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Abstract

Bacteriophage and their hosts are locked in an age-old arms race. Successful bacteria
are subject to predation, forcing the population to diversify, and phage are also quick
to adapt tactics for infecting these potential hosts. Sampling of closely related bacterial
strains that differ in phage infection profiles can further elucidate the mechanisms
of infection. The Polz Lab maintains the Nahant Collection - 243 Vibrio strains
challenged by 241 unique phage, all with sequenced genomes. This is the largest
phylogenetically resolved host-range cross test available to date. Genetically mapping
out the depths of this dataset requires carefully designed analysis techniques as well
as further experimental exploration.

First, we narrow in on a specific phage in the Nahant Collection, 2.275.0, to
characterize the pressures that may select for phage that shuttle their own translational
machinery. While translation is generally considered a hallmark of cellular life, some
phage carry abundant tRNA. 2.275.0 carries 18 tRNA spanning 13 amino acids. We
find that while encoding translation-related components requires shuttling a larger
phage genome, it also reduces dependence on host translational machinery, allowing
the phage to be more aggressive in degrading and recycling the host genome and other
resources required for replication.

Next we develop a systematic approach for uncovering genomic features that
underlie phage-host interactions. We find that correcting for phylogenetic relationships
allows us to pick out relevant signals that would otherwise be drowned out by spurious
correlations resulting from statistically oversampled blooms of microbes. Using these
results, we wrote an interative javascript visualization to facilitate the process of
developing testable hypotheses concerning the mechanisms of phage infection and host
response. From the visualization, we are able to identify, in the hosts, mobile genetic
elements containing restriction modification systems that may defend against infection,
as well as membrane protein modifications that may serve as phage attachment sites.

Thesis Supervisor: Martin Polz
Title: Professor, Civil & Environmental Engineering
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Chapter 1

Introduction

There are approximately 10 million viral particles per milliliter of sea water [2]. At

such numbers, these tiny 30-100 nm particles can have an enormous impact on the

ecosystem. To illustrate with a particularly stunning example, Emiliana huxleyi (a

marine algae) can bloom to 1-100 thousand cells per mL over an area of 250,000 km 2 (in

the upper 200 m of the ocean) [3]. After only a week, these blooms collapse, releasing

calcite into the seabed and cloud-forming dimethyl sulfide into the atmosphere. This

population collapse is largely attributed to predation by coccolithoviruses [4, 5].

The most common viruses are bacteriophage. These viruses' hosts (bacteria) are

also abundant, at around 1 million cells per milliliter of sea water. This means "rare"

events can happen frequently. For example, in order for a successful lytic infection to

occur, a phage must encounter a bacterial host whose cell surface proteins it can bind

to, protect itself from the host restriction modification systems, and replicate within

its hosts cellular environment. All these road blocks make successful lytic infections

rare [6]; however there are approximately 36 million km 3 of water in the top 100m of

the sea. Therefore, rare events for a single cell do not equate to rare events for the

whole population [7]. In fact, it has been estimated that new viruses are produced at

rates of 1 million to 10 million particles per milliliter per hour [8]. From this, assuming

an average burst size of 50 viruses per lytic event, the number of infections initiated

by phage per second somewhere in the ocean can be very roughly approximated to be

on the order of Avagadro's number [9].
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Figure 1-1: Emiliania huxleyi population collapse within a week of the
bloom (bloom depicted here, image from NASA Earth Observatory) is
largely attributed to predation by coccolithoviruses.

Lytic infections select for resistant hosts, forcing the population to diversify, and

resistant hosts select for compatible phage variants. This rapid, recursive evolutionary

arms race occuring at such a large scale leads to highly diverse phage. The recent

explosion in bacteriophage genomes has revealed that phage genomes are highly

mosaic in structure [10], suggesting frequent recombination; and contain hoards of

uncharacterized proteins. On average, approximately 70% of open reading frames

in a phage are unannotated hypothetical proteins [11]. While perplexing, this vast

unknown may hold exciting prospects for future research.

1.1 Background on phage research, focusing on

one-step growth

Bacteriophage were discovered in 1915 by Frederick Twort then independently again in

1917 by Felix d'Herelle. These "anti-microbes" were first studied for their potential to

treat bacterial infections, but this interest declined in the 1930s due to the success of

antibiotics. However, bacteriophage research quickly became foundational to molecular

genetics [12, 13], as their small genomes, rapid growth rate, and low-maintenance

nature make them particularly convenient for experimentation. In fact, many of the

insights into the nature of DNA came out of "the phage group," an informal network
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of researchers centered around Max Delbriick, who, starting in 1945, taught an annual

phage course in Cold Spring Harbor [14]. For example, in 1943, Salvador Luria and

Max Delbruck showed using T1, the (lack of) Poisson distribution, and jackpotting

that mutations occur spontaneously and can be selected for, as opposed to being

induced by a selection event [15]. In 1952, using the T2 phage and a Waring blender,

Alfred Hershey and Martha Chase showed that it is DNA, and not protein, that

encoded the genetic material [16]. In 1957, Seymour Benzer showed using T4's rII

gene that recombination occurs on the nucleotide level [17, 18]. In 1961, Crick, et al.

showed, using Benzer's T4 rII system and various combinations of double and triple

frameshift mutations, that the genetic code consists of triplet bases [19]. We will next

outline in greater detail a particular study, the Ellis and Delbriick one-step growth

experiment. As one of the earliest "phage group" studies, it laid out the experimental

framework for others to come. Much of this framework is still widely used today; and

in fact, for the purposes of this thesis, the following background may help clarify the

methodological details presented in Chapter 2.

The Ellis-Delbrick study marks the introduction of Max Delbriick to bacteriophage

research [20]. In the mid-1930s, Emory Ellis was an analytical chemist at Cal Tech

working in cancer research. He had been drawn to cancers induced by viruses, such as

the Rous sarcoma virus and the Shope rabbit papilloma virus; however, as so little was

known about viruses at the time, he decided that a fundamental understanding of their

biology was necessary in order to proceed. So he chose to start with bacterial viruses

(as opposed to mammalian viruses or plant viruses) for the practical considerations

of time, space, and cost. At the time, however, the most commonly accepted view,

championed by Jules Bordet and John Northrop, was that the bacterial lysis witnessed

by d'Herelle had been incorrectly interpretted as an infection by an exogenous body,

when it was actually an endogenously catalyzed lytic event. Ellis's goal was therefore

to replicate d'Herelle's studies by first isolating a virus for E. coli from sewage (as he

had a culture of E. coli gifted to him by a colleague), then reproducing the stepwise

pattern of phage growth.

Max Delbrfick, on the other hand, had studied theoretical physics. And influenced
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Figure 1-2: By synchronizing infection assaying phage concentration
at short, approximately 10 minute, time intervals, Ellis was able to see
that phage growth appears to occur in bursts. The y-axis shows P/PO
in log-scale. P0 is the initial concentration of plaque forming units,
and P is the concentration at a particular time. This image is from
their original paper, 01939, by The Rockefeller Institute for Medical
Research, adapted under CC BY-NC-SA 4.0

by Niels Bohr, he ventured into biophysics, where he became interested in characterizing

the nature of the gene. Eventually, Delbriick arrived at Caltech to work on Drosophila

genetics, but quickly became frustrated. Instead, he developed an interest in viruses

and bacteriophage, thinking that "the growth of phage was essentially the same process

as the growth of viruses and the reproduction of the gene." So he sought out Ellis, and

the two began to collaborate. The above biographical details of Ellis and Delbriick's

work together is summarized from William Summers' How Bacteriophage Came to

Be Used by the Phage Group [20]. The Ellis-Delbruck paper [21] combines the work

that Ellis had been doing on phage growth curves with Delbriick's characterization of

the statistical nature of infections, which has, over time, evolved into the statistics

of what is now known as the multiplicity of infection (MOI, or, the ratio of phage

particles to bacterial cells).

The setup of Ellis's one-step growth experiment was simple. Essentially, the idea

was to synchronize at least the first round of infection in the following way:

1. Mix bacteria and viruses at a high concentration (on the order of 10' bacteria

and viruses per mL), allow 5 minutes for the viruses to adsorb onto their hosts.

2. Dilute this mixture thoroughly using growth media (at a 1:12,500 ratio) so that
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additional adsorption is unlikely to occur.

3. At approximately 5 minute intervals, plate samples of equal volume of this

dilution on a background of concentrated bacteria in order to count how many

viral particles had formed.

From this type of growth curve, it is possible to deduce the latent period, or the

amount of time a phage spends replicating within a cell before the progeny lyse the

cell; as well as the burst size, or the number of phage progeny that are produced from

each infection.

Delbriick's statistical characterization of phage infections was equally intuitive.

When there is a uniform probability for an event to occur in time or space, the number

of events that occur in a given interval of time or section of space follows a Poisson

distribution. A few concrete examples of events that can be modelled using a Poisson

distribution include the number of yeast cells in each batch of Guinness beer (courtesy

W.S. Gosset, or "Student," of the Student's T-test) [22], the number of phone calls

arriving at a call center within a minute (A. K. Erlang), or the number bombs that

fall in regions of London during World War II (R. D. Clarke) [23]. Analogous to

these examples is the number of bacteriophage present in a given volume of liquid. In

particular, the probability of seeing k phage in a milliliter is

P(X = k) = kAk!

where A, the rate parameter, is the average number of phage present in each milliliter.

One way to infer this parameter is to simply take the average - after making multiple

plates of one milliliter aliquots of the same sample, count the number of plaques (or

infection clearnings) on each plate, and divide this by the number of plates. This is,

in fact the maximum likelihood estimate, AMLE i Z ki.

Delbriick suggested another way to infer this parameter - according to the Poisson

distribution, the fraction of plates without plaques is expected to be

P(X 0) 0! e
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Figure 1-3: On the left is a picture of a phage plaque assay on a petri
dish. The light hazy layer in the picture is a "lawn" of bacteria, and the
spots scattered on top are "clearings" or "plaques." These plaques each
can roughly be thought of as having grown out of one infection. The
plaque count should then be proportional to the concentration of phage
used for the plaque assay. On the right, a poisson distribution describes
counts of an event in fixed intervals when there is a uniform probability
for occurrence over the entire space. Phage dispersal on a plate is
roughly uniform, and so plaque counts on equal areas should follow a
Poisson distribution. The image analysis above was done with freshman
miniUROPs Madelyn Focaracci and Jessica Wang. A timelapse plate
read is also available online: https://youtu.be/93p5phFAuoO.

The rate parameter can then also be estimated as A0 = -log( N), where No is the

number of plates without any plaques.

Ellis and Delbrfick observed, however, that there was consistently a discrepancy

between the two estimates. The second was almost three times higher than the first

(in their paper, AMLE = 0.22, while A 0 = 0.56). This lead them to conclude that there

may not always be a direct correspondence between phage particles and plaques1 . The

comparison of these two estimates was termed the "efficiency of plating."

The efficiency of plating is not a very commonly reported statistic today, perhaps

because the biological meaning of this statistic is somewhat opaque. However, the

'Because the title of this thesis includes the word "statistical," there is some pressure to be
statistically precise. So to be fair, the second estimate, Ao = -log(NO) is a biased estimate of
A. No ~ Binomial(po, N), where po = e-. Using a Taylor expansion around poN, we see that
E(logNo) = log(poN) - 1-P + 0(1/N2 ). Therefore, E(Ao) = A + 1 + 0(1/N 2 ). This calculation
can be verified by plugging in values of N and A and either running simulations or taking the sums.
Given Ellis and Delbriick's experimental setup, this bias is small. Forty plates were tested, and if we
assume the true rate parameter was 0.22, the first order bias term is 0.003, which doesn't come close
to the discrepancy observed. Their conclusions are, therefore, still well-founded.
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application of the Poisson distribution toward approximating phage infections has

been adapted slightly and is now still commonly used to design experiments. To

elaborate, if we assume that all plaque-forming phage are able to find a host, then

the bacterial cells themselves are now analogous to the milliliter aliquots from the

description above. The number of phage infecting each bacteria follows a Poisson

distribution, with the rate parameter being the multiplicity of infection (MOI), or the

ratio of phage particles to bacterial cells. The proportion of uninfected bacterial cells

(infected by 0 phage) can be expected to be P(Y = 0) = e-AmoI, the proportion of

bacterial cells infected by just 1 phage can be expected to be P(Y = 1) = AMoIeMOI

and the proportion of multiple infections, or bacterial cells infected by more than one

phage, can be expected to be P(Y > 1) =1 - (1 + AmoM)e MAoi. For phage-host pairs

where infection by more than one phage results in a different infection phenotype

than infection by just one phage, it may be of interest to the experimenter to pick a

low MOI, tuning P(Y > 1) in order to control the number of multiple infections. For

experiments where the goal is to observe a signal during infection, for example, RNA

sequencing looking for changes in host gene expression during infection (as is the case

in Chapter 2 of this thesis), it may be of interest to the experimenter to pick a high

MOI, tuning P(Y = 0) in order to reduce the background signal from uninfected cells.

Returning to the Ellis-Delbriick paper, the authors go on to describe many ad-

ditional carefully executed experiments, which will not be further described here.

However, to summarize a few highlights, they were able to conclude that plaque counts

correlate incredibly well with phage concentration, and so each plaque likely grew from

one instance of infection; during the growth experiment, phage concentration increases

in a stepwise manner, indicating that phage are produced in bursts; and phage growth

depends on bacterial growth. Recalling their original goal of assessing whether the

bacterial death witnessed by d'Herelle was the result of endogenous enzymatic lysis or

killing by an obligate intracellular parasite, they concluded that, while it is possible a

different type of phage exists, theirs was an obligate intracellular parasite. This main

conclusion is important as it laid the foundations for other studies based in phage.

Additionally, their study also has lasting methodological impacts. In particular, Ellis's
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one step growth curve continues to be the most accurate method for measuring the

latent period and burst size for a phage-host pair, and Delbriick's application of the

Poisson distribution to infection frequencies is widely used for selecting an MOI during

the design of experiments. Chapter 2 of this thesis, which explores the action of phage

tRNAs during infection, extensively utilizes both of these methodological techniques.

1.2 Phage research today, in the era of sequencing

In 1944, Delbruck had drafted a "phage treaty," in which he urged his colleagues to

focus their attention on the T-phages (TI, T2,..., T6). Because of this, the T-phages

became incredibly well characterized model organisms. Bacteriophage research today,

is often of a different flavor. While a concerted effort is valuable, studying model

organisms comes with limitations, as our actual environment is much more diverse.

And conveniently, sequencing costs have been declining, according to the National

Human Genome Research Institute, even faster than Moore's law [24]. Gone are

the days of the "phage treaty." In contrast to the elegant experiments and clever

analytical calculations of the mid-1900s, phage research today often consists of large-

scale sequencing efforts and a necessity for, what's termed, "embarassingly parallel"

cluster computations. The explanation that this term comes from an "embarassment

of riches" is perhaps very appropriate for the data we face today.

To provide an example, the Tara Oceans survey [25] catalogues a 3 year expedition

across "the world's oceans," with 35,000 samples of seawater spanning 10 size fractions.

While only 43 of these samples have been sequenced for metagenomes of the <0.22 Pm

fraction (the viral fraction), these samples are from 26 stations from the Mediterranean

Sea, Red Sea, Indian Ocean, South Atlantic Ocean, and North Pacific Ocean [26].

From this data, the team has been able to identify 488,130 viral populations, only 19%

of which were previously known. This type of large-scale metagenomic sequencing

effort helps to illuminate the viral diversity in our environment, yet it is somewhat

limited in its ability to provide information about what organisms these viruses may

infect and how the uncharacterized viral genes may function.
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As another example, the SEA-PHAGES program [27] combines discovery-based

undergradate education with citizen science. With the help of 20,000 students and

400 faculty instructors, the program has isolated 13,000 phage and amassed over 1,800

sequenced and annotated phage genomes. Many of the phage lysates are archived,

and there is tremendous potential for further exploration of the data in order to gain

mechanistic understandings of infections; however, the crowdsourced nature of the

collection effort also has a drawback in that there does not appear to currently be an

integrated cross-test of all hosts against all phage.

In this thesis, we wade into the Nahant Collection [28-30], which includes a

cross-test consisting of 243 Vibrio strains challenged by 241 unique phage, all with

sequenced genomes and archived cell glycerol stocks/phage lysates. This is the largest

phylogenetically-resolved host range cross test available to date. These host strains

match to 19 well-characterized populations that have been shown to be coexisting

but ecologically differentiated. For example, Enterovibrio norvegicus are primarily

free-living, Vibrio cyclitrophicus are large-particle specialists, V. tasmaniensis and V.

splendidus are generalists, and V. breoganii are algal-degredation specialists and form

biofilms [31, 32]. The phage fall into around 18 phylogenetically distinct groups; have

diverse infection strategies, with both broad and narrow host-range phage; and have

distinct morphologies, with representatives from nontailed (Tectiviridae), and tailed

(Podoviridae, Myoviridae, and Siphoviridae) morphotypes.

These large-scale sequencing efforts hold much promise for better understanding

the organismal and functional diversity of our environment; however, obtaining this

understanding comes with a few statistical challenges. (1) Phylogenetic confounding:

while the diverse population structure of phage and hosts is an interesting feature of

the data, it means that statistical independence does not apply. (2) Interpretability:

After conducting relevant analyses, with so much data and so many parameters tested,

it may still be not clear what the results of these analyses mean. Chapter 3 of this

thesis seeks to address these two challenges; however, as it may not, at first, be clear

or intuitive what is meant by these challenges, the next sections are devoted toward

providing some background.
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Figure 1-4: The figure above illustrates problems that can arise from
confounding due to population structure. The scenario on the left is
the classical Simpson's Paradox, where conditioning on the population
(yellow or blue) results in reversing the genotype's effect. The scenario
on the right is what we more typically observe in the Nahant Collection,
where genotypes associated with an oversampled clade show up as strong
effects when in reality, the effective sample size may be too low for there
to be high confidence in the effect.

1.3 Phylogenetic Confounding

Geneticists have long been regressing phenotypes against genotypes as with genome

wide association studies; however usually, the assumption behind these studies is that

the individuals, or samples, are independent and identically distributed (iid). The

polyclonal nature of the largescale sequencing studies means that this assumption is

very much violated. For two closely related bacterial strains, knowing that one of

them is immune to infection by a given virus should lead us believe that the other

is likely also immune to the same virus. Likewise, knowing that one of these strains

carries a particular gene should lead us to believe that its sister strain likely also

carries a homolog of that gene. Therefore, assuming independence may lead us to

the tempting conclusion that the gene protects against infection, but this may not

be fair, as infection phenotype and genotype are both influenced by the underlying

phylogenetic structure. This problem is referred to as "phylogenetic confounding." One

scenario that can arise is Simpson's Paradox, where conditioning on the population
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results in reversing the genotype's effect. To provide an illustrative example, let's

suppose that the copy number of a particular gene is directly related to how well

the bacteria can defend itself from phage infection. The more copies of this gene,

the smaller the burst size we observe during phage infection. However, suppose we

find two species of bacteria that carry this type of defense and can be infected by

the same phage. One population carries less copies of this gene on average than the

other population, however, it is also less susceptible to infection, perhaps because

it also possesses another type of defense mechanism. In this example, if we treated

bacteria from the two populations as being iid, we may have arrived at the conclusion

that having more copies of this gene results in the bacteria being more susceptible to

infection, which is the opposite of the setup of our example.

The above scenario is a very classical paradox; however, there is an additional

scenario which is more representative of what we typically observe in the Nahant

collection, in which genotypes associated with an oversampled clade show up as strong

effects when in reality, the effective sample size may be too low for there to be high

confidence in the effect. To illustrate, there is a group of 18 very closely related viruses

in the Nahant Collection (this accounts for 8% of the viruses). Therefore, in taking

a host and asking which phage genes may allow or prohibit a phage from infecting

that particular host, if we treat the phage as iid, and pick a host that this group of 18

phage cannot infect, the 10 genes that these 18 phage all share in common almost

always pops up as being negatively associated with the ability to infect. There is likely

not a mechanistic link between these genes and infection capacity, however, we've

simply oversampled these phage.

Through the years, a few techniques for addressing phylogenetic confounding have

emerged, many reminiscent of models used in time series/longitudinal data analysis.

The most popular of these models [33] include:

1. Independent Contrasts [34]: This method is similar to the differencing methods

used in time series. Usually when building a phylogeny, the observed states

are contained in the leaves of the tree, and the ancestral states in the internal

nodes are not observed. Therefore, the first step is to infer the ancestral states,
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then contrasts are taken between parent nodes and their children in order to, in

essence, establish a sort of stationarity.

Drawbacks: Ancestral state reconstruction requires making assumptions about

trait inheritance and taking contrasts requires making assumptions about the

evolutionary difference between each parent and child pair. These steps introduce

extra layers of bias in the model.

2. Phylogenetic Autocorrelation [35]: Traits are fit to an autoregression model

x = pWx + c, where W is a matrix of phylogenetic similarities and p is the

phylogenetic autocorrelation coefficient. Each element of W is computed by

wij = 1/d., where dij is the pairwise distance between species i and j, and a is

a scaling factor to allow for further flexibility.

Drawbacks: This method relies heavily on the accuracy of W in specifying

phylogenetic relationships. In addition, this formulation does not allow for

regression against a non-phylogenetic component, although it may be possible

to generalize this, for example, as a vector autoregressive method. Alternatively,

the residuals can be treated as the new data, with phylogenetic components

removed.

3. Stratifying on the principal components [36]: The Eigenstrat method first

computes the principal components of the population based on the genotypes,

then regresses phenotypes against principal components, and finally regresses the

residuals against each genotype. This is equivalent to the population principal

components as explanatory variables in a regression. This formulation of the

model roughly corresponds to mixed models, described below in point 5.

Drawbacks: It can be unclear how many components should be used. And

because this could require doing a high-dimensional regression, it is unclear what

form of regularization should be used. (Applying some forms of regularization

could yield equivalent solutions as choosing particular priors for the mixed model

method described by point 5 below.)
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4. Generalized Least Squares [37]: Acknowledging that the residuals of a linear

model, Y = X0 + e, would be correlated, the model is multiplied by the matrix

square root of the inverse covariance matrix.

E1/2Y E -1/2XO + E-1/26

And now, cov(i) = E E E-' = I. In this context, the

covariance matrix of the data is calculated by inverting the phylogenetic tree.

We can alternatively consider using the covariance of the genomes themselves

and skip the tree-building step altogether; however, enforcing a phylogenetic

structure may keep this method more biologically intuitive.

Drawbacks: The covariance matrix is assumed to be fixed, so the estimates do

not account for the uncertainty in the phylogenetic structure.

5. Generalized Linear Mixed Models [38-40]: The phylogeny is treated as a random

effect, and other covariates can be included as either fixed or random effects.

For example, a model may take the form zi = m + ai + ci, where zi is represents

the phenotype of a taxon, m is the phenotype at the root of the phylogeny, ai is

the phylogenetic random effect.

Drawbacks: Initially, phylogenetic random effects were simply based on factor

variables, for example, five different species of birds, with each bird being treated

as a different level, and categorizing the phage and bacteria imposes too large

an assumption. However, it is possible for the random effect to directly assume

a computed covariance structure; this would roughly correspond to regressing

against principal components, described above in point 3. Taking this a step

further, the uncertainty in the covariance structure can also be modeled by

including a prior for the covariance matrix.

6. Multiple Regression: Regress the phenotype against all genotypes at once.

The covariance correction methods above regresses a genotype on a phenotype
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while/after correcting for population structure; however including all other

genotypes would model the effect conditioned on the rest of the genome, which,

in essence, accounts for population structure.

Drawbacks: Depending on the size of the genome and number of variants modeled,

this can be an incredibly high-dimensional regression. It may then be necessary

to regularize, however regularization can come with challenges in standard error

approximation of the parameters. This may require bayesian estimates, which

are often computationally costly, especially given the large number of samples

and high dimensionality. Interpretation of high dimensional models can also be

challenging.

In Chapter 3, we will utilize generalized least squares as it requires making relatively few

assumptions compared to many of the other methods, performed well for simulated

test cases, and is fast to compute. We believe that improvements upon this can

definitely still be made; and in particular, an appropriate generalized linear mixed

model may be more conceptually adherent.

1.4 Interpretability

Let's consider why interpretability is a difficult for analyses of the Nahant Collection.

There are 241 phage and 243 hosts, approximately 1000 phage gene clusters and

10,000 host gene clusters. Taking the simplest possible approach of regressing each

phage infection profile against each host gene (that's 241 x 10,000 regressions) or each

host infection profile against each phage gene (that's 243 x 1000 regressions), how do

we make sense of the results once we have them? (A less simple approach of using

multiple regression to predict the infection matrix is presented in Appendix A.)

Genome wide association studies often make use of the "Manhattan plot," which

depicts either the log odds or the negative log of the regression coefficient p-values

on the y-axis and the genome position on the x-axis. This helps identify the genetic

locus of interest to a particular phenotype. There is a perfect analogy here, but one

question is, what genome do we use? We cannot make a full genome alignment of
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Figure 1-5: Tukey emphasizes the value of tracing paper in his original
1970 volumes of Exploratory Data Analysis. Here, he shows how a
bagplot can be constructed for Fisher's Iris dataset. While tracing
paper is perhaps less relevant for the large, high dimensional datasets
we face today, his willingness to dive into the weeds and his emphasis on
selecting the right medium are great guiding heuristics. Pages preceding
Tukey, John W., Exploratory Data Analysis, 1st, 1977. Reprinted by
permission of Pearson Education, Inc., New York, New York.

either the bacteria or the viruses. And then if we make some type of full genome

alignment, we would be left with 484 Manhattan plots to sift through. This challenge

in interpretability is, in fact, a challenge in exploratory data analysis. The Nahant

Collection is an observational dataset, and so while we can make associations between

genes and infection phenotype, these associations must be validated with experiments.

Therefore, the goal is really to facilitate intuitive exploration of various hypotheses

in order to identify which of these hypotheses are most worth testing. In need of

inspiration, we turned to John Tukey, who defined the term "exploratory data analysis."

(Tukey is also the father of fast fourier transforms, the term "bit," boxplots, among

others.) To highlight a few of his mantras [41]:
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. "Three main strategies of data analysis are: 1. graphical presentation. 2.

provision of flexibility in viewpoints and in facilities, 3. intensive search for

parsimony and simplicity."

. "Exploratory data analysis is actively incisive rather than passively descriptive,

with real emphasis on the discovery of the unexpected."

. "Exploratory data analysis does not need probability, significance or confidence"

And in leafing through Tukey's volumes [42], it is interesting to note how many

carefully hand-drawn figures there are and how enthusiastically Tukey extols the

advantages of tracing paper. While tracing paper may not help us with the many

thousands of genes Nahant Collection, the notion of finding the best medium for the

job is useful. The approach we chose to take in Chapter 3 is to write a javascript

visualization that allows a user to interact with the data and regression results. Not

all regressions are sensible, and full genome alignments of bacteria and phage are not

logical. So instead, the user is able to interactively chose which regression results to

view and which genomes to view the results on. Brushing and zooming are also written

into the Manhattan plots in order to display details about the particular regions of

interest.

1.5 Goals of this thesis

The general goal of this proposal is to explore the genetic variations that determine

phage-host interactions. In Chapter 2, we outline an interrogation of the selective

advantages that a particular strategy, carrying tRNA, may convey to a T4-like

Vibriophage, 2.275.0 (348,911 bp, 18 tRNA spanning 13 amino acids). We show that

host DNA and RNA degrade upon infection - particularly, host tRNA degradation

baselines around 15 minutes into infection, while phage particles are only released at

60 minutes, implying that without further tRNA production, phage genes expressed

late in the cycle may experience resource limitation during translation. All 18 phage

tRNA are expressed, at levels slightly better adapted to phage codon usage, especially
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that of the late genes, which may rely mostly on the phage tRNA pool for translation.

Strikingly, the phage is very unlikely to pick up as diverse or more diverse an array of

tRNA as what it currently carries. This suggests what appears to be a goal toward

nearly self-sufficient translation as the host translational machinery degrades.

In Chapter 3, we turn to the dataset as a whole in order to infer mechanistic

insights from the large scale sequencing and phenotyping efforts. Doing so comes with

a few challenges: (1) While the diverse population structure of phage and hosts is

an interesting feature of the data, it means that statistical independence does not

apply. To address this, we screen for genes of interest using generalized least squares

to correct for phylogenetic confounding. We find that this proceedure allows us to

pick out relevant signals, especially negative effects such as restriction modification

systems and exclusionary prophage elements, which would otherwise be drowned out

by spurious correlations resulting from statistically oversampled blooms of microbes.

(2) Due to the observational nature of environmental sampling, we are not able to

draw conclusive links between genetic elements and infection specificity. Instead,

the Nahant Collection should be viewed as a resource for exploratory analyses that

can inform the design of additional experiments. Thus, we've written an interactive

visualization to facilitate the process of developing testable hypotheses concerning

mechanisms of phage infection and host response.
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2.1 Abstract

Viruses are traditionally thought to be under selective pressure to maintain compact

genomes and thus depend on host cell translational machinery for reproduction.

However, some viruses encode abundant tRNA and other translation related genes,

the presence of which is thought to optimize for the codon usage differences between

the phage and host. In this paper, we outline a systematic interrogation of selective

advantages that carrying tRNA may convey to a particular T4-like Vibriophage,

2.275.0 (348,911 bp, 18 tRNAs spanning 13 amino acids), during infection of its

host of isolation. We observe that host DNA and RNA degrade upon infection -

particularly, host tRNA degrades and reaches a minimum around 15 minutes into

infection, while phage particles are only released at 60 minutes, implying that without

further tRNA production, phage genes expressed late in the cycle may experience

resource limitation during translation. All 18 phage tRNA are expressed, at levels

slightly better adapted to phage codon usage, especially that of the late genes, which

may rely mostly on the phage tRNA pool for translation. Strikingly, the phage is very

unlikely to pick up as diverse or more diverse an array of tRNA as what it currently

carries (p = 0.0016). Taken together, our results support early findings [43] that the

main driver behind phage tRNA acquisition is the pressure to sustain translation as

the host machinery degrades, a process which results in a dynamically adapted codon

usage strategy during the course of infection.

2.2 Significance

Bacteriophage are traditionally thought to be under selective pressure to maintain

compact genomes constrained by capsid size. Therefore, for phage, translational

machinery is thought to be better rented than owned and is considered a signature of

cellular organisms [44-47]. However, the recent explosion in phage genome sequences
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reveals a wide distribution in phage genome content and size [48], including "jumbo

phage" that carry tRNA and other translation-associated genes. More diverse strategies

must therefore be at play. Our results here point toward a tradeoff: although encoding

translation-related components requires shuttling a larger phage genome, it also

reduces dependence on host translational machinery, allowing the phage to be more

aggressive in degrading and recycling the host genome and other resources required

for replication.

2.3 Introduction

The question of why some bacteriophages encode their own tRNAs has been of

interest since the late 1960s, when tRNAs were discovered to be carried by T4 [49,

50]. This finding counters the notion that bacteriophage should be under selective

pressure to maintain compact genomes. Most phage simply make use of the hosts'

translational machinery, and thus tRNA genes and other translation-related genes are

often considered a hallmark of cellular life [44-47]. Why then, do some phage carry

tRNAs?

For the T4 phage, almost all of its eight tRNAs correspond to codons that it

uses more frequently than its host [51]. Based on this example, it was proposed that

bacteriophage typically carry tRNA in order to bias translation toward their own

genes. Additionally, Cowe, et al. found evidence suggesting that the codon usage

bias introduced by T4 tRNAs is especially pronounced toward its late genes [43].

Experimentally, tRNA mutants of T4 are still able to replicate and lyse their hosts,

but show a moderate decrease in burst size under some experimental conditions [52].

However, for another broad host-range T4-like phage KVP40, which carries 25

tRNAs [53, 54], the signal for codon usage bias optimization by phage tRNAs is less

clear [54]. In fact, this signal may be an artifact because bacterial tRNA levels are
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often highly optimized for their codon utilization [55, 56], and codon usage tends

to be very species-specific [57, 58]. Hence even phage that do not carry tRNAs

commonly have noticeably different codon usage distributions than that of their hosts.

It therefore remains an open question whether codon bias optimization is a strong

enough driving force for phage to carry tRNA genes. Other correlations have been

described of, for example, larger phage carrying more tRNAs, and lytic phage being

more likely to carry tRNA than temperate phage [59]. And through a process of

elimination, Delesalle, et al. [60] hypothesized that tRNAs help to sustain growth

during infection or to expand host range of the phage.

Because of these competing hypotheses, we systematically explored the selec-

tive advantages that carrying tRNA might confer to a particular phage, 2.275.0

[NCBI:txid1881285]. To verify whether the codon usage bias hypothesis may be

plausible, we conducted preliminary genomic analyses to verify that a codon usage

difference exists between the phage and host. Next, because alternative uses for tRNAs

exist - such as being convenient sites for recombination - we checked for signatures of

posttranscriptional tRNA modifications in the sequencing data and found that the

phage sequences were indeed recognized as tRNA and therefore are likely to participate

in translation. We returned to assess the codon usage optimization hypothesis, and

found that while the evidence suggests that there could be some amount of optimiza-

tion, this did not appear to be the most important factor at play. Instead, we found

that the infection phenotype is all-destructive in that within approximately the first

15 minutes of infection, the host genome was degraded, as was the host transcriptome.

There is, therefore, little host RNA left to optimize codon usage bias against. Rather,

because the host tRNAs were degrading as well, the phage presumably supplies its

own translational machinery in order to sustain its reproduction cycle. Finally, we

show that the main factor optimized for by the phage tRNA is the diversity of the

tRNA array, which allows the large phage to sustain a longer replication cycle amid
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the decaying pool of host resources that result from the lytic infection cycle. This

illustrates a pressure that may select for larger phage: because large phage must

degrade host machinery for parts, bringing its own machinery allows it to gain a

competitive edge, which selects for even larger phage.

2.4 Results

2.4.1 Genomic analysis of phage and host reveals differences

in genomic codon usage patterns

Phage 2.275.0 is part of the Nahant Collection, an extensive collection of Vibriophage

previously described by Kauffman et al. [28, 29], and is notable for a few reasons: at

348,911 bp, it is among the largest known bacteriophage (Figure 2-1); it is capable of

infecting hosts from two different species, Vibrio cyclitrophicus and V. lentus; and its

genome encodes for 18 tRNAs that correspond to 13 amino acids, as well as another

seven other tRNA-like sequences with putative introns (Figure 2-2A). To test whether

the codon usage hypothesis is plausible, we first conducted preliminary analyses to

verify that a codon usage difference between the phage and host exists. To this end, we

applied multidimensional scaling (Figure 2-3a) and multinomial discriminant analysis

(Figure 2-3b) to the codon usage for each gene from the genomes of the phage and its

host of isolation. We observed that there is, in fact, a codon usage difference between

the two organisms, allowing us to next ask, do the phage tRNA bias translation in

the direction of this difference? Previously, tRNA copy number in the genomes of

phage and their hosts was used to assess whether phage tRNAs may optimize codon

usage differences [59]. And in examining the odds ratio for each codon in the phage

vs. host genome (Figure 2-2b), the codons that can be recognized by an anticodon

from a host tRNA (according to extended wobble rules summarized by dos Reis, et al.

[61-63]) appears to be more commonly used by host genes than by phage genes. On
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Figure 2-1: Phage 2.275.0 carries 18 tRNA genes and is a large phage
in both capsid size (120 nm) and genome size (348,911 bp). (A) The
x-axis of the genome summary is genome position, the tracts above in
color indicate hits to kegg annotated genes. The y-axis of the timing
plot below depicts time to reach half the maximum expression of that
gene. Blue bars indicate genes on the positive strand, and red bars
indicate genes on the negative strand. This summary gives an estimate
as to what the transcriptional units may be. Similarly to T4, early
genes tend to be polymerases and sigma factors, while late genes tend
to be structural proteins. (B) An electron microscopy image of phage
2.275.0 is shown.

the other hand, codons that can be recognized by both phage and host tRNAs span

the range of usage preferences. Instead of selectively acquiring tRNAs that are more

beneficial to it than its host, it appears the phage seeks to acquire diverse tRNAs,

but places lower priority on those that benefit mainly its host. However, this analysis

does not account for RNA modifications (which can often be found at the wobble

base); and furthermore, tRNA expression level may be more relevant information

for assessing any translational bias that may be introduced. We therefore performed

tRNA sequencing on an infection timecourse, sampled at 15-minute intervals, in order

to track the phage tRNA expression levels throughout the infection cycle.
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2.4.2 tRNA sequencing suggests that phage tRNA actively

participate in translation

The presence of many tRNA genes in the 2.275.O genome suggests that (at least

some of) the tRNAs do indeed participate in translation. However, this assumption

should still be tested, as there are non-canonical uses for tRNAs, such as serving as

convenient sites of integration for phage and integrative conjugative elements [64-661

or serving as primer binding sites (more pertinent to RNA viruses) [67, 681.

Based on data from tRNA sequencing, we are able to verify that phage tRNA are

expressed during the infection cycle; and furthermore, we can infer post-transcriptional

modifications on the phage tRNA transcripts using the sequencing data, which indicates
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that the phage tRNA are likely involved in translation. For example, in tRNA, the

CCA tail is required for amino acid attachment as well as for successful interaction

with the ribosome, and synthesis of the CCA tail is thought to be a step in tRNA

quality control [69-71]. We observed that the tails of the five phage tRNA whose

genomic sequences do not end in CCA (Cys-GCA ends in CTA, Gly-TCC ends in

CTA, Ile-GAT ends in CAA, Leu-TAA ends in CCG, and Tyr-GTA ends in CAA),

are modified into CCA upon transcription. On the other hand, the genomic sequences

of all host tRNA end with a CCA tail. And while the host carries a CCA modification

protein in its genome (Genbank locus tag NVP22750_348); the phage carries its own

CCA modification protein as well. Hence, the phage tRNA appear to be processed

such that they can participate in translation.

We are additionally able to infer putative addition of similar base modifications on

the phage and host tRNAs. In our tRNA sequencing protocol, we used the group II

intron reverse transcriptase TGIRT [72], which can read through RNA modifications

but may leave DNA base substitution signatures. For example, in comparing one of

the phage CAU tRNAs (Genbank genome location: 182648-18272) with a host CAU

tRNA (Genbank locus tag: BCV12_11325), both are modified with 4-thiouridine on

the 8th base, 3-(3-amino-3-carboxypropyl)uridine on the 47th base, and, importantly,

2-lysidine on the 34th base, putatively changing them to AUA-recognizing isoleucine

tRNA [73]. Other similar putative modifications can be observed between phage tRNA

and their host analogs, for example, 5-carboxymethylaminomethyl-2-thiouridine on

base 34 of Glutamine tRNA, 1-methylguanosine on base 37 of (most) Leucine tRNA.

These similarities suggest that phage tRNAs may be recognized and processed by the

same enzymes as corresponding host tRNAs.

It is of course possible that the phage tRNA additionally participate in other func-

tions, and in fact, seven intron-containing tRNA-like sequences, while not recognized

by tRNAscan-SE [74], are recognized by another tRNA caller, Aragorn [75]. These
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sequences are only expressed at as low as 0.003 times (as in the case of threonine

tRNA) to 0.2 times (as in the case of serine tRNA) the abundance of an isoacceptor

phage tRNA without an intron. Although a small fraction of the reads did appear

to be spliced as called, many did not, and the aligned anticodon loop was fairly

heterogeneous for these species. In addition, many of these sequences do not end in

CCA and did not appear to receive CCA tails. These intron-contaning tRNA-like

sequences may serve non-canonical functions, and so were therefore not used beyond

the initial preliminary analyses.

2.4.3 Codon usage bias is present but not pronounced

Having found evidence supporting the idea that the 18 phage tRNAs without introns

likely participate in translation, we then turned to testing the most common hypothesis

as to why phage carry tRNA - to increase the translational efficiency of their own

genes over that of their hosts' [51, 52, 59, 76]. For each gene, we calculated a value

representing the efficiency with which it can be translated by the phage tRNA pool,

relative to the efficiency with which it can be translated by the host tRNA pool

(see Materials and Methods), for simplicity, we will refer to this value as the "slant"

of a gene. We observed that the slant of the phage genes was slightly more in the

direction of the phage tRNA pool than was the slant of the host genes (Figure 2-3C);

however, this effect was weak compared to a more optimal axis of discrimination,

which is defined by the average gene codon usage for each organism (Figure 2-3B). The

statistical significance of this small effect (KS-test: p < 2.2e-16) seems unreasonable;

and in fact, we must re-evaluate this test under the context of the problem at hand

- specifically, we already know that a codon usage bias exists between the host and

phage genes, and we also know that the host tRNA are closely matched to the host

codon usage (Figure 2-3A). Therefore, almost any randomly chosen set of tRNA will

betray a codon usage difference between the phage and host genes. It is simply then a
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Figure 2-3: Codon usage bias introduced by the phage tRNA pooi is
more pronounced in late genes than early genes. (A) A multidimen-
sional scaling plot of phage and host proteins using Shannon-Jensen
Divergence of the codon distributions shows that a codon usage dif-
ference exists between phage and host. Points representing the codon
recognition capacities of the tRNA pool for each organism are overlayed.
Points representing the average codon usage for each organism are also
overlayed. In (B), the x-axis shows the "slant" for each gene, or the
preference for the phage tRNA pool vs. the host tRNA pool. (Zero

signifies ambivalence.) While a statistically significant difference in the
slant of phage and host genes exists, this axis is by no means optimized.
A more optimal axis is shown in (C), which is defined by the mean
codon usage for host and phage. (D) The slant toward the phage tRNA
pool is slightly higher for late genes than for early genes. Here, the

timing depicted along the x-axis is the center of mass of RNA expression
for the first round of infection. Note that this is different from the
expression timing described in figure 1. The center of mass in this
plot also gives a sense of how quickly the RNA transcript is degraded,
while the time to half maximum expression shown in figure 1 mainly
summarizes transcription timing.

coin flip as to whether the difference is in the direction of the host tRNA pool or the

phage tRNA pool.

A better question to ask then, is whether the slant values for phage vs. host

genes are different given the known difference in codon usage for the two organisms.

Conditioning appropriately, the probability of seeing as high or a higher difference

in slant between the phage proteins and host proteins in the direction of the phage

tRNA pool was approximately 0.08. (See Materials and Methods for details of this
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calculation) This probability is suggestive, but we cannot be confident that codon

usage bias optimization has been the main factor driving tRNA acquisition.

2.4.4 Host genomic DNA and RNA transcripts are degraded

Perhaps the signal for codon usage optimization was low because codon usage opti-

mization mainly targets a subset of the phage genes, in particular the late genes, as

is the case for T4 [43]. Codon usage optimization toward the late genes might be

advantageous for a few reasons: (1) mRNAs from the earliest genes might already

be undergoing translation and degradation as the phage tRNAs are transcribed, and

therefore must utilize mainly the host tRNA pool; and (2) the host tRNA pool might

degrade, in which case, translation, during the late stages of infection might heavily

rely on phage tRNA.

Some evidence in the literature supports the latter hypothesis. During T4 infection

of E. coli, degradation of host DNA is initiated by Endo II and Endo IV [54], in

part to help supply the nucleotide pool for phage replication. This comes with a

consequence: although tRNAs tend to be more stable than other RNAs [77], they

can undergo rapid degradation under stress conditions [78, 79]. In fact, during

T4 infection, E. coli uses nucleases to deplete its own lysine tRNA, dialing down

translation, seemingly in defense. While, as a "rebuttal," T4 RNA ligase is able to

repair damaged tRNA [80], the evidence for this all-destructive infection phenotype

suggests that supplying translational components might help the phage to fill the

growing gaps in host machinery and thereby prolong the replication period.

To test whether phage 2.275.0 infection is similarly all-destructive, we used qPCR

to check whether host DNA was degraded upon infection. We found that the genomic

copy number of the host genes probed for (GroEL and CTP Synthetase) dropped by

approximately 80% within the first 15 minutes of infection (Figure 2-4A). These levels

climb again at 60-90 minutes, likely due to regrowth of uninfected host cells. These
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dynamics would be expected with a multiplicity of infection (MOI) of approximately

1.6, assuming Poisson infection probabilities. (Although we had targetted a higher

MOI of -8, the actual MOI might have been lower due to inefficiencies in phage-host

encounters.) Because the host genome is degraded, tRNA can no longer be produced

from the host genome, and if host tRNA are degraded as well, tRNA might become a

limiting resource for translation during the late stages of infection. When examining

the tRNA expression from transcriptome sequencing data, we found that the host

tRNA were indeed degraded rapidly, reaching a minimum value around 15 minutes

(the climb after 15 minutes is likely due to regrowth of uninfected cells), whereas

phage tRNA were continually produced (Figure 2-4B). In contrast, phage particles

were produced only 60 minutes into the infection (Figure 2-4A). These observations

supported the hypothesis that, as the host tRNA pool is degraded, the phage tRNA

allow translation to be sustained; this may especially benefit the late genes, which

do not reach half their maximum expression until 40-45 minutes into the infection

(Figure 2-1).

Having found that the host genome and transcriptome (including the tRNA) were

indeed degraded during infection, we next utilized the full transcriptome sequencing

data to quantify 2.275.0 gene expression timing in order to assess whether late genes,

which have a greater necessity for relying on phage translational machinery, were more

adapted to the phage tRNA pool than early genes. We did in fact observe that the

slant of the late phage genes was further in the direction of the phage tRNA pool than

the slant of the early genes (Figure 2-3d). However, the absolute slant of even the late

genes was closer toward the host tRNA pool than the phage tRNA pool, implying

that while suggestive, codon usage bias optimization might not be the driving force

for phage acquisition of tRNAs.

50



Infection Timecourse Characteristics

LOA r W -
/ / \

unfiltered pfu
- filtered pfu

LO C -
00

00

cc 0

0 0 host GroEL
0 host CTP Sythetase

V_ 1 * o phage GroEL
. o phage Major Capsid

C g - host tRNA
phage tRNA

cis

0

S I I I I I I I I

Z E E E E E E E E E

Figure 2-4: 2.275.0 infection is aggressively lytic. (A) Phage burst

occurs around 60 minutes into infection. (B) QPCR results show that

the host genome is degraded rapidly upon infection. (C) RNA sequencing
results show that host tRNA (and generally, most host RNA, with the

exception of stress response genes) are degraded upon infection as well.

In contrast, phage tRNA rapidly increase, supplementing the degrading

pool of host tRNA. Here, the reads are normalized to a firefly luciferase

spike-in for each sample, as opposed to the total read count per sample.
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2.4.5 Prolonging the replication period amidst host cell shut-

down

If the phage tRNAs optimize for the ability to sustain translation in the absence of

the host tRNAs, we would expect the phage to carry as diverse an array of tRNA

as possible. In fact, it is striking that the 18 phage tRNAs without introns each

represent different anticodons (there are two CAU anticodons, however, one of these is

likely modified by 2-lysidine, making it an AUA-recognizing Leucine as opposed to an

AUG-recognizing methionine, please refer to the github for details about modification

calling). And in simulating draws of tRNA from the host genome, we find that

the tRNA carried by 2.275.0 is more diverse in anticodons encoded than would be

expected at random (Figure 2-5A, p=0.001 6 ). This observation was even more striking,

when considering that neighboring tRNAs within the host genome generally have very

low diversity, as they are likely the result of gene duplication events, and tend to code

for the same amino acid (Figure 2-5A). This indicates that picking up as diverse an

array of tRNAs as observed in the 2.275.0 genome was not a matter of a few simple

recombination events, but many. Thus, the diversity of this tRNA array appears to

be under high selective pressure.

And what of the tRNAs that the phage does not carry? We found that the host

expresses of many of these tRNAs more highly than the tRNAs with phage analogs

(Figure 2-5B). Assuming similar rates of degradation for each tRNA, the more highly

expressed tRNAs may persist longer during infection, thereby reducing the selective

pressure for the phage to acquire its own copies. The tRNAs without phage analogs

that are expressed lowly by the host recognize codons that are used very infrequently

by the phage. These two types of tRNA may confer less of a selective advantage to the

phage than the tRNA already present in the phage, implying that for these tRNAs the

phage has reduced its dependence on their codons rather than acquire its own copies

of the tRNAs. Taken together, the observations presented in this paper imply that
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Figure 2-5: The main function of tRNA carried by the phage is likely

to supplement the degrading pool of host tRNA. (A) The diversity of

the phage tRNA array appears to be under selection, and is likely the

result of multiple recombination events. Based on simulation results,
the probability of selecting, uniformly at random from the host genome,
a tRNA array that is able to encode as many anticodons as that carried

by the phage is 0.0016, indicating that tRNA array diversity is under

selection. In addition, contiguous stretches of tRNA in the host genome,
which are typically thought to be the result of duplication events, encode

very lowly diverse anticodons. The phage's tRNA collection, therefore,
appears to be the result of multiple acquisition and selection events. (B)

Of the tRNA not carried by the phage, most are very highly expressed

by the host, and others correspond to codons not very highly used by
the phage genome.

the primary function for phage tRNAs is to supplement degrading host translational

machinery, which results from an all-destructive lytic infection phenotype.

2.5 Discussion

Our results indicate that the main role of the phage 2.275.0 tRNAs is to support

translation of this large lytic phage as the host cell shuts down. Upon 2.275.0 infection,

host genomic DNA is degraded, as are mRNA transcripts. Degradation reaches a

baseline around 15 minutes; however, phage particles are only released around 60
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minutes after the onset of the infection, implying that without phage tRNA production,

late genes might experience resource limitation during translation. Although the tRNA

array of phage 2.275.0 does not appear to optimize tRNA/codon usage bias toward its

genes on the whole, we do observe that the codon usage of the phage genes expressed

late during the infection are more in the direction of the phage tRNA pool than

that of the early genes. Additionally, the diversity of the phage tRNA array appears

to be optimized, implying that the main selective force at play is a drive toward

self-sufficiency in the wake of host degradation.

This simple line of logic unifies many observations previously made in the literature,

either through deep interrogations of the T4 infection cycle or broad analyses of tRNA-

carrying phage: First, the presence of many tRNAs is more often found in genomes

of lytic phage than those of temperate phage [59]. Aggressively lytic phage often

degrade the host genome as the phage can then use the nucleotides to increase its

burst size. But because translation is required for phage particle production, these

phage presumably benefit from shuttling their own translation machinery by extending

the replication period beyond the time at which the host resources are depleted.

A second observation is that phage tRNAs appear to optimize codon usage bias

toward phage genes and away from host genes [51]. According to our findings, tRNAs

absent from the phage correspond to those that tend to be highly expressed in the

host, and tRNAs highly expressed in the host correspond to codons that are most

commonly used by the host, or are most biased toward the host. This back door

correlation may explain a large part of the observed codon usage bias effect. Moreover,

once the phage acquire tRNA, an adaptive feedback loop can form between the phage

genome codon usage and the tRNA array that it carries. This feedback loop explains

a third observation, which is that codon usage bias is more pronounced in late phage

genes than in the early genes [43, 81, 82]. Early mRNAs require use of host tRNAs,

as the bulk of phage tRNAs are still in the process of being transcribed and processed,
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whereas late mRNAs are expected to be more dependent on the phage tRNAs, as the

bulk of the host tRNA might be degraded later in the infection.

And finally, a fourth observation is that phage with tRNAs generally have larger

genomes than those without [59]. For phage with large genomes, it is more important

to degrade the host genome to free up nucleotides, leading again to the quandry

presented by the first point. In addition, larger phage might require longer periods of

replication and more resources for supporting translation in the wake of degrading host

tRNA. The longer the infection persists past host resource degradation, the stronger

the selective pressure for phage to encode their own machinery, which in turn selects

for larger phage.

Using this lens, it is interesting to compare 2.275.0 against its foil in the same

phage sampling collection, the Autolykiviridae [29]. In contrast with this 349kb phage,

Autolykiviridae carry a particularly small, streamlined genome, at only 10kb. With

such small genomes, there may be less selective pressure to free up the nucleotide

pool. In fact, Autolykiviridae do not degrade the host genome. The infection cycle of

these viruses can last on the order of weeks, and with only 20 genes in its genome,

having no known translation supporting functions, they must rely entirely on the host

translation machinery. Although a whole spectrum of strategies might co-exist, we

can see here two extreme, contrasting strategies.

This type of phage infection might have convenient applications for studying tRNA

regulation. Although translation is fundamental to all of life, many aspects are still

unknown. For example, while some tRNA modifications have been shown to be

necessary for correct folding, synthetase recognition, degradation, and translation

regulation [83], the functions of most modifications are unknown [84]. Many recent

findings about tRNA are conducted in systems in which a cellular stress response

involving tRNA can be triggered [84]. Lytic phage infection offers a similar convenience

in that it can be synchronized through a one-step-growth experiment [21]. Because of
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this, tRNA can be "tracked" from the newly synthesized nascent form to processed

intermediates and degraded products. In fact, this can be seen in our tRNA sequencing

timecourse. Exciting new technologies for probing translation now exist, such as

ribosomal footprint profiling [85], tRNA-ribo-seq [86], etc. Work in combining these

techniques with phage growth experiments may be a promising future direction for

uncovering further insights into tRNA processing and use in translation.

2.6 Materials and Methods

Code and data for the analyses described here are available on Github (polzlab and

kellylab) in the form of an R [87] package. A more high-level set of vignettes are

available for the purpose of walking through the data and analysis thought process;

and a more low-level set of vignettes is also available that dive into the weeds of the

implementation details for those who are interested analyses of similar data. Raw

sequencing reads are available on the NCBI Sequenced Reads Archive under BioProject

numbers PRJNA524872 (tRNA-seq) and PRJNA524877 (full transcriptome RNA-seq).

2.6.1 Exploratory genome-based codon usage bias analysis

In order to assess the plausibility of the codon usage bias hypothesis, we con-

ducted a preliminary analysis of the phage and host genomes. The tRNA car-

ried by each organism was called using tRNAscan-SE [74]. The multidimensional

scaling analysis uses Shannon-Jensen divergence between codon distributions for

each protein as the distance metric. The odds ratio for each codon is defined as

P(codon I org = phage)/(1-P(codon org = phage))
P(codon I org = host)/(1-P(codon org = host))
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2.6.2 tRNA Sequencing Timecourse

In order to explore the shift in tRNA abundance throughout the course of infection, we

conducted a one-step-growth experiment and collected samples at 15 minute intervals.

Cells from the same culture were split in two (control vs. infection) then centrifuged

to pellets. The control sample was resuspended in 200 PL of Difco 2216 Marine Broth,

and the infection sample was resuspended in 150piL 2216 and 50 pL of phage lysate.

The samples were left to sit for 5 minutes to allow for adsorption of the phage, then

diluted to a volume of 15 mL in order to deter further infection. This total volume

was split in 5, one sample from each set was immediately centrifuged and flash frozen

as a "time 0" sample, and the rest were placed on a shaker, then centrifuged down

and flash frozen at 15 minute intervals. 500 pL aliquots were taken from each sample

prior to centrifugation to be plated as a spot check of phage concentration.

2.6.3 RNA Sequencing Timecourse

To further hone in on particular genes that the codon usage bias may favor, a

second phage growth experiment was collected for full-transcriptome RNA sequencing.

In this experiment, an aliquot of a culture was centrifuged and flash frozen as a

preinfection timepoint, the remainder of the culture was then centrifuged to a pellet

then resuspended with 400 piL of a phage lysate. The samples were left to sit for 5

minutes to allow for adsorption of the phage, then diluted to a total volume of 45 mL

in order to deter further infection. This total volume was split into 9 samples of 5 mL

each, to be taken in 15 minute intervals from time 0 to 120 minutes. The sampling

proceedure involved flash freezing 3 pellets spun down from 1.5 PL aliquots of each

sample, then immediately doing serial dilutions of unfiltered and filtered viruses to

assess phage growth and stage of infection.
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2.6.4 Total RNA extraction

Total RNA from the infection time series (flash-frozen pellets) was extracted by the

hot phenol method. Briefly, cell pellets were resuspended in TE (10 mM Tris pH 7.0, 1

mM EDTA) and treated with 0.5 mg/ml lysozyme at room temperature for 5 minutes.

Then NaOAc (100 mM final concentration) and SDS (1% final concentration) were

added, followed by an equal volume of acid phenol:chloroform pH 4.5 (ThermoFisher).

The mixture was shaken at 65'C for 10 minutes using a thermomixer, and centrifuged

at 20000 x g for 5 minutes. The upper phase was washed by chloroform and centrifuged

at 20000 x g for 5 minutes. The phenol/chloroform extraction was repeated once, and

the upper phase was precipitated with isopropanol and 300 mM NaOAc. Precipitated

RNA was washed with 75% ethanol, air dried and resuspended in water.

2.6.5 High-throughput sequencing of tRNAs

tRNAs were gel purified from total RNA on a 10% urea polyacrylamide gel (size selected

between 70 and 100 nt). Gel pieces were macerated and soaked in 0.3 M NaCl overnight

with rotation at 4C for elution. tRNAs were precipitated with isopropanol using linear

acrylamide as the carrier. RNA pellets were resuspended in 100 mM Tris-Cl pH 9.5 and

incubated at 37'C for 1.5 hours for deacylation. After deacylation RNA was purified

using Oligo Clean & Concentrator (Zymo Research) and eluted in 10 mM Tris pH 8.0.

Purified RNA was ligated to a 3' preadenylated adapter AppNNNNAGATCGGAA-

GAGCACACGTCT/iBiodT/iBiodT/3ddC/ (final concentration 10 uM) using RNL2

truncated KQ (NEB) with 10% PEG8000 at room temperature overnight. After liga-

tion RNA was purified using the MinElute PCR Purification kit (Qiagen) and reverse

transcribed using TGIRTTM-III enzyme (InGex) under manufacturer's instructions.

Briefly, RNA was incubated with an RT primer AGACGTGTGCTCTTCCGATCT

(0.1 [M final concentration) and RT buffer at 85'C for 5 minutes, and cooled to 25'C at

0.1'C per second. DTT and TGIRTTM-III were added and the mixture was incubated
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at room temperature for 30 minutes. dNTPs were added and the reaction was incu-

bated at 60'C for 30 minutes. RNA was hydrolyzed by NaOH, neutralized by HCl and

purified using MinElute PCR purification kit. cDNA was ligated to a preadenylated

DNA adapter AppNNNNGATCGTCGGACTGTAGAACTCTGA/3ddC/ (preadeny-

lated by 5' DNA adenylation kit (NEB)) using thermostable 5' App DNA/RNA

ligase (NEB) following manufacturer's protocol (ligated at 65'C for 5 hours and

heated inactivated at 90'C for 3 minutes). cDNA was purified using MinElute

PCR purification kit, and amplified using KAPA HiFi HotStart PCR kit (Roche).

PCR primers were AATGATACGGCGACCACCGAGATCTACACGTTCAGAGTTC-

TACAGTCCGACGATC and CAAGCAGAAGACGGCATACGAGATBBBBBBGT-

GACTGGAGTTCAGACGTGTGCTCTTCCGATCT (BBBBBB stands for barcode

sequence). PCR products were size selected between 150 nt and 260 nt using Pippin

Prep (Sage Science), and sequenced on an Illumina HiSeq under 100 bp by 100 bp

paired-end mode.

2.6.6 Full transcriptiome RNA-seq

For quantitative RNA-seq, 1.5 ng Firefly luciferase mRNA and 0.015 ng of Renilla

luciferase mRNA was added to each cell pellet before hot phenol extraction. As

each sample was derived from the same infection batch, which was distributed in

equal volumes, these two luciferase mRNA spike-ins are proportional to the starting

quantity of infected cells. Total RNA was treated by TURBO DNase (ThermoFisher)

according to manufacture's protocol and purified using RNA Clean & Concentrator

kit (Zymo Research). mRNA was isolated using the Illumina Ribozero prokaryote kit

(gram positive and negative, Illumina) and was prepared into libraries using the Kapa

Hyperprep kit (Roche) following manufacturer's protocols. Libraries were sequenced

on an Illumina HiSeq under 40 bp single-end mode.
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2.6.7 Calling modifications on tRNA sequencing data

For the dual purposes of 1. assessing whether the phage tRNA are, indeed, functional

tRNA that participate in translation and 2. more accurately assigning wobble base

affinities, RNA modifications were called based on reverse transcriptase substitutions.

First, a reference alignment of phage and host tRNA was made. LocaRNA [88],

which accounts for RNA secondary structure, was used to make a first-pass multiple

alignment. Phage tRNA called with introns often aligned poorly, and so the alignments

were fixed using the putative secondary structures provided by Aragorn. The variable

loops were aligned separately using MUSCLE [89], then stitched back into the tRNA

alignment. Next, E. coli tRNA from the modomics database [90, 91] were aligned

to this reference in order to identify what types of post-transcriptional modifications

may be present. Reads from tRNA sequencing were then aligned to this reference

using the affine gap penalty method "gotoh" provided by the align.seqs() function

in mothur, version 1.34.4 [92], with the following scoring: match=2, mismatch=0,

gapopen=-5, gapextend=-1. Phage and host tRNA are sufficiently different such

that reads can be mapped back to the originating organism. And finally, the base

distribution at each position was then used to fit a model for how modifications

correspond to "missequenced" reads (as many of these are likely the result of base

substitutions inserted by the reverse transcriptase upon encountering a modified base).

2.6.8 Calculating phage RNA expression timing

Instead of classifying phage genes into distinct categories of expression timing, con-

tinuous scales were defined. Because the host RNA expression level climbs until 75

minutes, this is taken to be the timepoint before the second round of infections begin.

In order to get a sense of transcription and degradation for the purposes of the analyses

presented in Figure 2-3, the phage RNA expression timing was then defined as the

center of mass of the expression levels over time. However, for the purposes of visually
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identifying what may be transcriptional units within the genome (Figure 2-1), another

measure of expression timing - the time taken to reach half the maximum level of

expression - was defined.

2.6.9 Assessing Genome Degradation

Two genes were selected for qPCR to assess whether the host genome is degraded

upon infection: GroEL (Genbank locus tag BCV12_01410, primers: CAATG-

GATCTTAAGCGCGGC and CAGAGATAACCGTACCGCCC) and CTP synthetase

(Genbank locus tag BCV12_03025, primers: CTTTGGCGATCGTGGTGTTG

and TTTTCTAATTCGCCGCGCTG). The phage genes, GroEL (Genbank locus

tag NVP22750_355, primers: CTTTGAAGACATGGGCGCAC and AACGAC-

TAGGGTTGCAAGCA) and the Major Capsid Protein (Genbank locus tag

NVP22750_445, primers: TGAAGGTGTTATGGGTCGCC and ATACGGGCAGTA-

GAACGCAG), was also assayed for contrast. Each sample was prepared using the

Kapa SYBER Fast kit according to the manufacturer's instructions.

2.6.10 Codon Usage Bias Analysis

In order to assess whether the phage tRNA pool may introduce translational bias

toward its own genes, a summary statistic for each gene that represents the efficiency

with which it can be translated by the phage tRNA pool, relative to the efficiency

with which it can be translated by the host tRNA pool was calculated. This value,

referred to as the "slant" of a gene is calculated as follows:

The codon usage preference of a tRNA pool must first be calculated. Here, it is
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defined as the probability of a codon being bound given the tRNA pool:

P(codon~pool = host) = 1 P(codon, tRNA xpool = host)
x

E P(codon~tRNA x, pool = host)P(tRNA - x~pool = host)
x

= P(codontRNA x)P(tRNA = xzpool = host)
x

P(tRNA = xzpool = host) is defined as the read abundances from tRNA sequencing,

normalized to each organism. P(codon~tRNA = x) is defined according to revised

wobble rules noted by Murphy, et al. [62, 63, 93], accounting for wobble base

modifications inferred through tRNA sequencing results.

These two points define a path that the codon distribution for each protein can,

essentially, be projected upon in order to calculate a tRNA pool preference for each

protein. Specifically, the slant for a given gene with codon counts y, is calculated

as the log likelihood ratio of observing the codons from that gene given the coding

capacity of the phage tRNA pool vs. that of the host tRNA pool (divided by the

number of codons, for comparability among proteins):

/ n! Yi YkiPi ***Pk
-A(y) -log YI! hk An n - h- ...1h

V1!---Yk!

= yclog P
codons c c

where Pc = P(codon = c~pool = host) and hc = P(codon = c~pool = phage). The

slant is 0 if the two multinomial probabilities are equal, which can be interpreted

intuitively as the gene having equal efficiencies of coding by the pool of phage tRNA

and the pool of host tRNA. A nice property of this calculation is that if y is exactly

np (if the codon usage of a gene matches exactly the coding efficiency of the phage

tRNA pool), then the slant is KL(pl h), or the Kullback-Leibler divergence between

p and h. And if y is exactly nh (if the codon usage preference of a gene matches

62



exactly the coding efficiency of the host tRNA pool), then the slant is -KL(hjjp), or

the negative Kullback-Leibler divergence between h and p. However, it is possible for

the slant to be less than -KL(hllp) if the codon distribution for a given protein is

even further away from the coding efficiency of the phage tRNA pool than that of the

host tRNA pool. And likewise, the slant can be greater than KL(pilh) if the codon

distribution for a given protein is further away from the coding efficiency of the host

tRNA pool than that of the phage tRNA pool.

2.6.11 Assessing statistical significance of codon usage bias

A one-sided Kolmogorov-Smirnov test was used to assess the difference in distributions

of slant values for phage genes vs. slant values for host genes. This resulted in a

suspiciously low p-value (less than le-22), which was taken as a signal that the null

model used may not have been fair in the context of this problem, and more relevant

assumptions should be specified. In this case, we must keep in mind that we already

know from preliminary analyses that the distributions of codon usage between phage

and host genes is different (Figures 2C and 4B), so any randomly chosen vector of

phage tRNA expression is likely to betray this difference.

Instead, it is more appropriate to ask whether the slant values for phage genes

vs. the slant values for host genes are different conditioning on the known codon

usage distribution of the two organisms. This was done using the following resampling

scheme: First, 18 tRNA (the number of phage tRNA) are randomly sampled with

replacement from the host genome, then a random expression vector for these 18

tRNA was generated by normalizing exponentially distributed random variables. This

expression vector was used as a random phage tRNA expression vector. Then, based

on this random phage tRNA expression vector and the known host tRNA expression

vector, slant values were calculated for phage and host genes, and a one-sided KS-test

was conducted on these slant values. This proceedure was replicated 200 times, forming
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the null distribution against which the original result was compared.

2.6.12 tRNA array diversity analysis

The diversity of the tRNA pools was defined as the Shannon entropy of the amino

acids encoded by the tRNA for each organism. The simulated randomly acquired

diversity depicted in Figure 2-5 was calculated by sampling 18 tRNA (the number of

tRNA in the phage genome) with replacement from the host genome.
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3.1 Abstract

In this paper, we discuss methods for exploring, through interactive visualizations,

possible genetic bases for successful phage host infections. The dataset we are working

with consists of a binary infection matrix, or a bipartite graph, with 243 bacteria (or

"hosts") and 241 bacteriophage (or "phage," which are viruses that infect bacteria), as

well as genome sequences of all bacteria and all phage. The genomes of the bacteria

can be simplified to binary predictor variables indicating the presence/absence of

10,000 protein clusters; and likewise, the genomes of the phage can be represented

by 1,000 protein clusters. The questions we ultimately would like to address are -

Which host proteins permit or inhibit infection by a particular phage? And which

phage proteins promote or are detrimental for infection of a particular host? In

most cases, we are unable to definitively identify the exact mechanism of infection or

defense; however, we are sometimes able to, from a whole genome of 4000 proteins,

narrow in on two or three regions of interest, in order to design future experiments

targeting these promising regions. So, the questions we will instead address here

are - What additional explorations/experiments do we need in order to answer the

initial questions? And what further questions can this dataset inform? Bipartite

graphs are common to many fields (for example, medicine - medication and cancer

types - and advertising - products and users); and current technology allows us to

to collect more complex and larger amounts of data about each node on the graph,

(referring to the same examples, transcriptomes of cancers and the mass spectrometry

data of medications, or user profiles and product metadata and reviews). While this

work focuses on a particular instance in the Nahant Collection, it addresses the need

for tools that facilitate intuitive exploration of signals in high dimensional data on

bipartite interaction networks. This visualization can currently be accessed at the

following address: http://www.mit. edu/-yangjy/infection_ explorer/
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3.2 Introduction

In referring to observational data, Colin Mallows says "science (including statistics) is

an iterative process." [94] This is especially pertinent to the dataset discussed here.

The "Nahant Collection" [28-30] is the largest genomically-characterized virus-host

bipartite network available (Figure 3-1). This collection includes 243 bacterial hosts

representing 19 well-characterized, ecologically-differentiated host species [31, 32], and

241 unique viruses representing 18 phylogenetically distinct groups, and 4 morphotypes.

The sequenced genomes of the host can be summarized into 10,000 gene clusters, and

the genomes of the phage can be summarized into 1000 gene clusters.

The diversity of this dataset presents an opportunity for asking broad ecological

questions; however in trying to pin down the molecular mechanisms of infection, the

correlation structure as well as the dimensionality means we are faced with many

issues of confounding/non-identifiability. In a vast ocean of microbes, sampling just

the right organisms with the precise combination of genetic profiles necessary to make

a conclusive, causal link is highly improbable. Still, we are able to identify subsets of

candidate proteins that may define the structure of the bipartite infection network.

Honing in on the precise mechanisms may still require additional experiments. The

ultimate goal of the interactive visualization we present here is to facilitate the process

of formulating testable hypotheses about biological mechanisms based on large-scale

sequencing data.

This chapter is structured as follows:

1. We introduce the biological context for the data.

2. Using a guided walkthrough approach we provide an example of how an experi-

mentalist might interact with the visualization to generate hypotheses prioritizing

the investigation of specific proteins or genomic regions for functional studies.

3. We discuss the reasoning behind the statistics used to summarize the data in
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the visualization, and how it helps to prioritize relevant signals over spurious

correlations

4. Because this visualization is a means of doing exploratory data analysis, we

discuss additional analyses, models, and methods for approaching this data.

3.3 The biological context

Study of the interactions between viruses and their hosts over the past century has

been the foundation for revealing the rules of the "Central Dogma" that defines the

nature and directionality of information flow in cellular systems as well as the discovery

of proteins that have been transformative for research, medicine, and bioengineering ,

including restriction enzymes, Hfr conjugation, transposon mutagenesis, and CRISPR-

Cas [13]. There is therefore great interest in identifying additional mechanisms that

make up the genomic underpinnings of virus-host interactions. Analyses of growing

viral genome databases have revealed that the total number of phage protein clusters

has been growing with each sequenced phage genome, without signs of saturation

[95], and on average approximately 70% of predicted proteins in phage genomes are

of unknown function [11]. There is thus a major need for tools that can guide the

prioritization of protein candidates for experimental functional studies. To address

this need, we present a tool for exploratory data analysis to aide in the identification

of candidate proteins for experimental study in the context of the Nahant Collection.

The fine-scale phylogenetic resolution of this dataset offers the opportunity to identify

mechanistic underpinnings of the observed interactions and to experimentally validate

the roles of specific proteins in these interactions.
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Figure 3-1: Depicted here is the bipartite graph representation of the
infection data. The hosts (arranged along the leaves of the circular
tree) hail from ecologically differentiated populations; the phage (nodes
within the circle) are also genetically and morphologically diverse.

3.4 A guided walkthrough of the visualization

A problem that phage researchers will commonly seek to address is to, upon selecting

a phage of interest, identify proteins in hosts that are either positively or negatively

associated with infection. Positive associations may be suggestive of proteins that

permit infection, for example, membrane receptors on hosts that phage can latch

onto, and negative associations may be suggestive of proteins that inhibit infection,

for example, restriction modification systems that digest the phage genome once it is

injected into the host cell.

The visualization has three main "div"s, or containers, tiled vertically. On first

navigating to the page, only the first div 1, the phage-host infection matrix, is loaded.

We start by selecting a particular phage from the infection matrix whose infection
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profile will be matched against host proteins in order to identify host proteins that

are either positively associated with (may permit) or negatively associated with (may

inhibit) infection. Then a host genome can be selected on which to display the

negative log of the regression p-values to create, in essence, a linkage map [96]. (A

more detailed discussion of how these values are calculated will be presented in the

following section of this paper.) To illustrate the logic of the flow described, we walk

through an example where we would like to identify host proteins that may inhibit a

particular phage infection. Because the screenshots here only convey a rough sense of

interaction with the data, we encourage the reader to follow the example on the site:

http://www.mit .edu/-yangjy/infection_explorer/

3.4.1 Div 1: Selecting a phage for finding host proteins that

may allow or protect against its infection

The infection matrix (Figure 3-2) is displayed immediate upon navigating to the

visualization. Here a row (a phage) can be selected. Upon mouseover, a row is

highlighted in order to emphasize the infection profile of that phage. In this example,

we'll select phage 1.089.0. This particular phage is able to infect 3 closely related

hosts that belong to a "microclade" of 5 very closely related Vibrio lentus bacteria

but cannot infect the 2 other hosts in this clade. This leads us to wonder whether

there may be signatures of defense genes in these two uninfected hosts that inhibit

the infection.

3.4.2 Div 2: Selecting a host genome for identifying candi-

date proteins that inhibit infection

Upon clicking phage 1.089.0, the page scrolls down to the next div (Figure 3-3),

which becomes populated with another matrix. Here, as with the infection matrix,
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Figure 3-2: Div 1 infection matrix and zoom in. The working example
of phage 1.089.0. is shown selected.
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each column represents a host; but now, each row represents a host protein cluster.

A cell in the matrix is filled if the host in that column carries the protein in that

row. The host proteins are sorted by their p-values as determined by generalized least

squares regression against the infection profile of phage 1.089.0. This technique is

futher described in the Methodological Notes section below. The colorbar on the left

indicates the effect direction, blue for positive, and red for negative, making it easy for

users to distinguish genes that enable infection from those that prevent infection. This

plot summarizes the distribution of proteins among hosts in order to faciliate visual

comparison of host protein profiles against the phage infection profile. From this plot,

any host (column) can be selected. For this example, we'll select host 10N.261.52.C5

(referred to as "host A" from here). This host is one of the two within the "microclade"

that cannot be infected by phage 1.089.0 to examine any inhibitory features that may

exist.

3.4.3 Div 3: Exploring the Manhattan plot to find candidate

proteins that may allow or inhibit infection

On selecting host A, the page scrolls to the last div (Figure 3-4), which becomes

populated with a genome diagram of the host. The x-axis is genome location, and

the y-axis is the regression score. In the main canvas, the length of the boxes plotted

are scaled according to the length of the genes, and in the brush region, each gene

is plotted as a point at the gene midpoint. The brush region can be used to zoom

in on a position of interest along the genome, and the scrolling up and down in the

canvas region results in zooming in and out. These functionalities are adapted from

Mike Bostock's S&P 500 Brush and Zoom example [97]. There appear to be three

main regions in host A's genome where proteins highly associated with infection are

co-localized. The effect direction in all three of these regions is negative, or appears

to be protective against phage infection. This makes sense as we selected a bacterial
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Figure 3-3: Div 2 gene summaries and zoom in. The working example
of host host A is shown selected.

strain that is not infected by 1.089.0. In this way, we can rapidly identify phage genes

that protect against infection.

The first region carries a phage tail assembly gene as well as a bacteriophage

repressor gene, likely indicating a virus that has established latency in host A. Perhaps

it now participates in host defense to protect from further infection. This is an

ecological process known as "competitive exclusion" [98]. There does not appear to

be a protein annotated clearly with a known defense function; however, a possible
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Figure 3-4: Div 3 and brush selection examples. The two zoomed-in
views lie on region 3, the first shows the conjugative transfer element
annotations, and the second shows the Type III restriction modification
system genes.

inhibitory mechanism can simply be competition. If this phage, which is capable of

latency, is able to replicate more quickly upon infection by phage 1.089.0, then it may

be able to suppress the killing phenotype of 1.089.0.

The second region carries a phage tail tape measure protein and integrases. This

region may be another virus, which was able to integrate itself in the host A genome.

We do not observe a protein annotated with a defense function here either; however,

again, we cannot rule out competition.

The last region is a mobile plasmid that comes equipped with genes that enable it
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to induce its bacterial host to form a pilus and transfer the element to another cell.

Additionally, this plasmid carries a Type III restriction modification system, which

places markers on native DNA and recognizes/cuts up foreign unmarked DNA. This

plasmid has likely picked up this defense system along the way, and now earns its

keep in its host by defending the cell against invasion by foreign DNA.

Which of these hypotheses is/are true? Because the third region has an annotated

defense system, we are more inclined to believe this as being the active agent of

defense; however, it's worth noting that many of the proteins in all three regions are

unannotated (have unknown functions). And because the protein profiles in these

three regions are co-linear, we cannot rule out any of the regions as participating in

defense, and it could be possible that they all participate to some degree. A more

targeted experiment is needed to hone in on the precise region(s) involved in protecting

this bacteria from infection. [Please see the following subsection on experiments for

discussion of possible experiments that can be done.]

3.4.4 Backtracking to Div 2: Selecting a genome for identi-

fying candidate proteins that permit infection

Next, we turn to an example that focuses on how to identify proteins in hosts that

appear to permit infection by phage. Keeping phage 1.089.0 as an example, let's

return to div 2, and select the 1ON.261.51.F9 ("host B") genome. Div 3 is wiped

clean and replaced with a new genome diagram. We see here that the majority of

proteins associated with infection are co-localized in a genomic region that seems to

be associated with DNA modification and repair. While it's possible that this aids

the bacteriophage infection process in some way, a more likely hypothesis is that this

element is incompatible with one of the elements described in the previous section. For

example, perhaps the repair mechanisms confered by proteins in this region conflict

with other remodelling mechanisms in the protective region(s) of host A, making the
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genome susceptible to 1.089.0 infection. The implication here is that while this region

may not functionally make its bacterial host susceptible to infection, it may perhaps

be indirectly allowing infection by excluding elements that exclude phage 1.089.0.

This, however, is again only a hypothesis, and requires additional experiments to

verify.

3.4.5 Designing experiments based on hypotheses suggested

by this visualization

We wish to characterize the third region in host A, the plasmid carrying a conjugative

transfer pathway, protects the host against infection by phage 1.089.0. We can, using

genome recombineering strategies, attempt to delete the element from the host genome,

or, because maintaining elements accessory to core cell functions comes at a fitness

cost to the host, we can passage the host and look for daughter strains that may have

lost the element.

If we are able to obtain a host with element 3 deleted, and it is susceptible to

infection by 1.089.0, this suggests that element 3 was important for defense against

the phage. We can further validate this genome region as being a defense element by

inserting a synthetic version of element 3 into the deletion host and testing whether

this new host is once again protected from infection.

We may also wish to test whether elements 1 and 2 participate in infection and

can attempt to make combinatorial deletions.

To provide a contrasting example, let's say that we select phage 1.025.0, and set

off to find proteins in its hosts that are permissive of infection. Because all of the

hosts of this phage are extremely closely related, without a closely related host that is

resistant to infection, it is incredibly difficult to hone in on a handful of promising

targets, as we lack the appropriate data. Because these hosts are so closely related,

and there are too many collinear candidates. Therefore, to accomplish this task we
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may want to experimentally evolve the hosts until we find resistant strains. Then,

from here, we can conduct additional statistical analyses, and continue to iterate

between experiments and analyses.

3.5 Methodological notes

3.5.1 Regression results depicted

Our data cannot be considered to be independent and identically distributed. Bacteria

and viruses in the ocean evolve, migrate, and share genes (like any other living

organism), and so their genomes are correlated by nature. Each bacterial or viral

strain's population can boom or bust based on the environmental conditions, nutrients,

and predators. Hence in taking a bucket of water from the ocean, the organisms in this

bucket cannot be thought of as being statistically independent. Ignoring phylogenetic

relationships can result in relevant signals being drowned out by spurious correlations.

To address this issue, we've employed phylogenetic generalized least squares [33].

This is equivalent to "whitening" in signal processing. The idea is to infer the

covariance structure among the organisms, then "whiten out" the correlated errors by

simply multiplying both the predictor and the response by the inverse square root of

the covariance matrix.

E1/2y -- 1/2XO + E-1/2E

=X +

2 2,
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To illustrate the necessity of this correction with an example, Figure 3-5 contrasts

associations identified by simple ordinary least squares (OLS) and phylogeny-corrected

generalized least squares (GLS) regressions. Here, phage proteins are regressed against

the phage infection profiles, as tested against one particular host. The most striking

difference here are the negative effects identified by each method. OLS identifies genes

that are present in one particularly clonal (or closely related/oversampled) group of

phage that cannot infect the host of interest. As an analogy, this would be similar to

identifying all variations present in a large family of 18 siblings as being protective

against a genetic disease that is present in a member of a different family. While these

genetic variations have been observed in 18 people, the people are all very closely

related (are oversampled), so the effects of these variations are overestimated, as they

are confounded by population structure. In contrast, GLS identifies genes that are

present in strains closely related to the infective population that are not themselves

infected. To continue with the analogy, this is similar to identifying a genetic variation

present in the healthy twin of a patient as being protective against a disease. Even if

this twin is the only observed subject with this variation, we may still feel justified in

our suspicions, because the subjects are matched.

3.5.2 Implementation details

The visualization was written using javascript to assure accessibility for a wide audience.

It relies heavily on the D3 library [99] as well as the many beautiful working examples

from Mike Bostock.

An attempt to use the out-of-the-box Plotly-R function to display the infection

matrix (-60,000 cells) was very slow. So because the matrices of phage-host infections,

phage proteins, and host proteins are each sparse, in order to optimize speed and

responsiveness, taking a leaf out of the book of coordinatewise sparse encodings, we

display only the non-zero values of the matrices.
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Figure 3-5: Profiles of the top 100 phage proteins found to be associated
with ability to infect a particular extitVibrio lentus host. The columns
represent phage genomes, and are ordered according to phylogeny, as
depicted by the dendrogram. The black lines immediately below the
dendrogram indicate the strains of phage that were able to infect the
host of interest. On the heat map, red indicates absence of the protein
in a particular phage, while off-white indicates presence of the protein.
The color bars on the left indicate whether the effect is positive (blue),
or negative (orange).

And to further optimize responsiveness of the visualization, regression results are

precomputed. And for purposes of providing a concise summary of the results as well

as to keep the browser from having to load too much data, in div 2, only a subset of

the results are displayed. The number of proteins displayed is max {200, nholm}, where

nholm is number of proteins selected by the Holm procedure for controlling familywise

error rates. The Holm proceedure was used as to allow us to set the number of tests.

Proteins selected by the Holm proceedure are plotted in a purple background, and the

rest are plotted in a grey background. -

The visualization code will be avaliable on Github (kellylab and polzlab).
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3.6 Discussion and future analyses

With a large dataset such as the Nahant Collection, it can be difficult to pin down a

hypothesis, because there are too many candidate hypotheses to draw from. Which

of these hypotheses do the data suggest may be the most promising? What data

are relevant for addressing these hypotheses? Which experiments must be done/are

feasible?

We have present a simple technique for using interactive graphics to enable intuitive

exploration of the high dimensional genomic data associated with this bipartite graph.

We hope that it will have some utility for beginning to address these questions.

A more holistic model should capture the generally lock-and-key nature of infection

specificities due to protein interactions (for example, a specific methylase may evade

a specific restriction modification system). And, instead of whitening the correlated

errors, we could employ a multivariate model, which accounts for population structure

through conditioning on all other genes.
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Chapter 4

Conclusion

Because phage-host studies are generally aimed at identifying many phage that infect

a clonal group of hosts, or many hosts that are infected by a small set of phage; up

until now, there is perhaps only one dataset [100] that encompasses both polyclonal

phage and host populations. The data is not accompanied by any form of molecular

information, and so it is limited in its ability to provide insight into the precise

mechanisms from which the infection structure arose. The Nahant Collection [28-30]

is very unique in being a complete cross test accompanied with sequenced genomes,

from which we can derive mechanistic hypotheses; as well as archived samples, with

which we can test these hypotheses.

In chapter 2 of this thesis, we focused in on a specific phage in the Nahant

Collection, 2.275.0, to characterize the pressures that may select for phage that

shuttle their own translational machinery. We were able to conclude that while

encoding translation-related components requires shuttling a larger phage genome,

it also reduces dependence on host translational machinery, allowing the phage to

be more aggressive in degrading and recycling the host genome and other resources

required for replication.

This investigation illuminated many other paths that we believe could be fascinating
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for future exploration. For example, from TGIRT substitutions, we called base

modifications, assuming a multinomial distribution of base counts. However, there is

a layer of complexity that we were not able to unroll - the distribution could have

been a mixture of nascent tRNA and modified species. And in fact, in a tangential

exploration examining the unique tRNA reads, we observed a succession pattern

in the tRNA species during the course of infection. One question arising from this

observation is a methodological one: is it possible to deconvolute the mixture of

base substitutions from the mixture of tRNA species by incorporating data from, for

example, mass spectroscopy (a gold standard for identifying chemical compounds) or

nanopore direct RNA sequencing (this technique has recently been demonstrated [101]

and there is some excitement about the potential for direct detection of nucleotide

modifications)? If so, we would be able to paint a clearer picture of exactly which

tRNA species are present during various stages of the infection. This has applications

beyond bacteriophage, as there is currently an ongoing line of research into the role of

tRNA through "adaptive translation" during various forms of stress response. Another

question that arises is along the same train of thought as "adaptive translation." Do

the different species of the same tRNA have different roles? Are some species activated

or inactivated by the modifications that are present? Exciting new technologies for

probing translation now exist, such as ribosomal footprint profiling [85], tRNA-ribo-seq

[86], charge-seq [102], etc. Work in combining these techniques with phage growth

experiments may be a promising future direction for uncovering further insights into

translation.

Another tangential analysis we conducted was to examine the host expression profile

throughout infection. While essentially the entire host transcriptome is degraded, we

do observe three main outlier groups. It would be interesting to conduct additional

trials in order to determine variation around these expression characteristics. And

next, it may be of interest to do a closer exploration of the function and structure
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of these transcripts. For example, one group of outliers consists of transcripts that

appear to be degraded more quickly than the average transcript. What makes them

susceptible? Are they specifically targetted by the phage for degradation? Another

group of outliers consists of transcripts that initially increase in abundance, and

then are rapidly degraded. These tend to be stress response genes. Do these genes

participate in tuning down phage infection? If they are knocked out, does this result

in a more successful infection phenotype (perhaps an increase in burst size or decrease

in latent period)? If this experiment is repeated in the same host with different phage,

could different stress response pathways be triggered?

In chapter 3, we developed a systematic approach for uncovering genomic features

that underlie phage-host interactions. We found that correcting for phylogenetic

relationships allows us to pick out relevant signals that would otherwise be drowned

out by spurious correlations resulting from statistically oversampled blooms of microbes.

Using these results, we wrote an interative javascript visualization to facilitate the

process of developing testable hypotheses concerning the mechanisms of phage infection

and host response. From the visualization, we are able to identify, in the hosts,

mobile genetic elements containing restriction modification systems that may defend

against infection, as well as membrane protein modifications that may serve as phage

attachment sites.

This analysis was not, by any means, the most obvious path. There were many

somewhat promising routes that we wandered down but could find no obvious means

for inferring biological insight through. For example, initially we sought to predict the

matrix of infections by using the genetic data. One problem that we encountered was

that a reasonable model should capture the generally lock-and-key nature of infection

specificities due to protein interactions. For example, a specific methylase may evade

a specific restriction modification system. However, with 1000 phage protein clusters

and 10,000 host protein clusters, this meant we had in total, 10 million possible
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interaction terms. So there was also a conundrum about whether it was necessary to

encode a 60,000 x 10,000,000 matrix of predictors (60,000 being approximately 241

x 243, the dimensions of the infection matrix). Ultimately we were able to utilize

a trick called alternating minimization, which is elaborated further in the appendix.

Another technique we employed was to conduct an initial step of screening, then using

the most promising protein profiles for the final stage of prediction. However, both

methods suffered from the same drawback in that the results lacked interpretability.

We were able to see some promising results through examining the outer products

of the decomposed matrix of interaction coefficients, and this may be a promising

direction for future exploration.

Then, of course, because the goal of the visualization we presented in chapter 3

was for the purpose of generating testable hypotheses, there are many hypotheses

suggested by this visualization that we hope may eventually be tested. For example

infection by phage 1.293.0 is very positively associated with the presence of a pyruvyl

polysaccharide transferase protein. Could this be a membrane protein modification

that serves as an attachment site for the virus? If so, deleting the gene from a host or

inserting the gene into a non-host should be able to change the microbes' infection

susceptibility. Or, a couple of proteins strongly negatively associated with infection

by 1.159.0, 1.028.0, and 1.219.0 are annotated as participating in programmed cell

death. Could this be a "protect your neighbors" host defense? If so, these genes

should be seen to be expressed early in the infection. And finally, there are numerous

prophage-like islands and conjugative transfer elements, often associated with various

forms of restriction modification systems that are sometimes positively and sometimes

negatively associated with infection. This leads us to believe that there may be a

network of competitive exclusion (and potentially, cooperation) among these elements.

This could be a particularly tricky hypothesis to test, as it may involve making a

carefully crafted combinatorial library of various mobile elements.
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Work on phage-host interactions from the last century has lead to the discovery of

important insights into the central dogma as well as the development of impactful

technologies such as restriction enzymes, Hfr conjugation, transposon mutagenesis,

and CRISPR-Cas [13]. Still, on average approximately 70% of open reading frames

in a phage are unannotated hypothetical proteins [11]. We are excited to see what

future research may unfold.
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Appendix A

Predicting Phage-Host Interactions

Using Alternating Minimization

Joy Y. Yang1 , Libusha Kelly2 , Martin F. Polz3, Philippe Rigollet4

'Computational and Systems Biology Program, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA
2 Department of Systems and Computational Biology, Albert Einstein College of
Medicine, Bronx, New York 10461, USA
3Department of Civil and Environmental Engineering, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, USA
4Department of Mathematics, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, USA

J.Y. carried out the analyses under the guidance of L.K., M.P., and P.R. P.R. conceived
of the methodology for applying alternating minimization to this problem.
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**Note:** The following analysis was done without the use of sparse matrices, partially

as a first pass, and partially due to the need to separately rescale the matrices V and H

(the virus protein matrix and the host protein matrix). However, using sparse matrix

encodings would even further reduce memory requirements, and a clever application of

the Sherman-Woodbury-Morrison formula should allow us to compute an equivalent

solution as that having rescaled V and H accordingly.

A.1 Abstract

In order to address memory constraints, we have applied alternating minimization to

a particular formulation of regularized logistic regression. Here, the model predicts

edges on a bipartite graph where the number of predictor variables associated with

each node is greater than the total number of nodes in the graph.

More specifically, we have a binary infection matrix with 243 bacteria (or "hosts")

and 241 bacteriophage (or "phage," which are viruses that infect bacteria), as well

as genome sequences of all bacteria and all phage. The genomes of the bacteria can

be simplified to binary predictor variables indicating the presence/absence of 10,000

protein clusters; and likewise, the genomes of the phage can be represented by 1,000

protein clusters.

And as infection specificities involve interacting factors between organisms, a more

realistic model requires using interaction terms between phage and host proteins.

This means 10,000,000 possible interaction terms for the 58,000 observations. With

centered and scaled predictors, this amounts to approximately 4.7 TB. Alternating

minimization allows us to reduce the memory requirements to around 14 GB.
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A.2 Introduction

Work on phage-host interactions from the last century has lead to the discovery of

important insights into the central dogma as well as the development of impactful

technologies such as restriction enzymes, Hfr conjugation, transposon mutagenesis,

and CRISPR-Cas [13]. Still, analysis of phage genomes has revealed that the number

of phage orthologous groups (protein clusters) has been growing with each sequenced

phage, without signs of saturation [95]. On average approximately 70% of open reading

frames in a phage are unannotated hypothetical proteins (predicted proteins with

unknown function) [11]. This vast unknown may hold exciting prospects for future

research. The Polz Lab maintains the Nahant Collection [28], which consists of 243

Vibrio strains challenged by 241 unique phage, all with sequenced genomes. This is

the largest phylogenetically-resolved host range cross test available to date. These

host strains match to 19 well-characterized populations that have been shown to be

coexisting but ecologically differentiated. For example, Enterovibrio norvegicus are

primarily free-living, Vibrio cyclitrophicus are large-particle specialists, V. tasmaniensis

and V. splendidus are generalists, and V. breoganii are algal-degredation specialists

and form biofilms [31, 32]. The phage fall into around 18 phylogenetically distinct

groups; have diverse infection strategies, with both broad and narrow host-range phage;

and have distinct morphologies, with representatives from nontailed (Tectiviridae),

and tailed (Podoviridae, Myoviridae, and Siphoviridae) morphotypes.

This is a rich dataset that offers the opportunity to glean mechanistic insights

from sequencing data. Our ultimate goal is to generate hypotheses about which

proteins may be involved in the infection process. Traditional GWAS-like (genome

wide association) methods involve running multiple regressions of the response variable

against each predictor variable. The interpretation of each coefficient in this technique

only captures the covariance of the response variable with each predictor. We are

interested in using a multivariate model that regresses the response variable against all
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Figure A-1: Depicted here are two representations of the infection data.
One in matrix form, and the other as a bipartite graph. The hosts
hail from ecologically differentiated populations; the phage are also
genetically and morphologically diverse.

predictor variables. Here, the interpretation of the coefficients captures the covariance

of the response variable with each predictor conditioned on the other predictors. The

multivariate model also allow us to address the problem from the infection prediction

perspective.

However, the challenge is that, as infection specificities involve interacting factors

between organisms (for example, a specific methylase from a phage may evade only

a specific restriction modification system from a host), the model should include
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interaction terms between phage proteins and host proteins. With approximately

1000 distinct phage gene clusters and 10,000 distinct bacterial gene clusters, there

are 10,000,000 possible interaction terms for the 58,000 observations. This 58,000 x

10,000,000 interaction matrix is roughly 4.7 TB.

A.3 Methodology

To model the infection data based on the phage and host genomes, we use logistic

regression:

vec(Y) ~ Bernitp)

logit(vec(P)) = 30 + X,31 + Xh/3 2 + Xvh 03

Here, Y is a n, (number of phage) by nh (number of hosts) matrix of 0/1 values that

indicate whether a given phage is able to infect a given host. Here, it is vectorized in

order to facilitate the regression. Xv is a nh * nv by p, (number of phage proteins)

matrix. It can broadly be interpreted as a matrix of predictors representing virus

proteins. More precisely, each column X' is vec(Vi 0 1nh), where V is a n, by pv

matrix of phage proteins, and 0 is the kronecker product. Kronecker products of two

vectors are simply vectorized outer products; this notation greatly simplifies matrix

representations mentioned later in this paper [103]. Similarly, Xh is a nh * nv by Ph

matrix of host proteins, which can broadly be interpreted as a matrix of predictors

representing host proteins. Each column Xh is vec(Hi 0 1,v), H is a nh by Ph matrix of

host proteins. And finally, Xvh is a nh * nv by Ph * Pv matrix of phage-host interaction

terms vec(Vi 0 Hj).
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Note that this regression can also be written as

Y ~ Bern(p)

logit(u) = VMH'

Where M is a pv by Ph matrix of regression coefficients. To be precise, here, the

columns of V and H are augmented by a vector of is to represent the lower order

terms and intercept. As before, in order to solve for M, it is necessary to compute

a matrix of predictors H 0 V, which is approximately of size 58,000 x 10,000,000

(nv x nh X Pv X Ph). If M is decomposed into AB', we now have

logit(p) = VAB'H'

Where A is pv by k and B is Ph by k, k being the rank of the matrix M. We can

constrain k to a low value and apply alternating minimization to make this regression

problem more feasible. In alternating minimization, the matrix in question, here our

matrix of coefficients M, is written in bilinear form, here AB'. A low rank assumption

is made, then the alternating steps are solving for A while holding B fixed, and solving

for B while holding A fixed. This process is then iterated until convergence.

A particularly notable application of low rank matrix completion was in the winning

solution of the Netflix Challenge [104-106]. A nice parallelism to our problem exists

in this challenge of drawing edges between users and movies. However our problem

additionally comes informed with predictors which would be similar to having detailed

demographic information about the users and detailed genre and casting information

about the movies. Therefore, continuing with the analogy, the matrix to be completed

in our problem is not the users by movies matrix, but rather the matrix of coefficients

describing the interactions of demographic and genre.

A question arises: is the low-rank assumption fair for our problem/data? Because
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proteins often act as part of a pathway (for example, there can be multiple proteins

acting as part of a restriction modification system), vectors of coefficients may be

highly correlated, and so the low rank assumption is justified.

To detail the application of alternating minimization to our logistic regression

model, in order to solve for A, it is necessary to compute a matrix of predictors

BH 0 V, which is of size 58,000 x 1,000 x k (for k=3, this is roughly 1.4 GB). And to

solve for B, it is necessary to compute a matrix of predictors H 9 VA, which is of size

58,000 x 10,000,000 x k (for k=3, this is roughly 14 GB). For low k, this is a much

less expensive problem to solve in terms of memory. A visual schematic emphasizing

the difference between the two methods is depicted below.

Alo3xk
MIO3xlO4

, pij .i
hj B1Wj

Solve for Predictors Size Memory

M H®V 5.8e4 x 1e7 4.7 TB

A HB 9 V 5.8e4 x 3e3 1.4 GB

B H 9 VA 5.8e4 x 3e4 14 GB

A.4 Implementation and tuning

The dataset was first trimmed down to a more manageable subset of 60 phage proteins

and 112 host proteins by performing a first round of lasso with only phage proteins as

predictors, then another round of lasso with only host proteins as predictors. To avoid

reimplementing regularized logistic regression, the glmnet package in R was used. In

this smaller problem, the summary table of expected memory usage is as follows:
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Solve for Predictors Size Memory

M H 0 V 5.8e4 x 6893 3.2 GB

A HB 9 V 5.8e4 x 183 85 MB

B H 9 VA 5.8e4 x 336 156 MB

A.4.1 Initialization

On a subset of 60 phage and 112 host proteins, M can be computed directly. A

smart way to initialize the matrices A and B would then be to take the singular

value decomposition of M. This initialization was used as a first step in implementing

alternating minimization, because starting with values that should be much closer to

optimal than random would eliminate initialization as a possible source of failure in

implementation.

Because the goal is to use alternating minimization as a means for working with the

entire dataset, which we currently cannot do because of memory constraints, ideally,

we would like to not need to directly solve for M. The question is then, would random

initialization perform just as well? It turns out that random initialization converges

at the same rate as SVD initialization (Figure A-2, and reaches the similar likelihoods.

This bodes well for generalizing the method to the full dataset.

A.4.2 Scaling A and B

Because VAB'H' is the inner product of A'V' and B'H', if each predictor variable in V

and H are centered and A and B are scaled appropriately, A and B effectively project

the phage and the host, respectively, into a k dimensional space, where the angle

between phage and host that interact are low (or the correlation is high). Therefore, if

k is constrained to 2 or 3, A'V' and B'H' can also be used for dimensionality reduction

and visualization purposes.

This geometric interpretation is somewhat thrown off by the included intercept
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Random Init, k=3, Iter 0 Random nit, k=3, Iter 30 Random Init, k=3, Y-logift- ()

SVD Init, k=3, Iter 0 SVD Init, k=3, Iter 30 SVD Init, k=3, Y-logitr( )

Figure A-2: Initializing A and B randomly performs comparably to
initializing with the SVD of M, indicating that random initialization
could still be a reasonable strategy when working with the entire dataset.

variables in V and H, which centering would render ineffectual. However, empirically,

for solutions of A and B which are orthogonalized after each iteration, the first

dimension always represents the intercept term. With the offset removed from the

remaining dimensions, the geometric interpretation is again recovered. (Figure A-3)

In a sense then, this is similar to canonical correlation analysis [107], in which

a rotation matrix is chosen for a multivariate set of predictor variables and another

rotation matrix is chosen for a multivariate set of response variables in order to

maximize the correlation, or minimize the angle, between corresponding rows of

predictors and their responses in the first k dimensions. To make this more concrete, a

commonly used real-world example is relating multivariate genomic data (each patient

has many genomic variation, or colloquially, mutation) to multivariate health metrics

(each patient is also associated with records of height, bmi, disease status, etc.). The

difference is that there isn't a one-to-one relationship between hosts and phage. It's

possible for a host to be susceptible to many phage, and it's possible for a phage to
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Figure A-3: When the rank of the coefficient matrices is set to 3, A
and B project the phage and host genomes into a 3D space. The first
dimension empirically always corresponds to the intercept. Proximity of
phage and hosts in the second and third dimensions roughly corresponds
to the success of infection. In this figure, the colorscheme is the same
as that from before, and to emphasize the difference in organism type,
phage are plotted as triangles while hosts are plotted as circles.

be able to infect many hosts.

A.5 Performance engineering results

All analyses in this paper were performed using the R programming language [108].

In order to assess whether these back-of-the-envelope memory calculations hold, we

profiled the code using Rprof(, a sampling profiler, Rprofmem(, which records

memory usage each time memory is allocated, and gc(), which reports memory usage

whenever it is called.
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A.5.1 Memory

Snapshots at each step of the algorithm taken using gc() shows that memory usage

increases every time the predictors for B are calculated, and memory usage drops

when predictors for A are calculated, as they overwrite those for B. The change in

memory usage corresponds quite well with the calculated 70 MB difference in the sizes

of A and B.

Storing the values of A and B at each iteration takes up a negligible amount of

memory, as the matrices are only approximately 1.5 and 2.6 KB respectively. For the

full dataset, they would be 24 KB and 240 KB, but still trivial, especially compared

to the size of the predictor matrices.

To address the concern that memory usage may fluctuate between the intention-

ally sampled timepoints, more detailed sampling was conducted using Rprof() and

Rprofmem(). Results from Rprofmem() show that three successive memory allocation

events of the same size are made when the predictor matrices are calculated, hinting

that they may be duplicated during parameter fitting. And indeed, Rprof() shows

that the maximum amount of memory used at any time is three times the size of the

largest matrix (the predictor matrix for B). While this factor of three duplication still

allows us to fit to the entire dataset using k <= 3, additional optimization of memory

usage through implementing stochastic gradient descent will be required.

A.5.2 Runtime

The amount of wall time used to solve for the entire matrix is roughly equivalent

to performing 6 or 7 iterations of alternating minimization. At this point, the log

likelihood is within a threshold of 0.001 times the magnitude of the log likelihood

from the last iteration. This is a reasonable stopping point, and so for this trimmed

dataset at a rank set to 3, there is very little time trade-off for the increased efficiency

of memory usage. The trade-off, however, comes in the modeling.
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successive iterations. Snapshots at each step of the algorithm shows that
memory usage increases every time the predictors for B are calculated,
and memory usage drops when predictors for A are calculated, as they
overwrite those for B.

A.5.3 Correspondence with the original model

It is comforting to see in figure A-6 that the correlation between parameters from

fitting M directly and parameters from computing AR' after alternating minimization

climbs with each iteration of the algorithm. However, the correlation only reaches

0.38 (when excluding the intercept term), and the log likelihood only reaches -2100

(whereas the log likelihood solving for M directly is -1460). This isn't too surprising,

given that for this analysis, the rank has been set to 3.

Inspection of the eigenvalues from singular value decomposition in the third panel
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However, it is still difficult to interpolate to the full dataset, as the procedure for

picking predictors to form the smaller dataset selects variables with high explanatory

power. In general, even in the problem of matrix completion, it is not well understood

how k should be set. This is a question for future exploration.

A.6 Additional directions for exploration

This implementation of alternating minimization is only the first step in the analysis

of the Nahant Collection. Matrices in R have been traditionally constrained to having

less than 231 entries, and for k > 3, unfortunately, 58, 000 x 10, 000 * k surpasses 211.

99



Log likelihood after Cor(AB',M), SVD Diagonal
each iteration excluding intercept

.......-----.. .---

050 10 50 0 50 50 50 0203 0 06

(No
(N0

=0

Fo ue -:Inte is tw0lt ee helglklho an orlt

o antuea0 0 ositn wihftigta nldn 0 tbmsu

0 40 Ci
00 .2 C)

75 0) J000 0 e

0 0

0 Ci 0

_j 0

0 500 1500 2500 0 500 1500 2500 0 10 20 30 40 50 60

Time (seconds) Time (seconds) Dimension

Figure A-6: In the first two plots here, the log likelihood and correlation
with M (excluding the intercept term, the intercept term is so low in
magnitude and so consistent with fitting that including it bumps up
the correlation to around 0.97) are plotted for each iteration. Initial
values are left off from these plots, since, because the parameters are
randomly initialized, the log likelihood starts at -Inf and the correlation
starts close to 0. The eigenvalues from singular value decomposition of
the coefficient matrix M when solving for M directly is shown in the
third plot. The first dimension is left off, since it is a value large in
magnitude, corresponding to the intercept.

While the most recent release of R allows larger matrices, many packages, including

glmnet, do not yet support this new data structure. So in order to work with k larger

than 3, we will need to reimplement elastic net regression.

Additionally, because living organisms can intuitively be placed on a tree, there

naturally exists correlation among the bacteria and among the phage. This means that

the data is not independently and identically distributed. Our next step is to account

for this in order to, as much as possible, avoid identifying spurious associations.

Furthermore, because p >> n the interpretability of parameter estimates is often

given up as a hopeless task. Many traditional statisticians will steer away from these

types of problems, and in the "machine learning" community, the focus is instead

on predictive accuracy. A philosophical question also exists in whether it may, in

fact, be ill-advised to seek interpretation or draw any type of inferences whatsoever

from this type of data. To address this concern, we turn to Tukey, "Danger only
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comes from mathematical optimizing when the results are taken too seriously.. . It is

understood that such optimum problems are unrealistically oversimplified, that they

offer guidance, not the answer" We cannot claim that our analysis will be able to root

the precise cause of each infection event. Rather, we would simply like to generate

testable hypotheses concerning infection mechanisms.

Key to interpretation of parameter estimates is quantifying their uncertainty, and

alternating minimization adds another layer of complication in that the original param-

eters of interest are now vector products of parameters we have solved for. However,

taking a bayesian approach may help with this problem, as deriving the probability

distribution of sums and products of other quantities with known distributions is

straightforward.
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Reasoning Through Games of
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B.1 Abstract

We present a case study of a best attempt at creating a fun and approachable after

school statistics curriculum for grades 7-12. Our goal was to use interactive games to

provide intuition into a broad range of problems that can be tackled with statistical

thinking, as opposed to teaching a comprehensive statistics immersion program. For

example, we reviewed distributions by carrying out Fisher's hypergeometric taste

testing experiment; introduced game theory by holding an iterated prisoners' dilemma

tournament; and "because danger only comes from mathematical optimizing when

the results are taken too seriously" (Tukey [109]), ended with correlation/causation

critical thinking puzzles. Additionally, we will discuss lessons learned from attempting

to synthesize many activity based learning and context-driven statistical education

tools that have arisen from conferences such as ICOTS.

B.2 Introduction

We've designed a six-session summer weekend curriculum consisting of games, in the

spirit of Box's paper helicopter experiments, [110] that seeks to elicit the context of need

under which various statistical analyses were developed/are employed. In this paper,

we will first introduce the setting under which we've taught this class, then comment

on our experience of designing and running the class, and finally discuss the arguments

for teaching in this manner by summarizing the viewpoints of seasoned statisticians

who have thought deeply about activity-based and context-driven statistical education.

Our materials for this class are available at http: //mit . edu/reasoningchance/
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B.3 MIT HSSP

MIT Summer HSSP (this acronym has no expanded meaning) is a 6-week 7-12th

grade program that runs on Sunday afternoons. Students can register for multiple

classes, and MIT-affiliates (undergraduates, graduate students, or alumni) can apply

to teach a class of any topic. The MIT Educational Studies Program (ESP) handles

the logistics of doing outreach at local schools, recruiting teachers, selecting classes,

and reserving classrooms. During 2017, around 1500 students enrolled, and 44 different

classes were offered over a wide range of topics: swing dancing, complex analysis,

adulting 101; etc. MIT ESP encourages students to leave the classroom if they find

that they are not enjoying the material.

Under this program, we piloted a probability/statistics teaser series called "Rea-

soning through games of chance." The afterschool program format meant that our

lesson plans could not be a regimented, comprehensive overview of statistics. Instead,

we indulged in prioritizing fun and intuition, with the aim of encouraging students to

think about where, in their lives, chance and data play a role, and how they can use

probability and statistics to explore their environment.

B.4 Class Setup

While we did not require programming as a prerequisite and did not plan to teach

students how to code, we wanted students to realize that statistics is deeply intertwined

with computing, as eloquently expressed by [111]. To this end, we requested the use of

laptops and were given access to 12 chromebooks. The class size was then limited to

24 students so that each group of 2 students could work with one chromebook. Each

chromebook was associated with a google classroom account to facilitate distribution

of activities and interaction among groups.

We also prepared short code snippets on Rfiddle (http: //www. r-f iddle .org/) to
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Figure B-1: This map omits two students, one from Maine, another
from Illinois.

demonstrate basic functions and simulations. Because saving fiddles creates urls with

different version numbers, we could update the fiddles live and ask students to follow

along by navigating to newer versions. Students were also encouraged to continue

playing with the code on their own time.

The students were from a wide range of different schools and grades. This sounds

challenging; however, we believe it worked to our advantage. Each class was almost

entirely activity based. So while in theory, our goal was to teach using guiding

questions, in reality, the students taught each other. In general, we tried to encourage

as much discussion as possible and aimed to maintain an atmosphere of organized

chaos. And while the precise class structure varied from week to week, the scaffolding

we used for planning was somewhat consistent: we started with an ice-breaker, followed

with drill exercises, and ended with an experiment, or "game."

To provide an example, we will use class 2: distributions and hypothesis testing.

The learning goal was to expose students to the concept of a "null model," and

encourage them to consider what a null outcome should look like.

The icebreaker (-10-20 min) was often only tangentially related to the main

topic. Because there are many ways of approaching the same problem, and problems

can often be reduced to each other, these tangents allowed us to point out subtle

connections among topics. Our icebreaker in class 2 was a classification problem. Pairs
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of students were given 12 labeled images that fell into two categories, for example,

chessboards from either early in the game or late in a game. Students were then asked

to come up with rules that categorized their images. For instance, a rule might be

"the image is from (early/late) in the game if the number of pawns on the board is

(less than/equal-to/greater than) c." After the students designed a set of rules, we

then gave them 4 additional images to test how well their rules did.

For the drill exercises (-20-40 min), we typically asked students to number off

into groups of four, then work out the answers together on board space marked for

each group. Because the icebreakers were usually very open ended, and the games

focused on having fun, these more structured exercises were intended to hone in on

the relevant concepts of the week. Using boards helped promote interaction within

the groups and allowed us, as the teachers, to easily identify and brainstorm with

groups that looked stuck. The drill exercises in class 2 aimed to reinforce concept of

distributions. There were two parts: In part one, students answered various questions

about heights of Lilliputians by reading a histogram, and were then asked how likely it

was Gulliver was a Lilliputian. In part two, students were given sequences of coin-flips

and guided through deducing the geometric distribution by calculating probabilities

for runs of heads and tails. They then used this information to determine which

sequences were from real coin flips and which were faked by the instructors. Half of

the groups worked on part one and the other half on part two. After everyone had

finished, the groups swapped boards to discussed/corrected another group's work.

Finally, the goals for the games (-30-40 min) were to demonstrate that statistical

thinking is fun and to provide an example of how students can apply probability and

statistics in their own lives. In class 2, the game was a taste testing experiment. We

had three different tests: skittles vs. m&ms, coke vs. pepsi, and different colors of

vegetable chips. Students worked in groups of three to administer the tests and record

the results in a linked spreadsheet. We then briefly talked about the hypergeometric
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Figure B-2: When asked to summarize the sheep in their herd, one
group responded with pictorial summaries.

distribution as a null and showed the students the distribution of their cell counts

compared to the null. Students were then asked to explain what the visualizations

meant and whether we had evidence that people could discriminate between the

different foods.

B.5 Reflection and Outlook

Statistical thinking is a necessary companion of the scientific process; or if we dare

to go as far as Stigler, statistics is "a unified logic of empirical science." A corollary

to this, as stated poignantly by Rebecca Nugent in her JSM 2017 talk [112], is that

"statistics does not belong to statisticians, statistical questions are present in every

field, from physics, to chemistry, to history." So in an attempt to attract as diverse

a group of students as possible, we required no pre-requisites, marked the difficulty

for our class to be 1 (on the scale of 1-4, 1 being the lowest), and welcomed students

from the entire range of 7-12 grade. Still, there's quite a bit of selection bias present

in a group of students who come to MIT on weekends in the summer. When asked

what their favorite subject were, most of our students said math, and only one student

said English. Our students were incredibly supportive. They were eager to have fun

and quick to come up with entirely unexpected responses. We designed the activities

to focus on intuition, and did not attempt to be mathematically rigorous. We did
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attempt to teach the Bayes class using probability notation, and our students became

uncharacteristically frustrated. We had not built up the intuition before introducing

the symbols, and so the symbols carried no meaning. To the final question of a

worksheet ("what are some ways that you can increase the accuracy of the test?"),

one student responded, "math, solve your own problems." We found this humorous

but also alarming. This student had come in with math as her favorite subject, and

we had a responsibility for encouraging her mathematical curiosity, or at the very

least, for not discouraging her. So after class we sent a out new explanation based

on intuition. We also reworked the lesson plan to no longer use probability notation.

This new lesson plan was tested on November 18-19, and seemed to be received with

greater success. However, the class sizes were also smaller, so there may have been

some amount of confounding.

Focusing on intuition has a twofold advantage: as [113 pointed out, in democra-

tizing statistics we should "avoid the 'professional's fallacy' of imagining that our first

courses are a step in the training of statisticians." For students who do not choose

to continue on with statistics, it is the big picture ideas, and not the fine-grained

details that will leave a lasting impression. And for students who do decide to pursue

statistics, again quoting [114], "most of our students would better master theory after

some acquaintance with practice."

Gudmund Iversen explains from his experience: "Those students who have had

my Statistical Thinking course early (freshmen, sophomores) are having a ball with

mathematical statistics as juniors or seniors. Others struggle more because they get

bogged down by probability theory and mathematical niceties like moment generating

functions, and they have a harder time seeing what statistics is all about. This

points to a need to hear statistics twice before it makes sense, and we cannot lose

the connection to real data." [115] Our hope was that by placing emphasis on simply

having fun, we could plant a seed to mark a spot that students may conceivably want
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to revisit, sooner rather than later.

One advantage we had during HSSP is that we had a returning group of students

over the course of six weeks, so we were able to refer back to examples from previous

classes. However, we realize that running examples can create barriers to entry, and

many after-school programs may not have the luxury of continuity. So in order to

increase the accessibility and versatility of this set of lesson plans, we've also adapted

three of the classes from this series for SPLASH, another MIT ESP program with a

one-weekend-only format, held, this year, November 18-19.

While we do not have enough space here to discuss SPLASH in detail, interestingly,

we had a very different audience. Only about 10% of our students said Math was their

favorite subject, and one student made a seemingly outlandish comment about hating

the coordinate system when he first learned about it. When asked to elaborate, he

said, "In school they have you draw this Cartesian grid, and then plot things like lines

on it, but it seemed pretty pointless. Then, I realized that you can actually graph

food or baseball statistics, and I became a lot more interested. I'm not really bad at

math, but most of the times it just seems really pointless and boring to me, because

they don't tell you what you can use it for." Behind each statistical method, there

are many fascinating stories about how it is used. Playfully invoking these contexts

makes statistics relatable [116-118], and we are excited about the prospect of using

this thought process to design additional afterschool lesson plans that are accessible

at the jr. high/high school level.
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