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ABSTRACT

Automating excavation in mining and construction applications is crucial today as the supply of
skilled operators cannot match market demand. To efficiently make control decisions for
autonomous excavators without having to take in all visual inputs from a typical operator's field
of view, gaze tracking is employed in solely extracting key visual information that skilled
operators use in the field.

Both a front facing camera depicting the world view of the subject and two eye facing cameras
that track the subject's pupil movement are worn by a subject to identify regions and features
that are of high interest to operators during a digging task. Key features, such as the interface
between the soil and the bucket, are characterized using U-Net, a Convolutional Neural Network
designed for image segmentation.

Through this study, key regions, the inside of the bucket and the opening of the bucket, as well
as key features, the soil-bucket interface, were identified to be of high interest to subjects. This
information can serve to identify only the necessary visual inputs in the control decision process,
thus shortening computation time.

Thesis Supervisor: Dr. Harry H. Asada
Tile: Ford Professor of Engineering
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1. Introduction

The operation of mining excavators is a demanding and often undesirable job that requires

operators with a high skill level. Obtaining this level of skill entails years of training, and practice

on lower capacity equipment. This has led to a situation where the supply of skilled operators

cannot match market demand [1]. To solve the shortage of human operators, the overarching

objective of this project is to develop the methods and techniques required to automate excavation

in mining applications. Previous research has focused on more minor details and subtasks of

autonomous excavation, such as slippage control [2] or low-level safety protocols [3]. However,

to tackle the excavation operation as a whole, there are simply too many inputs to process

efficiently. This project is novel because it aims to isolate key information from human operators'

gaze tracking data while they complete any subtask of excavation, which can then be implemented

to the controls decision making of an autonomous excavator. With the information from the gaze

tracking experiments, high volume data that previous researchers were not able to tackle, can

more easily be sorted to only focus on the essential qualities of an excavation process.

During a dig, an experienced operator not only looks at the bucket filling rate of the current

cycle, but also takes into account the consequence of the current scooping and its impact on the

succeeding scooping and the terrain profile as a whole. Furthermore, an operator scans the

surrounding conditions of the work site: the excavator stability and ground conditions, the

location of dump trucks, and other obstacles and significant constraints. Experienced operators

are trained to sort through large amounts of visual inputs and take in important data points quickly,

but quantifying all of these features in an autonomous system makes the input space dimension

intolerably large. It may be infeasible to include many thousands of features and conduct

experiments to obtain statistically significant data from which a practical control algorithm can
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be extracted. However, many of these features may not be needed to make a control decision in

every time step. Rather, these features may play a critical role at particular points in a sequence

of operations, or under specific conditions and contexts. Finding such critical features and

determining when an experienced operator uses such features is crucial in applying the advanced

skills of the operators to the automated machine.

Since this project aims to identify the key visual features that operators focus on during

digging, gaze tracking is used at first to gain a better understanding of the locations that operators

fixate on in their field of view. A camera that looks into both the eye and the surroundings is worn

by a subject to collect data. Through statistical analysis of the gaze concentration in predefined

regions, such as in or out of the bucket or quadrants of the bucket, trends in gaze tracking data is

obtained. Furthermore, predetermined features, such as the interface between the bucket and the

soil, is identified using Convolutional Neural Networks and later correlated to the gaze tracking

data to verify that the feature is relevant to human operators. The results show that there are in

fact key regions and features that operators visually focus during a dig, which can, in the future,

be implemented to isolate the visual input into a controls algorithm.

Identifying key features and regions in a larger field of view can be beneficial in improving

processing time especially for real-time data collection. For example, optical flow analysis, a

method used to measure soil flow into the bucket, may be more computationally efficient if the

analysis were to be conducted in a small portion of a bucket than the entire bucket. Moreover,

through this project, this "small portion" will be determined as a "key region or feature" that is

essential to an experienced human operator, making the dig an optimal operation with little

inefficiency. The processing of information in autonomous excavation can be thus improved in

speed, and the operation itself, such as digging, can become more efficient, through ensuring that
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every dig maximizes the soil volume in the bucket, for example. This method can also be applied

to tasks other than digging in the field, or perhaps even other manipulation tasks, such as driving

a crane.
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2. Related Work

Previous research in autonomous excavation have explored roughly four levels of

autonomy: teleoperation, sharing control between the human and the machine, automation of the

selection of digging location, and automation of digging over a long period.

The first level, teleoperation, usually removes an operator from the excavation site, often

for reasons like safety, but the controls are still done by the human operator. For example, there

are projects in the field pertaining to uncovering of buried munitions [4], waste [5], or utilities.

Although this method resolves the concern for the safety of human operators, it does not provide

a solution to the shortage of skilled human operators in the field.

The research in the second level of automation, where the human shares the control of the

excavator with a machine [6-9], often focus on the digging task. The operator decides where the

dig will take place, and the excavator takes over the digging procedure using force and position

feedback loops. This method provides an opportunity for workers that lack the skills to efficiently

maneuver an excavator to complete the task, but does not fully remove the need for humans.

The third level of autonomy is where the machine can automatically select the desired dig

position and conduct a dig. These systems use measurements of the topology of the terrain using

ranging sensors to optimize the dig for maximum volume of soil per cycle [10]. To further

optimize digs, Neural Networks have also been employed to model soil conditions during

operation [11]. In this level of autonomy, researchers have simplified the excavation process

through hand-coded scripts focusing on subcategories of excavation including, the digging task

performance, soil modeling, or bucket-soil force interaction [12]. Tasks are separated into scripts

with parametrized inputs from the environment for real-time planning and execution of tasks [13].
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To improve upon the previous level, the highest level of autonomy currently in the field

automates a sequence of digs over a long period of time [10]. However, some of these systems

are yet to match the performance of expert human excavators, as they are unable to model every

situation possible and cannot adapt to shifts in environments thus necessitating intervention by

human operators.

To fix this, parametrized scripting, an adaptive free motion planning approach, is applied

to excavation to take in information about the excavator machine's performance and output

optimal parameter values. For example, for an input task called, "digging", the output may be the

angles and the velocities of the bucket and the boom [14]. The success of this research can be

enhanced by taking the approach of this paper, and inputting information not only about the

machine but also about a human operator's decision-making process. More recent studies have

utilized neural networks to mimic a human operator's closed control loop mechanism, yet there

are simply too many visual data inputs to efficiently process in real-time [15].

To overcome the problem of inefficiencies in data processing due to the abundance of

visual inputs, gaze tracking of a human operator is proposed in this paper to pinpoint key features

and human habits. Gaze tracking technology has been used in a variety of applications including

advanced driver assistance systems to understand the driver's focus points and situational

awareness [16]. Moreover, some work has been done to apply deep learning to gaze tracking to

determine a person's object of interest and conduct object classification [17]. Both these works

utilize the information from a person's gaze to identify what is important to them and apply it to

automating a system. On the other hand, the gaze patterns of a human excavator operator have yet

to be analyzed. As in other fields, such as autonomous vehicles, gaze tracking provides this project
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a different angle to the automation of excavators, in which a human operator's attention points can

be directly applied to the controls protocol.
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3. Gaze Tracking Experimental Set Up and Procedure

In order to identify key visual attention points in the field of view of a human excavation

operator, their gaze needs to be tracked while conducting a typical task, such as digging. Trends

in the gaze tracking dataset across multiple digging trials was used to at first characterize regions

of interest. Then, the gaze tracking data was visually monitored to qualitatively understand certain

features that are of high interest.

The human operator subject was requested to wear a gaze tracking device and

simultaneously manipulate an excavator by looking at a screen that was live streaming a video

from a camera filming the excavator's movement. The goal of the subject was to complete a

digging and picking up task as indicated in Figure 3-1.

Digging Picking Up

Figure 3-1: Transition from digging to picking up phase.

The gaze tracking experiment had two set ups. The first set up consisted of a larger field

of view mimicking a typical excavator operator's field of view, where not only the mound of soil

of interest was in sight, but other obstacles, such as other mounds of soil and rocks, was also in

view. The operator was asked to manipulate the bucket in a digging motion while looking at only

the field of view provided. This experiment was done ten times for one operator.
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The second part of the gaze tracking experiment was conducted to further identify specific

regions of interest in the field of view of only the bucket and the surrounding soil. The subject was

requested to conduct a digging process similar to the first set up, but the camera was mounted on

the arm of the excavator and pointed at the bucket, as shown in Figure 3-2. This way, the bucket

does not translate with respect to the camera, but simply changes its angle depending on the

operator's maneuver. This experiment was done 30 times each for two different operators.

Joystick
Excavator Screen

4- Subject

Camiera

Figure 3-2: Experimental Set-Up. The subject sits in front of a screen. The screen displays

the viewpoint of the camera that is attached to the arm of the excavator. The subject is able

to operate the excavator using a joystick.

The excavator used in this experiment was a prototype created in the D'Arbeloff

Laboratory at MIT. The prototype excavator has two degrees of freedom, where the "boom" and

the "arm" is controlled at the base using a four bar linkage mechanism, and the bucket is controlled

at the end of the arm. The subject can operate the prototype excavator using two joysticks: the

right joystick controls the bucket and boom angle, while the left joystick controls the arm angle.
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The gaze tracking device used were the Pupil Headsets, which has a front facing camera,

with a sampling frequency of 120 Hz, depicting the world view of the subject and two eye facing

cameras, with a sampling frequency of 200 Hz, that track the subject's pupil movement. The gaze

accuracy and precision are 0.60 degrees and 0.08 degrees respectively. The distributor, Pupil Labs,

provides the calibration procedure and gaze estimation features. A surface heat map, as shown in

Figure 3-3, is created from the tracking data using Pupil Labs' Offline Marker Detection and

Surface Heat Map Plug-In, in which the subject's focus points are quantified based on the

frequency of gaze in a specific portion of the map. Furthermore, fixation detection algorithms can

be added to detect the difference between a fleeting glance and an intentional gaze by using a

dispersion based algorithm mentioned by Barz et al. [18].

Figure 3-3: A surface heat map indicating high and low gaze concentration areas.
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4. Convolutional Neural Networks to Identify Features

To quantify subjects' gaze distribution on a feature, a Convolutional Neural Network

(CNN) was used. In particular, U-Net [19], a CNN suited for segmentation on fewer training

images was used for this application. As shown in Figure 4-1, the network consists of a contracting

and expansive path, creating a u-shaped architecture. The contracting path reduces the spatial

information while increasing the feature information, and contains convolutional layers, each

followed by a rectified linear unit (ReLu) and a max pooling operation. The expansive path

combines the feature and spatial information through deconvolution and concatenation of the

corresponding cropped feature map from the contracting path. This architecture that combines the

location information with the feature information is highly beneficial in segmentation.

Furthermore, because this U-Net conducts massive data augmentation, it is also suitable for this

paper's application where the number of annotated samples is limited.
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Figure 4-1: U-Net architecture. Each blue box represents a multi-channel feature map. The

number above the boxes correspond to the number of channels. The x-y-size is denoted at

the left edge of the boxes. White boxes are copied feature maps. The arrows represent the

different operations done on each layer.

Fifty images taken during a digging operation with a camera attached to the arm of an

excavator were annotated using Polygon Rnet++'s edge detection algorithm [20]. The feature of

interest, the soil-bucket interface was segmented. Ten of these images each were allocated for test

and validation sets. Figure 4-2 shows an example of a labeled image, indicating the soil-bucket

boundary.
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Figure 4-2: An example of an annotated image. Using Polygon Rnet++'s algorithm, the

50 images were annotated by hand to use for training. The soil-bucket boundary, and a

small area of soil nearest to that boundary is selected as a "key feature".
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5. Experimental Results

The trends in visual data that are identified by a human operator to be key inputs during a

digging operation were measured through gaze tracking experiments and analyses. The number of

fixations, intentional gazes, were measured for every digging trial and plotted with respect to

predetermined regions, such as quadrants of the bucket. Further analysis of gaze tracking data was

done through investigation into the correlation of gaze locations and features, such as the transition

point between the soil and the bucket, instead of predetermined regions. Convolutional Neural

Networks were used to identify features.

5.1 Gaze Tracking - Identifying the Bucket as a Key Region

In the first gaze tracking experiment set up, the subject's field of view contained not only

the bucket, but also the surrounding soil and rocks. This experiment displays the operators' interest

in the bucket region for an average of 98.2 0.3 % (95% confidence interval (C.I.)) of fixations

tracked across all trials. Figure 5-1 shows the distribution of gaze in and out of the bucket region.

This consistent interest in the bucket region is visually depicted in Figure 5-2 where the gaze

distribution graph is red over the bucket.
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Figure 5-1: The distribution of gaze in and out of the bucket region shows that a key region

in a typical operator field of view is the area around the bucket. Operators 1 and 2 fixated

on the bucket an average of 98.4 0.5 % (95% C.I.) and 98.0 0.5 % (95% C.I.)

respectively.
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Figure 5-2: A snapshot from the first gaze tracking experiment where the operator was

asked to manipulate the bucket in a digging motion given a typical field of view of an

excavation operator. The outline of the soil terrain is tracked as a "surface" using markers,

while a heat map is superimposed on the surface after image processing. The heat map

outlines the most concentrated areas of the operator's gaze in red. In this field of view, the

operators had consistent interest in the bucket region.

5.2 Gaze Tracking - Identifying Key Regions within the Bucket

In the second gaze tracking experiment set up, the subject's field of view was limited to

the bucket and the soil closely surrounding it to further identify specific regions of interest. This

second gaze tracking experiment first further corroborates that the key region of interest is in the

bucket. With a closer range field of view for this experiment, an average of 85.5 2.1 % of

fixations tracked across all trials and operators, with 95% confidence, were centered in the region

where the bucket was. Figure 5-3 shows the distribution of gaze in and out of the bucket region.
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Figure 5-3: The distribution of gaze in and out of the bucket region shows that a key region

in a typical operator field of view is the area in the bucket. Operators I and 2 fixated on the

bucket an average of 87 3 % (95% C.I.) and 84 2 % (95% C.I.) respectively.

Using Pupil's surface tracker as described in section 3, the areas within the bucket with the

most gaze concentration throughout the digging task were preliminarily identified. The operators'

consistent interest in the bucket region is visually depicted in Figure 5-4 where the gaze

distribution graph is red over the bucket.
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Figure 5-4: Snapshots from the second gaze tracking experiment where the operator was

asked to manipulate the bucket given only a view of the bucket. The left and right images

show a trial from operators 1 and 2 respectively. The heat map highlights the most

concentrated areas of the operator's gaze, which is concentrated on the right-hand side of

the bucket for most trials.

To further investigate whether certain regions of the bucket were more of interest to the

operators than others, the bucket was divided into quadrants. Figure 5-5 shows the distribution of

gaze in the four different quadrants. Quadrant four, the right-hand side of the bucket closest to the

opening had the highest concentration of fixations with an average of 68.6 8.2 % of fixations

tracked across all trials and operators, with 95% confidence. The concentration of gaze on the

right-hand side of the bucket may be due to habits in the operator, but the results are inconclusive.

Further tests with more operators should be done to investigate the causes.
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Figure 5-5: The distribution of gaze in four quadrants of the bucket shows that the

operator's gaze is typically concentrated in the right-hand quadrant closest to the

opening of the bucket.

5.3 Gaze Tracking - Identifying Key Features

The fixation locations were investigated in detail, and an average of 73.5 8.3 % of all

fixations were centered around the soil-bucket interface. Figure 5-6 shows a qualitative example of a

fixation centered around the soil-bucket interface.
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Figure 5-6: A snapshot of a fixation that is centered around the interface between the

bucket and the soil.

5.4 Identifying Key Features using Convolutional Neural Networks (CNN)

Having created a dataset as described in section 4, U-Net was trained to recognize the soil-

bucket interface in a digging image. Figure 5-7 shows two samples from the train and test sets

before and after training. The model identified the interface between the soil and the bucket for all

images in the test set.
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Figure 5-7: Identified soil-bucket interfaces before and after training. The top two images

are training labeled dataset examples. The bottom image shows a test sample after the

model was trained.

After training the model and testing its capability, the model was used to identify soil-

bucket interfaces in gaze tracking experiment videos from section 5.3. The beginning phase of a

dig, right before the "picking up" motion was extracted from gaze tracking videos along with gaze

positions that correspond to the video segment. After cropping the video where only the bucket

was visible, each frame was passed through the trained model to identify the bucket-soil boundary.

Figure 5-8 shows an example of a segmentation using a frame that the model has never seen before,

indicating its high accuracy. Given a known gaze position for that frame, the position was verified

to see whether or not it was in the region of interest, the bucket-soil interface.
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Figure 5-8: The segmentation from the U-Net model overlaid on a frame from a gaze

tracking video. The segmentation is colored orange for clarity on segmented areas. The

model has never seen this frame before, and it is a relatively low quality frame compared

to the original images that the model was trained on.

Obtaining the probability that the gaze position was in the segmented bucket-soil interface,

the percentage of gaze centered around the soil-bucket interface across two operators for 20 trials

was an average of 72.1 5.2 % (95% C.I.), indicating a strong correlation between the soil-bucket

interface and human operator attention during the early stage of digging. The average percentage

of gaze also is only 1% lower than the average probability of fixations cited in section 5.3.
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6. Conclusion

Motivated by the need for automation in excavation, this paper described a methodology

in which key regions and features of interest to a human operator can be identified to inform

control decisions in the future. The results highlight the key regions, inside the bucket and at the

opening of the bucket, and a key feature, the interface between the soil and the bucket, that human

operators tend to focus on during a digging task.

In future iterations towards full automation, this methodology of employing gaze tracking

to identify features can be applied to an input space of a controls algorithm. For example, in

digging, it is useful to understand how operators visually decide the transition point between

digging and picking up. Because the system is in constant motion and densities can differ from

soil to soil, it is challenging to detect the soil collected in the bucket using force calculations. It is

thus very useful to conduct visual analyses, such as optical flow [21], to measure the volumetric

flow of soil into the bucket. By comparing the computation time of a controls algorithm of a

digging to picking up task while incorporating optical flow with and without the key regions and

features identified in this paper, the effects of our method can be measured. The expected outcome

is that the computation time is decreased with similar or improved accuracy as the region to

conduct real-time visual analysis is isolated.

Furthermore, this methodology can be expanded to apply to many other excavation tasks,

such as truck-loading and flattening, as well as other operations in other industries with similar

conditions.
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