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The natural habitats of planktonic and swimming microorgan-
isms, from algae in the oceans to bacteria living in soil or
intestines, are characterized by highly heterogeneous fluid flows.
The complex interplay of flow-field topology, self-propulsion, and
porous microstructure is essential to a wide range of biophysi-
cal and ecological processes, including marine oxygen production,
remineralization of organic matter, and biofilm formation.
Although much progress has been made in the understanding of
microbial hydrodynamics and surface interactions over the last
decade, the dispersion of active suspensions in complex flow
environments still poses unsolved fundamental questions that
preclude predictive models for microbial transport and spreading
under realistic conditions. Here, we combine experiments and sim-
ulations to identify the key physical mechanisms and scaling laws
governing the dispersal of swimming bacteria in idealized porous
media flows. By tracing the scattering dynamics of swimming
bacteria in microfluidic crystal lattices, we show that hydrody-
namic gradients hinder transverse bacterial dispersion, thereby
enhancing stream-wise dispersion ∼100-fold beyond canonical
Taylor–Aris dispersion of passive Brownian particles. Our anal-
ysis further reveals that hydrodynamic cell reorientation and
Lagrangian flow structure induce filamentous density patterns
that depend upon the incident angle of the flow and disorder
of the medium, in striking analogy to classical light-scattering
experiments.

swimming cells | active matter | transport | dispersion | porous media

Scattering experiments have long been used to successfully
probe the structure and dynamics of photons, electrons, and

other forms of passive matter (1). A recent extension of tradi-
tional particle-scattering concepts to living matter has provided
important insights into the cell–cell (2, 3) and cell-surface inter-
actions (4–7) of swimming microorganisms in simple scattering
geometries and under idealized quiescent fluid conditions. By
contrast, very little is known about the individual and collective
behaviors of bacteria and other microbes in their natural, highly
dynamic, and geometrically complex fluid habitats (8, 9). The
biological and ecological importance of cell-flow and cell-surface
interactions in porous media and turbulent environments is now
widely recognized in the regulation of cell dispersal (10, 11),
chemotaxis (11, 12), fertilization (13), biofilm formation (14),
and disease transmission (15). However, due to a lack of quanti-
tative data, no validated predictive models exist to describe such
processes (16). Here, we combine experiments and simulations
to determine the effects of the carrier fluid flow on the trans-
port of swimming bacteria through a periodic microfluidic lattice,
drawing inspiration from classical X-ray scattering experiments
by Bragg and Laue (1).

The random walks of self-propelled cells and particles in uni-
formly moving fluids are often described as diffusion (17–19),
which enabled early theoretical progress on active transport in
flow (20, 21). However, recent experiments (10, 11) showed that
even simplistic, 1D flow gradients can cause local cell accu-
mulations (22), with profound implications for microswimmer
transport (23–25). Notwithstanding such progress, the mech-

anisms by which generalized fluid flows and self-propulsion
can enhance or hinder the densification and dispersion of
swimming cells (11) in geometrically complex environments
are not yet known (26). Identifying the underlying biophys-
ical and hydrodynamic effects is essential for understanding
the dynamics of active suspensions in porous media and tur-
bulent flows, which are often characterized by strong kine-
matic mixing (27) due to heterogeneous 2D and 3D velocity
gradients.

To investigate and quantify how flow gradients and self-
propulsion determine the transport properties of active sus-
pensions relative to passive Brownian solutes, we studied the
scattering dynamics of swimming bacteria at single-cell reso-
lution in a periodic microfluidic lattice (Fig. 1A). Similar to
classical light scattering, our experimental setup allowed us to
precisely control the incidence angles of the carrier flows relative
to the microfluidic crystal lattice and thus disentangle the effects
of hydrodynamic mixing and dispersion often found in disor-
dered systems. In agreement with predictions from a Langevin
model, our data reveal a strong dependence of the cell den-
sification patterns and dispersion coefficients on the incident
flow angles, which are two key features that we show to per-
sist in biologically relevant random media (SI Appendix). While
local fluid shear can describe bacterial accumulation in simple,
1D flows (11), our results below illustrate that in generalized,
Lagrangian-unsteady flows, advection and the velocity gradient
history of the flow regulate the topology of cell distributions. We
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Fig. 1. Swimming bacteria scatter in microfluidic lattice flows forming filamentous density patterns. (A) Schematic of the microfluidic device (depth,
100 µm) composed of a square, periodic lattice of circular pillars, oriented at various angles relative to the flow. Inset shows annotated channel image
(θ= 30◦). Pillar diameter (65 µm) and lattice constant (120 µm) are constant for all experiments. (Scale bar, 100 µm.) (B and C) Sample trajectories of
swimming bacteria (B. subtilis; θ= 0◦) at mean shear rates (B) γ̇= 0 s−1 and (C) γ̇= 6 s−1. (Scale bar, 65 µm.) (D) Normalized cell density without flow
(γ̇= 0 s−1) showing no large-scale density pattern. Density, ρ, is measured from experiments by binning cell counts (2-µm× 2-µm resolution) and normalized
by the mean density, ρ0 (Materials and Methods). White zones around pillars are excluded from analysis due to inconsistent cell detection caused by light
scattering. (Scale bar, 65 µm.) (E) Experimentally measured cell densities change qualitatively with the incident flow angle, θ, exhibiting filamentous density
patterns, whose topology is conserved across mean shear rates, γ̇. Black arrows indicate mean flow directions (Top row), and scale bar and color bar from D
apply. (F) Density contrast (SD of streamline-averaged, normalized cell density) characterizes changes in cell density as a function of shear rate for various
lattice angles in experiments (solid lines) and simulations (dashed lines) (SI Appendix, Fig. S4).

identify cell alignment to Lagrangian fluid stretching as the pri-
mary mechanism for the observed densification. Strikingly, our
data further show that cell reorientation, determined by vortic-
ity history, hinders lateral transport and amplifies stream-wise
dispersion ∼100-fold beyond Taylor–Aris dispersion (28, 29) for
passive particles.

Results and Discussion
Bacterial Suspension Flow in a Microfluidic Crystal Lattice. The
microfluidic lattices (Fig. 1A and Materials and Methods) com-
prise a square, periodic array of circular pillars in an other-
wise rectangular cross-section microchannel. The pillar diameter
(65 µm) and lattice spacing (120 µm) are held constant, and the
flow topology is modified by rotating the lattice orientation rel-
ative to the mean flow direction (Fig. 1A, Inset) in a series of
five individual channels (θ= 0◦, 7.5◦, 15◦, 30◦, 45◦; SI Appendix,
Figs. S1 and S2). A dilute suspension of wild-type Bacillus subtilis
bacteria (mean swimming speed Vs = 31.2 µm/s; Materials and
Methods) was flowed through the device using a syringe pump
in a mean flow speed range of Ūf = 0−400 µm/s, correspond-
ing to a mean shear rate of γ̇= 0−10 s−1, defined here as the
spatial average of the positive eigenvalue of the strain rate ten-
sor (SI Appendix, Fig. S1). Results are presented in terms of
the mean shear rate, which was shown to be a key parameter
in microbial transport (11, 22). Video microscopy captures the

cell motion (Fig. 1 B and C) and spatial distribution (Fig. 1 D
and E) in the middepth of the microchannel, which was designed
with a large channel height to pillar spacing ratio (≈2) to ensure
fluid velocity gradients are dominant in the image plane. Mea-
sured data are periodically averaged in space and presented as
a 2× 2 tiling of the unit cell (Fig. 1 D and E and Materials
and Methods).

Bacterial Scattering Yields Angle-Dependent Filamentous Density
Patterns. Steady flow through the microfluidic lattice results
in striking, filamentous cell density patterns, which meander
around pillars (Fig. 1E) and along streamlines (Fig. 2A). In
contrast, nonmotile cells and particles do not exhibit such den-
sification (SI Appendix, Fig. S3), and without flow, the random
walks of motile bacteria (Fig. 1B) generate a homogeneous
cell density, ρ, normalized by the mean density, ρ0 (Fig. 1D).
Changes in the flow topology (SI Appendix, Fig. S1), gener-
ated by varying the incident mean flow angle, θ, with respect
to the lattice, cause drastic changes in the filament topolo-
gies, which track the fluid streamlines (Fig. 2A). Filamentous
bacterial density patterns are also prominent in biologically
relevant random media (SI Appendix, Fig. S9). Topological
changes in the filament structure with flow angle are accom-
panied by changes in the density contrast (Fig. 1F), which
is defined as the SD of the streamline-averaged, normalized
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Fig. 2. Hydrodynamic alignment of bacteria drives filamentous density patterns. (A) Normalized cell densities from Langevin simulations (γ̇= 6 s−1) capture
experimentally observed densification patterns (cf. Fig. 1E, Bottom row). Black lines are streamlines (constant for all mean shear rates). (Scale bar, 60 µm.)
(B) Streamlines coincide with bacterial density striations (θ= 45◦, γ̇= 6 s−1), where the schematic of elongated cell alignment represents the hypothesized
mechanism of densification. (Scale bar, 20 µm.) (C) Investigation of cell orientation from simulations (A) shows local alignment to extensional zones, but not

to the full structure of bacterial filaments. Cell alignment is defined as B =
√
〈α2

0〉/〈α2〉− 1, where α is the acute angle between cell body and streamline,

〈α2
0〉 is the mean-square angle for a uniform cell orientation distribution, and 〈·〉 indicates ensemble averaging. White arrowheads highlight hyperbolic

flow regions for θ= 45◦. (Scale bar, 60 µm.) (D) Sample distributions of cell-streamline angle, α, corresponding to streamlines with colored ellipsoids in
B, illustrate prominent cell alignment on high-density filaments. Inset shows schematic of bacterial swimming velocity, vs, in a flow with fluid velocity
u. (E) Lagrangian fluid stretching measured from flow fields (SI Appendix, Figs. S1 and S2) for lattice angles in A with γ̇= 6 s−1. (Scale bar, 60 µm.) (F)
Scatter plot of Pearson-normalized variables exemplifies the correlation between bacterial density, ρP , and stretching, SP (black dashed line is slope 1).
Pearson variables are defined as XP = (X−〈X〉)/σ(X), where X is streamline-averaged logarithm of normalized cell density, 〈ln(ρ/ρ0)〉sl, and stretching,
〈ln S〉sl, and σ denotes SD (SI Appendix, Fig. S4). (G) Pearson coefficients show strong correlation for both experiments (Top) and simulations (Bottom)
(SI Appendix).

bacterial density, σ〈ρ/ρ0〉sl (SI Appendix, Fig. S4). The density
contrast increases continuously with mean shear rate for lat-
tice angles θ= 0◦ and 45◦, where the corresponding flow fields
for these lattices exhibit periodic streamlines over one unit cell
(Fig. 2A). Conversely, lattice angles having aperiodic streamlines
(θ= 7.5◦, 15◦, 30◦) display a lower density contrast that varies
nonmonotonically with increasing shear. To elucidate the phys-
ical origin of the bacterial density patterns, we implemented a
Langevin model that accounts for the translational and rota-
tional cell body dynamics in flow (11, 30) (SI Appendix). All
physical parameters including cell swimming speed, Vs , and
rotational diffusivity, Dr , are measured directly from experi-
ments, leaving no fitting parameters (Materials and Methods
and SI Appendix). The model accurately predicts the topol-
ogy (Fig. 2A), magnitude (Fig. 1F), and angular dependence of
the observed densification, and it enables us to make quantita-
tive predictions beyond flow speeds achievable in our current
experiments.

Hydrodynamic Bacterial Alignment Drives Densification. The cou-
pling of not only translational but also rotational cell body
dynamics to the flow is integral to swimming-cell transport (11,
30). Thus, to determine the origin of the densification, we inves-
tigate cell orientation in the vicinity of the pillars from which
the density patterns spawn (Figs. 1E and 2A). The distribu-
tion of cell body orientation relative to coincident high-density
streamlines (Fig. 2B), p(α), shows a strong degree of alignment
(Fig. 2D, red curve), whereas cells on low-density streamlines
are weakly aligned (Fig. 2D, blue curve). However, a local
assessment of cell orientation reveals only a partial correlation
between cell-streamline alignment and cell density (Fig. 2C).
Local cell-streamline alignment arises from the hydrodynamic
coupling of the cell body orientation to the extensional regions
of the flow (31, 32), in this case emanating from two hyper-
bolic stagnation points on the upstream and downstream sides
of the pillars, respectively (Fig. 2C, white arrowheads). Hydrody-
namic scattering aligns elongated bacterial cells that swim into
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high extension zones with streamlines that coincide with the
extensional manifolds. This preferential alignment provides the
mechanism for accumulation (11). However, despite the lack of
local cell-streamline alignment farther downstream, high bacte-
rial density filaments persist. Advection sweeps bacteria away
from extensional zones along departing streamlines, due in part
to relatively weak cell swimming speed compared with the mean
flow speed (Ūf /Vs > 1). Thus, to understand the emergence of
the high-density filaments, insight into the history of the velocity
gradients experienced by cells is necessary.

Lagrangian Fluid Stretching Underpins Bacterial Density Patterns.
Bacteria remain localized on streamlines for a finite time, λ, until
the combined effects of hydrodynamic rotation (32), flagellar-
induced tumbling (17), and Brownian rotation facilitate their
escape (SI Appendix, Fig. S5). During this time, bacteria may
be advected up to several unit cells downstream and experience
a range of flow conditions. While local shear was perceived to
be an indicator of bacterial accumulation in 1D flows (11), the
observed cell density patterns in our Lagrangian-unsteady 2D
flows do not correlate with local velocity gradients (Figs. 1E
and 2A and SI Appendix, Fig. S1), suggesting that nonlocal
effects stemming from advection dominate. The Lagrangian fluid
stretching field encapsulates the integrated extension experi-
enced over a particle’s history in the flow. Stretching fields are
known to be a good predictor of elongated particle alignment,
even in chaotic flows (31), which suggests that stretching may
also be indicative of densification (Fig. 2). Lagrangian stretch-
ing, S(x,λ), is defined (33) as the relative elongation of an
initially spherical fluid particle after experiencing advection and
deformation through a flow field over the time interval λ (SI
Appendix). Fluid stretching is directly related to the finite-time
Lyapunov exponent field and has been used to characterize
transport in applications ranging from weather patterns to chem-
ical reacting systems (34, 35). Stretching fields for the steady
periodic lattice flows investigated here (Fig. 2E and SI Appendix)
reveal strikingly similar topologies to the observed bacterial den-
sity patterns (Figs. 1E and 2A). Regions of high cell-streamline
alignment (Fig. 2C) correspond to regions of high stretching
(Fig. 2E), where local fluid deformation is strongest. However,
Lagrangian stretching manifolds extend throughout the periodic
lattice along streamlines due to advection (Fig. 2A). Bacterial
density is thus strongly correlated with regions of high stretch-
ing (Fig. 2 F and G and SI Appendix), which critically relies on
the elongated shape of the bacteria (Fig. 2G).

The effects of bacterial scattering are sensitive not only to the
imposed mean shear rate, but also, in a further analogy with
light scattering, to the incident angle of the mean flow direc-
tion, relative to the lattice (Fig. 1E). Mean flow angles exhibiting
periodic streamlines (θ= 0◦, 45◦) stretch the fluid repeatedly,
when passing through the same location in the unit cell (Movies
S1 and S5), reinforcing bacterial alignment and enhancing the
concentration. Conversely, in flows with aperiodic streamlines
(θ= 7.5◦, 15◦, 30◦; Movies S2–S4 and SI Appendix), the stretching
field, as with the cell density, tends to a uniform spatial distri-
bution for large mean shear rates. The emergence of bacterial
densification patterns, along with their mediation by the inci-
dent angle of the flow, marks a strong departure from Brownian
solutes.

Flow Hinders Lateral Bacterial Dispersion. On a larger scale, the
dispersion of the scattered bacterial suspension depends upon
the motility of the cells, which further distinguishes the transport
properties of active and passive particles. Without flow, the per-
sistent random walks, and thus effective diffusion coefficient, D0,
of the bacteria, are only marginally affected by the pillar lattice
(SI Appendix, Fig. S6). However, examination of the cell dis-
placement distribution transverse to the flow, p(∆x , t), reveals

that the diffusive spreading of swimming bacteria is progressively
hampered in the microfluidic lattice with increasing mean shear
rate (Fig. 3A). This observation is corroborated by the increas-
ingly fast decorrelation of the cells’ swimming velocity with
increasing mean shear rate (Fig. 3B). The velocity correlation
function of the random-walking cells, Ψ⊥(t) = 〈v⊥(t) · v⊥(0)〉,
decreases exponentially without flow due to flagellar-induced
tumbling and Brownian rotational diffusion (Fig. 3B), which
are modeled as rotational diffusion, Dr (SI Appendix). As the
shear rate increases, the slow exponential decay of the cell
velocity correlation gives way to rapidly decaying oscillations,
which implicate hydrodynamic cell rotation through vorticity,
ω, as the mechanism enhancing decorrelation (Fig. 3B and
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SI Appendix, Fig. S1). We examine changes in the transport
coefficients as a function of the rotational Péclet number (11)
based on the mean absolute vorticity, Per = 〈|ω|〉/2Dr . Disper-
sion coefficients transverse to the flow (Fig. 3C) are obtained
directly from the correlation functions of orientation through the
Green–Kubo relation (36, 37), D⊥=

∫∞
0

Ψ⊥(t)dt (SI Appendix,
Fig. S7). Augmenting the flow strength, and thus the vorticity,
rapidly decreases D⊥ with increasing flow speed for Per & 1, in
comparison with a marginal effect for a Brownian solute (Fig. 3C
and SI Appendix).

The lateral dispersion of bacteria depends strongly on the
incident angle of the scattered suspension within the microflu-
idic lattice, which is rationalized by a simple model. A swimmer
with rotational diffusion in constant vorticity (38, 39) yields
an effective diffusion coefficient D⊥=D0/(1 + Pe2r ) (Fig. 3C,
black dashed line) (SI Appendix), setting the lower bound of
D⊥ for both our simulations and experiments. The large rota-
tional Péclet number regime, where reduced transport occurs,
also corresponds to a weak motility regime (Ūf /Vs > 1), where
the cell is advected faster than it swims. In this context, we model
an effectively nonmotile particle advected along a streamline,
x(t), which undergoes rotational noise and experiences a vortic-
ity that fluctuates around a mean value, ω(x(t)) = 〈ω〉sl + δω(t).
The orientation correlation function for such a particle is (SI
Appendix)

〈e(t) · e(0)〉= cos

[
〈ω〉sl t +

∫ t

0

δω(τ)dτ

]
× e−t/τp , [1]

where e is the cell swimming director and τp = 1/Dr is the per-
sistence time. The magnitude of the absolute mean vorticity,
|〈ω〉sl |, is much larger for periodic streamlines compared with
the aperiodic streamlines (SI Appendix, Fig. S8), which is at
the origin of the vorticity history dependence, and thus inci-
dent angle dependence, for D⊥. This model corroborates the
D⊥∼Pe−2

r scaling for periodic streamlines (θ= 0◦, 45◦), while
for angles with aperiodic streamlines (θ= 7.5◦, 15◦, 30◦) and
random media (SI Appendix), D⊥ decays more slowly. Despite
the strong approximation of swimming cells as immotile parti-
cles, this analysis captures the variation in lateral dispersion with
incident flow angle, observed in experiments and simulations
(Fig. 3C).

Hindered Lateral Dispersion Enhances Longitudinal Dispersion. We
have demonstrated that the transverse dispersion of swimming
bacteria is reduced (Fig. 3C), but we have yet to establish
whether dispersion in active suspensions competes with or
enhances the well-known longitudinal Taylor–Aris dispersion of
passive Brownian particles (28, 29). The longitudinal dispersion
coefficient, D‖, rapidly increases with rotational Péclet num-
ber (Fig. 3C, θ= 0◦), which is far stronger than the expected
∼Pe2r scaling typical of Taylor–Aris dispersion (28, 29, 40)
(Fig. 3C and SI Appendix). Drawing a parallel between the rel-
atively unidirectional flow for the θ= 0◦ lattice and a straight
duct, the dispersion of Brownian tracers is expected to scale
as D‖∼ Ū 2

f R
2
0/Dm for Per� 1, where R0 is a characteristic

length and Dm is a constant molecular diffusion coefficient (28).
Dispersion results from the transverse spreading of the solute
across the duct, where it is swept downstream at different rates
due to advection (29). However, for active, swimming cells, we
have shown that the effective transverse dispersion coefficient
decreases with increasing Per—proportional to both mean flow
speed and vorticity in Stokes flow. Taking the transverse trans-
port coefficient as Dm =D⊥, we recover a normalized dispersion
coefficient that scales as D‖/D0∼Pe4r for Per� 1 (SI Appendix).
The predicted giant Taylor–Aris dispersion coefficient scaling
bounds the observed stream-wise transport coefficients for the
periodic θ= 0◦ lattice, which exhibits an ≈100-fold increase in

dispersion above passive particles (Fig. 3C). Similar to Taylor–
Aris dispersion (40), the observed giant longitudinal dispersion
coefficient also exhibits a dependence upon the incident flow
angle (Fig. 3C). However, active dispersion is systematically
higher than passive Taylor dispersion, and it reflects the increase
of the longitudinal dispersion coefficient, D‖, with decreasing D⊥
across various incident lattice angles (Fig. 3C) (41).

Conclusions
This work translates century-old ideas of X-ray scattering from
crystalline materials (1) to the transport of active matter in
an idealized porous medium, bearing curious similarities in the
dependence of scattering strength on incident angle. Bacterial
scattering in a microfluidic lattice reveals that flow topology, cou-
pled with self-propulsion and cell shape, modifies the microscale
spatial distribution of bacteria and impacts their macroscale
transport properties, which strikingly depart from the behavior
of Brownian solutes. This departure is mediated by the hydro-
dynamic stretching and vorticity history of the swimming cells,
which are two fundamental Lagrangian properties, shown here
to govern densification and dispersion, respectively. Lagrangian
coherent structures have proved invaluable in understanding
passive fluid transport (33–35): Our analysis shows that they
offer the potential to not only characterize but also predict
the transport properties of active matter in complex, dynamical
fluid systems (42). In particular, the correlation of cell densifi-
cation with Lagrangian stretching may be extended to random
porous media (SI Appendix, Fig. S9) and unsteady flows, includ-
ing marine turbulence, where predicting cell transport is both
challenging and important to large-scale bio-oceanography mod-
eling (21, 24, 43). The emergent heterogeneous cell distributions
at the pore scale will inform our understanding of microbial
function and biome dynamics in processes ranging from biofilm
formation (44) to niche partitioning (45). Harnessing these
novel transport properties could inspire new methods for cell
separation (46) or tailoring dispersion (29) for applications in
water filtration (47), remediation (48–50), and control of active
matter (51, 52).

Materials and Methods
Bacterial Culturing. Wild-type B. subtilis bacteria (OI1085) were cultured by
inoculating 5 mL of Cap Assay Minimal (CAM) motility medium with cells
obtained from a frozen glycerol stock (53). Cells were grown initially for
12 h (37 ◦C, 250 rpm) to an optical density OD600 = 0.05 and then subcul-
tured (100 µL in 5 ml of CAM) and regrown for 10 h to OD600 = 0.1. Before
experiments, bacterial suspensions were diluted 10 times in CAM medium
to ≈6.5× 106 cells/mL, making cell–cell interactions negligible.

Microfabrication and Microfluidic Experiments. Polydimethylsiloxane (PDMS)
microfluidic channels were fabricated through soft lithography (54) and
plasma bonded to standard glass microscope slides. The 100-µm high chan-
nels had an overall length and width of 40 mm and 3.6 mm, respectively. The
square lattice of circular pillars (65 µm diameter, 120 µm spacing) occupied
the central 10 mm of five different microchannels, which were prepared
with lattices oriented at angles θ= 0◦, 7.5◦, 15◦, 30◦, and 45◦ relative to
the mean flow direction. Cell suspensions were driven with a syringe pump
(Harvard Apparatus) at rates Q = 0, 0.03, 0.09, 0.27, 0.81, 1, 2, 3, 4, 5 µL/min
in random order to avoid systematic errors and allowed to reach steady state
for 60 s, before acquiring image data. Before and after each experiment, the
flow was halted, and cells were imaged in the open region of the channel
devoid of pillars to measure cell swimming speed, Vs, and effective rota-
tional diffusivity, Dr . The full set of experiments for all lattice angles and
flow rates was repeated three times on different days with freshly cultured
bacteria.

Cell Imaging and Tracking. Imaging was performed at middepth in the
microchannel pillar array test section far from side walls and four or
more lattice spacings from the end of the test section. Cells were imaged
using phase-contrast microscopy on an inverted microscope (Nikon Ti-E;
10×, 0.3 NA objective). For each experimental condition, a 4,000-frame
video was recorded at 45 fps (Zyla sCMOS camera; Andor Technology).

Dehkharghani et al. PNAS | June 4, 2019 | vol. 116 | no. 23 | 11123

D
ow

nl
oa

de
d 

at
 M

IT
 L

IB
R

A
R

IE
S

 o
n 

N
ov

em
be

r 
12

, 2
01

9 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1819613116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1819613116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1819613116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1819613116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1819613116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1819613116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1819613116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1819613116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1819613116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1819613116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1819613116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1819613116/-/DCSupplemental


Bacteria were tracked using a custom predictive particle-tracking algo-
rithm (MATLAB; MathWorks), yielding ≈15, 000 cell trajectories per video.
Cell detection within ≈8 µm of the pillar surfaces was unreliable due to
strong light scattering, and thus these regions were omitted from further
analysis.

Periodic Cell Density Averaging. The full field of view comprises ∼8× 7 unit
cells (120 µm × 120 µm) with vertices based on pillar centers. From cell-
tracking data, bacterial positions are determined relative to their local unit
cell. The unit cell space is binned into a 60× 60 grid, and the cell counts

are tallied for each bin over the course of the experiment. Cell counts are
normalized by the total number of bacteria giving the 2D bacterial probabil-
ity density, ρ. We further normalize ρ by the average value of the bacterial
density, ρ0, and present data as a 2× 2 tiling of four unit cells for both
experimental and simulation results (Figs. 1 and 2).

ACKNOWLEDGMENTS. We thank G. A. Voth and S. Parsa for helpful dis-
cussions on Lagrangian stretching. This work was funded by NSF Awards
CBET-1511340, CAREER-1554095, and CBET-1701392 (to J.S.G.) and CBET-
1510768 (to J.D.) and by a Complex Systems Scholar Award from the James
S. McDonnell Foundation (to J.D.).

1. Authier A (2013) Early Days of X-Ray Crystallography (Oxford Univ Press, Oxford, UK).
2. Alexander GP, Pooley CM, Yeomans JM (2008) Scattering of low-Reynolds-number

swimmers. Phys Rev E 78:045302(R).
3. Drescher K, Dunkel J, Cisneros LH, Ganguly S, Goldstein RE (2011) Fluid dynamics

and noise in bacterial cell-cell and cell-surface scattering. Proc Natl Acad Sci USA
108:10940–10945.

4. Kantsler V, Dunkel J, Blayney M, Goldstein RE (2014) Rheotaxis facilitates upstream
navigation of mammalian sperm cells. eLife 3:e02403.

5. Sipos O, Nagy K, Di Leonardo R, Galajda P (2015) Hydrodynamic trapping of
swimming bacteria by convex walls. Phys Rev Lett 114:258104.

6. Contino M, Lushi E, Tuval I, Kantsler V, Polin M (2015) Microalgae scatter off solid
surfaces by hydrodynamic and contact forces. Phys Rev Lett 115:258102.

7. Li G, Tang JX (2009) Accumulation of microswimmers near a surface mediated by
collision and rotational Brownian motion. Phys Rev Lett 103:078101.

8. Guasto JS, Rusconi R, Stocker R (2012) Fluid mechanics of planktonic microorganisms.
Annu Rev Fluid Mech 44:373–400.

9. Stocker R (2012) Marine microbes see a sea of gradients. Science 338:628–633.
10. Durham WM, Kessler JO, Stocker R (2009) Disruption of vertical motility by shear

triggers formation of thin phytoplankton layers. Science 323:1067–1070.
11. Rusconi R, Guasto JS, Stocker R (2014) Bacterial transport suppressed by fluid shear.

Nat Phys 10:212–217.
12. Ford RM, Harvey RW (2007) Role of chemotaxis in the transport of bacteria through

saturated porous media. Adv Water Resour 30:1608–1617.
13. Riffell JA, Zimmer RK (2007) Sex and flow: The consequences of fluid shear for sperm

egg interactions. J Exp Biol 210:3644–3660.
14. Nadell CD, Drescher K, Foster KR (2016) Spatial structure, cooperation, and

competition in bacterial biofilms. Nat Rev Microbiol 14:589–600.
15. Pandey PK, Kass PH, Soupir ML, Biswas S, Singh VP (2014) Contamination of water

resources by pathogenic bacteria. AMB Express 4:51.
16. Tufenkji N (2007) Modeling microbial transport in porous media: Traditional

approaches and recent developments. Adv Water Resour 30:1455–1469.
17. Berg HC, Brown DA (1972) Chemotaxis in Escherichia coli analysed by three-

dimensional tracking. Nature 239:500–504.
18. Polin M, Tuval I, Drescher K, Gollub JP, Goldstein RE (2009) Chlamydomonas swims

with two “gears” in a eukaryotic version of run-and-tumble locomotion. Science
325:487–490.

19. Howse JR, et al. (2007) Self-motile colloidal particles: From directed propulsion to
random walk. Phys Rev Lett 99:048102.

20. Long T, Ford RM (2009) Enhanced transverse migration of bacteria by chemotaxis in
a porous T-sensor. Environ Sci Technol 43:1546–1552.

21. Taylor JR, Stocker R (2012) Trade-offs of chemotactic foraging in turbulent water.
Science 338:675–679.

22. Kessler JO (1985) Hydrodynamic focusing of motile algal cells. Nature 313:218–220.
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