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Abstract

Variations of network decomposition, a decomposition of a graph or network into low-diameter
neighborhoods, are constructed in the parallel, distributed, and sequential models of compu-
tation. Chapter 1 gives background and definitions, and it surveys new and known results.
Chapter 2 obtains an NC algorithm for a coloring version of a network decomposition, which
we call weak network decomposition. It does this by modifying an algorithm of Linial and
Saks to depend on only pairwise independence, and then removing randomness. Chapter 3
obtains sublinear time deterministic distributed algorithms for all alternative notions of net-
work decomposition. Chapter 4 presents a sequential near-linear construction of layered sparse
neighborhood covers, with applications to approximating all-pairs shortest paths.

The network decomposition structure was first introduced by Awerbuch, Goldberg, Luby,
and Plotkin as a means to deterministically construct a maximal independent set in a distributed
network. In Chapter 5, we return to the MIS problem in distributed computing and present
a highly robust randomized protocol that constructs a maximal independent set in an entirely
asynchronous environment in O(log n) expected time. Applications include an optimal solution
to the generalized dining philosophers problem, where a process that competes with d other
unit-time processes for resources it needs exclusively to execute, is scheduled in O(d) expected
time.

The constructions presented here can also be seen in a broader context as the beginning
of an investigation of what functions of graphs and networks can be computed locally. Since
locality can be key to designing efficient algorithms, to increase what we know how to compute
without complete global knowledge of graph or network topology is important, and we suggest
some open questions and future directions, in the conclusion.

Thesis Supervisor: Daniel J. Kleitman
Title: Professor of Applied Mathematics
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Introduction

Algorithms that exploit locality are often more efficient. If we can design algorithms that are
modular with respect to a local representation of a graph or network, these can often be cleaner,
simpler, and avoid expensive global computation. In this thesis, we consider two different
families of local representations. Chapters 1-4 of this thesis are concerned with variations of
the network decomposition problem, a data structure that partitions a graph into low-diameter
neighborhoods. Typically, low-diameter will mean diameter O(log n), where n is the number of
nodes in the graph. In Chapter 5, we look at only constant diameter neighborhoods, and turn

to the problem of local resource allocation.

Network decomposition

Network decomposition, in a coloring form (which we will also refer to as weak network de-
composition or graph decomposition), was first introduced in a 1989 paper of Awerbuch et. al.
[15]. Since then, there have appeared definitions of a variety of related but different structures,
which are all informally placed under the heading “network decomposition”, but have also been
designated average covers, sparse partitions, the circle problem, sparse neighborhood covers,
pairwise covers, etc. Slight variations in definitions of these stmctur-és can have large impli-
cations for constructibility and applications. As we will see, the weak network decompésition,
in many domains, will be the easiest to construct; but it is the sparse neighborhood cover,
perhaps the hardest to construct, that seems most useful for the applications. Chapter 1 sur-
veys the different notions and definitions of network decomposition, aud provides a standard
terminology.

The network decompoeition portion of the thesis is structured as follows. A simple greedy

censtruction of weak network decomposition or strong retwork decomposition is due to Linial-
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14 INTRODUCTION

Saks [47] and Awerbuch-Peleg [21], and we present it for background, along with our survey
of alternative definitions for network decomposition in Chapter 1. Linial and Saks [47] also
presented a randomized parallel algorithm for weak network decomposition. In Chapter 2,
we give a modified randomized parallel RNC algorithm for this problem whose analysis can
be shown to work with lesser independence, and then remove the randomness, to achieve a
deterministic NC parallel algorithm.

Chapter 3 moves to the distributed model of computing, where we give the fastest known
deterministic algorithms for all alternative notions of network decomposition, including the
sparse neighborhood cover definition, with applications. Finally, in Chapter 4, we show how
to construct a sparse neighborhood cover in near linear time, using a new “guarded breath
first search” technique, and an amortized analysis. This has applications which include fast

constructions of planar separators, and approximating shortest paths.

Local resource allocation

In an asynchronous network, one way to perform typical network functions, such as symmetry
breaking, or resource allocation, involves globally synchronizing the network and then run-
ning a synchronous protocol. Such synchronization, however, can be difficult and expencive.
We examine a setting where a local strategy achieves good performance without simulating
synchrony.

Chapter 5 gives the first poly-logarithmic time (randomized) protocol for breaking symmetry
in a totally asynchronous environment. The protocol can be adapted to the distributed or
asynchronous PRAM model of computation. Qur means of breaking symmetry is to construct
a maximal independent set (MIS) in the following graph: the vertices correspond to the network
processors, and two vertices are connected by an edge if there is a direct communication link
between the corresponding processors.

We give the first poly-logarithmic time (randomized) protocol for constructing an MIS in a
totally asynchronous environment. In addition, the local performance of the algorithm is shown
to depend only on local clock delays. (We extend the notion of “wait-free” to graph algorithms,
and define k-wait-free as a measure of local dependence).

As an application of the new protocol, a randomized solution to the classical dining philoso-
phers problem is presented, that schedules a job j in O(§) expected time, where 6 is the number
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of jobs with which j competes. This meets the lower bound of Q(4),

where the previous best
known algorithms ran in time 0(8?).
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Chapter 1

Preliminaries and Definitions:
Décompositions of a Graph into

Regions of Low Diameter

This chapter presents the introductory material and notation needed for chapters 2-4. There are )
several alternate notions of low-diameter graph or network decomposition. These are related,
but different. In this section we survey the different formulations of network decomposition,
and discuss their relations.

Within each family of definitions, we also discuss what it means to have a high-quality

decomposition or cover, in terms of the optimal tradeoffs between low diameter and sparsity.

1.1 Introductory definitions

Our definitions consider a graph G = (V, E) whose vertices are grouped into a collection of
(possibly overlapping) sets S,..., S, (called also clusters). This collection is referred to as a
cover or decomposition.

Our notion of distance in a graph is the usual (unweighted) one, i.e., the distance between
4,v € V in G, denoted distg(u,v), is the length (in edges) of the shortest path between u
and v in G. The distance between two clusters S, §' is analogously defined to be the minimum
distance (in G) between any two vertices v € S and v’ € §'. (We extend this to positive edge
weights and shortest weight paths in the usual way.)

17



18 CHAPTER 1. PRELIMINARIES AND DEFINITIONS

However, for distances inside clusters, we must distinguish between two distinct notions.

Definition 1.1.1 The weak distance between u,v € S; is simply their distance in G,
distg(u,v). Namely, ihe path connecting them is allowed to shortcut through vertices not in S;.

The weak diameter of S; is defined as
diam(S;) = un'}g%(’(distg(u, v)).

Definition 1.1.2 The strong distance between u,v € S;, denoted dists (u,v), is the length of
the shortest path between u and v, on the induced subgraph S; of G. Namely, all vertices on the

path connecting u and v must also be in S;. The strong diameter of S; is defined as
Diam(S;) = Jmax (dists,(u,v)).

The square of a graph, G2, is defined to be the graph G closed to distance 2, i.e., it contains
an additional edge (u,v) if there exists an intermediate vertex w s.t. (u,w) and (w,v) are in
G. Similarly, G* is the transitive closure of G to distance ¢, i.e., it contains an edge between
any two vertices that are connected by a path of length ¢ or less in G.

The j-neighborhood of a vertex v € V is defined as N;(v) = {w | distg(w,v) < j}. When
j =1, we omit the subscript and denote the neighbors of v by N(v). The j-neighborhood of a
set of vertices W is defined to be N;(W) = Uyew N;(v),

Definition 1.1.8 Given an undirected graph G = (V, E), ¢ maximal independent set, or MIS
in this graph is a set of vertices M such that

1. Every vertez is in M or has a neighbor in M

2. Ifz € M, then none of z’s neighbors are in M.

1.2 Network decomposition

1.2.1 Weak network decomposition

Definition 1.2.1 For an undirected graph G = (V, E), a (X, d)-decomposition is defined to be
a x-coloring of the nodes of the graph that satisfies the following properties:
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1. each color class is partitioned into an arbitrary number of disjoint clusters;

2. the distance in G between any pair of nodes in a cluster is at most O(d), i.e. the diameter

Diam(G) is O(d).
3. clusters of the same color are at least distance 2 apart.

The above definition is equivalent to one first introduced by [15]. It can be thought of as a
generalization of the standard graph coloring problems, where x is the number of colors used,
and the clusters are “super-nodes” of diameter O(d).

A natural question to ask is for a given family of graphs, for what values of x and d does such
a decomposition exist. It is immediately clear that there will be a tradeoff between minimizing
the number of colors and the diameter. If x = chromatic number of G colors are allowed, then
a ordinary vertex coloring gives diameter 0 clusters; if we allow d = diameter of G, we can
color the whole graph with a single color. Awerbuch et. al. [15] when they introduced network
decomposition, gave a construction with x,d = O(n‘), for any € > 0. As we will see, this is far
from an optimal tradeoff between x and d. The following simple construction [47, 21] shows

that any arbitrary graph on n vertices will have a (log n, 2 log n)-decomposition.

1.2.2 The simple greedy algorithm.

Pick an initial color, say green. We will first construct all green clusters. Pick an arbitrary
vertex (call it the center vertex), and consider successive balls of radius r around this vertex,
for r = 1,2,3...Diam(G). For each r, compare the number of vertices that lie in the interior
of the ball (i.e. are also in the ball of radius r — 1 around the center vertex), with the number
of vertices that are of distance exactly r from the center. It is easy to prove that there always
exists an r < logn for which the number of vertices in the interior is greater than the number of
vertices on the border. Thus, we take the minimum diameter ball B, for which this condition
holds, color the interior green, and remove the entire ball (including the uncolored border) from
the graph. Then we pick another arbitrary vertex, and repeat the whole procedure on G\ B,,
until all vertices are either colored green, or incident to vertices which are colored green. Then,
all uncolored vertices are returned to the graph, and we repeat the above on a new color.
Since the radius r of the clusters in this construction is less than logn, the diameter is
at most 2logn. Two clusters of the same color will be at least distance 2 apart, because the
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borders, which we did not color, act as buffers. Finally, since by construction, every cluster has
more vertices in the interior than on its border, at least half the remaining vertices are colored
with each new color, and so we color all vertices with at most log n colors.

Linial and Saks [47] gave a triangulation argument for a family of simplex graphs showing
that for x < logn, d must be O(log n) (where the constant of the lower bound nearly meets the

2 of the construction above). This generalizes to a range of tradeoffs, as follows.
Definition 1.2.2 A (x, d)-decomposition is called high-quality if x is at most O(dn'/¢).

Many of the applications that we will see will have a running time dominated by the max-
imum of x and d. Therefore, the typical high-quality decomposition which will be of interest,
is x and d both O(log n).

In the next section, we survey all alternate notion of network decomposition, and give formal
definitions for each. We divide the definitions into two classes — the color definitions and the
cover definitions. In Section 1.3, we extend the color definitions to separate clusters by distance
greater than 1, and the cover definitions to capture not just the neighbors of a vertex, but the

neighbors out to distance A. We call this A- eztended network decomposition.

1.2.3 Strong network decomposition

We have already given the definition of weak diameter network decomposition in the previous

section. Now we define strong diameter decomposition.

Definition 1.2.8 For strong-diameter network decomposition, the definition is the same as

Definition 1.2.1, ezcept in Property 2, substitute “strong” for “weak” diameter.

Note that G is a strong diameter network decomposition implies G is a weak-diameter
network decomposition, and in fact the simple greedy construction given in the previous section
also happens to be a strong-diamter decomposition. As with the weak definition, the “high-
quality” tradeoffs are optimal.

We will refer to the two definitions above as the color definitions. The next three alternative
definitions of network decomposition we will refer to collectively as the cover definitions. The
cover defintions will all be strong-diameter definitions, but they will require additional structure
to capture the neighborhoods of all vertices.
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1.2.4 The cover definitions

We first present the definition for sparse neighborhood covers, and then weaken this somewhat
to define average covers, and pairwise covers. A sparse neighborhood cover will automatically
be both an average cover and a pairwise cover, but the converse does not hold. We consider
here a cover which represents the neighbors of every vertex. The extension to neighborhoods

to distance A appears in Section 1.3.

Definition 1.2.4 A (x,d) neighborhood cover is a collection of sets S,,...,S,, with the fol-
lowing properties:

1. For every vertez v, there ezists a set S; s.t. N(v) C S;.
2. Diam(S;) < O(d) for every set S;.
3. Each vertez belongs to at most x sets.

A (x, d)-neighborhood cover is said to be sparse, if x < dn'/d,

Notice that sparsity is a measure of the quality of the cover, analagous to the high-quality
stricture for the color definitions. Also analogously, there will be a tradeoff betweek diameter .
of sets in the cover, and the maximum overlap x of sets at a vertex.

Setting d = 1, the set of all balls of radius 1 around each vertex is a sparse neighborhood
cover. Setting d = Diam(G), the graph G itself is a sparse neighborhood cover. In the first case,
the diameter of a ball is 1, but each vertex could appear in every ball. In the second case, each
vertex appears only in a single cluster G, but the diameter of G could be as high as n. Setting
d = logn (the typical and useful setting, for most applications), a sparse (logn,O(logn))-
neighborhood cover is a collection of sets S; with the following properties: the sets contain all
1-neighborhoods, the diameter of the sets is bounded by O(log n), and each vertex is contained
in at most clogn sets, where ¢ > 0.

A weaker strncture that resembles the sparse neighborhood cover, is the sparse-average-cover

defined first by [21].

Definition 1.2.5 A (x,d) average cover is a collection of sets S1s.++s 8, with the following
properties:

1. For every vertez v, there ezists a set S; s.t. N(v) C S;.
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2. Diam(S;) < O(d) for every set S;.

8. (T.eg number of §; which contain v)/v < x .

A (x,d) average cover is said to be sparse, if x < dn'/d,

A still weaker structure, where we again require the cover to be only sparse on average, and
cover not the whole neighborhood but only pairs, is the pairwise cover of E. Cohen. We remark
that the simple greedy algorithm for network decomposition presented above, if we include the
borders in the output sets, produces a pairwise cover, but not a sparse pariwise cover. However,
modifying the stopping conditions as we do in Chapter 4, will allow us to insure the cover is

sparse on average. (This is essentially what E. Cohen does (30]).

Definition 1.2.8 A (x,d) pairwise cover is a collection of sets Sy,...,S,, with the following

properties:
1. For every pair of neighboring vertices u,v, there ezists a set S; s.t. u,v appear together
in S;.
2. Diam(S;) < O(a) for every set S;.
8. (T, number of S; which contain v )/v<x.

A (x, d) pairwise cover is said to be sparse, if x < dnl/4,

We remark again that a sparse neighborhood cover is 2utomatically also an average cover,
and a pairwise cover. We further remark that the color definitions can be thought of as sparse 1-
neighborhood covers of the edges (The analogy, however, does not carry over to the ) extensions

of Section 1.3).

1.2.5 A composite structure

Finally, we present a structure that rather than weakening the requirements on a sparse neigh-
borhood cover, actually strengthens them. We define a layered sparse neighborhood cover which
is basically a strong-diameter network decomposition sitting inside a sparse neighborhood cover.
This stronger structﬁre is in fact what the sparse neighborhood covers algorithms of Chapters

3 and 4 will construct.
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Definition 1.2.7 A layered (X, d)-neighborhood cover is a collection X of subcollections of
sets, Vi ... such that:

1. X is a (x, d)-neighborhood cover.

2. If the interiors (i.e. thuse nodes in set Y whose I-neighborhoods are covered by Y) of Ji
are colored with color i, then the resulting coloring is a strong-diameter (x,d) network

decomposition.

A layered (x, d) neighborhood cover is said to be sparse if X is a sparse neighborhood cover.

We remark that the sparsity condition on the layered neighborhood cover, above, automat-
ically guarantees that the network decomposition inside is high-quality. Notice, however, that
the simple greedy algorithm presented above, though it produges a strong-diameter netowrk
decomposition, will not produce a sparse neighborhood cover. The difficulty is that if you throw
back in all the borders, you will cover all 1-neighborhoods, but the resulting cover will not be

sparse; a node can appear in the borders of many sets in each layer.

1.3 Extension to separation and local neighborhoods

First, we give the weak diameter definition, generalized to allow an additional “separation”
parameter, A. (When XA = 1, this is the notion of weak network decomposition discussed in the

previous section, equivalent to the definitions in [15, 47, 57]).

Definition 1.3.1 For an undirected graph G = (V, E), a weak (strong) (X, d, A)-decomposition
is defined to be a x-coloring of the vertices of the graph, i.e., a mapping ¢ : V — {1,..., x}
that satisfies the following properties:

1. each colorglass is partitioned into (an arbitrary number of ) disjoint vertezx clusters;
2. the weak (strong) diameter of any cluster of a single color class is at most d;

3. clusters of the same color are at least distance A+1 apart.

A (x,d, X)-decomposition is said to be high-quality if it achieves the optimal tradeoff; namely,
when cluster diameter = O(d)), the coloring number x is at most dn!/4. (Note that the diameter

is allowed to grow proportional to A, but the number of colors stays the same.)
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Remark. We can construct a (logn,2logn, A)-decomposition by the following modification of

the simple greedy procedure in Section 1.2.2. Simply grow the radius of the ball in incremental

hops of size A, rather than of size 1.

Now we give the sparse neighborhood cover definition, extended to A-neighborhoods. Note
that in the quality condition, the diameter increases proportional to A but the maximum overlap

is not allowed to increase with A.

Definition 1.3.2 A (x,d, A)-neighborhood cover is a collection of sets Sy,..., 5., with the

following properties:
1. For every verter v, there ezists a set S; s.t. Ny(v) C S;.
2. Diam(S;) < O(d]) for every set S;.
3. Fach vertex belongs to at most x sets.

A (x,d, A)-neighborhood cover is said to be sparse, if x < dn'/?,

The definitions for average covers and pairwise covers can be extended analogously. For a
layered sparse neighborhood cover, the interiors of a sparse (X, d, A)-neighborhood cover should
produce a high-quality (x,d,A) network decomposition. Again, a single layer will produce an

Sparse average cover.

1.4 Summary of results

The following table summarizes what was known about constructing each network decompo-
sition structure in the parallel, distributed and sequential models of computation. Results in
boldface appear in this thesis.

For simplicity, all results are stated for high-quality colorings, or sparse coverings, with
d = logn and A = 1. In the parallel domain, we will be concerned with the PRAM model
(see e.g. [31] for precise definitions). In the distributed domain, we will follow Linial’s model
(see [48], or Section 3.2 of this thesis for an overview and discussion.) We also place, in the first
line of this table, the best known results for constructing a mazimal independent set (MIS).
One reason is because a maximal independent set is, in some sense, a decomposition of a graph

into diameter 1 neighborhoods, though this is much less sophisticated than the other forms of
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[ Sequential | Rand. PRAM | Det. PRAM | Rand Dist. ] Det. Dist. |
MIS O(n) O(logn) [44, 51] | O(logn) [50] | O(logn) [51)* | n°(*/V'8") [57)
Weak N.D. O(Elog’ n) O(log’n) [47] | O(log®n)* | O(log’n) [47] n®(1/ Viogn)
Pairwise Covers || O(Elog?n) [30] | O(log® n)* [30] O(log* n) 001/ iogn)
Average Covers O(Elog? n) O(log* n) n2(1/ Viogn)
Sparse N. Covers O(Elog®n) O(log* n) nO(I / \/1ogn)

2Chapter 5 of this thesis extends to an asynchronous network

®With a log n blowup in the number of colors

Figure 1-1: Summary of new and known results. (New results are in boldface.)

network decomposition we consider. The second reason is that while a network decomposition

can be used to construct an MIS in all models of computation, there are usually simpler ways

(either from a complexity-theoretic point of view, or from a conceptual point of view, or both)

to construct the MIS directly.
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Chapter 2

Low Diameter Graph Decomposition

is in NC

2.1 Introduction

In this chapter we achieve the first polylogarithmic-time deterministic parallel algorithm for
(x, d)-decomposition. The algorithm deconiposes an arbitrary graph into O(log® n) colors, with
cluster diameter at most O(logn). Thus we place the low-diameter graph decomposition prob-

lem into the class NC.

The algorithm uses a non-trivial scaling technique to remove the randomness from the
algorithm of Linial-Saks. In Section 2.2.1, we review the Linial-Saks algorithm. Section 2.2.2
gives our new modified RNC algorithm, whose analysis is shown in Section 2.2.4 to depend
vnly on pairwise independence. This is the crux of the argument. Once we have a pairwise
independent RNC algorithm, it is well known how to remove the randomness to obtain an
NC algorithm. In Section 2.3.2 we are a bit more careful, however, in order to keep down the
blowup in the number of processors. Our (deterministic) NC algorithm runs in O(log®(n)) time

and uses O(n?) processors.

This chapter describes joint work with B. Awerbuch, B. Berger and D. Peleg [24, 12].
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2.2 An RNC algorithm

In this section, we modifying an RNC algorithm of Linial-Saks to depend only on pairwise inde-
pendence. and then removing the randomness. To get our newly-devised pairwise independent
benefit function (44, 50] to work, we have to employ a non-trivial scaling technique. Scaling has

been used previously only on the simple measure of node degree in a graph.

2.2.1 The RNC algorithm of Linial-Saks

Linial and Saks's randomized algorithm [47] emulates the simple greedy procedure presented
in Section 1.2.2. To emulate the greedy algorithm randomly, Linial-Saks still consider each
of O(log n) colors sequentially, but must find a distribution that will allow all center nodes of
clusters of the same color to grow out in parallel, while minimizing collisions. If all nodes are
allowed to greedily grow out at once, there is no obvious criterion for deciding which nodes
should be placed in the color-class in such a way that the resulting coloring is guaranteed both
to have small diameter and to contain a substantial fraction of the nodes.

Linial-Saks give a randomized distributed (trivially also an RNC) algorithm where nodes
compete to be the center node. It is assumed that each node has a unique ID associated
with it.! In their algorithm, in a given phase they select which nodes will be given color j
as follows. Each node flips a candidate radius n-wise independently at random according to a
truncated geometric distribution (the radius is never set greater than B, which is set below).
Each node y then broadcasts the triple (ry, IDy,d(y,2)) to all nodes z within distance r, of y.
For the remainder of this paper d(y, z) will denote the distance between y and z in G. (This
is sometimes referred to as the weak distance, as opposed to the strong distance, which is the
distance between y and z in fhe subgraph induced by a cluster which contains them.) Now each
node z elects its center node, C(z), to be the node of highest ID whose broadcast it received. If
r, > d(2,y), then 5 joins the current color class; if ry = d(z,y), then z remains uncolored until
the next phase.

Linial and Saks show that if two neighboring nodes were both given color i, then they both
declared the same node y to be their winning center node. This is because their algorithm

1As seen below, -n s used for & omsistent tie-breaking system: the necessity of assuming unique IDs for
tie-breaking depends on whea whether one is in the distributed or parallel model of computing. This paper is
concerned with parallel computatioa, so wa caa freely assume unique IDs in the model.
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emulates a greedy algorithm that sequentially processes nodes from highest to lowest ID in a
phase. The diameter of the resulting clusters is therefore bounded by 2B. Setting B = O(log n),
they can expect to color a constant fraction of the remaining nodes at each phase. So their
algorithm uses O(logn) colors. (See their paper [47] for a discussion of trade-offs between
diameter and number of colors. Linial-Saks also give a family of graphs for which these trade-

offs between x and d are the best possible.)

The analysis of the above algorithm cannot be shown to work with constant-wise indepen-
dence; in fact, one can construct graphs for which in a sample space with only constant-wise
independence, there will not exist a single good sample point, It even seems doubtful that the
Linial-Saks algorithm above would work with polylogarithmic independence. So if we want to

remove randomness, we need to alter the randomized algorithm of Linial-Saks.

2.2.2 Overview of the pairwise independent RNC algorithm

Surprisingly, we show that there is an alternative RNC algorithm where each node still flips a
candidate radius and competes to be the center of a cluster, whose analysis can be shown to
depend only on pairwise independence.

The new algorithm will proceed with iterations inside each phase, where a phase corresponds
to a single color of Linial-Saks. In each iteration, nodes will grow their radii according to the
same distribution as Linial-Saks, except there will be some probability (possibly large) that a
node y does not grow a ball at all. If a node decides to grow a ball, it does so according to the
same truncated geometric distribution as Linial-Saks, and ties are broken according to unique

node ID, as in the Linial-Saks algorithm. We get our scaled truncated distribution as follows:

Prir,=NIL] = l-a
Prlr, = jj = ap(l-p) for0<j<B-1
Pr{r, = B) = ap?

The design of the algorithm proceeds as follows: we devise a new benefit function whoee
expectation will be a lower bound on the probability a node is colored by a given iteration (color)
of the algorithm, plus pairwise independence will suffice to compute this benefit function. The
pairwise-independent benefit function will serve as a good estimate to the n-wise independent
“benefit function” of the Linial-Saks algorithm, whenever nodes y in the graph would not ezpect
to be reached by many candidate radii z. This is why it is important that some nodes not grow
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candidate balls at all.

To maximize the new pairwise-independent benefit function, the probability a that a node
grows a ball at all will be scaled according to a measure of local density in the graph around
it (see the definition of the measure T, below.) Since dense and sparse regions can appear in
the same graph, the scaling factor a, will start small, and double in every iteration of a phase
(this is the O(logn) blowup in the number of colors). We argue that in each iteration, those
y's with the density scaled for in that iteration, will have expected benefit lower bounded by a
constant fraction. Therefore, in each iteration, we expect to color a constant fraction of these
nodes (Lemma 2.2.2). At the beginning of a phase a is reset to reflect the maximum density
in ihe remaining graph that is being worked on. In O(log n) phases of O(log n) iterations each,

we expect to color the entire graph.

2.2.3 The RNC algorithm

Define T, = ¥ qs.4y < 5 P°?; and A = maxvyeq Ty Each phase will have O(log n) iterations,
where each iteration i colors a constant fracticn of the nodes y with T, between A/2' and
A/2-'. Note that T, decreases from iteration to iteration, but A remains fized. A is only
re-computed at the beginning of a phase. ?

The algorithm runs for O(log n) phases of O(logn) iterations each. At each iteration, we
begin a new color. For each iteration i of a phase, set a = 2¢/(34).

Each node y selects an integer radius r, pairwise independently at random according to
the truncated geometric distribution scaled by a (defined in Section 2.2.2). We can assume
every node has a unique ID [47]. Each node y broadcasts (ry, ID,) to all nodes that are within
distance r, of it. After collecting all such messages from other nodes, each node y selects
the node C(y) of highest 7D from among the nodes whose broadcast it received in the first
round (including itself), and gets the current color if d(y, C(y)) < rcq)- (A NIL node does not
broadcast.) At the end of the iteration, all the nodes colored are removed from the graph.

2We remark that the RNC algorithm will need only measure Ty, the density of the graph at y once, in order
to determine A. In fact any upper bound on max T, in the graph will suffice, though a sufficiently crude upper
bound could increase the running time of the algorithm. The dynamically changing T, is only used here for the
analysis; the randomised algorithm does not need to recalculate the density of the graph as nodes get colored
aad removed over successive iterations within a phase.
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2.2.4 Analysis of the algorithm’s performance

We fix a node y and estimate the probability that it is assigned to a color, §. Linial and
Saks [47) have lower bounded this probability for their algorithm’s phases by summing over all
possible winners of y, and essentially calculating the probability that a given winner captures y
and no other winners of higher ID capture y. Since the probability that y € S can be expressed
as a union of probabilities, we are able to lower bound this unjon by the first two terms of the

inclusion/exclusion expansion as follows:

Prlye §]>

3 (P"[f: >dz,y)]- 3 Pri(r. > d(z,y)A(r, 2 d(u,y))l)

3|z, y) < B «>slw,y) < B

Notice that the above lower bound on the probability that y is colored can be computed
using only pairwise independence. This will be the basis of our new benefit function. We will
indicate why the Linial and Saks algorithm cannot be shown to work with this weak lower
bound.® However, we can scale a so that this lower bound suffices for the new algorithm.

More formally, for a given node z, define the following two indicator variables:
Xyt 12 2d(z,y)
Zys: 1, >d(z, y)

Then we can rewrite our lower bound on Prly € S] as

E E [Zv.t] = E E [Zr.:X r.u]

sld(s, 9)< B “«>s| ds9)<B
‘.n.) S 8

The benefit of a sample point R =<r,,...,r,> for a single node y, is now defined as

B(R)= Y 2z,,- > Zya Xy

siiz,9)< B “>3 s,9)<B
Av,9)S B

Hence, our lower bound on Pr(y € 8] is, by linearity of expectation, the expected benefit.

SWe can, in fact, construct example graphs on which their algorithm will not perform well using only pairwise
independence, but in this paper we just poiat out where the analysis fails.
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Recall that T, = 37, ., ) < 5 P***). We first prove the following lemma:
Lemma 2.2.1 Ifp<1/2 and B > logn then E[B,(R)] > (1/2)paT,(1 - aT,).

Proof We can rewrite

E[By(R)] = pa ( > P‘("”)) - pa? > pin)+d(uy)
“> 3|

sld(s,y)< B &z,y)< B
Av,p)< B

So it is certainly the case that

E[B,(R)} > pa( 3> p“‘""’) -m’( > p"‘"")‘( 3 p“"'”) (2.1)

sl&(s,y) < B sld(s,y) < B uld(u,y) € B /

pa ( E p‘("”)) (1 -a ( E pd(“"))) . (2.2)
2ld(s,y) < B u|ldw,y) < B
S e ”

sld(s,y)< B

Now, there are less than n points at distance B from ¥, and p < 1/2 and B > logn by

assumption, so
Y PP<npf<
3|2, y) = B

On the other hand

Z pd(‘t,) 2 1’
s|d(s,9)< B

since the term where z = y contributes 1 already to the sum. Thus

2 P‘("') 2 2 PB
sld(s,y) < B sld(s,9) = B
And since there two terms sum to T,
Z p“'!') > T,/2.

s|ld(s,9) < B

Substituting T,/2 in equation 2.3 yields the lemma. O
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Define A = max,(7,). Define the set D; at the ith iteration of a phase as follows:
D; = {y|A/2° < T, < A/2~" A (y & Dy for all h < i)}
Given a sample point R =<ry,...,r,>, define the benefit of the ith iteration of a phase as:
BI(R) = ); B,(R). (2.4)

Recall that A = maxvyeg 7y At the ith iteration of a phase, we will set & = 2//(3A). In the
analysis that follows, we show that we expect to color a constant fraction of the nodes which

have y € D; in the ith iteration.
Lemma 2.2.2 In the ith iteration, we ezpect to color greater than P/18 of those y € D;.

Proof

E[# of y € S where y € D;] ZPr[yeS]

y€D;

E[BI(R)]

£Y (%) (1-=3)

y€D;

v

v

by Lemma 2.2.1. Since we want a lower bound, we substitute T, 2 -}, in the positive T, term

and 7, < ;3; in the negative T, term, giving

E{#ofy€ S whereye D;] > (P/2)E %(1-;)
y€D;

2
> lle‘I.

The next lemma gives the expected number of phases is O((log n)/(log(p/18))) = O(log n).

Lemma 2.2.3 Suppose V' C V is the set of nodes present in the graph at the beginning of a
phase. After log(3A) iterations of a phase, the ezpected number of nodes colored is (p/ 18)|V’|.

Proof Since for all y, T, > 1, over all iterations, and since a@ — 1, then there must exist an

iteration where a7, > 1/10. Since T, cannot increase (it can only decrease if we color and
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remove nodes in previous iterations), and aT, < 1/5 in the first iteration for all y, we know
that for each y there exists an iteration in which 1/5 > aT, > 1/10. If i is the first such
iteration for a given vertex y, then by definition, y € D;, and the sets D; form a partition of
all the vertices in the graph. By Lemma 2.2.2, we expect to color p/18 of the vertices in D;
at every iteration i, and every vertex is in exactly one set D;, so we expect to color a (p/18)

fraction overall.

a

By Lemma 2.2.3, we have that the probability of a node being colored in a phase is p/18.
Thus, the probability that there is some node which has not been assigned a color in the first
| phases is at most n(1 — (p/18))". By selecting  to be L""%ﬂﬂ, it is easily verified that this
quantity is o(1).

Theorem 2.2.4 There is a pairwise independent RNC algorithm which given a graph G =
(V, E), finds a (log? n,log n)-decomposition in O(log® n) time, using a linear number of proces-

SOrs.

2.3 The NC algorithm

2.3.1 The pairwise independent distribution

We have shown that we expect our RNC algorithm to color the entire graph with O(log® n)
colors, and the aﬁalysis depends on pairwise independence. We now show how to construct
a pairwise independent sample space which obeys the truncated geometric distribution. We

construct a sample space in which the r; are pairwise independent and where fori=1,...,n:

Prlr;=NIL} = l1-a
Prr; = j] = ap(l1-p) for0<j<B-1
Pr{r; = B) = ap?

Without loss of generality, let p and a be powers of 2. Let r = Blog(1/p) +log(1/a). Note
that since B = O(log n), we have that r = O(logn). In order to construct the sample space, we
choose W € Z}, where | = r(logn + 1), uniformly at random. Let W =<w®,w@, ... Ww)>,
each of (logn + 1) bits long, and we define w,(-') to be the jth bit of w(®.
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Fori = 1,...,n, define random variable ¥; € Z] such th .. Dbit is set as

Y. =<bin(i), 1> w®,

where bin(i) is the (log n)-bit binary expansion of i.
We now use the Y;’s to set the r; so that they have the desired property. Let ¢ be the most

significant bit position in which Y; contains a 0. Set

rn = NIL ifte(l,.,log(1l/a)]
= j  ifte(log(l/a)+ jlog(1/p),-..log(1/a) + (j + 1)log(1/p)), for j#B-1
= B otherwise.

It should be clear that the values of the r;’s have the right probability distribution; however,
we do need to argue that the r,’s are pairwise independent. It is easy to see [44, 50] that, for all
k, the kth bits of all the Y;’s are pairwise independent if w(*) is generated randomly; and thus

the Y;’s are pairwise independent. As a consequence, the r;’s are pairwise independent as well.

2.3.2 Searching the sample space

We want to search the sample space given in the previous section to remove the randomness
from the pairwise independent RNC algorithm; i.e. to find a setting of the r,’s in the ith
iteration of a phase for which the benefit, Bz(R), is at least as large as the expected benefit,
E[Bz(R)].

Since the sample space is generated from r (logn)-bit strings, it thus is of size 27'°6 <
O(n'os), which is clearly too large to search exhaustively. We could however devise a quadratic
size sample space which would give us pairwise independent r,’s with the right property (see
(44, 49, 7]). Unfortunately, this approach would require O(n®) processors: the benefit function
must be evaluated on O(n?) different processors simultaneously.

Alternatively, we will use a variant of a method of Luby [50] to binary search a pairwise
independent distribution for a good sample point. We can in fact naively apply this method

because our benefit function is a sum of terms depending on one or two variables each; i.e.

Br(R) = Z B,(R) = z 2 Zys— E Zys Xy (2.5)
y€D; y€D; | slds,9)< B «>s| &sp)<B®
de,9)S B
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where recall D; = {y|A/2° < T, < A/2""' A (y € Dy forall A < i)}. The binary search is

over the bits of W (see Section 2.3.1): at the qt-th step of the binary search, w? is set to 0
if E[BZ(R) | wM =byy,wi =bya, ..., w{? =by], with by, = 0 is greater than with by, == 1; and
1 otherwise. * The naive approach would yield an O(n?®) processor NC algorithm, since we
require one processor for each term of the benefit function, expanded as a sum of functions
depending on one or two variables each.

The reason the benefit function has too many terms is that it includes sums over pairs of
random variables. Luby gets around this problem by computing conditional expectations on
terms of the form ¥, ;¢ s X; X; directly, using O(|S|) processors. We are able to put our benefit
function into a form where we can apply a similar trick. (In our case, we will also have to deal
with a “weighted” version, but Luby’s trick easily extends to this case.)

The crucial observation is that, by definition of Z,, and X, ., we can equivalently write
E[Z,.X,.] as pE[X,..X,..]; thus, we can lower bound the ezpected performance of the algorithm
within at least a multiplicative factor of p of its performance in Lemmas 2.2.2 and 2.2.3, if we
upper bound the latter ezpectation.

It will be essential throughout the discussion below to be familiar with the notation used
for the distribution in Section 2.3.1. Notice that our indicator variables have the following

meaning:

X!"
Z,, = Y,,=1 foral k1< k< (d(z,y)+1)log(1/p)

You=1 forall k, 1<k < d(z,y)log(1/p)

If we fix the outer summation of the expected benefit at some y, then the problem now

remaining is to show how to compute

El Y X,.Xyul WD =byy, Wi =byg, ..., w? =b,), (2.6)
(s,u)ES

in O(log n) time using O(|S|) processors. For notational convenience, we write (z, ) for z # u.

Below, we assume all expectations are conditioned on wgl) =byy,... ,ws') =by.

“We remark that to evaluate the benefit of a sample point, we must b> able to determine for a given iteration
i of a phase, which y are in D;. Thus we must update T, for each y to reflect the density of the remaining graph
at iteration i.
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Note that we only need be interested in the case where both random variables X,, and
Xy.u are undetermined. If ¢ > d(i,y)log(1/p), then X, is determined. So we assume q <
d(i, y)log(1/p) for i = z,u. Also, note that we know the exact value of the first ¢ — 1 bits of
each Y;. Thus, we need only consider those indices z € S in Equation 2.6 with Y,; = 1forall
J £ q - 1; otherwise, the terms zero out. Let S’ C § be this set of indices.

In addition, the remaining bits of each Y, are independently set. Consequently,

E[ 3 X,.X,u] = E[ ¥ 1z, 9)7(u, )Y, Y. ]

(2,.u)€S’ (z,u)€S’
= E(3 1= - 3 1z y)7Y2),
€S’ Z€S!

where y(z,y) = 1/24(:.v)log(1/p)~¢

Observe that we have set ¢ bits of ¥, If ¢ = logn + 1, then we know all the Y.,’s, and
we can directly compute the last expectation in the equation above. Otherwise, we partition
S’ into sets §y = {z € §' | zpy, - “*Ziogn = A}. We further partition each S, into Swo={z¢€
Sil o,z =0 (mod 2)} and Sy, = S\ — Sy ,. Note that given w{V=b,, . ..,u,(q):b,,,

L. PrlY, , =0] = PrlY,, = 1] =1/2,
2.ifz€ Syj,andu € Sxj+, then Y,,; =Y., iff s =5, and
3. if 2 € 5) and 2’ € Sy/, where A # X, then PrlY, , =Y, ] = PrlY,, # Yo l=1/2.

Therefore, conditioned on wfl) =by,,.. .,w,(') = by,

E[ 3 XyuXyl

(2,u)es’
= E[ Z 7(z,y)7(u,y)Y,,,Y.,,,]
(s,u)es’
= B 3 1@+ 3 T T 1(a (s n)Y, Y,
A (au)esy (A,A?) 2€ 52 u€S,
= YE ¥ 1@yl Y+ Y vz y)Au Y., Y.,
A (2,u)€S1,0 (3,u)€ESa,z
+23° X 1@ Y+ T EY ¥ Az iy, Y.,

3€S2,0u€ESA (AAY)  2E€ESaugS,,

Z [% E 7(2ay)'7(“,y)+% Z (2, y)1(u,y)+ 0] .

A (3.4)€Sx,0 (3,u)€Sa,1
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+3 3 (E 7(z,y)) (Z 7(u,y))

(\, '\') 3€S) uE Sy

(R

E Y y) - ¥ w4+ ( ) 7(z,y)) - Y Az

JESA ° 2€S55,0 2€Sa,1 2€S5a

A|(E 5 ew) - (g o)

A 2€S) A \1€85

Since every node z € §’ is in precisely four sums, we can compute this using O(|S|) processors.

In the above analysis, we fixed the outer sum of the expected benefit at some y. To compute
the benefit at iteration i, we need to sum the benefits of all y € D;. However, we argued in
the proof of Lemma 2.2.3 that the sets D; form a partition of the vertices. Therefore we
consider each y exactly once over all iterations of a phase, and so our algorithm needs only

O(n?) processors, and we obtain the following theorem.

Theorem 2.3.1 There is an NC algorithm which given a graph G = (V,E), finds a
(log? n,log n)-decomposition in O(log® n) time, using O(n?) processors.



Chapter 3

Fast Deterministic Distributed

Network Decomposition

3.1 Introduction

This chapter presents a deterministic sublinear-time distributed algorithm for all alternate
definitions of high-quality network decomposition appearing in Chapter 1. Most importantly for )
network applications, this chapter yields a fast (logarithmic time randomized, or sub-linear time
deterministic) cistributed algorithm for constructing a diameter O(logn), maximum overlap
O(log n) sparse neighborhood 1-cover of a network. This improves the distributed pre-processing
time for all-pairs shortest paths, load balancing, broadcast, and bandwidth management.

The reader is referred to Chapter 1 for the definitions and notation we will use throughout
this chapter.

3.1.1 Previous work

Previous work on the distributed construction of neighborhood covers and decompositions can

be classified into three main groups.

Simple greedy approaches: Previous to this work (which also appears in [11]), there were
no deterministic constructions of high-quality decompositions previously known for distributed

This chapter describes joint work with B. Awerbuch, B. Berger and D. Peleg [24, 11].
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networks, that were any different than just applying sequential greedy algorithms. Even for
weak or strong network decompaosition (coloring definitions) a distributed implementation of

the inherently sequential simple greedy algorithm of Section 1.2.2 took O(nlogn) time.

Recursive coloring: There were, however, distributed near-linear constructions of low-
quality network decompositions (coloring definitions). First, a fast algorithm is given in

[15] for obtaining a (weak-diameter) network decomposition with O(n‘)-diameter clusters, for

¢ = O(vIoglogn/\Iogn). This algorithm requires O(n¢) time in the distributed case, and
O(nE) sequential operations. Later, the distributed running time for this task was reduced in
[57] to O(n?), where é = O(1/y/logn). (This was independently, and at the same time as the
work described in [11] first appeared.)

Unfortunately, the constructions of [15, 57] are not high-quality: they are inefficient in terms
of the tradeoff between diameter and number of colors. Roughly speaking, the inefficiency fac-
tor is O(n¢), and this factor carries over to all but some of the graph-theoretic applications,
rendering the decompositions of [15, 57) expensive in a number of practical contexts. These
constructions are, nevertheless, sufficient for the two main applications that (15, 57] are primar-
ily concerned with, namely, the maximal independent set problem and (A + 1) coloring a graph
of maximum degree A. This is because to construct an MIS or a (A + 1) coloring, one needs to
traverse the O(n¢)-diameter clusters only a constant number of times. In contrast, network con-
trol applications, such as routing, online tracking of mobile users, and all-pairs shortest paths,
require us to traverse the clusters many times. Therefore, a higher-quality decomposition is
needed to avoid a large blowup in the running time for these latter applications. (The network
applications also need the extensions to A neighborhoods, which we achieve with the standard

extra factor of A blowup.)

A randomized algorithm The randomized algorithm of [47] achieves a high-quality weak
network decompositiop by introducing randomization. In this chapter, we can extend this to
all notions of network decomposition.

In summary, all three previous approaches fell short of achieving the goal of constructing a
high-quality network decomposition (color and cover definitions) deterministically and in sub-
linear time; or a randomized strong color or 1-neighborhood cover high-quality decomposition
in expected O(xd) time.
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3.1.2 Structure of the chapter:

We first review the distributed model of Linial [48], in which we measure the perfermance of
our algorithms. Linial’s model is like the PRAM model, in that it js theoretically very elegant,
but perhaps sweeps “under the rug” many issues which affect the performance of practical
implementations. The model does, however, seem to provide an excellent measure of how well
we have localized information in our algorithms. We discuss these issues further along with the
model in the next section.

Having established the model, in Section 3.3 we present our recursive algorithm for weak
network decomposition which constructs a high-quality network decomposition, in sublinear
time. In Section 3.4 we present the reduction which efficiently transforms a weak network
decomposition to any of the alternative notions of network decomposition. Coupled with the
algorithm in Section 3.3 or [57], this gives a sublinear time deterministic distributed algorithm
for all alternative notions of network decomposition. Coupled with the randomized algorithm
of Linial-Saks [47] (also see a sketch of the Linial-Saks algorithm in Section 2.2.1 of this the-
sis), this gives an polylogarithmic randomized algorithm for all alternative notions of network
decomposition.

We also give the standard [21] extension for neighborhoods to distance A, (with the standard
factor of A blowup), which is needed for the applications.

3.2 Linial’s model

Linial’s model (see [48]) of distributed computing is quite powerful. There is a graph G = (V,E)
each node of which is occupied by a processor. Computation is completely synchronous, and
reliable. Every time unit each processor may pass messages to each of his neighbors. There
is no limit on size of these messages. Also, we do not charge for the time it takes individual
processors to compute functions; we only require that these are polynomial-time computations.

We remark that in Linial’s model, in O(d) time, where d is the diameter of the network, we
can compute any polynomial function of the graph G. This is because in O(d) time a single
node can learn the entire network topology, perform all computation at its associated proessor
(where we do not charge for work by a single processor), and then broadcast the result to all
the nodes in the graph.
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The interest in Linial’s model is that the Q(d) threshold presents a mathematically clean
measure of the “globalness” of computation. What functions of G can be computed in less
than Q(d) time? Any sub-dianietric algorithms are computing global functions without global
knowledge of graph topology.

Much previous work has used network decomposition as a data structure to speed up dis-
tributed algorithms using its representation of local neighborhoods. It is thus good to find we
can construct such representations locally, in sub-diametric time in Linial’s model.

We remark that more realistic models of distributed systems (if we are more interested in
practical performance, rather than a mathematically clean concept of the complexity of global
communication) limit the size of messages that can be sent in one time unit over an edge, charge
for local space and time, can remove the assumption that the system is synchronous, and can
also seek to handle various faults or a dynamically changing network. The results presented in
Chapter 5 of this thesis present symmetry breaking results in such a realistic mode!. For ideas
on how one might go about adapting the algorithms in this chapter to a dynamic asynchronous
environment, the reader is referred to the transformer techniques in [2, 21, 19].

On the other hand, in a static asynchronous environment, if the algorithm that runs on
top of a network decomposition data structure requires messages to traverse the diameter of
the network, then for a low number of messages, we suggest instead constructing the network

decomposition using the “sequential” algorithm of Chapter 4.

3.3 Weak diameter network decomposition

In this section, we introduce the new distributed algorithm Color, which recursively builds up a
(dn'/4,2d, 1)-decomposition. It calls on a procedure, Create_New_Color, which runs a modified
version of the Awerbuch-Peleg [9] greedy algorithm on separate clusters.

Note that all distances in the discussion below, including those in the same cluster, are
assumed to be weak distances, and the diameter of the clusters is always in terms of weak
diameter (see Definition 1.1.1).

3.3.1 Algorithm Color

Color: is implicitly taking higher and higher powers of the graph, where recall that we define



3.3. WEAK DIAMETER NETWORK DECOMPOSITION 43

the graph G' to be the graph in which an edge is added between any pair of nodes that have
a path of length < t in G. Notice that to implement the graph G* in a distributed network G,
since the only edges in the network are still the edges in the underlying graph G, to look at all
our neighbors in the graph G*, we might have to traverse paths of length ¢. Therefore the time
for running an algorithm on the graph G*, blows up by a factor of ¢t. The crucial observation
is that a (x,d, 1)-decomposition on G* is a (X, dt, t)-decomposition on G. Choosing ¢ well at
the top level of the recursion, guarantees that nodes in different clusters of the same color are
always separated by at least twice the maximum possible distance of their radii. We can thus
use procedure Greedy_-Color to in parallel recolor these separate clusters without collisions.
(The leader of each cluster does all the computation for its cluster.)

The recursive algorithm has two parts:

1. Find a (X, dt, t)-decomposition, where x = zkn!'/*, d,t = 2k, on each of z disjoint sub-

graphs.
2. Merge these together by recoloring, as just described, toget a (kn'/*, 2k, 1)-decomposition.

Algorithm: Color(G)

Input: graph G = (V, E), |V| = n, and integer k > 1.
Output: A (kn'/*,2k,1)-decomposition of G.

1. Compute G**.

2. If G has less than z nodes, run the Linial-Saks [47] or Awerbuch-Peleg [9] sin.pic greedy
algorithm on G?*, and go to step 6.

3. Partition nodes of G into z subsets, V;,...,V; (based on the last log z bits of node IDs,
which are then discarded).

4. Define G; to be the subgraph of G?* induced on V;.

5. In parallel, for i, Colox(G;).
(every node of G is now colored recursively)

6. For each v € V, color v with the color <i, color{v) € G;>.
(this gives an zkn!/* coloring of G with separation 2k)
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7. Do sequentially, for i = 1 to kn!/*, Create_New_Color(G, i)
(this gives a kn'/* coloring of G with separation 1 )

Algorithm: Create_New_Color(G, i)

(this colors a constant fraction of the old-colored nodes remaining with new color i)

Input: graph G with new and old colored nodes such that there is a (zkn'/k,(2k)3, 2k)-
decomposition on the old-colored nodes of G and a (# — 1,2k, 1)-decomposition on the new-
colored nodes of G
Output: graph G with new and old colored nodes such that there is a (zkn!/%, (2k)?, 2k)-
decomposition on the old-colored nodes of G and a (# = 1,2k, 1)-decomposition on the new-
colored nodes of G

1. WeV.

2. Do sequentially, for j = 1 to zkn!/*,

“Look at nodes with old color ;"

(a) Do in parallel for color j clusters,

o Elect a leader for each cluster.

o The leader learns the identities, U y of all the nodes in W within k distance from
the border of its cluster (i.e. this is graph G for that cluster).

¢ The leader calls procedure Greedy_Color(R,U), where R is the set of old-colored
J nodes in both the leader’s cluster and in W.

® Greedy.Color returns (DR, DU). The leader colors the nodes in DR with new
color 4, and sets W — W — DU.

Greedy_Color is the procedure of the Awerbuch-Peleg [9] greedy algorithm that determines
what nodes will be given the current new color. The algorithm identifies a n'/* fraction of the
nodes in the cluster R to be colored. The algorithm picks an arbitrary node in R (call it a
center node) and greedily grows a ball around it of minimum radius r, such that a n'/* fraction
of the nodes in the ball lie in the interior (i.e. are in the ball of radius r — 1 around the center
node). It is easy to prove that there always exists an r < k| R|*/* for which this condition holds.
Note that although the centers of the balls grown out are always picked (arbitra.rily) from the
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nodes in R, the interiors and borders of the balls which are then claimed, include any of the
nodes in U (not just those in R) within the ball. Then another arbitrary node is picked, and
the same thing is done, until all nodes in R have been processed. Procedure Create_New_Color
will then color the interiors of the balls (set DR) with new color i, and remove each entire ball
from the working graph W.

Algorithm: Greedy_Color(R, U)

Input: sets of nodes R and U, where R is the set of nodes in the cluster and U is a superset

of nodes that contains R.
Output: (DR,DU). This returns a constant fraction of the nodes in R in set DR and the
1-neighborhoods of the clusters of DR in set DU.

1. DR~ Q; DU ~ 0.
2. While R # 9 do
(a) S ~ {v} for some v € R.
(b) While |[Ny(S)nU| > [R[*/*|S| do § — SU (Ny(S)N D).
(c) DR~ DRuUS.
(d) DU — DU U (Ny(S)N V).
() R~ R-5—(Ny(S)NR).
fyU~U-S.

3.3.2 Analysis of Color -

Lemma 3.3.1 If z = 2V'$"VI+e6k  the running time of the procedure Color is
n’.'\/l-o-logb/,/lo.ui-?/b (2’:)2_

Proof The branching phase of the recursion takes time T'(n) < 2kT'(n/z) + z. The merge
takes time xkn'/*td = z(kn'/*)*(2k)?, where xkn'/* is the number of iterations overall and ¢d

is the number of steps per iteration. Overall, we have

T(n) < 2kT(n/z)+ z(kn'/*)?(2k)?
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< (2k)logn/ Iog:z(knl/k)2(2k)2
< n2\/1+logk/‘/logn+3/k (2&)7,

when r = 2‘/logn‘/l+logk. a

Theorem 3.3.2 There is q deterministic distributed asynchronous algorithm which given a
graph G = (V, E), finds a (kni/*, 2k, 1)-decomposition of G in n3V1+ios#/\/logn+3/s (2k)? time.

Corollary 3.3.3 There is a deterministic distributed asynchronous algorithm which given G =
(V2 E), finds a (O(log n), O(log n), 1)-decomposition of G in n(viesWesn/\/iogm) time, which

i n¢ for any € > 0. We remark that the constant on the big-oh in the running time is 3.

Independently, and at the same time as we introduced the above algorithm in (11], [57]
obtained a slightly better asymptotic running time for low-quality weak-diameter network de-
composition than Awerbuch et. aj. [15]. In the next section, we show how to use the resuit
of [57] coupled with our transformer algorithm to obtain the same running time for a determin-
istic construction of high-quality weak network decomposition. We thus obtain the following

corollary:

Corollary 3.3.4 There is a deterministic distributed asynchronous algorithm which given G =
(V) E), finds a (O(logn),O(log 1), 1)-decomposition of G in O(n/V'*E™) time, which is ne for
any € > 0.

3.4 The transformer algorithm

We introduce an algorithm Transform, which takes as input parameters d and A, and a pro-
cedure Decomp, which given a graph G = (V,E), finds a (Xotd» dotay 1)-decomposition of G. In
actuality, we will bind Dacomp to the algorithm of (57] if we want a deterministic algorithm,
and to the algorithm of Linial-Saks [47] if we want a randomized algorithm. Tranaforn first
calls procedure Decomp with G**. Of course, this will yield an O(dX) blowup in the running
time of Decomp, say . Then Transform will call either a modification of the simple greedy
algorithm, if we want a high-quality (weak or strong diameter) network decomposition (color
definitions), or a medification of Awerbuch-Peleg’s sequential cover algorithm [21] if we want a

sparse neighborhood cover, in parallel over separate clusters.
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Once Dacomp is called, the remaining running time for Transform is O(doaXoad?n/%), times
a A blowup for traversing A-neighborhoods. Then, in sum, Transform is able to obtain a sparse
A-neighborhood cover, or a high-quality (x,d, A)-network decomposition in the original graph
G in time O(AdT + Ad,1adx.1adn'/?). Recall that, for the applications, we typically set d = log n.

Notation. In the algorithms below, we use roman capital letters for names of sets, and
calligraphic letters for names of collections of sets. In particular, corresponding to a set W, by

convention we will denote by W the collection consisting of the sets {N,(v)|v € W}.

3.4.1 Algorithm Transform

Algorithm: Transform(G,Decomp,Re_Cover)

Input: A graph G = (V, E), |V| = n, and integer d > 1, a procedure Decomp, that finds a
(Xotds dotd, 1)-decomposition of G.

Output: If Re_Cover is bound to a sequential high-quality colo;'ing algorithm, T, a (x,d, A)
high-quality network decomposition. If Re_Cover is bound to a sequential sparse covering

algorithm, 7, a sparse (x, d, A)-neighborhood cover of G.

1. Decomp(G*9*).
(returns @&  (Xoid»dotd, 1)-decomposition of G which is a (X, 4dAd,1g,4dN)-
decomposition of G.)

(a) T 0.
(T is the decomp. or cover.)
(b) Do sequentially, for i = 1 to dn'/4,
(find a dn'/4-degree coloring or cover of G.)
i. U — {N\(v)lve V}.
(U is the collection of all unprocessed neighborhoods, or un new-colored nodes.)

ii. Do sequentially, for j = 1 to x4,
“Look at vertices with old color ;":

A. Do in parallel for color j clusters,
o Elect a leader for each cluster.
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e The leader learns the identities, of all the A-neighborhoods of vertices

within a 2d) distance from the border of its cluster.

e The leader calls procedure Re_Cover(R,U) on G, where R is the collection
of A-neighborhoods of old-colored j vertices in both the leader’s cluster

and in U.

e Re_Cover returns (DR, DU). The leader colors the vertices in DR with

new color ¢, and sets i — U — DU.

iii. T —~TUDR

Re_Cover is bound either to procedure Gresdy-Color of the previous section, or procedure
Cover, which is now presented below.

Cover is our modification of the Awerbuch-Peleg [21] coarsening algorithm that determines
what vertices will be given the current new color. The actual code for this procedure follows a
description of the algorithm below. The key to our fast simulation of their coarsening algorithm,
is that we keep track of neighborhoods within and outside of the old-colored j clusters separately,

in order to recolor clusters in parallel without collisions.

3.4.2 The modified procedure Cover

Procedure Cover(R,U) operates in iterations. Each iteration constructs one output cluster
Y € DT, by merging together some clusters of &. The iteration begins by arbitrarily picking
a cluster § in & N R and designating it as the kernel of a cluster to be constructed next.
The cluster is then repeatedly merged with intersecting clusters from U. This is done in a
layered fashion, adding one layer at a time. At each stage, the original cluster is viewed as the
internal kernel Y of the resulting cluster Z. The merging process is carried repeatedly until
reaching a certain sparsity condition (specifically, until the next iteration increases the number
of clusters merged into Z by a factor of less than |R|*/¢). The procedure then adds the kernel
Y of the resulting cluster Z to a collection DT It is important to note that the newly formed
cluster consists of only the kernel Y, and not the entire cluster Z, which contains an additional
“external layer” of R clusters. The role of this external layer is to act as a “protective barrier”
shielding the generated cluster Y, and providing the desired disjointness between the different
clusters Y added to DT.
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Throughout the process, the procedure keeps also the “unmerged”
ing the original R clusters merged into Y and Z. At the end of the iterative process,

DT —9; DR~
repeat

Select an arbitrary cluster Se ¥ N R.

Z ~{S)
repeat
Y2z
Y —Usey S
Z—{S|Seu, Sny #£9).
until |Z| < [R[V4)y)
—_U -
DT — DT uU({Y}
DR —DRUY
until/NR =9
Output (DR, DT).

Figure 3-1: Procedure Cover(R,U). .
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collections ), Z contain-

when Y is

completed, every cluster in the collection Y is added to DR, and every cluster in the collection

Z is removed from &/. Then a new iteration is started. These iterations proceed until Z N R is

exhausted. The procedure then outputs the sets DR and DT.

Procedure Cover is formally described in Figure 3-1. Its properties are summarized by the

following lemma. We comment that our modifications do not change the lemma.

Lemma 3.4.1 ([21]) Given a graph G = (V,E), V| = n,

a collection of clusters R and

an integer d, the collections DT and DR constructed by Procedure Cover(R,U) operates in
iterations. satisfy the Jollowing properties:

(1) All clusters in DR have their A-neighborhood contained in some cluster in DT.

(2)YNY' =9 for everyY,Y' € DT,

(3) IDR| > |R|*~"/4, and

(4) maxrepr Diam(T)

< (2d - 1) maxgen Diam(R).
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3.4.3 The resulting algorithms

Calling algorithm Transform with Decomp bound to the network decomposition algorithm of

[57) gives the following theorem:

Theorem 3.4.2 There is a deterministic distributed algorithm that given a graph G = (V, E),
[V| = n, and integers d,A > 1, constructs a (dn'/4,d,\)-neighborhood cover of G in
An0(1/ Vign) time, where each vertez is in at most x = O(dn'/?) clusters, and the mazimum

strong cluster diameter is Diam(S;) = O(d]).

Calling algorithm Transform with Decomp bound to the randomized network decomposition

algorithm of [47) gives the following theorem:

Theorem 3.4.3 There is a randomized distributed algorithm that given a graph G = (V, E),
V| = n, and integers d,A > 1, constructs a (dn!/d,d,))-neighborhood cover of G in

AO(d?log® n'/?) time, where each vertez is in at most x = O(dn'/?) clusters, and the maz-

imum strong cluster diameter is Diam(S;) = O(d]).

Corollary 3.4.4 There is a randomized distributed algorithm that given a graph G = (V, E),
V| = n, constructs a (logn,logn,1)-neighborhood cover of G in O(log*n) time, and a
(log 7, Alog n, A)-neighborhood cover of G in O(Alog* n) time.

We remark that in place of Cover, one could use the more efficient near-linear construction
of sparse neighborhood covers presented in the next Chapter (Chapter 4). However, in Linial’s

model, this does not change the distributed complexity of the algorithms in this Chapter.



Chapter 4

A Near Linear Construction of

Sparse Neighborhood Covers with

Applications

4.1 Introduction

In this chapter we speed up the construction of sparse neighborhood covers from time O(nE) to
O((Ed + nd?)n*4log n), which is O(Elog® n + nlog® n) when we set d = logn. The definition
of a sparse neighborhood cover has already appeared in Section 1.2.4, with discussion, but we

repeat it here to make the chapter self-contained. Recall that

Definition 4.1.1 A (x,d, A)-neighborhood cover is a collection of sets S,,...,S,, with the

following properties:
1. For every verter v, there ezists a set S; s.t. Ny(v) C ;.
2. Diam(S;) < O(d)) fqr every set S;.
3. Fach vertez belongs to at most x sets.

A (x,d, A)-neighborhood cover is said to be sparse, if y < dn!/d,

This chapter describes joint work with B. Awerbuch, B. Berger and D. Peleg [13].
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Since x is defined in terms of d and A in the case of a sparse neighborhood cover, we will
sometimes abbreviate a (dn'/4,d, \)-sparse neighborhood cover as a (d, A)-sparse neighborhood
cover.

The previous algorithms for constructing sparse neighborhood covers took time O(nE) [21]
because they required the construction of BFS trees to distance A from all the vertices in the
graph. We show how to construct the cover only doing BFS’s from carefully selected vertices.
Using new techniques, the area of the BFS trees are carved out in such a way that one can
bound the overlap with other BFS tl\'ees. We shall see that bounding the overlap between
BFS trees poses significant difficulties, requiring a complex growth process and an amortized
analysis.

Our fast near-linear step algorithm makes sparse neighborhood covers a viable data structure
for sequential algorithms, and we obtain near-linear approximation,algorithms for a variety of
fundamental graph problems. For the applications listed below, one first constructs a sparse
neighborhood cover in O(E) time, ! and then produces, for example, an approximate shortest
path between any two vertices in time Q(log2 n) = O(1) time. We also remark that in fact, this

chapter constructs a layered sparse neighborhood cover (see Definition 1.2.7).

Application: approximate shortest paths. The k-pairs shortest paths problem is: given
a graph G(V, £) (where |V| = n and |£| = E), nonnegative edge weights, and k-pairs of vertices,
find the shortest path between each of these pairs.

The best-known classical implementations for ezact solutions to the shortest paths problem
take O(kE) time to compute shortest paths between k pairs of vertices, and O(nE) time
to compute shortest paths between all pairs of vertices [31]. Recent methods using matrix
multiplication to solve all-pairs shortest paths take time O(M(n)) (for graphs with unweighted
edges) [60] and time O((nW)?%%%) (for graphs with maximum edge weight W) (8], where M(n)
is the time for matrix multiplication (currently known to be o(n?37)). We further discuss the
history of this problem in Section 4.5.

We present a O(log n) times optimal approximation algorithm for the k-pairs shortest paths
problem on undirected graphs with nonnegative edge weights that runs in O(E + k) time. Thus

we can find approximate shortest paths for all pairs in O(E + n?) = O(n?) time.

10(t) time is O(tlog®*) n) time. (We use the standard O notation for cleaner statement of bounds in the
introduction. The technical sections give all the exact bounds later.
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A tradeoff is also presented between quality of the approximation and running time.
We obtain a 32d approximation to k-pairs shortest paths in time O((Ed + nd?)n?4logn +
kBn'/4loglog n). This means that we can achieve a better running time than known exact

algorithms even for paths that are only a constant factor times the length of the shortest path.

One can remove a factor of logn in this tradeoff in the case of all pairs by constructing a
sparse average cover, instead of a sparse neighborhood cover (i.e. constructing only one layer of
the layered sparse neighborhood cover). In the case of all pairs, E. Cohen has recently pointed
out that a pairwise cover will suffice, and this further improves the constants in the tradeoff.

See her paper [30].

Further applications of the data structure. This chapter shows how to use sparse neigh-
borhood covers for approximating k-pairs shortest paths. Rao [59] also uses the near-linear
construction of sparse neighborhood covers presented here and in [13] to find small edge cuts
in planar graphs. Sparse neighborhood covers seem to provide a rich representation of the local

neighborhoods in a graph: for further distributed and sequential applications see [13].

4.1.1 Structure of this chapter

In Section 4.2, an overview of the new fast algorithm to construct the sparse neighborhood
covers data structure is presented. A formal presentation of the algorithm that constructs the
data structure is given in Section 4.3, and the analysis of the algorithm is in Section 4.4. Finally

Section 4.5 shows how to approximate k-pairs shortest paths using sparse neighborhood covers.

4.2 Overview of the construction

This section presents an overview of the algorithm to which constructs a sparse neighborhood
cover. Code, details, and analysis follow in Sections 4.3 and 4.4. For clarity of ezposition, we
will assume throughout this overview section that we have set d = log n. Section 4.3 generalizes
this to general d.

The algorithm operates in phases: each phase produces a subcollection Y of sets that will be
placed in the final cover X. Let R be the set of nodes in the current phase whose A-neighborhood
is not entirely contained in some set in the partially constructed cover X'. Then the sets in Y

will have the following special properties:
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1. (Low diameter) For all Y € Y, Diam(Y') = O(Alogn)

2. (Overlap) Each node is in at most one set Y in J

3. (Neighborhoods Covered) A constant fraction of the nodes u € R will have their A-

neighborhood contained in some set Y € ).

Clearly, if we can comstruct such a subcollection Y, in O(logn) phases all nodes will have
their A-neighborhoods covered in some set Y € X, and we will have constructed a sparse
neighborhood cover. In order to keep in mind “the big picture” for the construction, it helps
to recall the simple greedy algorithm for constructing a weak network decomposition that
appeared in Section 1.2.2. This new algorithm will also iteratively grow an individual set to
be placed in the cover in layers, until a set of stopping conditions is reached. The following
table shows the difference between the two procedures in the cont‘ext of a unified structural
framework. We follow this framework in the exposition that follows. Section 4.2.1 describes
how the algorithm will construct a single Y in the cover, Section 4.2.2 discusses stopping

conditions, and Section 4.2.3 shows how new non-overlapping sets Y grow around existing Y

in the collection . Again the code and formal analysis appear in Sections 4.3 and 4.4.

simple greedy cover greedy

how to grow interior expands so as to | ¥(Y) expands to ¥(Z), Y expands to

fill border; new border | Z; new Z and ¥(Z) explored.

explored

when to stop more in interior than | more in ¥(Y) than ¥(Z) and in Y

border than Z and 3rd stopping condition.
how don’t enter a previous | don’t enter a previous cluster’s set Y
to grow around | cluster’s border and ¥(Z) won’t enter a previous clus-
existing sets ter’s ¥(Z).

when color (or | all nodes in some inte- | all nodes in some ¥(Z)

subcover)  is | rior or border

done

4.2.1 Growth of a single set
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Figure 4-1: Cluster 1 is grown iteratively; Y, ¥(Z), and Z all grow in successive bands of
width A around ¥(Y). (Note that Y, ¥(Z) and Z in this picture are balls, not empty rings,
and contain by definition all nodes within their borders.) If stopping conditions are not met,
at the next level Y becomes the oid Z, ¥(Y) grows to ¥(Z) and the new Z contains the (2)
neighborhood of the new Y. ¥(Z) consists of those nodes whose A-neighborhood lies in Z. The
stopping conditions are guaranteed to be met in O(log ) levels®

We show how to grow a single set Y for the cover. Y is grown iteratively, in layers, and outer
layers form something of a shield around Y. In particular, Y is built in a BFS fashion around
a center vertex v. Y is initially defined to be the A-neighborhood of v. We keep track of four
layers around the “internal kernel” called ¥(Y') or the interior of Y, which is initially just the
center vertex v. ¥(Y) consists of those nodes whose A-neighborhood is fully subsumed in the
set Y; Z is the 2) neighborhood of Y; and ¥(Z) consists of those nodes whose A-neighborhood
is subsumed by Z (see Figure 4.2.1). Note that ¥(Y) C Y C Z and ¥(Y) C ¥(Z) C Z. We
will sometimes refer to the set Z as the set Y’s associated cluster.

As stated above, Y starts growing from a single node: ¥(Y') is initially just the single node
v, and Y is its A-neighborhood. If a set of stopping conditions are not met, at the next iteration,
¥(Y) becomes the old ¥(Z) and Y becomes the old Z, and the algorithm does breadth first

search to construct a new Z which contains the (2))-neighborhood of the new Y.

4.2.2 When to stop

Recall R is the set of nodes whose A-neighborhood is not yet entirely contained in any of the sets
in the subcover constructed so far. We now describe the three stopping conditions, that govern

when the growth procedure described above will terminate. One of the stopping conditions says
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Figure 4-2: Cluster 2 begins growing with ¥(Y) any single node outside previous ¥(Z). Notice
this ensures that Y, the r-neighborhood of ¥(Y'), will not overlap with previous Y’s. Previous
Y’s in fact form an impenetrable barrier (bold line) that nothing else can enter. In addition,
Cluster 2’s ¥(Z) (strirod region) does not enter previous ¥(Z).

that the number of nodes (in R) in ¥(Y'), the interior of the set, must be a constant fraction
of the nodes (in R) in ¥(Z). Another says that the number of nodes (in R} in ¥ must be a
constant fraction of the nodes (in R) in Z. These two conditions will help guarantee that the
cover is sparse, and this will be discussed further in Section 4.2.3. Here, we only remark that
these stopping conditions are guaranteed to be met in O(logn) levels, because each time one
is not satisfied, the diameter of the interior set grows by that constant fraction. Since this can
only happen O(log n) times for each before we exceed n, the diameter of any Y wili be at most
O(Alogn).

Another stopping condition is concerned with making sure that the BFS exploration of the
outer Z layer does not involve too much computation. Notice that computation in Z\Y is
in some sense “wasted” BFS computation, since these nodes are not then placed in the cover.
It is therefore crucial that we can prevent the Z layer from performing huge BFS forays over
the same edges for many different clusters. Thus, a cluster will always expand a layer (make
Z into the new Y) if it has done too much exploration in the outer Z layer. (See Section 4.4.2
for details). We will show that this stopping condition is also guaranteed to be met in O(logn)

iterations.

4.2.3 How to grow around existing sets
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Figure 4-3: The second layer of Cluster 2 (i.e. the stopping conditions were not met in the first
layer.) Notice that the new ¥(Y) does not contain all of Y from the previous layer, since, ¥(Y')
is the old ¥(Z), which does not extend through a previous cluster’s ¥(Z). Even though Y and
Z do not extend into the territory of a previous cluster’s Y layer, ¥ contains the A-neighborhood
of ¥(Y) and Z contains the A-neighborhood of ¥(Z).

Figure 4-4: The third cluster begins to grow. As before, the kernels ¥(Y') are shaded, the sets
Y are marked with a bold line, ¥(Z) is striped, and Z is the outside ring. Ignore for a moment
when a node participates in the outer Z ring; then every node participated in the BFS’s at
most twice: a node can lie in at most one set Y, and prior to being placed in Y, it could lie
in at most one ¥(Z). The BFS done in vhe Z layer, we end up charging to the Y cluster for
which it was grown. When subcollection ) is complete, every node appears in a ¥(Z), for some
cluster Z, and the stopping conditions ensure that a constant fraction of the nodes appear in
¥(Y) for some Y. Thus every node appears in at most one Y, and a constant fraction have
their A-neighborhoods contained in Y as well.
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In this section, we show how a set Y and its cluster grow around previous non-overlapping
Y from the same subcollection Y in the cover X. A new cluster is always grown starting
from a node v which lies outside ¥(Z) of any previous Y. Notice that this insures that the
r-neighborhood of v lies outside any previous Y.

When a new cluster then grows into territory already occupied by a previous cluster, it’s
BFS growth is curtailed by the previous cluster’s layers. Each of the successive shields around
an existing cluster permit a different degree of penetration: namely no cluster is allowed to
grow into a previous cluster’s Y (this will ensure that the sets put in Y are disjoint). (See
Figure 4.2.3.) A cluster’s ¥(Z) does not grow into a previous ¥(Z), and 1he Z level is entirely
permeable. (We control the cost of repeated BFS forays into previous Z instead by a stopping
condition on the growth of a single cluster; see Section 4.4.2.) We point out, to aid compre-
hension, that the relation Y C ¥(Z) may not hold for clusters grown after the first cluster (see
Figure 4.2.3).

Figures 4.2.3 - 4.2.3 give snapshots of how new clusters grow. We stop growing clusters in
the subcollection Y when every node is in ¥(Z) for some cluster Z.

This ends the overview of the construction. We present the algorithm more formally (and
for general d) in the next section, and then the proofs of correctness and the complexity analysis

follow in Section 4.4.

4.3 Formal description of the algorithm

In this section, the algorithm A1l _Cover, is introduced. Given d and A, A1l _Cover constructs
a sparse (x,d, A)-neighborhood cover (see Section 1.2.4 for the definition.) Recall that in the
reduction in Section 4.3, d is fixed to control the quality of the approximation (and we typically
set d = logn), and then A1l Cover is cailed with O(logn) different A’s to produce O(logn)
different sparse neighborhood covers.

We remark that A11_Cover is actually building a sparse tree cover (see Section 4.5 for the
definition) because it builds a BFS tree from a node in each set in the cover.

All_Cover is built from two intermediate sub-procedures: Procedure Clustar that grows
a single set to be placed in the cover, and Procedure Cover that calls Cluster to produce a

sub-collection Y of the sets in the Cover X'.
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¥(2) — (v}
Z — {Nx(v)}
repeat
Y(Y) — ¥(2)
Y2
Perform a multi-origin BFS w.r.t. Y to depth 2\ in G(V \U)Y)
Add all nodes encountered to Z
¥(Z)—{v|lveUN2Z, dist(v,Y) < A}
until |Z] < n'/4.]Y]|
and |¥(2)| < |R|V?-|¥(Y)|
and Deg(Z) < n'/¢. Deg(Y)
return (¥(Y),Y,¥(2), Z)

Figure 4-5: Procedure Cluster(R,U,v,)).

U~—R

¥(R) 0.

V,Z2 0.

while U # @ do:
Select an arbitrary node v € U.
(¥(Y),Y,¥(Z), Z) — Cluster(R,U,v,))
¥(R) — ¥Y(R)U ¥(Y).
U—U\¥2).
Y ~Yu{Y}.
Z —~2u{Z}.

end-while

return (¥(R),), 2Z)

Figure 4-6: Procedure Cover(R)

4.3.1 Procedure Cluster

Procedure Cluster constructs a single set Y which will be placed in the cover. Y is built
around a center vertex v. At all times, Cluster keeps track of four layers around an “internal
kernel” called ¥(Y). ¥(Y) consists of those nodes whose d-neighborhood is fully subsumed
in the set Y; Z is the 2dth neighborhood of Y; and ¥(Z) consists of those nodes whose d-
neighborhood is subsumed by Z (see Figure 4.2.1).

4.3.2 Procedure Cover

The role of this procedure is to construct a partial cover for the neighborhoods of the nodes
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R~V /* R is the collection of remaining (unsubsumed) balls */
X9 /* X is the output cover */
repeat
(¥(R),Y, Z) « Cover(R) /* invoke procedure Cover */
X —AXU)y
R — R\ ¥(R)
until R =0

return X

Figure 4-7: Algorithm A1l Cover.

in the set R. Throughout, the procedure mairtains the set of “remaining” nodes U. This set is
a subset of R, containing those nodes from R whose neighborhoods have not yet been subsumed

by the constructed cover. Initially U = R, and the procedure returns once U = 0.

4.3.3 Covering all neighborhoods

This section describes the algorithm A11l_Cover, whose task is to construct a sparse neigh-
borhood cover, i.e., a cover with low maximum degree. The input to the algorithm is a graph
G = (V,€) (where |V| = n and |£| = E) and integers A,d > 1. The output collection of cover
clusters, X, is initially empty. The algorithm maintains the set of “remaining” nodes R. These
are the nodes whose neighborhoods are not yet subsumed by the constructed cover. Initially
R =V, and the algorithm terminates once R = @. The code for algorithm All_Cover appears

in Figure 4-7.

The algorithm operates in at most d - n!/d phases. Each phase consists of the activation
of the procedure Cover(R), which adds a subcollection of output clusters ) to A’ and removes
from R the set of nodes ¥(R) whose r-neighborhood appears in some Y € ). Here is where we
make use of the property of procedure Cover that the partial covers Y constructed by it consist
of disjoint clusters. This guarantees that each phase of the algorithm contributes at most one

to the degree of each vertex in the output cover X'

The next section proves the correctness of the above procedures and gives the complexity

analysis.
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4.4 Analysis of the algorithm

In this section, we prove the following theorem:

Theorem 4.4.1 Given a graph G = (V,£) (where |V| = n and || = E), a cover N.(V), and
integers d, A > 1, algorithm A1l _Cover described in Figure {-7 constructs a (d, A)-neighborhood

cover X which satisfies the following:
1. Yv3X € X such that Ny(v) C X.
2. Diam(X) = O(d)),
3. Procedure Cover is invoked O(dn'/?) times, and
4. x = O(dn'/?). .

Furthermore, the running time of algorithm A1l _Cover is O((Ed + nd?)n?/¥).

4.4.1 Correctness

To verify that we have produced a sparse (x,d, A)-neighborhood cover, we must check three
things: that we have covered all A-neighborhoods, that the sets have low diameter, and that

each node is not in too many sets.

Low diameter Recall the three stopping conditions on the growth of a cluster. For the first
or second stopping conditions to fail to be met, this means that |Z| > n'/4-|Y] in the case of
the first stopping condition or |¥(Z)| > |R|"/¢ - |¥(Y)| in the case of the second. Since each
time the stopping condition fails, we increase what’s inside by a factor of n'/4, each of these
stopping conditions can fail at at most d incremental stages. The third stopping condition says
that Deg(Z \ Y) is less than or equal to n'/¢ times Deg(Y), and since the sum of the degrees
of the entire graph is at most E < n?, the third stopping condition can fail at at most 2d
incremental stages. Therefore the number of iterations of the growth process for which any of
the stopping conditions fail is at worst 4d, and so for one of the first 4d + 1 steps at which we
might grow a cluster all three stopping conditions will hold, and the cluster will stop growing.
Since each time we grow Y, we add an addition distance A to the radius, the diameter of the
sets is bounded by O(Ad).
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Covers and is sparse The fact that the algorithm constructs a cover and that it is sparse
follow from properties of subcollection J: We first show that the sets Y placed in each ) are
non-overlapping. Because a new center is always picked outside of any previous cluster’s y(2),
we know its A-neighborhood will be distance at least 1 away from any previous cluster’s Y
(since 1(Z) provides a buffer zone of size X.) Then (Z) will not enter into a previous cluster’s
P(Z), so P(Z) is at least A away from any previous cluster’s Y. So if the new set Y grows so
that ¥(Z) becomes ¥(Y), Na(#(Y)) will not intersect any previous Y. So the sets in the layer
Y are non-overlapping.

Therefore, the number of sets each node is contained in. is at most the number of subcol-
lections Y we need to construct in order to cover the A-neighborhoods of every node. When a
cluster Y stops growing, the stopping conditions guaranteed that a n'/4 fraction of the remain-
ing nodes U whose A-neighborhood nodes in ¥(Z) were in ¥(Y) for each set Y. Since every
node lies in ¥(Z) for some Y € Y, and the sets ¥(Y') are disjoint, this means that in each )
at least a n!/94 fraction of the remaining uncovered nodes have their A-neighborhoods placed in
some set in the cover. Thus in d phases ), every node has its A-neighborhood covered, and so

each node appears in at most dn'/4 sets and the cover is sparse.

4.4.2 Complexity analysis

W now argue that the cover is constructed in near-linear time. We first present the argument
for d = logn, for clarity.

To construct Y, we bound the cost of checking the stopping conditions, and then performing
the appropriate BFS explorations. The stopping conditions need to be checked at most O(logn)
times for each'cluster, because as we argued above, the conditions will be met in O(log n) levels.
To check the stopping conditions, we count nodes in Z,VZ € Z. The second stopping conditions
insures that for all Z the number of nodes in Z is less than a constant fraction times the number
of nodes in Y, 50 O(Ez¢z 121) = O(Zyey Y1) = O(n), since the Y are disjoint. Thus the cost
of checking the stopping conditions to construct Y is O(nlogn).

Now consider the cost of the BFS. Ignore for a moment the cost of the BFS exploration of
the final layer Z \ ¥(Z), for all clusters in . Then each node participates at most twice in
BFS’s during the construction of ): each edge is placed in at most one set Y, and prior to

being placed in Y, it could lie in at most one ¥(Z). Thus without the Z layer, each edge is
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explored twice, for a total cost of O(E).

Now we bound the complexity of examining edges in Z. Notice that when A = 1 this is
trivial, since every edge in Z \ ¥(Z) has an endpoint in ¥(Z), and every node is in a unique
¥(Z). For A > 1, bounding the amount of work done in Z is controlled by means of another
stopping condition on the growth of individual clusters. Namely, if we have done too much
work on exploring the layer Z \ Y, we are then obligated to grow Y to contain Z.

More specifically, define deg(v) to be the degree of node z in the graph G. Let Deg(V) =
Y .ev deg(v). Now, we use the final stopping condition on clusters to ensure Deg(Z \Y) is
less than or equal to a constant fraction times Deg(G) = 2E. Together with the stopping
condition on the size of Z, this gives Yyey |Z \ Y| < 2¢E, ¢ > 0. Therefore, the cost of the
BFS exploration of Z \ ¥(2) is also O(E).

Thus the total time to construct subcollection Y is O(nlogzz + E). Constructing O(log n)

sub-collections ) to complete the cover X, the following corollary is obtained.

Corollary 4.4.2 The algorithm described constructs a (log n,log n, A)-sparse neighborhood

cover in time O(Elog’ n + nlog’n)

To extend to general d, the cost of checking all the stopping conditions will be E +dn as be-
fore, they could fail O(d) times, for a total cost of (E+nd)d. Then, as before, we must bound the
complexity of examining edges in Z. By the third stopping condition, SreylZ\Y| < O(n'/?E),
and we construct n'/4 sub-collections . Thus the complexity bound in Theorem 4.4.1 follows.

a

4.5 Approximating k-pairs shortest paths

In this section we introduce an algorithm for approximating the k-pairs shortest paths prob-
lem on undirected graphs with nonnegative edge weights in time O(Elog’ n + nlog®n +
k(log nloglogn)). We achieve the substantial improvement in running time over known al-
gorithms for this problem by reducing the approximation of k-pairs shortest paths to sparse
neighborhood covers. The bottlenecks in the running time of the exact algorithms come either
from repeated application of Dijkstra’s single-source shortest paths algorithm, or from matrix

multiplication. We are able to bypass the bottlenecks of both these approaches at the cost of
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producing an approximate solution. We are thus able to substantially improve upon the time

to compute k-pairs shortest paths to O(E + k) (approximate).

We have already noted the best-krown bounds for exact &-pairs shortest paths above. More
precisely, the algorithms that achieve these bounds run in time O(knlog n+kE) with a Fibonacci
heap implementation [36]) and O(kElog n) time with a binary heap implementation [31] of the
priority queue used by Dijkstra’s algorithm. For the all-pairs shortest paths problem, the time
bounds are O(n?legn + nE) and O(nElog n), respectively [31, 36].

There have been other improvements on the running time for the all-pairs shortest paths
problem for some special case graphs [63, 42, 26, 37, 6, 38, 43, 55, 41], but they all have worst-
case time O(nE). In fact, Karger et al. [43] show that Q(nE) is a lower bound on all these

existing algorithms, which are “path-comparison based”.

As for the approaches to (exact) all-pairs shortest paths that rely on matrix multiplication,
Alon et al. [8] describe an O((nW)228) time algorithm for the case of integer edge weights
whose absolute value is less than W. Recently, Seidel [60] has improved this result to give
an algorithm for the unweighted case which runs in time O(M(n)logn), where M(n) is the
time for matrix multiplication (currently known to be o(n?37¢)). Seidel also mentions in [60]
that Alon, Galil, and Margalit have communicated to him that they have in turn improved his
result, solving exact all-pairs shortest paths in the case of integer edge weights between 0 and
W in O(W2M(n)logn) time. Notice that the algorithm presented in this paper runs faster
than these recent algorithms in both the unweighted and weighted cases [8, 60]: we bypass the
bottleneck of the new matrix multiplication methods at the cost of producing an approximate

solution.

There has also been recent work on approximation algorithms for shortest paths in the
domain of parallel computation. Klein [45] extended the work of [65] to the weighted case,
obtaining a randomized PRAM algorithm that can 1 + ¢ approximate shortest paths between
k pairs of vertices in O(y/ne~2logn -log® n) time using (kElogn)/e~? processors (where ¢ is
constant). When this algorithm is run sequentially, the time is not as good as known sequential
algorithms for the exact problem. Hence, Klein’s approximation algorithm is strictly of interest

for parallel computation.

Recently, E. Cohen has also considered approximating shortest paths in parallel. See [30].
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4.5.1 Tree covers
The explanation of the algorithm is made simpler through the notion of sparse tree covers.

Definition 4.5.1 For an undirected graph G(V,£), a (x,d, A, )-tree cover is a collection Fa,x
of trees in G, that satisfies the following properties:

1. Every vertez is in at most x sets.
2. Every tree F € F4 has depth < O(d)).

3. For every two vertices u,v € V whose distance in G is A or less, there ezists a common

tree F € F4, containing both.

A (x,d, X)-tree cover is said to be sparse, if x is at most dn'/4,

.
Note that the algorithms in Section 4.3, described exactly how to construct sparse tree
covers, since we build a BFS tree that spans each set in the cover. Recall, the construction

takes O((Ed + nd®)n??) time, which is O(Elog’ n + nlog® n) when we set d = logn.

4.5.2 The algorithm

We first give our algorithm for approximating k-pairs shortest paths with unit edge weights,
and later explain how to extend this to the case when the edge weights are non-negative.

Let & = log Diam(G). For every level 1 < i < §, construct a sparse tree cover Faqi for G,
and rumber the trees in the cover. For every vertex v, and for every level i, store (in order
of increasing tree number ID) a list of all trees F € Fy: that contain v. Recall that by the
sparsity property, for a given level i, every vertex belongs to at most dn'/¢ different trees in
fd.e"-

Now for any given pair of vertices u,v, we want to use this as a2 data structure to cuickly
find a shortest path between these vertices. Perform a binary search over the levels 1 < ¢ < §:
for a given level i, if there exists a tree F' € F 2 that contains both u and v, restrict the search
to lower values of i; otherwise, restrict the search to higher values of i.

The binary search will produce the minimum level i’ such that there exists a tree F' € F
that contains both u and v. The algorithm returns the value 16d2" as the approximate shortest
path between u and v.

Iterate the binary search for additional pairs of vertices.
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The weighted case. The algorithms for sparse neighborhood covers presented in this paper
can easily be modified to produce a weighted tree cover by forming shortest path trees rather
than BFS trees. The algorithm presented in this section can in turn be trivially modified to
handle weights by instead of having path lengths of at most Diam(G), we now have a maximum
path weight of W - Diam(G), where W is the maximum edge weight in G. The number of levels
would therefore be § = log(W - Diam(G)). As we will see below, the running time of our

algorithms remains asymptotically unchanged when the edge weights are polynomial.

Producing the path. The algorithm can easily be modified to return the unique path con-
necting a pair u,v in the common tree, in time order of the path’s length.

4.5.3 The analysis

First we wish to prove that our algorithm is an O(d) approximation algorithm.

Lemma 4.5.2 For each of the k pairs of vertices given, our algorithm returns a path length

between them within 32d times the length of the shortest path.

Proof We will argue this for a given pair u,v. Note that by Definition 4.5.1, if dist(u,v) <2,
then the tree cover of level i has a tree containing both u and v. Since #’ is the minimum level
for which this is so, it must be that 2°'~! < dist(u,v) < 2. Also by Definition 4.5.1, the common
tree has depth at most 8d - 2" < 16d - dist(u,v). That is, our algorithm returns the maximum

length of the unique path connecting u and v in the common tree: 16d - 2" < 32ddist(u,v). O

Now we address the running time of our algorithm.

Lemma 4.5.3 Our algorithm  for approzimating k-pairs shortest  paths takes
O((Ed + nd*)n*4log n + k(dn'/? -loglog n)) time; that is, O((Ed + nd*)n*/4log n) time to set

up the tree cover data structures, and O(dn'/® -loglog(Diam(G))) time to answer any query.

Proof We have already noted that the algorithm for sparse neighborhood covers in this paper
can produce the tree cover as it goes along at no additional payment in time; thus the time
bound for setting up a tree cover data structure follows from Theorem 4.4.1. Observe that we
actually set up log n different tree covers, one for each level, which adds a factor of log n to the

running time.
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As for the bound on a single query, the binary search takes time O(loglog(Diam(G))). And
for a given level i, a common tree can be found in dn'/? time by searching the ordered lists of

tree ID’s to which the two vertices belong. O

Lemma 4.5.4 The nonnegative weighted version of our algorithm for approrimating k-pairs

shortest paths takes O((Ed + nd?)n*/%log(Wn) + k(dn'/? - loglog(Wn))) time.

Proof sketch: Similar to the proof of Lemma 4.5.3 with dist(u,v) modified to be w(u,v). O

Lemmas 4.5.2, 4.5.3, and 4.5.4 yield the following theorem for polynomial edge weights.

Theorem 4.5.5 The approzimation clgorithm for k-pairs shortest paths takes time
O((Ed + nd*)n*4logn + k(dn'/? - loglogn)), and returns a solution that is within O(d) of
the ezact one. Setting d = logn, our algorithm gives an O(legn) approzimation to k-pairs

shortest paths in O(Elog’ n+n log® n + k(log n - loglog n)) time.

Corollary 4.5.6 Our algorithm for approzimating all-pairs shortest paths takes time
O((Ed + nd*)n*?logn + n?(dn'/4 - loglogn)), and returns a solution that is within O(d) of
the exact one. Setting d = logn, our algorithm gives an O(logn) approzimation to all-pairs

shortest paths in O(Elog’n + nlog® n + n?(log n - loglog n)) time.
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Chapter 5

A Wait-Free Symmetry Breaker,
and a Solution to the Generalized

Dining Philosophers Problem

The previous chapters have all been concerned with network decomposition, which was primar-
ily employed to represent local neighborhoods of a graph up to a logarithmic distance. When
Awerbuch et. al. introduced network decomposition in 1989 (see [15]), the goal of that pa-
per was actually a fast deterministic solution to the maximal independent set problem in a
distributed network.

In this chapter, we come full circle, and look again at the problem of constructing a maximal
independent set in a distributed network, only we will allow randomization. Furthermore, our
algorithm will be proved correct in an entirely asynchronous environment, as well as robust
against several different types of network faults. For example, in the course of this chapter, we
introduce a measure of local dependency that captures how far a neighborhood from a node,
might affect its behavior. An algorithm is called k-wait free if the behavior of a process in the
network is only dependent on its neighbors a constant k distance away. The intuition is that
slow or faulty nodes far away in the network do not interfere with local performance.

The principal result of this chapter is a randomized 2-wait-free algorithm that computes a

maximal independent set in an entirely asynchronous distributed network. This has immediate

This chapter describes joint work with B. Awerbuch, and M. Smith [14].
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applications to symmetry breaking and dining philosophers.

5.1 Introduction

The maximal independent set preblem Consider the underlying graph of the network to
be the input graph, where the nodes are network processors, and two processors are connected
by an edge if there is a direct communication link between them. An MIS in this graph is an
independent set of processors such that any processor is in the subset, or has a neighbor in
this subset. (A mazimal independent set, not to be confused with a mazimum independent
set, which is an independent set of maximum cardinality. Finding a mazimum independent set
is NP-Complete [40]). This paper gives a 2-wait-free algorithm for MIS which runs O(logn)

expected time (see Figure 5-1). .

Symmetry breaking Many natural network control operations can be reduced to the prob-
lem of finding a maximal independent set. A maximal independent set breaks symmetry, and
when one can break symmetry in a network, one is able to resolve deadlocks [18], elect a leader
[1], achieve mutual exclusion [34], and allocate resources [22].

Thus our efficient MIS construction is an efficient symmetry-breaker for an asynchronous
distributed network. It is the first symmetry-breaker to run in poly-log time in a network

“ro-

without a global clock. In addition, the symmetry-breaker we present has several nice
bust against faults” properties that have been recently introduced in the distributed systems
community as modern protocol design goals.

Our symmetry-breaker could be practical in a realistic distributed system, because it can

tolerate faults, as captured by the following property:

Wait-freedom: The protocol tolerates ongoing faults in the sense that if some processors stop,
the protocol continues to run at the same speed, i.e. the speed does not depend on slow

processes (links).

We remark that the protocol presented can be coupled with a manager protocol that will
periodically check and correct each link subsystem [28], so that the protocol becomes self-
stabilizing, [32, 5, 20, 23, 54, 46] meaning it can return to normal operation in constant time,

even if the network crashes, and is brought back up in an inconsistent initial state. Since the



5.1. INTRODUCTION -

inter-processor dependency exhibited by wait-free algorithm is local, it is easy to detect and
correct initialization faults. In other words, wait-freedom is an important property for designing

fast self-stabilizing algorithms. This result is due to [14] and is beyond the scope of this thesis.

Wait-freedom. Wait-freedom is an important property of distributed algorithms that hcs
been traditionally defined in the shared memory model of distributed computing. In that
model, an algorithm is said to be wait-free if processes will continue their operations regardless
of the failure of other processes. That is, the delay between steps in an individual process is
only dependent on the delay of its links to the shared memory.

We will define the same term for the message passing model of distributed computing in
a way that we think captures an important metric for performance and fault tolerance in this
model. Intuitively, we say an algorithm is k-wait-free in the message passing model, if progress
of an individual process is only dependent on information from other processes distance k away.
Our goal is to make k as small as possible. We think this is an important performance metric
because it means a process only has to wait at most k times the maximum link delay before a
step in its execution. It is also a fault tolerance metric because it means that a process can only
be affected by faults that are at most distance k away. Another way to look at k-wait-freedom
is that it captures the notion that the operation of a process should not be slowed or stopped

by a very slow or failed process or link that is greater than distance k away.

5.1.1 Previous results

Randomized solutions to the distributed MIS problem which run in logarithmic expected time
have been found by Karp-Widgerson [44] and Luby [51], in a properly-initialized synchronous
model. The protocols of Karp-Widgerson and Luby run in set rounds, which assumes the
existence of a global clock, and a consistent initial state. In an asynchronous model, the best
known algorithms for constructing an MIS use the “synchronizers” introduced by Awerbuch [10]
and the algorithms of [44] and [51].

In the asynchronous model, if the network graph is static and all the processes “wake up” at
the same time then the best known algorithms for constructing an MIS use the a “synchronizer”
introduced by Awerbuch [10] and the algorithm of [44] or [51]. The a synchronizer requires

time linear in the diameter D of the network to set up. In the case where the network is



72 CHAPTER 5. WAIT-FREE ASYNCHRONOUS MIS

changing dynamically, the a synchronizer does not just add to setup, but may add a delay of
O(D) per step of the protocol where D is diameter of the network. Therefore, a protocol that
uses the a synchronizer plus the protocol of Luby or Karp-Widgerson, would run in O(D log n)
expected time. This added delay per step occurs because the a synchronizer may cause a
wait-dependency of O(D) in the protocol. The wait-dependency would also mean a processor
or link failure anywhere in the network might prevent any other process in the system from
making progress. Synchronizers in [10] are not self-stabilizing either; methods of [16] can achieve

self-stablization at the price of increasing the time to O(D).

5.1.2 Our results

We present a new MIS algorithm for symmetry-breaking, and a new dining philoscphers algo-
rithm. Our MIS algorithm runs in expected O(log ») time on a purely asynchronous network,
and the dining philosophers algorithm is the first to meet the lower bound of O(8) expected
time. Our algorithms are robust in the sense that they are 2-wait-free ( i.e., processes are
only dependent on their neighbors and the processes adjacent to their neighbors during the
protocol).

We remark that the difficulty in the design and analysis of an asynchronous MIS protocol
as opposed to the properly-initialized synckronous methods of Karp-Widgerson [44] and Luby
[51], is dealing with variable delays between the links. Without a global clock, some nodes can
communicate very fast and run “way ahead” of others in the protocol. We are able to overcome
this difficulty and ensure some degree of fairness among a.ll nodes competing to enter the MIS.

Thus we are able to ensure logarithmic convergence.

Dining philosophers. The Dining Philosophers problem and its extensions, are classical
problems in the theory of distributed computing [33, 53, 58, 27, 52, 22, 29]. The essence of
dining philosophers is arbitrating between conflicting demands of different processes for shared
resources (See Section 5.5 for definitions).

As an application to our MIS protocol, we get a new randomized algorithm for the din-
ing philosophers problem. The best previous known algorithms for the generalized dining
philosophers problem due to Awerbuch and Saks [22] (randomized), and Choy and Singh [29]

(deterministic, special hardware assumptions) have O(§?) expected response time, where 6 is
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| Authors [ Time [ Wait-dependency |
[44, 51] + (10, 20] O(D) D
Algorithm in this chapter | O(logn) 2

Figure 5-1: Our MIS algorithm versus existing ones; n is the total number of nodes and D is the diameter of the
network.

[ Authors | Response time [ Wait-cependency |

53 0o(c%) 0(8)
27 O(n) O(n)
64 0(6'°8%) O(log 6)
[22 0(6%) 0(8)
This paper 0(9) 2
Lower bound Q(6) 1

Figure 5-2: Our Resource allocation algorithm versus existing ones; c is the number of colors used to color the
network graph, n is the number of nodes in the network, and & is the number of conflicting jobs.

the number of competing jobs, and is also a lower bound on response time. (See Figure 5-2.)
This work achieves optimal O(8) expected response time in the general model. In addition, our

solution is 2-wait-free.

5.1.3 Structure of this chapter

We present the model in Section 5.2. We present the asynchronous protocol in Section 5.3; the
proofs of correctness and convergence follow. In Section 5.4 we give a careful analysis of the
algorithm, and show we can expect it to run in O(logn) time, even with a malicious adversary
with full control over the timing of all link delays in the protocol. Finally, Section 5.5 presents

the application to efficient randomized Dining Philosophers.

5.2 The model and the problem statement

The following is a sketch of the standard model. For a more formal treatment, where each

process is modeled as a probabilistic, timed I/O automaton, the reader is referred to (61].

The asynchronous network model. We use the standard asynchronous model of a dis-

tributed system, where the link delays are finite but unpredictable, and there is no common
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memory that is shared by the processes. (We do assume FIFO, in other words if on the link from
i to j, process i sends message(1) and then message (2) to j, then j will receive first message(1)
and then message(2)). Also each process has its own execution speed that is unknown to its
neighbors. The message delay time will be the link delay plus the time it takes the process to
do any local computations to prepare the message.

Processors need not be assumed to have unique IDs, although we will make this assumption
for clarity of exposition. We remark that it is easy in a randomized protocol to give processors
unique IDs with high probability, we simply have them pick IDs uniformly at random from the
set 1...n2 and then each node will have an ID unique from its neighbors with high probability.
In fact, the algorithms we present below will not even need this— we will see that we can break

ties arbitrarily for nodes of identical degree, and so no IDs are needed at all.

Input/Output. The network protocol is defined by the conjunction of identical nodal pro-
grams, executed by all processors in the network. The input to the nodal program is the
collection of adjacent network edges; the output of the nodal program is a special “flag” that

is marked 1 for nodes in the MIS and “0” for nodes outside the MIS.

Message delay. Message delays during the course of the protocol are assumed to be fixed
in advance, but are allowed to change arbitrarily as a function of time. The protocol does not
know this message delay function. (In other words, all we are guaranteed is that if a message
is sent over link ij at time t, it will arrive at time f;;(t), regardless of previous behavior of the
protocol, but f can be an arbitrarily horrible function of time). Our time bounds will hold for
any fized function f randomized over only the coin tosses of the algorithm.!

We can state our time bounds in terms of some constant fixed upper bound on the maximal
message delay on a link (based on the link delay function, but not known by the protocol in
advance). Alternately, when not reasoning explicitly about exact link delays, we will use the

normalized time complexity, namely physical execution time divided by maximal message delay

1This is sometimes called the oblivious, or non-adaptive adversary model, because we can think of f as set
by an adversary, who cannot, however, see the coin tosses of the algorithm and modify link delays adaptively.
We comment that such a stronger adversary, or malicious adversary, is usually considered in the context of
cryptography, where adaptive attacks can be launched against the security of a cryptosystem. For modeling
behavior of real distributed systems, defeating an oblivious adversary that does not see internal coinflips and
plot accordingly should suffice.
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on a link. This is equivalent to measuring physical time assuming message delay varies between

0 and 1 time units of some global clock [10, 39, 20].

Wait-freedom. Consider a reactive asynchronous distributed algorithm, where nodes enter
the protocol and exit from the protocol in an online fashion, e.g. deadlock resolution [18], end-
to-end (3, 17, 4], reset [2, 20], or dining philosophers (27, 52, 22]. Such algorithm is said to be
i-wait-free, or i-waiting, if time elapsed from the entrance of a particular node into the protocol
till its exit is only dependent on the speed of processors and links at distance i away. In other
words, the longest “waiting chain” in the algorithm is of length i. Minimizing the length of the
waiting chaiu has been a subject of discussion in [29], where the computational model has been
strengthened by certain assumptions.

If a distributed algorithm is m-wait-free, then the time complexity of that algorithm must
be multiplicative factor of m times the maximum link delay, or for the the case where link

delays are normalized, times m.

Asynchronous PRAM model We remark that our algorithm is also an asynchronous
PRAM algorithm, on the underlying input graph, since individual processors do only con-
stant amount of work. The one possible difficulty, is thai our graph is not necessarily constant
degree: we are allowing a process to accept messages from all its neighbors in one step. To
get around this, we could instead place z binary tree of processors for each node, where the
leaves represent all its neighbors. Then, at an additional log n factor to communicate between
neighbors, each node can accept a constant number of messages to determine if a higher priority
neighbor is attempting to enter the MIS. Since we can charge the time it takes a message to
travel through the binary tree to the asynchronous link delay function, the correctness analysis

is unchanged.

5.3 The Protocol

In this section we present the asynchronous MIS protocol. We first review the elegant syn-
chronous protocol of Luby [51], and discuss the difficulties in simulating such a protocol in an

asynchronous environment.
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5.3.1 Review of Luby’s protocol

Luby’s synchronous MIS protocol, as given in [51] proceeds in rounds. In each round, process

i flips a coin ¢;, where
1 with probability 1/(2d(t))
C; =
0 otherwise,
where d(i) is the degree of node i in the underlying graph.
Processor i then compares the value of its coin to the coins of its neighbors, and enters the

MIS if its coin is 1, and for all its neighbors such that d(j) > d(i) or d(j) = d(i) and ID(j) >
ID(%), j’s coin is 0. Luby shows that in O(log ) expected rounds, this constructs an MIS.

5.3.2 The difficulty of asynchrony

In an asynchronous environment, it is not clear how to impleme.nt a protocol like Luby’s.
Without a global clock, there is no way to insure that processes flip at the same rate. If we do
not control the rate a process flips as compared to its neighbors, many things can go wrong. For
instance, a fast-flipping process might have multiple chances to flip a 1 and kill slower-flipping
neighbors.

The crux of the problem is as follows: suppose a process i flips a 0. Then its neighbors who
have flipped 1’s should have a chance to enter the MIS before i flips again. A neighbor which
flipped a 1 would thus like its neighbors to freeze, while it checks to see if it will survive and
enter the MIS. Except, if we allow each of i’s neighbors to freeze i in turn, i can stay frozen a
long time with no chance to enter the MIS.

The solution to this in our protocol is when a process i flips a 0, it allows each neighbor
to freeze it exactly once before i flips again. It is important that processor i itself chooses to
freeze, based or its current information, rather than each process j can choose to freeze ¢ in
turn. When a neighbor flips again, this unfreezes i, and a neighbor who unfreezes i’s new coin
cannot freeze i again until i has flipped a new coin too. The code for the protocol follows in

Figure 5-3, and the variables in the code are described in Section 5.3.3.

5.3.3 The description of the code

In the distributed system, a process will represent a node in the graph, and edges will be

represented by the communication channel between processes. Initially each process is given
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7

Program RECEIVE(C):

C = MIS(Neighbors)
Flip-Coin

C = Query(F, j,d(7))
SEND to j, ACK(Coin, ID, d)
if Freeze(j) = 1, Freeze(j) — 0
ifdj >d and F =1 and Coin = 1
Coin(j) ~ 1
else Coin(j) «~ 0
if Coin = 0 and if Vk Freeze(k) = 0 Flip-Coin

C = ACK(F, j,d(;))
if Coin = 1
ifdj <drp or F =0, Coin(j) — 0
else Coin(j) — 1
if Yk Coin(k) = 0, Enter-MIS
else if Vk Coin(k) # UNSET, Flip-Coin
if Coin = 0
Coin(j) — F
if Coin(j) = 1, Freeze(j) — 1
else Freeze(j) «— 0
if Vk Freeze(k) = 0, Flip-Coin

C = Remove(j)
update-flag(j) — 1

C = InMIS(j)
MIS-flag — 0
Vk € Neighbors, SEND Remove(ID)

procedure Enter-MIS
MIS-flag — 1
Vj € Neighbors SEND InMIS(ID)

Procedure F1ip-Coin
Vj s.t. update-flag(j) = 1,
Neighbors — Neighbors - {j}
Coin(j) — UNSET
Freeze(j) — UNMARKED d
Coin = 1 with probability 1/8d
= 0 otherwise
Vj € Neighbors
SEND Query(coin, ID, d)

/* program on process i */

Figure 5-3: MIS Algorithm
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its set of neighbors by some external system. Let i be the process with ID = 1,7 and let d(1) be
its degree in the network. For notational convenience we will associate with d; the ordered pair
(d(z), 7) and say that d; > d; if (d(i) > d(j) or d(i) = d(j) and ¢ > j). The code for a process i
is shown in Figure 5-3. Below we describe the internal variables used by the process.

ID: represents the process’s own ID.

Coin: is the current value of i’s flipped coin.

Coin(j): records information about neighbor j’s coin. It has three possible values, UNSET if coin was
Just flipped and neighbor j’s coin is unknown; 0 if (dj < d and coin = 1) or (j’s coin = 0); and 1

if (d; > d and coin j’s coin = 1) or (5’8 coin = 1 and coin = 0).
AckCoin(j): keeps track of last value of Coin sent to J. (We need this for self-stabilization).

Freeze(j): when coin = 0, this variable keeps track of whether i froze its current coin for neighbor j,
has already frozen and then unfrozen its current coin for neighbor j, or has not yet frozen for j.

These notions correspond to the values 1, 0, and UNMARKED respectively.
Neighbors: set of adjacent vertices not know to be in the MIS nor have a neighbor in the MIS.

Receive-ACK(j): flag that indicates whether a response to a query have been received from j (Used

only for self-stabilization)

MIS-flag: flag that indicates i’s status in MIS.

Below is a description of messages received by the process.
MIS(Neighbors): message from external system to begin construction of MIS.

Query(F, j,d(j)): message from neighbor j indicating j’s coin = F, j’s ID and current degree, and also

that this is a query message, requesting the value of i’s coin.

ACK(F, j,d(j)): message from neighbor j indicating j’s coin = F, j’s ID and current degree, and also

that this is an ack message in response to a query.
InMIS(j): message from j saying it is in the MIS.

Remove(j): message from neighbor j saying that it has a neighbor in the MIS and should be removed

from the set of active nodes.

*In fact, we can break ties arbitrarily by flipping a coin, and do not need unique IDs— we use them here for
clarity of exposition.
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5.4 Analysis of the algorithm

We first prove some essential properties of the protocol:

Lemma 5.4.1 (Safety.) If i has MIS-flag = 1, then for all neighbors j of i, j has MIS-flag =
0.

Proof. In the protocol a process i will join the MIS only if Vj such that d; > d;, Coin(j) =
0 and it has set Coin = 1. Assume, by contradiction, that two neighbors i and j, both enter
the MIS. Let winner; be the last coin that i flipped before joining the MIS, and let winner;
be the last coin that j flipped before joining the MIS. Then there must be some time ¢; at
which ¢ flips the coin winner; and similarly define time ¢;. Notice that by definition of the
coins winner; = winner; = 1. After a process flips its winning coin, that coin will stay at 1 for

all time. There are several cases.
[ ]

1. t; is before ¢;, and at time ¢;, d; > d;. Then at time ?;, when i queries all its neighbors,
the ACK from j will say Coin j = 1. Since j doesn’t update its degree until it flips again,
and j hasn’t flipped since time ¢; by assumption, j’s ID remains what it was at time t;,
or possibly j has entered the MIS by time ¢;. In either case winner; will not allow i to

enter the MIS.
2. t; is before t;, and at time t;, d; > d;. Same as Case 1, by symmetry.
3. t; is before t;, and at time ¢;, d; < d;. There are several subcases.

(a) t; occurs while Coin (j) is still UNSET. Then this is the same as Case 1, above.

(b) t; occurs after i has received an ACK from neighbor and j set its flag Coin(j),
but before i has heard from all neighbors. Then i has set its flag according to the
previous coin of j (which didn’t win). j cannot enter the MIS until j has queried
all its neighbors (including i) and received ACKs. If i has not yet heard from all its
neighbors when it receives j’s new query, it resets its flag Coin(j) = winner;, and
winner; will not allow i to enter the MIS.

(c) t; occurs after ¢ has already received ACK’s from all its neighbors. By assumption,
all of i’s neighbors of higher ID reported a flip of 0. Therefore, i has already sent
an InMIS message to j which will reach j before it receives an ACK from i by the
FIFO property of the links, and so j will never enter the MIS.
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4. t; is before t;, and at time ¢;, d; > d;. Same as case 3, by symmetry.

a

Lemma 5.4.2 (The Flip Again Lemma). Let v; be an upper bound on the mazimum link delay
to distance 2 from j in the graph. Then j gets to flip again (i.e. try to enter the MIS) in time

at most 5v;, if neither j or any of its neighbors have yet managed to enter the MIS.

Proof. If coin = 1, then a process only needs to receive ACK’s from all its neighbors before it
can either begin executing or flip again. Thus, the delay is at most 2v;.

If coin = 0, then clearly the worst case occurs when Freeze flags get marked 1 since a
process will have to wait until all these flags get marked 0 before it can flip again. Freeze flags
get marked 1 only after i receives ACK’s in response to Queries. If Freeze(j) got marked 1 it
means j must have flipped a 1. We are interested in the case where.j loses and does not enter
the MIS. Freeze(j) will get marked 0 when i receives a new Query message from j or a Remove
message from j. Since j flipped a 1, it will either lose, and flip again in 2v; and thus send a

Query message to i in time 3v;, for a total delay of 5v;, or j itself could enter the MIS. O

Lemma 5.4.3 (The Bounded Flips Lemma). Suppose during an ezecution of the protocol, j

flips at time t,. Compare the following two events:
E, = j flips a 0 at time 1,
E, = j flips a 1 at time t,.

Then the amount of time it takes j to flip again given E, is always greater than or equal to the

time it takes j to flip again given E,.

Proof. Follows immediately from the protocol design: If j flipsa 0 or a 1, j will send a message
to all his neighbors, and receive one back - so far, delays are identical. At this point, if j had
flipped a 1, j will flip again; if j flipped 2 0, j might wait an additional delay if it is “frozen”
because a neighbor flipped a 0. Since all delays are positive, the lemma follows. O

In Luby’s synchronous MIS algorithm [51], Luby shows that if a node flips a 1, then the
probability that any one of the neighboring nodes prevents the node from entering the MIS, is
bounded by a constant. In the synchronous algorithm, each neighbor has exactly one chance

to “kill” such a neighbor— because everybody flips one coin in each round, and compares. The
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following lemma shows that even though there no longer are synchronous rounds, each neighbor

has at most two chances to prevent a node from entering the MIS.

Lemma 5.4.4 Suppose processor i flips 1. Processor i queries all neighbors to find out the
value of their current coin. For all neighbors j, let c; be the value of j’s coin as he reports it
to processor i and let next; be the value of j’s coin on j’s nezt flip. Then if ¢; and nezt; are

both 0 for all neighbors j of i such that d; > d;, then i will enter the MIS in time 2v;.

Proof. Follows immediately from the design of the protocol. When processor i flips, i's flag
Coin(j) is initially unset; however, i will set Coin(j ) after i has queried j and j answers. Now,
the claim is for all j, such that ¢; and nezt; are both 0, Coin(j) must be initially set to 0,
and remain 0 until i flips again or enters the MIS. If ¢; is 0, by .deﬁnition of ¢j, i sets Coin(j)
initially to 0, if j flips again and nezt; = 0, then j will freeze for i, and not flip again until ¢
does. So, if ¢; and nezt; are all 0 for j with d; > d;, then Coin(j) for such j will be unset or 0,
until 7 flips again or enters the MIS. Since i sets Coin(j) for ail j before flipping again, when
i sets the last Coin(j) for the slowest link j, all flags Coin(j) are set, and for all j such that
d; > d;, all flags Coin(j) are set to 0. So i enters the MIS when i sets the last Coin(j) for the

slowest link j, which happens within time 2v;. O

We now consider the following situation. Let processor i flip 01 in two consecutive flips.
Let t, be the time at which processor i flips 0. We look at the execution tree, where we have
a 0 branch and a 1 branch corresponding to each possible coinflip of a processor during the
algorithm. We introduce the following notation. For a time t, define f;(t) to be the time at
which i, got a message sent at time ¢, to processor j. We define L;(t) to be the maximum,
over all neighbors k of j, of the delay for j to send a message to a neighbor k of j, and then
receive a message back from k. fj(t) — t is the “one way” link delay from ¢, and L; is the
maximum two-way link delay from neighbors j of i. Notice that they depend only on the link
delay function, and not on the values of coins in a particular execution. We are now ready to

prove the following lemma.

Lemma 5.4.5 Consider ezecutiens beginning at t, where processor i flips 01 in consecutive

flips, and let c; be defined as above, in relation to processor i’s flip of 1. Then the probability
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that ¢; is 0 for all j such that d; > d; is at least

II a- 8—‘11;)’.

jld;j>di

Thus the probability that ¢; and nezt; are both 0 for all j such that d; > d; is at least

1 3
Jlgdi(l ) 8—d’-) ‘

Proof. Let f; be defined as above. Define f(to) to be the maximum, over all j of f;(to). Since
f(to) is independent of the particular execution, we can compute the time f(to) at time 2o.
Consider the following set of executions. We first consider coins that are flipped between times
to and f(to). For any coin that is not a neighbor of i, or a neighbor j for which d; < d;, we flip
any new coin as before: 1 with probability 1 /8d; and 0 otherwise. F:Jr neighbors d; > d;, if j is
to flip a new coin at time t; (which is less than f(t,) by assumption, we handle the other case
below), we first check if t, + L;(tx) < f(to)- If so, we just flip a regular coin, as above. If not,

however, we set j's new coin to 0.

Now let E be the resulting execution to time f(fo). The claim is that at time f(to), based
on the link delay function and the coins which have already been flipped just in the partial
execution E, we can now calculate t¥, where tf is defined as the time where processor i flips
again (and flips 1, by assumption). Here is how we calculate t£. For each j a neighbor of
i, if the value of j’s coin was 0 at time fi(to), then set m; = f;(to)+ (the amount of time it
takes j to send a message to i starting from time fi()). If the value of j’s coin was 1 at time
f;(to), then set m; = f;(to) + L;( fi(to))+ (the amount of time it takes j to send a message to
i starting from time (fj(to) + L;(fj(to)))- Then, since 1 flips again, when it has heard from all
its neighbors, and all its 1 neighbors have heard from all their neighbors, and so i can unfreeze,
we have tf = max; m;. We remark that based on the link delay function, we can also calculate

f;(t£), for all neighbors j of i, which is the time at which i sets the coin ¢;.

Now we continue the execution as follows. Now neighbors j with d; > d; check for the first
time that j flips a coin at time 2, so that & + Li(t:) 2 f;(t€). Instead of flipping such a coin,

j sets the new coin = 0.

We now show the following for neighbors j of i.
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1. The executions described above occur with probability at least [1;5:(1 — (1/8d;)22.
2. In an execution defined above, ¢; will be 6 for all j with d; > d;.

The first claim is true, because for each j, we are deterministically setting at most two coins,
one coin flipped before time f(¢,) and one coin flipped after. We only set one coin after f(t,)
by definition, we set the first coin such that ¢, + Li(t:) > f;(tE). Before to, we set a coin 0 if
te + Lj(t) > f(to). We claim that the next coin j flips must be flipped after time f(to). Since
if 7 had flipped a 1, he would flip again in time ¢; + L;(te), and he cannot flip again any sooner
with a 0, by Lemma 5.4.3.

To see the second claim, we work backward. If the coin c; was flipped at time ¢, after time
f(%o), then it must be the case that t, + L;(t,) > fi(tf), otherwise j wonld flip again before time
f;(t7) and a later coin would be ¢;. Also ¢; must be the first coin,for which t, + L;(tx) > 5(tF),
because if there was an earlier coin flipped at time ¢, for which ty + Li(ty) > f;(tF), then that
coin would still be current at time f;(tF) if it was a 1, by defirition, and also if it was a 0, by
Lemma 5.4.3. Thus we have set ¢; = 0. If the coin ¢; was flipped before time f(2,) but after
time #o, then the coin that was current is the coin that was current after time to, which we have
set to 0, by design. Finally, if j does not flip a coin at all between times t, and t£ then ¢; is the
coin current at time Z,. Can this be a 1? No, because then j would have to flip again before

time ¢, in any execution, because such a 1 would be current at time fi(to) and thus freeze 1.

Finally, nezt; is the next coin processor j flips after ¢j, an independent cointoss which is 0

with probability (1 — 1/8d;) for each j. O

We now show, with an analysis similar to [51], using Lemma 5.4.5 that for a constant
fraction of the nodes ¢, we expect that some neighbor k of i flips 01, while all higher degree
neighbors j of £ flip ¢;, and nezt; all 0. Then Lemma 5.4.4 guarantees that k£ will enter the
MIS at time ¢ + 2v; entirely independent of variation in link delays. Lemma 5.4.2 showed that
a node k will always reflip in time 5v;, again entirely independent of variation in link delays.
Thus independent of the link delay function, a constant fraction of the nodes will enter che MIS
in time 7v (5v time to re-flip, and then a delay of 2v to get ACKS from all neighbors.)

For each node £, iet its degree be denoted d(k), and the set of its neighbors is called N (k).
Let E; be the event that processor i flips a 1 at time ¢, and Ef denote the event that k’s

previous coin was a 0. Let NI be the set of nodes who have at least one neighbor placed in the



84 CHAPTER 5. WAIT-FREE ASYNCHRONOUS MIS
MIS.

Let i be a particular node, and rename its neighbors without loss of generality 1,...,d;

where if j > k, then d(j7) > d(k). We will look at the event that i flipped a 1.

Let E} be the event E; N E;,and for 2 < j < d; let

k=j+1

Ej = ( A ﬂEh) NE&NE;

Aj = n ((cj = 0) N (nezt,- = 0))-
vEN(j).d(v)24d(5)

Since by Lemma 5.4.4 if A; and E; and occur, then j will enter the MIS, we have:

Prlie NI| > iP[E,’-] - P[4; | E}).

j=t

Now the analysis proceeds as in [51]. By Lemma 5.4.5 we have

Pl4; | Ej] 2 N a-p)y
vEN(j),d(v)2d(j)
> N 1-4p

vEN(j),d(v)24d(j)

2 1- ) 4,

VvEN(j),d(v)2d(j)
> 1/2.

The first term can now be analyzed in a similar fashion to Luby’s protocol: we are asking the

probability that a neighbor, on his current coin flip, flipped a 1. We have:

)ij[E;.] > gp [Q E,] .

ji=1

By the technical lemma in [51]. if we let a = Z}-":I Pj, we then have

d;

P [JL:JI Ej] > % -min{a, 1}
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and thus
Plie NI > 512- . min{a, 1}.

Summing over all i in V’, the set of nodes who are not yet in the MIS, and do not yet have
at least one neighbor in the MIS at time ¢, gives that a constant fraction of the remaining nodes
expect to enter the MIS by time ¢ + 7v. Notice also, from lemmas 5.4.2 and 5.4.4, that when a
node j will enter the MIS is only dependent on v, it local link delay to distance 2 in the graph.

We thus have proved the following theorem.

Theorem 5.4.8 The asynchronous protocol is 2-wail-free, and produces an MIS in O(vlogn)

ezpected time.

5.5 Dining philosophers

5.5.1 History and definitions

The dining philosophers problem, and its extensions, model resource allocation in a distributed
system. We consider the generalized dining philosophers problem, as modeled in {22]. The
dining philosophers problem, studied by Dijkstra and others {33, 53, 58, 27, 52, 29], models a
set of resources (such as printers, disk drives) which can only be used by one competing process
at a time. The situation can be represented by a graph on the set of processors called the conflict
graph, with an edge between two nodes if they share some resource. In this formulation, which
is the standard one, we are assuming that the conflict graph is a subgraph of the communication
graph. The intuition behind the notion of a conflict graph is that if two jobs are local tc the
same disk, for example, then they are also local to each other, so they can communicate. Each
processor may handle a sequence of jobs, but. tries to schedule only one job at a time; each job
has a resource requirement which is a subset of the resources accessible to that processor. For
a job to be executed, all of the required resources must be available for exclusive use by its
processor.

We are interested in bounding the response time of a job. The response time is the time
between when a job is assigned to a processor, and when it is executed. We will modify the
MIS protocol of the previous sections to construct a dining philosophers schedule with optimal

expected response time of O(§;) for job j, where §; is the number of jobs that compete with j.
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Compare this to the bound of O(4?) achieved by [29] (which is still, by the way, the best known
deterministic response time algorithm).

We point out as an aside that ail the above bounds are stated under the normalizing as-
sumption that job execution time, and the maximum link delay, or time it takes for a message
sent by one processor to be received by its neighbor, are both less than 1 unit of time. If p
is an upper bound on the maximum length of time it takes a job to complete execution and v
is an upper bound on the maximum link delay, then our protocol has more precisely expected
response time less than O(6; i+ 6;v), for job j. (And the lower bound is similarly Q(6;(x+v))).
In fact, we get the 2-wait-free property and v and 4 can be replaced by the local delays v, and

K-

5.5.2 The reduction fiom asynchronous MIS

Using our asynchronous protocol, we get the optimal expected response time for dining philoso-
phers. The protocol is quite simple and works as follows. Fach process with no neighbor in
the MIS and with an unscheduled job, runs the MIS protocol of Section 5.3. When a process
enters the MIS, it first sets its ID to oo, so that none of its neighbors can enter the MIS while
its job is running. The job is then scheduled. When the job is finished executing, it sends a
done message to all its neighbors, which then remove that job from their neighbor set.

We now analyze our algorithm. We note that safety and self-stablization follows from the

corresponding proofs of MIS; we now prove that a job j will execute in expected O(6;) time.

Theorem 5.5.1 Let v(k) be an upper bound on the link delay of the neighbors of job k, and let
v; be the maz. over all neighbors k of job j of v(k). Let p; be an upper bound on the amount
of time it takes to ezecute any of j’s neighboring jobs. Then job j will ezecute in O(6;(v; + ;)

time.

Proof: Let E, denote the event in Lemma 5.4.5, that is, j flips 01, and ¢;, and nezt; are both
0 for all neighbors i of j such that d; > d; then,

71

Pr{Eo,] 2> 355 II (-1/85)°
J keNG)Sn20;

7L

'13(86,-

v

)(see MIS analysis)
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If E, occurs, then by Lemma 5.4.4 j will enter the MIS in 2y; time. Thus with normalized link
delays j gets scheduled in expected 324; time, which is O(6;). The link delays, by Lemmas 5.4.2
and 5.4.4, are bounded by v;; and the execution delay of j’s neighbors is bounded by definition
by #;; yielding the result. O

We remark that the dependence on local link delays and job execution times in Theorem 5.5.1
shows that our dining philosophers algorithm is 2-wait-free.

We remark that the protocol and analysis holds for the static case and the dynamic case
considered by [22], where new jobs can be added online to the neighbor set of old jobs. The
new jobs establish communication and are acknowledged by their neighbors, and they set their
initia! coin flips to 0. In the dynamic case the §; is the maximun! size of j‘s neighbor set before

j is scheduled.
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Conclusion

In this thesis, we have looked at a variety of alternate structures known under the heading
of network decomposition, and revisited the precursor of network decomposition, the maximal
independent set problem.

We have seen how the varying forms of network decompositions can be used as an underlying
data structure, key to the design of efficient, modular algorithms that exploit locality.

We have therefore focused on the efficient construction of network decomposition itself, in
parallel, distributed, and sequential models of computation.

We conclude by discussing several open questions and future directions.

Locality and removing randomness

Associated with the distributed model of computation, we would like to point out a major
open question. In Chapter 2, we showed in the parallel model of computation to construct a
weak network decomposition deterministically in polylogarithmic time in the number of vertices
of the graph. However, the deterministic construction requires all parallel processors to pool
global information about which sets of coin-tosses in a randomized algorithm would lead to
good performance in their own local neighborhoods, and take a global “vote.” Therefore, this
algorithm does not work in the distributed model, where one has to a pay a cost proportional to
the diameter of the network to collect global information. (In the distributed model, the best
deterministic algorithm appears in Chapter 3, and is much slower). Finding a O(polylogn)
time deterministic distributed algorithm for this problem is open, and is an instance of a much
more general problem in the theory of constructive uses of the Erdos and Spencer probabilistic
method (35, 62]

More generally, one can ask whether methods that perform ezhaustive search [62, 51] or

89
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binary search [50, 25, 56]) over a small sample space, can be adapted to work locally. The
problem of (x,d)-decomposition, finding a maximal independent set in a graph, the dining
philosophers problem, etc. are all examples of problems where we can remove randomness from
the parallel algorithm if we can globally examine sample points in a probability space that
consists of a small collection of individual processors’ coin tosses. No one knows how to do this
locally. We remark that such a construction for (¥, d)-decomposition would immediately give

one for the maximal independent set problem, but the converse is not known to be true.

Locality and Randomness

The above discussion was concerned with to what extent we can remove randomness. Con-
versely, Chapter 5 provides evidence that randomness can be a huge help in designing local
algorithms. Our very local randomized construction in chapter 5.has enabled us to handle
asynchronous delays on parallel and distributed networks, in such a way that they are only
dependent local link delays. Deterministic constructions, on the other hand, will necessitate
global dependencies and long waiting chains. We ask in general what randomized distributed

algorithms can be made to depend on only local link delays.
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