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ABSTRACT

Formula SAE is a collegiate design competition in which student teams design, build, and race
an electric formula racecar every year. In 2019, the MIT team built its first four wheel drive
vehicle. The new architecture requires more robust and performant control systems. One major
challenge is that the vehicle is not functional for the majority of the year. A longitudinal vehicle
simulation was written and tested for the purpose of testing control algorithms without a physical
testbed, as well as to learn more about vehicle behavior in general. The simulation was written
in Simulink and the structure kept versatile so that it could be easily expanded in complexity in
future years. Test data was used to successfully correlate the model to the actual system.
Several launch control algorithms were also tested using this simulation, for both a rear wheel
drive and four wheel drive architecture. Although basic, the control schemes produced
promising results for both speed and stability, notably the normal force proportional controller.
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Title: Professor of Mechanical Engineering
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1. INTRODUCTION

1.1 FORMULA SAE

Formula SAE (FSAE) is a collegiate design competition where student teams design, build, and
race an open wheel formula-style racecar. The competition is structured around a series of
scored events, both dynamic - the car races against the clock - or static - the team presents the
design and other aspects of the vehicle. The dynamic events consist of acceleration (75m drag
race), skidpad (steady state cornering), autocross, and endurance (22km autocross). The
determination of success relies upon many factors, the main factors being: vehicle reliability,
vehicle performance, and driver performance and preparation. The electric category in the
United States was started in 2011, and has since grown to over thirty teams. The competition is
held annually in Lincoln, Nebraska.

1.2 TEAM BACKGROUND

MIT Motorsports consists of about 40 people, mostly undergraduates from mechanical,
electrical, and aerospace engineering, and computer science. The team is entirely student-run,
including auxiliary functions such as fundraising and recruiting.

MIT has competed in the electric vehicle category since 2014. The first few vehicles were
barely functional; the team's goal in those years was simply to make the car work and learn how
to engineer a racecar. The Model Year 2017 (MY17) vehicle was the first major success for the
team. It was a rear wheel drive car and its primary goal was reliability.

MYl8 was MIT's last rear wheel drive car (Figure 1). It was designed as an iteration of the
MY 17 car, maintaining its simple and reliable architecture, while reworking some subsystems to
increase performance. It performed remarkably well at the Lincoln competition, winning the
acceleration and autocross events and placing second in skidpad. In the endurance event, the
team was disqualified after the race due to a violation of the 80 kW power limit. A post-mortem
analysis indicated that the root cause of this violation was lack of testing time and a power
limiting controller that was not tuned well enough. This motivated the creation of a controls
team whose focus is to understand the vehicle as a system and ensure stable, and legal, vehicle
performance. Despite the disqualification, the vehicle was clearly reliable, fast, and comfortable
to drive. Following the momentum of MY I8's success, the team chose to make an engineering
leap and design MY19 to have a four wheel drive architecture. This put further pressure on the
control systems as they are much more essential to the stability of a four wheel drive vehicle than
a rear wheel drive vehicle. The specifications for the two vehicles are detailed in Table 1.
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Figure 1: The Model Year 2018 vehicle in the endurance race at Lincoln, NE.

Metric MY18 MY19 (predicted)

0-75m time 4.12 s 3.7 s

Top speed 40 m/s (90 mph) 40 m/s (90 mph)

Weight 230 kg 250 kg

Tires 18 x 6" Hoosier 18 x 6" Hoosier

Aero Front wing, active rear wing Front wing, active rear wing

Rear powertrain Single Emrax 228 (axial flux) Single Emrax 228 (axial flux)
Limited slip differential @rear axle Limited slip differential @rear axle

Front powertrain None DHX Hawk 40

(per wheel) Planetary gearbox

Table 1: Specifications for MY18 and MY19.
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1.3 OBJECTIVES

There were three main motivations for this project.

1. Learn more about straight line motion. Two of the most important performance metrics
for a racecar are straight line acceleration and steady state cornering acceleration. The
less complex of the two is straight line acceleration, so the first objective of the project is
to investigate a racecar's behavior in this area. With the hardware capabilities of the
vehicle, there is potential for significant performance gains.

2. Design a launch control algorithm. The key to a fast acceleration is to make full use of
the tires' tractive capability. Launch control is a method to automatically control the
torque sent to the wheels so that the tires are outputting their maximum tractive force at
all times during the acceleration.

3. Start writing a full vehicle simulation. One exciting challenge posed by making a new
racecar every year is that the physical system is not available for testing until very late in
the year. This motivated the development of a vehicle simulation in order to test and tune
the controllers before the physical testbed was functional. The simulation was also
designed to have a versatile structure, so that it could be easily expanded to be used for
other dynamic situations in the future.

1.4 PREVIOUS SIMULATIONS

The team has used vehicle simulations in the past to make informed design decisions. One
notable simulation is a Matlab acceleration simulation, written in 2016. This simulation was
accurate enough to make high level architecture decisions, but is not fine enough nor properly
structured to be used to test control algorithms. The high-level structure is shown in Figure 2. It
worked well for design decisions, but the fundamental reason why it cannot be used to tune
controllers is that there is no separation of the control system and the physical system. It was
necessary to develop a new, real-time, simulation that accurately represented the signals sent and
received by the vehicle control unit. It was also important that this new simulation have a
versatile structure that would make it easy to add refining functions as more assumptions are
addressed.
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Figure 2: Block diagram of previously used acceleration simulation, written in Matlab in 2016.

2. DESIGN OF SIMULATION

2.1 COORDINATE SYSTEM

The coordinate system used in this simulation is SAE standard (Figure 3). Positive X is front,
positive Y is right, and positive Z is down. Roll, pitch, and yaw are rotational movements about

the X, Y, and Z axes respectively. The origin was selected to be at the intersection of the ground

plane, the X-Z midplane of the car, and the plane intersecting the rear axle.
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Figure 3: SAE Standard coordinate system.

2.2 ASSUMPTIONS

The assumptions made in this specific iteration of the simulation are as follows:

1. Straight line movement only
2. Single mass weight transfer model, i.e. the sprung mass, which is the portion of the car

supported by the springs, is much heavier than the unsprung mass.
3. Driver is not being a feedback controller
4. No tire pressure effects
5. Tires are operating in optimal temperature range
6. No pitch effects on aero
7. The ground is flat

2.3 HIGH LEVEL STRUCTURE

The simulation is written in Simulink and Matlab. The major blocks that make up the simulation
are the driver block, software block, and vehicle block (Figure 4).

The driver is a pure output block. The driver's only communication to the vehicle control unit
(VCU) is through the steering wheel, the throttle pedal, and the brake pedal. These are passed to
the VCU as a number between 0 to 1.

The software block represents the VCU, which computes the torque command. The inputs are
sensor readings and the driver commands. The output is four torque commands to the wheels.
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For a rear wheel drive car, the front torque commands are set to zero. Any torque command
modifiers are contained in this block, including controllers and limits.

The physical system then responds to the torque commands, and the response is sent back to the
VCU as sensor readings. The vehicle block contains the physics model and time step increment.

thrin -- throttle

brk-in - brake drv-bus a

ste-in steer

driver-=

drybus

motortorque.cmds

sensor bus

software

UI
Unit Delay

-*=~E~ie

Figure 4: High level block diagram, showing the three main systems and main feedback loop.

2.4 SUBSYSTEM MODELING

The simplest model for a vehicle has a point mass m experiencing an acceleration a caused by
the sum of external forces acting on the system. For this simplistic system, the external forces
consist of the friction forces outputted by the tire. One tire's friction force is equal to its

coefficient of friction mu multiplied by the normal force. The acceleration is easily computed
from the friction forces, in the following equations.

Front = PNfront

Frear = INrear

a = 1 (Ffront + Frear)M

(1)

(2)

(3)
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Figure 5: The free body diagram for the simplest vehicle model.

2.4.1 TIRES

The first and most important refinement to the simple model is the tire characteristics. Typically
in vehicle dynamics, a tire is modeled using a semi-empirical function. The goal of this function

is to describe the forces and moments output by the tire given a set of operating conditions.

These forces and moments are described at the center of the contact patch, which is the flat spot

where the tire touches the ground. A frequently used semi-empirical model is the Pacejka Magic

Formula [1]. In this model, a large number of coefficients is fitted to a set of force and moment

data gathered from a purpose-built tire testing machine. In the 2006 edition of this model, the

tractive forces and moments depend on the normal load, slip angle, slip ratio, inclination angle,
pressure, and temperature. There is much digging that can be done into the specifics of tire

modeling, but for the purposes of a full vehicle simulation, the tire can be treated as a black box

described by the following function.

(Fx , Fy , Mz) = fn(N , K , a , y, P, T) (4)

where
N = normal load

K = slip ratio
a = slip angle

y = inclination angle

P = pressure

T = temperature

The parameters with greatest effect on longitudinal motion are
The most unexpected property of the tire is that the coefficient

the normal load and slip ratio.
of friction, mu, is not constant
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(Figure 6). It actually decreases with increasing normal force. This is referred to as "saturation"
or "load sensitivity". This phenomenon stems from the construction and chemistry of the tire
rubberitself, which vehicle dynamicists want nothing to do with.

But understanding tire saturation is essential for a good high-level view of vehicle design.
Because of the decreasing coefficient of friction, the shape of the friction force vs normal force
curve is concave down. This means that the total friction force available for any pair of tires is
maximized when the normal forces are equal. This is illustrated in Figure 7. This fact drives
much of the car's design. For instance, the entire reason shock absorbers exist is to quickly
smooth out oscillations in normal force, and to return the car to a state where the driven tires
have as equal a load distribution as possible.

(D
0

0
0#-
0
U-

2

1.9 -

1.8 -

1.7

1.6 -

1.5

1.4

1.3 -

1.2 -

1.1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Normal Force (N)

Figure 6: The dependence of the coefficient of friction on normal load. This plot
ratio of 0.05. The tire used was the 18x6in Hoosier.

was made with a slip
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Figure 7: Longitudinal friction force vs normal force. The average friction force available for a pair of

tires occurs when the tires are evenly loaded. Blue shows the average friction force for an unevenly
loaded pair. Red shows a higher friction force from an evenly loaded pair.

Slip ratio describes the difference between the rotational speed of the tire and the linear speed of
the tire. Intuitively, it is related to the deformation of the tire sidewall as torque is applied to the
hub. An extreme example slip ratio on a dragster rear tire is shown in Figure 8 for better
visualization.
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Figure 8: Dragsters' tire wrinkles are an example of extremely high slip ratio.

This deformation of the sidewall, and the contact patch itself, is what allows the tire to output a
friction force that launches the vehicle forward, or stops the vehicle in the braking case. Slip
ratio is defined as follows.

R.0 - v

112 , lvi > Vth

K = 2(Rfl - v)

Vth+2 
IVI Vth

Vth

n = wheel rotational speed (5)
v = wheel center speed
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Figure 9: Illustration of how the low-speed slip ratio function differs from the exact slip ratio.

In order to prevent slip ratio from becoming infinite at low speeds, a modified function is used
below a threshold speed, which allows slip ratio to be continuous as the linear speed crosses zero
[2]. The effects of the modification are illustrated in Figure 9, where the modified function is
plotted against the exact, discontinuous function.

In this simulation, slip ratio must be calculated from the rotational dynamics of the tire since it
cannot be deduced from driver inputs alone. The inputs to the slip ratio calculation are angular
velocity and linear velocity of the wheel center. In the case of longitudinal motion, the linear
speed of all four wheels is equal to the x speed of the vehicle CG. The angular velocity of each
wheel is obtained from the rotational dynamics of the tire. The sum of torques is the sum of the
previous time step's friction force and the torque input from the motor. The angular acceleration
is then integrated to obtain the angular velocity, which can finally be input into the slip ratio
equation. The equation of motion is as follows, referencing the free body diagram in Figure 10.

Tin -FXR= Ja (6)
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Figure 10: Free body diagram of tire rotational dynamics.

The semi-empirical model is stored in a lookup table with inputs slip ratio and normal load, and
output Fx, friction force in the X direction. The table values were created by fitting the Pacejka
2006 model coefficients to a set of tire data provided by the FSAE Tire Test Consortium [3].
The fitting process is outside the scope of this paper. The resulting lookup table values are
plotted in Figure 11. The breakpoint ranges were chosen to be the range of the test data
available, and the extrapolation method holds the final table value constant for queries outside
the breakpoint range.
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Table and breakpoints data for block: Car/vehicleltire/Fx Lookup Table
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2000, -oc
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-1000,
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-1500
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Figure 11: The lookup table stored in the simulation. The row breakpoints are slip angles, the column

breakpoints are normal loads. The table data is Fx, longitudinal friction force.
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Another layer of complexity that can be added to the tire model is rolling resistance. A constant
rolling resistance coefficient model is used, where the rolling resistance force is directly
proportional to the normal force on the wheel [4]. The coefficient is calculated as in the
following equations. The velocity input is only needed to smooth the transition as the wheel
changes direction. The resulting rolling resistance force is applied at the wheel center and so
does not affect the tire rotational dynamics. It is subtracted from the final calculation of the force
that the tire applies to the chassis.

Frr = NCrr (7)

Crr = Crro tanh ( 4 (8)

where
N = normal load

v = wheel center velocity

Vth = threshhold velocity = 1

2.4.2 NORMAL FORCE FUNCTIONS

Because the tire friction force output is so sensitive to normal load, it is imperative that it is
computed accurately. The main contributions to normal load on the four tires are static load,
inertial load, and aero load, assuming straight line motion only.

Static load is simply what one would read from a set of car scales. This can be calculated from
the total vehicle mass and the location of the center of gravity.

Inertial load is the change in normal loads if the vehicle is accelerating. From D'Alembert's
principle, the X acceleration on the vehicle results in an inertial force equal to the product of the
car's mass and X acceleration. From the free body diagram in Figure 12, we can find the change
in normal force at the front tires due to the body acceleration. The change in normal force at the
rear tires must be equal and opposite to that of the front tires in order to maintain equilibrium in
the Z direction.

The third contribution is aero load. The aero package on the vehicle usually consists of a front
wing, a rear wing, and an optional diffuser. Each element provides a lift and drag force, both
acting at the element's center of pressure. However, the aero's effect on the entire car can be
simplified greatly by adding these together and treating them as one unit. The aero effect can be
reduced to two forces and one moment: a lift force ("downforce" in racing terms), a drag force,
and a torque. Thus, its effect in the XZ plane is fully described. We can arbitrarily choose the
point at which the forces act; here they are described as acting at the origin (rear contact patch) in
order to simplify the resulting calculation of the wheel loads. The three aero coefficients
required to describe the contribution are CLA, CDA, and CxmA, which were found by the aero
team via flow simulations.

17



Finally, the three contributions are added to obtain the total normal force at the front and rear
wheels. Note that these refer to the sum of each pair of wheels, and in actual implementation,
they are divided by two to split into four individual tires.

Nfront = mg - - macg W +

Nrear = mg a + macg H ' + (Flift - Taero)WB WB WB

(9)

(10)

macg
mg

WB

cg

a

Nstatic,front

ANmertia,front4

ANaero.front f

b
L.................-

Flift

FFlg

Fdrag 
'er

Nstatic,rear

ANinerial,rear t
ANaerorear t

Figure 12: Free body diagram to find total normal force on front and rear wheels. The three contributions
are static, inertial, and aero.

18

*1 H-T-



2.4.3 PITCH DYNAMICS

So far, we are assuming the normal force transfers instantaneously from the ground to the
chassis, as if the car had rigid links instead of dampers. In reality, the dampers result in a delay
before reaching the steady state value, and effectively smooth the large normal force peak at the
beginning of the launch. Since we are only considering longitudinal motion at this point, we can
use pitch stiffness and pitch damping, instead of modeling individual corner shocks, as a
simplified way to incorporate dampers and springs into the model.

Consider a simplified vehicle model where the front and rear suspension is represented by a
spring and dashpot. The pitch center, the point about which the vehicle pivots instantaneously, is
located on the ground midway between the front and rear contact patches. This is due to
suspension geometry alone; the control arms' inboard pickup points are parallel to the X axis. If
the geometry incorporated anti-squat or anti-dive, the pitch center would be in a different
location. The pitch stiffness and pitch damping can be found as follows, referencing the diagram
in Figure 13. Note that the motion ratio, defined as the ratio of shock travel to wheel travel, is
not taken into account, because it is very close to 1.

kPitch = 2(k + kr) (11)

bpitch = (bf + br) (12)

where
kf,r = front, rear ride (spring)stiffness
bfr = front, rear damping coefficient

Because the pitch system is well-approximated as a linear second order system, we can write the
transfer function from torque about the Y axis to the pitch angle. The torque T about the Y axis
is equal to the body acceleration multiplied by the moment arm of the height of the CG.

pitch(S) __ 1

Ty(s) Is2 +bpitchs+kpitch

Because the instantaneous contribution from the springs is already included in the inertial load,
we only need to calculate the contribution from the dampers, i.e. the transient contribution. Pitch
angle is differentiated to pitch angular speed, put through a geometric transformation, then
multiplied by the front or rear damping coefficient to obtain the transient contribution.

19



WB/2

bf kf br kr

Pitch center

Figure 13: Simple model as a chassis supported by a spring-damper at each axle. The pitch center is
midway between the two axles.

2.4.4 POWERTRAIN

The powertrain may further limit the car's performance if the motor cannot provide the requested

torque, even if the tires have the tractive capability. The powertrain function block is modeled as
a simple limiter. The torque speed curve for the chosen motor is stored in a lookup table. For
each time step, the function looks up the motor velocity, equivalent to the wheel velocity divided
by the gear ratio, to find the maximum torque the motor is able to produce, and caps the torque
request. To calculate the power-speed curve, the torque-speed curve was simply multiplied by
the speed. The power-speed curve for an Emrax 228 motor, which was used in the rear
powertrain on the MY 18 car, is shown in Figure 14a. This curve was extracted from current and
speed measurements throughout the endurance event at the 2018 competition. Note that field
weakening was used in this session, and is evident in the sloping torque dropoff at high speeds.
The power-speed curve for a Hawk 40 motor, which is used in each front wheel on the MY 19
car, is shown in Figure 14b. This curve was obtained from the manufacturer-provided datasheet,
and verified with a stall torque and no-load speed test. The Hawk's power-speed profile assumes
no field weakening.

20
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Emrax P-S Curve Hawk P-S Curve
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Figure 14: Power-speed curves for the two motors used in the simulation. The Emrax (a) is an axial flux

surface permanent magnet motor, while the Hawk (b) is a radial flux SPM.

2.5 SIMULATION OUTPUTS

The output of the simulation is a collection of timeseries. The most essential information is

acceleration, velocity, and position of the center of gravity. Power is also an important metric to

look at when assessing performance. Plotting all the contributions to power together gives a

good visual for what components are dominating the vehicle movement. Slip ratio is also an

important metric to monitor as it is the one thing we can control.

An example of a typical acceleration run without any power or powertrain limits is shown in

Figure 15. The effects of drag can be seen in the acceleration's steady decrease. Figure 16

shows the signals relevant to the tires. The effect of downforce can be seen clearly in the

increasing average Fz.

Figure 17 and 18 show the results from a run with the powertrain limit. The effects are clearly

seen at around 2 seconds when the acceleration drops off sharply, as the motor can no longer

provide the requested torque.

To demonstrate the versatility of this simulation, an acceleration - braking run is plotted in

Figure 19. A sinusoidal torque input is also plotted in Figure 20. Modeling these scenarios

would not have been possible using the 2016 acceleration simulation.
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2.6 CORRELATION WITH TEST DATA

Telemetry from an actual acceleration run was used to verify the accuracy of the simulation. The
data was taken from a run performed at Palmer Motorsports Park on September 9, 2018, with the
MY 18 car. This run was done at the end of the testing trip, so it is fair to assume the tires were
operating at temperature. However it is important to note that the tires used on this trip had been
used many times before, and had likely lost a lot of tractive capability. It is also important to
note that the length of track the run was performed on is not completely flat.

First, the relevant metrics were computed. The car's position, velocity, and acceleration, as well
as the slip ratio, are good indications of accuracy, and relatively easy to extract from the
telemetry. Since the vehicle does not have all the sensors that the simulation has, some
approximations were made to compensate. Front wheel angular speed was measured with a Hall
effect sensor fixed to the wheel hub (Figure 21). Note that this sensor gives very poor readings
at low speed, but is quite accurate at high speeds. Motor feedback speed from the Emrax's
resolver was used for the rear wheel angular speed. Both signals was quite noisy, so a moving
average filter with a window of 0.2s was implemented, introducing a small delay.

In order to compute slip ratio, the linear speed of the wheels are required. Although the car was
instrumented with an inertial measurement unit (IMU), the signal from the IMU was extremely
noisy and required an accurate dimensional measurement from the mounting point to the center
of gravity of the car, which was not obtainable. Instead, we can assume that the front wheels had
a slip ratio of zero during the run, linear wheel speed was approximated by multiplying the front
wheel angular speed by the radius of the tire. In reality, there is a small negative slip ratio at the
front tires due to rolling resistance, brake drag, and rotational inertia, but it is much smaller than
the rear slip ratio. The front wheel angular speed was also used to approximate the speed of the
entire car. The car speed was then integrated to find position, and differentiated to find
acceleration, which needed to be filtered further.

To simulate the run as accurately as possible, the throttle pedal input was extracted and inputted
directly into the simulation. Brake pressure data for both the front and rear hydraulic lines was
also readily available, and inputted into the simulation as well. Finally, a mechanical efficiency
factor of 0.8 was added between the powertrain and the wheels in order to better match the data.
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Figure 21: Front wheel speed sensor. The Hall effect sensor (green) reads the square toothed wheel,
which rotates with the hub.

Figure 22 shows the simulation output along with the data. The first thing to note is that the

shapes of the signals match extremely well. The powertrain limit is seen clearly in the

acceleration and slip ratio data. The simulation is fairly accurate until about 2.8s, at which point

the deviation in velocity is significant. Notice that the powertrain begins to limit at around 2.8s.

This indicates the torque-speed curve is an overestimate, even though it was extracted from the

large endurance event dataset. One possible explanation for the discrepancy is if the motor

parameters for field weakening had been changed from the endurance event. Unfortunately this

information is difficult to trace. Another possible explanation is inaccurate aero coefficients.

Aero effects are proportional to the square of velocity, and the effects of an incorrect drag

coefficient would be seen only at higher velocities.

Another notable discrepancy is the offset in the slip ratio data (Figure 23, top right). The method

of using front wheel speed instead of true linear wheel speed actually underestimates the linear

velocity, and overestimates the slip ratio, so this is not the cause of the offset. A more likely

explanation is again the large discrepancy in the powertrain characteristics. A lower torque limit

would result in the car not being able to produce high enough slip ratios to match the simulation.

Similarly the aero inaccuracies would also result in this slip ratio discrepancy.

Despite this, the simulation can still be used confidently to learn about vehicle behavior and

sensitivities because the accurate shapes of the signals indicates the different subsystems are

interacting in the correct manner.
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3. INVESTIGATION OF LINEAR MOTION

3.1 IDEAL CONTROLLER

The second objective of the project is to use the simulation to learn about the vehicle's linear
motion. In order to isolate the physical system from the control system, an "ideal" controller was
developed. This controller measures the slip ratio and normal force, and uses the tire lookup
table in order to find the maximum possible friction force at the current time step. Then it back-
calculates the torque required to produce that force, and replaces the driver input with that
torque. This controller is impossible to implement in actuality because we will never have
perfect tire data, especially because it is so dependent on external conditions. However, it works
well for showing us what the maximum possible performance of the vehicle is.

Figure 24 shows a typical output for the ideal controller in rear wheel drive, with a powertrain
limit. For comparison, Figure 25 shows the output for a constant torque command. Note that the
slip ratio is maintained at a higher value for longer than the human-controlled run. It is
interesting to note that there is only 4.5 hundredths of time difference between the ideal and the
constant controller. This seems to indicate there are diminishing returns for designing a launch
controller.

The ideal controller is also useful for assessing a four wheel drive car's performance, which
would usually be very dependent on control algorithms. Figure 26 shows the output from the
ideal four wheel drive run, and Figure 27 shows the output from a constant torque command run.
There is a time difference of 0.2s, which further emphasizes the importance of a well-designed
algorithm to split the torque between the front and rear axles.

28



150

100

E

50

0

12

10

6

4
x

2

0
1 2 3

Tnie (sec)
4 5

Thne Swiss Pbtkc*
0.04

0.035

003

0,025

0.02

0.015

0.01

0005

0

---Dist vlmTme '

X 4.07
Y 75

- 7

0 2 3 4 5
Tume (sec)

- -- T

0.

0~

-0

-0

-0

-0

-1.

.1.

- -1 0

Dist vs Tirm
75M

100
X 4 116
Y 75

50

0
0 1 2 3 4 5 6

Tome (sec)

12
-Acc vs Time
- 1g

10

:4

2-

0 1 2 3
Time (sec)

0.035

003

0.025

0.02

0.015

001

0.005

0

-0.005'
0 1 2 3 4 5 6

Time (seconds)

Mu

02

0

-02

-0.4

-0.6

-0.8

-1

-1.2

-14

4 5 6 0 1 2 4 5 6

Figure 25: Constant torque command, rear wheel drive, with powertrain limit.

29

6 0 1 2 3
Time (seconds)

4 5 8

MU
4

2, ___ __ __-IruntRght
-Row Right

2 -

4

2

4

Figure 24: Ideal controller, rear wheel drive, with powertrain limit.

Tnh Serbs Ptka

1 2 3 4 5 6

E

- Fron Rght

-Ra 4

ICI



E

B
x

0 1 2 3
Time (sec)

4 5

0045

0_04

0.035

002

0.025

002

0.015

0.01

0.005

0

Tkn Swiss Plkqp

100

60

140 -

120 -

80-

0 1 2 3 4 5 6
Timne (sec)

14

12 g -

2-

01

-0.5 I

-2

0 1 2 3 4 5 6

Figure 26: Ideal controller, four wheel drive, with powertrain limit. 0-75m time is 3.583s.

180

----- Dstvs Time160 -7m

140

120

100
X 3.798

80 Y 75

60

40

20 -

0
0 1 2 3 4 5

Time (sec)

12

10

2

0 1 2 3
Time (sec)

0.04 -

0 035 -

0 03

0 025

0.02

0.015

0.01

0.005

060

0
-0.2 -

-0.4

-0 6

-48
-1

-1 4

-1It

4 5 6

Tirm Serbs Platkq

1 2 3 4 5 6
Tirme (seconds)

F M

----~~- -P 1

0 1 2 3 4 5 0

Figure 27: Constant torque command, four wheel drive, with powertrain limit. 0-75m time is 3.796s.

30

Front Right
Rem P

I

0 1 2 3 4 5 6
Tirme (seconds)

6

E

x



3.2 ROAD SURFACE COEFFICIENT

Perhaps the most important factor is one that is nearly impossible to measure. Within the tire
model, there is a correction factor lambdamu, which is put in place to account for differences
between the surface on which the tire was tested, which is similar to 120 grit sandpaper, and the
surface on which the tire is currently operating, which clearly does not provide as much traction
as sandpaper. A rule of thumb, delivered directly from the people who oversee the tire test, that
is commonly used for Formula SAE tires operating on a racetrack is lambdamu = 2/3. This
factor changes drastically depending on the surface roughness, how much dust is on the track,
how much rubber is left on the track from previous cars, the temperature, the humidity, just to
name a few. The tire's dependence on difficult-to-predict factors has driven the focus of the
controls team to develop a controller that can accommodate a range of lambdamu values.
Figure 28 shows the dependence of 0-75m time on lambdamu. This study was done on a rear
wheel drive vehicle, powertrain-limited, with the ideal controller.

The 0-75m time changes by almost an entire second depending on the track surface quality. This
makes sense, as an acceleration run on a cold day with old tires is noticeably slower than a run
on a hot sunny day with brand new tires. It asymptotes abruptly because the motor begins to
severely limit torque as the track surface is able to provide more traction. This study illustrates
the extent of the challenge posed to the team. It is especially difficult for teams based in the
northeast, like MIT, because oftentimes the only time we can run in conditions similar to hot, dry
Nebraska concrete is the day before competition.
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Figure 28: Dependence of 0-75m time on road surface coefficient.
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4. CONTROLLERS

4.1 TRACTION LIMIT AND CONSTANT CONTROLLER

The simulation was used to conduct a study of the traction limit. This was motivated by the need
to either predict or detect when the tire has lost traction, without knowing the road surface
coefficient. Two lambdamu values were chosen to represent the possible range of values on
any given dry day. For each lambda mu value, the simulation was run in rear wheel drive mode
with a constant torque command multiplied by a factor from 0 to 1. This factor was swept
through a narrow range. Then, the slip ratio timeseries was plotted to find the maximum torque
command that did not cause the tire to slip. 0-75m time was found and plotted for the sweep.
The results are summarized in Table 2.

The result for the high lambda mu, 0.6, is displayed in Figure 29. It is obvious which runs saw a
loss of traction, as the slip ratio rises to a large number. The loss of traction is also evident in the
0-75m times plotted against the torque factor in Figure 30. As soon as there is wheelspin, the
times suffer by about 0.1 s, which is significant. This is one of the reasons why wheelspin, or
loss of traction, is not desirable. Furthermore, although the effect is not detectable in the straight
line simulation, a high slip ratio results in a significant decrease in lateral tractive capability,
which makes it easier for the car to become unstable and "spin out", even if there is no steering
wheel input.

The results for the low lambdamu value shows similar behavior (Figures 31, 32). However, the
maximum torque before wheelspin differs greatly for the two lambdamu values, as does the
maximum slip ratio before wheelspin. This proves, unfortunately, that there is no magic
measurable number that indicates the edge of the traction limit, and that there is no one torque
command that will result in a reasonable 0-75m time for a range of lambda mu values.

It is not a viable launch control scheme to use a hardcoded constant torque command. It is
difficult to choose the torque command value, since it varies so much with different road surface
coefficients.

Metric Lambdamu = 0.6 Lambda mu = 0.475

Best constant torque 0-75m time 4.152 s 4.7 s

Best constant torque factor 90.4 % 68.2 %

Maximum peak slip ratio before 0.081 0.071
wheelspin

Table 2: Results of traction limit study.
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4.2 RAMPED CONTROLLER

A ramping controller was tested after the constant controller. The motivation came from an

intuition that it is easiest to lose traction in the first few milliseconds of the run. A lambdamu

value of 0.6 was chosen for this study because the vehicle is traction limited in this condition.

The initial ramp time, illustrated in Figure 33, was swept from 0. 1s to 2s. The simulation was

run in rear wheel drive mode, with powertrain limit.
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Figure 33: Definition of ramp time is seconds needed to reach full torque command (green).

The results are plotted in Figure 34. Counterintuitively, increasing ramp time did not prevent
wheelspin; rather it just delayed it. From these results, the ramped controller is not a viable
launch control scheme. However, a simple test can be conducted on the vehicle to verify these
results, because the inverter on MY18 has a built in ramp function.
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4.3 FOUR-WHEEL DRIVE LAUNCH CONTROLLER

A basic launch control scheme was developed for the four wheel drive configuration. As with
the rear-wheel drive car, the simplest scheme is to command constant torque throughout the run.
However, this method is a particularly poor choice for four-wheel drive, for several reasons.
First, it is slow, as discussed in section 2.7.1. Second, it compromises stability. A constant split
between the front and rear axles does not react to changes in normal load, and thus does not react
to a potential decrease in tractive capability of the lightly loaded tire (front tires in a launch
scenario). This makes it very easy for the driver to over-command the lightly loaded tires and
lose stability in that axle. The driver would have to command very conservatively to prevent
loss of traction at either axle.

The next step up from a constant torque command is to make it proportional to the normal force
on its tire. This is feasible on the car because compression load cells can be installed on the
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pushrods to directly measure normal load. This easily takes into account the changes in normal
load. Essentially this controller is using a tire model that assumes constant coefficient of
friction. Obviously this is not true, but the controller may be good enough even with this
assumption.

To implement the controller, the normal loads are fed back to the software block, then multiplied
by a gain, referred to as Fz torque gain, to transform it into a torque command. The gain is
negative due to the positive Z axis pointing down; a higher absolute value of Fz torque gain is a
more aggressive command. An example of the behavior of this controller is shown in Figures 35
and 36. This simulation was run in four-wheel drive mode with powertrain limit, lambdamu
0.6, Fz torque gain = -0.35.

A study was then conducted to preliminarily assess the viability of this method in various
conditions. A range of lambdamu was swept through. Because we are only assessing the
viability of the proportional method, a range of gains was also swept through. Currently there is
no good way of choosing the best gain for any given lambdamu, so instead, we can simply look
at a range.

The results are shown in Figure 37. The color plot indicates 0-75m time. The red line marks the
edge of traction; the 0-75m times to the bottom and left of the line level off because wheelspin
occurs. The definition of wheelspin for a run is if any value of slip ratio is greater than 1. From
this preliminary study, this proportional method seems promising. It can produce a blistering 0-
75m time of 3.62s at a conservative lambdamu value of 0.55, which is already lower than the
FSAE rule of thumb of 2/3. It can produce stable results even at low values of lambdamu. This
simple scheme could also improve braking drastically. Normal hydraulic braking systems have a
brake bias bar that provides a constant ratio of front braking force to rear braking force. With
four-wheel drive and regenerative braking, the brake bias can be dynamic and react to changes in
normal load. Provided the motors are able to provide all the requested negative torque, the
dynamic brake bias can significantly increase braking performance. The remaining problem is to
figure out how to choose the gain value, which again returns to the problem of lambdamu.
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5. CONCLUSION

A versatile vehicle simulation was written in Simulink for the purpose of investigating vehicle

motion and designing and tuning controllers without the need for a physical testbed. The scope

of this paper was restricted to straight line motion. Several launch control schemes were tested

for both rear wheel drive and four wheel drive.

The simulation structure lends itself to a few purposes. Being written in a visual coding

language, it is easier for a newcomer to understand the underlying physics. Adding subsystems is

also more straightforward. Furthermore its structure is designed to be accurate to the actual

vehicle, with a software block that is separate from the physics model. This makes it useful for

testing control algorithms. It is also useful for conducting sensitivity studies as all the variables

are modifiable from an external script.

From the results of the investigation into launch controllers, a few conclusions can be drawn.

The constant torque command results in good performance but it is difficult to choose the correct

torque command. The ramped torque command suffers from the same problem and seems to be

even slower. For four wheel drive, a normal load proportional controller produced promising

results, proving to be fast and stable given the correct gain value is chosen. However, the issue

of lambdamu, the road surface coefficient, is still outstanding. The ultimate challenge is to

design an algorithm that is agnostic or insensitive to external conditions.
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5.1 FUTURE WORK

One of the main purposes of this project was to begin the MIT FSAE team's venture into full
vehicle simulation. Many paths can be taken from this point; however there are a few things that
are appropriate to be done in the short term to improve the simulation.

1. Conduct tests to verify the simulation. The data available for the correlation described
earlier was not of the best quality. Instrumenting all four wheels with Hall effect sensors,
load cells on the pushrods, and carefully recording test conditions will provide useful data
for correlation. It is also recommended to prepare different scenarios such as an
acceleration-braking run or a coast down test. The constants that are most in need of
tuning are the mechanical efficiency, rolling resistance, aero coefficients, and motor
torque-speed curves.

2. Add noise and offset to the feedback signals. Noisy or inaccurate signals pose a large
problem for implementing control algorithms on the physical system. The Simulink
structure makes it easy to add noise. This would potentially cut down further on time
required with the physical testbed. It could also help inform sensor selection with a more
concrete requirement for accuracy.

3. Add complexity to the simulation. The next major subsystem to add for longitudinal
motion is the battery, and with it comes voltage and current. A battery is an extremely
complex system to model, but it is necessary to be able to test any power limiting
algorithms. After the battery, add lateral capability. Lateral tire modeling is actually
easier than longitudinal tire modeling, but is still a difficult task as it adds two degrees of
freedom to the overall model.

39



6. APPENDIX: CODE DETAIL

software

Figure 38: Top level

1- oefircfon

-er-l----

fI-60I

U

I u~aII

muss N.yn.1 ii

- wtb" SePed tans ormahon

~~em

safw ouitpuls

mm-bI

Figure 39: Inside the vehicle block
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