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Abstract—Nonlinear frequency modulated (NLFM) pulse com-
pression waveforms have become a mainstream methodology for
radars across multiple sectors and missions, including weather
observation, target tracking, and target detection. NLFM affords
the ability to generate a low-sidelobe autocorrelation function and
matched filter while avoiding aggressive amplitude modulation,
resulting in more power incident on the target. This capability
can lead to significantly lower system design costs due to the
possibility of sensitivity gains on the order of 3 dB or more com-
pared with traditional, amplitude-modulated linear frequency
modulated (LFM) waveforms. Generation of an optimal NLFM
waveform, however, can be an arduous task, and may involve
complex optimization and non-closed-form solutions. For a multi-
mission or cognitive radar, which may utilize a wide combination
of frequencies, pulse lengths, and amplitude modulations (among
other factors), this could lead to an extremely large waveform
table for selection. This paper takes a neural network approach to
this problem by optimizing a set of over 100 waveforms spanning
a wide space and using the results to interpolate the waveform
possibilities to a higher resolution. A modified form of a previous
NLFM method is combined with a four-hidden-layer neural
network to show the integrated and peak range sidelobes of the
generated waveforms across the model training space. The results
are applicable to multi-mission and cognitive radars that need
precise waveform specifications in rapid succession. The expected
waveform generation times are addressed and quantified, and
the potential applicability to multi-mission and cognitive radars
is discussed.

Index Terms—radar, weather, waveform design, pulse compres-
sion, optimization, neural networks, machine learning, nonlinear
frequency modulation

I. INTRODUCTION

The advent of nonlinear frequency modulated (NLFM)
pulse compression waveforms in multiple classes of radar has
introduced a capability for decreasing range sidelobes while
maintaining high sensitivity through the use of limited (or no)
amplitude modulation [1], [2]. Recent advances in this area
have been particularly highlighted in the weather radar realm,
due to the necessity of low peak and integrated sidelobes for
the accurate detection and representation of distributed targets
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[3]–[9]. While these solutions may be acceptable for a single-
use-case scenario, there are difficulties that arise in multi-
function and cognitive radars [10]–[13]. The methodology in
[7], for example, involves a complex optimization process
with a non-closed-form solution, making it a time-consuming
process to develop a waveform for one set of chirp bandwidth,
pulse length, amplitude modulation, etc. Multi-mission and
cognitive radars of the future would conceivably need a large
set of waveform parameter combinations, resulting in the
potential for extremely large waveform tables. For example,
if a hypothetical radar was expected to have waveforms to
fit every combination of chirp bandwidths from 1-100 MHz
at 0.1-MHz resolution, pulse widths from 10-200 µs at 1-
µs resolution, and amplitude modulation from 0.5 (unitless)
to 1 at 0.01 resolution, this would result in a waveform table
with nearly 10 million combinations. At approximately 5 hours
per optimization, and using 10,000 consecutive cores on a
supercomputing grid, it could take nearly 7 months to design
the waveform table.

This is important because multi-mission radars may need to
pick waveforms “on the fly” to minimize spectral interference
or track a target with sufficient resolution. These combinations
of parameters could be exceptionally specific, requiring many
different waveforms to be available. It is also important to
note that cognitive radars have been hypothesized to be able to
change waveforms from pulse to pulse [10], [11], necessitating
the selection of appropriate waveforms on extremely short
timescales (on the order of milliseconds). The focus of this
paper is the capability for extremely rapid generation of radar
waveforms for a multi-mission or cognitive radar using a
neural network approach. This technique utilizes a modified
form of the NLFM method described in [7] to optimize
over 100 individual waveforms. These waveforms are fed
to a four-hidden-layer neural network that outputs expected
Bézier parameters that define the frequency chirp for candidate
waveforms in approximately 10 ms. This approach effectively
acts as an interpolation method for the waveform input param-
eters and the associated Bézier output parameters, eliminating
the need to optimize millions of separate waveforms. The
resolution of this interpolation is theoretically infinite in the
model training space, allowing the radar to choose extremely
specific waveform parameter combinations.
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Multiple organizations are exploring the future use of multi-
mission and rapid-scanning radars, including the Federal Avi-
ation Administration (FAA) and the National Weather Service
(NWS) [12]–[14]. The Airport Surveillance Radar 9 (ASR-9)
is an example of a multi-mission radar, as it provides both
tracking and weather capabilities at sites with an on-board
Weather Systems Processor (WSP). In a future ASR-9/WSP
replacement, for example, the radar could be scanning a gust
front impinging on an airfield at moderate temporal and spatial
resolution (as part of an FAA weather mission) in one part
of its domain and observing a non-cooperative target at high
temporal and spatial resolution in another part of its domain.
Low-reflectivity targets such as gust fronts and the desire
to obtain clear-air data via Bragg scatter are strong drivers
for pulse compression for weather-related missions. The gust
front mission would require a long pulse for sensitivity but
reduced bandwidth due to the lack of need for extremely high
spatial resolution. The non-cooperative target may allow for a
shorter pulse if it is a highly reflective target and/or is close
to the radar (i.e., within the blind range of a longer pulse),
but might require a very high bandwidth in order to determine
the type of target with high certainty. Not only are different
waveforms necessary on the fly for the radar completing these
two missions, but neighboring radars would have to adapt to
the large bandwidth of the primary radar, possibly with the
need to complete other missions with fewer spectral resources.
This dynamic environment describes the need for very large
waveform tables or “on-the-fly” methods.

Although the results of the neural network waveforms in
this study are not quite on par with the individually optimized
waveforms, it is suspected that this technique can be refined
and improved in the future. This paper shows promise for the
technique, not a final result. This paper also serendipitously
shows improvements to the NLFM methodology in [7], with
nearly direct comparisons to the previous method that demon-
strate improved results.

II. METHODOLOGY

A. Modifications to NLFM Technique

In [7], the fitness function that determines optimization
performance is based on peak sidelobe level and null-to-null
mainlobe width. The weakness of this approach is raised in [9],
which cites the advantage of focusing on integrated sidelobe
level for distributed targets. The fitness function from [7] was
therefore modified to take the form of:

F =
ISL

MLW
(1)

where ISL is integrated sidelobe level (in dB) and MLW
is the null-to-null mainlobe width (in m). The fitness, F ,
is targeted for minimization. Note that ISL will always be
a negative value, resulting in the objective of lowering the
ISL and minimizing the MLW. In addition to this change
to the fitness function, the updated method adds a 3-dB
range resolution target (which joins the null-to-null mainlobe
width target in [7]). This parameter allows for a wider 3-dB

mainlobe width than would be typically expected for a given
bandwidth, allowing for some of the resulting energy to be
used in minimizing sidelobes. Both the 3-dB and null-to-null
mainlobe width targets act as hard stops for the associated
parameters, meaning that the optimization is deemed infeasible
if the parameter exceeds the target. These parameters are
typically represented by scaling factors relative to the expected
3-dB mainlobe width (i.e., the relation between the speed of
light, c, and the bandwidth, B). For this study, scaling factors
of 2 and 10 were used for the 3-dB range resolution and
the null-to-null mainlobe width, respectively. For example, a
chirp bandwidth of 5 MHz would result in an expected 3-
dB mainlobe width of 30 m, and scaling factors of 2 and 10
would target mainlobe widths of 60 m and 300 m at 3 dB and
null-to-null, respectively.

Finally, changes for the Bézier pull vector limits were made.
Previously, there were user-defined limits to these vectors,
which was due to the goal of minimizing the search space
for faster convergence on a solution. For this study, the
limits were expanded and normalized to the specifications
fed into the optimization. The pull vectors, which define the
search grid in the optimization, were changed to -1.5 to +1.5
in the bandwidth dimension (where the chirp bandwidth is
normalized between -1 and +1 about the center frequency,
with the edges akin to half the bandwidth). In the pulse length
dimension, the range is from -0.125 to +0.5 (where the pulse
length is normalized between 0 and 1). The search space is
defined by the sampling frequency and a scaled divisor that
define a grid of possible Bézier pull vector locations. For
the examples shown in this study, a sampling frequency of
160 MHz was used, and a divisor of 1,000 was used in the
bandwidth dimension. This leads to 3,001 possible bandwidth-
dimension pull vector destinations and, for example, 24,001
possible time-dimension pull vector destinations for a 100-
µs pulse length, resulting in a grid of over 72 million points.
With 6 pull vectors and two dimensions each, the search space
becomes approximately 1.94 x 1094 possible combinations.
This is approximately 1057 times the search space than that
reported in [7].

B. Neural Network Design

The NLFM design technique utilized in this study can take
at least 5 hours to complete, depending on how confident the
user desires the algorithm to be at termination. The neural
network approach is necessary because a full waveform table
for a multi-mission or cognitive radar would take prohibitively
too long to develop, especially when considering complica-
tions related to transmitter droop and distortion. The number
of hidden layers was varied between 1 and 15, and a train-
ing/validation/test ratio of 70/15/15 was used. A shallow, fully
connected, feed-forward regression neural network was trained
for each hidden layer size, and the results were subjectively
analyzed in order to determine an appropriate hidden layer
size. A Levenberg-Marquardt backpropogation optimization
was used. For this study, 4 hidden layers were used in the
neural network due to the performance evident relative to
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Fig. 1. Autocorrelation function (ACF) for an optimized NLFM waveform
with a 2-MHz chirp bandwidth, a 75-µs pulse length, and a 0.1 roll-off
factor raised-cosine amplitude taper. The observed ISL is -45.83 dB, and
the observed PSL is -69.65 dB. The 3-dB range resolution and null-to-null
mainlobe width targets and results are relaxed compared to [7].

the other tested values. The inputs to the neural network are
bandwidth and pulse length, while amplitude modulation, 3-
db range resolution target, and null-to-null mainlobe width
target were set at 0.1, 2, and 10, respectively. The amplitude
modulation represents a 0.1 roll-off factor of a raised-cosine
taper, leading to 0.24 dB of SNR loss relative to a rectangular
pulse. The outputs are the 12 Bézier pull vector parameters. It
is important to note that additional combinations of parameters
(amplitude modulation, mainlobe widths, etc.) can be ingested
into the neural network, assuming a sweep of these parameters
is represented in the training data.

The series of pulse lengths used in the training data was 20,
25, 30, 35, 40, 45, 50, 60, 75, 100, 125, 150, 175, and 200 µs.
The series of chirp bandwidths used was 0.5, 1, 2, 3, 4, 5, 7.5,
and 10 MHz. This resulted in 112 optimized waveforms that
were fed into training of the neural network. Each waveform
had two input parameters (pulse length and bandwidth) and 12
outputs (the 12 Bézier parameters). It should be noted that this
is an exceptionally small training dataset for a neural network.
It is anticipated that a denser spacing of parameters (i.e., the
optimization of more waveforms) would improve the results
shown in this study due to less data sparsity. We recognize
this challenge and limitation, but hope to expand our training
dataset in the future.

III. RESULTS

In order to offer a comparison to the results in [7], the
true, optimized waveform that is closest to the 2.2-MHz, 67-

Fig. 2. Frequency chirp pattern for an optimized NLFM waveform with
a 2-MHz chirp bandwidth, a 75-µs pulse length, and a 0.1 roll-off factor
raised-cosine amplitude taper. This pattern corresponds to the autocorrelation
function (ACF) shown in Fig. 1.

µs (147.4 time-bandwidth product) example shown in [7] is
analyzed here (i.e., part of the training dataset). This waveform
is a 2-MHz chirp with a 75-µs pulse length (150 time-
bandwidth product), and its autocorrelation function is shown
in Fig. 1. A one-to-one comparison with [7] is not possible
due to the spacing of the training dataset. The new waveform
displays ISL of -45.83 dB and PSL of -69.65 dB, compared
with ISL of -37 dB and PSL of -59 dB in [7]. The 3-dB range
resolution and null-to-null mainlobe width have been relaxed,
however, with values of 151.88 m and 750 m, respectively,
compared to 120 m and 405 m in [7]. This yields a somewhat
unfair comparison between the two waveforms, which must
be kept in mind; this is due to the fact that more-relaxed
parameters were allowed for the neural network approach.
Note that the amplitude modulations are equal, with both using
a raised-cosine taper with a roll-off factor of 0.1.

The chirp pattern for the optimized 150 time-bandwidth
waveform is shown in Fig. 2. As with most NLFM waveforms
that utilize light amplitude modulation, the chirp rate is slightly
lower on the edges of the pulse where the taper takes effect.
The chirp rate then increases before becoming relatively linear
through the middle half of the pulse. This “rotated S” shape
has been noted in the literature before [2] and is similar to
that seen in [7]. As the amplitude modulation is increased,
the slower chirp rate presses toward the middle of the pulse
(not shown) due to the lack of energy available in the areas of
lower power. As with many other examples in the literature,
all of the NLFM waveforms used in this study are forced to
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Fig. 3. Autocorrelation function (ACF) for a neural network-based NLFM
waveform with a 2-MHz chirp bandwidth, a 75-µs pulse length, and a 0.1
roll-off factor raised-cosine amplitude taper. The observed ISL is -36.41 dB,
and the observed PSL is -57.45 dB. The 3-dB range resolution and null-to-null
mainlobe width are degraded compared to the example in Fig. 1.

be symmetric due to the enhanced Doppler tolerance noted
in [15]. Although Doppler tolerance is not shown in this
paper, it is similar in nature to Fig. 6 in [7]. PSL, in general,
raises approximately 10-15 dB at 25 m s−1 Doppler shift, and
approximately 20 dB at 50 m s−1 Doppler shift.

Waveform specifications, such as the example shown in
Figs. 1 and 2, and the resulting Bézier parameters were given
as input to the neural network with the goal of generating
new waveforms rapidly. This would allow for an effective
interpolation of the waveform table in a multi-function or
cognitive radar, vastly increasing the table size. The most
viable method for comparing the model’s capabilities is to
compare the optimized waveform from Figs. 1 and 2 with the
model output for the same waveform specifications. The model
output (i.e., test data) for a 2-MHz, 75-µs waveform (for direct
comparsion with Figs. 1 and 2) is shown in Fig. 3. The ISL is
-36.41 dB, while the PSL is -57.45 dB. This is a significantly
degraded waveform compared to the optimized version, but it
should be noted that the results are similar in nature to those
in [7] with the non-modified NLFM method. With that said, as
with the optimized version, the 3-dB range resolution and null-
to-null mainlobe width are significantly widened, somewhat
limiting the usefulness of the model’s waveform. However,
this method is still in an experimental stage, and the ability
for the model to generate a viable waveform is promising.

Although the performance is degraded, a critical detail for
the modeled waveform is that it was generated in approxi-
mately 10 ms. This is compared with the roughly 24 hours it

took to fully optimize the waveform in Figs. 1 and 2. When
the time to generate a waveform is considered, the waveform
performance should be weighed against this variable. For
a multi-function or cognitive radar, the ability to generate
waveforms on the fly is critical to the radar’s functionality.
With a larger training dataset and more parameter dimensions
in the model, we hope to improve the functionality for even
better results that can be generated in the same amount of
time.

Finally, the performance of the neural network should be
quantified across the spectrum of the possible design space.
This type of analysis gives a clear indication of the model’s
ability to serve its function, which is to act as an interpolator
across the parameter dimensions. Waveforms were generated
with bandwidths spanning 1.5 MHz to 10 MHz at 0.25-MHz
resolution, and pulse lengths spanning 25 µs to 200 µs at 1-
µs resolution. This analysis generates 6,688 waveforms in just
over a minute, compared with the 112 optimized waveforms
that took days to process. The resulting ISL and PSL values
(from the test data) are shown in Figs. 4 and 5, respectively. As
expected, as the time-bandwidth product increases, sidelobe
levels generally decrease, especially in the ISL. ISL values
range from -25 dB at relatively low time-bandwidth products,
to -55 to -60 dB at time bandwidth products over 1,000. A
pseudo pareto front of “acceptable” (arbitrarily) ISL values at
or below -35 dB can be drawn from roughly 2 MHz and 50
µs to 4 MHz and 25 µs, or a time-bandwidth product of 100.
Similar parameters tend to yield PSL values at or below -55
dB.

It should be noted that 3-dB range resolutions and null-to-
null mainlobe widths are not shown, but they are generally
higher than the optimized versions of the waveforms. This
can be mitigated by building the scaling factors for these
parameters into the model, something we have not yet been
able to accomplish due to the higher computational complexity
necessary. The resulting ISL and PSL values would likely
degrade, but this is an ongoing area of research.

IV. DISCUSSION

Effective and timely generation of waveforms is an im-
portant task for any multi-mission or cognitive radar. The
neural network technique presented in this paper supports
the generation of acceptable waveforms in an exceptionally
short amount of time. Of particular note is the improvement
to the existing NLFM method in [7] and how it allows for
neural network-based waveform statistics to be similar to the
results in [7]. The modified fitness function is much improved,
but there is still ongoing work to perfect the technique.
Without specifically including PSL in the fitness function, it is
conceivable that higher sidelobes adjacent to the mainlobe will
be observed in optimized waveforms. Additionally, there is
less impetus to keep a thin mainlobe if attempting to minimize
ISL, however this is somewhat mitigated by the existence of
the MLW term in the denominator of the fitness function.

The optimization method is still in need of ideal param-
eters for the Bézier pull vector limits. This issue exists in
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Fig. 4. Integrated sidelobe level (ISL) for a range of neural network
waveforms ranging from 1.5 to 10 MHz and 25 to 200 µs. Each waveform
was generated in approximately 10 ms, yielding 6,688 waveforms in just over
a minute. Based on the results of [7], the ISL levels are comparable or better
for most time-bandwidth products above 100.

two opposite senses: first, it would be prudent to limit the
search space for computational complexity reasons. Second,
we would like to be able to generate the most “flexible” chirp
functions possible. If the limits are too wide, the search space
becomes too large and it is difficult to achieve convergence.
Additionally, it can be difficult to get an optimal shape to the
chirp function. If the limits are too narrow, it is unlikely that a
near-global optimum will be found. It is particularly difficult
to achieve the optimal Bézier pull vector limits at very low and
very high time-bandwidth products. This work is ongoing, and
as mentioned later in this section, will eventually be applied
to the neural network approach.

The neural network results show degraded performance
compared with the optimized waveforms, but may still be
considered “acceptable” for certain missions. In addition to
elevated sidelobes, the mainlobe width is generally about 50%
larger than the optimized waveforms. This can be mitigated
in two related ways: first, increase the number of mainlobe
width scaling factors. For this study, only a factor of 10 was
used. Smaller factors would force smaller mainlobe widths,
but also likely result in higher sidelobes. Second, increasing
the number of optimized waveforms fed to the neural network
would vastly improve the model. For computational reasons,
we were restricted to the 112 waveforms used in this study.
Expanding dimensionalities, resolution, and range would im-
prove the robustness of the model. Other methodologies could
also be explored, such as a support vector regression model.
It is not known if a shallow neural network is the best option

Fig. 5. Peak sidelobe level (PSL) for a range of neural network waveforms
ranging from 1.5 to 10 MHz and 25 to 200 µs. Each waveform was generated
in approximately 10 ms, yielding 6,688 waveforms in just over a minute.
Based on the results of [7], the PSL levels are comparable or better for most
time-bandwidth products above 100.

for the goal of rapid waveform design.
As previously mentioned, the range of parameters should be

increased in future iterations of this work. We only included
bandwidths up to 10 MHz and pulse lengths of 25-200 µs.
Certain applications will require significantly more bandwidth,
or longer/shorter pulse lengths. These “edges” of waveform
parameters are difficult to generalize due to the need to
change the Bézier pull vector spatial limits and resolutions
across time-bandwidth space. Work is ongoing to simplify this
process and expand the reach of the NLFM method presented
in this paper. It is expected that improved results at low and
high time-bandwidth products will allow for an expansion of
the neural network method in the near future. This expansion
will also lead to a growth in the training dataset for the neural
network, further aiding in the model’s expected performance.

Finally, the speed of waveform generation can be expected
to improve with time and using other design platforms, includ-
ing advanced hardware such as Graphical Processing Units
(GPUs). The waveforms in this study were designed with
MATLAB, which is not the fastest-processing scripting lan-
guage. An implementation either in a compiled language or on,
for example, a field-programmable gate array (FPGA) would
theoretically vastly improve the time it takes to generate the
necessary waveform with the pre-trained model. Additionally,
the ability for a radar to store recently used and commonly
used waveforms would also decrease the time needed to
generate a waveform. With the ability to generate waveforms
on the order of ms, true pulse-to-pulse waveform selection
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is possible, and scan-to-scan selection is already feasible, as
shown in this paper.

The impact of multi-mission and cognitive radars to future
radar-based goals is expected to be significant [10], [12],
[13]. Not only can multi-mission radars decrease overall
network costs due to the ability to cover multiple needs,
but the capabilities inherent in, for example, a phased-array
or imaging radar [16], [17] could revolutionize the way we
use radar for missions such as weather observation and air
traffic control. Part of this concept, however, includes the
possibility of optimizing the radar for each mission on the fly.
Additionally, radio frequency spectrum is a large consideration
for a multi-mission or cognitive radar network. Such radars
would need to both fit into the existing spectral landscape and
also fit into the spectral characteristics of the network they are
a part of.

V. CONCLUSIONS

This paper presents a modified approach to NLFM wave-
form design that uses ISL and MLW in a fitness function for
optimizing waveform parameters. Modifications to [7] include
a new fitness function, a 3-dB range resolution restriction, and
an increased search space size through the use of modified
Bézier pull vector limits. A comparison to the results in
[7] is presented in order to demonstrate the performance
enhancements of the altered method. This method is applied
to the optimization of 112 different waveforms spanning 20–
200 µs in pulse length and 0.5–10 MHz in chirp bandwidth.
Each of the optimized waveforms is used as input to a shallow
neural network, with the pulse length and bandwidth serving
as inputs, and the 12 Bézier parameters serving as outputs.
The trained neural network model is then used to generate
6,688 waveforms in just over one minute (compared with
the days it took to generate the original 112 waveforms).
The results of the neural network-generated waveforms are
presented over the model training space, showing an effective
“interpolation” of the waveform parameters, and the ability to
generate arbitrary waveforms on the order of 10 ms.

Future work will involve further modification of the fitness
function and Bézier pull vector limits for the core optimization
technique. This will allow for better waveform statistics at the
“edges” of the design space (i.e., very low and very high time-
bandwidth products). This work will allow for expansion of
the neural network, leading to increased usability and perfor-
mance. Additionally, we plan to increase the dimensionality
of the model to include amplitude modulation, 3-dB range
resolution limit, and null-to-null mainlobe width limit. We
also would like to optimize waveforms at a higher effective
“resolution” in the parameter space. These changes will vastly
increase the training dataset size, leading to a more robust
neural network. Finally, we plan to implement this method-
ology in a real-time system, allowing us to quantify realistic
waveform generation times in a system-based framework. We
also plan to use the University of Oklahoma’s PX-1000 [18]
and PX-10000 radars to test our new waveform methodology

and implement on-the-fly distortion corrections for model-
generated waveforms.
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