middle) and
Glul (right); percent positive calculated as percentage of total cells in each condition above
average normalized genes expression (dashed red line). Untreated (UT) and each post-
treatment are plotted for APAP (F) and PH (G). Effect size calculated by Cohen's d: d < 0.2 = n
(negligible); 0.2 < d < 0.5 = * (small); 0.5 < d < 0.8 = ** (medium), d > 0.8 = *** (large).

To confirm clustering captures biological rather than technical variation, we performed differential

expression to identify gene expression patterns unique to each cluster. We identify many genes

related to liver function and response to injury and oxidative stress that define the clusters (Figure

3-1D), and technical gradients within rather than across clusters (nGene, nUMI, Methods). APAP

injury results in typical pericentral necrosis at 6 hrs following APAP administration (hereafter A6;

Figure 3-1B,C). Hepatocytes with pericentral hepatocyte signature (PCHSig) are absent at 6

hours post-treatment (Figure 3-1F, A6). At 24 hrs post APAP administration, however, the

pericentral hepatocyte signature returns (Figure 3-1F, A24), while histology shows persistent

necrosis in the pericentral area (Figure 3-1B, C, A24). This indicates that a previously existing

cell population now expresses pericentral genes. Expression of pericentral genes Cyp2el,

responsible for metabolizing APAP, and Glul, which assimilates ammonia into glutamine, is highly

restricted to the pericentral region. The frequency of Cyp2el+ hepatocytes drops from 67%

(Untreated, UT) to 5% (APAP 6 hour treatment, A6), returning back to 46% by 24 hrs (Figure 3-

1 F).
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Figure 3-2 | smFISH for Cyp2el and Glul.
(A) Schematic for staining and image quantification. (B, C) Imaging of liver slice showing Cyp2el
(red) Glul (green) and DAPI (blue) for untreated and each APAP-treated (B) or PH-treated (C)
time point. (left column). Cell outlined and colored by number of Cyp2el transcripts (brown, low;
white, high) for each condition (middle column). Cell outlined and colored by number of Glul
transcripts (black, low; bright green, high) for each condition (right column). (D, E) Quantification
of gene expression intensity (y-axis) across the lobule (x-axis) for Cyp2el and Glul. 90% of area
under the curve (AUC) for UT is to the left dashed red line. Total AUC posted aboved each plot.
APAP treated (D) and PH-treated (E).
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To validate these findings, we performed smFISH analysis to precisely quantify and spatially

resolve gene expression (Figure 3-2A). We found that Cyp2el reaches further into the midzone

of the liver lobule following APAP treatment and necrosis of the pericentral region at 6 and 24 hrs;

it recedes to the pre-injured area with complete resolution of the injury after 48 hrs (Figure 3-

2B,D). Glul expression, meanwhile, is normally localized to a single layer of cells surrounding the

central vein, which undergoes necrosis following APAP overdose. Surprisingly, we did not

observe a difference in Glul+ cells following APAP exposure, demonstrating that Glul expression

is maintained, through at a low level of expression across the entire liver lobule (Figure 3-2B,D,

A6 and A24). Glul expression returns to normal by 48 hours after APAP dosage (Figure 3-2B,D,

A48 and A96). These results demonstrate a compensatory expression of critical liver function

genes immediately following zone-specific injury.

In contrast to APAP, PH does not result in zone-dependent injury. The dramatic tissue loss causes

increased functional demand, as only -30% of liver tissue remains compared to -90% in APAP.

Functional compensation is observed in this model, evident from a dramatic increase in Glu+

hepatoctyes (Figure 3-1E), from 18% (Control) to 60% (PH3). smFISH analysis confirms

increased expression zones and total expression levels of both Cyp2el and Glul (Figure 3-2C,E).

Taken together, these observations suggest that hepatocytes can alter their transcriptional profile

to maintain functions that are diminished due to injury. Further, our data suggest this can occur in

a zone-dependent fashion, evident by midzonal hepatocytes up-regulating pericentral marker

genes within the APAP model, or a zone-independent fashion relative to the extent of the injury

(PH model).
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Figure 3-3| Shared and unique gene expression responses in acute livery injury models.
(A) Venn diagram showing genes significantly upregulated in response to APAP and/or PH
treatment compared to untreated. (B) Venn diagram of genes downregulated. (C) Pathways with
significant overlaps with differentially expressed genes. Significant pathways unique to APAP
response (left), unique to PH response (middle) and significant in both responses (right). (D)
Violin plot of individual genes (Tsnrdl and Gc/c) significantly upregulated in APAP treatment
response. Barplot of smFISH quantification of these genes. (E) Violin and barplots of individual
genes (Alb, Pckl, F2 and Mtl) with upregulation in both APAP and PH-response by smFISH.
Effect size calculated by Cohen's d: d < 0.2 = n (negligible); 0.2 < d < 0.5 = * (small); 0.5 < d <
0.8 = ** (medium), d > 0.8 = *** (large).
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3.3 Acute liver injury causes both injury-specific and non-specific responses

To further define shared and unique responses for each acute injury model, we calculated

differentially expressed genes (DEG) between each treatment condition and untreated (UT), and

then pooled results to reveal composite DEG results for APAP and PH (see Methods). A number

of gene expression shifts can be attributed to injury-dependent affects; however, a large number

of gene expression changes observed are shared between the two models sugguesting that many

gene expression changes do not depend on the nature of the injury (Figure 3-3A,B). Among

these DEG, gene set analysis (GSA) reveals an enrichment of pathways involved in toxic injury

within the APAP model (Figure 3-3C)10 . The PH model exhibits an enrichment of pathways

involved in cell proliferation, which can most likely be attributed to differences in the extent of

injury between the two models (Figure 3-3C). In the APAP model, there is a substantial anti-

oxidant response, both by GSA and the expression of individual anti-oxidant response genes,

such as thioredoxin (Txnrdl) and glutamate-cysteine ligase subunit c (Gclc) (Figure 3-3D),

confirming the findings from our single-cell transcriptomic dataset. Importantly, smFISH data

reveals an up-regulation of Txnrdl and Gclc across the entire liver lobule reaching into the

periportal region. This suggests that some injury responses are not exclusive to the area of injury,

but that all hepatocytes respond similarly to oxidative injury.

Albumin is the most abundant serum protein, and is produced by all hepatocytes across the liver

lobule, with the highest expression in the periportal region. Acute injury in both models results in

a dramatic up-regulation of albumin across the entire liver lobule (Figure 3-3E). This is consistent

with the larger total loss of hepatocytes compared to APAP, resulting in a greater need for

functional compensation. Similarly, other essential liver functions, examined here by expression

of the gluconeogenesis gene Pckl and the coagulation factor F2, are compensated at a higher

degree across the lobule after PH.
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Figure 3-4 | Identification and characterization of of cycling cells.
(A) Violin plot of cell cycle score. Cycling cells (CC, larger black dots) are identified as having a
cell cycle score two standard deviations above average (dashed red line). Percentage of cycling
cells in each treatment listed below each violin. (B) Scatter plot of Hepatocyte Score versus Cell
Cycle Score. Horizonal line represents average Hepatocyte Score calculated over all untreated
cells. Vertical line represents two standard deviations above the average cell cycle score. (C)
Violin plots on Hepatocyte Score for all APAP 24hr cycling cells (CC) and an equal number of
non-cycling cells (NC) from APAP24 (top) and the same for PH48 CC and NC (bottom). Effect
size calculated by Cohen's d: d < 0.2 = n (negligible); 0.2 < d < 0.5 = * (small); 0.5 < d < 0.8 = **
(medium), d > 0.8 = *** (large). (D) Heatmap of marker genes fo CC and NC in APAP 24hr (left)
and PH 48hr (right). (E) Pathway analysis over genes differentially expressed between CC and
NC in APAP 24hr and PH48 hr. (F) Violin plots of Alb and Slc2a2 in CC and NC. (G) smFISH
and PCNA costaining images. (H) Quantification of RNA expression and PCNA intensity.
Functional hepatic markers are selectively maintained in proliferating hepatocytes. Alb shows a
maintenance of expression (total RNA counts) in proliferating hepatocytes (mean PCNA
intensity) while Sc2a2 reveals a negative correlation. Mean PCNA intensity (IF) and total RNA
counts (smFISH) are plotted for individually segmented cells from three lobular areas/condition
(UT, APAP 24 hr, PH 48 hr) with Loess regression (red line).
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We observe a dramatic up-regulation in metallothionein (Mtl) in both injury models (Figure 3-

3E). It has been suggested that Mtl may serve two purposes in tissue injury - protection against

further oxidative damage and support for the proliferative response8 . Further, Mtl has previously

been shown to be up-regulated in the liver following PH 9'10. We observe up-regulation of Mtl in

all hepatocytes across the lobule, highlighting not only the rapidity of hepatic functional

adaptation, but also, the plasticity of the majority of hepatocytes across the liver lobule.

Expression of Mtl is upregulated to a greater degree in PH than APAP and remains elevated

throughout the PH time course, where an increased proliferative demand is present due to the

increased loss of cell mass in the PH model.

3.4 Cell proliferation impairs adaptation

Most work on liver regeneration has traditionally focused on the proliferative phase of repair. It is

unknown, however, whether hepatocytes that are actively dividing can contribute to hepatocyte

functional compensation. We identified cells that become transcriptionally active for the cell cycle

in the scRNA-Seq dataset (Figure 3-4A), and analyzed hepatocyte-specific transcript output

compared to those cells at all time points that are not cycling. Compared to non-cycling cells (NC),

there is a significant down-regulation of the Hepatocyte Signature Score in cycling cells (CC) in

both injury conditions (Figure 3-4B; Methods). DEGs reveal substantial differences between

cycling and non cycling cells in both injury models. CCs express many classic cell proliferation

markers, and exhibit down-regulation of classic hepatic function genes (A24 CC vs NC: p < 1.4e-

03, Wilcoxon, Effect size d = 0.65, Cohen's d; PH48 CC vs NC: p < 3.6 e-1 1, Effect size d = 0.94,

Cohen's d) (Figure 3-4C,D). Though proliferating hepatocytes score lower for hepatocyte

markers, many of these genes are still expressed at an appreciable level with select markers not

changing at all. For example, Albumin expression appears to be maintained in CCs (Figure 3-

4F), which can be corroborated by smFISH analysis in combination with immunofluorescent co-
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staining for the cell proliferation marker PCNA (Figure 3-4G,H). However, select genes, such as

Slc2a2, appear to be dispensable during proliferation (Figure 3-4F-H). Taken together, these data

suggest that proliferating hepatocytes have the ability to maintain expression of select hepatic

functional markers while other hepatic genes appear to be expendable or fully compensated by

the non-proliferating hepatocytes.
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Figure 3-5 Contribution of Wnt signaling to functional compensation.
Wnt target gene expression score over cycling cells (CC) and non-cycling cells (NC) from A24 and
PH48 (A) and all hepatocytes grouped by treatment condition (B) (A)(B) Effect size calculated by
Cohen's d: d < 0.2 = n (negligible); 0.2 < d < 0.5 = * (small); 0.5 < d < 0.8 = ** (medium), d > 0.8 =
*** (large). (C) Wnt knockout mouse models. (D) Alb expression in untreated and PH 24hr for wild
type (WT), P-catenin knock out (B-cat KO), and Wnt-less knock out (Wtls KO) by smFISH. (E) Mtl
expression by smFISH. * p < 0.1, ** p < 0.05, *** p < 0.01.
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To identify pathways and potential upstream regulators that may be involved in cell cycle

activation, we performed GSA over DEGs calculated between CCs and NCs from A24 and PH48.

The results reveal expected upregulation of many cell cycle-related pathways. We also observe

enrichment for stem- and development- related pathways (e.g., EMBRYONICSTEMCELL,

STEMCELL_CORE, EZH2_TARGETS) and Wnt-related pathways (e.g.,

WNT3ATARGETSUP, MYCTARGETSUP, LIVERCANCERMYC), suggesting the

proliferating hepatocytes may become more stem-like, and that Wnt signaling may be involved in

these changes (Figure 3-4E). It has recently been shown that Wnt signaling is associated with

normal hepatocyte turnover as well as liver regeneration14 . These Wnts are thought to be derived

from the endothelium and contribute to the activation of hepatic stem cell markers (Axin2 and

Tbx3). We have observed up-regulation of both Axin2 and Tbx3 in each acute injury model with

positive cells reaching multiple cell layers into the midzone of the lobule.

3.5 Wnt Signaling mediates functional compensation

Given the demonstrated role of Wnt signaling in both establishing liver zonation and liver

regeneration, we investigated whether Wnt signaling activates reprogramming of already present

hepatocytes to maintain essential hepatic function 15-19. Our Seq-Well data corroborates previous

observation for increased Wnt activity in proliferating hepatocytes (Figure 3-5A)1 9- 2 1. Further, our

single-cell transcriptional dataset reveals activation of Wnt target gene expression in the majority

of hepatocytes for both the APAP and PH models, which precedes the onset of cell proliferative

activity (Figure 3-5B; A6, A24, and PH3).

To identify the dependence of the compensatory response on the Wnt/P-catenin pathway, we

examined the contribution of both endothelial- (EC-Wls-KO) and macrophage- (Mac-Wls-KO)

derived Wnts in the activation of functional compensation using previously described KO mouse
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models, which both have intact P-catenin but lack Wnt secretion from respective cell populations

(Figure 3-5C) 1 7,2 2 . Our data suggest that endothelial-derived Wnts are dispensable for functional

compensation whereas macrophage-derived Wnts are required (Figure 3-5D).

3.6 Discussion

Overall, our study defines a novel functional compensatory mechanism after liver injury where

essential liver functions are maintained prior to the onset of cellular restoration through

proliferation. We find that hepatocytes upregulate transcription of important liver genes, often by

adapting expression patterns traversing zonal boundaries. Select hepatic function genes appear

to be dispensable in proliferating hepatocytes. Further, we define a novel dual role for the Wnt/p-

catenin pathway in liver regeneration where the pathway not only promotes cell proliferation and

a return to the pre-injured cell mass but also promotes functional compensation in order to

maintain essential liver function prior to the proliferative response.

The liver is unique in that it maintains complex metabolic function throughout injury and

subsequent regeneration23 2 4. This is due to the fact that most injury mechanisms induce a

regenerative response where functionally active hepatocytes are thought to be the major

contributor to cellular regeneration instead of an already present stem cell population2 27 . By

comparison, many complex mammalian tissues, like cardiac muscle and central nervous tissue,

have little to no regenerative capability; others, like intestine, have a high rate of

turnover/regeneration that is primarily achieved through a dedicated stem cell population with

highly-differentiated/functionally-active cells contributing very little28
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Figure 3-6 I Model of hepatocyte response to acute liver injury.
(A) Top compensating hepatocytes and proliferating hepatocytes are separate groups of cells.
(B) Wnt Signaling and contributes to Functional Compensation. Both precede proliferation.

Liver regeneration within the mouse model shows a peak of hepatocyte proliferation between 30-

36 hrs for both PH and APAP-induced injury 29,30. Cell cycle genes are activated well before

hepatocyte proliferation begins (priming phase), as early as 10 min following injury23,24 ,31.

However, cell cycle inhibitors, such as p21 and p27, are concurrently up-regulated early in liver

regeneration and block progression of hepatocytes into the cell cycle32 33. It has been speculated

that this co-expression of both stimulators and repressors of the cell cycle is what aids in the

control of liver regeneration to a precise end point23. It is also plausible that this 'delay' in cell

mass recovery helps to prevent genetically-damaged hepatocytes from re-populating the liver,

allowing damaged cells time to succumb to injury or complete genomic repair. This could lend to

a protective mechanism to reduce the liver's susceptibility to other pathologies, such as cancer.

Therefore, it would make sense for the liver to evolve a functional compensatory mechanism in

order to maintain essential liver function during this period of delayed proliferative response. The

data we present throughout this manuscript supports this notion and further characterizes a novel

phase of liver regeneration: the functional compensation phase.
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The Wnt/p-catenin signaling cascade has been well-established to play a crucial role in regard to

the proliferative response during liver regeneration 2 1 ,3 4 ,3. Wnts appear to be derived from the

endothelium, Kupffer cells/macrophages, and hepatocytes. Stimulation of the pathway can be

observed as early as 5 min following PH where it is thought to primarily promote cell proliferation

through an up-regulation of cell-cycle genes, such as Cyclin D1, via a p-catenin-dependent

mechanism 34 . Hepatocyte-derived Wnts appear to be dispensable for proper hepatic zonation and

liver regeneration; however, recent studies have highlighted the importance of endothelial- and

macrophage-derived Wnts in the regenerative response. Endothelial-derived Wnts have been

shown to be important for maintaining proper pericentral hepatic zonation and show a delayed

regenerative response after PH while Macrophage-derived Wnts have no effect on normal hepatic

zonation but are equally important for liver regeneration 17,36 . Here, we describe a novel role for

the Wnt/p-catenin pathway in the functional compensatory response, which highlights a dual role

for it in liver regeneration: maintenance of critical liver function and promotion of the cell

proliferation response (Figure 3-6). Further, we describe that Kupffer cell/macrophage-derived

Wnts appear to be essential for the functional compensatory response while Wnts from

endothelial cells appear to be largely dispensable for this role in the midzone and periportal areas,

where a large amount of compensation is occurring.

In conclusion, we describe a novel functional compensatory phase of liver regeneration that

precedes cell mass recovery in the murine liver following either toxic-induced liver injury (APAP)

or surgical resection (PH). We further describe a novel role for the Wnt/P-catenin pathway in

promotion of functional compensation via the liver macrophage population. This work further

highlights the potential for the Wnt/p-catenin pathway as a target for therapeutic intervention in

acute liver failure and other liver pathologies where maintenance of liver function is paramount.
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3.7 Methods

Animals

Three-month-old male and female C57BL/6J mice, purchased from Jackson Laboratories (Bar

Harbor, ME, USA), were used in these studies. All animals were housed in Association for

Assessment and Accreditation of Laboratory Animal Care - accredited facilities at Brigham and

Women's Hospital (Boston, MA) under a standard 12-hour light/dark cycle with access to chow

and water ad libitum. The Institutional Animal Care and Use Committee at Brigham and Women's

Hospital approved all studies.

Acetaminophen (APAP) Exposure

Mice were fasted 12 hours before administration of APAP. APAP was dissolved in warm 0.9%

saline, and mice were injected with 300 mg/kg APAP, i.p. Food was returned to the mice after

APAP treatment. Mice were then used for isolation of primary hepatic cells for single cell RNA-

sequencing or tissue harvest for further downstream analysis.

Partial Hepatectomy

Partial hepatectomy surgeries were performed as previously described. Mice were euthanized at

3 hrs, 48 hrs, and 120 hrs post-partial hepatectomy by cervical dislocation under isoflurane

anesthesia and livers were harvested for downstream analysis. Further, mice were used for

isolation of primary hepatic cells at 3 hrs, 48 hrs, and 120 hrs post-partial hepatectomy.

Isolation of Primary Hepatocytes and Non-parenchymal Cells

Mouse hepatic cells were isolated by a modification of the two-step collagenase perfusion method

(1). Cells were isolated from untreated (n=3), APAP-treated mice (n=2 at 6, 24, 48, and 96 hours

following APAP exposure), and mice subjected to partial hepatectomy (n=3; 3 hrs, 48 hrs, and 5
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days). The digestion step was performed using Liver Digest Medium (Cat. # 17703034;

ThermoFisher Scientific; Pittsburgh, PA, USA). Cells were immediately loaded for Seq-Well.

Tissue Harvest

Untreated (n=3 for each sex) and APAP-treated mice (n=2 at 6, 24, 48, and 96 hours following

APAP exposure) were euthanized by cervical dislocation following carbon dioxide exposure.

Blood was then collected via cardiac puncture and livers were excised for further downstream

processing. Serum samples were obtained from the blood and used for analysis of alanine

aminotransferase (ALT) activity using commercially available kits (ThermoFisher Scientific,

Pittsburgh, PA, USA). Part of the liver tissue was fixed in 10% neutral buffered formalin for 48 hrs

and further processed to obtain paraffin blocks and 5 ptm thick sections. A piece of liver was frozen

in OCT and used to obtain 10 pm fresh frozen sections. The remainder of liver tissue was snap

frozen in liquid N2 and stored at -800 C until used for further processing.

Library Preparation and Sequencing

Sequencing libraries were prepared from the single cell suspension using the Seq-well method

as described in Gieran et. al. 2017. Briefly, a microwell array was loaded with polyT capture beads

(Chemgenes). Then 200ul of media containing 15,000 single cells from the suspension prepared

were loaded onto the array and allowed to settle into the wells by gravity. Membrane sealing,

lysis, hybridization, reverse transcription, exonuclease digestion, second strand synthesis, PCR,

and library construction by Nextera were all performed as previously described. Resulting libraries

were quantified by Qubit and tape station (Agilent), and sequenced on an Illumina NextSeq 500

(UT and APAP samples, 2 arrays per run) or a NovaSeq (PH samples, 10 arrays per run).
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Figure 3-7 I scRNA-Seq Data Processing.
(A) log(nGene) and log(nUMI) for each treatment condition. (B) t-SNE colored by mouse of
origin. (C) t-SNE colored by cluster. Clusters are numbered from most to fewest member cells
and annotated by cell type. (D) Violin plots for marker gene expressionand percent
mitochondrial content (percent.mito) in each cluster. (E) Hepatocyte Signature Scores for cells
in good quality hepatocyte clusters, grouped by treatment condition. Cells scoring less than 3
standard deviations below the mean (dashed red line) were filtered out as non-hepatocytes.
Remaining cells were included in the high quality hepatocyte dataset for further analysis.
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Single-cell Sequencing Data Processing

Sequencing data was demultiplexed and aligned to mm1O with STAR aligner. Libraries were

sequenced to an average depth of 48,000 reads per cell.

Events with fewer than 400 genes were discarded from the genes x cells data matrix as non-cells,

with 16,019 cells remaining. Data was log normalized and TPM-like (base 10,000) normalized

and analyzed using the Seurat version 2.3.2 package in R. Distributions for number of genes

(nGene) and number of unique molecular identifiers (nUMI) were fairly even across treatment

conditions (Figure 3-7A). We performed principal components analysis and selected the top 13

PCs for tSNE dimensional reduction. We then performed shared nearest neighbors (SNN)

clustering, and identified 14 distinct clusters in the data (Figure 3-7B,C). We then performed

differential expression across the clusters and plotted expression of marker genes for known liver

cell populations (Figure 3-7D). We identify nine high-quality hepatocyte clusters, separated by

treatment condition; one low quality hepatocyte cluster with high percent mitochondrial content

and low nGene and nUMI; a kupffer cell cluster; a liver endothelial cell (LEC) cluster; a neutrophil

cluster; and a mixed immune cluster, which appears to contain T cells, B cells and monocytes.

We calculated a hepatocyte signature score using AddModuleScore in Seurat over multiple highly

expressed hepatocyte genes which span the lobule: Apoal, Glul, Acly, Asl, Cyp2el, Cyp2f2,

Assl, Alb, Mup3, Pckl, G6pc, Fabpl.

In order to focus on hepatocyte responses, we subsetted our data to include only the nine high-

quality hepatocyte clusters. Following subsetting, we observed a remaining few cells scoring low

on the hepatocyte signature. We filtered out any cells with a Hepatocyte Signature score less than

3 standard deviations below the average as non-hepatocytes (Figure 3-7E). These non-

hepatocytes originate primarily from the A6 sample, which has the largest immune infiltration in

response to injury and the highest fraction on non-parenchymal cells in the total sample. The
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Figure 3-8 1 Hepatocyte dataset analysis.
(A) Principle Components Analysis (PCA) of hepatocyte dataset, PC1, PC2. Cells (dots) colored
by treatment condition. (B) Violin plot of PC1 and PC2 scores for each cell, grouped by treatment
condition. (C) t-sne, colored by mouse of origin. (D) t-SNE colored by SNN clustering
assignment. (E) PCA (PC1, PC2), colored by lognUMI, lognGene, Periportal Hepatocyte (PPH)
Signature, and Pericentral Hepatocyte (PCH) Signature. Blue, low; yellow, medium; red, high.
(F) Violin plots of genes used to calculate PPH Sig and PCH Sig, grouped by treatment condition.
(H) t-sne colored by lognGene, lognUMI, percent mitochondrial content (percent.mito) and
Hepatocyte Signature Score. Blue, low; yellow, medium; red, high.
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filtered non-hepatocytes are likely non-parenchymal cells incorrectly assigned to a hepatocyte

cluster by SNN. Following these filtering steps, we retained 10,833 high-quality hepatocytes for

analysis.

Single-cell Sequencing Data Analysis (Hepatocyte Data)

We performed dimensional reduction and clustering again on our filtered hepatocyte only dataset.

Principal component 1 (PC1) captures technical variation (nGene, nUMI) in the data (Figure 3-

8A, B, E). This is not surprising for a dataset comprised of a single cell type. Each of our treatment

conditions scores similarly on PCi (Figure 3-8B). PC2 captures pericentral-periportal variation

(Figure 3-8B,Eb). We identify pericentral and periportal genes in PC2 loading. We also note

periportal-pericentral variation captured in PC4. To more clearly visualize pericentral-periportal

variation we scored cells on this metric. To generate a list of pericentral genes, we calculated

gene by gene correlations and selected moderately expressed genes with large variability in

expression across the dataset which correlated positively with Cyp2el, a canonical pericentral

gene. To generate a periportal gene list we selected genes negatively correlated with Cyp2el

(Figure 3-8F). We then calculated the pericental hepatocyte (PCH) score and periportal

hepatocyte (PPH) score using AddModuleScore for these genes. We then confirmed that PCH

Score and PPH Score are inversely correlated as expected. We observe a pericental-periportal

gradient across PC2 using these scores (Figure 3-E). To generate a single score that captures

pericentral-periportal character, we subtracted the PCH Score from the PPH Score to create the

PPH-PCH Score, in which pericentral hepatocytes will score negatively and periportal

hepatocytes will score positively. We confirm that PCH Score and PPH score are inversely related

(Figure 3-8G).

To better visualize the data, we performed t-SNE dimensional reduction (Figure 3-8C). We

performed shared nearest neighbors clustering (SNN) to identify groups of similar cells (Figure
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3-8D). Hepatocytes from all samples look rather similar in lower PCs which describe shared

variation, such as technical differences or cross-lobule variation, while the higher PCs capture

inter-sample variation. We calculated percent variation captured per PC and generated an elbow

plot to determine the correct number of PCs to use in further analysis. We selected the top 13 PC

to include in our analysis, which well separated samples by treatment condition and does not

appear to be driven by technical effects. We observe a technical gradient across each cluster

(which is orthogonal to the pericentral-periportal gradient across each cluster), but the clusters

themselves do not appear technically driven (Figure 3-8H).

Heatmap genes were found using FindAllMarkers in Seurat, Wilcox test, min.percent = 0.10,

thresh.use = 0.25. Mitochondrial (mt-) and hemoglobin (Hbb-, Hba-) genes were removed from

the list prior to heatmap plotting.

Shared and unique by injury model gene lists were assembled by combining DE results across

all time points for each injury. We ran differential expression using a Wilcoxon test between each

treatment condition (A6, A24, A48, A96, PH3, PH48, PH 120) individually and untreated (UT). We

then combined results across all time points within each injury model. For genes that appeared in

the DE results in multiple time points to be combined, we retained the DE result with the largest

magnitude average log fold-change for that gene to generate composite DE results for each injury

model.

We ran pathway analysis on the composite DE results using the piano R package. Reference

gene sets were downloaded from MSigDB (Broad Institute). We used geneSetStat = "fisher",

adjMethod = "fdr", and signifMethod = "geneSampling". We then parsed the results to identify

shared and unique reference gene sets for each injury. Any reference gene set with a q-value

greater than 0.05 was discarded as insignificant. We then identified reference gene sets with
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significant overlaps with only APAP and with only PH composite DE results. To focus on truly

unique responses, we filtered out any reference gene set from the unique tables which had a q-

value < 0.2 for the other injury model. We then identified shared responses by compiling all

reference gene sets with a q-value of <0.05 in both APAP and PH. Selected reference gene set -

log(q) are plotted in Figure 3-3.

To identify cycling cells in the data, we calculated Cell Cycle Score using AddModuleScore in

Seurat over the cell cycle markers found in Tirosh et. al. 2015. We classified cells with a Cell

Cycle Score 2 standard deviations above the average as cycling cells (Figure 3-4). To better

compare cycling and non-cycling cells (CC and NC, respectively) we subsetted the data to create

a dataset containing all 51 CCs from the A24 condition and an equal number of NCs also from

A24; similarly, we created a dataset containing all 123 CC from PH48 and an equal number of

NCs also from PH48. Pathway analysis was done on a DE result obtained from comparing 174

CC from A24 and PH48 against an equal number of NCs from these time points. Piano was run

as described above. We plot -log(q) values for selected reference gene sets with a q value < 0.05.

Wnt Target Labbe Sig was calculated using AddModuleScore and the reference gene set

LABBEWNT3ATARGETSUP which was identified as significant in Piano gene set enrichment

analysis.

Immunohistochemical Analysis

Histology was performed by the histology core at Beth Israel Deaconess Medical Center using

standard procedures and automated workflow. Samples were processed and embedded following

fixation in 10% neutral buffered formalin for 48 hrs. Samples were embedded in paraffin and

sectioned at 5 ptm thick. Immunohistochemistry was performed on a Leica autostainer (Leica

Biosystems) with enzyme treatment (1:1000) using standard protocols. The antibody used for

assessment of cell proliferation was Mki-67, and cell death was ApopTag Peroxidase In Situ
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Apoptosis Detection Kit (Millipore, Cat. # S7100). Sections were then counterstained with

hematoxylin, dehydrated, and film cover slipped. Four representative images were captured per

slide. TUNEL-positive area and Mki-67-positive cells were measured and averaged across the

four images for each sample using Fiji.

Single Molecule Fluorescent in Situ Hybridization (smFISH)

smFISH was conducted using RNAscope technology (RNAscope Fluorescent Multiplex Kit; Cat.

# 320850; Advanced Cell Diagnostics; Neward, CA, USA). Fresh frozen sections (10 uIm thick)

were used following the manufacturer's guidelines. A 4x4 40x maximum intensity projection was

created following capture of a 10 uM z-stack (0.5 pM per slice). This resulted in multiple liver

lobules available for analysis within a single section. Images were cropped to the size of a single

liver lobule and cellular outlines were defined using CellProfiler. smFISH signal was then

quantified using FISH-quant.

Statistical Analysis

We calculated p-values for shifts in gene expression or module scores using the Wilcox test,

Bonferroni corrected for multiple testing. Gene set enrichment results in piano were calculated

using Fisher's test and the gene sampling method and corrected by FDR.
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Chapter 4: Identifying Cellular Changes to the

Gastrointestinal System Induced by High Fat Diet

In this chapter, we expand our scope from a targeted acute injury to one organ, to chronic damage

affecting many organs. Unlike the acute liver injurie models in the previous chapter, where the

cellular response contributes to maintenance of normal function and organ recovery, here the

cells respond to a perturbation - six months on a high fat diet - in a way that is detrimental rather

than restorative to organismal health. A high fat diet and obesity are known to increase risk for

inflammation and cancer in the liver and gut, and indeed we observe these outcomes in our high

fat diet mouse model system. To better understand the cellular changes driving these outcomes,

we apply scRNA-Seq to samples across multiple gastrointestinal and reference immune

compartments (the liver hepatocyte-enriched; the liver non-parenchymal cell-enriched; proximal

small intestine; distal small intestine; colon; bone marrow; spleen; and peripheral blood) to profile

shifts in cell type composition and cellular behavior in response to six months on a high fat diet

compared to control diet. We encounter changes in the liver and gut concordant with known

biology and discover pathways whose activation or deactivation may help drive these changes.
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4.1 Background

Obesity is linked to increased risk for many health problems, including multiple types of cancers,

heart disease and osteoporosis 2. Rising obesity rates around the world 34 5 create a pressing need

for a greater understanding of how obesity and diet contribute to poor health at the cellular and

molecular level. The influence of diet over organismal health has long been appreciated, and

many epidemiological and model organism studies have linked obesity with increased risk for

inflammation, fibrosis and cancer in many organs, including the colon6, liver7, and pancreas8.

Cancer, the second leading cause of death in the United States, has a strong nutritional

component, with an estimated one-third of cancers due to dietary factors, such as obesity2.

Studies have suggested that changes in the adult stem cells which maintain homeostasis in mnay

organs may lead to the development of tumorigenic stem cells, and that these changes are linked

to obesity6 . However, our understanding of the molecular pathways driving these alterations and

actionable targets to therapeutically modulate these tumorigenic shifts in stem cells have only

recently begun to take shape.

In 2016, Bayaz and colleagues published work uncovering a propensity for pro-obesity high fat

diets (HFDs) to increase stemness in intestinal progenitors in mice and identified activation of

pathways that may lead to development of cancer'. These researchers maintained mice on a pro-

obesity high fat diet for 9-14 months. They found that HFD induces a peroxisome proliferator-

activated receptor delta (PPAR-6) signature in stem and progenitor cell populations in the

intestine. In HFD, crypts contained higher numbers of intestinal stem cells (ISC) at the expense

of more differentiated cells (lower numbers of Paneth cells) (Figure 4-1A). In an organoid culture

system, they found HFD and PPAR-6 agonist-treated samples possessed enhanced organoid

forming capacity, suggestive of enhanced tumorigenic potential of these cells (Figure 4-1B).

Additionally, they were able to recapitulate the effects of HFD by treating CD intestinal-
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derived organoids with lipids found in the high fat diet, supporting the notion that it is the interaction

with these lipids that initiates the observed changes, and demonstrating the ability to model this

phenomenon in vitro.

In addition to the described HFD-induced changes in the gut, the Yilmaz Lab also observed liver

disease - including fatty livers, steatohepatitis and spontaneous hepatocellular carcinomas

(HCCs) - in their HFD mice (Figure4-1C,D)9 . Indeed, non-alcoholic steatohepatitis (NASH) due

to obesity and metabolic syndrome has emerged as a major risk factor for cirrhosis and HCC, and

is expected to surpass hepatitis C viral infection as the major cause of liver disease by 202279'1o.

Alarmingly, HCC is the fastest-growing cancer in terms of number of diagnoses in the U.S., and

few treatment options currently exist".

Unlike many cancers in which the cell-of-origin and tumor progression are well defined, the

cellular and molecular origins of liver cancer are largely unknown. Even the identity of hepatocyte

subsets with progenitor activity or tumorigenic potential have not been definitively described.

While there may not be a defined stem cell in the liver, possibly all hepatocytes have the ability to

become stem cells under proper conditions, though this remains uncertain. Diverse liver cell

types possess regenerative capacity in injury models13 ,14 ; for example, after limited acute injury,

populations of mature hepatocytes can self-duplicate or proliferate to replenish the damaged liver

and, after severe injury, bipotent biliary cells can give rise to both mature hepatocytes and biliary

cells 5 . These findings indicate that distinct subsets of liver cells harbor regenerative potential

which may be induced in a context dependent manner. The identity of these progenitors and their

molecular adaptations to HFD that render the organ vulnerable to oncogenic transformation

require comprehensive characterization. Possibly, HFDs contribute to tumorigenesis in the liver

by altering the regenerative capacity of progenitors in the liver, as was discovered in previous
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work in the intestine'. To directly explore these points, we seek to define progenitor cell subsets

induced or modulated by HFD that may serve as the cell-of-origin for liver tumorigenesis, and to

determine mechanisms through which lipid-enriched diets may influence tumorigenic potential in

the liver. Identifying and targeting the pathways that contribute to changes in stem-like or

progenitor cells and enhance tumorigenesis - whether PPAR, like in the intestine or some other

pathway unique to the liver - in obesity has the potential to dampen obesity-linked tumor incidence

and disease progression in the gastrointestinal system.

Here, we profile eight samples originating from multiple organs from three HFD and two control

diet mice using the scRNA-Seq method, Seq-Well16 : liver hepatocyte-enriched, liver non-

parenchymal cell-enriched, proximal small intestine, distal small intestine, colon, bone marrow,

spleen, and peripheral blood to generate our pilot dataset. We observe diet-induced changes

within multiple cell types. In our sequencing data analysis, we identify pathways and regulators

associated with HFD-induced changes in the profiled compartments. These include upregulation

of PPAR pathways in HFD intestinal samples (in line with previous reports), inconsistent PPAR

upregulation in HFD liver, transitions toward steatosis and lipid accumulation in HF hepatocytes,

and shifts in immune populations in the gut and liver. Additionally, we pilot a protocol for growing

organoids from our hepatocyte samples and identify a possible enhanced growth phenotype in

HFD hepatocyte-derived organoids.

RESULTS

4.2 scRNA-Seq captures many cell types across tissues

To profile cellular responses to pro-obesity HFD, we performed Seq-Well on mice maintained on

a HFD (60% of calories from fat) as described in Beyaz et. al.1 for six months. Diet-induced

cellular changes are likely in progress by six months, with mice progressing to more severe
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manifestations of obesity-associated metabolic changes and gastrointestinal disease by around

nine to 14 months'' 7 . Obesity is linked to cancer and inflammation in both the gut and liver;

therefore, we profile samples from multiple gastrointestinal and complementary immune sites to

gain a fuller picture of the effects of HFD spanning multiple organs.

Samples from peripheral blood (PB), bone marrow (BM), spleen (Sp), liver hepatocyte-enriched

(Hep), liver non-parenchymal-enriched (NPC), proximal small intestine (Prox), distal small

intestine (Dis) and Colon (Col) were processed to single cell suspension and loaded onto a Seq-

well array (Table 4-1, Methods). Prior to loading, crypts from proximal small intestine, distal small

intestine and colon were isolated, dissociated into a single cell suspension and sorted into CD45+

and EPCAM+ populations to enrich for immune cells in the sample. The sorted populations

(20,000 EPCAM+, 5,000 CD45+) were mixed together and loaded onto an array. Libraries were

then prepared and sequenced on a Nova-Seq.

Following data processing and filtering, we obtained a total of 42,684 cells. To visualize our data,

we performed dimensional reduction by Principal Components Analysis (PCA) and t-Stochastic

Neighbor Embedding (t-SNE). We identified groups of similar cells using Shared Nearest

Neighbor (SNN) clustering, and generated module scores from marker genes highly expressed

in various cell types to identify the cell type present in each cluster (Figure 4-2A-D, Methods).

We identify several clusters and multiple types of intestinal cells: stem/transamplifying (STA),

Enterocyte, Enteroendocrine (EEC), Goblet, Paneth and Tuft. STA and Enterocyte clusters

separate mainly by point of origin: proximal, distal, or colon (Figure 4-2). We observe immune

cell (B cell, T cell) clusters populated by cells from many different compartments. Liver-resident

Kupffer and hepatocyte clusters emerge, with clear separation by diet condition in hepatocytes.

Finally, we identify bone marrow- and spleen-specific clusters of immature immune cells.
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nGene nUMI nCell filter
CD2CoI 2212 4889 1737
CD2Dis 2260 6129 1332
CD2Hep 2531 15127 1328
CD2NPC 670 2639 1326
CD2PB 453 1019 449

CD2Prox 4090 13068 1756
CD4BM 3406 10330 1868
CD4CoI 2997 9707 1241
CD4Dis 3740 11319 1607
CD4Hep 239 1786 335
CD4NPC 464 1878 742
CD4PB 1755 5002 1075
CD4Prox 3693 10280 1965
CD4Sp 2870 7767 1543
HF2CoI 2435 8610 935

HF2Dis 3309 10264 1292

HF2Hep 681 4713 964

HF2NPC 786 2763 1371

HF2PB 1409 5685 878

HF2Prox 2471 8137 1170

HF3BM 1757 4275 1804

HF3Col 646 1917 608

HF3Dis 1251 2748 1279

HF3Hep 216 837 231

HF3NPC 189 899 342

HF3PB 675 1393 745

HF3Prox 2749 6316 1813

HF4Col 3455 9932 1296
HF4Dis 3551 9690 1961

HF4Hep 540 1700 1347
HF4NPC 458 1696 960
HF4PB 1973 4497 1622
HF4Prox 3416 8702 1683

HF4Sp 2899 7201 2079

Table 4-1 1 Sample metrics
Samples processed from two
control diet (CD2, CD4) and
three high fat diet (HF2, HF3,
HF4) mice. Samples were
prepared from bone marrow
(BM), colon (Col), distal small
intestine (Dis), liver hepatocyte-
enriched (Hep), liver NPC-
enriched (NPC), peripheral
blood (PB), proximal small
intestine (Prox) and spleen (Sp).
Due to technical challenges not
all samples were obtained from
all mice. Number of genes
(nGene) and number of unique
molecular identifiers (nUMIs)
were calculated for each sample
over all events called in
alignment. Number of cells
remaining after filtering for >500
transcripts and >200 genes
(nCell filter) reported for each
sample.
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We apply quality metrics: number of genes (nGene), number of unique molecular identifiers

(nUMI, number of RNA molecules captured) and percent mitochondrial content (percent.mito; NB

high mitochondrial content can indicate cell membrane disruption from excessively harsh

processing and diminished data quality 18); and we identify two low quality clusters mainly

originating from colon and from liver which we omit from further analysis (Figure4-2C,D). We also

note lower quality in the HFD hepatocyte clusters relative to other cell types. Cells isolated from

the livers of HFD animals are incredibly delicate, likely due to increased volume of fats, and

strongly encapsulated within the more fibrotic tissue found in HFD. This increased tissue fibrosis

and larger gross liver size necessitated harsher profusion and digestion conditions, as well as

longer treatment time to liberate single cells for analysis. It has also been noted in the literature

that hepatocyte mitochondrial content can be very high and that hepatocytes appear highly

susceptible to damage from processing18'1 9. It has been postulated that these large fragile cells'

membranes are more easily disrupted which may further inflate mitochondrial content due to loss

of cytosolic mRNAs18 . Here, metabolic changes induced by HFD may also contribute to shifts in

mitochondrial gene expression.
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Figure 4-2 | Identification of cell types in full dataset.
Previous page.
(A) t-SNE of all sequenced cells passing initial filter, colored by compartment of origin. (B) t-SNE
of full dataset colored by diet condition, CD (red) or HFD (blue). (C) t-SNEs colored by module
score calculated over marker genes for expected cell types, and number of genes captured
(nGene), and percent mitochondrial content (percent.mito). Blue, low; yellow, intermediate; red,
high. (D) t-SNE showing SNN clustering (numbered with 0 being the cluster with the most cells,
to 29, the cluster with the fewest). Clusters are annotated with cell type and, for samples primarily
from a particular sample, major sample type of origin. (E) Stacked barplot showing fractional
abundance of cells from each mouse in each cluster. HF mice are shown in purple, CD mice in
blue.

4.3 HFD-induced changes in the gut

To more clearly assess diet-induced shifts in the gut, we subsetted the dataset to include only

samples that originated in the proximal, distal or colonic regions, and filtered out the low-quality

colon cluster and the irreproducible HF2 Proximal cluster (Methods). We performed dimensional

reduction and SNN clustering again on this subsetted data, and assigned cell type identities to

each cluster as we did for the full dataset. Each cluster is populated with cells from HFD and CD

mice, yet we noticed some diet-based variation within clusters, especially in the enterocyte

clusters (Figure 4-3AB).

Previous work has reported that PPAR signaling drives differences between HFD and CD

intestinal cells at 9-14 months on the diet'. We calculated a PPAR signaling score over our gut

cells to determine whether this pathway is already activated in the intestines at 6 months on HFD

in each of the cell type clusters captured (Methods). Indeed, in some of our cell type clusters we

observe upregulation of PPAR target genes (KEGGPPARSIGNALINGPATHWAY, Broad

75



MSigDB 20) in the HFD compared to the CD condition, as previously reported' (Figure 4-3C).

Interestingly, we find the strongest upregulation of the PPAR program in the proximal enterocyte

cells (d = 2.13), upregulation in the proximal stem (d = 1.94) and transamplifying cells (d = 1.94),

and little to no upregulation in the distal and colon samples as well as for cell types other than

enterocyte/transamplifying/stem (d = 0.629 to 0.03) (Figure 4-3C). These patterns are

represented in each of the multiple mice in this dataset (data not shown). This supports the report

by Beyaz and colleagues of an HFD-induced increase in PPAR target gene expression in the

small intestine and colon at around one year on HFD1. Our data show significant upregulation of

PPAR targets has begun by six months on HFD in the proximal region, but suggests that changes

in the distal or colonic regions may involve lower levels of PPAR activation, occur more slowly, or

involve pathways other than PPAR at this time point.

To explore other pathways which may be involved in the distal small intestine and colon we

performed pathway analysis with Ingenuity Pathway Analysis (IPA) from Qiagen. We found

decreased activity of RB1, a tumor suppressor 1, in HFD enterocytes from the proximal region

(z-score -2.945, p-value 5.51e-03) and stem/transamplifying cells from the colon (z-score -3.537,

p-value 1.41e-11). We also found upregulation of RELA, involved in NF-KB signaling and

inflammation22 in colon stem/transamplifying HFD (z-score 2.779, p-value 1.85e-05).
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Figure 4-3 | Analysis of gut-originating populations.
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proximal small intestinal) and diet (CD, HF). (B) tsne with SNN clustering, clusters numbered
from most to fewest cells. Clusters are annotated with cell type and sample of origin. (C) PPAR
signature score calculated for CD (pale colored, left) and HF (bright colored, right) cells in each
cluster. Effect size calculated by Cohen's d: d < 0.2 = n (negligible); 0.2 < d < 0.5 = * (small); 0.5
< d < 0.8 = ** (medium), d > 0.8 = *** (large). (D) Fractional abundance of HF and CD cells for
each type of immune cell in gut dataset.
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Next, we subsetted our gut immune cell cluster to further refine our cell type cluster assignments

by iterative clustering. We identify several cell types, including B cells (naive/memory and

plasmablast) CD4+T cells, CD8+T cells/NK cells, dendritic cells (DC), macrophages and

neutrophils, and noticed fluctuations in the frequencies of these subsets between HFD and CD

(Figure 4-3D). Importantly, each of the gut samples was sorted prior to loading onto the Seq-Well

array to enrich for immune cells, and each array was loaded with the same 1:4 ratio of CD45+ to

EPCAM+ cells (Methods). However, we ultimately obtained inconsistent numbers of immune

cells in each of our samples. This is likely due to a combination of variable relative viability among

cell types and sequencing depth. The absolute number of immune cells is variable, and the ratio

of immune to non-immune ranges from 14% immune in HF2 to 2% in HF4. There appears to be

a trend of more deeply sequenced samples (CD2, HF2) containing more immune cells,

suggesting deeper sequencing of samples from experiments 3 and 4 may increase immune cell

numbers. The immune cells that make up the immune component in each sample vary

considerably in their fractional abundance of immune cell types between HF and CD. The HFD

samples have a much higher fraction of B cells while the CD immune population contains more T

cells, dendritic cells, and macrophages. This variability may represent an infiltration of B cells or

efflux of T cells and macrophages in HFD, or the reverse in CD. Since our protocol accepts a set

number of cells an input, an increased infiltration of one cell type will result in a decrease in the

fractional abundance of others in the data, making absolute abundance is difficult to determine.

Our data suggests some shift in immune composition, but additional experiments, such as flow

analysis, are needed to quantitatively ascertain the abundance of various immune subsets in HFD

and CD guts.

78



4.4 HFD-induced changes in the liver

Obesity is known to increase risk for both intestinal and liver disease. The HFD mice in this study

do begin to develop liver problems by 6 months on the diet and, in some cases, progress to

spontaneous HCC at later time points (Figure 4-1C). To dissect and study HFD-induced

transformations in the liver at single-cell resolution, we applied Seq-well to liver samples from

HFD and CD. Biological changes in the HFD liver make hepatocytes more sensitive to processing

due to fat accumulation while, at the same time, making the liver larger, more fibrotic and difficult

to dissociate, presenting challenges in processing. For these reasons, our HFD liver data is of

lower quality (lower nGene, lower cell number, higher percent mitochondrial content) than CD

liver, but still interpretable (Table 4-1, Figure 4-4A). We have already made several adjustments

to the protocol to improve data to this point (Methods), but future iterations may make additional

adjustments to improve HFD liver data quality.

We subsetted our dataset to include only samples originating in the liver, performed dimensional

reduction and reclustering (Methods). We identify expected liver cell types: Hepatocytes, liver

endothelial cells (LECs), Kupffer cells, macrophage/monocytes, pDCs, T cells, B cells and

neutrophils (Figure 4-4A,B). Intriguingly, the hepatocytes form distinct clusters separating by diet,

with some diet-based shifts evident in other cell types as well (Figure 4-4C).
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Figure 4-4 | Analysis of liver-originating populations.
Previous page.
(A) t-SNE of liver-originating samples, colored by sample type and diet condition. (B) SNN
clustering. Clusters annotated with cell type. Cells originating from control lighter colored; cells
originating from HFD vibrant colored. (C) Stacked barplot of fractional abundance of cells from
each mouse in each identified liver sample cluster. HFD purple; CD blue. (D) Iterative clustering
over non-parenchymal liver cells (NPCs). SNN clustering and cell type annotation. (E) t-SNE of
NPC liver cells colored by diet condition. (G) Iterative clustering over hepatocytes. Colored by
mouse of origin. SNN clusters outlined in black. (H) PPAR activation signature score over
hepatocyte clusters. (1) CEBPA activation signature score over hepatocyte clusters. Effect size
calculated by Cohen's d.

We performed iterative clustering over the non-parenchymal cells of the liver to gain greater

resolution in calling the cell types represented. We identify Kupffer cells, liver capsule

macrophages (LCMP), pDCs, Neutrophils, liver endothelial cells (LEC), B cells, and T cells

(Figure 4-4D). Kupffer cells were the most plentiful cell type in the NPC dataset and appear to

separate slightly by diet condition (Figure 4-4E). We ran IPA over genes differentially expressed

between HFD and CD kupffer cells. Within "Diseases & Functions", we found upregulation in HFD

of "Immune response of macrophages" (z-score 1.778, p-value 1.65e-1 1), "Activation of cells" (z-

score 2.294, p-value 2.42e-42) and "Wound" (z-score 2.219, p-value 1.97e-08). HFD also showed

upregulation of the activity of several upstream regulators such as pro-inflammatory NF-KB (z-

score 2.179, p-value 3.98e-11) and TREM1 (z-score 2.938, p-value 2.31e-07). Taken together,

these results present HFD kupffer cells as more activated and more inflammatory than in CD

(Figure 4-4F).

To specifically analyze cellular responses in the hepatocyte data, we selected hepatocyte

clusters, filtered on a mitochondrial content cutoff of 50%, as has been reported previously18 , and

performed iterative clustering over the remaining cells (Methods). We identify a large cluster of

hepatocytes originating mainly from CD2, a large cluster from HF4 and HF3, a smaller cluster
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from HF2, a small cluster from CD4 and another small cluster from HF2 (Figure 4-4G). We

performed differential expression between the HFD and CD hepatocytes and ran pathway

analysis on the resulting differentially expressed genes through IPA. Results from IPA "Diseases

& Functions" identifies upregulation of "Liver steatosis" (z-score 3.522, p-value 2.93e-21),

"Hepatic steatosis" (z-score 3.522, p-value 2.93e-21), "Inflammation of liver" (z-score 1.857, p-

value 1.50e-09), Oxidative stress (z-score 3.657, p-value 1.10e-11) and "Accumulation of

cholesterol" (z-score 2.320, p-value 3.95e-07), as well as a decrease in "Synthesis of lipid" (z-

score -3.501, p-value 6.89e-36) in the HFD compared to CD hepatocytes. IPA upstream

regulators show a downregulation in HFD of activity of SREPF2 (also known as Srebp2, z-score

-4.883, p-value 1.67e-24), a transcription factor responsible for activating synthesis and uptake

of cholesterol and fatty acids23 . This aligns well with the expected biology of the HFD liver,

confirming that we have captured interpretable data.

We next asked whether activation of the PPAR pathway in the HFD condition occurs in the liver

as it does in the gut. We find PPAR target genes upregulated in HF2 compared to CD2, but down

regulation of PPAR in HF3 and HF4 compared to CD2 (Figure 4-4H). Samples from experiment

2 were resequenced to achieve greater sequencing depth, while some samples from experiments

3 and 4, especially HF4Hep, are undersequenced, possibly affecting PPAR target gene

expression sensitivity. We will address this possibility by resequencing these samples to improve

depth. Alternatively, PPAR activation may occur in some HFD mice, but not others at the six

month time point. In search of other regulators which may contribute to HFD-induced changes in

the liver, we combed our Upstream Regulator IPA results for potential drivers of HFD-induced

changes in the liver. IPA identifies significant downregulation in HFD of activity of RB1 (z-score -

5.82, p-value 8.43e-14), a transcription factor with tumor suppressive function21 , and down

regulation, particularly in HF4, of activity of CEBPA (z-score -4.749, p-value 4.93e-1 3), a
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transcription factor involved in cell cycle regulation, lipid and glucose metabolism in the liver, and

leptin expression and body weight homeostasis, whose function is known to be suppressed in

HCC and other types of liver disease24 (Figure 4-41). IPA also identified upstream regulators

whose function increased under HFD conditions, including NCOR1 (z-score 2.6, p-value 2.85e-

10), which can contribute to thyroid hormone resistance, and hormonal and metabolic

changes25,26. Additional work is needed to further explore and validate the potential contributions

of these pathways to HFD-induced changes in the liver.

Changes in proliferative potential and "stemness" can prime cells to grow in dysregulated ways,

possibly leading to cancer. Although a dedicated liver stem cell population has never been

definitively identified, we postulate that a subset of hepatocytes may activate stem function in

response to HFD and progress toward the development of HCC. Thus, we scored hepatocytes

on a stem cell signature to identify changes is stem-like expression and searched for changes in

these stem-like cells which may lead to HCC. More specifically, we scored hepatocytes on

expression of stem marker genes Lgr5, Axin2, Sox9, Asc2, Tbx3 and Gkn3 (Methods). We

identified hepatocytes which have activated a stem cell program as cells scoring at least two

standard deviations above average. (Figure 4-5 A). A much higher percentage of HFD

hepatocytes score as stem cells than CD hepatocytes (5.6% vs 0.92%), supporting the notion

that HFD may increase stemness in the liver, similarly to what has been reported in the gut'. High

expression of the stem signature in hepatocytes was driven mainly by expression of Sox9, Lgr5

and/or Axin2. HFD appears to dysregulate expression of these genes, with suppressed

expression of the stem gene Sox9 and increased expression of Lgr5 and Axin2 in HFD compared

to CD (Figure 4-5B). Interestingly, Lrg5 and Axin2, the stem genes most highly expressed in HFD

hepatocyte stem cells, are expressed largely mutually exclusively, in contrast to the gut where

they are coexpressed (Figure 4-5C). Many of the genes correlated with Lgr5 expression and
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Axin2 expression in the hepatocyte dataset are involved in cytokinesis and cell cycle pathways 20,

supporting the notion that cells expressing these genes may possess increased proliferative

potential. Further identification and characterization of changes in sternness within hepatocytes

will serve to pinpoint the cellular origins of HCC, which remain poorly defined.

4.5 Liver Organoids

Organoids can serve as a useful model system for evaluating perturbations in vitro and assessing

the sternness of input samples. In the intestine, HFD samples possessed greater capacity to form

and grow organoids, a characteristic of their enhanced sternness. This same characteristic may

enhance their ability to progress to tumors. Here, we pilot a recently published hepatocyte

organoid protocol 27 with our HFD and CD hepatocyte-enriched samples to assess their relative

abilities to form and grow organoids.

We seeded organoids in matrigel and noted clear morphological differences between the HFD

and CD hepatocytes, suggestive of their biology. Despite efforts to seed equal numbers of cells

for both conditions, in this pilot experiment, the HFD was seeded much less efficiently than the

CD (more cells matrigel at day 0 for CD than HFD) (Figure 4-6A). As expected, only a few

organoids formed and grew very slowly 27. We continued to grow the organoids under the

prescribed conditions and noted heterogeneous morphology. Some organoids appeared solid

and bumpy or branched (the hepatocyte organoid morphology) while others appeared cystic and

spherical (the cholangiocyte or biliary morphology). Over time, the cultures shifted to contain all

cholangiocyte morphology organoids in all samples (Figure 4-6B). We observed some individual
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hepatocyte morphology organoids shifting to cholangiocyte morphology in culture; additionally,

the culturing conditions apply a selective pressure in favor of the faster growing cholangiocyte-

like organoids. The large, spherical cholangiocyte organoids may break apart during passaging

and seed more of these organoids in the new matrigel. The published protocol did not report this

cholangiocyte shift phenomenon, which is likely a product of the much older mice used in our

study (a few weeks old in the published protocol versus seven to eight months in the experiments

here). Bidirectional ability for biliary and hepatic cells to regenerate one another has been reported

in vivo 5 , suggesting the possibility of interconverting between these cell types under proper

organoid culture conditions (which have yet to be determined). By around two months in culture,
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the liver organoids began growing much more rapidly, likely due to adaptation to culture conditions

and selective pressure for cells able to grow rapidly in vitro. We performed an ATPase growth

assay and detected a subtle enhanced growth phenotype in the HFD hepatocyte-derived

organoids (CD4 vs HF4 p-value = 0.16, CD4 vs HF3 p-value = 0.03, ANOVA with multiple testing

correction) even after months in culture (Figure 4-6C). Additionally, we performed Seq-Well on

the liver organoids to determine how faithfully they recapitulate the transcriptional profiles of the

hepatocytes from the same animals which were immediately profiled (HF3, HF4, CD4 hepatocyte-

enriched samples). Data processing and analysis for this experiment are ongoing.

4.6 Follow-up and ongoing experiments

Our current pilot dataset analysis has characterized many cell types from multiple compartments,

identified biologically meaningful shifts in transcript expression, and nominated pathways which

may participate in driving these changes; yet, more work remains to be done to further explore

and validate these observations.

In agreement with earlier work from the Yilmaz Lab', we observe upregulation of PPAR in HFD

intestinal samples. In our data, PPAR upregulation occurred mainly in the proximal region. We

also note significant upregulation of PPAR activity in enterocyte cells from the proximal region,

not mentioned in previous work which was focused on stem and progenitor cells. Importantly, our

experiments were performed at an earlier time point than in the published work (6 months vs 9-

14 months on diet), thus representing earlier initiation of PPAR activation at least in some regions.

Additional experiments, such as the organoid, and imaging experiments described in the earlier

publication', could be performed at the earlier time point used here to validate our findings.
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Beyond the gut, we also observe diet-induced changes in the liver. While upregulation of PPAR

activity was inconsistent in the liver, it remains a possible driver of liver changes in need of further

investigation. In the gut, treatment with a PPAR agonist recapitulated the effects of HFD, and a

similar experiment could be performed in the liver or liver organoids to determine whether a PPAR

agonist can recapitulate HFD effects in the liver as well. In addition to PPAR, we identify other

pathways which may be activated or deactivated in the liver. Modulation of these upstream

regulators through agonists or inhibitors will provide insight into the role of these pathways in

driving changes in the HFD liver.

In both liver and gut, we note possible shifts in immune composition, but these shifts are difficult

to interpret in existing data due to confounding factors (CD45 sorting in gut samples, technical

effects, undersequencing of some samples). Flow analysis to quantify the abundance of immune

subsets in the liver and gut will determine whether immune populations, such as B cells in the gut

or macrophages in the liver, infiltrate into these organs in HFD. Additionally, we have sequencing

data from reference immune sites in the peripheral blood, bone marrow and spleen. Comparing

between immune cells within the liver or gut to immune cells outside these organs will reveal how

these immune cells respond to the inflammatory or oncogenic environment in the HFD

gastrointestinal system. "Spill over" genes from the free RNAs in the media in cell loading

complicate comparisons of a given cell type across sample types. Application of a computational

tool such as SoupX28 for background correction to remove this contamination is needed to

properly compare immune cells across organs.

Infiltrating immune cells may travel between the liver and gut and support cross-talk between

gastrointestinal and immune sites. Further analysis of bone marrow, peripheral blood and spleen

samples may identify immune responses to HFD outside the GI system if such responses exist.
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In our dataset HFD and CD bone marrow samples do cluster separately, but technical differences

in sequencing depth dominate the differences between the HFD and CD data in this compartment.

After deeper sequencing, we will be equipped to better compare these samples.

Analysis of sequenced liver organoids is ongoing and when complete will determine how closely

the organoids recapitulated the biology of the hepatocytes from the HFD and CD livers. Results

may guide further optimization of the organoid culturing protocol. Future organoid experiments

will work toward better normalizing seeding efficiency to facilitate comparison of organoid forming

efficiency between diets. Ideally, we will be able to grow organoids with a consistent hepatocyte

phenotype and controlled seeding from HFD and CD samples. Withdrawal of some growth

factors, such as WNTs, from organoid culture during the first few days could select for cells

already primed for growth or proliferation in the in vivo environment and may confer a stronger

growth advantage to the HFD-derived organoids. If so, this would demonstrate the enhanced

ability of HFD hepatocytes to survive and grow in vitro and possibly form tumors in vivo. In the

published work with gut organoids from HFD and CD, culturing CD-derived organoids with lipids

recapitulated the effects of HFD. Similarly, culturing CD hepatic organoids with these lipids will

determine whether these fats also affect these liver organoids in analogous ways.

Extensions of this work to future projects may include building a dataset over a full-time course of

3, 6, 9 and 12 months, repeating experiments with female mice to explore sex-differences in HFD

responses, and extending our work to human samples are discussed in detail in Chapter 6. The

work described here and these extensions will deepen our understanding of the effects of obesity

and diet on the gastrointestinal system and development of diet-induced cancer, and point toward

potential therapeutic targets. Further validation and development of these candidate targets may

one day lead to improved treatment options for NASH, HCC, and intestinal cancers.
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4.7 Methods

Mice

Mice were maintained on a high fat diet (HFD) or control diet (CD) for 6 months, as described

previously'. Liver samples (hepatocyte-enriched and NPC-enriched) were obtained as described

in Chapter 3. Intestinal samples (proximal small intestine, distal small intestine and colon) were

processed to enrich for crypts, then dissociated to single cell suspensions. Single-cell

suspensions were sorted on a Sony SH800 flow sorter into CD45+ (immune) and Epcam+ to

increase input of immune cells. One array was loaded for each intestinal sample with a sorted

population of 5,000 immune cells and 20,000 Epcam+ cells. Counting of sorted populations

showed that only about half as many cell as expected are in the sorted populations, so the arrays

were loaded with close to the target of 15,000 cells.

Library preparation and sequencing

Samples were run according to the Seq-Well16 version 2 protocol with second strand synthesis

with the following adjustments: increased loading from 10,000 to 15,000 cells, media for loading

and sealing was changed from RPMI to Hepatocyte media for liver samples and crypt media for

gut, cell loading time was increased from 5 minutes to 15-20 minutes for liver samples and 10

minutes for all other samples. We note that prompt processing of all samples, especially liver

samples, is essential to obtain quality so each sample was processed as soon as it was ready,

rather than waiting for several samples to run in parallel.

Libraries were sequenced on a Nova-Seq (Illumina) at 12 libraries per run. Undersequenced

libraries from experiment 2 were sequenced again to improve sequencing depth. Resequencing

of some samples in Experiments 3 and 4 to increase sequencing depth is still needed. Average

nGene <1000 may indicate undersequncing. Sequencing output was aligned to mm10 by STAR

aligner. Events with fewer than 500 transcripts captured were discarded as non-cells. Remaining
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cells were filtered on >200 genes expressed. More stringent filtering results in excessive loss of

HFD hepatocytes. This filtering does allow some low-quality cells/events into the dataset, but

these cells readily cluster together and are filtered out from subsequent analysis.

Sequencing data analysis

Filtered data was analyzed using primarily the R package Seurat version 2 from the Satija Lab.

We performed dimensional reduction by Principal Components Analysis (PCA) over the dataset.

We selected significant PCs from the Elbow Plot and performed t-Stochastic Neighbor Embedding

(tsne) over the selected PCs and Shared Nearest Neighbor (SNN) clustering over those same

PCs. Differential expression was performed using the "FindMarkers" function and the Wilcoxon

statistical test.

We created cell type signatures using the AddModuleScore function in Seurat and a list of marker

genes for each expected cell type. These module scores were used to assign cell types to SNN

clusters. Marker genes for cell types were obtained from Haber et. al. for intestinal cell types 29

and Halpern et.al. for liver cell types30. We also created module scores for selected pathway gene

lists, such as KEGGPPAR in the same way.

To gain further resolution in our analysis, we performed iterative clustering. In very large datasets

cell types or subtypes which are small in number compared to the total often do not drive enough

of the total variation to clearly cluster out by SNN. By subsetting the data to include only a smaller

selection of cells, we can increase resolution to call more subtle differences or identify rarer cell

types within this subset group as variation driven by the small group of cells is now enough of the

total to separate clearly by SNN. We perform iterative clustering over groups selected by sample

of origin, and cell type and cluster(s).
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We perform pathway analysis using Ingenuity Pathway Analysis (IPA) from Qiagen on selected

differentially expressed gene lists to identify biological processes which may vary between the

compared groups. DEGs were identified as described above, and filtered to include only genes

with a p-adjusted value of <0.1 and an average log-fold change of >0.25 for input to IPA. Core

analysis was run using default settings. Interesting IPA results were curated manually.

Organoid Culture

Hepatocyte organoid culturing was performed as described previously 27. For organoid Seq-Well

experiment, organoids were dissociated to single cell suspension and loaded 15,000 cell per

array. On array each was run for organoids from HF3, HF4 and CD4. ATPase growth assay was

performed after approximately 2 months in culture. Aspirate media from well, add 65 uL CTG3D

(Promega) to each well, seal plate and shake at room temperature 30 minutes. Transfer 15ul to

white 384 wp (in triplicate), read at 1sec lum interval time on lumenesence plate reader.

Statistics

Effect size for expression of module scores was calculated Cohen's d. Significance in the

organoid growth assay was calculated using ANOVA with correction for multiple testing.
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Chapter 5: A Reproducibility-based computational

framework identifies an inducible, enhanced

antiviral dendritic cell state in HIV-1 Elite

Controllers

This chapter is adapted in accordance with BMC's open access policy from the following
article published in Genome Biology:

Martin-Gayo, E*., Cole, M.B*., Kolb, K.E*., Ouyang, Z., Cronin, J., Kazer, S.W.,
Ordovas-Montanes J., Lichterfeld, M., Walker, B.D., Yosef, N., Shalek, A.K., and Yu,

X.G., "A Reproducibility-Based Computational Framework Identifies an Inducible,
Enhanced Antiviral State in Dendritic Cells from HIV-1 Elite Controllers," Genome

Biology 19, 10 (2018).

* Denotes equal authorship

Human immunity relies on the coordinated responses of many cellular subsets and

functional states. Inter-individual variations in cellular composition and communication

could thus potentially alter host immune function. Here, we explore this hypothesis by

applying single-cell RNA-Seq to examine viral responses among the dendritic cells (DCs)

of three elite controllers (ECs) of HIV-1 infection. To overcome the potentially confounding

effects of donor-to-donor variability, we present a generally applicable computational

framework for identifying reproducible patterns in gene expression across donors who

share a unifying classification. Applying it, we discover a highly functional antiviral DC

state in ECs whose fractional abundance after in vitro exposure to HIV-1 correlates with

higher CD4+ T cell counts and lower HIV-1 viral loads, and that effectively primes

polyfunctional T cell responses in vitro. By integrating information from existing genomic
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databases into our reproducibility-based analysis, we identify and validate select

immunomodulators that increase the fractional abundance of this state in primary

peripheral blood mononuclear cells (PBMCs) from healthy individuals in vitro. Overall, our

results demonstrate how single-cell approaches can reveal previously unappreciated, yet

important, immune behaviors and empower rational frameworks for modulating systems-

level immune responses that may prove therapeutically and prophylactically useful.

5.1 Background

Effective immune responses are founded upon the orchestrated dynamics of complex

cellular ensembles. While substantial work has been done to catalog the cell types, states,

and interactions that inform these behaviors, 2-8 greater resolution is still needed to fully

understand cell subsets and behaviors. Recent studies have uncovered significant and

functionally relevant heterogeneities even within seemingly identical cell populations 2,12-

16. This unprecedented degree of cellular diversity points to new opportunities to redefine

the structure behind systems-level immune responses and identify potential therapeutic

or prophylactic strategies rooted in modulating immune composition and interactions.

One powerful approach for uncovering correlates of immune fitness is to study individuals

that demonstrate exceptionally effective immune phenotypes 18, such as resistance to or

immunological control of HIV-1 infection. Analysis of T cells from persons resistant to HIV-

1 infection has linked genetic variation in the CCR5 locus to reduced risk 19. Similarly,

studies of elite controllers (ECs) - a rare (-0.5%) subset of HIV-1 infected individuals who

naturally suppress viral replication without combination antiretroviral therapy (cART) 20,21

- have highlighted the importance of specific HLA-B variants and enhanced cytotoxic

CD8' T cell responses 22,23 Although compelling, these findings have proven insufficient
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to explain the frequency of viral control in the general population; additional cellular

components or interactions could be implicated in coordinating effective host defense.

Moreover, these studies have not suggested clinically actionable targets for eliciting an

EC-like phenotype in other HIV-1-infected individuals. Other work has demonstrated

enhanced crosstalk between the innate and adaptive immune systems of ECs 24-26. For

example, we recently reported that heightened cell-intrinsic responses to HIV-1 in primary

myeloid dendritic cells (mDCs) from ECs lead to more effective priming of HIV-1-specific

CD8' T cell responses in vitro 25. Nevertheless, the master regulators driving this mDC

functional state, the fraction of EC mDCs that assume it, its biomarkers, and how to

potentially enrich for it are unknown.

The recent emergence of single-cell RNA-Seq (scRNA-Seq) affords a direct means of

identifying and comprehensively characterizing functionally important subsets of cells and

their complex underlying biology. As scRNA-Seq has matured into a mainstream

technology, new questions about how to model single-cell variation continue to arise. To

date, computational modeling approaches have typically described single-cell

heterogeneity as a combination of gene-intrinsic effects (i.e., fundamental molecular

noise), and gene-extrinsic ones, capturing both cell-intrinsic features (e.g., differences in

intracellular protein levels, epigenetic state, mutation status, extracellular environment)

and library-intrinsic technical artifacts (e.g. drop-out effects). Yet, in single-cell studies that

utilize samples from across multiple donors (e.g., multiple ECs), these gene-extrinsic

sources can be further subdivided into those that are unique to specific donors and those

that are shared. The category of donor-dependent variation ranges from donor-specific

cell subsets or large differences in cell-type composition to more subtle expression

differences in constituent cell-types. If the goal of a study is to generate hypotheses
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relating to a common phenotype, such as EC, strategies for prioritizing shared features

can benefit from quantitative characterizations of reproducibility across multiple donors. In

developing methods to focus on shared characteristics, we address questions of how to

identify characteristics that contribute to a particular phenotype by operating at broad

biological scales across multiple human individuals with differing genetic backgrounds

health histories but a shared phenotype, in this case elite control of HIV.

Here, we apply single-cell RNA-Seq (scRNA-Seq) to evaluate heterogeneity of

transcriptional responses of mDCs (CD14-, CD1 1cHI, HLA-DR+) from three EC individuals

after in vitro exposure to a VSV-G pseudotyped HIV-1 virus or media control. To overcome

the potentially confounding effects of donor-dependent biological and technical variation,

we propose a broadly applicable strategy that combines reproducibility-based

computational analyses with targeted experimentation to resolve, characterize, and

modulate common response states across multiple donors (Figure 5-1). More specifically,

we utilize existing tools for single-cell data analysis, including SCONE 27 and FastProject

2, and implement an IDR (Irreproducible Discovery Rate)-based framework 29 in scRAD

(Single-Cell Reproducibility Across Donors; https://github.com/YosefLab/scRAD) to

identify reproducible response states, pathways, and biomarkers that are consistently

detected after viral exposure across multiple donors who share a unifying classification

such as EC. Our analysis reveals remarkable functional heterogeneity among mDCs,

described by several discrete transcriptional response states. We discover one

reproducible state that displays gene expression features consistent with profound

functional activation and heightened antiviral activity. This subset of mDCs, enriched

among cells expressing the surface molecules PD-L1 and CD64, is: i) is induced more

efficiently in ECs than in HIV-1 chronic progressors (CPs) or healthy donors (HDs) after in
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vitro viral exposure; ii) associated with both higher CD4+ T cell counts and lower HIV-1

viral loads; iii) more effective at stimulating T cell proliferation in vitro; and, iv) more efficient

in inducing HIV-1-specific polyfunctional cytotoxic CD8+ T cells - all canonical correlates

of antiviral immunity in EC 30. By leveraging scRAD to re-examine publicly-available

transcriptomic datasets, we further identify and experimentally investigate key regulatory

molecules and adjuvants for modulating the acquisition of this functional mDC response

state in the general population, with potential therapeutic and prophylactic implications.

Together, our results highlight how single-cell analytic approaches can identify shared

drivers of enhanced immunity across a phenotype and empower rational strategies for

altering ensemble cellular responses.
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Figure 5-1 | A rational framework used to resolve, characterize and then modulate
response states across multiple patient sources. Our generally applicable framework
is founded upon the following workflow: (I) Resolve the individual mDC subtypes and states
that comprise the system under study (Methods); (II) Define putative functions for each
and identify biologically meaningful contrasts using existing databases; (Ill) Characterize
patterns of differential expression that are common across patients; (IV) nominate potential
biomarkers and relevant cellular circuitry based on accumulated knowledge; (V) Isolate
and characterize interesting subsets; (VI) validate inferred regulators.
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RESULTS

5.2 Shared EC mDC Subsets Revealed by Single-Cell RNA-Seq

In order to identify shared features of mDC (CD14~, CD11 cH, HLA-DR+) innate immune

responses to HIV-1 across ECs, we performed scRNA-Seq 3,13,14,31,32 on peripheral blood

mononuclear cells (PBMCs) from three ECs (p1, p2, p3) exposed in vitro to either a VSV-

G pseudotyped HIV-1 virus or a media control for 48 hours (Figure 5-2A, Methods) 33

Stimulating PBMCs, rather than isolated mDCs, mimics some of the critical physiological

interactions that occur between mDCs and other immune cell types in vivo, while the use

of a VSV-G pseudotyped HIV-1 particles enhances mDC infection efficiency 10. Given the

potential bias of viability sorting, which may discard dying dendritic cells (DCs) undergoing

viral stress responses, we opted for in silico viability gating rather than sorting on live/dead

markers or stains. Following incubation, we sorted single mDCs (CD14-, CD11cH, HLA-

DR+) into 96-well plates and performed SMART-Seq2-based scRNA-Seq 34. After

estimating gene expression levels, we applied elements of the SCONE 27 normalization

pipeline to filter out single-cell samples with poor alignment characteristics and normalize

the remaining data to minimize the impacts of these characteristics on expression

quantification (Figure 5-3, Methods). Subsequently collected viability-sorted mDC data

exhibited only a 2-3 fold gain in the fraction of high-quality cells, suggesting that incubated

primary cells from HIV-1 infected patients represent a fragile source material (Figure 5-

3). In total, we obtained high-quality expression data in 188 virus- and 130 media-exposed

cells by sequencing to an average depth of 700,000 reads (Methods).
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common among media-exposed cells (p-value = 1.3x10-4 and 1.1x10-5 respectively,

logistic regression) (Figure 5-2C).
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Figure 5-3 1 Single-Cell Filtering and Normalization. Previous page (A-C, E) Distributions
of single-cell sample (24 and 48 hours) filtering metrics. Red lines represent adaptive
threshold below which all samples (n = 2,489) were removed from further analysis (see
Methods). (A) Distribution of number of paired-end reads per library. (B) Distribution of
transcriptome read alignment ratio per library. (C) Distribution of the fraction of "common
genes" detected per library. (D) Example false-negative characteristic fits, exhibiting three
different relationships between the mean on-expression (TPM) of constitutively expressed
genes and their false negative rate (FNR) or "drop-out rate." Colors represent the overall
quality of the area under the curve (AUC) (see Methods). (E) Distribution of fit FNR AUC
per library. (F-H) Differences in SCONE metrics before and after full-quantile (FQ)
normalization (see Methods). (F) Correlation between the first 3 expression Principal
Components (PCs) and the first 3 PCs computed across "negative" controls (Alignment QC
Metrics and housekeeping (HK) genes) tend to decrease while correlations with the first 3
PCs across "positive" controls (innate immune system genes) tends to increase. (G) The
average silhouette width (ASW) of biological condition (patient x exposure x timepoint x
viability sort) and the ASW of batch both decrease. However, the ASW of de-novo clustering
tends to increase. (H) The mean sample-median relative log-expression (RLE) decreases,
as does the variance of the sample inter-quartile range RLE decrease: both global
differential expression and differential expression variability is reduced. (1) Stacked bar plots
depicting the percentage of total mDCs in each 48h cluster cl-5 (see Methods) for each
patient under media and viral exposure conditions, stratifying by no viability or viability pre-
selection. Both types of single-cell libraries were only obtained from patients p2 and p3. As
seen in HIV-1-exposed samples, viability-sorted compositions are comparable to samples
without viability sorting. (J) tSNE plot of (un-normalized) log(TPM+1) expression, including
all cells from 24 hours and 48 hours, HIV and Media exposures, with or without viability
gating. Points are colored according to a 48h cell's membership to clusters cl-5. Various
subsets are plotted independently, including cells passing in silico cell filter, cells that were
not sorted on viability, and cells passing viability sorting. Viability sorting tends to exclude
cells from low-quality clusters, enriching the fraction of cells passing quality filtering. (K)
tSNE plot from (J), sizing points according to estimated expression levels of B2M. Red
samples passed in silico cell filter. Clusters of cells excluded by filter exhibited very low-
levels of the housekeeping transcript.

5.3 Reproducibility-Based Functional Analysis Reveals a Robust Antiviral Signature

To further examine the five EC mDC response states (clusters c 1-5) and their

interrelationships, we utilized FastProject 28, a software package for visualization and

interpretation of scRNA-seq data with reference to prior biological knowledge (Methods).

Coherently-varying gene expression signatures identified by FastProject (Figure 5-4A)

repeatedly implicated c1 and c2, but not c3-c5, as responses associated with elevated DC

activation (Figure 5-4B). Intriguingly, the transcriptional behavior of c1 mDCs appeared
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more consistent with elevated innate antiviral activity, displaying maximal values among

signatures for DCs exposed to viruses, such as HIV-1 and Newcastle virus (p-value =

2.5x10~ 9, 7.2x10-13 , respectively; two-sided Kolmogorov-Smirnov (K-S) test ci vs c3; c1, n

= 220; c2, n = 26; c3, n = 35; Figure 5-4B). In contrast, c2 was specifically distinguished

by signatures of DCs stimulated through alternative pathogen associated molecular

patterns (PAMPs), such as LPS and R848 (p-value = 8.4x10-9, 8.6x10-11, respectively; two-

sided K-S test c2 vs c1; ci, n = 220; c2, n = 26; c3, n = 35; Figure 5-4B), or by bacteria

or parasites. Motivated by the biological relevance of signatures contrasting ci and c2

against the remaining clusters, we tested for differential expression of each of these two

populations against the pool of c3, c4, and c5 cells.

As in most experiments involving non-model organisms, inter-subject biological and

technical variability poses a substantial confounding risk by systematically distorting or

exaggerating transcriptome-wide differences between groups. To address this, we

developed and applied the differential expression module of scRAD: instead of explicitly

modeling donor effects on single-cell expression distributions 3, scRAD performs

differential expression analysis separately for every donor and then combines the results

using IDR meta-analysis 29 (Methods). In previous simulation studies, this model-based

meta-analysis technique has demonstrated greater discriminative power than other

approaches 29; in our study, it better emphasizes aspects of clustering that are reproduced

over multiple donors. In order to partition differentially expressed genes (ci vs. c3-5, and

c2 vs. c3-5) into a common-evidence set from both clusters (ci and c2) and two cluster-

unique sets, we used scRAD again, this time performing meta-analysis to aggregate the

differential expression results obtained independently for ci and c2 (Methods). This

computational approach allows us to identify reproducible differences which are possible

106



contributors to the EC phenotype on an experiment of this scale, spanning multiple unique

individuals with many potential confounding factors.

Mook CM00i (in) Stmsian (81)

SIgn*e of SuIMeon (.4

---- - -

*CI

C
.Ps DC Is

es c Mes

P:anas.1

P ( -m).1.73-7

N.E.n. Vn oC18 (

0

a

-q~t V4.

mooccnol (Mn) IN---- in~UnM*. (9)

mev 0 UO3 0.2 WC,

0 -0
00

4. 1.

Z

'l ve 34, DE An-ysIs

0.

o"--

* .

-AqtO(VA)

i. ... -.. 6. P . ... wn.. Pt as

rm*04,Wsr.R..

cl',s .34 ~ UpeSum AmlyIM

I
I

E

I
I.

I'
7

Up&-T&-- -Mdmw

C2c.P,&1. ~':.

Figure 5-4 | Characterization of transcriptional single-cell response groups.
Legend Next Page

107

B

StrWy by cks.t

MW*k eeVbeW (W4 t 0- *WAln 0

I
I

I
U

I
I

D

0~

DC. es1

.2 .3-S ft-b*-a~O-W

0



Figure 5-4 1 Characterization of transcriptional single-cell response groups.
Previous page
(A) Left: schematic of signature database. The expression of a bulk sample of simulated
DCs (Si) is compared to the expression of a mock control (Mi). Highly ranked up-
regulated and down-regulated genes comprise the signature ai. Middle: ai is applied to
all cells in the study, and FastProject identifies pairs of expression data projections and
ac for which a varies coherently across the projection. Right: Coherent cx values are
binned by cluster to nominate specific cluster contrasts as biologically meaningful. (B)
Cumulative distribution function (CDF) comparisons for single cells from each cluster
identified with FastProject gene signatures derived from GSE14000 9, GSE22589 10,
GSE1 8791 1, and GSE2706 17 (see Methods). The single-cell signature value quantifies
the extent to which each cell is polarized toward a stimulated instead of unstimulated
expression state. Clusters with gene expression signatures more closely mapping to the
stimulated condition shift right, while clusters characteristic of un-stimulated shift left.
Kolmogorov-Smirnov (KS) tests show significant differences in these signatures
between the first 3 clusters (c1, n = 220; c2, n = 26; c3, n = 35). (C) Potential genes
specific for c1 (cyan), c2 (orange), shared between ci & c2 (white), or inconsistent
across individuals (grey). Individual volcano plots of negative log irreproducible
discovery rate (IDR) vs mean differential log-expression between clusters ci and c3-5
(right) and c2 vs c3-5 (left; Methods). (D) Selected ingenuity Pathway Analysis (IPA)
(see Methods) results for Canonical Pathways (Benjamini-Hochberg q-value < 0.01)
and Upstream Regulators (Bonferroni p-value < 0.05) significantly deactivated (blue),
neutral (white: with z score; black: without z score) or activated (orange) in ci vs c3-5.
(E) Comparison of putative upstream regulators from IPA for ci vs c2-5 and c2 vs c3-5
(see Methods).

In line with known pathway elements shared between the DC antiviral and

bacterial/parasitic response pathways 1,36, we uncovered 121 genes that were commonly

up-regulated when comparing either ci or c2 to c3-5 (Figure 5-4C). Additionally, we

identified 103 genes that were uniquely called as up- or down-regulated in ci or c2 relative

to the remaining clusters (Figure 5-4C). Genes preferentially expressed by ci over c2

include the interferon-inducible gene IFIT3, whereas genes preferentially expressed by c2

encode molecules associated with endocytosis and antigen presentation (e.g., LAMP3 ,

Figure 5-4C), suggesting different levels of activation or polarization between ci and c2.

A targeted analysis of the expression of 28 Interferon-Stimulated Genes (ISGs) regulated

by HIV-1 25,38 suggested that ci displayed the most potent and coherent interferon-induced

108



transcriptional signatures (p-value = 2.5x1 0-7, two-sided K-S test c1 vs c2; ci, n = 220; c2,

n = 26).

Ingenuity Pathway Analysis 15 (IPA) of differentially expressed gene lists revealed that the

gene set reproducibly differentiating ci from c3, 4, 5 is enriched for pathways related to

DC maturation (Benjamini-Hochberg (BH) q-value = 4x10-6 ), innate recognition of

microbes by PRR (q = 8x10-5), interferon (q = 3x103 ) and TLR signaling (q = 0.03, Figure

5-4D). These pathway enrichments do not reach significance (q < 0.05) for c2. We

partitioned the set of putative upstream regulators predicted by IPA according to

"common" or "polarized" activity across ci and c2 (Methods). Among the polarizing

regulators, we observed several molecules associated with antiviral responses uniquely

active in ci (IFNG, IFNA, STAT1). We also saw evidence of specific TLR activation (TLR3,

TLR4) for ci but not c2 (Figure 5-4D,E). Overall, these observations suggest that ci

represents a subset of mDCs in an activated viral response state that could potentially

drive the effective innate antiviral immune responses observed in bulk mDC from ECs 25.

5.4 Reproducible Biomarker Identification for cI mDCs

To further study the ci response state, we sought to identify putative markers for

prospectively isolating ci cells after exposure to HIV-1 across ECs. We developed two

reproducibility-based criteria for surface marker candidacy, which have been implemented

in the biomarker selection module of scRAD: 1) the surface marker must be encoded by

a transcript that is reproducibly up-regulated in ci vs c3-5 (IDR < 0.01); and, 2) the
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transcript encoding the surface marker should be correlated with sufficiently many genes,

in a reproducible manner, across all donors (see Methods for additional details).
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Figure 5-5 | CD64 and PD-L1
enrich in highly functional cl-like
mDCs. (A) Selection of cl-specific
genes encoding surface proteins
for validation as ci markers. 74
genes (listed in box) were: 1.
differentially expressed between ci
and c3-5; 2. reproducibly correlated
with other ci genes across all three
ECs profiled; and, 3. predicted
membrane proteins (see
Methods). Candidate markers
shown in green were selected for
validation by FACS (Fig 5-4A). (B)
Flow cytometry analysis of either
CD64 (y-axis, left panel) or PD-L1
(y-axis, right panel) vs CD86 (x-
axis) expression in mDCs from EC
patient 1 (p1). Numbers above
represent the percentage of
CD64H /PD-L1HI cells (top right gate;
light blue) at 24 hours in media
(grey) and VSV-G pseudotyped
HIV-1 virus exposure (red)
conditions. (C) Flow cytometry plots
showing analysis of CD64 vs PD-L1
expression on mDCs exposed to
VSV-G pseudotyped HIV-1 for 24h,
defining 2 populations: CD64HPD-
LIHi (Hi; blue) and CD64Lo,PD-L1Lo
(Lo; green). Percentage in each
gate is listed above. (D) Radar plots
(see Methods) representing
relative similarities of each subset
(c1-5) to population-level RNA-Seq
data from cells in the Hi and Lo PD-
L1,CD64 gates 48h after viral (solid
line) or media exposure (dashed
line).

Continued next page
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Figure 5-5 | CD64 and PD-L1 enrich in highly functional cl-like mDCs. Continued
(E) Proportions of CD64Hi, PD LHi mDCs induced from multiple elite controllers (EC; n =
8), untreated chronic progressors (CP; n = 8) and health donors (HD; n = 7) after 24h of
culture in media or VSV-G pseudotyped HIV-1 (*, p < 0.05; **, p < 0.01; two-tailed
Wilcoxon signed-rank test). (F) Correlation between the proportions of CD64Hi, PD lHi
mDCs induced in ECs (n = 8) and untreated CPs n = 8) or just CPs and clinical CD4 T
cell count (p-value = 8x10 3 (two-sided) and 2x10 (one-sided) respectively, Spearman
correlation permutation p-value) or between the proportions of CD64HiPD-LH mDCs
induced in ECs (n = 8) and untreated CPs (n = 8) or just CPs and HIV-1 viral load (p =
3x1 0-2 (two-sided) and 6x1 0-2 (one-sided) respectively, Spearman permutation p-value)).
Diamond and square points represent indeterminate viral loads of < 20 and < 50 copies/ml
respectively. (G) Proportion of proliferating CD4' (left) and CD8' (right) T cells co-cultured
with the Hi and Lo sorted virus-exposed mDCs populations (n = 6 patients). (H) Proportion
of total IFNy* CD8* T cells cultured with the Hi and Lo sorted virus-exposed mDCs
populations (n = 7 patients). Statistical significance for (G,H) were evaluated using a two-
tailed Wilcoxon matched pairs signed-rank test (*, p < 0.05). (1) Pie chart generated with
data from n=7 patients showing CD107a and TNFt expression on CD8' T cells cultured
with Hi (left) or Lo (right) mDCs. (J) scatter plots of proportions of CD107a+, TNFac (left)
and CD107a+, TNF- (right) CD8+ T cells cultured with Hi and Lo mDCs. Statistical
significance was evaluated using a two-tailed Wilcoxon matched pairs signed-rank test,
n = 7 patients (*, p < 0.05).

Using this procedure, we obtained a list of 74 candidate ci mDC markers (Figure 5-5A).

Based on antibody availability, we selected five proteins (FCGR3, FCGR1, CD274,

ICAMI, SLAMF8) to profile 24h after infection with pseudotyped HIV-1 by flow cytometry

in CD14~ CD11cHi HLADR' DCs from our cultures (Figure 5-5B). Among these five

candidate markers, CD64 (FCGR1A) and PD-LI (CD274) exhibited the most dramatic and

consistent virus-induced upregulation among CD14-, CD11cH , HLA-DR+ mDCs isolated

from the PBMCs of the 3 ECs we previously characterized by scRNA-Seq, as well as

those mDCs from five additional EC donors (Figure 5-5B; p-value = 7.8x103 ; two-tailed

Wilcoxon matched-pairs signed rank test; n = 8). CD64 is an Fc-receptor for IgG 3, while

PD-Li has been implicated in mediating the balance between T cell activation and

immunopathology, as well as immediate effector differentiation and long-term memory

formation in T cells 40. Importantly, high expression of PD-LI has also been found on

tolerogenic murine mDCs in chronic LCMV infection 41 and in inflammatory lymph node-

resident mDCs from HIV-1 infected individuals 42. Nevertheless, high expression of IFN
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and inflammatory cytokines identified in our pathway analysis of c1 and high CD86

expression levels on CD64HI and PD-L1Hi cells, indicate that these cells are highly

activated inflammatory DCs (Figure 5-4).
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Figure 5-61 Induction of c1-enriched/CD64Hi PDLHI mDC in response to different
HIV-1 strains and culture conditions. (A) Proportions of CD64HiPD-LH cells
detected in mDCs sorted prior to culture in the presence of media and VSV-G
pseudotyped HIV-1 virus. Statistical significance was calculated using a two-tailed
Wilcoxon test (*, p < 0.05; n = 6). (B) ELISA analysis of IFN beta protein levels present
in culture supernatants of mDCs from healthy donors (Neg, blue; n=6), chronic
progressors (CP, orange; n=5) and elite controllers (EC, green, n=5) exposed for 48h
to either media (Med) or VSVG pseudotyped HIV-1 virus (HIV). mDCs were presorted
from PBMC prior to in vitro culture. *p=0.0397, One tailed Mann Whitney test. (C)
Luminex analysis of IFN alpha protein levels present in culture supernatants of mDCs
from healthy donors (Neg, blue; n=6), chronic progressors (CP, orange; n=5) and elite

When we analyzed mDCs based on surface expression levels of CD64 and PD-L1, we

observed two dominant mDC populations after viral stimulation: one CD64 H i PDL1Hand

the other CD64LoPD-L1 Lo (Figure 5-5C). Population-level transcriptional profiling of mDCs
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sorted on CD64H,PDL H at both 24 and 48h post-viral stimulation revealed gene

expression profiles dominated by the signature of the ci and, to a lesser extent, c2

response states. In combination with the observation that mDCs sorted on CD64LoPD-

L1LO matched a mixture of c3-5 (Figure 5-5D), we concluded that sorting on CD64 and

PD-L1 co-expression enriches for ci cells. While these two markers are predominantly

associated with ci responses, we note that they are not necessarily causally involved in

inducing either phenotype. In line with the single-cell observations above, the ci-

enriched/CD64HiPDL1 Hi mDC phenotype observed in EC could be effectively induced in

mDCs alone (without supporting PBMCs) exposed to VSV-G pseudotyped HIV-1 virus,

indicating that generation of the CD64Hi, PDLHi mDC phenotype does not require

paracrine signals from neighboring non-mDCs (Figure 5-6A). Collectively, these findings

suggest that ci mDCs might have the potential to drive enhanced antiviral antigen

presentation relevant to control of HIV-1 infection.

5.5 Functional Characterization of ci mDCs

Given the ties between strong antiviral activation and immune control of HIV-1, we

naturally wondered whether the CD64Hi, PDLHi mDC phenotype, common to ECs, was

unique to EC individuals and might be linked to common features of immune control

against HIV-1 within the EC phenotype. While the CD64Hi, PDLHi mDC phenotype was

consistently and efficiently induced in HIV-1 exposed mDCs from ECs, generation of

CD64Hi, PDLHi mDC was also observed in HIV-1 exposed mDCs from chronic

progressors (CP) and healthy donors (HD), although at markedly lower proportions

(Figure 5-5E; n = 8 per group). Consistent with the more effective induction of this

phenotype in ECs, we found higher levels of type-I IFN present in culture supernatants
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from pre-isolated DCs exposed to HIV-1 from these patients as compared to alternative

cohorts (Figure 5-6B,C). Notably, these cohort-intrinsic differences were also observed

when mDCs were exposed to a more physiological CCR5-tropic HIV-1 viral strain (Figure

5-6D,E), suggesting that this phenomenon is not restricted to VSV-G pseudotyped HIV-1

strains. Correlating the fractional abundance of CD64Hi, PDL Hi mDCs after HIV-1

exposure against clinical phenotypes, we observed a significant positive association with

CD4' T cell count across both CPs (one-sided) and ECs+CPs (two-sided; p-value = 2x1 0-

2 and 8x10-3 respectively, Spearman correlation permutation p-value). Plasma HIV-1 viral

loads, meanwhile, were negatively associated with percentages of CD64Hi, PDLHi mDCs

across all patients (p-value = 3x10 2 , Spearman correlation two-sided permutation p-

value), with borderline-significant association in CPs alone (p-value = 6x10 2 , Spearman

correlation permutation one-sided p-value, Figure 5-5F). These associations show that a

patient's CD 64 Hi, PDLHi mDC fraction after viral stimulation tracks traditional biomarkers

along a spectrum of HIV-1 control, suggesting that the ability to induce cl-like mDCs might

be a useful biomarker of enhanced protective immune responses against HIV-1.

We next sought to directly probe the association between the induction of ci responses

and the enhanced functionality observed in bulk mDCs from EC. We first examined the

putative enhanced antigen presentation and T cell activation abilities of the cl-like

CD64HiPD-L1Hi subset of mDCs by performing mixed leukocyte reactions to compare our

CD64,PD-L1 high and low mDC subpopulations (Methods). In these experiments, the ci-

enriched/CD64Hi,PD-L1Hi mDC population demonstrated superior ability to stimulate CD4+

and CD8+ T cell proliferation relative to CD 64Lo,PD-LlLo mDCs across multiple ECs

(Figure 5-5G; p-value = 1.6x10 2 and p-value = 3.1x10-2, respectively; two-tailed Wilcoxon

matched-pairs signed rank test; n = 6). Similar results were observed in assays conducted
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with T cells from ECs, where CD64Hi PD-L Hi mDCs were capable of efficiently stimulating

the production of IFNy in a significantly higher proportion of autologous CD8' T cells as

compared to CD64Lo,PD-LlLo mDCs (Figure 5-5H; p-value = 3x10-2; two-tailed Wilcoxon

matched-pairs signed rank test; n = 5). Further, IFNy' CD8+ T cells primed in the presence

of cl-enriched/CD64HiPDL Hi mDCs expressed significantly higher levels of both the

degranulation markers CD107a and TNFa (Figure 5-51,J; p-value = 1.5x10-2 ; two-tailed

Wilcoxon matched-pairs signed rank test; n = 7), mirroring the polyfunctional CTL

responses observed in ECs 22,23.

5.6 Signature Meta-Analysis of Candidate Adjuvants for ci mDCs

Given the possible therapeutic and prophylactic potential of cl-like DCs for studies in non-

EC populations with less efficient responses to in vitro viral stimulation (Figure 5-5E), we

next sought to uncover the common signaling pathways involved in the acquisition of the

ci -enriched/CD64HiPDL1 Hi mDC phenotype so that we might engineer its frequency. IPA

results for ci had highlighted several signatures of human DC stimulation, including

multiple components of several TLR signaling pathways (Figure 5-4D), thus we aimed to

compare our single-cell expression profiles to perturbed bulk expression data in order to

determine which TLR pathways were most compatible with the ci signature vs c3-5.

We define, for every cell and every TLR ligand we tested (Methods) a "stimulation score",

which reflects the similarity between the cell's transcriptional profile and the one induced

by the ligand (using weighted correlation; see Methods). We then score each ligand by

the extent to which its respective stimulation scores in c1 cells are higher than in clusters
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c3-5 (using a KW test). Finally, using the differential signature analysis module in scRAD,

we combine the resulting p-values across donors. Notably, for this analysis we used the

Stouffer-Z p-value combination method (Figure 5-7A, Methods) since the number of

hypotheses (i.e., TLR ligands) is small, leading to instabilities in the IDR inference.
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Figure 5-7 Immunomodulators can alter the fractional abundance of the ci mDC
phenotype. (A) Top: Schematic of bulk expression data (Bi) from publicly available
perturbation data. Bottom: Each cell's expression profile (C 1) is correlated with all Bi so
as to compare similarities of the single-cell cluster 1 to all bulk expression profiles. (B)
Volcano plot of negative log meta-analysis false discovery rate (FDR) vs mean
difference in "TLR stimulation score" between ci and c3-5. Scores are computed from
weighted correlations between single-cell profiles and transcriptional patterns from
human DCs (see Methods) after 48h of stimulation with media control (black) or
agonists for either TLR2 (PAM3CSK4, dark blue), TLR3 (Poly l:C, green), TLR4 (LPS,
orange), TLR7/8 (Gard, purple), or TLR9 (CpG, light blue). Tests reproduced with FDR
< 0.01 in both stratified analyses are highlighted in blue. (C) Proportion of
CD64Hi,PDL1Hi cells among mDCs from PBMCs isolated from HIV-negative individuals
cultured in the absence or the presence of VSV-G pseudotyped HIV-1, alone or in
combination with TLR ligands (TLRL: TLR2L, PGNA, n = 11; TLR3L, Poly 1:C, n = 11;
TLR4L, LPS, n = 8; TLR8L, CL097, n = 11; Methods). Statistical significance was
calculated using Kruskal-Wallis and Dunn's tests (**, p < 0.01). (D) Proportions of
CD64Hi, PD-LI cells among mDCs from healthy individuals (indigo) and elite
controllers (olive) cultured in the absence or the presence of Poly 1:C and polymer
nanoparticles loaded with single-stranded (ss) or double stranded (ds) 100 nucleotide
HIV-1 DNA (Methods; n = 8, HIV negative individuals; n = 7, ECs). Statistical
significance was calculated using either two-tailed Wilcoxon signed-rank test (black) or
two-tailed Mann-Whiney test (red) to compare differences within or among patient
groups, respectively (**, p < 0.01; *, p < 0.05). (E) Proportion of proliferating CD4+ or
CD8+ T cells after culture with Hi or Lo mDC from a healthy donor stimulated with
TLRL3 and nanoparticles containing gag ssDNA (*, p < 0.05; two-tailed Wilcoxon
signed-rank test. n = 6).

Continued next page
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Figure 5-7 1 Immunomodulators can alter the fractional abundance of the ci
mDC phenotype. Continued (F) Volcano plot of negative log irreproducible
discovery rate (IDR) vs mean difference in upstream regulatory score between ci and
c3-5 based on single-cell correlations with shRNA-perturbation profiles from mouse
DCs stimulated with LPS for 6h (adapted from Chevrier et al, Cell, 20111; see
Methods). The net effect (activate, inhibit, both) of each perturbation is denoted by
color (red, blue, grey; respectively), as is its breadth (size). (G) Proportions of
CD64Hi, PDLHi cells among EC mDCs cultured in the presence or absence of virus
and DMSO (control, magenta) or BX795 TBK1 inhibitor (cyan; n = 10; Methods).
Statistical significance was calculated using a two-tailed Wilcoxon signed-rank test (*,
D < 0.05).

Our meta-analysis showed that ci cells correlated most positively with TLR3 stimulation

via Poly 1:C compared to the c3-5 (FDR < 0.01; Figure 5-7B), generating the actionable

hypothesis that triggering the endosomal dsRNA sensor TLR3 might selectively activate

downstream pathways that synergize with innate viral sensing mechanisms to increase

the fraction of mDCs maturing towards a c1-enriched/CD64Hi, PDLHi phenotype (Figure

5-8). Analyses of microarray data from mouse DCs stimulated with a comprehensive panel

of TLR ligands also suggested that the ci state most strongly positively correlated with

TLR3 activation 36. To directly test this hypothesis, we incubated PBMCs from several

healthy donors (n = 7) - that do not spontaneously generate large proportions of c1-

enriched/CD64Hi,PD-L1Hi cells in vitro in the presence of VSV-G pseudotyped HIV-1

(Figure 5-5E) - with virus and different TLR agonists for 24 hours. In contrast to the other

TLR ligands tested, we observed that co-incubation of mDCs with virus and Poly 1:C led

to a significant increase in the proportion of ci -enriched/CD64HiPD-LHi mDCs in PBMCs

from healthy individuals (TLR3L: p-value = 0.0091, n = 11; Kruskal-Wallis and post-hoc

Dunn's test; TLR2L, TLR4L, and TLR8L, not significant; n = 11, 8, 11, respectively)

(Figure 5-7C). Meanwhile, in ECs, a TLR3, but not a TLR4, inhibitor had a modest, but

significant, effect on the acquisition of the c1-enriched/CD64Hi, PDLHi mDC phenotype

(p-value = 3.9x10 3 ; two-tailed Wilcoxon signed-rank test (**, p < 0.01; n = 9).
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To explore the generality and therapeutic applicability of our adjuvant strategy, we next

examined whether we could couple the same TLR3 activation with direct DNA-based

targeting of the cytosolic innate immune recognition machinery that senses viral DNA

products 43 rather than use the virus itself. To address this, we incubated PBMCs from

healthy donors or ECs simultaneously with a TLR3 agonist (Poly 1:C) and single- or

double-stranded HIV-1 Gag DNA (ssDNA or dsDNA, respectively) encapsulated in

polymeric nanoparticles (Methods). A similar delivery vehicle has previously been shown

to selectively activate cGAS- and STING-dependent immune recognition pathways, which

are involved in innate immune sensing of HIV-1 during natural infection . When we

analyzed the fraction of mDCs differentiating into cl-enriched/CD64Hi, PD LHi cells, we

found that activation with either ss/dsDNA or Poly 1:C (TLR3 agonist) alone in PBMCs

from healthy donors was less efficient at inducing cl-enriched responses (p-value = 7x1 0-

2, nano vs Poly 1:C alone; p-value = 5x10-2, nano vs ssDNA; p-value = 1x10-2, nano vs

dsDNA; two-tailed Wilcoxon matched-pairs signed rank test; n = 8; Figure 5-7D,

comparisons not highlighted). Combining both stimuli, however, significantly increased the

proportion of cl-enriched/CD64Hi, PDL Hi mDCs in PBMCs isolated from healthy donors

(p-value = 1.6x10-2 and p-value = 3.1x10-2 for ss- and dsDNA, respectively; two-tailed

Wilcoxon matched-pairs signed rank test; n = 8; Figure 5-7D). Similar results were

obtained with cells from ECs (p-value = 0.0469 for both ss- and dsDNA; two-tailed

Wilcoxon matched-pairs signed rank test; n = 7; Figure 5-7D), with the notable exception

that, in ECs, exposure to dsDNA alone led to significantly higher levels of c1-

like/CD64H PDLlH mDCs relative to cells cultured only in media (p-value = 3x10-2

Wilcoxon matched-pairs signed rank test; n = 7; Figure 5-7D, comparison not highlighted),

suggesting a heightened baseline predisposition of EC to respond to intracellular DNA. In
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mixed leukocyte reactions, the CD64HiPD LHi mDCs generated from healthy donors

incubated with TLRL3 and nanoparticles containing gag dsDNA stimulated greater

proliferation in CD4' and CD8* T cells compared to the CD64Lo,PD-L1Lo mDCs from the

same assay (p-value = 3.5x10 2 and p-value = 3.1x10-2, respectively; two-tailed Wilcoxon

signed-rank test; n = 6), suggesting that adjuvant induced CD64HiPD-Li mDCs in

healthy donors are highly functional antigen presenting cells like their EC counterparts

(Figure 5-7E).

5.7 Reproducible Differential Signature Analysis Reveals Immunomodulators of ci mDCs

To identify additional nodes for rationally modulating the acquisition of the ci functional

state, as well as to examine the general applicability of the IDR-framework for uncovering

putative regulators of c1's (or any other state's) induction, we again applied the differential

signature module of scRAD (see scRAD Vignette); in this instance, due to limited public

availability of human perturbation data, we turned to a published data set of the

transcriptional effect of -200 transcription factor and signaling molecule perturbations in

LPS-stimulated mouse DCs that are highly conserved with humans 1,3. We ranked the

perturbations by the degree to which they reproducibly favored the generation of one or

more (here, c1) responses over others (here, c3-5; Methods). Unlike in the TLR analysis,

here we had a sufficient number of hypotheses, and therefore utilized scRAD's core IDR-

based functionality 29. The resulting meta-analysis nominated several putative regulators

for modulating the fractional abundance of ci mDCs in response to a virus or virus-like

stimulation (Figure 5-7F). Among our top positive regulators of ci was TBK1, a

recognized signal mediator that is activated downstream of multiple innate immune

sensing pathways at the convergence of the organelle-associated adaptors MAVS, TRIF
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(downstream effector of TLR3, TLR4), and STING (effector of the intracellular DNA sensor

cGAS) "-", some of which were previously detected in our IPA Upstream Analysis (Figure

5-4D). Notably, the cGAS-STING pathway is known to play a key role in the recognition

of cytoplasmic HIV-1 DNA in myeloid cells, including those from ECs 25,43, and cGAS itself

(MB21DI) was up-regulated in c1 cells (LFC = 1.9, IDR < 0.05). To evaluate whether

signaling through TBK1 significantly contributes to the maturation of mDCs into the c1-

enriched/CD64Hi, PDL Hi subset in ECs, we added BX795, a TBK-1 antagonist, to PBMCs

from ECs at the time of viral addition and examined the impact on mDC responses

(Methods). As shown in Figure 5-7G, inhibition of TBK1 during viral exposure led to a

dramatic and significant abrogation of the induction of the c1-enriched/CD64HiPD Hi

mDC population in ECs (p-value = 2.0x10-3; two-tailed Wilcoxon signed-rank test; n = 10),

suggesting that TBK1 is a key driver of the acquisition of the ci phenotype in mDCs and

validating the promise of our computational framework.

5.8 Discussion

In summary, by identifying common responses across multiple unique human donors, we

can identify shared features which may contribute to the arising or behavior of the uniting

phenotype of interest. Here, we studied elite immune control of HIV-1 infection as an

example of enhanced immunity phenotype, and develop and apply a reproducibility-based

framework that distinguishes gene expression features shared across EC donors. In doing

so, we identify a highly functional CD64Hi, PDLHi mDC response state that is primed to

drive adaptive immunity - a previously unrecognized correlate of effective antiviral

response against viral stimuli. Extending and developing computational approaches to

hypothesize reproducible biomarkers and upstream regulators, we have realized a
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rational, extendable framework for modulating the relative abundance of this state. These

tools, provided as part of our R package, scRAD, can be applied to a wide variety of

common scRNA-Seq analyses and derive robustness from a reliance on multiple donors.

An important feature of the IDR framework 29 is that it is based on rank transformed data

rather than the original signal (e.g., p-values); this facilitates the statistical analysis of

reproducibility in any ranked set of hypotheses, beyond the three analysis modules

presented here (differential expression, biomarkers, and upstream regulators).

Importantly, our study demonstrates a clear association between the ability of ECs to

efficiently acquire the CD64 H iPDL1 mDC phenotype in vitro and clinical parameters of

immunological control of HIV-1 infection. This suggests that an increased ability to induce

the ci transcriptional programs in mDCs might be indicative of beneficial immune

responses associated with control of HIV-1 replication in ECs. An important limitation of

our study design is that it only establishes associations, rather than causal relationships,

between our observations and clinical and immunological parameters-i.e., it does not

directly demonstrate a role for mDC in driving or promoting immune control of HIV-1

infection in ECs in vivo. Future studies will also be needed to directly examine the role of

ci DCs in other lymphoid tissues, such as lymph nodes, since our current work focused

on PBMCs. Were this to prove true, our adjuvanting and perturbation experiments suggest

exciting therapeutic possibilities for non-ECs via co-stimulation of TLR and DNA sensor

agonists, and perhaps TBK1 directly. Intriguingly, high expression of PD-L1 has also been

described on a subset of lymph node-resident mDCs from HIV-1 infected individuals

spanning a range of viral loads 42. While this study proposes that the lymph node resident

PD-L1 DC subset may dampen immune responses based on PD-L1 expression, as CD64

co-expression was not measured, the relationship of this state to ci remains unknown.
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PD-L1 has also been associated with an alternative, tolerogenic IL-10-producing mDC

population induced under long term and chronic infection settings in mice 41 this state

is fundamentally distinct from the highly activated CD64Hi PD-L1 Hi DC subset identified

in our study which is characterized by expression of multiple inflammatory molecules

(Figure 5-4), high levels of activating costimulatory molecules (Figure 5-5), and efficiently

induces T cell proliferation and polyfunctionality. In general, the putative functional

differences between the two states highlights the importance of surveying complete extra-

and intra-cellular states in ascribing function, given potential redundancy. A critical

limitation is the lack of an equivalent in vivo system where a direct and causal relationship

between mDC responses and the induction of protective HIV-1 -specific adaptive immunity

can be safely and ethically tested; nevertheless, similar principles may inform future

experiments performed with other viruses or virus-like elements (e.g., in a vaccine) in both

humans and other organisms.
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Figure 5-8 I Unifying Model of Results. (A) Potential-energy diagram
conceptualizing how adjuvants and other perturbations alter the percentage of mDCs
that enter the c1-5 response states upon viral or viral-like exposure. (B) Network
diaaram deDictina tested nodes imOlicated in the c1 mDC resnonse.
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Mechanistically, further investigation will be required to identify what biases mDCs from

ECs to respond at higher frequency with a cl-enriched phenotype. Given our adjuvanting

and perturbation experiments, this enhanced antiviral response capacity could derive from

variations in the basal abundance of different DC subsets which, in turn, each have an

unequal propensities to generate the ci responses to nucleic acids; it could similarly

derive from dissimilarities in the intrinsic response properties of one or more progenitor or

terminally differentiated states, informed by a combination of EC-specific epigenetic

modifications and/or complex sets of genetic variants. Since our experimental validations

support an inferred role for TLR3 in synergizing with cytosolic viral recognition machinery

to induce a TBK1-dependent cl-enriched/CD64Hi, PDLH response, we propose that

simultaneous induction of DNA and dsRNA sensing through the cGAS-STING 25,45 and

TLR3 pathways might potentiate (Figure 5-8A) the maturation (or selective survival) 48 of

c1 -enriched/CD64HiPDL1 Hi cells by converging on TBK1 (Figure 5-8B), and that these

elements might be a natural nexus to explore for EC-specific molecule features. Still, our

work demonstrates the potential of scRNA-Seq to discover, genome-wide, functional

cellular immune response states, associated markers, and shifts in abundance that may

inform the overall efficacy of host immunity.
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5.9 Methods

Study Participants

HIV-1 elite controllers (ECs) who had maintained < 2,000 copies/ml HIV-1 Viral Load (VL:

20-98 copies/ml, median 48 copies/ml) for a median of 5 years (range 2-14) in the absence

of antiretroviral therapy (EC; CD4' T cell counts: 515 - 1,543 cells/ml, median 909 cells/ml;

n = 8 persons), untreated chronic progressors (CP; VL: 2,190-3,117,608 copies/ml,

median 162,807 copies/ml; CD4' T cell counts: 3 - 623 cells/ml, median 146.5 cells/ml; n

= 8 persons), and HIV-1 seronegative healthy donors (Neg, HD; n = 7 persons), were

recruited for this study. All subjects gave written informed consent; the Institutional Review

Board of Massachusetts General Hospital/Partners Healthcare approved the study

protocol.

In Vitro Infection with HIV-1 Virus

Freshly isolated PBMCs were infected with GFP-encoding vesicular stomatitis virus G

envelop (VSV-G) pseudotyped or R5-tropic HIV-1 virus (Multiplicity of infection; MOI = 2.4

and 0.4, respectively), kindly provided by Dr. Dan Littman (New York University, New York,

New York, USA), for 2 hours at 370C. 24 and 48h post-infection, CD14-,CD1 1cHIHLADR+

mDC were singly sorted (see Flow Cytometric Analysis and Sorting) from total PBMC

into 96 well plates containing lysis buffer for scRNA-Seq as previously described49 (Figure

5-2A). In some experiments, sorted CD14- CD1 1cHI HLADR+ mDCs were presorted prior

to ex-vivo infection with VSV-G pseudotyped HIV-1.

TLR Perturbations
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In the TLR agonist experiments, mDCs from PBMCs (see Flow Cytometric Analysis and

Sorting) were treated with HIV-1 alone or HIV-1 in combination with 2 pg/ml of a TLR2

(PGNA), TLR3 (Poly l:C), TLR4 (LPS), or TLR8 (CL097) ligand (InvivoGen, San Diego,

CA) (Figure 5-7C). In the TLR antagonist studies, mDCs from PBMCs were treated with

VSV-G pseudotyped HIV-1 (see In Vitro Infection with HIV-1 Virus) alone or in

combination with a TLR3 (CUCPT4A, 60 nM, Tocris), TLR4 (600 ng/ml, LPS-RS,

InvivoGen), or TBK-1 inhibitor (BX795, 1 pM, InvivoGen) (Figure 5-7B,G).

For our single stranded (ss) and double stranded (ds) DNA stimulation experiments

(Figure 5-7D), mDCs from either healthy donors (HD, n = 8) or ECs (n = 7) were cultured

for 24h in the presence of Poly I:C and 2 pg/ml of either ss- or ds-Gag DNA44 that had

been encapsulated into polymeric nanoparticles (TranslT-X2, Myrus) following the

manufacturer's instructions. Importantly, this approach has been shown to enable

intracellular delivery of nucleic acids in primary human innate immune cells, overcoming

a critical barrier for nucleic acid delivery and sensing50.

In our human TLR stimulation experiments (Figure 5-7B), whole PBMCs from a healthy

donor were incubated for 48 hours with or without 2 pg/ml of a TLR2 (PGNA), TLR3 (Poly

1:C), TLR4 (LPS), or TLR8 (CL097) ligand (InvivoGen, San Diego, CA). Following

incubation, mDCs were sorted (see Flow Cytometric Analysis and Sorting) into two

replicate 5,000-10,000 cell populations and sequenced (see Single-Cell and Population

RNA Samples).

Flow Cytometric Analysis and Sorting
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PBMC were stained with LIVE/DEAD cell blue viability dye (Invitrogen, Carlsbad, CA) and

monoclonal antibodies directed against CD11c (BioLegend, San Diego, CA), CD14 (BD

Biosciences, San Jose, CA), HLA-DR, CD64, PD-L1, ICAM1, CD16, SLAMF8

(BioLegend) and subsequently analyzed on a Fortessa cytometer (BD Biosciences). Data

were analyzed with FlowJo software (Tree Star, Ashland, OR). mDCs were identified from

bulk PBMCs as a population of viable CD14- cells expressing high levels of CD11 c and

HLA-DR.

For the functional studies on mDC subsets, BVD-negative CD14- CD1 1c+ HLADR* mDCs

were sorted into two subpopulations expressing high and low levels of CD64 and PD-L-1

(Figure 5-5C).

In the experiments evaluating polyfunctional CD8+ T cell responses in EC, cultured cells

(see Activation of CD8* T cells from EC with autologous CD64,PD-LI mDC) were first

labeled with LIVE/DEAD cell blue viability dye and anti-CD8 and CD-3 monoclonal Abs

(BioLegend, San Diego). Subsequently, T cells were fixated and permeabilized and

incubated with monoclonal antibodies against TNFa, IFNy (BioLegend) and CD107a (BD

Biosciences).

Mixed Leukocyte Reaction Assays

FACS purified viable CD64Hi, PDLH and CD64Lo,PD-L1Lo mDC subpopulations,

generated after 24h of infection with a VSV-G HIV-1 virus or 24h of incubation with TLR3

ligands (2pg/ml poly l:C and nanoparticle-loaded gag-dsDNA adjuvants), were mixed with

allogeneic total peripheral blood T lymphocytes previously stained with 5 pM

carboxyfluorescein succinimidyl ester (CFSE, Invitrogen) at a T:DC ratio of 4:1. As a

control, T cells were also cultured in the presence of media alone or 2.5 pg/ml PHA

126



(Sigma) and 50 IU/ml IL-2 (NIH AIDS reagent program). After incubation for 6 days, cells

were washed, stained with viability dye and anti-CD4 and anti-CD8 antibodies (BioLegend,

San Diego, CA), and CFSE dilution on CD4' and CD8' T cell subpopulations was analyzed

by flow cytometry using a Fortessa flow cytometer.

Autologous CD64, PD-L1 mDC Subsets

Total CD8' T cells were isolated by magnetic cell sorting (DynaBeads, Thermo Fisher)

from unstimulated PBMC from ECs (n = 5) and cultured in the absence or the presence of

autologous CD64Hi, PD 1H and CD64LoPD-L1Lo mDC sorted from an alternative PMBC

culture previously infected with a VSV-G pseudotyped HIV-1 virus for 24h, as previously

described (see In Vitro Infection with HIV-1 Virus) at a ratio (T:DC = 4:1). After 2h of

incubation, cultures were supplemented with Brefeldin A (BioLegend) and Monensin (BD-

Biosciences) and left in culture for 16 additional hours. Phenotypic analysis of

Polyfunctional CD8+ T cell responses was determined by flow cytometry of intracellular

expression of IFNy, TNFa and CD107a (see Flow Cytometric Analysis and Sorting;

Figure 5-5H-J).

Quantification of HIV-1 by qPCR

HIV-1 reverse transcripts present in sorted mDC populations were amplified from cell

lysates at 24h post-infection as previously described 51. Copy numbers of reverse

transcripts were obtained after extrapolation to specific standard curves generated from

HIV-1-infected 293T cells 25. qPCR data were normalized to relative CCR5 gene copy

number.
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Statistics of In Vitro Functional Assays

The significance of differences in the fractional abundance of sorted mDC subsets across

different cohorts and in our functional assays - including the mixed leukocyte reactions,

culture of CD8' T cells from EC with autologous mDC and the TLR ligand and DNA

stimulation assays - were determined using two-tailed Wilcoxon matched-pairs signed-

rank test. In some experiments, we applied a Kruskal-Wallis test with post-hoc Dunn's test

- adjusting for test multiplicity - using GraphPad Prism 6 software. The specific test used

for each comparison is noted in the text.

Single-Cell and Population RNA Samples

Following sorting, whole transcriptome amplification (WTA) was performed on 96-well

plates of single cells as described previously 49. Briefly, individual lysed cells were cleaned

with 2.2x volume AMPure XP SPRI beads (Beckman Coulter, Danvers, MA), and isolated

cellular mRNAs were reverse transcribed and amplified.

For the population samples, total RNA was isolated using a RNeasy plus Micro RNA kit

(Qiagen, Hilden, Germany) following the manufacturer's instructions. 2 pL of this isolated

RNA was then added to 8 pL of water and cleaned with 2.2x volume beads. Finally, 1 pL

49of this cleaned RNA was used in a WTA reaction

Following WTA, PCR products were cleaned with 0.9x volume SPRI beads and eluted in

water. The concentration of cDNA in the resulting solution was determined using a Qubit
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3.0 Fluorimeter (ThermoFischer, Waltham, MA) and analyzed using a high sensitivity DNA

chip for BioAnalyzer (Agilent, Santa Clara, CA).

cDNA Library Preparation for RNA-Seq

WTA products were diluted to a concentration of 0.1 to 0.4 ng/pL, tagmented and amplified

using Nextera XT DNA Sample preparation reagents (Illumina, San Diego, CA).

Tagmentation was performed according to manufacturer's instructions, modified to use 1/4

the recommended volume of reagents, extending tagmentation time to 10 minutes and

extending PCR time to 60s. PCR primers were ordered from Integrated DNA Technologies

(Coralville, IA). Nextera products were then cleaned twice using 0.9x SPRIs and eluted in

water. The final library was quantified using Qubit and analyzed using a high sensitivity

DNA chip. It was then diluted to 2.2 pM and sequenced on a NextSeq 500 (lllumina).

Single-Cell Expression Quantification

RNA-Seq reads were aligned to the RefSeq hg38 transcriptome (GRCh38.2) using

Bowtie2 52. The resulting transcriptomic alignments were processed by RSEM to estimate

the abundance (expected counts and transcripts per million (TPM)) of RefSeq transcripts

53

Several genes were quantified multiple times due to alternative isoforms unrelated by

RefSeq annotation. Prior to expression data normalization, these TPM estimates were

summed to produce a single TPM estimate per RefSeq gene symbol.
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Single-Cell Filtering and Gene Filtering

For each single-cell library, we computed transcriptome alignment and quality metrics

using FastQC (Babraham Bioinformatics), Picard tools (Broad Institute), and custom

scripts. Computed metrics included: 1) number of reads, 2) number of aligned reads, 3)

percentage of aligned reads, 4) number of duplicate reads, 5) primer sequence

contamination, 6) average insert size 7) variance of insert size, 8) sequence complexity,

9) percentage of unique reads 10) ribosomal read fraction, 11) coding read fraction, 12)

UTR read fraction, 13) intronic read fraction, 14) intergenic read fraction, 15) mRNA read

fraction, 16) median coefficient of variation of coverage, 17) mean 5' coverage bias, 18)

mean 3' coverage bias, and 19) mean 5' to 3' coverage bias.

We used the metric sample_filter function from the SCONE package 27 to flag libraries

with low numbers of aligned reads (< 28,840), low percentages of aligned reads (< 15%),

and low percentages of detected transcripts (< 33.4% of Ensembl GRCh38.80 protein-

coding genes expressed at > 100 TPM in at least 10% of samples - or "common genes")

(Figure 5-3A-C). We identified 99 genes of candidate constitutive expression by fitting a

population-wide Fano factor as a linear function of mean TPM, selecting the 99 common

genes with minimal fit residual. These genes covered a range of 50.0 - 35,000 TPM. For

each sample, the relationship between mean detected TPM and detection rate (or "false

negative characteristic") was modeled as a logistic function; the area under this fitted curve

was utilized to distinguish samples with poor detection properties (Figure 5-3D,E). Out of

2,489 initial samples, only 393 (318 at 48H and 75 at 24H) samples passed this primary

filter. We note that some of this loss is due to our decision to exclude viability stain for

some single-cell RNA-Seq sorts. Importantly, this viability selection did not appear to skew

the sub-composition of cell-states passing our sample filtering criteria (see Clustering

Analysis and Visualization).
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Following cell filtering, genes were retained for downstream analysis if they were

annotated as protein-coding, and expressed at levels greater than 100 TPM in at least 5

high-quality cells.

Single-Cell Data Normalization

In order to normalize TPM data, we applied full-quantile normalization method, restoring

original zero values to zero following normalization. This restoration step was necessary

due to widespread zero-ties. We used normalization metrics of the SCONE 27 package to

assess performance of this strategy.

The first three scores measure the maximum absolute correlation between the first 3 PCs

of the TPM matrix and the first 3 PCs of: i) the matrix of library-level qc metrics, ii) the un-

normalized matrix of TPM estimates for "negative control" genes from the MSigDB9

"HSIAOHOUSEKEEPINGGENES" gene set, and iii) the un-normalized matrix of TPM

estimates for "positive control" genes from the MSigDB

"REACTOMEINNATEIMMUNESYSTEM" gene set. Following normalization, the first

two scores decreased while the third increased slightly, suggesting that technical structure

has been removed from the data while retaining structure associated with the biological

processes at hand (Figure 5-3F).

The next three scores measure the average silhouette width for various classifications

across a Euclidean metric defined on the first 3 PCs of the TPM matrix: i) biological class

= patient ID x exposure x time point x viability, ii) batch class, and iii) average silhouette

width where each stratification of batch and biology has been separately clustered using

the Partitioning Around Medoids (PAM) clustering algorithm. Following normalization, the

first two scores decrease, suggesting that confounding by biological and batch factors

131



could not be addressed by this normalization. However, the rise of the third score suggests

greater intra-stratum clustering following normalization (Figure 5-3G).

The last two scores: i) the median absolute relative log-expression (RLE), and ii) the

variance of the RLE inter-quartile range both decreased, implying reduced global

differential expression following normalization (Figure 5-3H).

Clustering Analysis and Visualization

Principal Component Analysis (PCA) was applied to all filtered and normalized single-cell

log-TPM data collected at the 48-hour time point; consequent analysis was limited to the

first 50 PC values (defined per cell) explaining 32% of expression variance. For each

choice of dimension d ranging from 2-50, a Euclidean cell-distance matrix was computed

over the first d PCs. The PAM clustering algorithm was used to cluster cells over a range

of k = 2 to 10 clusters. Let S(k,d) represent the average silhouette width of a PAM k-

clustering on d dimensions. We define k(d) as the unique choice of k that maximizes S(k,d)

for any choice of d. We selected d so as to maximize cluster number and tightness:

k(d) k(d') V d' # d

S(k(d), d) S(k(d'), d') v {d'Ik(d') = k(d))

d = 7, and k = 5 were the selected clustering parameters. This method is implemented in

the pamkd function in the scRAD package.

Due to the high-dimension of the underlying expression space, clustering was visualized

using a 2D tSNE projection applied to the d = 7 distance metric (5,000 iterations). The 5

clusters were annotated in clockwise order.
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After clustering we applied ordinary least-squared regression to model each gene i's

expression in cell j as a function of patient, exposure, and cell type:

gij - ai + fl' * Patient + pf * Exposure + 3f * Cluster

Patient contrasts were coded plvsp3 and plvsp2, exposure contrasts coded

hivvsmedia, and cluster contrasts codes c2/3/4/5_vs_ci. Two-sided t-tests identified

131 and 14 genes that were significantly associated with patient and exposure

respectively (Bonferroni-adjusted p-value < 0.01), while 1,170 genes were significantly

associated with cluster contrasts. These numbers suggest that cluster identity is far more

determinant of global gene expression than patient or exposure. Cluster proportions are

themselves associated with patient and exposure condition: for c1/2/3/4 we modeled the

relative abundance of cluster k as a logistic model of Patient and Exposure:

P(ck) - ak + ftP * Patient + fle * Exposure

While all 4 clusters exhibited significant association by patient (p < 0.05), all but c2 showed

significant evidence (p < 0.05) of exposure dependence: the ci proportion was enriched

by HIV exposure, while both c3 and c4 were depleted by the exposure.

In patients p2 and p3, for which viability sorts were applied to some batches, we observed

similar cluster compositions across both exposure conditions at 48 hours (Figure 5-31),

suggesting that pre-selection of viable cells does not affect the distribution of the clusters

identified and analyzed in this study. Instead, the effect of viability sorting appears to be

the depletion of a large, low-quality cluster exhibiting low B2M expression uncharacteristic

of mDCs (Figure 5-3J-K).

Reproducible Module Gene Analysis
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Our clustering analysis captured the full distribution of cell states seen across the three

ECs, but we also attempted to identify clusters of genes - gene modules - that were

consistently co-regulated across patients at 48H. Unlike differential expression analysis,

this unsupervised approach aims to identify transcripts serving as reliable proxies of

reproducible gene expression patterns.

We first pooled the normalized log-TPM data for each patient and separately computed

the gene-gene Pearson correlation matrix. Each correlation value was Fisher-transformed

and scaled to a z-score with 0 median and a Median Absolute Deviation (MAD) equal to

0.67 (computed over the upper-triangle). Only gene pairs with abs(z) > 2.4 in all three

patient matrices were considered "reproducible gene pairs." This step is implemented in

the scRAD::get. repro. thresh. adjacency function in R.

For each gene, we tallied the number of reproducible gene pairs to which it belongs. We

considered whether we could find genes with significantly more pairs than would be

expected by chance; these genes could serve as reliable proxies of reproducible

correlations. The distribution of pair counts was modeled as a zero-inflated Poisson

process, including a randomly-connected Poisson component and an unconnected zero-

component. Under this null model, we computed upper-tail p-values using the

scRAD::pzipdegree function, identifying 263 genes with p-values below 0.01 after

Bonferroni adjustment. As these genes are connected to a large number of reproducible

gene pairs, we called these proxy genes "reproducible module genes."

Complete clustering of the median gene-gene correlation across the 3 patients (using

correlation distance) demonstrates how these genes cluster into 3 specific modules.

Single-Cell Signature Analysis
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We searched Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) for all

study entries matching the query: "(("homo sapiens"[Organism] NOT "mus

musculus"[Organism]) AND ("expression profiling by array"[DataSet Type] OR

"expression profiling by high throughput sequencing"[DataSet Type])) AND ("dendritic

cell"[Sample Source] or "dendritic cells"[Sample Source])", utilizing the results to identify

relevant expression signatures from the MSigDB C7 collection. We then applied

FastProjectl0 to identify representative expression signatures in our normalized TPM data.

Signature inputs include the selected MSigDB signatures, a curated signature of 28 IFN-

response genes 25 ,28 , 3 unsigned signatures of our reproducible modules, and a pre-

computed cluster signature. Results show that PCA components 1 and 3 represent both

biological signatures and reproducible module signatures more faithfully than alternative

2D projections.

We selected a few of the top signatures from our FastProject analysis, considering the

cumulative distribution of signatures across each of the 5 clusters (Figure 5-4A,B). Two-

sided Kolmogorov-Smirnov (KS) tests were performed between the signature

distributions of clusters c1 (n = 20), c2 (n = 26), and c3 (n = 35) in order to monitor the

extent to which these signatures demonstrated differential signatures.

Differential Expression Analysis

Based on our signature analysis above, we considered 3 differential expression

comparisons: i) ci vs c3, c4, and c5 (or "ci vs c3-5"), ii) c2 vs c3,c4, and c5 (or "c2 vs c3-

5"), and iii) c! vs c2. Any differential expression (DE) analysis downstream of de novo

clustering analysis demands careful consideration. Traditional DE analysis aims at

identifying transcripts that vary markedly by sample class; a common goal is to rank the
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relative importance of transcripts in characterizing underlying expression states. Within

the single-cell context, cell class is frequently defined based on low-dimensional

representations of expression data. Therefore, the assumption that most genes are not

differentially expressed between classes may not hold. Null models based on this

assumption are ill-suited to the data, and will naturally yield uncalibrated probabilistic-

based scores, e.g. deflated p-value distributions.

A natural way to calibrate DE scores and monitor batch-specific effects is to consider

measures of reproducibility over stratified, replicate experiments: in our case, over multiple

patients. We can map clusters from replicate experiments so that cluster contrasts are

made comparable. For example, in our analysis we clustered cells from all patients

simultaneously - offering a natural mapping between clusters called in the three patients:

e.g. ci cells in patient 1 belongs to the same biological "pseudo-replicate" as ci cells in

patient 2.

Our meta-analytical DE approach, implemented using the scRAD::kruskallDRm tool,

relies on the reproducibility metric known as Irreproducible Discovery Rate (IDR) 29. This

metric evaluates a matched set of "signals" measured in two or more replicate

experiments. In this analysis, we pooled cells from patients 1 and 2 to define the first study

stratum, and considered all cells from patient 3 to be the second replicate stratum. We

pooled cells from patients 1 and 2 together because the fewest high-quality cells were

sequenced in these patients; pooling them together increased average stratum power.

Though we performed a 2-replicate analysis, our scRAD package modifies the

Expectation-Maximization algorithm from the idr CRAN package to handle 3 or more

replicates (see scRAD vignette on GitHub).
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We performed simple DE analysis in each replicate study using Kruskal-Wallis tests; for

each comparison, this yielded two lists of log-fold-changes and two lists of p-values. The

two-component IDR mixture model was used to fit the joint distribution of p-values

obtained from these tests. For each gene, we can estimate a probability that the gene is

a member of an "irreproducible component" for which p-values are high and uncorrelated

versus a "reproducible component" for which p-values are low and correlated. Sorting

genes by increasing probability of irreproducibility, one can compute the cumulative

probability of membership for all genes of same or lower rank, defining an IDR. Genes

called with an IDR < 0.01 were reported as "differentially expressed."

We compared this approach to DE effects estimated according to a more traditional model

of log-expression in gene i in cell j:

gij~ ai + p * Patient + 3f * Clustercontrast

The genes that meet the significance criterion but not the reproducibility one may be good

candidates for patient-specific differential expression. Patient clustering was tighter for

high IDR genes, while cluster contrasts were tighter for lower IDR genes. These results

exemplify how our meta-analysis approach targets covariance structures shared across

patients.

If we assume the difference between ci and c2 is small compared to their common

differences with clusters c3, c4, and c5 (c3-5), we may claim that the more a gene is

reproducibly differentially expressed for one comparison, the more likely that gene should

be reproducibly differentially expressed in the other. By this assumption, IDR analysis can

be applied to two lists of idr values from separate experiments in order to identify genes

for which idrs obtained from both comparisons are themselves correlated vs uncorrelated.

Genes passing this threshold and showing common sign of differential expression were
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called "Shared" genes in Figure 5-4C. Some of the remaining differentially expressed

genes from these two comparisons were partitioned into three additional groups: i) "c1-

specific" for which a gene is called differentially expressed in both ci vs c3-5 AND c1 vs

c2 comparisons, but not c2 vs c3-5. ii) "c2-specific" which is analogously defined, and iii)

"discordant" for which genes are called differentially expressed in all 3 comparisons.

Candidate surface markers for ci were identified using the scRAD::getMarkers tool. This

tool reports the intersection of three gene sets: i) genes differentially expressed between

ci and c3-5, ii) Reproducible module genes, and iii) Predicted membrane molecules from

the Human Protein Atlas (http://www.proteinatlas.org) (Figure 5-5A).

Ingenuity Pathway Analysis

For each of the main 3 differential expression comparisons, we applied Ingenuity Pathway

Analysis 15 (https://www.ingenuity.com) to the list of log-fold-change (mean of log-fold-

changes from 2 replicate tests) and IDR, setting a cutoff of IDR < 0.05. The user data set

was used as the reference set for p-value calculation, and all experimentally verified

mammalian associations were included in the analysis. IPA reported Benjamini-Hochberg

q-values for Canonical Pathways enrichments, and we performed our own Bonferroni p-

value adjustment for all reported Upstream Analysis p-values.

Validation of cl-enriched CD64Hi PDLHi Population

As with the scRNA-Seq data, we applied RSEM alignment and sample-filtering procedures

to population RNA-Seq samples sorted by ci candidate markers, leaving 13 samples

covering 8 possible conditions (24h/48h, HIV/media, Hi/Lo). Expression values for 6,557
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genes were normalized using traditional DESeq scaling normalization 4, followed by

gene-level regression on the first PC of QC metrics, retaining the residual for downstream

analysis. Duplicate gene symbols were averaged as above. 576 of the differentially

expressed gene symbols from the c1 vs c3-5 comparison, passing TPM gene filter, were

detected in population experiments. A weighted mean was computed for each of these

shared genes, for each single-cell sub-population cl-5, and Pearson correlations were

computed between sorted populations and population means after logip-transforming

both data sets. Radar plot cycles representing these correlations are presented on a min-

max scale per bulk condition (min: 0.32-0.54, max: 0.81-0.89). Correlation values for

replicate sample conditions (n = 2) were averaged prior to plotting.

Prediction of Upstream Regulators of ci

In order to generate hypotheses related to the sensing mechanisms behind c1 response,

we performed IPA (as described above) and identified several innate immune pathways -

included specific TLR signaling pathways - selectively induced in this population. Due to

the limited availability of genome-wide human stimulation data, we opted to compare our

single-cell expression profiles to publically available expression profiles of mouse bone-

marrow-derived dendritic cell (BMDC) populations exposed to five TLR agonists

(lipopolysaccharide (LPS), Pam3CSK4 (PAM), Polyinosinic:polycytidylic acid (Poly I:C),

gardiquimod (Gard), and CpG DNA (CpG)) and one control (unstimulated) condition3 .

Replicate microarray samples from each condition were averaged, followed by averaging

over probes of a gene symbol. Homologs were mapped using the biomaRt Bioconductor

package, and only uniquely mapping genes were considered for further analysis.

Normalized single-cell TPM was log1 p-transformed, and gene abundances were centered
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by weighted means (using the W false-negative weight matrix defined above). Mouse data

was log-transformed, and genes were centered by their mean value. We computed a

weighted correlation estimate (using the W matrix) for each pair of single-cell and mouse

population taken at the 24H time-point of the mouse study. For each bulk sample, we

applied two-tailed Wilcoxon rank-sum tests to examine differences in correlation between

cells from ci and c3-5. The correlations were referred to as the "TLR stimulation score,"

as they measure the extent to which the sub-population-specific response is correlated

with the TLR-stimulated profile. Using Stouffer's z-method, we combined p-values

collected from the two donor pools used in differential expression (all implemented in

scRAD::kruskalMeta) reporting a meta-analysis FDR < 0.01 (Figure 5-7B)36. Weighted

correlation of samples i and i' is defined by the equations:

wMeani (X, W) =Z323 Wi3
E p Wij,

wCov (X, W) = WiW6 (Xi3 - wMeani (X, W)) (Xi - wMeani, (X, W))

wjvi (, W),

wCorij, (X, W) wCov' (X, W)
wCovjj (X, W) wCovi' (X, W)

Where weights of population data are set to unity.

We next sought to generate analogous results using RNA-Seq data collected from human

mDCs rather than distant mouse BMDCs. We applied RSEM alignment and sample-

filtering procedures to population RNA-Seq data collected from DCs incubated for 48

hours with or without various TLR ligands (see above), leaving 8 samples covering 5

possible conditions (no TLR, TLR2/3/4/8). Expression values for 18,482 genes were

normalized using traditional DESeq scaling normalization 4. Duplicate gene symbols were
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averaged as above. We applying the same meta-analysis pipeline as for the mouse array

data, ranking various inductions in their relative similarity to ci.

Drawing again on available characterizations of the mouse BMDC system, we chose to

correlate single-cell gene expression profiles with shRNA knockdowns of TLR signaling

network components)' to highlight potential upstream regulators mediating ci response.

Publically available - and normalized - nCounter population data were mapped to unique

human homologs, log-scaled and gene-centered as above. Normalized single-cell TPM

estimates were similarly logip-transformed and centered by weighted mean. Weighted

correlation estimates were computed as in the TLR analysis above, and for each shRNA

experiment, we applied two-tailed Wilcoxon rank-sum tests to examine differences in

correlation between ci and c3-5. The opposite of the correlation was referred to as the

upstream regulatory score, as it measures the extent to which the sub- specific response

is anti-correlated with the shRNA-knockdown profile. Instead of simple meta-analysis on

the donor pools used for the TLR stimulation scores, we applied the scRAD::kruskallDRm

analysis as in the differential expression analysis, defining IDR < 0.05 as our threshold for

calling differential signatures (Figure 5-7F).

AVAILABILITY OF DATA AND MATERIALS

Single-cell and bulk RNA-seq data is available through the Gene Expression Omnibus

(GEO accession GSE80212).

This study utilized two publicly available expression data sets i) Amit et al. 2009 [33],

accessible via GEO accession GSE1772 and ii) Chevrier et al. 2011, accessible via
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"Supplemental Information" S2 and S7 provided in [32]. Signature analyses relied on

expression signatures defined in MSigDB (http://software.broadinstitute.org/gsea/msigdb).

The scRAD package is available on GitHub (https://github.com/YosefLab/scRAD) under

Artistic License 2.0. Normalized scRNA-Seq expression data, meta data, and average

bulk expression profiles from the TLR induction study are available as data objects in the

package. See the vO-genome-bio tag for code at time of manuscript submission.

ETHICS APPROVAL

Samples from patients were obtained after all subjects gave written informed consent; the

Institutional Review Board of Massachusetts General Hospital/Partners Healthcare

approved the study protocol (IRB approval number 2012P001628). Samples were

collected according to the Helsinki Declaration.
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Chapter 6: Conclusions

In this final chapter, we explore remaining questions and possible extensions of this work. While

this work has contributed to our understanding of how cells respond to perturbations at varied

relevant biological scales, many questions and fascinating avenues of exploration remain. The

acute liver injury and high fat diet work presented Chapters 3 and 4 was conducted in exclusively

male mice, leaving room for future work to build complementary datasets in females, which are

known to be less susceptible to the damaging effects of both acetaminophen-induced acute liver

injury and obesity-related liver cancer, to further characterize and mechanistically define these

sex-differences. In both males and females, we could build time course trajectories to better

understand the long term effects of the high fat diet chronic injury model. Additionally, combining

a mouse high fat diet trajectory dataset with human clinical data would serve to help us determine

the relevance of the mouse findings to contextualize a single time point human sample, and may

point toward biomarkers of disease or therapeutic targets. Computational approaches developed

in Chapter 5 can identify reproducible responses across phenotypically similar human donors in

future clinical datasets. Many of the approaches and insights presented in the preceding chapters

will aid the success of future work.
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6.1 Contributions of this work

Here, we have applied scRNA-Seq approaches to understand cellular responses to perturbations

at the relevant biological scale, ranging from within a single organ, to across an organ system to

between genetically unique individual human donors with a shared phenotype of interest. In

Chapter 3, we identify and describe a compensatory phase of liver response to injury, in which

the surviving hepatocytes upregulate their expression of critical liver function genes to take over

for the work previously accomplished by the hepatocytes lost to injury. Following the functional

compensation phase, the liver initiates proliferation, leading to cellular recovery and a return to

the pre-injured state. Our single cell data allow us to identify rare cycling hepatocytes and

characterize them in greater detail than possible before. Our data suggest that the cycling

hepatocytes do not upregulate compensatory liver function to the same degree as non-cycling

hepatocytes, at least not for all genes. We also show that macrophage derived Wnts support

functional compensation in hepatocytes.

In Chapter 4, we extend our approach from focusing on an acute injury targeted to a single organ,

to exploring chronic damage from a long-term high fat diet across multiple gastrointestinal and

immune compartments which are affected by this perturbation. In this pilot study, we scRNA-

sequenced samples across multiple gastrointestinal and reference immune compartments in mice

after six months on a high fat diet (HFD) or control diet (CD) to explore cellular changes and

molecular drivers which contribute to obesity-linked inflammation and cancer in the liver and gut.

We observe possible immune shifts in both the liver and gut, identify PPAR activation primarily in

the HFD proximal regions and especially in the HFD proximal enterocytes, and distinct differences

in biology between high fat and control hepatocytes. We nominate pathways possibly contributing

to HFD-induced changes in the liver and identify a small group of HFD hepatocytes with an

elevated stemness signature which may indicate precancerous changes.
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Finally, we characterize shared features across multiple unique human donors with a common

phenotype. We explore dendritic cell responses to HIV-1 virus across multiple unique human

donors and identify reproducible behaviors which may contribute to the elite controller (EC)

phenotype. We develop broadly applicable analytical approaches to identify reproducible

responses across donors and to nominate candidate targets for rationally modulating the system.

A highly functional subgroup of dendritic cells which is better able to prime T cells for proliferation

emerges from the data in all sequenced ECs. We then modulate the response in healthy DCs to

induce more of the highly functional DCs observed in ECs by activating TLR3, which was

predicted from the sequencing data analysis. Our methods for identifying reproducible responses

across donors and nominating targets for functional validation are broadly applicable, and could

be of use to future studies.

In the following sections, we suggest extensions of the work presented here to new projects which

will explore remaining questions.

6.2 Sex-differences

Sex-differences in liver disease frequencies are discussed in detail in Appendix A. Briefly, even

after controlling for behavioral factors, biologically-based differences in susceptibility to disease

between males and females remain. The liver in particular is known to be a highly sexually

dimorphic organ, with rates for many types of liver disease varying substantially between the

sexes .

Female mice are known to be much less susceptible to liver damage from acetaminophen (APAP)

overdose than males2'3 . Appendix A describes our work to date comparing male (data from

Chapter 3) to female (data acquisition in progress) mice at multiple time points following APAP
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exposure. We do observe clear sex-based differences, including less damage to female livers.

Additional work to improve female data quality and fully build the female dataset is still required.

Females are less susceptible not only to APAP-induced damage but also have lower rates of

hepatocellular carcinoma (HCC), an obesity-linked cancer observed in our HFD mice' 4 . Similar

to what we've begun to do with comparing male and female responses to APAP, we could build

a complementary female HFD and CD dataset to compare to the male data presented in Chapter

4. In doing so, we may uncover new pathways and molecular regulators that contribute to female

protection.

6.3 High Fat Diet Time Course

All high fat diet data presented in Chapter 4 originates from mice on HFD or CD for six months,

but the biological changes in response to HFD occur over many months, progressing to more

severe disease, including cancer, by 9-14 months on the diet5. Future work may build a time

course, profiling mice after 3, 6, 9, and 12 months on the diet to explore changes in cell types and

cell behaviors over time. Time course work would improve our understanding of how the cells

change though the phases of metabolic syndrome-related disease and possibly pathways

activated or deactivated driving development of inflammation and cancer in the liver or intestine.

Pseudotime computational approaches could be applied to explore cellular trajectories as the

cells respond to HFD. Many of the existing pseudotime packages were built based on

differentiation data sets6 and may require adaptations for applications to a cellular response

dataset. Ideally, we will have spontaneous HCC tumors included in the late time points of the

dataset. While HCC does spontaneously form in HFD mice in this cohort, additional carcinogen

treatment may be desirable to increase the tumor frequency.
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6.4 Combining human clinical data with mouse high fat diet data

We have begun to pilot experiments to extend our high fat diet work to clinical human samples:

wedge biopsies from livers of patients undergoing weight loss surgery. Approximately 75% of

obese patients have nonalcoholic fatty liver disease (NAFLD), which spans a continuum of liver

disease including hepatic steatosis, nonalcoholic steatohepatitis (NASH), fibrosis and cirrhosis7 .

FCGR2A C ALB

6 6

* 0 .2

-3 . 0
2.5.

*.0 0/ - ---

tSNE I

Figure 6-1 j Results from pilot weight loss surgery liver biopsy.
(A) tsne with SNN clustering identifies two clusters. (B) Violin plots depicting expression level
of FCGR2A (a macrophage/kupffer-expressed gene) and ALB (a hepatocyte-expressed gene).

In comparing clinical human data to a trajectory dataset built in mice, we can confirm the relevance

of the mouse data and better contextualize the human data along a larger continuum of

progressive liver disease. Application of the computational framework presented in Chapter 5 to

control donor-to-donor variability and identify reproducible modules will find phenotypically

relevant shared responses across patients with similar stages of liver disease. Analysis of human

data along the disease trajectory could be used to identify biomarkers which may be used better
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categorize clinical patients according to their risk for development of more advanced problems.

Analysis of the combined human and mouse data set may enable identification of activated or

repressed pathways and nomination of targets for rational therapeutic modulation.

We have conducted a pilot experiment on a clinical weight loss surgery liver biopsy. Unfortunately,

low alignment rate suggested poor sample quality and a need to further optimize our processing

protocol for handling these fibrotic samples. Despite poor sample quality, we were able to identify

some albumin-expressing cells (likely hepatocytes) and FCGR2A-expressing cells (likely immune

kupffer or macrophages) (Figure 6-1). Future work will require further optimization to improve

data quality to facilitate more detailed analysis.

6.5 Conclusion

The coordinated behaviors of many single cells, the fundamental unit of biology, determine the

overall functional or dysfunctional response to a perturbation. This response may be largely

localized within a single organ, span across multiple related organs, or phenotypically unite unique

individuals. Here, we have characterized single cell responses across varied biological scales,

according to the relevant scale of the responses profiled. We characterized acute liver injury within

the murine liver organ; effects of six months on high fat diet in multiple gastrointestinal organs in

mice; and dendritic cell response to HIV-1 virus across multiple human elite controllers. Our work

has contributed to our knowledge of liver regeneration, obesity-related pathology, and the highly

functional immune responses which contribute to elite control of HIV. We have applied recently

developed scRNA-Seq technologies to diverse problems in order to explore these areas in a new

way, by examining responses to perturbations in each of many single cells, identifying previously

unappreciated response groups and activated pathways. Further, we have developed new

methods for controlling donor-to-donor variability and nominating targets for rational modulation
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of system responses for potentially therapeutic purposes. These approaches could be applied to

future studies facing similar challenges.

Rapid development of scRNA-Seq methods over the last several years has made these, and

many other exciting studies, possible. An interdisciplinary approach, bringing together the

collective expertise in computational biology, technology and many areas of biology has greatly

benefited the scRNA-Seq field, including the work presented here. Modern high-throughput

techniques have enabled researchers to profile hundreds of thousands of cells in a single project,

and the resulting enormous datasets present many analytical challenges and opportunities. New

computational approaches and adequate resources are needed to surmount challenges

associated with data noise and increasing scale 8. Additionally, improved analytical methods will

need to be developed for other applications, such as making cross-species comparisons and

building pseudotime trajectories for non-developmental/non-differentiation time course datasets,

such as a type of cell responding to a perturbation then returning to baseline.

With efficient scRNA-Seq techniques now available, future studies will be able to more cheaply

and easily explore more cells than ever before, which will make many exciting new discoveries

and insights possible in the wide array of biological fields taking advantage of these powerful

techniques. Undoubtedly, scRNA-Seq technique and data analysis approaches will continue to

evolve over the coming year to address new and ongoing challenges in this exciting field.
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Appendix A: Sex-differences in the Murine Liver

Response to Acetaminophen

This appendix describes a pilot study conducted in collaboration with Chad Walesky, Carolyn

Winston, Wolfram Goessling, and Alex Shalek.

The liver is a highly sexually-dimorphic organ, with varied expression of many genes, proteins

and hormones between males and females, and, consequently, disparities in susceptibility to

many types of liver damage and disease. For example, females are known to be less sensitive

than males to acetaminophen overdose liver damage. In this Appendix, we describe some

preliminary work to replicate in female mice the APAP-response work described in Chapter 3,

which was done exclusively in male mice. In doing so, we identify PPAR-* target activation that

may be involved in protecting females from APAP damage. Interestingly, in females we identify

upregulation of many of the functional compensation genes observed in male APAP response in

Chapter 3, even though females sustain less damage and have a lesser need for compensation,

suggesting the female liver may activate these compensatory pathways earlier and even under

less damaging conditions. Additionally, the immune response to APAP varies between males and

females. Most notably, we detect differences in the fractional abundance of immune cells between

the male and female samples. However, low cell numbers in female samples limits our

interpretation of what these shifts may mean. Future work is needed to fully build this dataset to

gain clearer insight into sex-differences in APAP toxicity response.
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Appendix A. I Background

The liver is among the most sexually dimorphic organs, with disparities in susceptibility to many

liver-related diseases observed between males and females'. Males are two to three times more

likely to develop hepatocellular carcinoma, more susceptible to viral hepatitis and progress to

cirrhosis more quickly with HCV infection, while females are more susceptible to alcoholic liver

damage, and ten times as likely to develop primary biliary cirrhosis and four times as likely to

develop autoimmune hepatitis'-5. Estrogen and other female sex hormones can act as an

antioxidant which may help protect the liver from progression of some disease'. Additionally,

expression of many cytochrome P450s and other metabolic genes - and consequently drug and

steroid metabolism kinetics - vary between males and females6 . For example, females are known

to be less susceptible to acetaminophen (APAP) overdose than males. Previous work has found

that more rapid recovery of hepatic glutathione levels, a compound consumed in non-toxic APAP

7metabolism, in females following depletion in APAP-metabolism helps attenuate liver damage .

In Chapter 3, we profiled murine livers following APAP or partial hepatectomy injury in exclusively

male mice. Here, we extend our exploration of the liver's response to APAP-overdose to male-

female differences.

Appendix A.2 Sample and data quality

To explore differences between male and female responses to APAP, we profiled livers from

mice, both male and female, at 6 and 24 hours following APAP exposure and untreated using

techniques as described in Chapter 3. Histology confirms that female mouse livers sustain less

damage (smaller tunnel positive area) than males following equal APAP dosage, as has been

reported previously 7 (Fig A-1).

156



UT

Male

Female

6hr

Al -1
V

24hr

4

WW

A5 i

FIGURE A-1 I TUNEL staining in APAP-treated male and female livers.
TUNEL staining on mouse livers untreated, 6 hours and 24 hours post-APAP treatment for
male (top) and female (bottom). TUNEL-positive (dark brown) cells are apoptotic.

To gain further insight into sex-differences in APAP toxicity response, we perform Seq-well 8 to

generate a pilot dataset containing two untreated samples, one APAP 6hr sample and one APAP

24hr sample from males (subset of data presented in Chapter 3) and females. After sequencing,

we aligned data to the mm10 transcriptome to obtain genes by cells matrixes. We then filtered

data to include only cells with >500 transcripts read, and >300 genes expressed to eliminate non-

cell events and low-quality cells. Overall the female data, particularly the female APAP data, were

of much lower quality than the male data, with very few cells recovered from the female samples

(Table A-1). The sequence alignment rate on the female samples was extremely low (-7% for

APAP-treated female, -15% for untreated female). Low alignment rates often indicate that low

input sample quality may have been a problem. The alignment rate for the male samples

presented, though better than female, was still lower than what we typically expect for Seq-well

alignments (-25-40% for these male samples vs >50% for typical Seq-well alignment). When
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processing these single cell suspensions, we first spin slowly to preferentially collect the large

hepatocytes (data here and Chapter 3 are all from hepatocyte-enrichment preps). We then take

the supernatant and spin it again at faster speed to collect non-parenchymal cells (analyzed in

Appendix B). Alignment rates for non-parenchymal samples from untreated males are around

50%, suggesting that hepatocytes are particularly sensitive to processing and likely to have lower

alignment rates than typical cells. The high sensitivity of hepatocytes to damage in processing to

single cell suspensions has been noted before9, and is appears to be a feature of this cell type.

The profusion protocol used to process the whole liver to a single cell suspension was developed

and optimized with male mice; therefore, further adjustments may be required for optimal use with

female animals. The female mice and livers are physically smaller and may benefit from a shorter

or gentler profusion. Additionally, we have made some changes to the profusion and processing

protocol in our more recent work with male mice (increasing number of cells loaded on array, non-

parenchymal cell sample, changed profusion entry point) which improved sample and data quality

for males and would likely improve for females as well. Female mice are less susceptible to

damage from APAP, so their livers should be healthier than the males when we begin processing

them. Since it is possible to obtain quality data from the more damaged male livers, it should be

possible to obtain quality data from females as well. Future work will be needed to optimize

processing for female livers and expand the female data set to match the male dataset described

in Chapter 3.
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Cells passing filter Alignment Rate
A24F1 29 6.75%
A24M1 859 37.50%

A6F2 121 7.05%
A6M2 685 24.40%

UTF1 700 n.c.

UTF2 183 14.60%

UTM1 1213 37.30%
UTM5 1446 n.c.

Table A-1 I Cell passing filter and alignment rate by sample
n.c. = not calculated

Appendix A.3 Cell type fractional abundance varies by sample type

To visualize data structure, we performed dimensional reduction by principal components analysis

(PCA) and t-stochastic neighbor embedding (tsne), followed by clustering using shared nearest

neighbors (SNN) (Fig A-2A-C). We identify multiple hepatocyte clusters and several non-

parenchymal cell (NPC) clusters including Kupffer cells, Neutrophils, B cells,

macrophage/monocytes and T cells (Fig A-2B,C). The hepatocyte clusters separate by treatment

condition, with separate hepatocyte clusters for untreated male 1 (UTM1); UTM5; 6 hours post

APAP treatment male (A24M); 24 hours post APAP treatment male (A24M); and combined all

female samples (UTF1, UTF2, A6F, A24F).
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Figure A-2 I Cell types present in male and female APAP-treated liver samples. (A) tsne of all
data, colored by sample of origin. (B) tsnes colored by expression of marker genes for liver cell
types. (C) tsne colored by SNN clustering. Each cluster is annotated by cell type. Hepatocyte
clusters additionally annotated by main sample(s) of origin. (D) Stacked barplot of fractional
abundance of each cell type in each sample.
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While the spin speed used to prepare these samples enriches for hepatocytes, other cell types

are still present in most of the samples. The fractional abundance of each cell type varies greatly

from one sample to the next (FigA-2D). In both UTM1 and UTM5, NPCs are virtually non-existent.

In contrast, A6M contains the largest share of NPCs and nearly all of the neutrophils. Six hours

after APAP treatment we expect immune infiltration to the liver, especially neutrophils, in response

to the toxicity-induced tissue damage. Additionally, APAP-toxicity is damaging to the hepatocytes,

killing many of them and possibly making others less fit and unable to survive the additional stress

of processing, further biasing the sample toward NPCs. By 24 hours post-APAP treatment, the

hepatocyte-NPC ratio has nearly returned to normal in males, as immune infiltration decreases

and hepatocytes begin to recover. In female samples many more NPCs in untreated samples

than in males (8.71% UTF1; 33.9% UTF2; vs <1% UTM1 and UTM5). These differences may

stem from suboptimal processing of female samples, biasing data collection away from more

sensitive hepatocytes, or it may reflect real biological differences. Interestingly, we observe little

change in the NPC fractional abundance from UTF (8.71% and 33.9%) to A6F (29.8%) and A24F

(34.5%), although the specific cell types making up the NPC fraction do shift. The female liver is

much less susceptible to damage from APAP overdose and may not sustain enough damage to

trigger major immune infiltration or significantly compromise hepatocyte quality. Alternatively,

immune infiltration into the female liver may already begin to dissipate by 6 hours. Given the low

cell numbers available in the female APAP data, it is difficult to interpret possible shifts in NPC

cell type abundance and not possible to perform further analysis on these cell types. The immune

cell abundance varies considerably between UT female samples (8.71% and 33.9%) which may

be related to varied sample quality (700 and 183 cells passing filter). Higher quality female APAP

data, more replicates and NPC-enriched samples may be able to address these questions and

inconsistencies.
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Appendix A.4 Hepatocyte variation across sample conditions

To more closely focus on hepatocyte responses, we subsetted our data to include only hepatocyte

clusters, then filtered out all cells with a Hepatocyte Signature score three standard deviations or

more below the mean (see Chapter 3 for more detailed explanation). We then further subsetted

the dataset to allow a maximum of 85 cells per sample to prevent the much larger male dataset

from dominating the analysis (85 hepatocytes filtered in for all samples except samples where

fewer cells available: A24F, 19 cells; A6F, 82 cells) for a total balanced hepatocyte dataset of 611

cells.

Dimensional reduction and SNN clustering identified unique individual clusters for each of the

male samples, a cluster of untreated female hepatocytes containing both UTF1 and UTF2, and a

cluster APAP-treated female hepatocytes containing both A6F and A24F (Fig A-3A). The shared

UTF cluster, in contrast to the separate UTM1 and UTM5 clusters, suggests that the female livers

may be more similar to one another at baseline. Separation by animal in male untreated samples

holds up in the analysis in Chapter 3 which included more cells and more mice, demonstrating

that this is a consistent pattern in males. Additional experiments with more female mice and higher

quality female data are needed to determine whether untreated female hepatocytes will continue

to appear more similar from one animal to one another in transcriptional space than the males.

Many of the genes separating untreated male mice are pheromone-related (e.g. major urinary

proteins, Mups) (Fig A-3B). We hypothesize that dominance ranking in the cage (mice are house

five to a cage) may influence expression of these genes. Possibly, in female mice, dominance

rankings may have less of an effect on the liver's transcriptional profile. We have also considered

possible effects of circadian rhythm or feeding times on transcriptional liver data, but additional

experiments are needed to explore these possibilities.
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Figure A-3 I Differences in transcriptional expression between APAP-treated males and
females.
Previous page.
(A) tsne of subsetted hepatocytes, colored by sample condition. SNN clusters outlined in
black. (B) Heatmap of marker genes for each cluster. (C) Violin plots of selected genes.

The APAP-treated samples also cluster differently in the males than in the females, with separate

clusters for A6M and A24 M, and a shared cluster for A6F and A24F (Fig A-3A). This may be

because the liver damage is more severe in the male, making the A6 sample very distinct as the

liver responds to the extensive damage. In contrast, female liver damage is less severe, so there

may be a lesser response. The female liver is known to upregulate glutathione synthesis to

7
replenish stores more quickly than males, thus limiting liver damage following APAP overdose .

Because the female liver responds more quickly, it is possible that an earlier time point (e.g. 3

hours) is needed to capture the peak female hepatocyte response. Additionally, the very small

number of A24F hepatocytes (19 cells) limits the amount of variation they contribute to the total

dataset, possibly preventing them from grouping out into their own cluster. Additional experiments

to add more cells, especially A24F, are needed to more clearly map female response patterns.

To identify transcript expression unique to each cluster, we ran differential expression and

visualized the results as a heatmap. The heatmap reveals sex-specific expression, with

expression of many genes shared across multiple female samples (e.g. Xist) and multiple male

samples (e.g. Mup 17), but few genes highly expressed in both male and females (Fig A-3B). The

A6 male cluster displays a distinct expression pattern, marked by many response genes

described in Chapter 3 (Mt1, Txnrdl, Gc/c) (Fig A-3B,C). The APAP-treated female cluster is

responding with several cytochrome P450 genes, but not elevated expression of many of the

genes found in A6M. This is likely because the female liver either responds earlier or does not
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respond in the same way since it does not sustain as much damage. Remarkably, Cyp2el, the

gene that encodes the protein responsible for toxic APAP metabolism, expression is zero in nearly

all cells in A6M, but normal in A6F (Fig A-3C). In male mice, the APAP toxicity kills the Cyp2el-

expressing cells at six hours (Chapter 3). Strikingly, unlike A6M hepatocytes, A6F hepatocytes

do not express elevated levels of Gc/c, the gene that encodes the protein that synthesizes

glutathione, despite literature reports that this is the main mechanism by which females are

protected from APAP7 . These differences could be the result of earlier response and lesser liver

damage in the female. Histology shows some cell death in the pericentral regions in A6F, but not

nearly as much as in A6M (FigA-1); suggesting that likely some of the Cyp2e 1-expressing cells

survive in the female. Additionally, since the female responds more quickly, it is possible that she

has already compensated for the loss of damaged cells by 6 hours, as we have seen in males at

24 hours (Chapter 3). This faster response also means that we may find elevated Gc/c expression

at earlier time points in females rather than at 6 hours.

Although the female does not express elevated levels of response genes (e.g. Mtl, Gc/c, Txnrdl)

we do observe elevated expression of some liver function genes (Alb, Apoa4) which we described

as part of a functional compensation phase in the males in Chapter 3 (Fig A-3C). This suggests

that the females may be functionally compensating, even though they do not sustain as much

damage to their livers as the males. The normal level of Cyp2el expression in the A6F

hepatocytes may be due, in part, to functional compensation that occurred earlier than 6 hours,

in line with the fact that females are known to respond more quickly. Other genes, like Cdknla

(p21), are high only in the male at 6 hours, but may be elevated at earlier time points or not at all

in the female (Fig A-3C). p21 prevents cells from entering the cell cycle, preventing hepatocytes

from replicating in the A6M condition where generation of reactive oxygen species (ROS) may

damage DNA. In females at 6 hours the ROS have likely already dissipated, eliminating the need

to halt proliferation.
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Finally, we find marked upregulation of Cyp4alO and Cyp4a14 in the APAP-treated females and

modest upregulation in the APAP-treated males. Both of these genes are downstream targets of

PPAR-a. Activation of PPAR-a is protective against APAP damage through induction of

mitochondrial uncoupling protein-2 which decreases phosphorylation of .NK in the

mitochondria, decreasing generation of ROS0"'. Protection of mice from APAP-induced

hepatotoxicity through PPAR-a activation protects mice has been previously reported, however

potential sex-differences in activation or this pathway are, to our knowledge, previously unknown.

Appendix A.4 Conclusions and future directions

Here, we have transcriptionally profiled and analyzed male and female livers following APAP

treatment. Females sustained less liver damage and did not respond to damage with upregulation

of redox, and damage response genes as the males did at 6 hours post-exposure. Interestingly,

the females did not upregulate glutathione synthesis (Gclc) in our data, despite literature reports

that swift upregulation of this pathway is what protects females from APAP-induced liver damage.

Females do upregulate some liver function genes and may have initiated functional compensation

and other damage responses, as described for males in Chapter 3, earlier than 6 hours. Finally,

we uncovered enhanced expression of PPAR-a activation targets in females and nominate this

pathway as a possible contributor to female protection from APAP-toxicity.

While our existing dataset provides some insight into sex-differences in APAP-induced

hepatotoxicity, additional experiments are needed to optimize female processing and build a high

quality female dataset as a companion to the male dataset in Chapter 3. With high quality female
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data, we will be powered with more cells and more genes captured to make comparisons between

the sexes. The addition of earlier time points for females will address whether they respond with

increase glutathione production and functional compensation at an earlier time point. While

females have less liver damage than males, and therefore less need for compensation, our

existing data suggests that they do compensate to some degree. Additional experiments with a

higher dose of APAP for females so as to more closely recapitulate the level of liver damage

observed in males will also be informative. Analysis of the full dataset will reveal how male and

female functional compensation compare. Molecular pathways which protect females from liver

damage from APAP may be explored as therapeutic targets for treatment of APAP-overdose or

other types of acute liver failure.

Beyond hepatocyte responses, our limited dataset hints at possible variation in baseline immune

populations and immune responses. Some shifts in immune cell populations between samples in

males and females are observed here, with more immune infiltration into the male liver at 6 hours

post-APAP treatment. All of the data presented here originated from hepatocyte-enriched

samples, which contain some immune cells but mostly hepatocytes. We have also collected NPC-

enriched samples, in which the majority of cells are immune, from some of our male conditions.

Future experiments should collect and profile NPC-enriched samples from these livers to increase

NPC numbers in the dataset and explore how these cells may participate in liver damage

response. Analysis of existing NPC data from male mice is described in Appendix B.

Extensions of this work will broaden our knowledge of sex-differences in the liver. New

experiments may explore sex-differences in response to and metabolism of drugs other than

APAP in the male and female liver. Understanding how drugs are differently metabolized in males

in females is critical for proper dosing. Further extensions of this work may explore how sex-

167



differences contribute to disparities in frequencies of many types of liver disease between males

and females.
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Appendix B: Non-Parenchymal Cell Response to
Acute Injury

In Chapter 3 we profile hepatocyte responses to acute liver injuries; here we examine

transcriptional responses of non-parenchymal cells. We identify several cell types and examine

Wnt expression. Additional samples - particularly untreated and acetaminophen-treated - are

needed to complete this dataset.

Appendix B. 1 Background

The liver possesses remarkable regenerative capacity, with the ability to return to its original size

and maintain function even following major injury from toxic metabolites or surgical resection'. In

Chapter 3 we profile hepatocyte responses to two acute injury models: a zone-dependent toxic

injury, acetaminophen (APAP); and a zone-independent surgical resection, partial hepatectomy

(PH). We identify a macrophage derived Wnt-dependent functional compensation phase of liver

injury response, division of labor between cycling and non-cycling hepatocytes. Using Wntless-

KO models, we demonstrate that macrophage-derived Wnts are required for the functional

compensation response in hepatocytes. Previous work has shown that Wnt secretion from

endothelial cells within the liver is required for pericentral gene expression and cellular

proliferation following injury2. Using Wntless-KO models, we demonstrate that macrophage-

derived Wnts are required for the functional compensation response in hepatocytes (Chapter 3).
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The sequencing analysis in Chapter 3 focuses only on hepatocyte responses, but we have

obtained preliminary data for other cell types as well. In processing the liver samples, we first spin

the single cell suspensions slowly, preferentially pelleting the large hepatocyte cells. We then spin

the supernatant at higher speed to pellet the remaining non-parenchymal cells (NPCs). This

varied spin speed technique generates hepatocyte-enriched and NPC-enriched fractions for each

sample. Here, we examine the NPC fraction from samples in the acute injury dataset for which

this fraction was collected. We identify several cell types and identify preliminary Wnt expression

across different groups on NPCs consistent with previous reports.

Appendix B.2 Cell Types

To profile NPC responses to acute injury, we sequenced NPC-enriched samples from mouse

livers following no treatment (UT), APAP- treatment or PH. We performed dimensional reduction

by t-Stochastic Neighbor Embedding (t-SNE), and identified clusters by shared nearest neighbors

(SNN) (Figure A-1A,B). The majority of the cells originate from PH samples. In our

chronologically earliest experiments, the APAP-treated and some untreated, we did not include

the NPC-enriched fraction in the sequencing workflow and did not originally generate this data.

The untreated and APAP 96hour samples contained mostly hepatocytes and may be repeated to

obtain more NPCs. Experiments to obtain NPC data for additional samples are ongoing.

Calculated module scores for expected cell type are represented in each cluster(Figure A-1-C).

Liver endothelial cells (LEC) make up cluster 8; Kupffer cells clusters 0, 1, 2, 6, 11; hepatocytes

clusters 5, 7, 9, 15, 16, and mixed immune cells cluster 12. Clusters 3, 10, 12, and 13 score highly

for both Kupffer and LEC signatures; Kupffer and LECs associate together in vivo, generating

these doublet clusters. Very few of the UT and A96 cells are NPCs (N.B. the spin protocol enriches

for NPCs, but is not a perfect separation. We expect lesser immune infiltration in UT samples than

in injury response samples, meaning the UT likely have lower overall numbers of NPCs in the
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Figure B-1 I Cell types and Wnt expression in the NPC
Previous Page.
(A) t-SNE or all NPC data. Colored by treatment condition. (B) t-SNE colored by shared
nearest neighbors (SNN) clustering. (C) t-SNE colored by cell type signature score. Blue low,
yellow median, red high.(D) Violin plots of Wnt2 (left) and Wnt9b (right) expression in each
cluster. Cluster number and cell type identity noted below each violin. K, Kupffer; M, mixed
Kupffer and liver endothelial cell; H, hepatocyete; I, immune cells other than Kupffer (T cell, B
cell, neutrophil, macrophage, pDC).

liver to begin). The mixed immune cluster contains liver capsule macrophages (LCMP), B cells, T

cells, Neutrophils and pDCs. These cell types are not abundant enough to drive enough of the

total variation to form their own clusters. When the dataset is expanded to include more time

points, we may have enough of these cells to generate separate clusters by cell type, whether in

the full dataset, or, if needed, by subclustering the "mixed immune" cluster.

Appendix B.3 Wnt Expression

Wnt expression and secretion by NPCs supports pericentral gene expression, proliferation, and

functional compensation in hepatocytes 2 (Chapter 3). LEC cells produce primarily Wnt2 and

Wnt9b, and these Wnts are secreted and travel to nearby hepatocytes where they support

pericentral gene expression, or, following injury, proliferation2 ,3 . Macrophages have also been

shown to produce primarily Wnt2 and Wnt9b, though at much lower levels than the LECs 2 ,3.

Indeed, we identify expression of these Wnts in the LEC, Kupffer and mixed LEC/Kupffer clusters

in our data (Figure B-1D). Wnts other than Wnt2 and Wnt9b were expressed at very low levels

or not at all. Unfortunately, we do not have enough LEC or Kupffer cells from untreated samples

to determine whether these Wnts are induced in PH. Pervious work has demonstrated the

importance of these Wnts originating in LECs for proliferation following PH, but the upregulation

of these Wnts in Kupffers/Macrophages and their contribution to functional compensation has not

yet been explored.
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Appendix B.4 Methods

Samples were prepared as described in Chapter 3. Only nonparenchymal-enriched (faster spin)

samples are included here. Data was filtered as described in Chapter 3. The cell type signature

scores were calculated using the AddModuleScore in Seurat. The cell type gene lists were from

Halpern et. a1 4.
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