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A search for supersymmetry is presented based on events with large missing transverse energy, no
isolated electron or muon, and at least three jets with one or more identified as a bottom-quark jet.
A simultaneous examination is performed of the numbers of events in exclusive bins of the scalar
sum of jet transverse momentum values, missing transverse energy, and bottom-quark jet multiplicity.
The sample, corresponding to an integrated luminosity of 19.4 fb−1, consists of proton–proton collision
data recorded at a center-of-mass energy of 8 TeV with the CMS detector at the LHC in 2012. The
observed numbers of events are found to be consistent with the standard model expectation, which
is evaluated with control samples in data. The results are interpreted in the context of two simplified
supersymmetric scenarios in which gluino pair production is followed by the decay of each gluino
to an undetected lightest supersymmetric particle and either a bottom or top quark–antiquark pair,
characteristic of gluino mediated bottom- or top-squark production. Using the production cross section
calculated to next-to-leading-order plus next-to-leading-logarithm accuracy, and in the limit of a massless
lightest supersymmetric particle, we exclude gluinos with masses below 1170 GeV and 1020 GeV for the
two scenarios, respectively.

© 2013 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

The standard model (SM) of particle physics has proved to be
remarkably successful in describing phenomena up to the highest
energy scales that have been probed. Nonetheless, the SM is widely
viewed to be incomplete. Many extensions have been proposed to
provide a more fundamental theory. Supersymmetry (SUSY) [1–8],
one such extension, postulates that each SM particle is paired with
a SUSY partner from which it differs in spin by one-half unit,
with otherwise identical quantum numbers. For example, squarks
and gluinos are the SUSY partners of quarks and gluons, respec-
tively. One of the principal motivations for SUSY is to stabilize the
calculation of the Higgs boson mass. For this stabilization to be
“natural” [9–11], top squarks, bottom squarks, and to a lesser ex-
tent gluinos, must be relatively light. If top and bottom squarks
are light, their production is enhanced, either through direct pair
production or through production mediated by gluinos, where the
latter process is favored if the gluino is relatively light so that its
pair production cross section is large. Since the decay products of
both bottom and top squarks include bottom quarks, natural SUSY

� E-mail address: cms-publication-committee-chair@cern.ch.

models are characterized by an abundance of bottom-quark jets
(b jets).

In R-parity-conserving [12] SUSY models, supersymmetric parti-
cles are created in pairs. Each member of the pair initiates a decay
chain that terminates with the lightest SUSY particle (LSP) and
SM particles, typically including quarks and gluons, which then
hadronize to form jets. If the LSP only interacts weakly, as in the
case of a dark-matter candidate, it escapes detection, potentially
yielding significant missing transverse energy (Emiss

T ). Thus large
values of Emiss

T provide another possible SUSY signature.
In this Letter, we present a search for SUSY in events with at

least three jets, one or more of which are identified as b jets
(b tagged), and large Emiss

T . The search is based on a sample of
proton–proton (pp) collision data collected at

√
s = 8 TeV with the

Compact Muon Solenoid (CMS) detector at the CERN Large Hadron
Collider (LHC) in 2012, corresponding to an integrated luminos-
ity of 19.4 fb−1. Previous LHC new-physics searches in final states
with b jets and Emiss

T are presented in Refs. [13–25]. The cur-
rent analysis is an extension of the study presented in Ref. [23],
which was based on 4.98 fb−1 of data collected at

√
s = 7 TeV.

We retain the same basic analysis procedures, characterized by
a strong reliance on control samples in data, to evaluate the SM
backgrounds. The principal backgrounds arise from the production
of events with a top quark–antiquark (tt) pair, a single-top quark,
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Fig. 1. Event diagrams for the (a) T1bbbb and (b) T1tttt simplified SUSY scenarios.

a W boson in association with jets (W + jets), a Z boson in associ-
ation with jets (Z + jets), and multiple jets produced through the
strong interaction, in which a b-tagged jet is present. We refer to
events in the latter category as quantum chromodynamics (QCD)
multijet events. For W + jets events and events with top quarks,
significant Emiss

T can arise if a W boson decays into a neutrino and
a charged lepton. The neutrino provides a source of genuine Emiss

T .
For events with a Z boson, significant Emiss

T can arise if the Z bo-
son decays to two neutrinos. For QCD multijet events, significant
Emiss

T can arise when a charm or bottom quark undergoes semilep-
tonic decay, but the main source of Emiss

T is a mismeasurement of
jet transverse momentum pT. The QCD multijet category excludes
events that are contained in the other categories.

As new-physics scenarios, we consider the simplified SUSY
spectra [26–29] in which gluino pair production is followed by the
decay of each gluino g̃ into a bottom quark and an off-shell bottom
squark or into a top quark and an off-shell top squark. The off-shell
bottom (top) squark decays into a bottom (top) quark and the LSP,
where the LSP is assumed to escape detection, leading to signifi-
cant Emiss

T . A possible LSP candidate is the lightest neutralino χ̃0
1 ;

we therefore use the symbol χ̃0
1 to denote the LSP. We assume

all SUSY particles other than the gluino and the LSP to be too
heavy to be produced at current LHC energies, and the gluino to
be short-lived. The production cross section is computed [30–34]
at the next-to-leading-order (NLO) plus next-to-leading-logarithm
(NLL) level. We denote the g̃̃g → 2 × bbχ̃0

1 process as the T1bbbb
scenario and the g̃̃g → 2 × ttχ̃0

1 process as the T1tttt scenario [35].
Event diagrams are shown in Fig. 1. If the bottom (top) squark is
much lighter than any other squark under the conditions described
above, gluino decays are expected to be dominated by the three-
body process of Fig. 1a (1b). The gluino and LSP masses are treated
as independent parameters.

It is rare for a T1bbbb event to contain an isolated high-pT lep-
ton. To define the search region for this study, we therefore veto
events with an identified isolated electron or muon. We also veto
events with an isolated charged track, characteristic of τ -lepton
decay. The resulting collection of events is referred to as the
zero-lepton (ZL) or “signal” sample. Besides the ZL sample, con-
trol samples are defined in order to evaluate the SM background.
To evaluate the backgrounds from top-quark and W + jets events
(where “top-quark” refers to both tt and single-top-quark events),
we select a top-quark- and W + jets-dominated control sample
by requiring the presence of exactly one identified isolated elec-
tron or muon. We refer to this sample as the single-lepton (SL)

sample. (Top-quark and W + jets events are grouped into a single
background category because of their similar experimental signa-
tures.) To evaluate the QCD multijet background, we employ the
minimum normalized azimuthal angle �φ̂min [23] between the
Emiss

T vector and one of the three highest-pT jets, selecting a QCD-
dominated control sample by requiring small values of this vari-
able.1 We refer to this control sample as the low-�φ̂min (LDP)
sample. The Z + jets background is evaluated with control samples
of Z → �+�− events (� = e and μ). Our analysis is performed in the
framework of a global likelihood fit that simultaneously analyzes
the signal and background content, accounting for signal contri-
butions to the ZL and control samples in a unified and consistent
manner.

In contrast to T1bbbb events, events in the T1tttt scenario are
expected to appear in both the ZL and SL samples. Since our global
likelihood fitting procedure can account for T1tttt contributions to
the control samples, the analysis procedures and background eval-
uation methods used to examine the T1tttt scenario are essentially
the same as those used for the T1bbbb scenario.

This study extends the analysis of Ref. [23] by exploiting the ex-
pected differences in shape between the T1bbbb or T1tttt scenario
and each of the SM background components in the distributions
of Emiss

T , the number Nb-jet of b-tagged jets in an event, and HT,
where HT is the scalar sum of jet pT values. (The quantitative
definitions of Emiss

T and HT are given in Section 3.) The data are
divided into mutually exclusive bins in these three variables, as in-
dicated schematically in Fig. 2. The Emiss

T and HT distributions are
divided into four bins each. The definitions of these bins are given
in the table of Fig. 2. For the ZL, SL, and LDP samples, the b-jet
multiplicity distribution is divided into three bins, corresponding
to Nb-jet = 1, 2, or � 3. There are 176 mutually exclusive bins of
data in the analysis, 48 each for the ZL, SL, and LDP samples, and
16 each for the Z → e+e− and Z → μ+μ− samples. The contents
of the bins are examined simultaneously in the likelihood fit.

This Letter is organized as follows. In Section 2 we discuss the
detector and trigger. Sections 3 and 4 describe the event selection.
The likelihood framework and background determination methods
are presented in Section 5. Section 6 presents the results and Sec-
tion 7 a summary.

2. Detector and trigger

A detailed description of the CMS detector is given else-
where [36]. The CMS coordinate system is defined with the origin
at the center of the detector and the z axis along the direction
of the counterclockwise beam. The transverse plane is perpendic-
ular to the beam axis, with φ the azimuthal angle (measured in
radians), θ the polar angle, and η = − ln[tan(θ/2)] the pseudo-
rapidity. A superconducting solenoid provides an axial magnetic
field of 3.8 T. Within the field volume are a silicon pixel and
strip tracker, a crystal electromagnetic calorimeter, and a brass-
scintillator hadron calorimeter. The tracking system is completed
with muon detectors, based on gas-ionization chambers embed-
ded in the steel flux-return yoke outside the solenoid. The track-
ing system covers |η| < 2.5 and the calorimeters |η| < 3.0. The
3 < |η| < 5 region is instrumented with forward calorimeters. The
near-hermeticity of the detector permits accurate measurements of
energy balance in the transverse plane.

1 For the current study, we use a slightly modified definition of the �φ̂min vari-
able compared to Ref. [23]: we now use “arcsin” rather than “arctan” in the expres-
sion for σ�φ,i (see Section IV of Ref. [23]). This modification introduces a negligible
difference for the small angles relevant here. Nonetheless, the modified expression
is technically more correct than the original one.
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Fig. 2. Schematic diagram illustrating the 176 mutually exclusive bins in the analysis. The Emiss
T and HT distributions are divided into four bins each; the table gives the bin

definitions. The designations HTi and METi (i = 1–4) are used to label the individual HT and Emiss
T bins. The Nb-jet distributions of the signal sample (ZL), top-quark and

W + jets control sample (SL), and QCD multijet control sample (LDP), contain three bins each, corresponding to exactly one, exactly two, and three or more identified b jets.
Events are selected using multiple trigger conditions, based pri-
marily on thresholds for HT and Emiss

T . The trigger efficiency, deter-
mined from data, is the probability for a signal or control sample
event to satisfy the trigger conditions. In our analysis, the data are
examined in exclusive regions of HT and Emiss

T , as described above.
The trigger is found to be nearly 100% efficient except in regions
with low values of both HT and Emiss

T . In the bin with lowest HT

and Emiss
T , i.e., the HT1–MET1 bin of Fig. 2, the evaluated trigger

efficiency is 0.91 ± 0.01 (0.86 ± 0.09) for the trigger relevant for
the ZL and SL (LDP) samples. Corrections are applied to account
for the trigger efficiencies and their corresponding uncertainties.

3. Event selection

Physics objects are defined with the particle flow (PF) method
[37], which is used to reconstruct and identify charged and neu-
tral hadrons, electrons (with associated bremsstrahlung photons),
muons, and photons, using an optimized combination of informa-
tion from CMS subdetectors. Tau leptons are identified using the
reconstructed PF objects. The event primary vertex is identified
by selecting the reconstructed vertex that has the largest sum of
charged-track pT

2 values. Events are required to have a primary
vertex with at least four charged tracks and that lies within 24 cm
of the origin in the direction along the beam axis and 2 cm in
the perpendicular direction. Charged particles used in the analysis
must emanate from the primary vertex. In this way, charged par-
ticles associated with extraneous pp interactions within the same
bunch crossing (“pileup”) are disregarded. The PF objects serve as
input for jet reconstruction, based on the anti-kT algorithm [38]
with a distance parameter of 0.5. Jet corrections are applied in
both pT and η to account for residual effects of non-uniform de-
tector response. Additional corrections [39,40] account for pileup
effects from neutral particles. The missing transverse energy Emiss

T
is defined as the modulus of the vector sum of the transverse mo-

menta of all PF objects. The Emiss
T vector is the negative of that

same vector sum.
The requirements used to select the zero-lepton (ZL) event sam-

ple are as follows:

• at least three jets with pT > 50 GeV and |η| < 2.4, where the
two leading jets satisfy pT > 70 GeV;

• HT > 400 GeV, where HT is calculated using jets with pT >

50 GeV and |η| < 2.4;
• Emiss

T > 125 GeV;
• no identified, isolated electron or muon candidate with pT >

10 GeV; electron candidates are restricted to |η| < 2.5 and
muon candidates to |η| < 2.4;

• no isolated charged-particle track with pT > 15 GeV and |η| <
2.4;

• �φ̂min > 4.0, where the �φ̂min variable is described in
Ref. [23];

• at least one b-tagged jet, where b-tagged jets are required to
have pT > 50 GeV and |η| < 2.4.

The isolated-track requirement eliminates events with an isolated
electron or muon in cases where the lepton is not identified, as
well as events with a τ lepton that decays hadronically. Electrons,
muons, and tracks are considered isolated if the scalar sum of the
pT values of charged hadrons (for electrons and muons, also pho-
tons and neutral hadrons) surrounding the lepton or track within a
cone of radius

√
(�η)2 + (�φ)2 = 0.3 (0.4 for muons), divided by

the lepton or track pT value itself, is less than 0.15, 0.20, and 0.05,
respectively.

Identification of b jets is based on the combined-secondary-
vertex algorithm described in Ref. [41] (we use the “medium”
working point). This algorithm combines information about sec-
ondary vertices, track impact parameters, and jet kinematics, to
separate b jets from light-flavored-quark, charm-quark, and gluon
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jets. The nominal b-tagging efficiency is 75% for jets with a pT
value of 80 GeV, as determined from a sample of simulated b-jet-
enriched events [41]. The corresponding misidentification rate for
light-quark jets is 1.0%.

4. Control samples, search regions, and event simulation

The top-quark- and W + jets-dominated SL control sample is
defined by selecting events with exactly one electron or one muon,
using the lepton selection criteria and all other nominal selec-
tion requirements given in Section 3, with the exception of the
requirement that there be no isolated track. To reduce potential
contributions from signal T1tttt events, we apply an additional
requirement mT < 100 GeV to the SL sample only, where mT =
{2Emiss

T pT
�[1 − cos(�φ

�,Emiss
T

)]}1/2 is the transverse mass formed

from the Emiss
T and pT

� (lepton transverse momentum) vectors,
with �φ

�,Emiss
T

the corresponding difference in the azimuthal an-

gle.
The region �φ̂min < 4, with all other nominal selection require-

ments from Section 3 imposed, defines the QCD-dominated LDP
control region.

To evaluate the Z + jets background, we select Z + jets control
samples with Z → e+e− and Z → μ+μ− decays, as described in
Section 5.3.

The data are divided into mutually exclusive bins of Emiss
T , HT,

and Nb-jet, as shown in Fig. 2. This binning is chosen based on sim-
ulation studies with SUSY signal and SM background event sam-
ples, for which signal sensitivity in the presence of SUSY events,
and limits in the absence of such events, are both considered. The
best performance is obtained with relatively narrow bins at low
HT and Emiss

T , which help to characterize the background shapes,
and with multiple bins at high HT and Emiss

T , which provide re-
gions with reasonable signal efficiency and very little background.
Within this general framework, the sensitivity is found to be rela-
tively independent of particular binning choices.

To illustrate the characteristics of the events, Fig. 3 presents
the distribution of Nb-jet for the signal (ZL) and control-region
(SL, LDP) samples, and the corresponding distributions of Emiss

T
and HT for Nb-jet � 3. The results are shown in comparison with
Monte Carlo (MC) simulations of SM processes. The tt, W + jets,
and Z + jets MC samples are simulated at the parton level with
the MadGraph 5.1.1.0 [42] event generator. Single-top-quark events
are produced with the powheg 301 [43] program. The pythia

6.4.22 [44] generator is used for diboson and QCD multijet events.
For all SM MC samples, the Geant4 [45] package is used to model
the detector. The top-quark MC distributions are normalized to
an approximate next-to-next-to-leading order (NNLO) cross-section
calculation [46,47] and the simulated W + jets and Z + jets results
to the inclusive NNLO cross sections from the fewz generator [48].
The diboson MC distribution, given by the sum of contributions
from WW, WZ, and ZZ events, is normalized to NLO using the cross
section from the mcfm generator [49]. The QCD multijet distribu-
tion is normalized to leading order. We also consider Drell–Yan
events, generated with MadGraph and normalized to NNLO [48].
The contribution of Drell–Yan events is found to be small (at most
one fifth the contribution of diboson events in all signal regions)
and is not included in Fig. 3.

In general, the simulation is seen to agree with the data, al-
though some features exhibit differences on the order of 20%. Note
that these MC results are not used in the analysis but merely pro-
vide guidance on the expected background composition.

Signal T1bbbb and T1tttt MC samples are generated for a range
of gluino mg̃ and LSP mχ̃0

1
mass values, with mχ̃0

1
< mg̃ . The signal

samples are based on MadGraph, with up to two partons present

in addition to the gluino pair. The decays of the gluino are de-
scribed using a pure phase-space matrix element in pythia. To
reduce computational requirements, the detector is modeled with
the CMS fast simulation program [50,51], with corrections to ac-
count for modest differences observed with respect to the Geant4
simulation. Fig. 3 includes the distributions of two representative
T1bbbb scenarios, one with (mg̃,mχ̃0

1
) = (600 GeV,500 GeV) and

the other with (mg̃,mχ̃0
1
) = (1225 GeV,150 GeV), both of which

are at the limit of our expected sensitivity (Section 6).
All MC samples incorporate the CTEQ6.6 [52,53] parton distri-

bution functions, with pythia used to describe parton showering
and hadronization. The MC distributions account for pileup inter-
actions, as observed in data. In addition, we correct the simulation
so that the b-tagging and misidentification efficiencies match those
determined from control samples in the data. The b-tagging ef-
ficiency correction factor depends slightly on jet pT and has a
typical value of 0.95 [41]. A further correction, applied to the signal
samples, accounts for mismodeling of initial-state radiation (ISR) in
MadGraph. The correction is derived by comparing the pT spectra
of reconstructed Z bosons, tt pairs, and WZ pairs between data and
simulation. At high values of transverse momentum of these sys-
tems, where the pT is balanced by radiated jets, the MadGraph

simulation is found to overestimate the observed event rate. The
corresponding correction is negligible except for small values of
the gluino–LSP mass difference where it can be as large as 20% for
both the T1bbbb and T1tttt samples.

5. Likelihood function and background evaluation methods

In this section, we present the definition of the likelihood func-
tion and describe the background evaluation methods. We use the
following notation:

• ZL: the zero-lepton event sample;
• SL: the single-lepton event sample;
• LDP: the low-�φ̂min event sample;
• Zee and Zμμ: the Z → e+e− and Z → μ+μ− event samples;
• ttWj: the top-quark and W + jets background component,

where “top-quark” includes both tt and single-top-quark
events;

• QCD: the QCD multijet background component;
• Zνν: the Z + jets (where Z → νν̄) background component;
• SUSY: the signal component;
• μC

S;i, j,k: the estimated number of events in bin i, j,k of event
sample S for component C without accounting for trigger ef-
ficiency, where i, j, and k denote the bin in Emiss

T , HT, and
Nb-jet, respectively, and C denotes ttWj, QCD, or one of the
other signal or background terms;

• nS;i, j,k: the estimated number of events in bin i, j,k of event
sample S from all components after accounting for trigger ef-
ficiency;

• ε
trig
S;i, j,k: the trigger efficiency in bin i, j,k for event sample S;

• NS;i, j,k: the observed number of events in bin i, j,k for event
sample S.

5.1. Top-quark and W + jets background

The SL sample is used to describe the shape of the top-quark
and W + jets background in the three analysis dimensions of Emiss

T ,
HT, and Nb-jet. The SL sample thus provides a three-dimensional
(3D) binned probability density function (PDF) determined directly
from data. The top-quark and W + jets background in each bin
of the ZL sample is determined from this measured 3D shape,
simulation-derived bin-by-bin corrections SttWj

i, j,k , and an overall
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Fig. 3. [Top row] Data and Monte Carlo distributions of the number Nb-jet of b-tagged jets for the [left column] signal (ZL) sample, [center column] top-quark and W+ jets (SL)
control sample, and [right column] QCD multijet (LDP) control sample. The lower panes show the ratio of the measured to the simulated events. [Center row] Corresponding
Emiss

T distributions, and [bottom row] HT distributions, for events with Nb-jet � 3. The dashed vertical lines indicate the divisions between the four bins of Emiss
T or HT.

Results for the T1bbbb scenario with (mg̃,mχ̃0
1
) = (600 GeV,500 GeV) and (1225 GeV,150 GeV) are shown as unstacked distributions. For all results, the uncertainties are

statistical only. The normalization of the simulated curves is based on the absolute cross sections, as described in the text.
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Fig. 4. [Left] Ratio of the number of events in the zero-lepton (ZL) sample to that in the single-lepton (SL) sample for simulated top-quark and W + jets events in the
16HT–Emiss

T bins with Nb-jet = 1, divided by the average ratio value over the 64 bins with Nb-jet = 1,2, and � 3. The leftmost group of four consecutive points corresponds
to Emiss

T bin 1 (MET1) of the table in Fig. 2, the next-leftmost group to Emiss
T bin 2 (MET2), etc. The four points within each group correspond to the four HT bins in the

table, increasing in HT value from left to right (HT1 to HT4). The inner (outer) error bars show the statistical (combined statistical and systematic) uncertainties. [Center and
right] The corresponding results for Nb-jet = 2 and Nb-jet � 3.
normalization term RttWj
ZL/SL that is a free parameter in the fit, as

described below.
With respect to SM processes, the SL sample is assumed to be

populated by top-quark and W + jets events only. Contributions
from QCD multijet and Z + jets events are small (around 1% on av-
erage) as seen from Fig. 3, and are accounted for with a systematic
uncertainty. The contribution from T1bbbb events is negligible be-
cause isolated leptons are rare in the T1bbbb scenario. In contrast,
with four top quarks in the final state, T1tttt events often contain
an isolated high-pT lepton, resulting in events that populate the SL
sample. Therefore, we presume

nSL;i, j,k = ε
trig
SL;i, j,k · (μttWj

SL;i, j,k + SSUSY
SL;i, j,k · μSUSY

SL;i, j,k

)
, (1)

where SSUSY
SL;i, j,k is a nuisance parameter. For the T1bbbb scenario,

μSUSY
SL;i, j,k = 0.

We calculate the ratio of the number of top-quark and W + jets
events in the ZL sample to the corresponding number in the SL
sample, as predicted by simulation, after normalization to the
same integrated luminosity. We consider the simulated ZL-to-SL
ratios in three groups of 16 bins, one group corresponding to
Nb-jet = 1, one to Nb-jet = 2, and one to Nb-jet � 3 (see Fig. 2).
The 48 ratio values are each normalized by dividing by the average
ratio value over the 48 bins. The resulting normalized ZL-to-SL ra-
tios are shown in the left plot of Fig. 4 for Nb-jet = 1, in the center
plot for Nb-jet = 2, and in the right plot for Nb-jet � 3. Were the 3D
shape of top-quark and W+ jets distributions the same in the sim-
ulated ZL and SL samples, all points in Fig. 4 would be consistent
with unity. Deviations from unity on the order of 20–50% are seen
for some points, indicating a shape difference between the two
samples. The shape difference is strongest in the HT dimension.
This HT dependence is due to the lepton isolation requirement,
which is less likely to be satisfied as HT increases. Consistent re-
sults are found if the powheg or mc@nlo [54] generator, rather
than MadGraph, is used to produce the tt MC sample.

Our estimate of the top-quark and W + jets contribution to bin
i, j,k of the ZL sample is thus

μ
ttWj
ZL;i, j,k = SttWj

i, j,k · RttWj
ZL/SL · μttWj

SL;i, j,k, (2)

where RttWj
ZL/SL is the scale factor common to all bins mentioned

above and the SttWj
i, j,k factors are the MC-based terms presented in

Fig. 4, which account for the 3D shape differences between the
ZL and SL samples. In the likelihood function, the SttWj

i, j,k terms are

treated as nuisance parameters whose values are determined in
the fit, each constrained by a lognormal PDF. The median of the
lognormal is the corresponding value shown in Fig. 4, while the
geometric standard deviation is ln(1 + σrel), with σrel the relative
uncertainty of the corresponding SttWj

i, j,k term, determined from the
quadratic sum of its statistical uncertainty and one half the differ-
ence from unity. In addition, we vary the W + jets cross section
by 100% [55]. The difference with respect to the standard result
defines an uncertainty for a lognormal distribution that is applied
as an additional constraint on the SttWj

i, j,k terms. An analogous con-
straint is derived through variation of the single-top-quark cross
section by 30% [56].

5.2. QCD multijet background

The QCD multijet background in each bin of the ZL sample,
in the 3D space of Emiss

T , HT, and Nb-jet, is determined from the
number of events in the corresponding bin of the LDP sample, in
conjunction with multiplicative scale factors described below. Be-
fore applying these scale factors, the contributions of top-quark
and W + jets events are subtracted from the measured LDP re-
sults, as are the contributions of Z + jets events. The estimate
of the top-quark and W + jets contribution to the LDP sample is
determined from the data-derived top-quark and W + jets event
yield in the ZL sample, found in the likelihood fit (Section 6) for
the corresponding bin, multiplied by the MC ratio of LDP to ZL
events for that bin, and analogously for the Z + jets contribution
to the LDP sample (these subtractions are performed simultane-
ously with all other aspects of the fit). The uncertainty assigned
to this subtraction procedure accounts for the total uncertainty of
the respective ZL event yield, and for a 10% uncertainty associated
with the simulated ratio, where the latter term corresponds to the
average statistical uncertainty of the MC ratio values.

The top row of Fig. 5 shows the ratio between the number of
QCD multijet events in the ZL sample to the corresponding number
in the LDP sample, as predicted by simulation, after normaliza-
tion to the same integrated luminosity. The results are shown for
the 48 bins of the ZL and LDP samples. This ratio is seen to de-
pend strongly on HT. The dependence on Emiss

T and Nb-jet is more
moderate. We parameterize the Emiss

T , HT, and Nb-jet dependence
assuming that this dependence factorizes, i.e., we assume that the
HT dependence is independent of Emiss

T and Nb-jet, etc. We thus
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Fig. 5. [Top row] Ratio of the number of events in the zero-lepton (ZL) sample to that in the low-�φ̂min (LDP) sample for simulated QCD multijet events. The definitions of
the bins are the same as in Fig. 4. Various QCD multijet samples, with different choices for the hardness scale ( p̂T [44]) of the interaction, are combined. The points show
the averages over those samples. The inner error bars indicate the statistical uncertainties. The outer error bars indicate the statistical uncertainties added in quadrature with
the root-mean-squared values over the different p̂T samples. The histogram shows the results of the fitted parameterization described in the text. [Bottom row] The corre-
sponding ratio divided by the parameterization from the top row. The inner (black) and outer (blue) error bars indicate the statistical and combined statistical-and-systematic
uncertainties, respectively.
model the QCD multijet background contribution to the ZL sample
for a given Emiss

T , HT, Nb-jet bin as:

μQCD
ZL;i, j,k = SQCD

i, j,k · (K QCD
MET,i · K QCD

HT, j · K QCD
Nb,k

) · μQCD
LDP;i, j,k, (3)

where the three K QCD terms describe the Emiss
T , HT, and Nb-jet

dependence and the SQCD
i, j,k factors (defined below) are corrections

to account for potential inadequacies in the parametrization. Note
that some bins in the top row of Fig. 5 do not contain any entries.
These bins generally have large Emiss

T and small HT values, making
them kinematically unlikely (a large Emiss

T value implies a large HT
value), and thus contain few or no events.

We fit the parameterization of Eq. (3) to the ratio values shown
in the top row of Fig. 5, taking SQCD

i, j,k ≡ 1 at this stage, to deter-

mine simulation-derived values for the K QCD factors (for the final
results, most K QCD factors are determined in the likelihood fit, as
explained below). The results of this fit are shown by the his-
tograms in the top row of Fig. 5. The simulated QCD ZL-to-LDP
ratios divided by the fitted parameterization are shown in the bot-
tom row of Fig. 5. The points in the bottom row are consistent
with unity, indicating that the empirical parameterization of Eq. (3)
is sufficient. Therefore, in the likelihood fit, no corrections to the
parametrization are applied. The SQCD

i, j,k factors are treated as nui-
sance parameters constrained by lognormal PDFs with a median
set to unity. Geometric standard deviations for the lognormal dis-
tributions are set equal to the outer error bars in the bottom row
of Fig. 5, given by the quadratic sum of the deviation of the ratios
in the bottom row of Fig. 5 from unity, the statistical uncertainties
of these ratios, and the root-mean-squared values found using the
different QCD multijet samples described in Fig. 5 caption. For bins

in the top row of Fig. 5 without any MC entries, we assign 100%
uncertainties, which are indicated in the bottom row of the figure.

In the likelihood analysis, most of the K QCD factors are free pa-
rameters in the fit: there is enough shape information that they
can be determined directly from the data. However, we find from
studies with simulation that the fit is unable to determine K QCD

MET,3,

K QCD
MET,4, or K QCD

Nb,3. Instead, lognormal constraints are applied for
these three parameters. The median values are set to the corre-
sponding results from simulation and the geometric standard de-
viations to half the differences K QCD

MET,3 − K QCD
MET,2, K QCD

MET,4 − K QCD
MET,2,

and K QCD
Nb,3 − K QCD

Nb,1, respectively. The results of the fit are found to
be insensitive to the choice of the geometric standard deviation
values.

5.3. The Z + jets background

The Z + jets background (where Z → νν̄) is evaluated by recon-
structing Z → �+�− events (� = e and μ). The �+ and �− leptons
are then removed so that the events emulate Z + jets events with
Z → νν̄ . The Z → e+e− and Z → μ+μ− samples are divided into
16 bins in the two-dimensional space of Emiss

T and HT, as indicated
in Fig. 2.

Fits to the dilepton invariant mass spectra are performed to de-
termine the Z → �+�− yields. The yields are corrected to account
for background, acceptance, and detection efficiency. The accep-
tance, determined from simulation, accounts for the larger fiducial
volume for the detection of Z → νν̄ events compared to Z → �+�−
events. The efficiency is ε = εtrig · ε2

�reco · ε2
�sel, where the trigger

εtrig, lepton reconstruction ε�reco, and lepton selection ε�sel factors
are determined from data.
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The Z → �+�− yields are small in some of the signal regions.
To increase these yields, we select events with the requirements
of Section 3 except with a significantly looser b-tagging definition.
The yield in each bin of this sample is multiplied by an extrapo-
lation factor given by the ratio of the sum of the Z → �+�− yields
over all HT and Emiss

T bins for events that satisfy the nominal
b-tagging requirements to those that satisfy the loose require-
ments.

To establish whether the extrapolation factors themselves ex-
hibit a dependence on HT or Emiss

T , we construct a control sample
identical to the LDP sample except with the loosened b-tagging
definition. This sample is dominated by QCD multijet production,
and is found to have a distribution for the output variable of the
b-tagging algorithm similar to that of the Z → �+�− events. From
this control sample, we find that the Nb-jet = 1 extrapolation fac-
tors exhibit a variation with Emiss

T up to 25%; we apply this varia-
tion as a correction to those factors. For Nb-jet = 2 and Nb-jet � 3,
we find no variation within the uncertainties and do not apply a
correction.

The Z + jets background in the i = Emiss
T , j = HT bin of the ZL

sample with Nb-jet = 1 is related to the corresponding bin in the
Z → e+e− and Z → μ+μ− control samples through

μZee
Zee;i, j = (

μZνν
ZL;i, j,1 · See · Aee;i · εee

)
/(FZνν;1 · RB), (4)

μ
Zμμ
Zμμ;i, j = (

μZνν
ZL;i, j,1 · Sμμ · Aμμ;i · εμμ

)
/(FZνν;1 · RB), (5)

where A��;i and ε�� are the acceptances and efficiencies for the
Z → �+�− samples, respectively, S�� is a scale factor to account
for systematic uncertainties, RB = 5.95 ± 0.02 is the ratio of the
Z → νν̄ and Z → �+�− branching fractions [57], and FZνν;1 is the
extrapolation factor that relates the Nb-jet = 1 selection efficiency
to the efficiency of the loose b-tagging requirement. The estimates
of the Z+ jets background for Nb-jet = 2 and Nb-jet � 3 are given by
the Nb-jet = 1 result through the ratio of b-tagging extrapolation
factors:

μZνν
ZL;i, j,k = μZνν

ZL;i, j,1 · (FZνν;k/FZνν;1), (6)

where k is the Nb-jet bin index.
Systematic uncertainties are evaluated for the Z → �+�− purity,

acceptance, and detection efficiency by considering their depen-
dence on Emiss

T and HT, and by varying the selection conditions. An
additional uncertainty, based on a consistency test performed with
simulation, accounts for the level of agreement between the pre-
dicted and correct Z → νν̄ event rates. Finally, systematic uncer-
tainties are evaluated for the extrapolation factors by varying the
loosened b-tagging definition and by assigning an uncertainty to
account for the observed or potential variation with Emiss

T and HT
(for the Nb-jet = 2 and Nb-jet � 3 factors, the latter uncertainty
is based on the level of statistical fluctuation). The total system-
atic uncertainty of the Z → νν̄ background estimate is 30% for
Nb-jet = 1, 35% for Nb-jet = 2, and 60% for Nb-jet � 3.

5.4. Other backgrounds

Backgrounds from diboson and Drell–Yan processes are ac-
counted for using simulation, with an uncertainty of 100%. Their
total fractional contribution to the overall background is 1% or less
in all search regions.

5.5. Systematic uncertainties

Systematic uncertainties associated with the signal efficiency
arise from various sources. A systematic uncertainty associated

with the jet energy scale is evaluated by varying this scale by its
pT- and η-dependent uncertainties. The size of this uncertainty
depends on the event kinematics, i.e., the Emiss

T bin, the HT bin,
and the assumed values of the gluino and LSP masses: typical
values are in the range of 5–10%. A systematic uncertainty of 1%
is associated with unclustered energy. This uncertainty is evalu-
ated by varying the transverse energy in an event not clustered
into a physics object by 10%. A systematic uncertainty of 3% is as-
sociated with anomalous Emiss

T values, caused by events that are
misreconstructed or that contain beam-related background. This
uncertainty is defined by 100% of the change in efficiency when
software filters are applied to reject these events. The uncertainty
of the luminosity determination is 4.4% [58]. The systematic un-
certainties associated with corrections to the jet energy resolution,
the pileup modeling mentioned in Section 3, the trigger efficiency,
the b-tagging efficiency scale factor, and the ISR modeling are eval-
uated by varying the respective quantities by their uncertainties,
while systematic uncertainties associated with the parton distribu-
tion functions are evaluated [52,59,60] following the recommenda-
tions of Ref. [61]. The jet energy resolution and pileup modeling
uncertainties are 2% and 3%, respectively. The uncertainty of the
trigger efficiency is generally below 2%. Uncertainties associated
with the parton distribution functions and b-tagging efficiency are
typically below 10% and 15%, respectively. The uncertainties of the
T1bbbb (T1tttt) ISR modeling corrections are typically 5% (3%), but
can be as large as 20% (20%) near the mg̃ = mχ̃0

1
diagonal. The

uncertainties associated with the jet energy scale, b-tagging effi-
ciency, ISR modeling, and parton distribution functions vary sig-
nificantly with the event kinematics and are evaluated point-by-
point in the scans over gluino and LSP masses discussed in Sec-
tion 6.

Systematic uncertainties for the SM background estimates are
described in the previous sections. Note that, for our analysis, sys-
tematic uncertainties are generally much smaller than statistical
uncertainties, where the latter terms primarily arise as a conse-
quence of the limited numbers of events in the data control sam-
ples.

5.6. The global likelihood function

The likelihood function is the product of Poisson PDFs, one
for each bin, and the constraint PDFs for the nuisance parame-
ters. For each bin, the Poisson PDF gives the probability to observe
N events, given a mean n, where n depends on the parameters
of the likelihood model such as those given in Eqs. (1)–(6). The
region with Emiss

T > 350 GeV and 400 < HT < 500 GeV, represent-
ing the bin with highest Emiss

T and lowest HT in our analysis (the
HT1–MET4 bin of Fig. 2), is at an extreme limit of phase space
and is very sparsely populated, making it difficult to validate the
background evaluation procedures. Furthermore, very few signal
events are expected in this region. We therefore exclude the HT1–
MET4 bin from the likelihood analysis, corresponding to 11 of the
176 bins. Thus, the effective number of bins in the analysis is 165.

For both signal and background terms, external input param-
eters are allowed to vary and are constrained by a PDF in the
likelihood. Parameters with values between zero and one, such
as efficiencies, are constrained by beta-distribution PDFs (see Sec-
tion 35 of Ref. [57]). All others are constrained by lognormal
PDFs. Correlations between the different kinematic regions, in-
cluding the Nb-jet bins, are taken into account. The test statistic
is qμ = −2 ln(Lμ/Lmax), where Lmax is the maximum likelihood
determined by allowing all parameters including the SUSY signal
strength μ to vary, and Lμ is the maximum likelihood for a fixed
signal strength.
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Table 1
Observed numbers of events, SM background estimates from the fit, and SM expectations from Monte Carlo simulation, for the signal (ZL) regions with Emiss

T > 350 GeV and
Nb-jet = 2. The labels HT2, HT3, and HT4 refer to the bins of HT indicated in Fig. 2, while HT2–4 is the sum over the three bins. The fourth row presents the SM background
estimates from the sideband fit described in the text. The uncertainties listed for the fit results include the statistical and systematic components, while those shown for the
simulation are statistical only. For the fits, the SUSY signal strength is fixed to zero. The last row shows the expected numbers of events from a SUSY test scenario described
in the text.

Nb-jet = 2, MET4 HT2 HT3 HT4 HT2–4

Observed number of events 66 19 19 104
SM background estimates from fit 70.5+6.3

−5.9 20.7+3.2
−2.8 19.0+3.2

−2.8 110 ± 8

SM background predictions from simulation 81.6 ± 1.9 28.7 ± 1.3 23.3 ± 0.8 134 ± 2

SM background estimates from sideband fit 76.4+10.2
−9.1 22.3+4.5

−3.9 19.0+4.5
−3.7 118+13

−12
Number of signal events, SUSY test scenario 0.5 1.5 11.6 13.6

Table 2
Observed numbers of events, SM background estimates from the fit, and SM expectations from Monte Carlo simulation, for the signal (ZL) regions with Emiss

T > 150 GeV and
Nb-jet � 3. The labels HT1, HT2, MET2, etc., refer to the bins of HT and Emiss

T indicated in Fig. 2, while HT1–4 (MET2–4) is the sum over the four HT (three Emiss
T ) bins. The

HT1–MET4 bin is excluded from the analysis, as explained in the text. The fourth section presents the SM background estimates from the sideband fit described in the text.
The uncertainties listed for the fit results include the statistical and systematic components, while those shown for the simulation are statistical only. For the fits, the SUSY
signal strength is fixed to zero. The last section shows the expected numbers of events from a SUSY test scenario described in the text.

Nb-jet � 3 HT1 HT2 HT3 HT4 HT1–4

Observed number of events
MET2 161 182 18 14 375
MET3 15 36 6 4 61
MET4 – 8 2 4 14

MET2–4 176 226 26 22 450

SM background estimates from fit
MET2 157+13

−12 179+13
−12 23.2+3.8

−3.4 12.3+2.7
−2.3 372+19

−18

MET3 15.5+3.0
−2.6 32.1+4.3

−3.8 5.9+1.9
−1.5 2.9+1.3

−1.0 56.5+5.7
−5.4

MET4 – 8.4+2.1
−1.8 2.0+1.0

−0.7 2.1+1.1
−0.9 12.4+2.5

−2.2

MET2–4 173+13
−12 220+14

−13 31.0+4.3
−3.8 17.3+3.1

−2.8 441+20
−19

SM background predictions from simulation
MET2 127 ± 8 180 ± 12 27 ± 2 13 ± 1 347 ± 14
MET3 14.7 ± 0.7 30.9 ± 0.7 7.5 ± 0.4 3.9 ± 0.2 56.9 ± 2.6
MET4 – 6.1 ± 0.2 2.6 ± 0.2 2.6 ± 0.2 11.3 ± 0.3

MET2–4 141 ± 8 217 ± 12 37 ± 2 20 ± 1 415 ± 15

SM background estimates from sideband fit
MET2 119+32

−19 158+36
−24 28.2+6.9

−5.7 10.2+3.5
−2.7 316+49

−37

MET3 15.2+4.3
−3.5 27.7+5.8

−4.9 5.6+2.6
−1.9 2.0+1.5

−0.9 50.5+8.2
−7.3

MET4 – 8.3+2.9
−2.2 1.9+1.3

−0.8 0.4+0.6
−0.2 10.5+3.2

−2.5

MET2–4 134+32
−20 194+36

−26 35.7+7.5
−6.3 12.6+3.8

−3.0 377+51
−42

Number of signal events, SUSY test scenario
MET2 0.0 0.1 0.2 1.0 1.4
MET3 0.0 0.2 0.4 2.0 2.6
MET4 – 0.4 1.4 10.8 12.6
MET2–4 0.0 0.7 2.0 13.8 16.6
6. Results

SUSY events in the T1bbbb and T1tttt scenarios often contain
significant Emiss

T and multiple b jets, as discussed in the Introduc-
tion. Tables 1 and 2 and Fig. 6 present the results of the fit for the
14 bins of the analysis that we find to be most sensitive to these
two scenarios: the three bins with HT > 500 GeV, Emiss

T > 350 GeV,
and Nb-jet = 2, for which the results are shown in Table 1, and the
11 bins with Emiss

T > 150 GeV and Nb-jet � 3, for which the results
are shown in Table 2. For these results, the SUSY signal strength is
set to zero so that we can test the compatibility of the data with
the SM hypothesis. For the scan results over gluino and LSP masses
presented below, the SUSY signal strength is allowed to vary.

The top row of Table 1 and top section of Table 2 show the
numbers of events observed in data. The second row and section
show the SM background estimates obtained from the fit, which
are seen to be in agreement with the data to within the uncer-

tainties. The third row and section present the SM predictions from
the simulation. The simulated results are for guidance only and are
not used in the analysis.

It is also interesting to perform the likelihood fit with the Pois-
son PDF terms for the 14 “most sensitive” bins removed, in order
to ascertain the data-derived SM background estimates when the
data in these bins do not affect the result. We call such a fit the
“sideband” fit, which is therefore based on 151 bins. The sideband
fit results for the numbers of SM background events in the 14 bins
are presented in the fourth row of Table 1 and section of Table 2.
For the sideband fit, the deviations with respect to the data are
seen to be somewhat larger than for the standard fit. The largest
deviation between observation and SM expectation occurs for the
bin with Nb-jet � 3, HT > 1000 GeV, and Emiss

T > 350 GeV (the
HT4–MET4 bin of Table 2), where 4 events are observed whereas
only 0.4+0.6

−0.2 events are expected (note that these uncertainties are
not Gaussian). From studies with ensembles of simulated experi-
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Fig. 6. Observed numbers of events (points with error bars) for the 14 bins with highest signal sensitivity in the analysis, in comparison with the standard model background
predictions (with total uncertainties shown by the hatched bands) found in the fit with SUSY signal strength fixed to zero. The labels HT1, HT2, MET2, etc., refer to the bins
of HT and Emiss

T indicated in Fig. 2.

Fig. 7. The 95% CL upper limits on the [left] T1bbbb and [right] T1tttt new-physics scenario cross sections (pb) derived using the CLs method. The solid (black) contours show
the observed exclusions assuming the NLO + NLL cross sections [30–34], along with the ±1 standard deviation theory uncertainties [62]. The dashed (red) contours present
the corresponding expected results, along with the ±1 standard deviation experimental uncertainties.
ments, considering only this bin, we estimate the probability for
a fluctuation in the background in this bin to match or exceed
4 events to be 9% and do not consider this excess further.

For purposes of illustration, the last row of Table 1 and sec-
tion of Table 2 show the expected numbers of signal events for
a T1bbbb “test scenario” near the limit of our sensitivity, with
mg̃ = 1225 GeV and mχ̃0

1
= 150 GeV.

Upper limits on the cross sections to produce events in the
T1bbbb and T1tttt scenarios are determined at 95% confidence
level (CL). The limits, based on the CLs [63,64] technique with
the test statistic qμ defined above, are presented as a function of
the gluino and LSP masses. Using the NLO+NLL cross section as
a reference, we also evaluate the corresponding 95% CL exclusion
curves. The results are shown in Fig. 7. The selection efficiency for
T1bbbb (T1tttt) events is fairly constant at about 60% (25%) except
for points to the left of a line parallel to the diagonal that inter-
sects the mχ̃0

1
= 0 axis at around mg̃ = 400 GeV (550 GeV) or for

gluino masses below about 550 GeV (680 GeV), where the effi-
ciency decreases smoothly to 15% or less. Conservatively using the
minus-one-standard-deviation result [62] for the reference cross

sections, and in the limit of a massless LSP, we exclude gluinos
with masses below 1170 GeV and 1020 GeV, respectively, in the
T1bbbb and T1tttt scenarios. While these limits do not exclude the
entire range of gluino masses mg̃ � 1.5 TeV suggested by natural
models of SUSY [11], they are nonetheless among the most strin-
gent bounds that have yet been obtained and greatly improve our
results from Ref. [23].

7. Summary

A search is presented for an anomalous rate of events with
three or more jets, at least one bottom-quark-tagged jet, no identi-
fied isolated electron or muon or isolated charged track, and large
missing transverse energy. The search is based on a sample of
proton–proton collision data collected at

√
s = 8 TeV with the CMS

detector at the LHC in 2012, corresponding to an integrated lu-
minosity of 19.4 fb−1. The principal standard model backgrounds,
from events with top quarks, W bosons and jets, Z bosons and
jets, and QCD multijet production, are evaluated using control sam-
ples in the data. The analysis is performed in the framework of a
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global likelihood fit in which the numbers of events in 165 exclu-
sive bins in a three-dimensional array of missing transverse energy,
the number of b-tagged jets, and the scalar sum of jet pT values,
are simultaneously examined. The standard model background es-
timates are found to agree with the observed numbers of events
to within the uncertainties. We interpret the results in the con-
text of simplified SUSY scenarios in which gluino pair production
is followed by the decay of each gluino to an undetected parti-
cle and either a bottom or top quark–antiquark pair, characteristic
of gluino mediated bottom- or top-squark production. Using the
NLO + NLL production cross section as a reference, and in the limit
of a massless lightest supersymmetric particle, we exclude gluinos
with masses below 1170 GeV and 1020 GeV for the two scenar-
ios, respectively. These are among the most stringent bounds that
have yet been obtained for gluino mediated bottom and top squark
production.
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