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Abstract

Multicomponent random media play an important role in many natural and industrial
processes. Analysis of such media is complicated by the presence of disparate length
scales, and thus engineering focus has been on the understanding of macroscopic be-
havior. Many techniques have been proposed to analyze multicomponent problems:
heuristic approaches can address a broad class of complex physical phenomena, but
must introduce strong assumptions; bound methods can produce rigorous estimates,
but typically provide only limited accuracy; various particle-expansion analytical and
semi-analytical methods can efficiently treat many-particle systems, but are essen-
tially restricted to linear media; first—principle computational studies (typically serial)
can readily accomodate nonlinear media, but have been, to date, technologically con-
fined to single-particle periodic cells, simple geometries, relatively few particles, or
small sample sizes.

The broad goal of this research is to develop a new first—principle methodology for
the study of macroscopic behavior of random multicomponent systems through the
determination of effective properties and statistical correlation lengths. The method-
ology combines the relative strengths of earlier analytical and computational ap-
proaches, and is based upon a variational hierarchical decomposition procedure which
recasts the original multiscale problem as a sequence of three scale-decoupled sub-
problems. The micro—, meso—, and macroscale subprcblems are formulated, and a
parallel nested Monte-Carlo partial-differential-equation procedure is used to solve
the computationally intensive mesoscale subproblem. Specifically, the methodology
includes: Monte-Carlo sampling, domain generation and partition based on Voronoi
tesselation, Delaunay mesh generation, homogenization theory, finite element dis-
cretization, and parallel iterative solution techniques. Two problems of practical
importance are addressed: heat conduction in random composites and creeping flow
through random porous media, both in two space dimensions. The results are consis-



tent with previous analytical, semi-analytical, and some experimental investigations,
and further extend the understanding of random media behavior.
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Chapter 1

Introduction

1.1 Motivation

Many real systems of fundamental and practical importance are multicomponent in
nature, in that several phases and/or dissimilar constituents are present. Typically,
e.g. for two-component systems, one component is dispersed as particles or inclusions
in a continuous matrix of the other component. When the spatial distribution of the
dispersed phase is adequately described by a probability density function, the medium
is said to be random. Representative multicomponent systems in mechanics are com-
posite materials, porous media, suspensions of particles, fluidized beds, multiphase
flows, and clouds of drops and bubbles. Such systems are generally dependent on nu-
merous parameters, which makes their complete analysis an extremely difficult task.
From an engineering perspective, the understanding of the macroscopic behavior of
these systems generally suffices, and therefore the determination of effective (bulk)
properties, e.g. conductivity, elastic modulus, permeability etc., is crucial for their de-
scription. These properties are determined from microstructural and microdynamical
quantities pertaining to the system heing investigated.

The aforementioned systems are present in a wide variety of processes, equip-
ment, and machines occurring in the manufacturing, energy, aeronautical, and food

industries, to name a few; also, porous media are encountered in biomedical [Curry

& Michel (1980), Levick (1987)] and environmental [Davies (1973)] processes as well.



Important current problems involving such systems are design, optimization and eval-
uation of parts (e.g. thermal composites, filtration devices) and equipment (e.g. sedi-
mentation tank, heai exchanger), as well as their proper operation, while minimizing
material, manufacturing and replacement costs, and energy consumption. In this
thesis, in particular, we will be dealing with two multicomponent random systems,
namely, unidirectional fibrous composites and fibrous porous media (more details are
given in Sections 1.3, 2.1 and 2.2). We will characterize heat conduction in the former,
and creeping flow through the latter. It should be noted that by means of mathemat-
ical analogy, results obtained for the thermal properties of composites can be readily
extended to electrical, magnetic, and diffusive properties.

Composite materials are attractive because of the wide range of properties they
can attain, usually at a lower cost and a higher efficiency as compared to the in-
dividual components. In broad terms, they are classified into particulate or fibrous
composites. The dispersed phase in particulate composites consists of small particles
or voids either naturally present or inserted by design; examples of this type are con-
solidated rocks, artificial diamond-particle-filled composites, or even “solid” stainless
steel (which in fact possesses a gas-filled pore space). Their analysis is essentially
three-dimensional. Fibrous composites are typically man-made, and they consist of
fibers, short or long, with specifically selected properties, embedded in or bonded to a
matrix. Three-dimensional effects are present in short-fiber composites or laminates;
unidirectional composites can be properly treated in two dimensions transversely to
the fibers.

Unidirectional fibrous composites are highly anisotropic, since the longitudinal
and transverse properties are very different; they usually have large values of conduc-
tivity (or resistivity) and elastic modulus in the fibers direction. The fibers can be, in
general, randomly distributed; statistical homogeneity (and also transverse isotropy)
is commonly assumed for analysis purposes. Unidirectional fibrous composites can be
manufactured, for instance, with the process of pultrusion [Spencer (1983)], and often
have fiber volume fractions above 50%. In the context of heat transfer, fibrous com-

posites are used, mostly, as thermal insulators or conductors, either because they are
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designed for that purpose, or duc to the working conditions. For example, carbon-
fiber reinforced ceramic matrices are used as refractory composites with improved
mechanical characteristics (fracture oughness, impact resistance), which work at
high temperatures; their conduction behavior is important for assessment of thermal
losses. Graphite fibers are often used to enhance thermal conductivity, for instance in
graphite—glass, and graphite-polymer composites. Overheating (or charge build-up)
under certain working conditions due to the poor conductivity of the matrix can be
avoided with the inclusion of such fibers. They are also used in metal matrix compos-
ites due to their high strength and low density. On the other hand, ceramic fibers in
carbon matrices can be used to lower thermal conductivity, as in certain aeronautical
applications. Some superconducting materials are made of aligned superconducting
wires embedded in a copper matrix. It is not surprising that, todéy, composite de-
sign 1s aided by commercial software, which uses databases constructed from known
mechanical and thermal properties of various individual and combined materials. For
further description and applications of composites, the reader is referred to Mallick
(1988), and Kelly (1987).

Similarly, porous media may comprise particles (i.e., granules) or fibers. In the
first case, the pore space is very complex, and realistic models of its geometry are
inevitably three-dimensional (of course, one may bypass this difficulty by introducing
[non-universal] empirical factors). Examples of such media are naturally occurring
unconsolidated sands and soil, and industrial granular beds. Fibrous porous media
can also have complex geometry, as in fiber mats or biological macromolecular net-
works, but two-dimensional analysis, when not exact, often vields satisfactory results.
Fibrous filters are an important example of this type; also, and interestingly enough,
the mold-fibers set-up for the composite manufacturing technique of resin transfer
molding is another example. Notice that sometimes it is convenient to interpret a
porous medium as a composite material, where the (fluid—filled) pores are one com-
ponent (as in oil-saturated sands). Good general references for porous media are
Scheidegger (1974) and, more recently, Adler (1992).

Fibrous filters are used for the clean-up of fluids, like air and water, either for
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control of environmeutal pollution, or for proper operation of fluid lines. Knowledge
of their permeability is important to determine the power needed to drive the flow;
also, in order to determine filtration efficiency and to estimate filter lifetime, one 1y
need to model the flow at the pore scale, to be able to quantify particle capture. In
the currently appealing resin transfer molding technique, a low viscosity polymeric
resin is forced through a mold with pre-positioned fibers. Again, the permeability is

a key parameter for the mold design, and in determining power requirements.

1.2 Review of Prior Work

The literature on the subjects of composites and porous media, due to their impor-
tance and “age” [Rayleigh (1892)], is indeed very vast. The purpose of this section
is not to provide a comprehensive review, but rather to establish a background, and
to touch upon, in a broad sense, some of the various methods previously developed
to study problems of the type we are interested in. More complete treatments can
be found in the review paper by Hashin (1983) on composites, and in the books by
Happel & Brenner (1983), and Kim & Karrila (1991) on creeping flows.

In the review paper by Batchelor (1974), various results for different physical
multicomponent systems are presented under a common theoretical framework, based
on analogies in their mathematical formulation. The basic problem is to determine,
in the constitutive equation for a statistically homogeneous medium, the coefficient
of proportionality (in general, tensorial) between an average flux and an average
imposed gradient. This coefficient is characteristic of the medium, and is defined to
be its effective transport property for the conditions being considered. The difficulty
of solving this problem in a particular situation depends on many factors, some of

which are mentioned here, with increasing level of complexity from left to right:
¢ uniform and unimodal distribution of particles — nonuniform, multimodal;
e 2-D — 3-D geometries;
o regular — irregular shapes;
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¢ ordered — random arrangement of inclusions;
¢ low — high volume fraction (i.e., interaction) of inclusions;

® linear — nonlinear transport phenomenon;

prescribed (e.g. solid) — free (e.g. fluid) interfaces;

noncolloidal — colloidal inclusions;
o steady (e.g. distribution input) — unsteady (e.g. distribution output) regime.

Several approaches have been devised to solve various multicomponent system prob-
lems, differing in generality, accuracy, efficiency, and ease of use. We review key con-
tributions for the problems of conduction in composites and creeping flow through
porous media. They are grouped here into bound, phenomenological, analytical and

semi-analytical, and first—principle computational methods, and experimental work.

1.2.1 Bound Methods

Bound methods consist of determining upper and lower bounds for the effective prop-
erties, preferrably within a narrow gap. Although they provide rigorous results that
are useful for checking more detailed calculations, they typically have limited accu-
racy, and sometimes are difficult to evaluate. Coarse bounds may be obtained, for
example, with series and parallel resistance models, which are a simple way of weigh-
ing the coinponent properties with their volume fractions. More accurate bounds
are based on variational principles: the effective property is first shown to have an
extremizing property, and trial functions are subsequently chosen to evaluate the

bounds.

Conduction Using variational theorems applicable to magnetic permeability and
electric and heat conductivities of macroscopically homogeneous isotropic materials,
Hashin & Shtrikman (1962) developed explicit optimal (i.e., narrowest for the avail-

able information) bounds using minimal input about the underlying medium, namely,
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the component properties and volume fractions. Later, Hashin (1970) obtained nar-
rower bounds for the specific class of transversely isotropic fiber-reinforced materials.
Improvement of these general bounds is necessary for materials with very different
components, and (typically) requires statistical information about the spatial distri-
bution of the phases. Beran (1965) improved Hashin & Shtrikman’s bounds by intro-
ducing three—point correlation functions to partially describe the microstructure; Cor-
son (1974) evaluated Beran’s bounds using empirical techniques, and Milton (1981)
expressed them as functions of two geometrical parameters. McPhedran & Milton
(1981) showed convergence (as progressively more information is supplied about the
mediuin’s microstructure) of Milton’s bounds for the cases of regular arrays of cylin-
ders and -pheres. Torquato & Lado (1988) calculated Milton’s bounds for random
arrays of cylinders, using three—point probability functions developed by Torquato &
Stell (1982); their results are narrower than Hashin’s, in certain cases, by a factor of
almost 5. Notice that for the case of insulating (or infinitely conducting) inclusions,
the above bounds are one-sided, in that the lower bound (or upper bound) is trivial,
i.e., zero (or infinity). More recently, Chau & Chinh (1991) derived inequalities from
classical variationa! principles, dependent on several coeflicients characterizing the
medium’s microstructure. The coefficients were calculated exactly for a type of com-
posite with ellipsoidal inclusions, and narrower bounds than Hashin & Shtrikman’s

were obtained.

Creeping Flow Three—point correlation functions were used by Prager (19€!) and
Weissberg & Prager (1970) to derive upper bounds for the permeability of porous
media. However, they used heuristic arguments to simplify their ensemble averag-
ing approach; Berryman & Milton (1985) used volume--averaging to derive rigorous
bounds. More recently, Rubinstein & Torquato (1989), using ensemble-averaging
and variational principles, derived rigorous upper and (new) lower bounds for the

permeability of random porous media.
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1.2.2 Phenomenological Methods

Phenomenological approaches can normally address a very broad class of complex
problems, often yielding simple useful results and new physical insights; on the other
hand, they must introduce strong, often debatable, assumptions. Therefore, they
require a posterior: testing on known solutions; their range of validity is not easily

established, and must rely on experimental verification.

Conduction Springer & Tsai (1967) obtained approximate expressions for the ef-
fective conductivity of square arrays of cylindrical and square inclusions; they used a
thermal model in which the tot.! neat dow across the composite, due to a constant
temperature difference, was thought to occur through three independent, parallel
paths. Acrivos & Chang (1986) calculated the effective conductivity of a random dis-
persion of equal spheres by treating the composite medium surrounding a test sphere
as a continuum, but having a varying thermal conductivity proportional to the local
inclusion volume density; the same technique was employed to a (dilute-regime) sed-
imentation problem. Acrivos & Shagfeh (1988) considered longitudinal heat conduc-
tion in aligned slender rods composites, and obtained an expression for the effective
conductivity to second-order in the particle concentration for the semidilute regime;
they locally used an equation for the conditional ensemble average temperature that
strictly applies to the macroscale only. More recently, Pitchumani & Yao (1991) at-
tempted to correlate effective conductivity of unidirectional fibrous composites using
local fractal techniques. Their results are withir 10% of the exact values reported for

ordered arrangements.

Creeping Flow In Kozeny’s theory, as discussed in Scheidegger (1974), the porous
medium is modelled as a bundle of straight channels parallel to the direction of flow,
and with arbitrary cross-sections. The permeability is derived, from one-dimensional
Navier-Stokes, to be proportional to the cube of the porosity, and to the square of the
inverse specific surface; the inverse “constant” of proportionality (termed Kozeny’s

constant), for example, was found by Carman (1937), for fluid flow through granu-
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lar beds, to be around 5. Kozeny’s theory, apart from being non-universal, is not
accurate for highly porous media. Cell models, see e.g. Happel (1959) and Happel
& Brenner (1983), calculate the permeability by determining the force on one inclu-
sion surrounded by fluid in a unit cell. which has the same volume fraction as in the
whole medium. Based on symmetry arguments, no shear boundary conditions are
used at the outer fluid envelope. As the concentration increases (i.e., as the porosity
decreases), Happel's permeability results for flow perpendicular to cylinder arrays are
such that a Kozeny’s constant of about 5.3 is approached (for flow parallel to the
cylinders, the constant is about 3.4).

Brinkman (1947), using an effective-medium approach, proposed a modification
of the Stokes’ momentum equation, adding to it a damping force term to account for
the presence of the porous mass around one test (spherical) particlé. He notes that,
with some parameter choices, his results satisfactorily agree with previous experi-
mental evidence in the low concentration regime. Spielman & Goren (1968) extended
Brinkman’s method to fibrous porous media (for various fiber orientation distribu-
tions), obtaining somewhat complex expressions involving Bessel functions. Their
predictions for the permeability, more applicable in the low concentration range (less
than 0.13), underestimate empirical data for fibrous filters (made of glass wool, cotton

etc., as compiled by Davies (1952)), but not as much as cell model results do.

1.2.3 Analytical and Semi-Analytical Methods

Particle-expansion analytical and semi-analytical (i.e., also involving symbolic nu-
merical computations) methods can efficiently solve single- and multiple-particle
problems, allowing a through investigation of the underlying physics. The essence
of particle-expansion methods is linear superposition: the desired field quantity (e.g.
temperature, potential, velocity, vorticity) is written as a summation of fundamental
solutions or Green’s functions of the governing equations [Rayleigh (1892), Hasimoto
(1959), Kim & Karrila (1991)]; numerical computations are then often performed to
evaluate the (truncated) sums. Extensions of these methods to accomodate nonlin-

earities (e.g. inertia) are not easily accomplished.
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Many analytical and semi-analytical results, for either conduction or creeping flow
in multicomponent systems, were developed for media having a periodic microstruc-
ture, which are simplified models of real (random) media. The mathematical analysis
of these models is greatly simplified by the periodic boundary conditions, which make
proofs of existence and uniqueness of solution in periodic homogenization theory pos-
sible [Bensoussan, Lions & Papanicolaou (1978); see also Appendix A for a discussion
and further references about homogenization thecry]. Solutions of periodic models
can exactly account for multiple-body interactions, and they are easily compiled due
to smaller parameter spaces. However, due to the simplified and somewhat arbitrary

microstructure, care is needed when applying the results in practice.

Conduction Behrens (1968) used the method of long waves of solid state physics
to calculate the principal thermal conductivities of an infinite composite, made of
periodic cells with orthorhombic symmetry. The method consists in considering trav-
elling waves of long wavelengths compared to inter-inclusion spacings, and calculating
their damping coefficients in the principal directions of the medium. Han & Cosner
(1981) employed the boundary collocation method (whereby boundary conditions are
satisfied at a selected number of points along the boundary) to solve for the effective
conductivity of fibrous composites in various unit—cell geometries.

J. Keller (1964) demonstrated a reciprocity theorem for rectangular lattices of
identical parallel cylinders, which relates the component conductivities and the effec-
tive conductivities along the two orthogonal coordinate directions. In the particular

case of isotropic regular arrays, Keller’s relation takes the form

(1.1)

ke(c, kai/keo) [uc, 1/(kd.-/kw))]“
kco - kco ’

where k. is the (scalar) effective conductivity function, k., and ky; are the continuous
phase and dispersed phase conductivities, respectively, and ¢ is the concentration
(i.e., cylinders volume fraction). Notice that the second argument of k. corresponds

to the dispersed phase conductivity normalized with respect to the continuous phase
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conductivity. We will be interested in the case with ks; = 0 (see Chapters 2 and 4),
so that the inverse of reported effective conductivity results for infinitely conducting
cylinders are appropriate for comparison. Keller’s proof relies on the properties of
harmonic functions. He aiso claimed that equation (1.1) is applicable to a medium
with statistically homogeneous and isotropic random distribution of cylinders, a result
later made rigorous by Mendelson (1975).

Perrins, McKenzie & McPhedran (1979) and McPhedran & McKenzie (1978)
solved, respectively, the two- and three-dimensiona! problems of heat conduction
through ordered arrays of cylinders and spheres. They extended Rayleigh’s superpo-
sition analysis to include an arbitrary number of terms in the series expansion of the
potential (or temperature) in terms of harmonic functions. Their results for square
and hexagonal arrays are tabulated for various values of the concentration and the
ratio of dispersed to continuous phase conductivities.

Sangani & Yao (1988a) calculated the effective conductivities of random arrays
of cylinders. They extended the periodic fundamental solutions of Laplace’s equa-
tion [Hasimoto (1959)] to include many particles in the (periodic) domain, and sub-
sequently truncated the resulting infinite series expressions. Effective conductivity
values were determired for computer generated arrays, and average results (corre-
sponding to small sample sizes, O(10)) are presented in terms of the concentration
and the ratio of component conductivities. Sangani & Yao’s results are, to the au-
thor’s knowledge, the only (“exact”) ones for random arrays of cylinders; in Chapter
4, our results are compared to theirs.

Tzou (1991) analysed the problem of determining the thermal conductivity of
porous media, thought of as “particulate” composite materials with insulating spher-
ical cavities or penny-shaped cracks. He used a volume averaging approach to define
bulk quantities; the cavity or crack was subjected to the following boundary condi-
tions: zero flux at the surface, and an incoming unidirectional heat flux at a great
distance. Tzou’s expression for the effective conductivity in the case of penny-shaped

cracks overestimates experimental data; this is mathematically explained in Section

2.1.3.
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It should be pointed out that most procedures developed for the analysis of ther-
mal conduction in composite materials extend directly to the structural composite
problem [Hashin (1983), Kibler (1991)]. In fact, expressions similar to the ones de.
rived in this thesis [see Chapter 2] and elsewhere for the effective conductivity can
also be derived for the elastic moduli of composites [see e.g. Hashin (1983), Bendsge
& Kikuchi (1988), Rodin & Hwang (1990)].

Creeping Flow Childress (1972) showed that Brinkman's approach is indeed rig-
orous for point particles, by obtaining an asymptotic expansion for the permeability
in powers of concentration, using a perturbation method. Saffman (1973) gave a
unified analytical treatment for the point particle approximation, explaining differ-
ent qualitative dependence of effective properties (permeability, sedimentation rate)
on concentration. Notice that the point particle approximation has been extensively
used for the low concentration range, i.e., dilute regime [Batchelor (1974), Kim &
Karrila (1991)).

Kim & Mifflin (1985) use the boundary collocation technique, in which series rep-
resentations of the velocity field in terms of Green’s functions are truncated, and
the coefficients calculated by satisfying the boundary conditions at a finite num-
ber of boundary nodes, to (completely) solve for the resistance and mobility func-
tions of two equal spheres in a creeping flow. Later, Kim and co-workers [see Kim
& Karrila (1991)] developed a completed double-layer boundary integral equation
method (CDL-BIEM) to deal with general multi-particle systems in creeping flow;
the method uses Stokes double layer densities completed to form a basis, and linear
operater theory. Karrila, Fuentes & Kim (1989) developed computational strategies
for the CDL-BIEM to make use of parallel processing.

Brady & Bossis (1985, 1988) developed a dynamic simulation technique, termed
Stokesian Dynamics, applicable to a variety of situations, including flow through
porous media. It is based on known analytical expressions of mobility-resistance
functions for particular categories of Stokes flow (thus linear); these expressions are

used to approximate the lubrication (near-field) and far-field contributions to hydro-
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dynamic particle interactions. Ladd (1990; see also references therein) uses similar
near-field and far—field approximation techniques to determine, through simulation,
transport coefficients of random dispersions of hard spheres. Brady & Bossis’ and
Ladd’s simulation techniques are not exact, and were mainly explored for spherical
particles, due to ready availability of analytical expressions.

Sangani & Acrivos (1982a, 1982b) solved the problems of creeping flow through
periodic arrays of cylinders and spheres; for the former, they used a somewhat non-
conventional numerical method to calculate values of the force on one cylinder, re-
sulting from series expansions of the vorticity and streamfunction; for the latter, they
basically modified Hasimoto’s treatment for the dilute regime, to solve for the com-
plete range of concentration. Sangani & Yao (1988b), by extending their conduction
solution technique to a streamfunction-vorticity formulation of the Stokes problem,
calculated permeabilities of random arrays of cylinders. Notice that, since Sangani &
Yao’s approach is based on solutions to Laplace’s equation, further extension of the

method to flow in three dimensions is not possible.

1.2.4 First-Principle Computational Methods

First-principle computational methods (b<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>