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ABSTRACT 12 

Black carbon (BC) emissions from aircraft engines lead to an increase in the atmospheric burden 13 

of fine particulate matter (PM2.5). Exposure to PM2.5 from sources including aviation is associated 14 

with an increased risk of premature mortality, and BC suspended in the atmosphere has a warming 15 

impact on the climate. BC particles emitted from aircraft also serve as nuclei for contrail ice 16 

particles, which are a major component of aviation’s climate impact. In order to facilitate the 17 
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evaluation of these impacts, we have developed a method to estimate BC mass and number 18 

emissions at the engine exit plane, referred to as the Smoke Correlation for Particle Emissions – 19 

CAEP11 (SCOPE11). We use a dataset consisting of SN – BC mass concentration pairs, collected 20 

using certification-compliant measurement systems, to develop a new relationship between Smoke 21 

Number (SN) and BC mass concentration. In addition, we use a complementary dataset to estimate 22 

measurement system loss correction factors and particle geometric mean diameters to estimate BC 23 

number emissions at the engine exit plane. Using this method, we estimate global BC emissions 24 

from aircraft landing and takeoff (LTO) operations for 2015 to be 0.74 Gg/yr (95% CI: 0.64 – 25 

0.84) and 2.85 × 1025 particles/yr (95% CI: 1.86 – 4.49 × 1025). 26 

TOC ART 27 

 28 

INTRODUCTION 29 

Global commercial aviation activity is expected to grow by 1.5-4.1% annually between 2020 30 

and 2050 under a range of IPCC scenarios (1). The upper side of this range is consistent with 31 

industry projections that expect requiring almost double the fleet size by 2036 (2,3). Emissions 32 

from aircraft engines near airports can increase particulate matter (PM) and ozone (O3) 33 

concentrations (4,5). The inhalation of fine PM with an aerodynamic diameter below 2.5 m 34 
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(PM2.5) by surrounding populations can lead to adverse health impacts and an increase in 35 

premature mortalities (6,7). 36 

While current epidemiological evidence is based on mass concentrations, increasing 37 

toxicological evidence points to the importance of number (or surface area) as a metric of 38 

importance (8). This is a particular concern for aviation engines due to their capacity to produce 39 

so-called “ultra-fine” particulate matter, with aerodynamic diameter below 100 nm (9–14). 40 

Emissions of these ultra-fine particles can lead to a significant increase in ambient particle number 41 

concentrations, with decreases in average particle size, leading to increased lung deposition 42 

fractions (15–18). The air quality and health impacts from aviation emissions have been quantified 43 

at scales spanning airport and regional level calculations (19–22) to national level estimates 44 

(5,23,24) to global aviation activity (4,25,26). Median estimates for premature mortalities 45 

attributable to all aviation emissions in 2006 vary between 9,000 (25) and 16,000 (4), which 46 

represents ≲ 2% of premature mortalities caused by outdoor air quality degradation due to 47 

anthropogenic emissions. BC emissions account for ~0.2% of this health impact due to full flight, 48 

global emissions (27). However, this result does not account for differences between fine and ultra-49 

fine PM, and the BC contribution may be higher at a regional level (5). In addition, BC particles 50 

emitted at cruise altitudes serve as ice nuclei to promote the formation of contrails. Contrails are 51 

considered to be one of the largest of aviation’s climate impacts (28,29) and have been found to 52 

be sensitive to BC number emissions (30,31). 53 

These concerns have led the International Civil Aviation Organization’s (ICAO) Committee for 54 

Aviation Environmental Protection (CAEP) to develop emissions standards for aircraft engines, 55 

which currently include limits on NOx, unburned hydrocarbons, and carbon monoxide emissions 56 

during a standard landing and takeoff (LTO) cycle (32). Aircraft engine black carbon (BC) 57 
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emissions have also been regulated indirectly through the Smoke Number (SN) standard adopted 58 

in 1981.  59 

The SN standard was developed to limit the visibility of the black soot from aircraft engine 60 

exhaust plumes. It is measured by capturing the BC in the exhaust stream on a filter and measuring 61 

its change in reflectance (33). While the SN is useful for estimating the visibility of the plume, it 62 

is not a suitable metric to quantify air quality impacts on human health. Advanced measurement 63 

systems have therefore been developed to measure BC emissions from aircraft engines. The 64 

systems have evolved over a series of engine measurement campaigns, including the Aircraft 65 

Particle Emissions Experiment (APEX) (34), the Aviation-Particulate Regulatory Instrumentation 66 

Demonstration Experiment (A-PRIDE) (9), and an additional study demonstrating the method for 67 

smaller engines (10). This work has culminated in an Aerospace Recommended Practice (ARP) 68 

that provides guidelines for the measurement of BC emissions (35).  69 

In addition to improvements in the measurement systems, reporting requirements and a mass 70 

concentration standard for engines produced after 1 January 2020 were established at the 10th 71 

meeting of CAEP. While this reporting requirement is useful for quantifying future emissions of 72 

BC mass and number, there remain a range of engines that are expected to continue active 73 

operation with no BC measurements available. For this reason, various correlations have been 74 

developed that relate SN with BC mass concentration, including the FOA3 method (36) and a 75 

correlation developed by Stettler et al. (37). These have been used as the basis of estimates for 76 

several air quality studies, however they can vary by a factor of 4 in estimating total global BC 77 

emissions (38). To the best of the authors’ knowledge, no relationships exist to predict BC number 78 

emissions from engine certification data, except for using simplified relationships that are 79 

extremely sensitive to the choice of a constant geometric mean diameter (GMDs). 80 
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In this paper, we use a dataset of simultaneous SN and mass concentration measurements to 81 

improve the estimation of aircraft engine BC mass concentration from SN data (dataset-1). While 82 

similar in form to the original dataset used to develop FOA3 (36), the measurements used here 83 

were taken using a standardized measurement system defined in ICAO Annex 16 Vol. II (32) and 84 

the SN and mass concentration measurements were acquired simultaneously. The FOA3 method 85 

was developed using certification SN data, with mass concentration measured independently using 86 

in-service engines. Thus, dataset-1 is expected to lead to a more reliable correlation than these 87 

previous studies. Despite the advancements in measurement systems, the long sampling lines 88 

required to transport the BC from engine exit to measurement devices lead to particle losses as, 89 

for example, particles are deposited on the walls of the sampling lines. These losses have been 90 

discussed in various measurement campaigns (11,34) and can be in excess of 50%, increasing as 91 

the geometric mean diameter (GMD) of particles decreases (39). Using a dataset of simultaneous 92 

BC mass and particle number emissions (dataset-2), we have developed a correlation to estimate 93 

mass system loss correction factors when only mass concentration data is available. Using this 94 

same dataset, we have developed a method to predict BC number emissions by assuming a 95 

lognormal size distribution and correlating the GMD with a function of measured mass 96 

concentration and the pressure at the combustor exit. These correlations and the method to convert 97 

them to total BC mass and number emissions is referred to as the Smoke COrrelation for Particle 98 

Emissions – CAEP11 (SCOPE11), and will be used by airports and ICAO-CAEP in developing 99 

international standards for the regulation of aircraft engine BC emissions. In addition, this work 100 

can be used by modelers to improve estimates for aviation BC emissions and evaluations of 101 

aviation’s environmental impact. 102 

 103 
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MATERIALS AND METHODS 104 

SN to BC mass concentration correlation: We use a dataset of 1407 paired BC mass 105 

concentration (𝐶𝐵𝐶) and SN measurements referred to as dataset-1. These measurements were 106 

taken in order to support the CAEP process, and comprise measurements of 24 aircraft engine 107 

models from 6 manufacturers over a range of engine thrust settings. The SN and 𝐶𝐵𝐶 measurements 108 

were made using standardized measurement systems as defined in ICAO Annex 16 Vol. II (32) 109 

and the data represents measurements at the instrument (𝐶𝐵𝐶,𝑖), rather than at the engine exit plane 110 

(𝐶𝐵𝐶,𝑒), but does include corrections for thermophoretic losses (32,33). The measurement system 111 

involves three sections: collection, transfer and measurement. The collection of BC particles 112 

occurs through a single- or multi-point rake with sampling probes, after which the sample flows 113 

through a heated sample line. The sample is then transferred to a diluter to reduce further 114 

coagulation and thermophoretic losses, before being passed through a 1 m cyclone separator in 115 

order to remove large particles that are assumed not to be generated by combustion. Finally, BC 116 

mass measurements are made using either an AVL Micro Soot Sensor (MSS) or Laser Induced 117 

Incandescence (LII), and number measurements are made using an AVL Particle Counter (APC), 118 

which also requires a volatile particle remover (VPR) to condition the sample for non-volatile 119 

particle number measurements. Major sources of uncertainty are found in the measurement 120 

instruments, estimated to be ~25% for both mass and number, as well as errors due to temperature 121 

and pressure measurements, and errors due to dilution factor measurements (9). 122 

By using standardized, certification-compliant measurement systems, dataset-1 contains high 123 

quality measured data from a wide variety of engines, which has previously been unavailable. This 124 

data has been included in the Supplementary Information (SI) Document B, with additional 125 

information removed to respect proprietary concerns for each manufacturer. The measurement 126 
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points are shown inError! Reference source not found. Figure 1 (blue circles). We note that 127 

while the data has a general exponential trend for SN ≳ 5 (linear in semi-logarithmic axes), the 128 

behavior below this SN is not as clear. In the SN < 5 regime, there is significant spread in the data, 129 

such that at SN = 0, the 𝐶𝐵𝐶,𝑖 can vary by approximately 3 orders of magnitude. To help visualize 130 

the trends, we have separated the data into 25 distinct bins by range of SN and plotted the median 131 

mass concentration for each bin (orange, unfilled circles). The median set of data reveals an 132 

exponential trend for SN ≲ 5 that has a steeper gradient than that for higher SNs. 133 

To account for the observed shape and the changing trend between low and high SN, we 134 

develop a correlation using the product of an exponential function (governing the behavior for 135 

high SN) and a logistic function (governing the behavior for low SN): 136 

𝐶𝐵𝐶,𝑖 =
𝑘1𝑒𝑘2SN

1 + 𝑒𝑘3(SN+𝑘4)
 

Eq 1 

where 𝑘𝑖 are constants that are determined by a two-step nonlinear least-squares fit. In each step, 137 

the fit is carried out on the logarithm of 𝐶𝐵𝐶,𝑖 in order to produce a fit that is applicable across the 138 

full range of SNs. In the first step, the constants 𝑘1 and 𝑘2 are found by fitting the data for SN ≥139 

5 to the exponential function 𝐶𝐵𝐶,𝑖 = 𝑘1𝑒𝑘2⋅SN. In the second step, the full data set is fit to the 140 

combined equation, holding 𝑘1 and 𝑘2 constant, in order to find 𝑘3 and 𝑘4. 141 

To quantify the variability within the data, we also calculate prediction intervals. These are the 142 

intervals between which we have a specified probability (e.g. 90%) that a new concurrent SN 143 

and 𝐶𝐵𝐶,𝑖 measurement would lie. To determine these bounds, we hold 𝑘2 and 𝑘3 fixed. 𝑘1 is 144 

found using an optimization routine that uses the SN ≥ 5 data and ensures 5% of the data above 145 

and 5% of the data below the upper and lower bounding lines respectively. The same method is 146 

used to find 𝑘4, but using the data for SN ≤ 5. 147 
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System loss corrections: As with any sampling-based particle measurement, there are particle 148 

losses in the standardized measurement system which lead to differences between the BC 149 

emissions measured at the instruments versus those actually emitted from the engine at the exit 150 

plane. Losses occur due to changes in flow direction that cause particles to embed on internal 151 

surfaces. This loss can occur due to bends in the sampling lines and the lack of penetration of 152 

particles through individual components. The losses of particles in individual components can also 153 

be a function of size. For example, losses in the VPR are determined to be around 60% for particles 154 

with 15 nm aerodynamic diameter, and 30% at a diameter of 50 nm (10), consistent with trends 155 

from measurements for automotive vehicle emissions (40). These losses, referred to as system 156 

losses, have been found to reduce the measured mass of emissions by up to a factor of 2, while 157 

losses for number emissions can be greater than a factor of 50 (39). Losses depends on particle 158 

size due to device-specific penetration functions and the higher diffusion of smaller particles that 159 

can be absorbed on the line walls. These losses can be estimated by using a system loss calculator 160 

developed by SAE (39), which requires input on the exhaust gas temperature, sampling line lengths 161 

and temperatures, and measured values. 162 

Given that dataset-1 contains measurements at the instrument, we must correct for system 163 

losses to estimate emissions at the engine exit plane. Using a set of simultaneous BC mass and 164 

particle number data measured using the standard-compliant measurement systems (41) (dataset-165 

2) and corrected for differences in fuel hydrogen content, system loss correction factors for mass 166 

(𝑘𝑠𝑙𝑚) have been estimated using the SAE system loss calculator (39). We observe that the mean 167 

particle size, or the geometric mean diameter (GMD), tends to increase with increasing 168 

combustor mass concentration due to coagulation (see subsequent subsections) and thus can be 169 

used to predict 𝑘𝑠𝑙𝑚. To allow for a closed-form equation for 𝑘𝑠𝑙𝑚, we use the mass 170 
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concentration per unit volume of core flow at the instrument, which has also been found to be a 171 

good predictor of the GMD and thus 𝑘𝑠𝑙𝑚. This dataset contains 264 measurements and has also 172 

been included in SI Document B, again with additional data removed to protect the identity of 173 

specific engines or manufacturers. 174 

The system loss correction factors have been correlated with BC mass concentration using the 175 

functional form: 176 

𝑘𝑠𝑙𝑚 = ln (
𝑎1 ∙ 𝐶𝐵𝐶,𝑖(1 + 𝛽𝑚𝑖𝑥) + 𝑎2

𝐶𝐵𝐶,𝑖(1 + 𝛽𝑚𝑖𝑥) + 𝑎3
) Eq 2 

where 𝛽𝑚𝑖𝑥 is equal to the bypass ratio for mixed-flow engines and zero otherwise. The factor 177 

1 + 𝛽𝑚𝑖𝑥 corrects the exit plane mass concentration for mixed-flow engines to a core-equivalent 178 

value. The form of the equation was chosen to obtain the expected asymptotic behavior at high 179 

mass concentrations or high GMDs (𝑘𝑠𝑙𝑚 → ln 𝑎1) and a bounded value at low concentrations or 180 

low GMDs (𝑘𝑠𝑙𝑚 = ln
𝑎2

𝑎3
). 181 

The fit is conducted using non-linear regression, with 34 of the data points discarded as they 182 

were either below the mass measurement limit of detection (𝐶𝐵𝐶,𝑙𝑖𝑚 = 1.0 μg/m3), were 183 

considered anomalous due to measurement errors, or system loss correction data was not 184 

available. 𝑘𝑠𝑙𝑚 can be applied as a multiplicative factor on the emissions index for the mass of 185 

BC, 𝐸𝐼𝑚,𝑖(𝐵𝐶), which measures the mass of BC produced per mass of fuel burnt [mg/kg-fuel]. 186 

We use the Python package Kapteyn (42), which uses a linear approximation of Eq 2 to estimate 187 

the confidence and prediction intervals. To prevent unrealistic values, we constrain the intervals 188 

to have a value greater than or equal to 1. 189 

Calculating Emissions Indices: Using the SCOPE11 correlation, we can estimate 𝐶𝐵𝐶 from 190 

SN data. This can be converted into an emissions index following the method described by 191 
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Wayson et al. (36). 𝐸𝐼𝑚,𝑖(𝐵𝐶) is calculated by multiplying 𝐶𝐵𝐶,𝑖 with the volumetric flow rate, 𝑄 192 

[m3/kg-fuel]. By assuming a fuel hydrogen content of 13.8% by mass, this is calculated as: 193 

𝑄unmixed = 0.776 ∙ AFR + 0.767 

𝑄mixed = 0.776 ∙ AFR ∙ (1 + 𝛽) + 0.767 

Eq 3 

where, 𝑄unmixed is the volumetric flow rate for engines with an unmixed exhaust nozzle and 194 

𝑄mixed is for engines with mixed nozzles that require a correction for the bypass ratio, 𝛽. These 195 

equations require an estimate of the overall air to fuel ratio (AFR). Wayson et al. (36) provide 196 

estimates for AFR at the four ICAO LTO thrust settings of 106 at idle, 83 at approach, 51 at climb-197 

out and 45 at take-off. We then apply the system loss correction factors to 𝐸𝐼𝑚,𝑖(𝐵𝐶) to estimate 198 

the emissions at the engine exit plane.  199 

Estimating exit plane BC number emissions. The BC number emissions index at the engine 200 

exit plane, 𝐸𝐼𝑁,𝑒(𝐵𝐶), can be calculated using 𝐸𝐼𝑚,𝑒(𝐵𝐶) and an estimate of the geometric mean 201 

diameter (GMD) at the same plane. Assuming a log-normal size distribution, the relationship 202 

between these variables can be shown to be (43): 203 

𝐸𝐼𝑁,𝑒(𝐵𝐶) =
6𝐸𝐼𝑚,𝑒(𝐵𝐶)

𝜋𝜌GMD3𝑒4.5(𝑙𝑛𝜎)2 
Eq 4 

where 𝜌 is the effective density of soot assumed to be 1000 kg/m3 and 𝜎 is the geometric 204 

standard deviation (GSD), which has been found to be ~1.8 from experimental observations 205 

(12,44). 206 

In order to apply this equation, we require an estimate for the GMD at the engine exit plane. 207 

This value is a complex function of production rates in the combustor primary zone, oxidation of 208 

BC in the secondary zone and coagulation of particles as they grow downstream of these regions. 209 

Measurement campaigns have also shown that the GMD tends to increase with thrust rating 210 

(27,29), which is due in part to the increase in pressure (and therefore density) at higher relative 211 
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thrust that drives coagulation rates. As such, we use a measure of the BC mass concentration at 212 

the combustor exit, 𝐶𝐵𝐶,𝑐, which is a function of both 𝐶𝐵𝐶,𝑒 and the conditions at the combustor 213 

exit.  214 

The data required for this correlation is estimated from measurements in dataset-2. The 𝐶𝐵𝐶,𝑒 is 215 

found by converting the 𝐸𝐼𝑚,𝑒(𝐵𝐶) in dataset-2 to a concentration using the volumetric flow rate 216 

calculated via Eq 3. The exit plane concentration is converted to an estimate of 𝐶𝐵𝐶,𝑐 using the 217 

method outlined below. The GMD at the engine exit plane is then estimated using Eq 4. This 218 

first requires converting instrument measured mass and number emission indices to exit plane 219 

values. The loss correction factor for mass emissions ranges between 1.1 and 2.4 and that for 220 

number between 1.3 and 20.7. Finally, we assume an effective soot density of 1000 kg/m3 and 221 

GSD of 1.8. Using dataset-2, we have developed a correlation of the form: 222 

GMD = 𝑎 ⋅ 𝐶𝐵𝐶,𝑐
𝑏  

Eq 5 

where 𝑎 and 𝑏 are constants to be determined. 𝐶𝐵𝐶,𝑒 is scaled to the concentration at the 223 

combustor exit using the ratio of the combustor exit to ambient density: 224 

𝐶𝐵𝐶,𝑐 = 𝐶𝐵𝐶,𝑒(1 + 𝛽𝑚𝑖𝑥)
𝜌𝑡4

𝜌𝑎
 

Eq 6 

where 𝐶𝐵𝐶,𝑐 is the predicted BC mass concentration at the combustor exit, 𝐶𝐵𝐶,𝑒 is the mass 225 

concentration at the engine exit plane, scaled to standard temperature and pressure, 𝛽𝑚𝑖𝑥 is the 226 

same parameter as used in Eq 2, 𝜌𝑎 is the density of ambient air (1.2 kg/m3) and 𝜌𝑡4 is the total 227 

density of air at the combustor exit. 𝜌𝑡4 is dependent on the pressure at the combustor exit, 228 

increasing with the thrust level, and can be found using the ideal gas law: 229 

𝜌𝑡4 =
𝑃𝑡4

𝑅air𝑇𝑡4
 

Eq 7 
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where subscript 𝑡4 represents the turbine inlet/combustor exit location, 𝑃 is the pressure, 𝑇 is the 230 

temperature and 𝑅air the specific gas constant of air. The pressure and temperature at the turbine 231 

inlet can be estimated by assuming no pressure loss in the combustor and using a first order 232 

energy balance across the combustor. 233 

𝑃𝑡4 = 𝑃𝑡2 (1 + (π00 − 1)
𝐹

𝐹00
) 

𝑇𝑡4 =
AFR 𝑐𝑝,𝑎 𝑇𝑡3 + LCV

𝑐𝑝,𝑒(1 + AFR)
 

Eq 8 

where π00 is the overall pressure ratio in the engine at rated thrust, 𝐹 𝐹00⁄  is the fractional thrust, 234 

AFR is the air to fuel ratio, 𝑐𝑝,𝑎 = 1.005 kJ/kg/K is the heat capacity at constant pressure of air 235 

and 𝑐𝑝,𝑒 = 1.250 kJ/kg/K is that for the combustion products, LCV= 43.2 MJ/kg is the lower 236 

calorific value of the fuel and 𝑇𝑡3 is the temperature at the inlet to the combustor. 𝑇𝑡3 can be 237 

estimated assuming a constant polytropic efficiency, 𝜂𝑝, of 0.9 for the flow through the core fan 238 

and compressor: 239 

𝑇𝑡3 = 𝑇𝑡2 (
𝑃𝑡3

𝑃𝑡2
)

𝛾−1
𝛾𝜂𝑝

⁄

 

Eq 9 

where 𝑇𝑡2 and 𝑃𝑡2 are the total temperature and pressure at inlet to the gas turbine and 𝛾 is the 240 

heat capacity ratio of air (taken to be 1.4). Using these relationships, we can find the BC mass 241 

concentration at the combustor exit and subsequently conduct a linear regression on the 242 

logarithm of Eq 5. The regression was conducted using the Statsmodel package in Python (45), 243 

which also estimate the confidence and prediction intervals. When conducting the regression, we 244 

discard the same data points that were discarded in the regression conducted for system loss 245 

corrections. 246 
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Estimating global LTO BC emissions: LTO BC emissions for commercial, passenger aviation 247 

activity in 2005 and 2015 can be estimated directly from the number of aircraft operations and the 248 

type of aircraft for each origin-destination pair. The Official Airline Guide (OAG) supplies 249 

schedule data with information on airport pairs that includes both sets of information for a full 250 

year. Matching the aircraft to an engine allows us to estimate SN and fuel flow rates by identifying 251 

the engine in the ICAO engine emissions database (46). This can be used with the ICAO LTO 252 

cycle (32), reflective of aircraft operations up to 915 m above ground level, and the correlations 253 

for 𝐸𝐼𝑚(𝐵𝐶), 𝑘𝑠𝑙𝑚 and 𝐸𝐼𝑁(𝐵𝐶) developed in this paper to calculate the exit-plane mass and 254 

number of BC emissions for a specified aircraft engine. Further details on the OAG data and 255 

aircraft-engine pairs can be found in Stettler et al. (24). 256 

Propagating uncertainties: For all the correlations that have been conducted, we include 257 

confidence and prediction intervals. Confidence intervals provide the range between which the 258 

true regression line is expected to be found with probability (1 − 𝛼𝑐). This informs us on the 259 

uncertainty in estimating the mean results. Prediction intervals provides the range between which 260 

an individual observation may lie with probability (1 − 𝛼𝑝). This interval includes the uncertainty 261 

in the mean result, as in confidence intervals, as well as the scatter in the underlying data, leading 262 

to a wider interval. These two intervals encompass the uncertainties inherent in all of the methods. 263 

For example, in the SN to 𝐶𝐵𝐶,𝑖 correlation, the uncertainty increases as the SN decreases. For 264 

𝑘𝑠𝑙𝑚, differences between measurement systems and their setup and calibration can lead to 265 

variations in the mass system loss correction. Finally, the GMD to 𝐶𝐵𝐶,𝑐 correlation relies on 266 

assumptions on the effective soot density and GSD. Given sufficient data, all of these uncertainties 267 

as well as the underlying measurement uncertainties will be reflected in the variation of the 268 
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measurements around the best fit line. In turn, this variability is accounted for in the confidence 269 

and prediction intervals. 270 

The confidence intervals can be used to estimate the uncertainty in the global LTO BC estimates. 271 

We apply the lower and upper confidence intervals for each correlation to get a lower and upper 272 

estimate of the uncertainty in the global LTO BC estimates. The prediction intervals can be used 273 

to estimate the uncertainty in individual predictions of 𝐸𝐼𝑚,𝑖(𝐵𝐶), 𝐸𝐼𝑚,𝑒(𝐵𝐶) and 𝐸𝐼𝑁,𝑒(𝐵𝐶), as 274 

shown in SI Document A.  275 

 276 

RESULTS 277 

SN to 𝑪𝑩𝑪,𝒊 correlation: The two step, nonlinear least squares fit leads to the following best fit 278 

relationship: 279 

𝐶𝐵𝐶,𝑖 [
μg

m3
] =

648.4 𝑒0.0766⋅𝑆𝑁

1 + 𝑒−1.098⋅(𝑆𝑁−3.064)
 

Eq 10 

This is shown by the black, solid line in Figure 1. The 95% confidence intervals in the parameters 280 

are 281 

𝑘1 = 648.4 ± 44.9 μg/m3 

𝑘2 = 0.0766 ± 0.0038 

𝑘3 = −1.098 ± 0.120 

𝑘4 = −3.064 ± 0.277 

Eq 11 

The prediction intervals within which future measurements would lie with 90% probability is 282 

also found using a similar two-step method. The resulting intervals are  283 

Lower: 

 

𝐶𝐵𝐶,𝑖 [
μg

m3
] =

378.5 𝑒0.0766⋅𝑆𝑁

1 + 𝑒−1.098⋅(𝑆𝑁−5.066)
 

 

Eq 12 
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Upper: 
𝐶𝐵𝐶,𝑖 [

μg

m3
] =

1146.2 𝑒0.0766⋅𝑆𝑁

1 + 𝑒−1.098⋅(𝑆𝑁−1.480)
 

These equations, along with the best fit line, are shown in Figure 1. The gradients of the high 284 

SN and low SN limits are equal for the lower, upper and best fit lines. However, the transition 285 

point between these regions moves from 1.480 for the upper line to 5.066 for the lower line. 286 

 287 

Figure 1: SCOPE11 best fit line (black) with 95% confidence intervals (red) and 90% prediction 288 

intervals (blue). The unfilled orange circles represent the median values of binned dataset-1 values. 289 

Figure 2 provides a comparison of the SCOPE11 correlation to the FOA3 (36) and Stettler et al. 290 

(37) correlations. The FOA3 relationship (36) was developed using a dataset similar to dataset-1, 291 

where the measurements were not taken using a standardized measurement system, which 292 

consisted of fewer than 75 points (compared to 1406 data pairs used here), and used SN and mass 293 

concentration measurements which were not taken concurrently. Due to these differences, the 294 

FOA3 relationship tends to predict lower 𝐶𝐵𝐶,𝑖 than the SCOPE11 correlation, except at a SN ≈ 2 295 

and between 15 and 20. In addition, the FOA3 model assumes that that 𝐶𝐵𝐶,𝑖 = 0 when SN = 0, 296 
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whereas the data shows a median of 𝐶𝐵𝐶,𝑖 = 19.6 μg/m3 and a variation spanning 3 orders of 297 

magnitude at SN = 0. 298 

 299 

Figure 2: Comparison between SCOPE11 (black), FOA3 (dashed, green line) and the Stettler et 300 

al. (26) correlations (dotted, green line). 301 

Stettler et al. (37) used an inverse diffusion flame to generate BC, following a standardized 302 

procedure for measuring SN. However, their methods to measure BC mass differ from the 303 

certification-compliant system. They developed SN – BC mass concentration relationships for 304 

GMDs between 20 and 30 nm and for GMDs of ~60 nm, advising use of the former correlation 305 

for aircraft engines. This correlation tends to predict higher mass concentrations for a wide range 306 

of SN than the SCOPE11 correlation, lying outside of the range of the data found in dataset-1 for 307 

SNs between ~10 and ~25. Stettler et al. (37) also use a functional form which assumes that 𝐶𝐵𝐶,𝑖 =308 

0 when SN = 0. 309 
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System loss corrections. The median relationship to estimate 𝑘𝑠𝑙𝑚 from 𝐶𝐵𝐶,𝑖 is shown in Eq 310 

13. The 95% confidence intervals for each of the constants is also shown in the set of equations 311 

Eq 14. 312 

𝑘𝑠𝑙𝑚 = ln (
3.219 ∙ 𝐶𝐵𝐶,𝑖(1 + 𝛽𝑚𝑖𝑥) + 312.5

𝐶𝐵𝐶,𝑖(1 + 𝛽𝑚𝑖𝑥) + 42.6
) Eq 13 

  

𝑎1 = 3.219 ± 0.135 

𝑎2 = 312.5 ± 119.1 μg/m3 

𝑎3 = 42.6 ± 19.4 μg/m3 

Eq 14 

The results of this fit and the associated data is shown in Figure 3. This functional form predicts 313 

that as 𝐶𝐵𝐶,𝑖 continues to increase, 𝑘𝑠𝑙𝑚 tends towards a constant value of ~1.169 ± 0.041. This 314 

is analogous to the tendency of 𝑘𝑠𝑙𝑚 to approach a constant value as the GMD increases (39). In 315 

addition, for 𝐶𝐵𝐶,𝑖 tending towards 0, we find 𝑘𝑠𝑙𝑚 = 1.99, which is a typical value for GMD ≈316 

10 nm, the minimum size which the measurement system can reliably capture. The spread in the 317 

measurement points are caused by two effects. First, there are differences between the systems 318 

used by each manufacturer, permitted within the measurement guidelines. These differences can 319 

include, for example, specifications of components such as the VPR, or differences in instrument 320 

calibration. Second, variations in the engine exhaust temperature can change the degree of 321 

thermophoretic losses that occur along sampling lines, which is estimated via an analytical form, 322 

also affecting 𝑘𝑠𝑙𝑚.  323 
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 324 

Figure 3: Measured BC mass concentration versus 𝑘𝑠𝑙𝑚 estimated using the line loss calculator. 325 

Exit plane GMD. The results of the linear least squares regression on the power law relationship 326 

between 𝐶𝐵𝐶,𝑐 (in μg/m3) and GMD is shown in Eq 15 with associated 95% confidence intervals 327 

for each constant in Eq 16. 328 

GMD [nm] = 5.08 𝐶𝐵𝐶,𝑐
0.185

 Eq 15 

  

𝑎 = 5.08 ± 0.55 nm 

𝑏 = 0.185 ± 0.015 

Eq 16 
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The results of this fit and the associated data are shown in Figure 4. The adjusted R-squared was 329 

found to be 0.72 and p-values < 0.001. This relationship can thus be used to estimate the 𝐸𝐼𝑁,𝑒(𝐵𝐶) 330 

using Eq 4.  331 

 332 

Figure 4: Combustor exit BC mass concentration vs GMD in logarithmic axes 333 

The correlation to predict GMD is dependent on the choice of the effective soot density and 334 

GSD. These are both uncertain parameters and we only use estimates of their mean value to 335 

produce this correlation. While the choice of these variables is important in estimating the GMD, 336 

they are not critical to estimating 𝐸𝐼𝑁,𝑒(𝐵𝐶), since the regression constants will vary according to 337 

the assumed density and GSD, leading to a similar estimate in the 𝐸𝐼𝑁,𝑒(𝐵𝐶) but with a different 338 

estimate for the GMD.    339 
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Comparison of measured and predicted EI. Using the results presented in the earlier 340 

sections, we can estimate 𝐸𝐼𝑚,𝑖(𝐵𝐶), 𝐸𝐼𝑚,𝑒(𝐵𝐶) and 𝐸𝐼𝑁,𝑒(𝐵𝐶) for engines found in dataset-2, 341 

beginning with the SN at each mode of operation. Figure 5 shows the comparisons for 𝐸𝐼𝑚(𝐵𝐶) 342 

both with (B) and without system loss corrections (A). 𝐸𝐼𝑁(𝐵𝐶) is shown with system loss 343 

corrections only (C). The R2 and root mean square error (RMSE) for each mode of operation as 344 

well as overall are shown in Table 1. These values show that the overall R2 is ~0.8 for all cases, 345 

however the values for taxi operations for 𝐸𝐼𝑚,𝑖(𝐵𝐶) and 𝐸𝐼𝑚,𝑒(𝐵𝐶) tend to be lower than the 346 

other modes. RMSE values vary between 62.9 mg/kg-fuel and 74.7 mg/kg-fuel for 𝐸𝐼𝑚,𝑖(𝐵𝐶)  347 

and between 76.4 mg/kg-fuel and 87.6 mg/kg-fuel for 𝐸𝐼𝑚,𝑒(𝐵𝐶). Table 1 also includes the R2 348 

and RMSE values when using the FOA3 (36) or Stettler (37) correlation in place of SCOPE11, 349 

to estimate 𝐸𝐼𝑚,𝑖(𝐵𝐶). While the R2 values are all similar, our methods tends to produce a higher 350 

R2 than both, except at taxi thrust. The RMSE is lower using the SCOPE11 than the FOA3 351 

method for all modes except taxi by 10-15%. The RMSE using the Stettler et al. (37) correlation 352 

are 168% larger than using the SCOPE11 method overall, increasing as a function of mode.  353 

 354 

Table 1: R2 and RMSE values for instrument mass emissions index (𝐸𝐼𝑚,𝑖(𝐵𝐶)), exit-plane mass 355 

emissions index (𝐸𝐼𝑚,𝑒(𝐵𝐶)), and exit-plane number emissions index (𝐸𝐼N,𝑒(𝐵𝐶)), separated by 356 

mode of operation and overall. For the exit-plane mass emissions, the SCOPE11 method is 357 

compared to the FOA3 (36) and Stettler et al. (37) methods. 358 

  𝑬𝑰𝒎,𝒊(𝑩𝑪) 𝑬𝑰𝒎,𝒆(𝑩𝑪) 𝑬𝑰𝑵,𝒆(𝑩𝑪) 

  
SCOPE11 FOA3 (36) Stettler et al. (37) SCOPE11 SCOPE11 

Taxi R2 0.26 0.35 0.36 0.31 0.77 
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 RMSE 65 mg/kg 61 mg/kg 102 mg/kg 78 mg/kg 3.1  1015 

particles/kg 

Approach R2 0.83 0.76 0.78 0.83 0.84 

 RMSE 63 mg/kg 73 mg/kg 149 mg/kg 86 mg/kg 2.6  1015 

particles/kg 

Climb-out R2 0.83 0.79 0.81 0.84 0.89 

 RMSE 74 mg/kg 84 mg/kg 224 mg/kg 86 mg/kg 1.8  1015 

particles/kg 

Take-off R2 0.75 0.73 0.75 0.80 0.85 

 RMSE 75 mg/kg 82 mg/kg 249 mg/kg 86 mg/kg 8.2  1014 

particles/kg 

Overall R2 0.79 0.75 0.76 0.80 0.82 

 RMSE 69 mg/kg 75 mg/kg 186 mg/kg 82 mg/kg 1.6  1015 

particles/kg 

 359 
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 360 
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Figure 5: Parity plots of predicted versus measured results for (A) 𝐸𝐼𝑚,𝑖(𝐵𝐶), (B) 𝐸𝐼𝑚,𝑒(𝐵𝐶) and 361 

(C) 𝐸𝐼N,𝑒(𝐵𝐶). The 𝑅2 in each case are 0.79, 0.80 and 0.82 respectively. 362 

We have also propagated the prediction intervals from each correlation to estimate the 363 

prediction intervals for mass and number emission indices, and these results can be found in SI 364 

Document A. We find that the uncertainty in 𝐸𝐼𝑚,𝑖(𝐵𝐶) tends to decrease as the emissions 365 

increase and the uncertainty can span almost 2 orders of magnitude at lower SN. For number 366 

emissions, the uncertainty decreases slightly as emissions decrease, however in all cases is large 367 

and spans 1-2 orders of magnitude. 368 

Global LTO BC emissions. Estimates of annual emissions of BC due to LTO activity for 369 

2005 and 2015 are presented in Table 2. Using the SCOPE11 correlation, we estimate LTO BC 370 

mass emissions to be 0.83 Gg/yr (95% confidence interval (CI): 0.72 – 0.95) in 2005 and 0.74 371 

Gg/yr (95% CI: 0.64 – 0.84) in 2015. We also find LTO BC number emissions to be 3.23 × 1025 372 

particles/yr (95% CI: 2.15 – 5.02 × 1025) and 2.85 × 1025 particles/yr (95% CI: 1.86 – 4.49 ×373 

1025) in 2005 and 2015, respectively.  374 

 375 

Table 2: Comparison of global LTO BC estimates. For SCOPE11-estimated BC mass and number 376 

emissions, we include estimates of the 95% confidence intervals in parentheses. 377 

Method 

LTO BC Mass 

[Gg/yr] 

Fleet average LTO 𝐄𝐈𝐦(𝐁𝐂) 

[mg/kg-fuel] 

 2005 2015 2005 2015 

SCOPE11 0.83 (0.72 – 0.95) 0.74 (0.64 – 0.84) 55 (47 – 63) 40 (35 – 46) 

FOA3 (36) 0.55 0.51 37 28 



 24 

Stettler et al. (37) 1.48 1.38 98 75 

 

LTO BC Number 

[× 𝟏𝟎𝟐𝟓 particles/yr] 

Fleet average LTO 𝐄𝐈𝐍,𝐞(𝐁𝐂) 

[× 𝟏𝟎𝟏𝟒 particles/kg-fuel] 

SCOPE11 3.23 (2.15 – 5.02) 2.85 (1.86 – 4.49) 21 (14 – 33) 15 (10 – 24) 

 378 

The difference in annual LTO BC mass emissions between methods shows a similar trend to 379 

that found in Figure 1 for the correlation between SN and 𝐶𝐵𝐶. The SCOPE11 method predicts 380 

~31% higher BC mass emissions than FOA3 and ~86% lower than the Stettler et al. (37) 381 

correlation for 2015, and the trend is similar for 2005. We also find that the fleet-average 382 

EI𝑚(BC) using the SCOPE11 method is found to lie between the estimates using the other two 383 

methods, with similar relative differences for each year. 384 

We also note that SCOPE11-estimated mass emissions decreased by ~11% between 2005 and 385 

2015. The FOA3 (36) and Stettler et al. (37) correlations also predict a decrease in mass 386 

emissions of ~7% each. However, the total LTO fuel burn in 2015 was 22% higher than in 2005. 387 

This corresponds to a decrease in the fleet average LTO 𝐸𝐼𝑚(𝐵𝐶) of(38) correlation between 23 388 

– 27% from 2005 to 2015. We also notice a similar trend in number emissions, which decrease 389 

by ~12% from 2005 to 2015, also reflecting a decrease in fleet average 𝐸𝐼𝑁(𝐵𝐶) of ~29%. 390 

DISCUSSION 391 

The SCOPE11 SN – 𝐶𝐵𝐶 correlation reduces the error in estimating BC emissions from aircraft 392 

engines in comparison to both the FOA3 (36) and Stettler (37) correlations. This improvement 393 

stems from the use of (i) a new database of simultaneously-acquired SN and BC mass 394 

concentration measurements taken using certification-compliant measurement systems from a 395 

representative sample of modern aircraft engines; (ii) a new functional form that better follows 396 

the trends between the SN and BC mass concentration relationship at SN ≲ 5; and (iii) a more 397 
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complete approach to characterize the prediction uncertainty. In addition, we have extended the 398 

method to predict emissions at the engine exit plane, which accounts for measurement system 399 

losses. If system losses are not accounted for, LTO BC emissions may be systematically 400 

underestimated by ~20%. Given the direct climate and air quality impacts of aviation BC 401 

emissions, it is important to account for measurement system losses when developing emissions 402 

inventories. We have also developed a method for estimating BC number emissions at the engine 403 

exit plane, by assuming a lognormal size distribution and estimating the GMD from a measure of 404 

the BC mass concentration at the combustor exit, and applied this to the development of an 405 

inventory of LTO number emissions. To the best of our knowledge, this is the first estimate of 406 

BC number emissions from global commercial aircraft LTO operations.  407 

In order to quantify and propagate uncertainty, confidence and prediction intervals have been 408 

determined for each correlation and are shown in the figures, with numerical values provided in 409 

SI Document B. By propagating confidence intervals through the calculation, lower and upper 410 

bounds on the mean global LTO BC emissions are determined. These intervals depend not only 411 

on the form of the fitting equation, but also on the spread in the underlying data. This spread 412 

depends on variables for which information is available and includes uncertainty in inputs and 413 

constant parameters such as the SN, effective soot density and GSD that are required to apply the 414 

SCOPE11 method. The latter two variables are of particular importance in the number 415 

estimation. While variations in the assumed mean values affects the prediction of the GMD, this 416 

has only a second-order effect on the 𝐸𝐼N,𝑒(𝐵𝐶) as the regression constants would also change if 417 

different values of the effective soot density and GSD were used. The uncertainty ranges 418 

calculated highlight the limited degree of correlation between SN and BC concentration at lower 419 

emission levels, demonstrating the benefit of developing future emissions standards on mass 420 
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concentration and particle number bases and that direct measurements should be used for 421 

assessment purposes where they are available. 422 

While the focus of this work is on LTO operations, this work could be combined with existing 423 

altitude scaling relationships (47), or used in conjunction with results of recent flight 424 

measurement campaigns (48) to inform estimates of cruise-altitude BC emissions. Given the 425 

infrequent opportunities to collect BC emissions data at cruise altitude, the development of 426 

comprehensive, full-flight inventories of BC mass and number emissions must be based on 427 

ground-level emissions estimates, such as those provided by the SCOPE11 method. Such 428 

inventories are important components which enable the assessment of aviation’s environmental 429 

impacts. The ability to predict the size distribution of emissions at the engine exit plane, as in the 430 

method developed here, is particularly important for understanding the evolution and radiative 431 

impact of contrails, and in modeling the indirect effects of BC particles on natural clouds (49), 432 

both of which are among the most uncertain of aviation’s climate impacts. 433 
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