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Abstract

Neutron stars (NSs) are astrophysical laboratories that allow us to probe physics at
extreme conditions. The first half of this Thesis is devoted to exploring how we can
connect theoretical models of NSs to observational signatures whose detections are
made possible by state-of-the-art instruments. We start by exploring the dynamics
of super-Eddington winds launched in type-I X-ray bursts at the surface of a NS. We
show that freshly synthesized heavy elements can be exposed by the wind and will
dominate the composition at the photosphere after ∼ 1 s. This may create detectable
absorption edges in burst spectra and explain the observed transitions from super-
expansions to moderate expansions. Gravitational-wave (GW) observatories such as
Advanced LIGO (aLIGO) open up a new possibility to probe deep inside the NS
by examining the tidal signatures in the GW waveforms. In this Thesis, we study
the tidal excitations of g-modes in a cold, superfluid NS during the inspiral driven
by gravitational radiation and their resulting phase shifts in the GW waveform. We
consider both the g-modes supported by the muon-to-electron gradient in the outer
core and the g-modes supported by the hyperon-to-proton gradient in the inner core.
We further show that the former might be detectable by event stacking with the third
generation of GW detectors.

The second half of this Thesis is devoted to the experimental upgrades to aLIGO
interferometers. The focus will be on the angular sensing and control system. We
will cover design considerations on the system based on both stability and noise
requirements. This is followed by a thorough discussion of the radiation-pressure
torques, including both the Sidles-Sigg and the d𝑃/d𝜃 effects. More importantly,
we show that such optical torques can be compensated for with newly developed
techniques, which is a critical step for aLIGO to reach high-power operations. Lastly,
we discuss the prospects of detecting GW at 5Hz with ground-based detectors and
demonstrate that low-frequency sensitivity is crucial for both increasing the detection
range for black-hole binaries and enabling timely localization of binary NS systems.
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Chapter 1

Introduction

The study of compact objects – white dwarfs, neutron stars (NSs), and black holes

(BHs) – is a major area of research in modern astrophysics. The extreme conditions

in the vicinity and interior of these objects extend far beyond anything achievable in

terrestrial laboratories, and consequently pose a rich opportunity to confront cutting-

edge theories with observations.

Of particular interest to this Thesis is the physics of NSs. NSs are created in

the aftermath of the gravitational collapse of the core of a massive star (> 8𝑀⊙;

Lattimer & Prakash 2004). With a typical mass of 1.4𝑀⊙ and a radius of ∼ 10 km,

the central density of a NS can be as high as ∼ 1015 g cm−3, 5 times the nuclear

saturation density. The equation of state (i.e., the relation between pressure and

density) at such supranuclear densities is one of the major unknown in fundamental

physics (for reviews, see, e.g., Lattimer 2012; Özel & Freire 2016). The many-body

interactions that govern matter at extreme densities remain poorly constrained by

first principle calculations (Drischler et al., 2016). Meanwhile, our understanding of

laboratory nuclei is largely based on matter with nearly equal number of neutrons

and protons, whereas a NS has only a few percent of protons. Consequently, large

uncertainties exist in extrapolating the properties of laboratory nuclei to NS matter.

Nevertheless, breakthroughs in modern astrophysical theories and observations

have begun to shed light onto our understanding of the physics of cold, ultradense

matter. By combining the equation of state with the general relativistic structural

17



equations (the Tolman-Oppenheimer-Volkov equations Tolman 1934; Oppenheimer &

Volkoff 1939), we can predict the mass-radius relation of NSs. This, in turn, allows us

to use the observed NS masses and radii to place constraints on the equation of state

at supranuclear densities. While the mass of a NS can be accurately measured by

tracking its orbital motion through the arrival times of the observed pulsations (Özel

& Freire, 2016), the precise measurement of a NS’s radius is challenging. One ap-

proach of measuring NS radii is to utilize the thermonuclear (type-I) X-ray bursts in

low-mass X-ray binaries. Due to the binary’s close proximity and the strong gravity

of the NS, mass is transferred from the companion to the NS. As the accreted layer

reaches a critical mass, it ignites explosively, heating the entire surface of the NS and

release a sudden burst of X-rays (Fujimoto et al., 1981; Bildsten, 1998; Strohmayer &

Bildsten, 2003). The spectrum of an X-ray burst is dominated by a thermal compo-

nent, which allows us to infer the effective temperature during the burst and thus the

flux at the NS’s surface. Then, by combining the observed flux and the distance to

the source we can deduce the radius of the NS. This approach has been predominantly

used to study the cooling tails of bursts (van Paradijs, 1979).

For a subset of the bursts, the luminosity reaches the Eddington limit where the

radiation force exceeds the gravitational force and consequently lifts the photosphere

off of the NS surface. The study of such photospheric radius expansion bursts has a

unique significance. In part, this is because one can relate the flux at the moment

when the photosphere touches back down to the stellar surface to the Eddington limit,

which helps to break the degeneracies between mass and radius introduced by general

relativistic effects (Özel & Psaltis, 2009). Moreover, Weinberg et al. (2006) suggested

that during strong bursts, freshly synthesized heavy elements may be dredged up to

close to the photosphere by convection and eventually exposed by the subsequent

super-Eddington wind. If an atomic transition line can be identified, we can further

infer the surface gravity of the NS by comparing the observed transition wavelength

to the one measured in terrestrial laboratories. Detection of heavy elements also

provides constraints on the nucleosynthesis which is of interest in its own right (Parikh

et al., 2014). On the observation side, the recent launch of the Neutron Star Interior
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Composition Explorer (NICER, Gendreau & Arzoumanian 2017) is expected to deliver

unprecedentedly high quality of data on photospheric radius expansion X-ray bursts

as NICER has its sensitivity band extends to as low as 0.2 keV.

Consequently, I will devote Chapter 2 to a theoretical modeling of type-I X-ray

bursts with photospheric radius expansions. We will use MESA (Paxton et al., 2011,

2013, 2015) to study the time-dependent burning, the convective and radiative heat-

ing of the atmosphere during the burst rise, and the launch and evolution of the

optically thick radiation-driven wind as the photosphere expands outward to radii

𝑟ph & 100 km. We show that ashes of nuclear burning are ejected in the wind and

dominate the wind composition for bursts that ignite at column depths & 109 g cm−2.

Moreover, we find that after ≈ 1 s the wind composition transitions from mostly light

elements (4He and 12C), which sit at the top of the atmosphere, to mostly heavy

elements (𝐴 > 40), which sit deeper down. This may explain why the photospheric

radii of all superexpansion bursts show a transition after ≈ 1 s from a superexpansion

(𝑟ph > 103 km) to a moderate expansion (𝑟ph ∼ 50 km).

Beyond the traditional observations using electromagnetic radiation, the operation

of Advanced LIGO (aLIGO, Aasi et al. 2015) opens up an entirely new window for us

to study the physics of compact objects via gravitational waves (GWs). During the

inspiral of a binary NS (or a NS-BH) system, the NS is deformed by its companion’s

gravitational field. This allows the energy to be transferred from the orbit to the star

and thus enhances the orbital decay rate. As a result, the tidal interaction induces a

phase shift in the GW waveform relative to the point-particle one. By measuring such

a phase shift, one can in turn infer the NS’s radius and consequently the underlying

equation of state (Flanagan & Hinderer, 2008; Hinderer et al., 2010). Indeed, for the

first GW detection of the merger of a NS binary (Abbott et al., 2017c), an analysis

on the tidal interaction has been performed and it has led to valuable estimations on

the radii of the two NSs in the system (Abbott et al., 2018b).

The study above focused on the equilibrium tide which accounts for the large-scale

distortion of the NS and has a relatively large phase shift in the GW waveform of

∼ 1 rad. While it provides powerful constraints on the bulk properties of the NS such
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as the pressure-density relation, it probes the NS composition only indirectly and is

insensitive to the state of matter in the core. On the other hand, the superfluidity ex-

pected at the core of a cold NS exhibits a rich array of science (Graber et al., 2017) and

determining the composition at the supranuclear densities remains an open question

to be answered. It thus renders the dynamical tide, especially the resonant excitation

of NS g-modes, a particularly appealing topic to consider (Andersson & Ho, 2018).

The g-modes are NS oscillation modes supported by the star’s internal buoyancy due

to composition gradients (Reisenegger & Goldreich, 1992). Furthermore, in a normal-

fluid NS, the buoyancy is due to gradients in the proton-to-neutron fraction, whereas

in a superfluid NS it is due to gradients in the muon-to-electron fraction (Kantor &

Gusakov, 2014). The latter yields a significantly stronger stratification and leads to a

denser spectrum of g-modes with frequencies above 10Hz. Consequently, the g-modes

probes directly both the interior composition and the state of matter in the core of a

NS.

In Chapter 3 we carry out the first study combining the NS superfluidity with

dynamical tidal interactions in the context of coalescing NS binaries. We show that as

a consequence of the stronger stratification in the superfluid NS than in a normal-fluid

one, there will be three to four times more g-modes undergo resonant tidal excitation

as a NS binary sweeps through the bandwidth of GW detectors such as aLIGO.

We find that ≃ 10 times more orbital energy is transferred into g-mode oscillations

if the NS has a superfluid core rather than a normal-fluid core. However, because

this energy is transferred later in the inspiral when the orbital decay is faster, the

accumulated phase shift in the gravitational waveform is comparable for a superfluid

and a normal fluid NS (∼ 10−3 − 10−2 rad).

We further extend the study of g-modes in Chapter 4 by allowing for hyperons in

the core. While the discovery of 2𝑀⊙ NSs (Demorest et al., 2010; Antoniadis et al.,

2013) ruled out many NS models involving hyperons, new hyperonic equations of state

have been proposed in recent years that are compatible with observations (see, e.g.,

Gusakov et al. 2014). Hyperon gradients give rise to a new type of composition g-

mode. Compared to g-modes due to muon-to-electron gradients, those due to hyperon
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gradients are concentrated much deeper in the core and therefore probe higher density

regions. We find that the phase shifts due to resonantly excited hyperonic modes are

∼ 10−3 rad, an order of magnitude smaller than those due to muonic modes. We

further show in the Chapter that by stacking events, third-generation GW detectors

should be able to detect the phase shifts due to muonic modes. Such a detection

will further provide direct constraints on the NS superfluidity1 and the abundance of

charged particles.

As the study of NS physics, as well as other high-energy phenomena involving

compact objects with short orbital periods, depends critically on the performance of

current and future GW detectors, we will devote the rest of the Thesis to discuss topics

on improving the sensitivity and robustness of aLIGO and its potential upgrades. In

Chapter 5 we provide an overview of aLIGO and derive how different optical fields

propagate in the interferometer. This Chapter is intended to be pedagogical so that

future researchers can learn techniques for analyzing the responses of complex optical

systems such as aLIGO.

To keep aLIGO at its proper operational point, all the optical elements need

to be properly controlled not only in length but also in alignment. Therefore, in

Chapter 6 we will discuss how one can sense and control the angular motions both in

a generic resonant cavity and in the specific case of aLIGO. The alignment control in

aLIGO’s 4-km-long arm cavities is particularly challenging. This is because to increase

the shot-noise-limited sensitivity, we need to increase the amount of optical power

circulating in the arm cavities (Buonanno & Chen, 2001). The designed circulating

power for aLIGO reaches nearly 1MW. Such a high power creates a radiation torque

on the mirrors surpassing the restoring torque from the suspension pendulum, which,

without carefully designed control system, can lead to various kind of instabilities

and keep the instrument from operating. Consequently, we devote Chapter 7 to

provide a comprehensive study on the alignment control of aLIGO’s arm cavities. The

1Page et al. (2011) and Shternin et al. (2011) have suggested observational evidences for the core
superfluidity based on the rapid cooling of the NS in Cassiopeia A supernova remnant. However,
systematic issues regarding the observation remain unsettled (Posselt et al., 2013). Therefore con-
straint based on tidal interactions would be of great interest as it has a completely different set of
systematic uncertainties from X-ray observations.
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discussion will be focused on the effects of radiation torques and the corresponding

solutions, including both a newly implemented compensation system to cancel out the

well-studied Sidles-Sigg effect (Sidles & Sigg, 2006), and a control design to suppress

the d𝑃/d𝜃 effect realized only recently. In addition to the radiation torques, the

power may also be absorbed by the mirrors, leading to thermal wavefront distortions.

Some consequences of this effect is discussed in Chapter 8.

We introduce the LIGO-LF design in Chapter 9. It discusses the prospects on

improving the sensitivity in the 5-30Hz low-frequency band as well as the upgrade’s

astrophysical applications. We show that with technologies currently under develop-

ment, such as interferometrically sensed seismometers and balanced-homodyne read-

out, LIGO-LF can reach the fundamental limits set by quantum and thermal noises

down to 5Hz. These technologies are also directly applicable to the future generation

of detectors. We go on to consider this upgrade’s implications for the astrophysical

output of an aLIGO-like detector. A single LIGO-LF can detect mergers of stellar-

mass BHs out to a redshift of 𝑧 = 6 and would be sensitive to intermediate-mass BHs

up to 2000𝑀⊙. The detection rate of merging BHs will increase by a factor of 18

compared to aLIGO. Additionally, for a given source the chirp mass and total mass

can be constrained 2 times better than aLIGO and the effective spin 3-5 times better

than aLIGO. Furthermore, LIGO-LF enables the localization of coalescing binary NSs

with an uncertainty solid angle 10 times smaller than that of aLIGO at 30Hz and 4

times smaller when the entire signal is used. LIGO-LF also significantly enhances the

probability of detecting other astrophysical phenomena including the tidal excitation

of NS r-modes and the gravitational memory effects.

22



Chapter 2

Super-Eddington winds from type-I

X-ray bursts

2.1 INTRODUCTION1

Type I X-ray bursts are powered by unstable thermonuclear burning of accreted

material on the surface of a NS in a low-mass X-ray binary (for reviews, see Bildsten

1998; Strohmayer & Bildsten 2006; Galloway & Keek 2017). The peak luminosity

and duration of a burst depends primarily on the accretion rate and composition

of the accreted material. In photospheric radius expansion (PRE) bursts, which

comprise about 20% of all bursts (Galloway et al., 2008), the luminosity exceeds the

Eddington luminosity and radiation forces drive an optically thick wind that lifts

the photosphere off the NS surface. Typically, the photosphere moves out to radii

𝑟ph ≈ few × (10− 100) km, although in a small fraction of PRE bursts, known as

superexpansion bursts, 𝑟ph & 103 km (in’t Zand & Weinberg 2010; hereafter iZW10).

As the emitting area of the photosphere increases, its temperature decreases below

1 keV, leading to a substantial loss of signal for detectors that lack sensitivity at low

X-ray energies. Depending on the ignition depth and hence the total nuclear energy

release, the entire PRE can last from seconds to minutes.

In order to reliably interpret observations of PRE bursts, it is important to un-
1This Chapter is based-on Yu & Weinberg (2018).
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derstand the dynamics of the wind. Three recent developments particularly motivate

such a study: (i) the renewed effort to use PRE bursts to measure NS radii and thereby

constrain the NS equation of state (see, e.g., van Paradijs 1979; Özel et al. 2010, 2016;

Steiner et al. 2010, 2013), (ii) evidence of heavy-element absorption features in burst

spectra, which might be imprints of ejected ashes of nuclear burning (iZW10, Barrière

et al. 2015; Iwai et al. 2017; Kajava et al. 2017), and (iii) the sensitivity of the Neu-

tron Star Interior Composition Explorer (NICER; Gendreau & Arzoumanian 2017)

down to 0.2 keV. This makes NICER an ideal instrument to study strong PRE bursts

at high time resolution since, unlike the Proportional Counter Array (PCA; Jahoda

et al. 2006) on board the Rossi X-ray Timing Explorer (RXTE), it does not lose sig-

nal when the temperature decreases during the expansion (see Keek et al. 2018, who

studied the first strong PRE burst detected with NICER).

Constraining NS radii with PRE bursts relies on measuring the flux when the

temperature reaches a maximum. This is thought to be the moment when the pho-

tosphere “touches down” on the NS surface at the end of the PRE. By knowing the

distance to a source and associating the touchdown flux with the Eddington flux, it

is possible to constrain the NS radius 𝑅. However, the measurements may be sub-

ject to considerable systematic errors (Boutloukos et al., 2010; Steiner et al., 2010;

Suleimanov et al., 2011; Miller, 2013; Medin et al., 2016; Miller & Lamb, 2016). This

is partly due to spectral modeling uncertainties, such as how the color-correction

factor, which enters the fit to 𝑅, depends on luminosity and composition. Recently,

there has been considerable effort to make progress on this front (Suleimanov et al.,

2011, 2012; Medin et al., 2016), including the study by Nättilä et al. (2015), who

showed that the emergent spectra are sensitive to the abundance of heavy elements

in the wind. There are also uncertainties associated with the dynamics of the PRE.

For example, Steiner et al. (2010) found it necessary to relax the assumption that

𝑟ph = 𝑅 at touchdown in order to avoid unphysical values of NS mass and radius

when fitting to PRE burst data. A better understanding of the dynamics of the PRE

and the wind composition could help address these uncertainties.

Weinberg et al. (2006; hereafter WBS) modeled the evolution of the atmosphere
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during the rise of a PRE burst. However, they only considered times up to when the

luminosity first reaches the Eddington luminosity; they did not study the dynamics

of the subsequent PRE. Nonetheless, their calculations suggested that the wind could

eject ashes of nuclear burning. This is because during the burst rise, there is an

extensive convective region that is well mixed with ashes brought up from the burning

layer below. Based on approximate energetic arguments, they estimated that the wind

would be launched from a region that contains ashes and thereby expose them during

(and after) the PRE. Since the ashes are primarily heavy elements (mass numbers

𝐴 ∼ 30 − 60; see, e.g., WBS), they could imprint absorption edges and lines on the

burst spectra. A detection would probe the nuclear burning processes and might

enable a measurement of the gravitational redshift of the NS. The latter possibility

assumes that the heavy elements do not sink too quickly once the photosphere settles

back to the NS surface at the end of the PRE; we will show that for deep ignitions

there are very few light elements in the photosphere relative to which the ashes could

sink, which suggests that the ashes may indeed linger on the surface.

Two superexpansion bursts detected with RXTE from 4U 0614+091 and 4U 1722-

30 showed significant deviation from an absorbed blackbody (iZW10). By including

an absorption edge in the spectral model, iZW10 found that they could significantly

improve the fits to the data. The energy of the fitted edges was consistent with the

H-like photoionization edge of Ni and the optical depth of the edges suggested Ni

mass fractions 𝑋 & 0.1. Kajava et al. (2017) detected similar features in the spectra

of an RXTE burst from HETE J1900.1-2455. In NuSTAR observations of a burst

from GRS 1741.9-2853, Barrière et al. (2015) detected, at a 1.7𝜎 confidence level, a

narrow absorption line at 5.46±0.10 keV. They proposed that the line, if real, formed

in the wind above the photosphere by a resonant K𝛼 transition from H-like Cr.

Although including heavy-element absorption features improved the fits to these

bursts, the limited spectral resolution of the PCA on RXTE and the weakness of

the NuSTAR spectral line preclude an unambiguous identification. The only high-

spectral-resolution observations of PRE bursts from any source to date are six bursts

detected with Chandra from 4U 1728-34 Galloway et al. (2010) and one from SAX
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J1808.4-3658 observed simultaneously with Chandra and RXTE (in’t Zand et al.,

2013). No discrete features were detected in the spectra, although this might be

because the radius expansions were all weak (𝑟ph ≈ 20 km); the upper limits on the

edge equivalent widths were a few hundred eV, comparable with the predictions of

WBS.

All previous models of PRE assumed a steady-state wind (i.e., time-independent

models). The first models were Newtonian (Ebisuzaki et al., 1983; Kato, 1983; Quinn

& Paczynski, 1985; Joss & Melia, 1987) and then fully relativistic (Paczynski &

Proszynski, 1986). By developing an improved treatment of radiative transfer, Joss &

Melia (1987) constructed models that extended into the optically thin regions above

the photosphere, where Compton scattering is important. These models all treated

the wind mass-loss rate 𝑀̇w as a free parameter. Nobili et al. (1994) removed 𝑀̇w

as a free parameter by including nuclear energy generation due to helium burning

in the innermost regions of their model (their models were also relativistic and im-

proved upon previous treatments of radiative transfer). However, most of the energy

released from helium burning occurs within a few milliseconds, well before the wind

is launched (WBS). We will show that in order to properly account for the driving of

the wind, it is necessary to consider the transport of heat (by convection and radia-

tive diffusion) through the hydrostatic layers between the ignition base and the wind

base.

We find that it takes a few seconds for nearly time-independent conditions to

be established in the wind (see also Table 1 in Joss & Melia 1987). Since most

observed PREs only last for a few seconds, the steady-state assumption is often not

well satisfied. This, and the recent developments discussed above, motivate a time-

dependent calculation of the wind.

Once He ignites, the calculation can be divided into two time-dependent stages: a

hydrostatic heating stage (the burst rise) followed by a hydrodynamic wind stage (the

PRE phase). In the first stage, which we study in Section 2.2, the atmosphere above

the helium burning layer is heated by convection and radiative diffusion. Initially,

the radiative heat flux is sub-Eddington and the atmosphere adjusts hydrostatically.
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During this time, freshly synthesized ashes are dredged up by convection and mixed

throughout the growing convective region. As the atmosphere heats up, the radiative

flux increases and eventually exceeds the local Eddington limit at the top of the at-

mosphere. This marks the beginning of the second stage, the PRE, which we study

in Section 2.3. We show that as the photosphere expands outward, the base of the

wind moves downwards to greater depths. First it blows away the top most layers

of the atmosphere, which consists mostly of light elements. But gradually it digs

into the deeper layers and ejects heavy-element ashes. In Section 2.4 we describe the

observational signatures of the wind models and compare them with observed PRE

bursts. Although our results are broadly consistent with observations, there are also

some notable differences. We consider whether these might be attributed to some of

our simplifying assumptions, including our neglect of general relativistic effects and

our simplified treatment of radiative transfer, which relies on the diffusion approxi-

mation and neglects potential line-driving of the heavy elements. In Section 2.5 we

summarize and conclude.

2.2 HYDROSTATIC BURST RISE

We model the hydrostatic portion of the burst rise with MESA (version 9575; Paxton

et al. 2011, 2013, 2015). Our approach is similar to that of Paxton et al. (2011), who

also used MESA to model the evolution of the hydrostatic layers during type I X-ray

bursts. We assume that the NS has a mass 𝑀 = 1.4𝑀⊙ and radius 𝑅 = 10 km and

ignore corrections due to general relativity.

We assume pure He accretion (as in ultracompact X-ray binaries; in’t Zand et al.

2007) since bursts that ignite in a pure He layer have especially high luminosities

and strong PREs. Systems that accrete H/He at mass accretion rates below ≈ 1%

of Eddington also ignite in a pure He layer and exhibit strong PREs (Bildsten, 1998;

Cumming & Bildsten, 2000; Galloway & Keek, 2017). We assume that the atmosphere

is always in local thermal equilibrium (LTE) and we model convection using mixing-

length theory (MLT). During the hydrostatic phase, we set the top boundary at an
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Figure 2-1: Temperature as a function of column depth for model y3n21 at different
moments during the burst rise. The numbers label the time in milliseconds, with
𝑡 = 0.0 corresponding to when 𝐿rad first exceeds 𝐿Edd. The squares indicate the top
of the convective zone and the dashed vertical line indicates the maximum depth of
the wind base 𝑦wb during the PRE phase; material above this line will be ejected by
the wind.

optical depth of 𝜏 = 100 (during the wind phase we set the top boundary at a much

smaller 𝜏 in order to capture the regions near the photosphere). By neglecting the

shallower layers, we avoid numerical difficulties while still being able to accurately

follow the nuclear burning and the atmosphere’s evolution. In the Appendix A, we

provide our MESA inlist, which describes the setup we use in more detail.

During the hydrostatic phase, it is convenient to parameterize the vertical coordi-

nate in terms of the column depth 𝑦, defined as 𝑦(𝑟) =
∫︀∞
𝑟
𝜌d𝑟, where 𝜌 is the density

and 𝑟 is the radius. Since the atmosphere is geometrically thin and in hydrostatic

equilibrium up until the wind launches, 𝑦 ≃ 𝑃/𝑔 ≃𝑀𝑟/4𝜋𝑅
2, where 𝑃 , 𝑔, and 𝑀𝑟 are

the pressure, gravitational acceleration, and mass above 𝑟, respectively. We simulate

bursts for column depths at the ignition base ranging from 𝑦b = 3×108−5×109 g cm−2.

The value of 𝑦b is controlled in MESA by varying the core luminosity and the accretion

rate (the numerical settings are provided in the Appendix A; see Cumming 2003 and

Paxton et al. 2011 for a detailed description of the ignition model). We will primarily

show results for three representative values: 𝑦b = (0.5, 1.5, 5)× 109 g cm−2, which we
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will denote as (y1, y2, y3), respectively.

We consider two reaction networks2: a simple 9-isotope network (basic_plus_fe56.net)

denoted by n9, and a more complete 21-isotope network (approx21.net, which is

based on the 19-isotope network by Weaver et al. 1978 with the extra inclusion of
56Fe and 56Cr) denoted by n21. We primarily show results for y1n21, y2n21, and

y3n21, but will sometimes also show the n9 variants in order to illustrate how the

size of the reaction network can impact the simulations.

In Sections 2.2.1 and 2.2.2 we describe, respectively, the thermal and compositional

evolutions of the atmosphere during the rise. Since the results are similar to those of

WBS, we only describe the key features of the rise and refer the reader to that paper

for additional details. It is worth noting, however, that they only consider relatively

shallow ignition depths of 𝑦b = (3 − 5) × 108 g cm−2 compared to our (3 − 50) ×
108 g cm−2.

2.2.1 Evolution of the thermal profile

In Figure 2-1 we show the evolution of the thermal profile of model y3n21 during the

burst rise3. As the base temperature 𝑇b rises due to He burning, a convective zone

forms and begins to extend outward to lower pressure (smaller 𝑦) on a timescale of

∼ 1ms (for y1n21 it is about 50 times longer). Initially, 𝑇b rises so quickly that there

is not enough time for the radiative layer above the convective zone to thermally

adjust. As a result, the thermal profile in the radiative region is unchanged from the

pre-ignition profile (see also WBS, Paxton et al. 2011). This can be seen in Figure 2-1

at times 𝑡 < −28.9ms, where 𝑡 = 0 corresponds to when the wind turns on.

Over most of the convective zone, the convection is highly subsonic and efficient

and the temperature profile very nearly follows an adiabat 𝑇 ∝ 𝑦𝑛, with 𝑛 ≃ 2/5

(i.e., close to the adiabatic index of an ideal gas). In the overlying radiative region,

the temperature profile is shallower and since the opacity varies only slightly with

2http://cococubed.asu.edu/code_pages/burn.shtml
3In the X-ray burst literature, 𝑦 is usually plotted as increasing to the right. We plot it as

increasing to the left in order to match the orientation of the wind structure figures shown later,
which are often plotted in terms of the radial coordinate 𝑟, rather than 𝑦.
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Figure 2-2: Temperature as a function of column depth for five of the burst models
at the moment when their convective zones reach maximum extent. The squares
indicate the top of the convective zone.

column depth, 𝑇 ∝ 𝑦1/4.

Eventually, the top of the convective zone reaches low enough 𝑦 that the local

thermal timescale of the overlying radiative layer equals the heating timescale at

the base. The radiative flux can then diffuse outward through the radiative region

without being overtaken by the growing convective region. This flux begins to heat

the radiative region and the convective zone gradually retreats downward to larger

𝑦 (Figure 2-1 at 𝑡 > −28.9ms). As the radiative region heats up, the radiative

luminosity 𝐿rad in the shallower layers begins to approach the local Eddington limit

𝐿Edd(𝑇 ) =
4𝜋𝑐𝐺𝑀

𝜅(𝑇 )
. (2.1)

The opacity 𝜅(𝑇 ) is dominated by electron scattering and is temperature-dependent

due to Klein-Nishina (i.e., special relativistic) corrections. It varies approximately as

(Paczynski 1983; MESA uses a more exact form)

𝜅(𝑇 ) = 𝜅0

[︃
1 +

(︂
𝑇

0.45GK

)︂0.86
]︃−1

, (2.2)
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Figure 2-3: Composition as a function of column depth at the moment just before the
wind launches for models y1n21 (left), y2n21 (middle), and y3n21 (right). The dashed
vertical lines indicate 𝑦wb, the maximum column depth of the wind base. The dotted
vertical lines indicate 𝑦ash, the location where the mass fraction of heavy elements
(𝐴 > 40) equals 50%.

where 𝜅0 ≃ 0.2(1 + 𝑋H) cm2 g−1 and 𝑋H is the hydrogen mass fraction. Since 𝜅 is

larger for smaller 𝑇 , smaller 𝑦 have smaller 𝐿Edd. As a result, a given luminosity

𝐿 can be sub-Eddington in the deep hotter layers, but becomes super-Eddington as

the radiation diffuses upward into the shallow cooler layers (Ebisuzaki et al., 1983).

Indeed, as we will show in the hydrodynamic simulations (see Section 2.3.1 and Fig-

ure 2-4b), the base of the wind is initially at small 𝑦, moves to larger 𝑦 as the deeper

layers heat up, and finally moves back outward to smaller 𝑦 as the layers begin to

cool.

We run the hydrostatic simulations until the moment the luminosity first exceeds

the local Eddington limit (defined as 𝑡 = 0). As can be seen in Figure 2-1, at 𝑡 = 0

the convective zone has retreated and the atmosphere is almost fully radiative.

2.2.2 Pre-wind composition profile

As the convective zone extends outward, it efficiently mixes the ashes of burning up

to lower column depths. The minimum column depth 𝑦c,min reached by the convective

zone, and hence reached by the ashes of burning, is shown by the solid squares in

Figure 2-2 for five of the burst models. For model y3n21, which has the deepest
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ignition and thus the largest energy release, 𝑦c,min ≈ 103 g cm−2, while for the other

models, 𝑦c,min ≈ 104 − 105 g cm−2 (consistent with WBS). We also see that a more

complete reaction network (n21 compared to n9) results in slightly smaller 𝑦c,min due

to the increased energy release; comparing the y2 and y3 models, we find that this

difference becomes more significant at larger ignition depths.

In Section 2.3 we describe the time-dependent wind and show that the column

depth of the wind’s base 𝑦wb ≫ 𝑦c,min. As a result, ashes are ejected by the wind

and exposed. In Figure 2-3 we show the composition profiles of models y1n21, y2n21,

and y3n21 at the end of the hydrostatic phase, just before the wind is launched. The

dashed vertical lines indicate 𝑦wb. At a given 𝑦, the composition is determined by

the burning stage at the moment 𝑦c(𝑡) = 𝑦, where 𝑦c(𝑡) is the location of the top

of the retreating convective zone. For y1n21 (𝑦b = 5 × 108 g cm−2), we see that the

wind will be dominated by light elements, primarily 4He with a small amount of 12C.

However, for y2n21 (𝑦b = 1.5 × 109 g cm−2), the wind will be dominated by heavy

elements such as 48Cr and 52Fe, while for models ignited at even deeper depths (y3n21;

𝑦b = 5× 109 g cm−2) the wind will be primarily 56Ni.4

2.3 HYDRODYNAMIC WIND

When the luminosity first exceeds the local Eddington limit 𝐿Edd (equation 2.1), we

stop the hydrostatic calculation. We use the last hydrostatic profile as the initial

conditions for the time-dependent spherically symmetric hydrodynamic equations,

which we integrate using MESA’s implicit hydrodynamics solver. The MESA inlist for

our hydrodynamic calculations is given in the Appendix A. Since the atmosphere is

almost fully radiative at this stage, we turn off MLT (see Ro & Matzner 2016 and

Quataert et al. 2016 for a discussion of convective stability in radiation-driven winds).

4Woosley et al. (2004) found that bursts can dredge up the ashes of previous bursts. We do not
include such ashes in our simulations and instead focus on newly synthesized elements. We therefore
assume that for 𝑦 > 𝑦b, the composition is pure 56Cr, the end product of the 21-isotope network.
This ensures that the mass fractions of elements like 56Ni and 54Fe in the wind are not the result
of having been dredged up by convection. We find that 56Cr has a mass fraction of 10−4 − 10−3 for
𝑦b < 𝑦 < 𝑦c,min due to dredge-up (not shown in Figure 2-3).
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We include radiation in the diffusion approximation (d𝑇 4/d𝑟 = −3𝜅𝜌𝐿rad/4𝜋𝑎𝑐𝑟
2)

and set the upper boundary at optical depth 𝜏 = 1. We define the photospheric

radius 𝑟ph as the location where 𝐿rad/4𝜋𝑟
2
ph = 𝜎𝑇 4 (similar to Quinn & Paczynski

1985 and Paczynski & Proszynski 1986). In practice, we find that the optical depth

at 𝑟ph is 𝜏 =
∫︀∞
𝑟ph
𝜅𝜌d𝑟 ≈ 3. Thus, for 𝑟 < 𝑟ph the diffusion approximation and

LTE should be valid. In the region between 𝑟ph and the upper boundary of our grid

(𝜏 = 1) deviations from LTE may occur, although we expect the photons and gas

particles to still be well coupled (Joss & Melia, 1987). Nonetheless, our results should

be treated as approximations of the true structure in this region (see the steady-state

models of Joss & Melia 1987 and Nobili et al. 1994 for more detailed treatments of

this region and the optically thin region above it). Finally, to account for the mass-

loss at the top of our grid, we repeatedly remove the top layer of the atmosphere

when its density drops below a threshold value of 10−14 g cm−3 (by experimenting

with different thresholds, we determined that the wind solution is not affected by this

procedure).

We describe the evolution of the wind structure in Section 2.3.1. We compare our

results with steady-state models in Section 2.3.2 and use these results in Section 2.3.3

to explain why the wind structure is not sensitive to ignition depth. Finally, in

Section 2.3.4 we describe the composition of the wind.

2.3.1 Time-dependent wind profiles

In Figures 2-4a and 2-4b we show the temperature and luminosity as a function of

both density and column depth at four different times during the hydrodynamic wind

phase of model y2n21. The location where 𝐿rad first exceeds 𝐿Edd corresponds to the

wind base. Note that 𝐿 never exceeds 𝐿Edd by more than a few percent, since any

excess luminosity is used to expel matter to infinity (Ebisuzaki et al., 1983; Kato,

1983; Paczynski & Proszynski, 1986). At early times (𝑡 = 0.07 s), the column depth

of the wind base 𝑦wb ≈ 104 g cm−2. As the wind evolves during the next ≈ 10 s, the

location where 𝐿rad > 𝐿Edd moves to larger 𝑦 and 𝜌 and thus higher 𝑇 , eventually

reaching as far down as 𝑦wb ≃ 106 g cm−2. By 𝑡 = 29 s, the NS surface layers have
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Figure 2-4: Temperature and luminosity 𝐿rad/𝐿Edd as a function of density and col-
umn depth for model y2n21 at different times during the wind phase.

cooled, 𝑦wb has moved back to shallower depths, and the wind dies down. As we

explain in Section 2.3.2, the profiles at depths greater than that of the wind base

approximately follow power-law relations 𝑇 ∝ 𝜌1/3 ∝ 𝑦1/4. The 𝑇 ∝ 𝜌1/3 relation also

holds in regions sufficiently above the wind base.

In Figure 2-5 we show the wind structure of model y2n21 in more detail. We

plot profiles as a function of 𝑟 rather than 𝑦 or 𝜌 in order to more clearly reveal

the structure of the tenuous outer regions of the wind out to 𝑟 ∼ 103 km. The open

circles indicate the location of the photosphere 𝑟ph. We see that there is a large

radius expansion, with the photosphere reaching a maximum of 𝑟ph ≃ 200 km (see

also Figure 2-11). The pluses indicate the location of the isothermal sonic point,

defined as the radius where the velocity satisfies 𝑣2 = 𝑘𝑇/𝜇𝑚p, where 𝜇 is the mean

molecular weight and 𝑚p is the proton mass (see, e.g., Quinn & Paczynski 1985; Joss

& Melia 1987); the equilibrium sonic point where 𝑣2 = d𝑃/d𝜌 occurs at 𝜏 < 1 and is

thus beyond our simulated region.

As the wind gains strength during the first 10 seconds, the mass-loss rate 𝑀̇w,

temperature, density, and optical depth all increase throughout the wind. The veloc-

ity, which never exceeds ∼ 0.01𝑐, decreases during this time, since 𝑀̇w ≃ 4𝜋𝑟2𝜌𝑣 only
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Figure 2-6: Optical depth (top panel) and mass-loss rate (bottom panel) at the
photosphere as a function of time for four of the burst models.

changes by order unity whereas 𝜌 increases significantly. At 𝑡 ≃ 10 s the wind settles

into a steady state and for the next ≈ 15 s the profiles change very little. For model

y2n21, 𝑀̇w ≃ 2×1018 g s−1 at its maximum. By 𝑡 = 29 s, the energy and mass supply

have dwindled and 𝑀̇w decreases. As a result, the temperatures and densities drop

and the photosphere begins to fall back to the NS surface.

We find that aside from differences in duration, the wind profiles of our other burst

models are all similar to that of model y2n21 despite the significant range of ignition

depth. This is because the wind structure is largely determined by 𝑀̇w (Kato, 1983;

Quinn & Paczynski, 1985; Paczynski & Proszynski, 1986), and the different models

all have very similar 𝑀̇w(𝑡) up until the wind terminates. We illustrate this in the

bottom panel of Figure 2-6 for four of the models. In Section 2.3.3, we explain why

𝑀̇w is a weak function of 𝑦b.

In the top panel of Figure 2-7 we show the ratio of the total mass ejected by the

wind 𝑀ej at the end of the PRE to the accreted mass 𝑀accr ≃ 4𝜋𝑅2𝑦b. We find

𝜂 ≡ 𝑀ej

𝑀accr

≃ 2.5× 10−3 (2.3)

almost independent of 𝑦b. Burst energetics set an upper bound of 𝜂 . 8×10−3, which
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is given by the ratio of the nuclear energy release per nucleon ≃ 1.6MeV nucleon−1

(i.e., the difference in binding energy between 4He and 56Ni) to the gravitational

binding energy per nucleon 𝐺𝑀/𝑅 ≃ 200MeV nucleon−1. The value 𝜂 ≃ 2.5 × 10−3

implies that ≈ 30% of the nuclear energy goes to unbinding matter from the NS,

independent of ignition depth.

2.3.2 Comparison with steady-state models

Since the flow is subsonic at radii smaller than the equilibrium sonic point (which

is located at an optical depth 𝜏 < 1), the structure throughout the modeled region

is nearly in hydrostatic equilibrium at each instant. Therefore, the evolution ap-

proximately follows a sequence of steady-state solutions (i.e., quasi-static profiles)

determined by the instantaneous 𝑀̇w(𝑡). Indeed, our profiles are qualitatively simi-

lar to those of steady-state wind models in which 𝑀̇w is treated as a free parameter

(Ebisuzaki et al., 1983; Kato, 1983; Paczynski & Proszynski, 1986; Joss & Melia,

1987). In steady-state, the time-dependent terms vanish and the mass, momentum,

and energy equations are

𝑀̇w = 4𝜋𝑟2𝜌𝑣 = constant, (2.4)

𝑣
d𝑣
d𝑟

= −1

𝜌

d𝑃
d𝑟

− 𝑔, (2.5)

𝐸̇w = 𝑀̇w

(︂
𝑣2

2
− 𝐺𝑀

𝑟
+ ℎ

)︂
+ 𝐿rad = constant, (2.6)

where 𝐸̇w is the energy-loss rate of the wind, ℎ = (𝑈 + 𝑃 )/𝜌 is the enthalpy, and 𝑈

is the energy density. Over a large region between the wind base and the equilibrium

sonic point, we find that d𝑃/d𝑟 ≃ −𝜌𝑔, radiation pressure dominates so that 𝑃 ∝ 𝑇 4

and ℎ ≃ 4𝑃/𝜌, and 𝐿rad(𝑟 ≫ 𝑅) ≃ 𝐿Edd,0 ≃ 𝐸̇w, where 𝐿Edd,0 = 4𝜋𝑐𝐺𝑀/𝜅0.

Together these imply that over this region 𝑃 ∝ 𝜌4/3 and the fluid behaves as if it has

an adiabatic index 𝛾 = 4/3, as also noted by Kato (1986).5 As a result, 𝜌 ∝ 𝑟−3,

5Although the photon diffusion time 𝑡diff ≃ 𝑟2𝜅𝜌/𝑐 is much shorter than the advective time
𝑡adv ≃ 𝑟/𝑣, and thus heat flows in and out of a fluid element, the entropy profile of the wind is
nearly constant over a large region (Kato, 1986).
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𝑇 ∝ 𝑟−1, and 𝑣 ∝ 𝑟, as shown in Figures 2-4a and 2-5 (see also figure 5 in Paczynski

& Proszynski 1986).

Given that 𝜌 ∝ 𝑟−3, the optical depth 𝜏 ≃ 𝜏 */2, where 𝜏 * = 𝜅𝜌𝑟 is the effective

optical depth used in the steady-state wind calculations of Quinn & Paczynski (1985)

and Paczynski & Proszynski (1986). In Figure 2-6 we show that at the photosphere

𝜏 ≃ 3.5 nearly independent of time and ignition model, which is comparable to the

values found by Quinn & Paczynski (1985) and Paczynski & Proszynski (1986).

Since 𝐿rad is much larger than the kinetic power, X-ray burst winds are in the

opposite regime from massive star winds, which Quataert et al. (2016) studied. Their

analytic steady-state model is therefore not directly applicable here. More recently,

Owocki et al. (2017) derived semi-analytic steady-state wind solutions that bridge

the two regimes. Although we have not attempted to implement their solutions, they

should be applicable to the steady-state regime of PRE bursts.

2.3.3 Dependence of wind structure on ignition depth

The duration of the wind increases with ignition depth 𝑦b, but its structure is nearly

independent of 𝑦b. This is because 𝑀̇w(𝑡), which effectively sets the wind structure

(see, e.g., Kato 1983; Paczynski & Proszynski 1986), depends only weakly on 𝑦b. We

can understand this weak dependence by appealing to energy conservation, assuming

a steady-state wind. Just above the base of the wind (𝑟wb ≃ 𝑅), the enthalpy and

kinetic energy are small compared to the binding energy, and by equation (2.6)

𝐸̇w ≃ −𝐺𝑀𝑀̇w

𝑅
+ 𝐿rad(𝑟wb), (2.7)

where 𝐿rad(𝑟wb) ≃ 4𝜋𝑐𝐺𝑀/𝜅wb, i.e., the Eddington luminosity at the wind base, with

𝜅wb = 𝜅 [𝑇 (𝑟wb)]. At 𝑟 ≫ 𝑅, the flow of mechanical energy is small compared to 𝐿rad,

and

𝐸̇w ≃ 𝐿rad(𝑟 ≫ 𝑅) ≃ 4𝜋𝑐𝐺𝑀

𝜅0
, (2.8)
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where the last equality follows because the luminosity at large 𝑟 only slightly exceeds

the local Eddington limit. During the steady state, 𝐸̇w is constant throughout the

wind, and we can equate equations (2.7) and (2.8) to find

𝑀̇w ≃ 4𝜋𝑐𝑅

𝜅0

[︂
𝜅0
𝜅wb

− 1

]︂
≃ 4𝜋𝑐𝑅

𝜅0

(︂
𝑇wb

0.45GK

)︂0.86

(2.9)

(Paczynski & Proszynski 1986 derive a similar expression). We now show that 𝑇wb

(and hence 𝑀̇w) is a weak function of 𝑦b by first estimating the peak temperature at

the ignition base 𝑇b(𝑦b) and then relating 𝑇b to 𝑇wb.

The base temperature 𝑇b rises until it becomes radiation-pressure-dominated,

which lifts the degeneracy and stifles the burning (Fujimoto et al., 1981; Bildsten,

1998). At its maximum,

𝑇b ≃ 𝑓

(︂
3𝑔𝑦b
𝑎

)︂1/4

≃ 2.3 𝑦
1/4
b,9 GK, (2.10)

where 𝑦b,9 = 𝑦b/10
9 g cm−2 and at 𝑓 = 1 radiation pressure completely dominates.

In the numerical expression here and below we set 𝑓 = 0.8 based on our numerical

calculations (see Figure 2-4a and also iZW10). During the wind phase, the bound
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layers are fully radiative and satisfy 𝑇 ∝ 𝑦1/4. When the wind is at its peak strength,

𝑦wb ≃ 𝜂𝑦b and 𝑇wb ≃ 𝜂1/4𝑇b, where 𝜂 is given by equation (2.3). We thus find

𝑦wb ≃ 2.5× 106 𝑦𝑏,9 g cm−2, (2.11)

𝑇wb ≃ 0.5 𝑦
1/4
𝑏,9 GK, (2.12)

where here and below we set 𝜂 = 2.5×10−3 (see top panel of Figure 2-7). In practice,

this leads to a slight overestimate of 𝑦wb since 𝜂 is determined by the total ejected

mass at the end of the burst and therefore 𝜂 & 𝑦wb/𝑦b. Plugging equation (2.12) into

equation (2.9), we find that during the approximate steady-state phase

𝑀̇w ≃ 2.1× 1018𝑦0.22b,9 g s−1. (2.13)

As we show in Figure 2-7, this estimate agrees reasonably well with the wind sim-

ulation results (the simulations show a somewhat smaller 𝑀̇w and an even weaker

𝑦b dependence). We thus see that 𝑀̇w and therefore the wind structure is nearly

independent of 𝑦b.

Given 𝑀̇w, we can estimate the wind duration

𝑡w =
𝑀ej

𝑀̇
= 15 𝑦0.79𝑏,9 s. (2.14)

This compares well with the numerically calculated value of the total wind duration,

shown in the bottom panel of Figure 2-7. The latter is slightly larger because equation

(2.13) overestimates 𝑀̇w, especially near the beginning and end of the wind.

2.3.4 Ejection of heavy elements

In Figure 2-8 we show the wind composition as a function of radius (top axis) and

column depth (bottom axis) for model y2n21 at 𝑡 = 10 s; by this time, the wind

has settled into a steady state. We find that the wind at that time is dominated

by heavy-element ashes, particularly 48Cr, 44Ti, and 52Fe, whose mass fractions are
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about 0.5, 0.2 and 0.1, respectively. Comparing with the pre-wind profile, we see

that this is the material that initially resided at a column depth 𝑦 ≃ 106 g cm−2 (see

dashed vertical line in middle panel of Figure 2-3). This is because 𝑀̇w ≈ 1018 g s−1

and thus after 𝑡 = 10 s, the wind has ablated the surface layers down to a depth

𝑀̇w𝑡/4𝜋𝑅
2 ≈ 106 g cm−2.

An interesting feature of the pre-wind profile is that for deep ignitions (𝑦b,9 = 1−5)

the column depth at which the composition transitions from mostly light to mostly

heavy elements is almost a constant value of 𝑦ash ≈ 105 g cm−2. In Figure 2-3 we

indicate 𝑦ash with a vertical dotted line, where we formally define 𝑦ash as the location

where the total mass fraction of elements with mass number 𝐴 > 40 equals 0.5 (for

𝑦 < 𝑦ash, the elements consist predominantly of 4He and 12C). We can then define the

timescale to expose the heavy ashes

𝑡ash =
4𝜋𝑅2𝑦ash

𝑀̇w

≃ (1.3 s)

(︂
𝑦ash

105 g cm−2

)︂(︂
1018 g s−1

𝑀̇w

)︂
. (2.15)
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Figure 2-10: Ion mean molecular weight (solid lines) at the photosphere as a function
of time. The dashed lines show the result with 4He excluded from the sum over ions.

In Figure 2-9 we plot 𝑡ash as a function of 𝑦b. Starting from 𝑦b,9 = 0.5, we find that 𝑡ash

first decreases sharply as 𝑦b increases, but then for 𝑦b,9 & 3 it plateaus at 𝑡ash ≃ 1 s.

This is because 𝑦ash plateaus at 𝑦ash ≈ 105 g cm−2, while 𝑀̇w depends very weakly on

𝑦b (see Section 2.3.3). In Section 2.4.2, we describe how this might explain a feature

of superexpansion bursts.

In Figure 2-10 we show a related result: the ion mean molecular weight 𝜇ion =

(
∑︀

𝑖𝑋𝑖/𝐴𝑖)
−1 at the photosphere as a function of time, where 𝑋𝑖 and 𝐴𝑖 are the mass

fraction and mass number of element 𝑖. For reference, a mixture consisting of 50%
4He and 50% 56Ni has 𝜇ion = 7.5. For the y2n21 and y3n21 models, it takes a few

seconds for 𝜇ion to increase above 7.5, agreeing well with the 𝑡ash estimate. Note that

for 𝑡 > 10 s, the y3n21 model has a smaller 𝜇ion than the y2n21 model. This is because

a larger amount of 4He is left unburned in y3n21 than in y2n21.6 To illustrate this

effect, the dashed lines in Figure 2-10 show the ion mean molecular weight excluding
4He. The value for the y3n21 model approaches 56 since it is dominated by 56Ni while

the y2n21 model approaches 48 since it is dominated by 48Cr.

6Hashimoto et al. (1983) showed that for He burning at constant pressure, the mass fraction of
unburned 4He increases with increasing pressure for 𝑃 & 1022 erg cm−3 (see their figure 10). The
pressure at the base of the burning layer 𝑃b ≃ 𝑔𝑦b ≈ 1023𝑦b,9 erg cm−3 is nearly constant during a
burst.
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Figure 2-11: Evolution of the bolometric luminosity 𝐿rad at the photosphere, the
photospheric radius 𝑟ph, and the photospheric temperature 𝑇ph, for four different
models.

2.4 OBSERVATIONAL SIGNATURES

By evaluating quantities at the photosphere of our wind models, we calculate theoret-

ical burst light curves and spectroscopy (Section 2.4.1) and then compare our results

to observed PRE bursts (Section 2.4.2).

2.4.1 Burst spectroscopy and light curve

In Figure 2-11 we show the evolution of the bolometric luminosity, photospheric

radius 𝑟ph, and photospheric temperature 𝑇ph, for different ignition models (these are

related by 𝐿rad = 4𝜋𝑟2ph𝜎𝑇
4
ph). Depending on the ignition depth, the PRE phase lasts

from ≃ 5 s to ≃ 100 s (see equation 2.14), during which the bolometric luminosity
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Figure 2-12: Photon count rate as a function of time assuming a source at a distance
of 10 kpc. The upper panel assumes a RXTE-PCA-like detector, and the lower panel
assumes a NICER-like detector.

is nearly constant at 𝐿rad ≃ 𝐿Edd. Initially, all the models follow similar tracks:

from 𝑡 = 0 s to 𝑡 ≈ 3 s, the photosphere expands from 10 km to & 100 km and

the temperature 𝑇ph ∝ 𝑟
−1/2
ph drops from about 2 to 0.5 keV. Due to the larger

nuclear energy release, the deeper ignition models expand outward for longer and

reach slightly larger radii (150 − 200 km). Furthermore, unlike model y1n21, which

shows a fairly abrupt contraction after reaching maximum expansion, models y2n21

and y3n21 have a long, approximately steady phase during which 𝑟ph remains near

its maximum for ≃ 20 s and ≃ 90 s, respectively. Comparing models y2n9 and y2n21,

we see that the latter expands faster and reaches a larger maximum 𝑟ph because it

has a more complete reaction network and thus a larger energy release.

In Figure 2-12 we show the approximate count rate that RXTE-PCA and NICER

would detect for a source located at a distance of 10 kpc. We assume a blackbody

spectrum and use our calculation of 𝐿rad[𝑟ph(𝑡)] and 𝑇ph(𝑡) to estimate the count

rate integrated over the effective area of the detector. For RXTE-PCA, we take

the effective area from Jahoda et al. (2006) and assume that two out of the five

proportional counting units are working, as was typical during its operations (iZW10).
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For NICER we adopt the effective area given on the mission website7. The effective

collecting area of RXTE-PCA decreases significantly below 2 keV and therefore its

count rate drops during a PRE, as the spectrum shifts to lower 𝑇ph. By contrast,

the effective collecting area of NICER remains large down to 0.3 keV and its count

rate actually increases during a PRE. Moreover, since 𝑇ph . 1 keV throughout the

PRE, the NICER count rate is always significantly larger that RXTE’s (note the

different scales in Figure 2-12). Both of these effects have been reported in the

NICER observation of 4U 1820-30 (Keek et al., 2018).

In Section 2.3.4 we showed that the wind ejects heavy elements synthesized during

the burst. These ejected ashes include 48Cr, 44Ti, and 56Ni at mass fractions 𝑋 &

0.1. WBS showed that the expanded photosphere is sufficiently cool that heavy

elements such as these will bind with electrons and imprint significant photoionization

edges on the burst spectra. However, they assumed that the wind base is located at

𝑦wb = 0.01𝑦b whereas our calculations explicitly determine 𝑦wb(𝑡) and show that

𝑦wb ≈ few×10−3𝑦b at its maximum (see Figure 2-7). WBS estimated that during the

PRE the edges should have equivalent widths EW ∼ 0.1 keV. Using their approach

for estimating the edge strengths and the abundances from our wind calculation, we

also find EW ∼ 0.1 keV during the PRE for bursts with 𝑦b & 5× 108 g cm−2.

2.4.2 Comparison to observed PRE bursts

Our 𝑟ph(𝑡) results are broadly consistent with observations of PRE bursts, although

there are some notable differences. According to iZW10, the vast majority (& 99%)

of PRE bursts have photospheres that do not expand beyond 103 km (the exceptions

are superexpansion bursts, which we discuss below). This is consistent with our result

that 𝑟ph ∼ 100 km nearly independent of ignition depth. There are weak PREs with

maximum 𝑟ph that are only a factor of a few larger than 𝑅 (Galloway et al., 2008).

These PREs may be weaker because they are igniting in mixed H/He layers, and thus

by assuming a pure He layer our simulations do not capture this population.

One of the most well sampled measurements of 𝑟ph(𝑡) is from the recent burst
7https://heasarc.gsfc.nasa.gov/docs/nicer/
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detected with NICER from 4U 1820-30 (Keek et al., 2018). This source is an ul-

tracompact X-ray binary (UCXB) that is thought to be accreting He-rich material

(Cumming, 2003). As Figure 2-12 illustrates, NICER is ideally suited to follow the

entire PRE phase of bursts due its sub-keV sensitivity. Keek et al. (2018) found

that the entire PRE phase lasts ≃ 3 s and reaches a maximum expansion radius

𝑟ph = 190 ± 10 km. These are consistent with the duration and expansion radius of

our y1n21 model (𝑦𝑏 = 5× 108 g cm−2).

On the other hand, the temporal variation of the count rate and 𝑟ph of the 4U 1820-

30 burst look somewhat different from our y1n21 model (compare Figure 3 in Keek

et al. 2018 and our Figures. 2-11 and 2-12). The observed expansion timescale at the

start of the PRE is only ≃ 0.1 s compared to our ≃ 1 s. Also, after reaching maximum

expansion, the observed photosphere falls back to the NS surface somewhat more

slowly than ours (over ≃ 3 s compared to ≃ 1 s). A possible explanation for why our

expansion is too slow and contraction is too fast is that we ignore general relativistic

effects. Paczynski & Proszynski (1986) showed that at small 𝑀̇w, relativistic models

predict a larger 𝑟ph than Newtonian models (see their figures 10 and 11). For example,

at 𝑀̇w ≃ 4 × 1017 g s−1 we find 𝑟ph ≃ 35 km (see Figure 2-5 at 𝑡 = 0.07 s) whereas

Paczynski & Proszynski (1986) find 𝑟ph ≃ 100 km. (The difference is much smaller

at 𝑀̇w & 1018 g s−1 and thus our maximum 𝑟ph should be reasonably accurate). As a

result, our simulations probably underestimate 𝑟ph at the small 𝑀̇w that applies near

the start and end of the PRE, which would mean we underestimate (overestimate)

the rate of expansion (contraction).

Superexpansion bursts (𝑟ph > 103 km) provide another interesting point of com-

parison. According to iZW10, there have been 32 superexpansion bursts detected

from 8 sources (of these, 22 were from 4U 1722-30). Of the superexpansion bursts

that have been identified with an object (7 out of 8), all are from candidate UCXBs.

The neutron star in an UCXB accretes hydrogen-deficient fuel and the bursts tend

to be longer (several tens of minutes rather than seconds, i.e., intermediate duration

bursts; in’t Zand et al. 2005; Cumming et al. 2006). In two superexpansion bursts

observed with RXTE, iZW10 detected strong absorption edges. The edge energies
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and depths are consistent with large abundances of iron-peak elements and support

our finding that the wind can eject significant amounts of heavy-element ashes.

Superexpansion bursts always show two distinct phases: a superexpansion phase

during which 𝑟ph & 103 km, followed by a moderate expansion phase during which

𝑟ph ∼ 30 − 50 km and 𝐿rad ≃ 𝐿Edd (iZW10). Interestingly, the duration of the

superexpansion phase is always a few seconds, independent of the ignition depth

𝑦b. By contrast, the duration of the moderate expansion phase ranges from short

(≈ 10 − 100 s) for 𝑦b ∼ 109 g cm−2 to intermediate (& 103 s) for 𝑦b ∼ 1010 g cm−2.

iZW10 speculated that the superexpansion phase always lasts a few seconds because

it corresponds to a transient stage in the wind’s development. In this stage, they

argue, a shell of initially opaque material is ejected to large radii by the sudden

onset of super-Eddington flux deep below the photosphere. Within a few seconds the

expanding shell reaches such large radii (> 103 km) that it becomes optically thin

and the observer suddenly sees the underlying photosphere of the already formed

steady-state wind, which is located at 𝑟ph ∼ 30 − 50 km. According to this picture,

this marks the onset of the moderate expansion phase, whose duration equals that of

the steady-state wind and thus correlates with 𝑦b (see Equation 2.14).

We do not, however, see evidence of a shell ejection in our simulations. This

might be because our treatment of radiative transfer in the low optical depth re-

gions (𝜏 . 3) is too simplistic, because we ignore relativistic effects, or because of

unaccounted for dynamics during the transition from the hydrostatic rise to the hy-

drodynamic wind (e.g., in’t Zand et al. 2014 reported two bursts with exceptionally

short precursors, which they argue may indicate a detonation initiated by the rapid

onset of the 12C(𝑝, 𝛾)13N(𝛼, 𝑝)16O reaction sequence). However, there is a feature in

our simulations that suggests an alternative explanation for why the superexpansion

phase always lasts a few seconds, regardless of 𝑦b. As we described in Section 2.3.4,

the timescale 𝑡ash to expose heavy elements in the wind is also a few seconds, and

plateaus at 𝑡ash ≃ 1 s for 𝑦b & 3 × 109 g cm−2. It suggests that the transition from

superexpansion to moderate expansion after ≈ 1 s might be due to the wind’s com-

position changing from light to heavy elements (and not due to shell ejection). As
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discussed in iZW10, the heavy elements will only be partially ionized and the radia-

tive force acting on the bound electrons above the photosphere will be & 100 times

larger than the force acting on the free electrons. Line-driving in the outer parts

of the wind may therefore boost the outflow velocity. By mass conservation (equa-

tion 2.4), this would decrease the overlying density and bring the photosphere inward

to smaller radii. This could explain why the photosphere transitions from very large

𝑟ph during the superexpansion (when the ejecta are mostly light elements) to smaller

values of 𝑟ph ∼ 30−50 km during the moderate expansion, and why the the timescale

for such transitions is always a few seconds. Evaluating this in detail likely requires

accounting for line-driving in the wind.

2.5 SUMMARY AND CONCLUSIONS

We presented spherically symmetric MESA models of PRE bursts, starting from the

hydrostatic burst rise through the hydrodynamic wind phase. We used both a 9-

isotope and a 21-isotope reaction network to follow the burning of pure He ignition

layers with base column depths 𝑦b = 3× 108 − 5× 109 g cm−2, corresponding to that

of short through intermediate duration PRE bursts. Convection during the burst rise

mixes the ashes of nuclear burning out to 𝑦 . 104 g cm−2 for 𝑦b & 109 g cm−2. As

the atmosphere heats up, 𝐿rad increases and eventually exceeds 𝐿Edd, resulting in a

radiation-driven wind. Initially, the wind base is located at small column depths but

it moves inward to 𝑦wb & 106 g cm−2 in a few seconds. As a result, the wind initially

ejects mostly light elements (4He and 12C) but after ≈ 1 s it begins to eject heavy

elements, which for 𝑦𝑏 = 1.5(5)× 109 g cm−2 consists mostly of 48Cr (56Ni).

The wind duration 𝑡w increases almost linearly with 𝑦𝑏, lasting from a few seconds

to more than 100 s for the considered range of 𝑦b. All 𝑦b show similar wind evolution

during the first few seconds: a mass-loss rate that increases to a maximum 𝑀̇w ≃
1− 2× 1018 g s−1, a photospheric radius that expands out to 𝑟ph ≃ 100− 200 km, and

a photospheric temperature that decreases to . 0.5 keV. After the first few seconds,

the wind either abruptly dies down (small 𝑦b) or it blows steadily for the next ≈ 100 s
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(large 𝑦𝑏). We found that the wind ejects ≈ 0.2% of the total accreted mass, nearly

independent of 𝑦b, which corresponds to ≈ 30% of the nuclear energy release being

used to unbind matter from the NS surface.

Based on the calculated wind composition, we estimated that the ejected heavy

elements should imprint photoionization edges on the burst spectra with equivalent

widths of ∼ 0.1 keV for bursts with 𝑦b & 109 g cm−2. This supports the evidence

of heavy-element absorption features detected in some PRE bursts (iZW10, Bar-

rière et al. 2015; Iwai et al. 2017; Kajava et al. 2017) and encourages efforts to

catch strong PRE bursts with high-spectral-resolution telescopes such as Chandra

and XMM-Newton.

We showed that our results are broadly consistent with various aspects of observed

PRE bursts. In particular, many PRE bursts show maximum photospheric radii

𝑟ph ∼ 100 km, photospheric expansion velocities 𝑣ph ∼ 100 km s−1 during the start of

the PRE, and PRE durations 𝑡w ∼ 1−100 s. However, we also described some notable

differences between our models and observed PRE bursts, which we argued might be

because we did not account for general relativistic effects and neglected possible line-

driving of heavy elements. Models that solve the relativistic, time-dependent wind

equations and adopt a more sophisticated treatment of radiative transfer are needed.

This includes relaxing the assumption of LTE and the diffusion approximation in

the outer parts of the wind and using composition-dependent opacities that account

for bound-free and bound-bound transitions, as well as Compton scattering. Such

improvements would allow for a more complete understanding of PRE bursts and

might help inform PRE-based measurements of NS radii.
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Chapter 3

Resonant tidal excitation of

superfluid neutron stars in coalescing

binaries

3.1 INTRODUCTION1

Advanced LIGO’s detection of the merger of binary black holes heralds a new age of

gravitational-wave (GW) astronomy (Abbott et al., 2016c,d). Coalescing binary neu-

tron star (NS) systems (Abbott et al., 2017c) and NS-black hole systems are another

promising source for ground based GW detectors such as Advanced LIGO, Advanced

Virgo, and KAGRA (respectively, Harry 2010; Acernese et al. 2015a; Somiya 2012).

The rich array of science that their detection might deliver (for a recent review see

Baiotti & Rezzolla 2017) includes the exciting prospect of constraining the enigmatic

supranuclear equation of state from measurements of the tide-induced phase shift of

the GW signal (Read et al., 2009; Hinderer et al., 2010; Damour et al., 2012; Lackey

et al., 2012; Lackey & Wade, 2015; Agathos et al., 2015).

The linear tidal response of the NS can be decomposed into an equilibrium tide

and a dynamical tide. The equilibrium tide accounts for the quasi-static, large scale

1This Chapter is based on Yu & Weinberg (2017a)
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distortion of the star and the dynamical tide accounts for the internal modes of

oscillation that are resonantly excited as the orbit decays and sweeps up in frequency.

While most recent studies focus on the impact of the equilibrium tide on the GW

signal (including all the references listed at the end of the previous paragraph), there

is also an extensive literature studying the impact of the linear dynamical tide. Lai

(1994) and Reisenegger & Goldreich (1994) considered non-rotating normal fluid NSs,

where the resonant modes are g-modes with frequencies . 100 Hz. They found that

the excited g-modes only weakly affect the GW signal (phase shifts of . 10−2 radian;

see also Shibata 1994; Kokkotas & Schafer 1995). Subsequent studies accounted

for rotation and found that a rapidly rotating NS could have a much stronger tidal

response, resulting in phase shifts of ∼ 0.1 to ≫ 1 radian (Ho & Lai, 1999; Lai

& Wu, 2006; Flanagan & Racine, 2007). However, this requires a spin frequency

& a few×100 Hz, which is larger than is thought to be likely for a NS in a coalescing

binary (Brown et al., 2012). Most recently, Hinderer et al. (2016) developed an

effective-one-body waveform model that accounts for the resonant response of the

high frequency f-modes. They found that in some cases the f-mode contribution to

the phase shift might be as much as ≈ 30% of the total tidal effect.

All of these studies assumed a normal fluid NS. However, because the NSs in coa-

lescing binaries are expected to be cold, the core neutrons will be a superfluid (Yakovlev

et al., 1999; Lombardo & Schulze, 2001). The source of buoyancy that provides the

restoring force for g-modes is fundamentally different for normal fluid and superfluid

NSs. In a normal fluid NS, a perturbed fluid element is buoyant due to gradients

in the proton-to-neutron fraction (Reisenegger & Goldreich, 1992). However, in a

superfluid NS the neutrons within the fluid element can flow past the protons and

gradients in their relative abundance no longer provides buoyancy. Indeed, studies

that assume a zero temperature superfluid NS composed only of neutrons, protons,

and electrons (and not muons) find that such stars do not support g-mode oscillations

(e.g., Lee 1995; Andersson & Comer 2001; Prix & Rieutord 2002).2

2The focus here is on g-modes supported by composition gradients. At finite temperatures, ther-
mal gradients are also a source of buoyancy (Gusakov & Kantor, 2013). However, for the cold NSs
in coalescing binaries, thermal gradients make a negligible contribution to the total buoyancy (Pas-
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More recently, Kantor & Gusakov (2014) showed that when the presence of muons

is taken into account, there is a new source of buoyancy in the core: the gradient in

the muon-to-electron fraction. Thus, a cold superfluid NS does support core g-modes

when we extend the model to include a richer chemical composition.

Since the source of buoyancy is different, the g-modes of a superfluid NS are

different from the g-modes of a normal fluid NS. In particular, Kantor & Gusakov

(2014) showed that the stratification is considerably stronger in a superfluid NS, i.e.,

the Brunt-Väisälä frequency is larger (see also Passamonti et al. 2016). As a result,

the entire g-mode spectrum is shifted to higher frequencies, including the 𝑙 = 2 g-

modes that are resonantly excited by the tide. We will show that a superfluid NS has

more than ten 𝑙 = 2 g-modes with frequency > 50 Hz whereas a normal fluid NS has

only two or three such modes. This means that there are many more g-modes that

undergo resonant excitation as the binary sweeps through the bandwidth of ground-

based detectors such as LIGO. Moreover, the nature of the tidal coupling is different

in a superfluid NS since the tide forces not one but two fluids (the neutron superfluid

and the normal fluid consisting of the charged particles). The purpose of our study

is to account for these superfluid effects and thereby extend previous calculations of

the dynamical tide in NS binaries.

The plan of the paper is as follows: in Section 3.2 we describe our background

superfluid NS model and discuss the source of buoyancy in more detail. In Section 3.3

we describe tidal driving in superfluid NSs beginning with a calculation of the stellar

eigenmodes. In Section 3.4 we present the main result of our study, the calculation

of the GW phase shift induced by the resonant excitation of g-modes. In Section 3.5

we summarize and conclude.

3.2 SUPERFLUID NEUTRON STAR MODEL

We construct our background superfluid NS models using an approach that is similar

to that of Prix & Rieutord (2002) except that we account for the existence of muons

samonti et al., 2016).

53



in the core. This is an important distinction since, as already mentioned in the

introduction and described further in Section 3.2.1, the muon-to-electron composition

gradient provides the buoyancy that supports g-modes in the core.

We assume an NS composed of neutrons (n), protons (p), electrons (e) and muons

(𝜇), and adopt the SLy4 equation of state for baryons (Rikovska Stone et al., 2003),

while treating the leptons as relativistic degenerate Fermi gas. Since an NS in a coa-

lescing binary is expected to be cold (𝑇 ≪ 108 K), we neglect thermal effects (we set

𝑇 = 0) and assume that the neutrons in the core are superfluid. In the crust, taken

to be the region with baryon density 𝑛b < 0.1 fm−3, we treat all species of particles

as normal fluid matter for simplicity, which is consistent with the treatment in Kan-

tor & Gusakov (2014; see also Dommes & Gusakov 2016). In order to simplify the

calculation of the oscillation modes (Section 3.3), we neglect rotation and use New-

tonian equations throughout our analysis including, for consistency, in constructing

the background hydrostatic models. Corrections to the stellar and mode structure

due to general relativistic effects are expected to be at the level of 𝐺𝑀/(𝑅𝑐2) ∼ 20%,

where 𝑀 and 𝑅 are the mass and radius of the NS. Such corrections are unlikely to

change the overall conclusions of our study. We assume all charge densities are strictly

balanced and neglect all electrodynamic effects (including proton superconductivity,

plasma oscillations, and magnetic fields). We also neglect vortex-tension and vor-

tex pinning of superfluid neutrons, as is appropriate for the macroscopic description

of fluid flow that is of interest here. For a more detailed discussion of these effects

and the underlying assumptions, we refer the reader to Prix & Rieutord (2002) and

references therein.

Given the above simplifications, we can describe the NS as consisting of two fluids:

a normal fluid of charged particles (protons, electrons, and muons) and a superfluid

of neutrons whose flow drifts through the normal fluid flow. We indicate the fluid

variables of the charged (neutron) flow with a subscript c (n). The dynamics of the

flow depends on the total internal energy density of the cold superfluid, which is given
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by (Prix & Rieutord, 2002).

d𝜀tot =
∑︁

𝑗=npe𝜇

𝜇𝑗d𝑛𝑗 + 𝛼dv2r , (3.1)

where 𝑛𝑗 and 𝜇𝑗 are particle 𝑗’s number density and chemical potential, respectively,

with 𝑗 being one of n, p, e, or 𝜇. The quantity vr is the relative velocity between the

normal fluid (charged) flow and the superfluid (neutron) flow,

vr = vc − vn (3.2)

and 𝛼 is the entrainment function (see below). The pressure of the fluid is given by

d𝑃 =
∑︁

𝑗=npe𝜇

𝑛𝑗d𝜇𝑗 − 𝛼dv2r

=
∑︁

𝑗=npe𝜇

𝜌𝑗d𝜇̃𝑗 − 𝛼dv2r

= 𝜌cd𝜇̃c + 𝜌nd𝜇̃n − 𝛼dv2r , (3.3)

where, for each particle species 𝑗, we define the mass density 𝜌𝑗 = 𝜀𝑗/𝑐
2, the energy

density 𝜀𝑗 (rest mass plus interaction/kinetic energy), the specific chemical potential

d𝜇̃𝑗 = d𝜇𝑗/𝑚𝑗, and the (relativistic) mass 𝑚𝑗 = 𝜌𝑗/𝑛𝑗. In the third line we combined

the protons, electrons, and muons together to represent our charged flow, with

𝜌c = 𝜌p + 𝜌e + 𝜌𝜇, (3.4)

𝜌cd𝜇̃c =
∑︁
𝑗=pe𝜇

𝜌𝑗d𝜇̃𝑗. (3.5)

In Appendix B.1 we discuss these quantities in more detail and provide some addi-

tional thermodynamic relations that we use in our study.

The 𝛼dv2r term characterizes the entrainment effect which, in the zero-temperature

limit, is due entirely to the strong interaction between neutrons and protons. The
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entrainment function 𝛼 can be written as (Prix & Rieutord, 2002)

2𝛼 = 𝜌c

[︂
1− 𝑚*

p

𝑚N
+𝑂

(︂
𝜌c

𝜌

)︂]︂
, (3.6)

where 𝑚*
p is the proton effective mass and 𝜌 = 𝜌n + 𝜌c is the total mass density.

Typical values of 𝑚*
p are in the range 0.3 ≤ 𝑚*

p/𝑚N ≤ 0.8 (Sjöberg, 1976; Chamel,

2008). While in general 𝑚*
p depends on density, for simplicity we consider models that

have constant 𝑚*
p throughout the star. As we will see later, tidal coupling depends

only weakly on entrainment effects. It will also be useful to describe the entrainment

in terms of the dimensionless entrainment functions

𝜖c =
2𝛼

𝜌c
, 𝜖n =

2𝛼

𝜌n
. (3.7)

We discuss the entrainment function in more detail in Appendix B.2.

Using the above relations, we construct spherically symmetric background models

by simultaneously solving the equation of hydrostatic equilibrium

d𝑃
d𝑟

= − (𝜌n + 𝜌c)
dΦ
d𝑟

(3.8)

and chemical (beta) equilibrium

𝜇n = 𝜇p + 𝜇e, (3.9)

𝜇e = 𝜇𝜇, (3.10)

where Φ(𝑟) is the gravitational potential and 𝜇𝑒 = 𝜇𝜇 applies at radii where 𝜇e > 𝑚𝜇𝑐
2

(corresponding to 𝑟 < 𝑅𝜇, where 𝑅𝜇 is the critical radius where muons first appear).

Equations (3.3) and (3.8)-(3.10) imply

d𝜇̃n

d𝑟
= −dΦ

d𝑟
. (3.11)

We consider models with masses of 1.4 𝑀⊙ and 2.0 𝑀⊙ and various levels of entrain-
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Table 3.1: Parameters of the background NS models.

𝑀 [𝑀⊙] 𝑅 [km] 𝜌0 [1014 g cm−3] 𝑅𝜇 [km] 𝑅cc [km]
1.4 13.0 6.7 11.4 11.7
2.0 13.7 7.85 12.5 12.7
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Figure 3-1: Number fraction of protons 𝑥p (solid line), electrons 𝑥e (dashed line), and
muons 𝑥𝜇 (dotted line), as a function of radius 𝑟 for our 1.4 𝑀⊙ NS model. In the
bottom panel we show the muon-to-electron ratio 𝑥𝜇e = 𝑥𝜇/𝑥e, which determines the
buoyancy profile 𝒩 (𝑟) of the superfluid NS model.

ment. In Table 3.1 we give the following parameters of the hydrostatic structure:

total mass 𝑀 , radius 𝑅, central density 𝜌0, the radius below which muons are present

𝑅𝜇, and the radius of the core-crust interface 𝑅cc. Note that the radii and central

density differ from the values in Rikovska Stone et al. (2003) because we solve the

Newtonian hydrostatic equations instead of the general-relativistic equations. In Fig-

ure 3-1 we show the radial profile of the number fraction 𝑥𝑗(𝑟) = 𝑛𝑗/(𝑛p + 𝑛n) of

protons, electrons, and muons and the muon-to-electron ratio 𝑥𝜇e(𝑟) = 𝑥𝜇/𝑥e for the

1.4𝑀⊙ model (the profile of the 2.0𝑀⊙ model is very similar). We observe that the

composition varies slowly with radius over most of the star but quickly drops to zero

when the radius is close to the critical radius (note that at 𝑅𝜇 the muon number

density goes to zero with a non-zero derivative).

57



3.2.1 Buoyancy in cold neutron stars

Because we assume a zero-temperature NS, composition gradients are the only possi-

ble source of buoyancy (i.e., the Ledoux convective stability criterion). First consider

a normal fluid NS consisting of npe matter. In this case, the buoyancy force that sup-

ports the g-modes is due to the proton-to-neutron composition gradient (Reisenegger

& Goldreich 1992; see also Lai 1994). To verify this, consider a fluid element in equi-

librium with pressure 𝑃 , proton number fraction 𝑥p (= 𝑥e by charge neutrality), and

density 𝜌(𝑃, 𝑥p). If we adiabatically displace the element upwards against gravity

by a distance d𝑟, it will remain in near pressure equilibrium with the surroundings

by contracting or expanding on a dynamical timescale (which is much shorter than

the buoyancy oscillation timescale). However, its composition will still be 𝑥p because

the timescale to reach chemical equilibrium through weak interactions (which are re-

sponsible for changes to 𝑥p) is much longer than the buoyancy timescale and because

all species of particles within the element move at the same speed (Reisenegger &

Goldreich, 1992). The convective stability criterion is therefore

(︂
𝜕𝜌

𝜕𝑥p

)︂
𝑃

(︂
d𝑥p

d𝑟

)︂
< 0, (3.12)

where the subscript 𝑃 indicates the derivative is taken at constant pressure.

Now consider a superfluid NS consisting of only npe matter (no muons). The

above stability criterion is no longer valid because the superfluid neutrons form a

separate component that is free to drift through the charged components when the

fluid element is displaced. This allows the fraction of superfluid neutrons within the

element to always match the background (i.e., 𝑥p is not fixed). As a result, there is

no longer a source of buoyancy to support g-mode oscillations, as a number of studies

have shown (see, e.g., Lee 1995; Andersson & Comer 2001; Prix & Rieutord 2002).

However, the situation changes again when we consider a superfluid NS consisting

of npe𝜇 matter. There are now three independent variables that parametrize the

equation of state. As in Kantor & Gusakov (2014), we take these to be 𝑃 , 𝜇n, and

𝑥𝜇e = 𝑥𝜇/𝑥e. Now if we displace our fluid element, 𝑃 and 𝜇n adjust themselves to
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Figure 3-2: Buoyancy frequency 𝒩 /2𝜋 as a function of radius for our 1.4𝑀⊙ (left
panel) and 2.0𝑀⊙ (right panel) NS models. We show results for three different
entrainment levels, labelled according to their proton effective mass: 𝑚*

p/𝑚N =
1, 0.8, 0.6 (black solid lines, red dashed lines, and blue dash-dotted lines, respec-
tively). We also show 𝒩 /2𝜋 for the normal fluid models (red dotted lines). The
vertical lines indicate the core-crust interface.
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the new background values (by contracting/expanding and by varying the number of

superfluid neutrons, respectively). However, 𝑥𝜇e remains fixed because the electrons

and muons move with the same velocity, that of the charged flow vc. The stability

criterion is therefore (︂
𝜕𝜌

𝜕𝑥𝜇e

)︂
𝑃,𝜇n

(︂
d𝑥𝜇e

d𝑟

)︂
< 0, (3.13)

i.e., gradients in 𝑥𝜇e provide a buoyancy force that can support g-modes.

The convective stability criteria given above are closely related to the Brunt-

Väisälä buoyancy frequency 𝒩 . In a npe𝜇 normal fluid, the density can be uniquely

parameterized in terms of 𝑃 , 𝑥e, and 𝑥𝜇 and the buoyancy is given by

𝒩 2 = −𝑔
𝜌

∑︁
𝑗=e,𝜇

[︂
𝜕𝜌(𝑃, 𝑥e, 𝑥𝜇)

𝜕𝑥𝑗

]︂
𝑃, 𝑥𝑖̸=𝑗

(︂
d𝑥𝑗
d𝑟

)︂
. (3.14)

where 𝑔 = dΦ/d𝑟 is the gravitational acceleration. In a npe𝜇 superfluid, the density

can be uniquely parameterized in terms of 𝑃 , 𝜇n, and 𝑥𝜇e and the buoyancy is given

by

𝒩 2 = − 1− 𝜖n
𝑥p − 𝜖n

𝑔

𝜌

[︂
𝜕𝜌(𝑃, 𝜇n, 𝑥𝜇e)

𝜕𝑥𝜇e

]︂
𝑃,𝜇n

(︂
d𝑥𝜇e

d𝑟

)︂
(3.15)

[see, e.g., Passamonti et al. 2016 equations (67), (132), (B29), and (B38); in Appendix

B.2 we describe how to relate our notation to that used in Passamonti et al. 2016].

In Figure 3-2 we show the buoyancy profiles 𝒩 (𝑟) of our superfluid and normal fluid

models. The curves are for different combinations of NS mass and entrainment levels;

specifically, we show results for a superfluid NS with (𝑀/𝑀⊙, 𝑚*
p/𝑚N)=(1.4, 1), (1.4,

0.8), (1.4, 0.6), (2.0, 0.8) and for a normal fluid NS with 𝑀 = 1.4𝑀⊙.

We find that 𝒩 (𝑟) is a factor of approximately 𝑥−1/2
p ≃ 4 larger in the superfluid

models compared to the normal fluid models (with a mild dependence on stellar mass).

This is consistent with the results of Kantor & Gusakov (2014) and Passamonti et al.

(2016) (see their Figures. 2 and 6, respectively). Physically, this is because the

neutron component is nearly decoupled from the charged component and thus the

mass of the oscillating fluid element is smaller by a factor of ≃ 𝑥p compared to the

normal fluid case [see equations (3.14) and (3.15); note that the differential terms in
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these two equations happen to be comparable]. From equations (3.6) and (3.15) we

also see that a smaller 𝑚*
p (that is, a larger 𝜖n), yields a larger 𝒩 . We will see in

Section 3.3.1 that the larger 𝒩 of the superfluid models shifts the g-mode spectrum

to higher frequencies.

Note that for 𝑟 > 𝑅𝜇 , there are no muons and 𝒩 = 0 in the superfluid case.

Finally, for simplicity we neglect the buoyancy of the crust and set 𝒩 = 0 for 𝑟 > 𝑅cc

(since only a small fraction of the NS mass is in the crust, this simplification should

not significantly affect the core g-modes of interest here).

3.3 TIDAL DRIVING

We now consider small amplitude perturbations to the static background described in

Section 3.2. In Section 3.3.1 we describe the homogeneous linear eigenvalue problem

in which the perturbations are free to oscillate at their natural frequency (i.e., they

are not driven by an external force). In Section 3.3.2 we describe the inhomogeneous

tidal problem in which the perturbations are linearly forced by the tidal potential of

the NS’s companion.

3.3.1 Eigenmodes of a superfluid neutron star

The linearized Newtonian fluid equations describing the free oscillations of the super-

fluid neutrons and the charged normal fluid are (Prix & Rieutord, 2002)

∇ · (𝜌c𝜉c) + 𝛿𝜌c = 0, (3.16)

∇ · (𝜌n𝜉n) + 𝛿𝜌n = 0, (3.17)

𝜎2 [𝜉c − 𝜖c(𝜉c − 𝜉n)] = ∇ (𝛿𝜇̃c + 𝛿Φ) , (3.18)

𝜎2 [𝜉n + 𝜖n(𝜉c − 𝜉n)] = ∇ (𝛿𝜇̃n + 𝛿Φ) , (3.19)

∇2𝛿Φ = 4𝜋𝐺 (𝛿𝜌c + 𝛿𝜌n) , (3.20)
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where we assume that the perturbed quantities have a time dependence ei𝜎𝑡, 𝛿𝒬(𝑥)

denotes the Eulerian perturbation of a quantity 𝒬 at location 𝑥, and 𝜉c(𝑥) and

𝜉n(𝑥) are the Lagrangian displacement fields of the charged normal fluid and neutron

superfluid. These equations express mass continuity [equations (3.16) and (3.17)],

momentum conservation [equations (3.18) and (3.19)], and Poisson’s equation (3.20)

relating the perturbed gravitational potential 𝛿Φ to the perturbed total density (we

do not make the Cowling approximation).

We solve these equations using standard techniques of stellar oscillation theory.

In particular, we consider spheroidal modes in which the perturbed solutions separate

into radial and angular functions

𝛿𝒬(𝑟, 𝜃, 𝜑) = 𝛿𝒬(𝑟)𝑌𝑙𝑚(𝜃, 𝜑), (3.21)

𝜉c(𝑟, 𝜃, 𝜑) =

[︂
𝜉𝑟c (𝑟), 𝜉

ℎ
c (𝑟)

𝜕

𝜕𝜃
, 𝜉ℎc (𝑟)

1

sin 𝜃

𝜕

𝜕𝜑

]︂
𝑌𝑙𝑚(𝜃, 𝜑) (3.22)

(and similarly for 𝜉n), where 𝑌𝑙𝑚(𝜃, 𝜑) is the spherical harmonic function. The oscilla-

tion equations then reduce to a set of linearly coupled ordinary differential equations

in radius. In Appendix C.1 we write down the form of these equations that we use in

order to obtain numerical solutions. As in Kantor & Gusakov (2014), we assume that

the crust is a normal fluid. In Appendix C.2 we give the boundary conditions that we

assume at the stellar center, at the core-crust interface (i.e., at the superfluid-normal

fluid interface), and at the stellar surface.

In a normal fluid NS we can write the oscillation equations in the form of an

eigenvalue problem

ℒ [𝜉] = 𝜎2𝜉, (3.23)

where ℒ [𝜉] is a linear operator representing the internal restoring forces that act on

the Lagrangian displacement 𝜉(𝑥, 𝑡). The eigenmodes {(𝜎2
𝑎, 𝜉𝑎)} are those solutions

that satisfy the boundary conditions, where 𝑎 = {𝑛𝑎, 𝑙𝑎,𝑚𝑎} labels the three quan-

tum numbers of each solution: the radial order 𝑛𝑎, the spherical degree 𝑙𝑎, and the

azimuthal order 𝑚𝑎. Since the operator ℒ is Hermitian with respect to the inner
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product

⟨𝜉, 𝜉′⟩ =
∫︁

d3𝑥𝜌 𝜉* · 𝜉′ (3.24)

(i.e., ⟨𝜉,ℒ [𝜉′]⟩ = ⟨ℒ [𝜉] , 𝜉′⟩), the eigenmodes form a complete, orthonormal basis

(here the asterisk refers to complex conjugation). When considering normal fluid

models, we normalize the modes such that

𝜎2
𝑎 ⟨𝜉𝑎, 𝜉𝑏⟩ = 𝐸0𝛿𝑎𝑏, (3.25)

where 𝐸0 = 𝐺𝑀2/𝑅 is a characteristic energy scale of the NS.

While a normal fluid NS has a single displacement field 𝜉, a superfluid NS has two

distinct displacement fields 𝜉c and 𝜉n because there are two fluid components, the

normal fluid and the superfluid. The oscillation equations of a superfluid NS (eqs.

3.16-3.20) therefore take the form

ℒ

⎡⎣𝜉+
𝜉−

⎤⎦ = 𝜎2

⎡⎣𝜉+
𝜉−

⎤⎦ , (3.26)

where this linear operator ℒ is different from that of the normal fluid case above (see

Appendix C.1) and

𝜉+ =
1

𝜌
(𝜌c𝜉c + 𝜌n𝜉n), (3.27)

𝜉− = (1− 𝜖n − 𝜖c)(𝜉c − 𝜉n). (3.28)

The displacement 𝜉+ is the mass-averaged flow and the displacement 𝜉− is propor-

tional to the difference between the normal fluid flow and the superfluid flow. For the

tidal coupling problem, it proves convenient to express displacements in terms of 𝜉+
and 𝜉− rather than 𝜉c and 𝜉n. Note that although there is no direct force between

the normal fluid and superfluid, they are nevertheless coupled locally through the

equation of state (they are coupled even if entrainment is ignored; see discussion in

Prix & Rieutord 2002). As a result, both components oscillate at the same frequency
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𝜎. The eigenmodes {(𝜎2
𝑎, 𝜉𝑎+, 𝜉𝑎−)} are those solutions that satisfy the boundary

conditions given in Appendix C.2. In Appendix C.3 we show that the linear operator

is Hermitian with respect to the inner product

⟨⎡⎣𝜉+
𝜉−

⎤⎦ ,
⎡⎣𝜉′+
𝜉′−

⎤⎦⟩ =

∫︁
d3𝑥

[︁
𝜉*+ 𝜉*−

]︁⎡⎣𝜌 0

0 𝜌

⎤⎦⎡⎣𝜉′+
𝜉′−

⎤⎦ (3.29)

where

𝜌 =
𝜌c𝜌n

(1− 𝜖n − 𝜖c)𝜌
. (3.30)

This result follows directly from the analysis in Lindblom & Mendell (1994) who, using

somewhat different notation, showed that the linear operator satisfies a variational

principle (see also Andersson & Comer 2001 and, for the case of a rotating NS,

Andersson et al. 2004). The above integral reduces to the normal fluid case if we

identify 𝜉+ → 𝜉 and 𝜉− → 0, which allows us to evaluate it not only in the superfluid

core but also in the normal fluid crust. We normalize the modes such that

𝜎2
𝑎

⟨⎡⎣𝜉𝑎+
𝜉𝑎−

⎤⎦ ,
⎡⎣𝜉𝑏+
𝜉𝑏−

⎤⎦⟩ = 𝐸0𝛿𝑎𝑏. (3.31)

In Figure 3-3 we show the structure of three 𝑙𝑎 = 2 g-modes (𝑛𝑎 = 1, 2, 5) for

the 1.4 𝑀⊙ superfluid model with 𝑚*
p = 0.8𝑚N. In the top panel we plot the radial

profile of the total density perturbation 𝛿𝜌 = 𝛿𝜌c+𝛿𝜌n and that of the individual fluid

components 𝛿𝜌c and 𝛿𝜌n. In the bottom two panels we plot the radial and horizontal

displacements of the two flows.

There exists a discontinuity in the first derivative of 𝛿𝜌 at 𝑅𝜇 because the muon

gradient is discontinuous at 𝑅𝜇 in our model. There also exists a discontinuity in 𝛿𝜌 at

𝑅cc where we join the superfluid solution with the normal fluid solution. Nevertheless

this discontinuity does not violate any physical principles. In particular, it does not

imply a discontinuous mass current since v𝛿𝜌 + 𝜌𝛿v is still continuous: the first

term is always zero because the background velocity is zero, which suppresses the

discontinuity in 𝛿𝜌, and the second term is continuous by requiring continuity of the
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Figure 3-3: Structure of the 𝑙𝑎 = 2, 𝑛𝑎 = (1, 2, 5) g-modes (left, middle, and right
panels, respectively) of our 1.4𝑀⊙ superfluid NS model with entrainment 𝑚*

p =
0.8𝑚N. The upper panels show the total Eulerian density perturbation 𝛿𝜌 = 𝛿𝜌c+𝛿𝜌n

(solid black line), 𝛿𝜌c (dashed blue line), and 𝛿𝜌n (dotted red line). The middle and
lower panels show, respectively, the radial 𝜉𝑟 and horizontal 𝜉ℎ components of the
Lagrangian displacements corresponding to 𝜉+ (solid black line), 𝜉c (dashed blue
line), and 𝜉n (dotted red line). In order to plot all the displacements on the same
scale, we multiply 𝜉+ and 𝜉n by a factor of 20 and divide the 𝑛𝑎 = 5 displacements
by a factor of 5.
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case). We show results for four superfluid models: (𝑀/𝑀⊙, 𝑚

*
p/𝑚N) = (1.4, 1.0),

(1.4, 0.8), (1.4, 0.6), (2.0, 0.8), and a normal fluid model with 𝑀 = 1.4𝑀⊙.

Lagrangian displacements (see Appendix C.2).

For a given mode, the amplitude of 𝜉c is significantly larger than 𝜉n (in Figure 3-3

we multiply 𝜉n by a factor of 20 in order to plot it on a similar scale as 𝜉c). This

is because there is significantly less mass in the charged fluid elements (by a factor

of ≃ 𝑥p) and thus, for a given mode energy, |𝜉c| must be larger. We also find that

𝜉𝑟c and 𝜉𝑟n cross zero at slightly different locations (e.g., middle panel of Figure 3-3).

This effect is due to entrainment and was also observed by Prix & Rieutord (2002)

in the case of p-mode oscillations. Finally, we note that in Figure 3-3 the horizontal

displacements 𝜉ℎ are roughly twice as great as the radial displacements 𝜉𝑟, indicating

the transverse nature of the g-mode oscillations.

In Figure 3-4 we show the eigenfrequencies 𝑓𝑎 = 𝜎𝑎/2𝜋 of the first eight 𝑙𝑎 = 2

g-modes for our various NS models. Comparing the superfluid and normal fluid

models, we see that the g-mode spectra of the superfluid models are shifted to higher

frequencies at a given 𝑛𝑎. This effect was also noted by Kantor & Gusakov (2014)

and Passamonti et al. (2016). The spectra shift because the buoyancy frequencies

𝒩 are different in different models (see Section 3.2.1); for high-order g-modes (Aerts
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et al., 2010)

𝑓𝑎 ≃
[𝑙𝑎(𝑙𝑎 + 1)]1/2

2𝜋2 𝑛𝑎

∫︁
𝑁d ln 𝑟. (3.32)

Indeed, we find that for even relatively low order 𝑙𝑎 = 2 g-modes of the superfluid

and normal fluid models,

𝑓 (SF)
𝑎 ≃ 590

𝑛𝑎
Hz, and 𝑓 (NF)

𝑎 ≃ 170

𝑛𝑎
Hz. (3.33)

The relations above are fits to the 1.4𝑀⊙ NS superfluid and normal fluid models,

respectively; in the superfluid case we adopt an entrainment level of 𝑚*
p = 0.8𝑚N.

We use these as our default models when providing numerical fits below. Among the

superfluid models, increasing 𝑚*
p (that is, decreasing 𝜖n) or increasing the NS mass

decreases the eigenfrequencies slightly. Equation (3.33) implies that in the frequency

bandwidth of Advanced LIGO at full design sensitivity (10 Hz−3000 Hz; Harry 2010),

a superfluid NS has ≈ 3 times more 𝑙𝑎 = 2 g-modes than a normal fluid NS.

3.3.2 Tidal driving of modes

We can account for tidal driving of the fluid by replacing 𝛿Φ in equations (3.16-3.20)

with 𝛿Φ+𝑈 , where 𝑈 is the tidal potential. In a spherical coordinate system (𝑟, 𝜃, 𝜑)

centered on the primary, the tidal potential due to a companion of mass 𝑀 ′ is

𝑈(𝑟, 𝜃, 𝜑, 𝑡) = −𝐺𝑀 ′
∑︁
𝑙≥2

𝑙∑︁
𝑚=−𝑙

𝑊𝑙𝑚𝑟
𝑙

𝐷𝑙+1(𝑡)
𝑌𝑙𝑚(𝜃, 𝜑)𝑒

−𝑖𝑚𝜓(𝑡). (3.34)

The orbit of the companion is oriented in the plane [𝐷(𝑡), 𝜋/2, 𝜓(𝑡)], where 𝐷(𝑡) is

the binary’s orbital separation and 𝜓(𝑡) is the orbital phase. The general expression

for the coefficients 𝑊𝑙𝑚 can be found in Press & Teukolsky (1977); for the 𝑙 = 2

harmonic, which dominates at small 𝑅/𝐷, 𝑊20 = −
√︀
𝜋/5, 𝑊2±2 =

√︀
3𝜋/10, and

𝑊2±1 = 0. The superfluid oscillation equations with tidal driving now take the form

[︂
𝜕2

𝜕𝑡2
+ ℒ

]︂⎡⎣𝜉+
𝜉−

⎤⎦ = −

⎡⎣∇𝑈

0

⎤⎦ . (3.35)
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Figure 3-5: Tidal coupling coefficient |𝑄𝑎𝑙𝑚| as a function of the 𝑙𝑎 = 2 g-mode radial
order 𝑛𝑎 (left panel) and eigenfrequency 𝑓𝑎 = 𝜎𝑎/2𝜋 (right panel) for the same set of
models as in Figure 3-4.

The tidal acceleration ∇𝑈 appears explicitly in the equation of the mass-averaged

flow 𝜉+ but not the difference flow 𝜉−. The normal fluid counterpart to equation

(3.35) is recovered by identifying 𝜉+ → 𝜉 and 𝜉− → 0 (see Lai 1994).

Since the linear operator ℒ is Hermitian (for both the superfluid and normal fluid;

Appendix C.3), the star’s eigenmodes form an orthonormal basis. This allows us to

expand the displacements as⎡⎣𝜉+(𝑥, 𝑡)
𝜉−(𝑥, 𝑡)

⎤⎦ =
∑︁
𝑎

𝑏𝑎(𝑡)

⎡⎣𝜉𝑎+(𝑥)
𝜉𝑎−(𝑥)

⎤⎦ , (3.36)

where 𝑏𝑎(𝑡) is the time-dependent, dimensionless amplitude of mode 𝑎. Given our

eigenmode normalization (eq. 3.31), a mode with amplitude |𝑏𝑎| = 1 has energy 𝐸0.

Equation (3.35) can then be written as a set of linear amplitude equations for each

mode:

𝑏̈𝑎 + 𝜎2
𝑎𝑏𝑎 = 𝜎2

𝑎𝑈𝑎(𝑡) (3.37)
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where the tidal driving coefficient (cf. Weinberg et al. 2012)

𝑈𝑎(𝑡) = − 1

𝐸0

∫︁
d3𝑥𝜌 𝜉*𝑎+ ·∇𝑈 (3.38)

=
𝑀 ′

𝑀

∑︁
𝑙𝑚

𝑊𝑙𝑚𝑄𝑎𝑙𝑚

(︂
𝑅

𝐷(𝑡)

)︂𝑙+1

𝑒−𝑖𝑚𝜓(𝑡). (3.39)

The second equality follows from equation (3.34) and defines the time-independent,

dimensionless tidal coupling coefficient (sometimes referred to as the tidal overlap

integral)

𝑄𝑎𝑙𝑚 =
1

𝑀𝑅𝑙

∫︁
d3𝑥𝜌 𝜉*𝑎+ ·∇

(︀
𝑟𝑙𝑌𝑙𝑚

)︀
, (3.40)

where in the subscripts 𝑎 = {𝑛𝑎, 𝑙𝑎, 𝑚𝑎} denotes a specific eigenmode of the NS

and 𝑙𝑚 denotes a specific harmonic of the tidal potential. By angular momentum

conservation, 𝑄𝑎𝑙𝑚 is non-zero only if 𝑙𝑎 = 𝑙 and 𝑚𝑎 = 𝑚. Using equations (3.16),

(3.17), and (3.20) and integrating by parts we can alternatively express the tidal

coupling coefficient as

𝑄𝑎𝑙𝑚 =
1

𝑀𝑅𝑙

∫︁
d𝑟𝑟𝑙+2𝛿𝜌𝑎 = −2𝑙 + 1

4𝜋

𝛿Φ𝑎(𝑅)

𝐺𝑀/𝑅
, (3.41)

where 𝛿𝜌𝑎 = 𝛿𝜌c,𝑎+ 𝛿𝜌n,𝑎 is the total perturbed density due to mode 𝑎 and 𝛿Φ𝑎(𝑅) is

the mode’s perturbation to the gravitational potential at the stellar surface.

In Figure 3-5 we show |𝑄𝑎𝑙𝑚| as a function of the radial order 𝑛𝑎 and eigenfrequency

𝑓𝑎 = 𝜎𝑎/2𝜋 of the 𝑙𝑎 = 2 g-modes for our various NS models. The most obvious feature

is that smaller 𝑛𝑎 tend to have larger |𝑄𝑎𝑙𝑚| (with the exception of the 𝑛𝑎 = 2 mode

of our 1.4𝑀⊙ superfluid models, which has an anomalously small |𝑄𝑎𝑙𝑚|). This is

because the tide is a long wavelength perturbation and it couples best to modes whose

wavelengths are likewise long. For a given 𝑛𝑎, we find that the different models all

have similar |𝑄𝑎𝑙𝑚|; there is only a weak dependence on whether the NS is superfluid,

the level of entrainment 𝑚*
p, and the NS mass. Since the superfluid g-mode spectrum

is shifted to higher frequencies (i.e., 𝑓𝑎 is larger at a given 𝑛𝑎), at a given 𝑓𝑎 the normal

fluid models have a significantly larger |𝑄𝑎𝑙𝑚|. In particular, based on our numerical
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calculations of |𝑄𝑎𝑙𝑚|, we find that for the 1.4𝑀⊙ superfluid models (neglecting the

anomalous 𝑛𝑎 = 2 mode) and normal fluid models, respectively,

⃒⃒⃒
𝑄

(SF)
𝑎𝑙𝑚

⃒⃒⃒
≃ 2.6× 10−3𝑛−2

𝑎 ≃ 7.6× 10−5𝑓 2
𝑎,100, (3.42)

⃒⃒⃒
𝑄

(NF)
𝑎𝑙𝑚

⃒⃒⃒
≃ 3.5× 10−3𝑛−5/2

𝑎 ≃ 9.3× 10−4𝑓
5/2
𝑎,100, (3.43)

where 𝑓𝑎,100 = 𝑓𝑎/100 Hz. The oscillatory nature of the g-modes can make calculating

𝑄𝑎𝑙𝑚 subject to numerical error (Reisenegger & Goldreich, 1994; Reisenegger, 1994;

Weinberg et al., 2012). In Appendix C.4 we carry out numerical tests that show that

our calculations of 𝑄𝑎𝑙𝑚 have only a ∼ 1 percent error.

3.4 RESULTS

Using the formalism described in the previous Section, we now evaluate the resonant

tidal excitation of g-modes in coalescing superfluid NS binaries. Our analysis is similar

to that of Lai (1994) and Reisenegger & Goldreich (1994) who studied this problem

for normal fluid NSs. In Section 3.4.1 we calculate the energy transferred to the NS

from the orbit due to the resonant tidal interactions. In Section 3.4.2 we calculate

the resulting GW phase error relative to the point mass estimate.

3.4.1 Tidal energy transfer

As the NS inspirals due to the emission of gravitational radiation, the tidal driving

sweeps through resonances with individual g-modes. The dynamics, which are similar

to that of a linearly driven oscillator whose driving frequency and forcing strength

increase with time, is determined by the amplitude equation (3.37). Focusing on

resonant driving by the dominant 𝑙 = 2,𝑚 = 2 tidal harmonic, we have

𝑏̈𝑎 + 𝜎2
𝑎𝑏𝑎 = 𝜎2

𝑎𝑊22𝑄𝑎22

(︂
𝑀 ′

𝑀

)︂(︂
𝑅

𝐷(𝑡)

)︂3

e−2i𝜓(𝑡). (3.44)
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Since linear tidal interactions have a small overall effect on the inspiral, we can use

the quadrupole formula for the rate of orbital decay of two point masses, i.e.,

𝐷̇ = −64𝐺3

5𝑐5
𝑀𝑀 ′(𝑀 +𝑀 ′)

𝐷3
, (3.45)

𝜓̇ =

[︂
𝐺(𝑀 +𝑀 ′)

𝐷3

]︂1/2
. (3.46)

As 𝐷(𝑡) decreases and the orbital frequency Ω(𝑡) = 𝜓̇ increases, 𝑙𝑎 = 2 g-modes with

𝜎𝑎 ≃ 2Ω temporarily undergo resonant tidal driving. Post-resonance, the g-modes

oscillate at nearly their natural frequency 𝜎𝑎 (Lai, 1994).

We do not include linear damping in equation (3.44) because it has a negligible

effect on the peak amplitudes reached by the low order modes we consider. It there-

fore does not affect the tidal energy transfer or phase error. Damping does heat the

neutron star by thermalizing a portion of the mode energy. Nonetheless, as we show

later in this section, the core is only heated to 𝑇 ∼ 107 K, which is too small to signif-

icantly modify the g-modes of a superfluid NS (Kantor & Gusakov, 2014; Passamonti

et al., 2016).

In order to determine the evolution of the mode amplitudes 𝑏𝑎(𝑡), we solve equa-

tions (3.44), (3.45), and (3.46) for the set of g-modes described in Section 3.3. For

each mode we initialize the equations following the discussion in Lai (1994), and

then numerically integrate them forward in time. In Figure 3-6 we show the mode

energy 𝐸𝑎(𝑡) = 2|𝑏𝑎|2𝐸0 as a function of orbital separation 𝐷(𝑡) for the low order

(𝑙𝑎 = 2, 𝑚𝑎 = ±2) g-modes that are resonantly excited during the latter stages of

inspiral (𝑓gw & 30 Hz). For conciseness, we have used a single letter 𝑎 in the subscript

of mode energy to represent the total contribution of both the 𝑚𝑎 = 2 and 𝑚𝑎 = −2

modes, and thus a factor of 2 has been included since each mode contributes equally.

We will use this convention in all our results described below. In the left panel we

show 𝐸𝑎(𝑡) for our superfluid NS model with 𝑀 =𝑀 ′ = 1.4𝑀⊙ and 𝑚*
p = 0.8𝑚N. In

the right panel we show 𝐸𝑎(𝑡) for the normal fluid NS model with 𝑀 =𝑀 ′ = 1.4𝑀⊙.

Note that the horizontal scale is different in the two panels.

Because the superfluid model has more high-frequency g-modes (see Figure 3-4),
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Figure 3-6: Evolution of the mode energy 𝐸𝑎 (in units of 𝐸0 = 𝐺𝑀2/𝑅) due to the
resonant tidal driving of 𝑙𝑎 = 2 g-modes during an equal mass (𝑀 = 𝑀 ′ = 1.4𝑀⊙)
binary NS inspiral. The bottom axes gives the orbital separation 𝐷 and the top axes
give the gravitational wave frequency 𝑓gw. The left panel shows the 𝑛𝑎 = {1, 2, 3, . . . 8}
g-modes of the superfluid model with 𝑀 = 1.4𝑀⊙,𝑚

*
p = 0.8𝑚N (black lines) and

the 𝑛𝑎 = {1, 2} g-modes of the normal fluid model with 𝑀 = 1.4𝑀⊙ (grey lines).
The right panel shows the 𝑛𝑎 = {1, 2, 3, . . . 8} g-modes of the normal fluid model (the
𝑛𝑎 = {1, 2} modes are plotted in both panels). Note the different range of 𝐷 plotted
in the two panels. For clarity, we only show a mode’s evolution near its resonant
excitation.
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it admits eight resonantly excited g-modes for 𝐷(𝑡) < 200km compared to only two

for the normal fluid model. The lowest order superfluid g-mode is excited later in the

inspiral than the normal fluid one (compare the black and grey curves in the left panel

of Figure 3-6). On the other hand, at orbital separations where both models have

resonances, the modes of the normal fluid model are excited to a significantly larger

maximum energy 𝐸𝑎,max. For example, at𝐷 ≃ 120 km, the 𝑛𝑎 = 1 mode of the normal

fluid model undergoes resonant driving up to 𝐸𝑎,max ≈ 10−7𝐸0 while the 𝑛𝑎 = 4 mode

of the superfluid model undergoes resonant driving up to only 𝐸𝑎,max ≈ 10−10𝐸0. This

difference is due to the superfluid model’s smaller tidal coupling coefficient |𝑄𝑎22| at

a given 𝑓𝑎 (see Section 3.3.2).

While the numerical calculations provide the full mode amplitude evolution, we

can estimate the post-resonance mode energy 𝐸𝑎,max by solving equation (3.44) using

the stationary-phase approximation. Following the approach described in Lai (1994;

see also Reisenegger & Goldreich 1994), this gives

𝐸𝑎,max ≃
𝜋2

1024
𝑘

(︂
𝐺𝑀

𝑅𝑐2

)︂−5/2(︂
𝜎𝑎
𝜔0

)︂7/3 ∑︁
𝑚=±2

𝑄2
𝑎2𝑚𝐸0, (3.47)

where 𝑘 = 𝑞[2/(1 + 𝑞)]5/3, 𝑞 = 𝑀 ′/𝑀 is the mass ratio of the binary, and 𝜔0 =

(𝐺𝑀/𝑅3)1/2 is the NS dynamical frequency. The expression matches equation (6.11)

in Lai (1994) except that we use a different convention for normalizing the eigenfunc-

tions. Using our analytic fits to 𝑄𝑎22 given by equations (3.42) and (3.43) and the

values of 𝑀 and 𝑅 given in table 3.1, we find that for the 𝑀 = 1.4𝑀⊙ superfluid

and normal fluid models, respectively,

𝐸(SF)
𝑎,max ≃ 1.0× 10−6𝑘 𝑛−19/3

𝑎 𝐸0 ≃ 2× 10−11𝑘 𝑓
19/3
𝑎,100𝐸0, (3.48)

𝐸(NF)
𝑎,max ≃ 1.2× 10−7𝑘 𝑛−22/3

𝑎 𝐸0 ≃ 3.0× 10−9𝑘 𝑓
22/3
𝑎,100𝐸0, (3.49)

where we used equation (3.33) to express the energies in terms of both 𝑛𝑎 and 𝑓𝑎.

Comparing this with the fully numerical results shown in Figure 3-6, we find that the
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stationary-phase approximation gives a good match to the superfluid energy 𝐸
(SF)
𝑎,max

but slightly underestimates the normal fluid case by ≈ 25 percent. At a given fre-

quency, we find that 𝐸𝑎,max of both 𝑀 = 2.0𝑀⊙ superfluid and normal fluid models

are both about 3 times smaller than 𝐸𝑎,max of the 𝑀 = 1.4𝑀⊙ models.

In order to calculate the total energy transfer 𝐸trans from the orbit to all the 𝑙 = 2

g-modes, we can sum over 𝑛𝑎 using equations (3.48) and (3.49). This gives

𝐸
(SF)
trans ≃ 1.0× 10−6𝑘 𝐸0 and 𝐸

(NF)
trans ≃ 1.2× 10−7𝑘 𝐸0. (3.50)

Thus, a superfluid NS absorbs ≃ 10 times more orbital energy by the time the NS

merges. The sums over 𝑛𝑎, which formally are given by the Riemann zeta function

𝜁(19/3) ≃ 𝜁(22/3) ≃ 1.0, are strongly dominated by the 𝑛𝑎 = 1 mode. That is, most

of the energy transfer occurs during the excitation of the lowest order g-mode. This

result is a consequence of two effects: the tidal coupling coefficient |𝑄𝑎22| is largest for

low-order modes (see Section 3.3.2), and the amplitude of the tide (𝑀 ′/𝑀)(𝑅/𝐷)3 is

largest at small 𝐷, which is when the low-order (i.e., high 𝑓𝑎) modes are resonantly

excited. The influence of these two effects is only partially mitigated by the shorter

decay timescales at small 𝐷, which reduces the duration of the resonant driving

compared to higher-order modes.

Following Lai (1994), viscous dissipation of the resonant g-modes heats the neutron

star by an amount

𝐸visc ≃ −2

∫︁ 𝐷merg

𝐷𝑎

d𝐷
𝐷
𝑡𝐷𝛾𝑎𝐸𝑎, (3.51)

where 𝐷𝑎 is the orbital separation at which the mode 𝑎 becomes resonant, 𝐷merg is

the separation before the merger (taken to be 3𝑅), 𝑡𝐷 = |𝐷/𝐷̇| is the orbital decay

time, and 𝛾𝑎 is the mode’s damping rate. We neglect the small amount of viscous

dissipation of modes prior to their resonant excitation. Comparing the heating in the

superfluid case relative to the normal fluid case, we find

𝐸
(SF)
visc

𝐸
(SF)
visc

≃ 0.3
𝛾

(SF)
1

𝛾
(NF)
1

, (3.52)
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where 𝛾1 represents the damping rate of the first g-mode, which we expect to dominate

the heating (although higher order modes have larger 𝛾𝑎 and more time to heat the

NS prior to the merger, they contribute less to the heating because their 𝐸𝑎,max is

much smaller). Following Lai (1994), if we assume that the viscosity is dominated by

electron-electron scattering and that the heat content is dominated by the electrons,

then the superfluid NS is heated to 𝑇 ∼ 107 K.3 Such temperatures are too small

to significantly modify the g-modes relative to the zero-temperature superfluid model

we have adopted in our calculation (see, e.g., figure 4 in Kantor & Gusakov 2014 and

Passamonti et al. 2016).

3.4.2 Phase shift of the gravitational waveform

Given the resonant energy 𝐸𝑎,max, the phase shift of the gravitational waveform Δ𝜑𝑎

due to each excited mode is given approximately by (Lai, 1994)

Δ𝜑𝑎 ≃ −4𝜋
𝑡𝐷
𝑡orb

𝐸𝑎,max

|𝐸orb|
, (3.53)

where 𝑡orb = 2𝜋/Ω is the orbital period and 𝐸orb = −𝐺𝑀𝑀 ′/2𝐷 is the orbital energy

(both evaluated at the mode’s resonance). Because the modes remove energy from

the orbit, the tidal interaction accelerates the rate of orbital decay and thus Δ𝜑𝑎 < 0.

Using the expression for 𝐸𝑎,max based on the stationary-phase approximation (eq.

3.47; note that the contributions from both 𝑚 = ±2 modes are included), we find

Δ𝜑𝑎 = − 5𝜋2

2048
𝑘′
(︂
𝐺𝑀

𝑅𝑐2

)︂−5 ∑︁
𝑚=±2

|𝑄𝑎2𝑚|2, (3.54)

3Our estimate of the heating differs from that of Lai (1994) in two ways. First, since we are
considering a superfluid NS rather than a normal fluid NS, we assume that the main thermal content
is due to the electrons rather than the neutrons (see footnote 9 in Lai 1994). This increases the
resulting temperature by a factor of ≈ 2. Second, we correct a typo in Lai’s expressions for the
damping rates which for 𝑙 = |𝑚| = 2 modes decreases the rates by a factor of 24 (see footnote 14 in
Weinberg et al. 2013).
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Figure 3-7: Phase shift of the gravitational waveform Δ𝜑𝑎 due to the resonant tidal
excitation of individual 𝑙 = 2 g-modes. The left panel shows Δ𝜑𝑎 as a function of
the radial order 𝑛𝑎 and the right panel as a function of the mode’s eigenfrequency
𝑓𝑎. Solid black lines correspond to the 𝑀 = 1.4𝑀⊙ superfluid NS model with an
entrainment level 𝑚*

p = 0.8𝑚N. For comparison, dashed red lines show the results for
the 𝑀 = 1.4𝑀⊙ normal fluid NS model.
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where 𝑘′ = 2/[𝑞(1 + 𝑞)]. Note that in our normalization, Δ𝜑𝑎 depends on frequency

only through |𝑄𝑎2𝑚|. Using equations (3.48) and (3.49), we find

Δ𝜑(SF)
𝑎 ≃ −3× 10−3𝑘′𝑛−4

𝑎 ≃ −3× 10−7𝑘′𝑓 4
𝑎,100, (3.55)

Δ𝜑(NF)
𝑎 ≃ −7× 10−3𝑘′𝑛−5

𝑎 ≃ −4× 10−4𝑘′𝑓 5
𝑎,100. (3.56)

These analytic estimates of the phase error are in good agreement (to within ≃ 25%)

with the numerical results shown in Figure 3-7.

As in the 𝐸trans calculation of Section 3.4.1, we can sum over 𝑛𝑎 and 𝑚𝑎 to get

the total phase error Δ𝜑 due to the excitation of all the 𝑙 = 2 g-modes. This gives

Δ𝜑(SF) ≃ −4× 10−3𝑘′, (3.57)

Δ𝜑(NF) ≃ −7× 10−3𝑘′. (3.58)

As with 𝐸trans, the strong scaling with 𝑛𝑎 in equations (3.55) and (3.56) implies that

the phase error is almost completely dominated by the resonant excitation of the

lowest order modes.

Although each g-mode in a superfluid NS is, compared to a normal fluid NS,

excited to a much greater energy [≃ 10 times larger for the lowest order mode; see

equations (3.48) and (3.49)], it is excited later in the inspiral when the orbital decay is

faster. These two effect cancel and therefore Δ𝜑𝑎 depends only on the tidal coupling

strength |𝑄𝑎𝑙𝑚| [equation (3.54)]. For a given 𝑛𝑎, |𝑄𝑎𝑙𝑚| is insensitive to whether the

NS is superfluid [equations (3.42) and (3.43)] and, as a result, superfluid and normal

fluid NSs have similar dynamical tide-induced GW phase shifts.

3.5 CONCLUSIONS

We studied the dynamical tide in coalescing superfluid NS binaries. We considered

NSs with an npe𝜇 composition for different stellar masses (𝑀 = 1.4𝑀⊙ and 2𝑀⊙)

and levels of entrainment (as quantified by the proton effective mass 𝑚*
p). Although
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we did not account for general relativistic effects in our calculations, this simplification

is unlikely to influence the qualitative conclusions of our study. In all of our superfluid

NS models, we found that the spectrum of the 𝑙 = 2 g-modes is shifted to higher

frequencies compared to a normal fluid NS. As a result, we showed that many more

modes undergo resonant excitation during the latter stages of binary inspiral. By

calculating the mode coupling strength and integrating the time-dependent mode

amplitude equations as the binary sweeps up in frequency, we found that the total

energy transfer from the orbit to the oscillations is ≃ 10 times larger than the normal

fluid case. However, because the energy transfer is dominated by the highest frequency

modes, it occurs later in the inspiral when the orbital decay is faster. As a result,

the impact of tidal interactions on the GW signal is comparable for a superfluid and

normal fluid NS. In particular, the magnitude of the GW phase shift in both cases is

≃ a few × 10−3 radian. Such a phase shift is at least two orders of magnitude too

small to be detected by the current generation of GW detectors (see, e.g., Cutler &

Flanagan 1994).

Our analysis did not account for hyperons, which are expected to appear at high

core densities (∼ 7× 1014 g cm−3; see, e.g., Bednarek et al. 2012; Weissenborn et al.

2012; Gusakov et al. 2014). As Dommes & Gusakov (2016) point out, gradients in

the hyperon fraction might also be a source of buoyancy in superfluid NSs. While

the direct Urca process involving hyperons (see review by Yakovlev et al. 2001) may

be fast enough compared to the g-mode oscillation period to break the assumption

of frozen composition, and/or the hyperons may be superfluid themselves (Takatsuka

et al., 2006; Wang & Shen, 2010), the case studied by Dommes & Gusakov (2016)

nonetheless shows that there can exist additional g-modes in hyperonic NSs. In par-

ticular, hyperons produce an additional peak in the Brunt-Väisälä frequency profile,

one that occurs much deeper in the core than the peak due to the muon-to-electron

gradient (see Figure 6 in Dommes & Gusakov 2016). This will modify the properties

of the g-modes calculated here and it is not clear to what extent this might alter the

conclusions of our analysis. We plan to address this problem in the future.

We also did not account for NS rotation. Studies that have find that rapid rotation
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can lead to significantly larger tide-induced phase shifts (Ho & Lai, 1999; Lai & Wu,

2006; Flanagan & Racine, 2007). However, even though these studies all assume

normal fluid NSs, the modes that are responsible for the largest phase shifts are

f-modes, r-modes, and inertial modes. Such modes are unlikely to be significantly

modified by superfluid effects (e.g., Lee 1995; Passamonti et al. 2009).

It has been suggested that the tide in coalescing NS binaries becomes unstable

to nonlinear fluid effects at relatively low GW frequencies (≈ 50 Hz; Weinberg et al.

2013; Venumadhav et al. 2014; Weinberg 2016). Although these studies assume a

normal fluid NS, the nonlinear effects involve non-resonant, low frequency g-modes

and such modes still exist in superfluid NSs. However, it is not clear to what extent

superfluidity might alter the growth rate and saturation of the instability. It would

therefore be interesting to extend these studies to superfluid NSs.
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Chapter 4

Dynamical tides in coalescing

superfluid neutron star binaries with

hyperon cores and their detectability

with third generation

gravitational-wave detectors

4.1 INTRODUCTION 1

Tides in coalescing neutron star (NS) binaries modify the rate of inspiral and generate

phase shifts in the gravitational wave (GW) signal that encode information about the

the NS interior. The tide is often decomposed into an equilibrium tide and a dynam-

ical tide, where the former represents the fluid’s quasi-static response and the latter

represents its resonant response (e.g., in the form of resonantly excited g-modes).

The GW phase shift due to the equilibrium tide, which should be detectable with

Advanced LIGO (Aasi et al., 2015) by stacking multiple merger events, can constrain

the NS tidal deformability and therefore the supranuclear equation of state (Read

1This Chapter is based on Yu & Weinberg (2017b).
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et al., 2009; Hinderer et al., 2010; Damour et al., 2012; Del Pozzo et al., 2013; Lackey

& Wade, 2015; Agathos et al., 2015). However, the equilibrium tide can only indi-

rectly constrain the interior stratification (i.e., the composition profile; Chatziioannou

et al. 2015) and is insensitive to superfluid effects (see, e.g., Penner et al. 2011). By

contrast, the dynamical tide is directly sensitive to both the stratification (Shibata,

1994; Lai, 1994; Reisenegger & Goldreich, 1994; Kokkotas & Schafer, 1995; Ho &

Lai, 1999; Hinderer et al., 2016; Steinhoff et al., 2016) and superfluid effects (Yu &

Weinberg, 2017a). GW phase shifts due to the dynamical tide can therefore provide

a unique probe of the NS interior, similar to asteroseismology observations which are

now providing detailed constraints on the physics of the interiors of white dwarfs,

solar-type stars, and red giants (Winget & Kepler, 2008; Chaplin & Miglio, 2013).

Previous studies of the dynamical tide in binary NSs focused on “canonical” 1.4𝑀⊙

NSs and assumed that the core does not contain exotic hadronic matter, such as

hyperons. Although it is energetically favorable for nuclear matter to transition to

hyperonic matter at high densities (Ambartsumyan & Saakyan, 1960), the discovery of

2𝑀⊙ NSs (Demorest et al., 2010; Antoniadis et al., 2013) ruled out many hyperonic

models since they tend to have softer equations of state. However, the degree of

softening is uncertain (Lonardoni et al., 2015) and in the last few years many new

hyperonic models compatible with the observations of 2𝑀⊙ NSs have been proposed

(e.g., Bednarek et al. 2012; Weissenborn et al. 2012; Gusakov et al. 2014; Tolos et al.

2016).

The dynamical tide in hyperonic models is modified by the hyperon composi-

tion gradient, which provides a new source of buoyancy that can support g-mode

oscillations much deeper within the NS core than the leptonic composition gradient

(Dommes & Gusakov, 2016). GW phase shifts induced by the excitation of hyperonic

g-modes therefore probe the innermost core, where the density is a few times the

nuclear saturation density.

The total phase shift accumulated over the inspiral due to the equilibrium tide

is ∼ 1 rad while that due to the dynamical tide is only . 10−2 rad. However, their

detectability is not as different as these numbers might suggest. In part, this is
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because the dynamical tide phase shift accumulates at lower GW frequencies, where

ground-based detectors are more sensitive. There is also more time before the merger

to build up the signal-to-noise ratio (SNR) and compare the waveform signal before

and after resonance. In addition, because the dynamical tide causes small but sudden

increases in GW frequency at mode resonances, it has a unique signature that cannot

be easily mimicked by varying other parameters of the binary (such as the masses).

In this Chapter we extend our previous study of dynamical tides in superfluid NSs

(Yu & Weinberg, 2017a) in order to account for the possible presence of hyperons

in the core. We also evaluate the detectability of the phase shifts induced by the

dynamical tide with second and third generation GW detectors. We begin in Section

4.2 by describing our background hyperonic NS model and in Section 4.3 we solve

for its g-modes. In Section 4.4, we consider the resonant tidal driving of the g-modes

and calculate the resulting GW phase shift. In Section 4.5, we evaluate the prospects

for detecting the phase shifts with current and future GW detectors.

4.2 SUPERFLUID MODELS WITH HYPERONS

We construct our background superfluid models using an approach similar to that of

Yu & Weinberg (2017; hereafter YW17a), but with some key differences described

below; we refer the reader to YW17a and references therein for further details, partic-

ularly as pertains to our treatment of the thermodynamics. Briefly, we assume that

the background star is non-rotating, cold (zero temperature), in chemical equilibrium,

and that all charge densities are balanced. We treat the neutrons in the core as su-

perfluid and all other particle species (protons, Λ-hyperons, electrons, and muons) as

normal fluid matter.2

The two main differences between the present approach and that of YW17a are

that here: (1) we use the GM1’B equation of state (Gusakov et al., 2014) rather

than SLy4(Rikovska Stone et al., 2003), and (2) we solve the general relativistic

2The conditions under which Λ-hyperons become superfluid in NS cores are uncertain (Takatsuka
et al., 2006; Wang & Shen, 2010). We assume that they are normal fluid in this study, similar to
the g-mode calculations in Dommes & Gusakov (2016).
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(GR) Tolman-Oppenheimer-Volkhov (TOV) equations of stellar structure rather than

the Newtonian equations. We use GM1’B because it allows for the existence of

hyperons in the inner core, is consistent with the existence of 2𝑀⊙ NSs, and Gusakov

et al. (2014) provide enough detail to allow for a calculation of the Brunt-Väisälä

frequency, 𝒩 , and thus g-modes. Regarding the second point, in YW17a we solved the

Newtonian equations of stellar structure in order to be consistent with our Newtonian

treatment of the stellar oscillations and tidal driving (a relativistic treatment of the

tides would significantly complicate the analysis and would not lead to substantially

different results). However, ≈ 2𝑀⊙ Newtonian models do not reach high enough core

densities to yield hyperons in GM1’B (𝜌 & 7 × 1014 g/cm3). We therefore construct

GR background models which are more compact than Newtonian models and contain

hyperons if 𝑀 & 1.4𝑀⊙. For simplicity, however, we still solve for the g-modes and

tidal driving using the Newtonian equations of stellar oscillation. As we describe in

Section 4.3, we carry out a partial check of the robustness of this hybrid approach

by calculating some of the g-modes (but not tidal driving) using the GR equations of

stellar oscillation.

We consider superfluid NS models with three different masses: 1.4𝑀⊙, 1.5𝑀⊙,

and 1.6𝑀⊙. The 1.4𝑀⊙ NS does not contain hyperons because its central density

is too low whereas the 1.5𝑀⊙ and 1.6𝑀⊙ hyperon star (HS) models both contain

Λ hyperons in the inner core. The 1.6𝑀⊙ HS mass is chosen such that the density

of the inner core is high enough to contain Λ hyperons but just slightly too low to

contain other hyperon species. In particular, a more massive NS in GM1’B would

contain Ξ− and Ξ0 hyperons which, while potentially interesting for tidal physics,

would considerably complicate the analysis. Compared to the 1.6𝑀⊙ HS model,

the 1.5𝑀⊙ HS model has a smaller mass fraction of hyperons in the inner core. By

comparing the results for the three models, we study how the presence and abundance

of Λ hyperons modify the g-mode oscillation spectrum and the dynamical tide GW

phase shifts.

The conditions for chemical equilibrium due to weak interactions are (Dommes &
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Table 4.1: Parameters of the background NS and HS models.

𝑀 [𝑀⊙] 𝑅 [km] 𝜌0 [g cm−3] 𝑅Λ [km] 𝑅𝜇 [km] 𝑅cc [km]
1.4 13.7 6.5× 1014 – 11.3 12.2
1.5 13.6 7.1× 1014 3.3 11.5 12.3
1.6 13.5 8.1× 1014 5.3 11.6 12.4
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Figure 4-1: Upper panel: number fraction of electrons 𝑥e (dotted line), muons 𝑥𝜇
(dashed line), and Λ hyperons 𝑥Λ (solid black line) as a function of fractional radius
𝑟/𝑅 for the 1.6𝑀⊙ HS model. For comparison, we also show 𝑥Λ for the 1.5𝑀⊙ HS
model (solid grey line). Bottom panel: number of muons per electron 𝑥𝜇e (dashed
line) and Λ hyperons per electron 𝑥Λe (solid black line) for the 1.6𝑀⊙ HS model, and
𝑥Λe for the 1.5𝑀⊙ HS model (solid grey line).
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Figure 4-2: Brunt-Väisälä frequency 𝒩 /2𝜋 for the 1.6𝑀⊙ HS (left panel) and the
1.4𝑀⊙ NS (right panel). Both models have a muonic contribution that peaks in the
outer core. The HS has an additional contribution due to hyperons that peaks in the
inner core. Note that we evaluate the frequencies in the Newtonian limit [eq. (4.4)].

Gusakov, 2016),

𝜇n = 𝜇p + 𝜇e, (4.1)

𝜇n = 𝜇Λ, (4.2)

𝜇e = 𝜇𝜇, (4.3)

where 𝜇𝑗 is the chemical potential of particle species 𝑗, with 𝑗 being either a neutron

(n), proton (p), Λ hyperon (Λ), electron (e), or muon (𝜇). These conditions, along

with the equations of stellar structure, determine the composition profile for each star.

Because of the presence of hyperons, the equation of state has four degrees of freedom

instead of the three in YW17a. In particular, we parametrize the thermodynamic

relations in terms of the pressure 𝑃 , the neutron chemical potential 𝜇n, the muon-to-

electron ratio 𝑥𝜇e = 𝑥𝜇/𝑥e, and the Λ-to-electron ratio 𝑥Λe = 𝑥Λ/𝑥e, where 𝑥𝑗 = 𝑛𝑗/𝑛b

is the number fraction of species 𝑗 per baryon and 𝑛𝑗 is its number density.

In Table 4.1, we give the values of the following parameters for our three models:

total mass 𝑀 , radius 𝑅, central density 𝜌0, radius below which Λ hyperons are present
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𝑅Λ, radius below which muons are present 𝑅𝜇, and radius of the core-crust interface

𝑅cc (defined as where the baryon density 𝑛b = 0.08 fm−3). In Figure 4-1, we show the

composition profile for the 1.6𝑀⊙ HS model and for comparison, 𝑥Λ(𝑟) and 𝑥Λe(𝑟)

for the 1.5𝑀⊙ HS model.

Based on the discussion in YW17a (see their Section 2.1 and Appendix A), in the

Newtonian limit the Brunt-Väisälä (i.e., buoyancy) frequency is given by

𝒩 2 =− 1− 𝜖n
1− 𝑥n − 𝜖n

𝑔

𝜌

∑︁
𝑗=𝜇,Λ

(︂
𝜕𝜌

𝜕𝑥𝑗e

)︂
d𝑥𝑗e
d𝑟

, (4.4)

where the partial derivative is evaluated by holding the three other thermodynamic

parameters fixed (𝑃 , 𝜇n, and 𝑥𝑖e for 𝑖 ̸= 𝑗), 𝑔(𝑟) is the gravitational acceleration

at radius 𝑟, and 𝜖n is the superfluid entrainment function (YW17a, see also Prix &

Rieutord 2002). Numerical values for entrainment are provided in Gusakov et al.

(2014) but using a different parameterization.

In the core, we evaluate the buoyancy using equation (4.4). In the crust, we

follow YW17a and assume for simplicity that the crust is neutrally buoyant (𝒩 = 0);

this does not significantly affect the core g-modes of interest here since the crust

contains only a small fraction of the mass. In Figure 4-2 we show 𝒩 for the 1.4𝑀⊙

NS model (right panel) and the 1.6𝑀⊙ HS model (left panel). Whereas the 1.4𝑀⊙

model contains only a single 𝒩 peak (due to the muon gradient d𝑥𝜇e/d𝑟), the 1.6𝑀⊙

HS model contains two 𝒩 peaks (one due to the muon gradient d𝑥𝜇e/d𝑟 and one at

higher densities due to the Λ hyperon gradient d𝑥Λe/d𝑟). As we show in the next

Section, this additional peak leads to a new type of g-mode, i.e., hyperonic g-modes.

We assume that 𝑥𝜇e and 𝑥Λe do not vary during oscillations of the normal fluid;

i.e., the composition is “frozen” and thus the perturbed fluid element is out of chemical

equilibrium. Reisenegger & Goldreich (1992) consider the timescale for the proton

fraction 𝑥p in a normal fluid NS to relax towards chemical equilibrium due to Urca

processes (𝑥p is the source of buoyancy in a normal fluid NS). They show that for even

a moderately warm NS, the relaxation timescale is much longer than the oscillation

period of low-order g-modes and therefore, to a very good approximation, 𝑥p is frozen
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within the fluid element. Similarly, to check whether 𝑥Λe is frozen, we must consider

the direct Urca process Λ → p + L + 𝜈L, where the lepton in the reaction L = e or

𝜇. In Appendix B.3 we show that the corresponding relaxation timescale is much

longer than the oscillation period of low order hyperonic g-modes and therefore the

assumption of frozen composition should also hold for these modes.

4.3 EIGENMODES OF A SUPERFLUID HYPERON

STAR

The oscillation equations of a superfluid HS are similar to those of a superfluid NS

and can be written as (Prix & Rieutord 2002, YW17a)

∇ · (𝜌c𝜉c) + 𝛿𝜌c = 0, (4.5)

∇ · (𝜌n𝜉n) + 𝛿𝜌n = 0, (4.6)

𝜎2 [𝜉c − 𝜖c(𝜉c − 𝜉n)] = ∇ (𝛿𝜇̃c + 𝛿Φ) , (4.7)

𝜎2 [𝜉n + 𝜖n(𝜉c − 𝜉n)] = ∇ (𝛿𝜇̃n + 𝛿Φ) , (4.8)

∇2𝛿Φ = 4𝜋𝐺(𝛿𝜌c + 𝛿𝜌n), (4.9)

where we assume that the perturbed quantities have a time dependence ei𝜎t, 𝛿𝒬(𝑥)

denotes the Eulerian perturbation of a quantity 𝒬 at position 𝑥, subscript “n” denotes

the neutron superfluid flow, and subscript “c” denotes the normal fluid flow (consisting

of the charged particles and the Λ hyperons; we continue to use a subscript c in order

to match the notation used in Prix & Rieutord (2002) and YW17a). The other

quantities are the mass densities 𝜌c(n) (the total density 𝜌 = 𝜌c + 𝜌n), the perturbed

specific chemical potentials 𝛿𝜇̃c(n), the Lagrangian displacements 𝜉c(n), the perturbed

gravitational potential 𝛿Φ, and the entrainment function 𝜖c = 𝜖n𝜌n/𝜌c (see YW17a

for further details).

Although the oscillation equations take a simple form when written in terms of 𝜉c

and 𝜉n, it is more convenient to express the tidal excitation of modes in terms of the
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mass-averaged flow 𝜉+ and the difference flow 𝜉−, where

𝜉+ =
1

𝜌
(𝜌c𝜉c + 𝜌n𝜉n) , (4.10)

𝜉− = (1− 𝜖n − 𝜖c) (𝜉c − 𝜉n) . (4.11)

When solving the oscillation equations, we choose (𝜉+, 𝜉n, 𝛿𝑃 , 𝛿𝜇̃n, 𝛿Φ) to be our

independent variables. We can then use equations (4.10) and (4.11) to calculate

𝜉c and 𝜉−. Since the Lagrangian perturbations to 𝑥𝜇e and 𝑥Λe vanish for a frozen

composition, we can use the chain rule to express the density perturbation as

𝛿𝜌c =

(︂
𝜕𝜌c

𝜕𝑃

)︂
𝛿𝑃 +

(︂
𝜕𝜌c

𝜕𝜇̃n

)︂
𝛿𝜇̃n −

∑︁
𝑗=𝜇,Λ

(︂
𝜕𝜌c

𝜕𝑥𝑗e

)︂
d𝑥𝑗e
d𝑟

𝜉𝑟c , (4.12)

and similarly for 𝛿𝜌n, where 𝜉𝑟c (𝑟) denotes the radial dependence of the radial com-

ponent of 𝜉c (the angular dependence is given by the spherical harmonic function

𝑌𝑙𝑚(𝜃, 𝜑) of degree 𝑙 and order 𝑚). As we show in YW17a (see also Lindblom &

Mendell 1994; Andersson et al. 2004), the operator ℒ corresponding to equations

(4.5)-(4.9) is Hermitian with respect to the inner product

⟨⎡⎣𝜉+
𝜉−

⎤⎦ ,
⎡⎣𝜉′+
𝜉′−

⎤⎦⟩ =

∫︁
d3𝑥

[︁
𝜉*+ 𝜉*−

]︁⎡⎣𝜌 0

0 𝜌

⎤⎦⎡⎣𝜉′+
𝜉′−

⎤⎦ , (4.13)

where

𝜌 =
𝜌c𝜌n

(1− 𝜖n − 𝜖c)𝜌
. (4.14)

The set of eigenmodes thus forms an orthonormal base. We use the same boundary

conditions as YW17a and normalize the modes such that

𝜎2
𝑎

⟨⎡⎣𝜉𝑎+
𝜉𝑎−

⎤⎦ ,
⎡⎣𝜉𝑏+
𝜉𝑏−

⎤⎦⟩ = 𝐸0𝛿𝑎𝑏, (4.15)

where 𝜎𝑎 is the eigenvalue of mode 𝑎 and 𝐸0 = 𝐺𝑀2/𝑅.

As Dommes & Gusakov (2016) first showed, the core g-modes of an HS can be
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Figure 4-3: Structure of the second hyperonic g-mode 𝑛(Λ1.6)
𝑎 = 2 (solid black lines)

and the first muonic g-mode 𝑛(𝜇1.6)
𝑎 = 1 (dashed black lines) of the 1.6𝑀⊙ HS and

the first g-mode 𝑛(𝜇1.4)
𝑎 = 1 of the 1.4 𝑀⊙ NS (dashed grey lines). All three modes

have spherical degree 𝑙𝑎 = 2. The upper panel shows the Eulerian perturbation of
the pressure 𝛿𝑃 in units of the central pressure 𝑃0. The lower panel shows the radial
component of the mass-averaged Lagrangian displacement 𝜉𝑟+ in units of 𝑅. All
quantities are normalized according to Equation (3.31); for display purposes, those
corresponding to the 𝑛(Λ1.6)

𝑎 = 2 mode are multiplied by an additional factor of 0.3.
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classified into two types: “hyperonic” g-modes and “muonic” g-modes. The hyperonic

g-modes are primarily supported by the Λ hyperon gradient and are concentrated in

the inner core, while the muonic g-modes are supported by a combination of the Λ

hyperon and muon gradients and span both the inner and outer core. In Figure 4-3

we show the structure of the second hyperonic g-mode 𝑛(Λ1.6)
𝑎 = 2 and the first muonic

g-mode 𝑛(𝜇1.6)
𝑎 = 1 of our 1.6𝑀⊙ HS model.3 In the superscript, Λ1.6 (𝜇1.6) stands

for the hyperonic (muonic) modes of the 1.6𝑀⊙ HS model. We will use this labeling

convention throughout the Chapter. For comparison, we also show the first g-mode

of our 1.4𝑀⊙ NS model. All three g-modes have angular degree 𝑙𝑎 = 2 and thus

couple to the 𝑙 = 2 harmonic of the tide.

3We use 𝑛
(Λ1.6)
𝑎 and 𝑛

(𝜇1.6)
𝑎 to label the sequential order of each type of g-mode, with 𝑛

(Λ1.6)
𝑎 = 1

and 𝑛
(𝜇1.6)
𝑎 = 1 corresponding to the highest frequency hyperonic g-mode and muonic g-mode,

respectively. They do not necessarily correspond to the mode’s radial order, i.e., the number of
radial nodes.
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In Figure 4-4 we show the eigenfrequencies 𝑓𝑎 = 𝜎𝑎/2𝜋 of the first several 𝑙𝑎 = 2

g-modes of our 1.6𝑀⊙ HS and 1.4𝑀⊙ NS models. To guide the eye, we use straight

lines to connect each of the hyperonic modes (solid) and, separately, each of the

muonic modes (dashed). As we describe in Section 4.2, in order to build HSs without

complicating the dynamical tide calculation, we solve the TOV equations to construct

the background models but the Newtonian equations to calculate the g-modes and

tidal driving. We partially assess the impact of this hybrid approach by redoing the

calculation of the g-modes using the GR oscillation equations. For this calculation,

we ignore the gravitational perturbations (i.e., we adopt the Cowling approximation)

and solve the superfluid GR oscillation equations (see, e.g., Dommes & Gusakov

2016; Passamonti et al. 2016). We find that our hybrid approach overestimates the

g-mode eigenfrequencies by ≃ 70% (see grey lines in Figure 4-4). For example, the

highest frequency 𝑙𝑎 = 2 hyperonic g-mode in the 1.6𝑀⊙ HS has a frequency of

𝑓
(GR)
𝑎 = 743 Hz in the fully relativistic calculation (as seen by an observer at infinity)

compared to 𝑓𝑎 = 1271 Hz in the hybrid calculation. Nevertheless, as we show in

Section 4.4, the dynamical tide phase shift is independent of the eigenfrequency 𝑓𝑎

(in our normalization) and is therefore unaffected by the overestimate of 𝑓𝑎. There

is still an error due to our hybrid calculation of the tidal coupling strength, but we

argue in Section 4.4 that this should not be too significant.

Consistent with the asymptotic properties of high-order g-modes (Aerts et al.,

2010), we find that for modes with 𝑛
(𝑗)
𝑎 & few, the GR oscillation equations yield

𝑙𝑎 = 2 eigenfrequencies that are well approximated by 𝑓 (𝑗,GR)
𝑎 = 𝑓

(𝑗)
0 /𝑛

(𝑗)
𝑎 , where 𝑓 (𝑗)

0 =

{1020, 410, 460, 500, 510} Hz for 𝑗 = {Λ1.6, 𝜇1.6,Λ1.5, 𝜇1.5, 𝜇1.4}, respectively. We

find that the characteristic frequency 𝑓 (Λ)
0 of the hyperonic modes scales almost lin-

early with the size of the hyperonic core 𝑅Λ. This is because 𝑓 (Λ)
0 ∝

∫︀ 𝑅Λ

0
𝒩𝑑 ln 𝑟 and

for 𝑟 . 𝑅Λ, the density 𝜌 ≃ constant and 𝒩 ∝ 𝑟.
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4.4 TIDAL DRIVING AND PHASE SHIFT OF THE

GRAVITATIONAL WAVEFORM

Following YW17a (see also Lai 1994; Weinberg et al. 2012), we solve for the resonant

tidal excitation of g-modes by expanding the tidal displacement field as⎡⎣𝜉+(𝑥, 𝑡)
𝜉−(𝑥, 𝑡)

⎤⎦ =
∑︁
𝑎

𝑏𝑎(𝑡)

⎡⎣𝜉𝑎+(𝑥)
𝜉𝑎−(𝑥)

⎤⎦ , (4.16)

where the subscript 𝑎 = {𝑛𝑎, 𝑙𝑎, 𝑚𝑎} denotes a specific eigenmode of the NS and 𝑏𝑎(𝑡)

is the time-dependent, dimensionless amplitude of mode 𝑎 (a mode with amplitude

|𝑏𝑎| = 1 has energy 𝐸0 = 𝐺𝑀2/𝑅). Inserting this expansion into the linear super-

fluid oscillation equations (4.5)-(4.9) and including the time-dependent tidal potential

(𝛿Φ → 𝛿Φ + 𝑈) yields the mode amplitude equation

𝑏̈𝑎 + 𝜎2
𝑎𝑏𝑎 = 𝜎2

𝑎𝑈𝑎(𝑡), (4.17)

where the tidal driving coefficient

𝑈𝑎(𝑡) =
𝑀 ′

𝑀

∑︁
𝑙≥2,𝑚

𝑊𝑙𝑚𝑄𝑎𝑙𝑚

(︂
𝑅

𝐷(𝑡)

)︂𝑙+1

𝑒−𝑖𝑚𝜓(𝑡). (4.18)

Here 𝑀 ′ is the mass of the companion, 𝑙𝑚 are harmonics of the tidal potential,

the coefficients 𝑊𝑙𝑚 = 4𝜋(2𝑙 + 1)−1𝑌𝑙𝑚(𝜋/2, 0) are of order unity for the dominant

harmonics (Press & Teukolsky, 1977), 𝐷(𝑡) is the orbital separation, and 𝜓(𝑡) is the

orbital phase.

The time-independent, dimensionless tidal coupling coefficient (sometimes referred

to as the tidal overlap integral)

𝑄𝑎𝑙𝑚 =
1

𝑀𝑅𝑙

∫︁
d3𝑥𝜌 𝜉*𝑎+ ·∇

(︀
𝑟𝑙𝑌𝑙𝑚

)︀
. (4.19)

By angular momentum conservation, 𝑄𝑎𝑙𝑚 is non-zero only if 𝑙𝑎 = 𝑙 and 𝑚𝑎 = 𝑚.
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Based on our numerical calculations, we find that the 𝑄𝑎𝑙𝑚 of our different models

and mode types are approximately given by

|𝑄(𝑗)
𝑎𝑙𝑚| = 𝑄0𝑛

−𝛼
𝑎 , (4.20)

where 𝛼 ≈ 2.5 and

𝑄
(𝑗)
0 = {1.7, 3.6, 1.6, 3.5, 4.0} × 10−3, (4.21)

for 𝑗 = {Λ1.6, 𝜇1.6,Λ1.5, 𝜇1.5, 𝜇1.4}, respectively.

Although these values are based on the hybrid calculation (GR background and

Newtonian oscillations), we expect the error due to this inconsistency to be relatively

small. As an approximate measure of the correction, we computed |𝑄𝑎𝑙𝑚| for the

1.4𝑀⊙ NS model but with the background constructed using the Newtonian structure

equations rather than the TOV equations (we could not perform such a test for the HS

model because a 2.0𝑀⊙ Newtonian model does not contain hyperons). We find that

𝑄𝑎𝑙𝑚 changes by at most 5%, which suggests that our hybrid model gives a reasonably

accurate estimate of the tidal coupling strength. Indeed, given that 𝐺𝑀/𝑅𝑐2 ≈ 20%,

we do not expect relativistic corrections to be much bigger than a few tens of percent.

We numerically solve the amplitude equation (4.17) of the resonantly driven g-

modes and find that the result is in good agreement with the analytic solution given

by the stationary-phase approximation (Lai, 1994; Reisenegger & Goldreich, 1994).

The GW phase shift induced by the resonant excitation of each mode is therefore

approximately given by (YW17a)

𝛿𝜑𝑎 = − 5𝜋2

2048
𝑘′
(︂
𝐺𝑀

𝑅𝑐2

)︂−5 ∑︁
𝑚=±2

|𝑄𝑎2𝑚|2, (4.22)

where 𝑘′ = 2/[𝑞(1 + 𝑞)], 𝑞 = 𝑀 ′/𝑀 , and here the subscript 𝑎 already accounts for

the contributions from both the 𝑚𝑎 = 2 and 𝑚𝑎 = −2 modes. Since 𝛿𝜑𝑎 depends on

𝑓𝑎 only through |𝑄𝑎𝑙𝑚|, and we expect that our hybrid approach accurately estimates

|𝑄𝑎𝑙𝑚| to within a few tens of percent, our estimate of 𝛿𝜑𝑎 ∝ |𝑄𝑎𝑙𝑚|2 should be
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Table 4.2: Eigenfrequencies 𝑓 (GR)
𝑎 and gravitational waveform phase shift 𝛿𝜑𝑎 for

the three-lowest order 𝑙𝑎 = 2 g-modes for each stellar model. The format is
{𝑓𝑎/100 Hz, |𝛿𝜑𝑎|/rad}.

𝑗 𝑛
(𝑗)
𝑎 = 1 𝑛

(𝑗)
𝑎 = 2 𝑛

(𝑗)
𝑎 = 3

Λ1.6 {7.4, 5.5e-4} {4.3, 3.4e-4} {3.0, 3.6e-7}
𝜇1.6 {4.1, 3.4e-3} {2.0, 1.6e-5} {1.3, 1.2e-5}
Λ1.5 {4.1, 1.1e-3} {2.5, 1.6e-7} {1.4, 6.6e-7}
𝜇1.5 {4.5, 5.4e-3} {2.4, 6.6e-6} {1.6, 2.1e-5}
𝜇1.4 {4.6, 9.8e-3} {2.4, 3.6e-7} {1.6, 3.0e-5}

accurate to within a factor of order unity.

In Table 4.2 we list 𝑓 (GR)
𝑎 (see grey lines in Figure 4-4) and 𝛿𝜑𝑎 for the three-lowest

order 𝑙𝑎 = 2 g-modes of each type, for each stellar model. Numerically, we find that

summing over all of the resonantly excited modes yields a total cumulative phase shift

𝛿𝜑(1.6HS) = −4.3× 10−3𝑘′, (4.23)

𝛿𝜑(1.5HS) = −6.7× 10−3𝑘′, (4.24)

𝛿𝜑(1.4NS) = −9.9× 10−3𝑘′, (4.25)

where 𝛿𝜑(HS) accounts for both the hyperonic modes and muonic modes.

As can be gleaned from Table 4.2 [also equations (4.20) - (4.22)], the total phase

shift is dominated by the contributions of the 𝑛𝑎 = 1 g-modes (the modes with the

highest frequency). The phase shifts due to muonic modes are insensitive to whether

hyperons are present in the core and decrease with increasing HS/NS mass. In the

HS models, the cumulative phase shift due to the muonic g-modes is about five times

larger than that due to the hyperonic g-modes. Moreover, comparing the 1.6𝑀⊙ HS

model to the 1.5𝑀⊙ HS model, we find that the phase shift due to the hyperonic

modes is relatively insensitive to the size of the hyperon core 𝑅Λ, in contrast to

the eigenfrequency spectrum which is shifted to lower frequencies as the mass of the

hyperon core decreases (see discussion at end of Section 4.3).
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4.5 DETECTABILITY OF THE MODE RESONANCES

In this Section we estimate the detectability of the dynamical tide phase shift using

the Fisher matrix formalism (Cutler & Flanagan, 1994). In Section 4.5.1, we describe

how we model the GW signal and the detectability of the resonances based on single

events and multiple stacked events. In Section 4.5.2, we present our detectability

estimates for Advanced LIGO and proposed third generation GW detectors.

4.5.1 Modeling the detectability

Following Cutler & Flanagan (1994), if we assume a strong GW strain signal ℎ(𝑡) and

Gaussian detector noise, then the signal parameters 𝜃𝑖 have a probability distribution

𝑝(𝜃𝑖) ∝ exp [−(1/2)Γ𝑖𝑗d𝜃𝑖d𝜃𝑗], where d𝜃𝑖 = 𝜃𝑖 − 𝜃𝑖 is the difference between the

parameters and their best fit values 𝜃𝑖 and

Γ𝑖𝑗 =

(︃
𝜕ℎ

𝜕𝜃𝑖

⃒⃒⃒⃒
⃒ 𝜕ℎ𝜕𝜃𝑗

)︃
(4.26)

is the Fisher information matrix. The parentheses denote the inner product

(ℎ1|ℎ2) = 2

∫︁ ∞

0

ℎ̃*1(𝑓)ℎ̃2(𝑓) + ℎ̃1(𝑓)ℎ̃
*
2(𝑓)

𝑆𝑛(𝑓)
d𝑓, (4.27)

where ℎ̃1 and ℎ̃2 are the Fourier transforms of ℎ1 and ℎ2 and 𝑆𝑛(𝑓) is the strain

noise power spectral density. The signal-to-noise ratio (SNR) of a signal ℎ is given

by SNR = (ℎ|ℎ)1/2 and the root-mean-square (rms) measurement error in 𝜃𝑖 is given

by a diagonal element of the inverse Fisher matrix

Δ𝜃𝑖 =

√︁(︀
Γ−1

)︀𝑖𝑖
. (4.28)

If the rms error in, say, the phase shift due to a particular resonance Δ(𝛿𝜑𝑎) is smaller

than 𝛿𝜑𝑎, then that phase shift is detectable.

The above analysis is based on the detection of a single inspiral event. We can

roughly estimate how stacking multiple events would affect the measurement accuracy
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by using the approach given in Markakis et al. (2010); a more precise estimate would

require a fully Bayesian investigation and is beyond the scope of this paper (see, e.g.,

the recent studies of the detectability of the equilibrium tide phase shift by Del Pozzo

et al. 2013; Lackey & Wade 2015; Agathos et al. 2015). The estimate assumes that

the events are homogeneously distributed in a sphere of effective radius 𝑑effmax and that

the error in each parameter Δ𝜃 scales linearly with effective distance 𝑑eff < 𝑑effmax.4

Then, Markakis et al. (2010) show that the rms error averaged over all of the events

is

⟨Δ𝜃⟩ ≈ Δ𝜃ref

𝑑effref
√︀

4𝜋ℛ𝑃obs𝑑effmax

, (4.29)

where Δ𝜃ref is the rms error of parameter 𝜃 from a single reference event at effective

distance 𝑑effref , ℛ is the event rate per unit time per unit volume, and 𝑃obs is the total

observation period. In the above calculation we ignore the cosmological expansion

and assume that the event rate is constant.

Similar to Balachandran & Flanagan (2007), who also studied the detectability of

mode resonances (see also Flanagan & Racine 2007), we assume that the frequency-

domain GW signal has the form

ℎ̃(𝑓) = 𝒜𝑓−7/6eiΨ(𝑓), (4.30)

where the amplitude (Maggiore, 2007)

𝒜 =

(︂
5

24𝜋4/3

)︂1/2(︂
𝐺ℳ
𝑐3

)︂−5/6 𝒦
𝑑
. (4.31)

Here ℳ = [(𝑀𝑀 ′)3/(𝑀 +𝑀 ′)]1/5 is the chirp mass, 𝑑 is the distance to the source,

and 𝒦 is the antenna response (for an optimally oriented source 𝒦 = 1). Our model of

the phase evolution Ψ(𝑓) accounts for the point-particle contribution including post-

Newtonian corrections up to the 1.5th order, and for the resonant tidal excitation of

4The effective distance 𝑑eff is defined as the distance obtained by averaging over a uniform source
orientation for an event with a given SNR. It is related to the horizon distance 𝑑hor, the distance
assuming an optimal source orientation, as 𝑑eff = 𝑑hor/2.3 (see, e.g., Appendix D of Allen et al.
2012).
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individual g-modes. We ignore higher order post-Newtonian terms, spin, the equilib-

rium tide, and nonlinear tidal effects (such as those considered in Essick et al. 2016),

and assume that the signal shuts off at the gravitational wave frequency correspond-

ing to the inner-most stable circular orbit 𝑓 = 2𝑓isco ≃ 1.6×103Hz [2.8𝑀⊙/(𝑀+𝑀 ′)]

(Cutler & Flanagan, 1994; Poisson & Will, 1995). In Appendix D we show that under

these assumptions,

Ψ(𝑓) = Ψpp(𝑓)−
∑︁
𝑎

(︂
1− 𝑓

𝑓𝑎

)︂
𝛿𝜑𝑎Θ(𝑓 − 𝑓𝑎) , (4.32)

where 𝛿𝜑𝑎 is the phase shift due to the tidal resonance with a mode 𝑎 with eigen-

frequency 𝑓𝑎, and Θ(𝑓 − 𝑓𝑎) is the Heaviside step function. By the stationary-phase

approximation, the point-particle phase is (Cutler & Flanagan, 1994)

Ψpp(𝑓) =2𝜋𝑓𝑡𝑐 − 𝜑𝑐 −
𝜋

4
+

3

4

(︂
8𝜋𝐺ℳ𝑓

𝑐3

)︂−5/3

×
[︂
1 +

20

9

(︂
743

336
+

11𝜇

4𝑀tot

)︂
𝑥− 16𝜋𝑥3/2

]︂
. (4.33)

Here 𝑡𝑐 and 𝜑𝑐 are constants of integration that set a reference time and phase.

𝑀tot = (𝑀 +𝑀 ′) and 𝜇 =𝑀𝑀 ′/𝑀tot are the total and reduced mass of the system,

respectively, and the quantity 𝑥 is defined as 𝑥 = (𝜋𝐺𝑀tot𝑓/ 𝑐
3)2/3. The duration of

each resonance is, in general, much shorter than the orbital decay timescale due to

radiation reaction (their ratio is ≃ 0.1 × [(ℳ/1.2𝑀⊙)(𝑓/500 Hz)]5/6; see Lai 1994;

Flanagan & Racine 2007; Balachandran & Flanagan 2007). We therefore model the

resonance as an instantaneous process, which should be a good approximation since

nearly all the g-modes we consider have 𝑓 (GR)
𝑎 < 500 Hz (the one exception is the

𝑛𝑎 = 1 hyperonic g-mode of the 1.6𝑀⊙ HS model which has 𝑓 (GR)
𝑎 = 740 Hz).

Since the phase shift is dominated by the resonant excitation of the lowest order

mode, for simplicity we do not sum over the modes in our waveform model but instead

just consider the phase shift due to a single mode. Our model therefore depends on

7 parameters: 𝒜, ℳ, 𝜇, 𝑡𝑐, 𝜑𝑐, 𝑓𝑎, and 𝛿𝜑𝑎. Flanagan & Racine (2007) also consider

the effect of phase shifts on the GW signal, although their model is written in terms
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of the phase of the time-domain waveform 𝜑(𝑡) [their equation (1.9)] rather than the

frequency-domain waveform Ψ(𝑓). In Appendix D we show that the two treatments

are consistent.

Before examining the numerical results, note that

𝜕ℎ̃

𝜕(𝛿𝜑𝑎)
= −i

(︂
1− 𝑓

𝑓𝑎

)︂
Θ(𝑓 − 𝑓𝑎) ℎ̃, (4.34)

𝜕ℎ̃

𝜕𝑓𝑎
= −i𝛿𝜑𝑎

𝑓

𝑓 2
𝑎

Θ(𝑓 − 𝑓𝑎) ℎ̃. (4.35)

Note that the (1 − 𝑓/𝑓𝑎) factor eliminates the 𝛿-function at 𝑓 = 𝑓𝑎 stemming from

the derivative of Θ. By equation (4.28), we see that Δ(𝛿𝜑𝑎) and Δ𝑓𝑎 both vary

linearly with distance (and thus inversely with SNR) and that Δ(𝛿𝜑𝑎) is independent

of 𝛿𝜑𝑎 whereas Δ𝑓𝑎 ∝ (𝛿𝜑𝑎)
−1. Conceptually, these last two properties reflect the

fact that the measurability of phase shifts Δ(𝛿𝜑𝑎) is mostly determined by how much

SNR accumulates before and after the resonance (which is independent of 𝛿𝜑𝑎 itself),

whereas the larger 𝛿𝜑𝑎 is, the easier it is to localize the frequency of the resonance

(and thus the smaller Δ𝑓𝑎 is). Lastly, because the dominating g-modes are excited

at frequencies higher than the most sensitive band of ground-based GW detectors

(≈ 70 Hz), larger 𝑓𝑎 have larger Δ(𝛿𝜑𝑎) and Δ(𝑓𝑎) and thus worse detectability.

This is different from the results in Balachandran & Flanagan (2007) who found that

increasing 𝑓𝑎 would make the detection easier, as Balachandran & Flanagan (2007)

considered modes that were excited at frequencies lower than the most sensitive band.

4.5.2 Detectability with second and third generation detectors

For the numerical results, we take 𝑀 = 𝑀 ′ = 1.4𝑀⊙ (using 𝑀 = 𝑀 ′ = 1.5𝑀⊙ or

1.6𝑀⊙ in the Fisher matrix calculation changes the rms errors only by . 10%). Since

the values of 𝑡𝑐 and 𝜑𝑐 do not affect the evaluation of Δ(𝛿𝜑) and Δ𝑓𝑎, we set them

equal to zero. We show results for four sets of tidal parameters, (𝑓𝑎/Hz, 𝜑𝑎/rad) =

(100, −0.01), (450, −0.01), (450, −0.001), and (750, −0.001), corresponding to the

lowest order g-mode in the normal-fluid NS model, the lowest order muonic g-mode
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Table 4.3: Threshold distance 𝑑horth out to which dynamical tide resonances are de-
tectable [Δ(𝛿𝜑𝑎) = |𝛿𝜑𝑎|] assuming a single merger event.

𝑓𝑎 [Hz] 𝛿𝜑𝑎 [rad] Detector 𝑑horth [Mpc] SNR Δ𝑓𝑎 [Hz]
aLIGO 1.8 1.7e+3 32

100 -0.01 CE 52 2.9e3 26
ET-D 25 2.0e+3 28
aLIGO 1.2 2.5e+3 220

450 -0.01 CE 26 5.9e3 210
ET-D 16 3.1e3 220
aLIGO 0.12 3.1e+4 220

450 -0.001 CE 2.6 5.9e+4 210
ET-D 1.6 3.1e+4 220
aLIGO 0.06 5.2e+4 280

750 -0.001 CE 0.8 1.8e+5 240
ET-D 0.5 1.0e+5 240

in the superfluid NS/HS model, the first hyperonic mode in the 1.5𝑀⊙ HS model,

and the first hyperonic mode in the 1.6𝑀⊙ HS model, respectively. Higher order

g-modes resonate at lower frequencies and have smaller Δ(𝛿𝜑𝑎) because more SNR is

accumulated after their resonances [equation (4.34)]. However, because of the steep

falloff of 𝛿𝜑𝑎 with decreasing frequency [increasing 𝑛𝑎; see equation (4.20)], it is much

more difficult to detect their phase shifts.

For the detector noise, we consider the noise curves of Advanced LIGO (aLIGO) at

design sensitivity (Aasi et al., 2015), and the noise curves of proposed third generation

detectors including the Cosmic Explorer (CE; Abbott et al. 2017a) and the Einstein

Telescope (specifically, ET-D; Hild et al. 2011). For simplicity we consider here only

the detectability of a single detector instead of a network of detectors (Schutz, 2011).

We also ignore the tidal phase shift due to the companion NS/HS which should

increase 𝛿𝜑𝑎 by a factor of two if 𝑀 =𝑀 ′.

Our analysis neglects systematic uncertainties due to calibration errors in the in-

struments. The current calibration uncertainty of aLIGO is somewhat larger than

the phase shift due to dynamic tides (the phase uncertainty is ≃ 0.03 rad at 450 Hz;

Vitale et al. 2012; Abbott et al. 2016a). Regardless, we show that for aLIGO the

measurement errors dominate [Δ(𝛿𝜑𝑎) & 0.1 rad even with event stacking] and pre-
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clude detecting the dynamical tide with aLIGO. As for the third generation detectors,

currently there is no published estimate of their expected calibration performance.

We therefore ignore this effect in our study and work under the assumption that it

will be at least a factor of ∼ 10 better than aLIGO’s.

Single events

In Table 4.3 we show the threshold horizon distance 𝑑horth out to which different GW

detectors can measure tidal resonances assuming a single merger event. Here 𝑑horth

is defined to be the distance at which an event has Δ(𝛿𝜑𝑎) = |𝛿𝜑𝑎| assuming an

optimal antenna response 𝒦 = 1. We also give the events corresponding SNR and

Δ𝑓𝑎. Compared to the normal-fluid g-modes, the superfluid ones are harder to detect

because their resonant frequencies are higher and thus less post-excitation SNR is

accumulates. For the dominating muonic mode (𝑓𝑎 = 450Hz, 𝛿𝜑𝑎 = −0.01 rad),

aLIGO can detect such a feature only for an event happening within 1.2 Mpc (i.e.,

within the Local Group). With the third generation detectors, this horizon distance

can be pushed out to ≈ 10 − 30 Mpc, and thus could include the Virgo Cluster

(16 Mpc). If we account for the random source orientation (by dividing 𝑑horth by

2.3) and assume the “most-likely” event rate of ℛ = 103 Gpc−3 yr−1 (Abadie et al.

2010; Abbott et al. 2016f), we find that such an event should happen only once

every ≈ 150 yr at CE sensitivity (here we ignore that the Universe is far from being

homogeneous in such a local range and simply assume that the sources are uniformly

distributed).

In terms of SNR, the detection of g-modes from a single event typically requires

an SNR & 2000, with the exact number depending on the detailed shape of the

sensitivity curve. As a comparison, for a typical event with SNR = 12, with aLIGO

we can only measure Δ(𝛿𝜑𝑎) = 2.1 rad, which is more than two orders of magnitude

larger than 𝛿𝜑𝑎, and Δ𝑓𝑎 = 4.5 × 104 Hz, which is greater than the entire detector

bandwidth.

As for the hyperonic mode, its small phase shift makes its detection possible only

from the extremely loud events with SNR & 104. Even with CE, the most sensitive
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detector we consider, the horizon distance can only reach 2.6 (0.8) Mpc for the 1.5𝑀⊙

(1.6𝑀⊙) HS model. Therefore, unless there is an extremely rare nearby event, the

phase shift due to a hyperonic mode is unlikely to be detected from a single event.

Multiple stacked events

In Table 4.4, we give the rms errors ⟨Δ(𝛿𝜑𝑎)⟩ and ⟨Δ(𝑓𝑎)⟩ found by stacking multiple

events. We assume a total observation duration 𝑃obs = 10 years, an SNR cutoff of

40 to determine 𝑑effmax, and an event rate of ℛ = 103 Gpc−3 yr−1(Abadie et al., 2010;

Abbott et al., 2016f). Under these assumptions, the number of expected events is 2,

2×105, and 1×104 for aLIGO, CE, and ET-D, respectively (CE has the largest 𝑑effmax,

with a cosmological redshift 𝑧 = 0.3).

We find that aLIGO can only measure phase shifts to an accuracy of ⟨Δ(𝛿𝜑𝑎)⟩ &
0.3 rad. Since this is at least an order of magnitude larger than the phase shifts

induced by resonant mode excitation, the dynamical tide is unlikely to be detectable

with aLIGO even with event stacking.

By contrast, with CE the phase shifts can be measured to an accuracy of ⟨Δ(𝛿𝜑𝑎)⟩ ≈
2×10−3 rad. CE should therefore be able to detect the phase shift due to the muonic

modes (𝛿𝜑𝑎 ≈ 10−2 rad); they might only be marginally detectable with a single ET-D

alone, however. CE has rms errors that are ≈ 100 times smaller than aLIGO because

its Δ𝜃ref is 15 times smaller (it accumulates 15 times more SNR post-resonance than

aLIGO for the same source) and, for a given SNR cutoff, its 𝑑effmax is ≈ 40 times larger

[cf. eq. (4.29)].

Detecting the phase shift due to the hyperonic modes (𝛿𝜑𝑎 ≈ 10−3 rad) will, how-

ever, be difficult even with CE event stacking given that ⟨Δ(𝛿𝜑𝑎)⟩ > |𝛿𝜑𝑎|. Moreover,

ℛ is predicted to be smaller for higher-mass NSs (Kiziltan et al., 2013), i.e., those

containing hyperon cores, and therefore there will be fewer such events to stack. It

may also be difficult to distinguish the phase shifts of the hyperonic modes from

those of the muonic modes, especially if the dominant (i.e., lowest order) muonic and

hyperonic modes have similar frequencies, as is the case in our 1.5𝑀⊙ HS model.

Our stacking calculation only accounts for the distance distribution of the sources
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Table 4.4: Measurement errors found by stacking events for different detectors and
values of 𝑓𝑎 and 𝛿𝜑𝑎.

𝑓𝑎[ Hz] 𝛿𝜑𝑎 [rad] Detector ⟨Δ(𝑓𝑎)⟩ [Hz] ⟨Δ(𝛿𝜑𝑎)⟩ [rad]
aLIGO 630 0.19

100 -0.01 CE 2.5 0.0010
ET-D 9.6 0.0034
aLIGO 6100 0.28

450 -0.01 CE 42 0.0020
ET-D 120 0.0053
aLIGO 6.1e+4 0.28

450 -0.001 CE 420 0.0020
ET-D 1200 0.0053
aLIGO 1.7e+5 0.60

750 -0.001 CE 1500 0.006
ET-D 4100 0.017

but otherwise assumes all the events are identical. It therefore neglects variation

of the inspiral parameters, including the NS mass distribution. Although this is a

coarse approximation that should be relaxed in future studies, we do not expect it

to significantly affect our estimates of ⟨Δ(𝛿𝜑𝑎)⟩. From equation (4.29), we see that

⟨Δ𝜃⟩ ∝ Δ𝜃ref , where Δ𝜃ref is the reference value that is intended to be representative

of all the events. Considering the phase shift measurement (𝜃 = 𝛿𝜑𝑎), we showed in

Section 4.5.1 that Δ(𝛿𝜑𝑎) is independent of 𝛿𝜑𝑎 and instead mostly depends on 𝑓𝑎.

From Table 4.2 we see that for the muonic modes, 𝑓𝑎 is nearly independent of 𝑀 (it

only changes be 10% in going from 1.4𝑀⊙ to 1.6𝑀⊙). Therefore, for each detector

there is a reliable reference value for Δ(𝛿𝜑𝑎) and our estimate of ⟨Δ(𝛿𝜑𝑎)⟩ should not

be strongly affected by our neglect of the mass distribution of the events.

4.6 CONCLUSIONS

We studied the dynamical tide in coalescing NS binaries and investigated how the

resonant excitation of g-modes might impact the GW signal. In our previous work

(YW17a), we carried out the first study of dynamical tides in a superfluid NS. We

showed that the dynamical tide, unlike the equilibrium tide, is directly sensitive to the
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composition and superfluid state of the core and thus offers a unique probe of the NS

interior. Here, we extended the results of YW17a by allowing for hyperons in the NS

core. Dommes & Gusakov (2016) showed that hyperons modify the buoyancy profile

in the star and give rise to a new type of g-mode. We confirmed their results, and

calculated the spectrum of hyperonic g-modes in the inner core and muonic g-modes

in the outer core for different NS models (with varying hyperon core radii 𝑅Λ). We

found that the characteristic frequency of the hyperonic g-modes increases linearly

with 𝑅Λ and that the hyperonic g-modes can have considerably higher frequencies

than the muonic g-modes. We also showed that the frequency and tidal coupling of

the muonic modes is not particularly sensitive to the existence of hyperons in the

core.

The resonant tidal excitation of the hyperonic and muonic g-modes remove energy

from the orbit and induce phase shifts in the GW signal. We found that the lowest or-

der g-modes induce the largest phase shifts, with magnitudes |𝛿𝜑𝑎| ∼ 10−3−10−2 rad.

The muonic g-modes, which are concentrated in the outer core where the tide is

stronger, induce phase shifts that are a few times larger than that of the hyperonic

g-modes.

Using the Fisher matrix formalism, we estimated the detectability of the induced

phase shifts both from single events and from stacked events. We found that with the

next generation GW detectors (CE and/or ET), a single, optimally oriented event

within ≈ 20 Mpc (e.g., within the Virgo Cluster) should be loud enough to detect

the phase shift due to the muonic modes. The system would need to be about five to

ten times closer (e.g., within the Local Group), in order to detect the smaller phase

shifts associated with the hyperonic modes. While such nearby events are rare, we

found that by stacking multiple events, there is a reasonably good likelihood that

next generation detectors can detect the phase shifts induced by the muonic modes.

Measuring the frequency and phase shift of the muonic mode resonance can help

constrain the stratification and superfluid state of the NS core. The phase shift due

to the hyperonic modes will likely be difficult to detect even with event stacking.

By restricting our models to relatively low masses (𝑀 ≤ 1.6𝑀⊙), we ensured
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that the only type of hyperon in the core were Λ hyperons. In the future, it might

be interesting to also study higher mass models, which would include Ξ− and Ξ0

hyperons. Their composition gradients presumably give rise to yet more types of

g-modes in the core. We also assumed that the Λ hyperons were normal fluid in the

inner core (consistent with the treatment in Dommes & Gusakov (2016)). Whether

the hyperons will be superfluid is uncertain, but if they are then they might either

have a modified g-mode spectrum compared to our model or they might not support

g-modes at all (similar to the g-modes supported by the proton-to-neutron gradient,

which vanish when the neutrons are superfluid; Lee 1995; Andersson & Comer 2001;

Prix & Rieutord 2002). Finally, it would also be interesting to investigate how tidal

coupling in a superfluid NS is modified by rotation and nonlinear instabilities, both

of which have been shown to be potentially important in the normal fluid case (see,

respectively, Ho & Lai 1999; Lai & Wu 2006; Flanagan & Racine 2007 and Weinberg

et al. 2013; Venumadhav et al. 2014; Weinberg 2016; Essick et al. 2016).
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Chapter 5

Overview of the aLIGO detectors

In this Chapter we review the optical topology of the aLIGO interferometer and

provide analytical derivations of the optical fields at each port of the instrument.

Here we focus on a one-dimensional interferometer where all the optical components

are perfectly aligned and mode-matched. The effects of higher-order spatial modes

will be examined in detail in the following Chapters which build upon the results

derived here.

Before diving into the details, it will be helpful to distinguish three different fre-

quency scales. The first one is the laser oscillation frequency, 𝜈0 = 𝜔0/2𝜋 = 𝑐/𝜆0 ≃
3 × 1014Hz, where 𝜆0 = 1.064 nm is the laser wavelength used by aLIGO. This fre-

quency determines the energy carried per photon being ~𝜔0. The second scale corre-

sponds to the radio frequency (RF) of a few to a few hundred MHz. For aLIGO, it

utilizes multiple RF sidebands to keep the resonant condition of the interferometer via

the Pound-Drever-Hall (PDH) technique (Drever et al., 1983). Lastly, the frequency

band we are mostly interested in lies in the audio band ranging from a few Hz to a

few kHz. This is the frequency band where the GW signals from merging stellar-mass

BH or NS binaries are above aLIGO’s noise background.

Throughout this Chapter and the following ones, we adopt the following conven-

tions. We denote an optical field as 𝐸 whose dimension is set so that 𝐸2 has the

dimension of power. To model the transmission and reflection at a dielectric bound-

ary, we let the optical field pick up a phase shift of 𝜋/2 for every transmission through
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a surface, whereas it experiences no extra phase change upon reflection. Note that

with this convention any optical component considered will have two surfaces. As for

field propagations, we assume that the free space is always an integer multiple of the

laser wavelength 𝜆0, while the residual tuning is then assigned to mirrors as one of

their parameters. Those are the same conventions used in the numerical simulation

tool FINESSE (Brown & Freise, 2014) which we will use frequently to numerically

verify our analytical results.

This Chapter is organized as follows. In Section 5.1 we give a brief, qualitative

overview of aLIGO’s optical topology. A more quantitative discussion then follows

in Section 5.2 where we consider the DC buildups of both the carrier field and the

RF sidebands. At the same time we will also introduce the technique of mapping

compound optical cavities into a single effective mirror, thereby allowing one to ana-

lyze complex systems such as aLIGO in an analytically trackable manner. These DC

fields then serve as the seeds from which signal sidebands at AC are generated. This

is discussed in Section 5.3. The focus will be on the differential arm motions which

can be generated by a passing GW. A semi-classical derivation of the instrument’s

fundamental quantum limit will also be presented.

5.1 OPTICAL TOPOLOGY

We present the optical layout of the aLIGO interferometer in Figure 5-1. It is known

as a “dual-recycled Fabry-Perot Michelson interferometer”, which can be understood

as the following. The central beamsplitter (BS) and the two end test masses (ETMs;

we will further refer to the ETM on the transmission of the central BS the ETMX, and

the one on the reflection the ETMY) form a Michelson interferometer which allows

differential motions between the ETMs (e.g. the motion generated by GWs) to be

detected at the output, or the anti-symmetric port. On the other hand, common-mode

signals such as the frequency fluctuations of the laser will be reflected to the input, or

the symmetric port. To enhance the sensitivity to the displacement, two input test

masses (ITMs) are placed in between the BS and the ETMs. The ITM and the ETM
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Figure 5-1: The optical layout of the aLIGO interferometer (only core optics are
shown). In the drawing we also label the locations of major readout ports.
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thus form a Fabry-Perot cavity (also known as an arm cavity) which not only increases

the number of photons sampling the test masses’ displacement at a given instant, but

also traps a given photon inside the cavity to bounce back and forth multiple times,

thereby repeatedly performing the displacement measurement. To further enhance

the number of photons and consequently reduce the statistical uncertainty, a power-

recycling mirror (PRM) is placed at the input port, which sends the beam returning

from the BS to the input port back to the arm cavities to further increase the power

circulating in the arms. Lastly, a signal-recycling mirror (SRM) is placed at the

output (anti-symmetric) port to form a signal recycling cavity1 with the ITMs. If a

photon is trapped inside the arm cavity for a time longer than the oscillation period

of a GW harmonic, the sensitivity to such a high-frequency signal will be reduced.

The purpose of signal recycling is to modify the effective ITM reflectivity seen by

the signal photons and alter their storage time in the arm cavity, thereby allowing a

tradeoff between the instrument’s peak sensitivity and its bandwidth.

In the following sections we will explore the above descriptions in more quanti-

tative details. The key optical parameters are defined in Table 5.1 with numerical

values provided. Throughout this Chapter, we will use 𝑇 (𝑅) to denote the power

transmissivity (reflectivity) of a mirror and 𝑡 =
√
𝑇 (𝑟 =

√
𝑅) to denote the ampli-

tude transmissivity (reflectivity). When denoting the properties of a physical mirror

(i.e. the ITMs, PRM, and SRM), we keep 𝑡 and 𝑟 to be real and positive. However,

when considering the effective transmissivity or reflectivity of a cavity, we allow 𝑡 and

𝑟 to be complex in general. To keep the analytical expressions trackable, we make

the following simplifications. The main BS is assumed to be a perfect 50 − 50 BS,

and we assume the ETMs are perfectly reflecting with power reflectivity of 1. The

arm cavity losses are then attributed to the ITMs and denoted by Γi. Energy conser-

vation thus leads to 𝑇i +𝑅i + Γi = 1. On the other hand, we ignore the losses in the

recycling cavities and therefore 𝑇p (s) +𝑅p (s) = 1. Note that in our phase convention,

each mirror needs to be modeled with two surfaces to conserve energy. Therefore we

1For our purpose of deriving the fields, we will often treat the recycling cavities as linear cavities.
However, in practice they are folded cavities each with three recycling mirrors as shown in Figure 5-1.
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Table 5.1: Parameters of the aLIGO optics in the third observing run.

Symbol Definition Value
𝑇i ITM power transmissivity. 1.5%
Γi Round-trip losses of the arm cavity. ∼ 80 ppm
𝑇p PRM power transmissivity. 3.1%
𝑇s SRM power transmissivity. 32%
𝜑p Microscopic phase tuning of the PRM. 0
𝜑s Microscopic phase tuning of the SRM. 𝜋/2

attribute all the reflectivity to the highly reflective (HR) surface of each mirror, while

treating all the anti-reflective (AR) surfaces with a transmissivity of 1.

5.2 PROPAGATION OF THE DC FIELDS

In this Section we derive the propagation equations of the “DC” fields. Here by “DC”

we mean that the system is free from perturbations at audio frequencies. In other

words, we will consider here how the carrier field and the RF sidebands propagate

through the interferometer, with all the optics held perfectly static. To proceed, we

will break the “dual-recycled Fabry-Perot Michelson interferometer” into individual

components, and gradually compound them together to derive the full interferometer’s

response. In the process, we will label the fields that have significant meanings with

Roman letters. On the other hand, fields whose subscripts are numbers are only

defined for the convenience of a derivation, and we will recycle their labels when we

study different components of the interferometer.

5.2.1 The carrier field

To study the carrier field, we start by considering the arm cavity. In the steady state,

we have the following input-output relation:

𝐸a = −𝑡i𝐸1 + 𝑟i𝐸
′
a, (5.1a)

𝐸 ′
a = 𝐸ae2iΔ𝜑, (5.1b)

𝐸 ′
1 = −𝑟i𝐸1 − 𝑡i𝐸

′
a, (5.1c)

111



where the fields are defined in Panel 1 of Figure 5-2, Δ𝜑 is the detuning of the ETM,

and in writing the equation we have assumed the ETM is perfectly reflecting. The

above set of equations can be solved in terms of an input field 𝐸1, leading to

𝐸a

𝐸1

=
−𝑡i

1− 𝑟ie2iΔ𝜑
, (5.2a)

𝐸 ′
1

𝐸1

=
−𝑟i + (𝑟2i + 𝑡2i )e2iΔ𝜑

1− 𝑟ie2iΔ𝜑
. (5.2b)

1 2
3 4

ITM ETM

SRM

PRM

Figure 5-2: Schematics for deriving the DC fields in aLIGO.

In the limit where detuning Δ𝜑 ≪ 1 and Γi ≪ 𝑇i ≪ 1, we can expand e2iΔ𝜑 ≃
1 + 2iΔ𝜑 and 1 − 𝑟i ≃ 𝑡2i /2. Meanwhile, the detuning of each arm to enable a DC

readout of the GW signal (Fricke et al., 2012) is generally small (a few pm in length),
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this further implies that 2Δ𝜑≪ 1− 𝑟i. We can further define

𝑔a =
𝑡i

1− 𝑟i
≃ 2

𝑡𝑖
≃ 16. (5.3)

Note that 𝑔2a ≃ 265 is the power build-up inside the arm cavity,2 and 1/(1−𝑟i) ≃ 𝑔2a/2.

Using these approximations, the input-output relation can be simplified to

𝐸arm

𝐸1

≃ −𝑔a
(︀
1 + i𝑔2aΔ𝜑

)︀
, (5.4a)

𝐸 ′
1

𝐸1

≡ 𝑟i ≃ 1− 1

2
𝑔2aΓi + 2i𝑔2aΔ𝜑, (5.4b)

where we have defined 𝑟i as the effective amplitude reflectivity given by combining the

arm cavity into a single mirror. For future convenience, we will further define 𝑟x(y) as

the the effective reflectivity of the X (Y) arm cavity, and similarly for detuning Δ𝜑x(y)

and loss Γx(y). We consider only differential detuning Δ𝜑x = −Δ𝜑y, and we define

the differential-arm (DARM) detuning3 as Δ𝜑d = Δ𝜑x−Δ𝜑y. For the losses, we will

keep track of both the common and differential ones, defined as Γc = (Γx+Γy)/2 and

Γd = (Γx − Γy)/2, respectively.

The next step is to consider the Michelson part of the interferometer (Panel 2 in

Figure 5-2). The input-output relation for a Michelson that is on the dark fringe can

be written as ⎡⎣𝐸2

𝐸3

⎤⎦ =

√
2

2

⎡⎣ 1 −1

−1 −1

⎤⎦⎡⎣𝐸1

𝐸 ′
4

⎤⎦ ,
⎡⎣𝐸 ′

2

𝐸 ′
3

⎤⎦ =

⎡⎣𝑟y 0

0 𝑟x

⎤⎦⎡⎣𝐸2

𝐸3

⎤⎦ ,
⎡⎣𝐸 ′

1

𝐸4

⎤⎦ =

√
2

2

⎡⎣ 1 −1

−1 −1

⎤⎦⎡⎣𝐸 ′
2

𝐸 ′
3

⎤⎦ , (5.5)

2Note that for the arm cavity, 𝑔2a is related to the cavity finesse by ℱ𝑎 ≃ 𝜋𝑔2a/2.
3In some literatures (e.g., Izumi & Sigg 2017) the DARM detuning is defined as (Δ𝜑x −Δ𝜑y)/2.

Nonetheless, throughout this thesis we define DARM as Δ𝜑d = Δ𝜑x−Δ𝜑y in phase and similarly in
displacement, because such a definition simplifies the connection to GW astrophysics. For a piece of
GW signal with strain ℎ passing through an aLIGO detector with arm length 𝐿, it creates a DARM
displacement Δ𝐿d = Δ𝐿x −Δ𝐿y = ℎ𝐿 in the long-wavelength approximation.
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which leads to ⎡⎣𝐸 ′
1

𝐸4

⎤⎦ =
1

2

⎡⎣𝑟x + 𝑟y 𝑟x − 𝑟y

𝑟x − 𝑟y 𝑟x + 𝑟y

⎤⎦⎡⎣𝐸1

𝐸 ′
4

⎤⎦ . (5.6)

Using equation 5.4b, we can thus write

𝑟m ≡ 1

2
(𝑟x + 𝑟y) ≃ 1− 1

2
𝑔2aΓc, (5.7a)

𝑡m ≡ 1

2
(𝑟x − 𝑟y) ≃ −1

2
𝑔2aΓd + i𝑔2aΔ𝜑d, (5.7b)

as the effective Michelson amplitude reflectivity and transmissivity.

We are now ready to study the carrier’s propagation inside the signal-recycling

cavity formed by the the compound Michelson and the SRM (Panel 3 of Figure 5-2).

For aLIGO, it operates in the resonant-sideband-extraction configuration (Mizuno

et al., 1993), which sets the SRM microscopic tuning to 𝜑s = 𝜋/2. As a result, when

a field reflects from the SRM it picks up a phase of 𝜋 (note that there is a factor of

2 due to reflection). Similar to the case for the arm cavity, we can solve the fields at

each point in terms of an input field 𝐸1, leading to

𝐸s

𝐸1

=
𝑡m

1 + 𝑟m𝑟s
, (5.8a)

𝑟s ≡
𝐸 ′

1

𝐸1

= 𝑟m +
𝑡
2
m𝑟s

1 + 𝑟m𝑟s
≃ 𝑟m, (5.8b)

𝑡s ≡
𝐸out

𝐸1

=
𝑡m𝑡s

1 + 𝑟m𝑟s
= 𝑔s𝑡m, (5.8c)

where we have defined 𝑟s and 𝑡s as the effective reflectivity and transmissivity of

the compound cavity. In deriving 𝑟s, we have used the fact that |𝑡m| is already a

small quantity, and therefore we can safely neglect the term that is quadratic in this

quantity. We have also introduced the amplitude signal-recycling gain 𝑔s, defined as

𝑔s =
𝑡s

1 + 𝑟m𝑟s
≃ 𝑡s

2
≃ 0.31. (5.9)

Lastly, we bring in the PRM to form the complete interferometer (Panel 4 of
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Figure 5-2). The fields can now be written as

𝐸p

𝐸in

=
𝑡p

1− 𝑟p𝑟m
= 𝑔p, (5.10a)

𝐸 ′
in

𝐸in

=
𝑟m − 𝑟p
1− 𝑟p𝑟m

, (5.10b)

𝐸out

𝐸in

= − 𝑡p𝑡s
1− 𝑟p𝑟m

≃ −1

2
𝑔p𝑔s𝑔

2
aΓd + i𝑔p𝑔s𝑔2aΔ𝜑d. (5.10c)

In the process we have introduced the amplitude power-recycling gain 𝑔p = 𝑡p/ (1− 𝑟p𝑟m).

For the parameters given in Table 5.1, the numerical values of 𝑔p ≃ 6.7, leading

to a power-recycling gain of 𝑔2p ≃ 45. On the other hand, as pointed out in Hall

(2017), once the losses in the arm Γc is fixed, the optimal choice of the PRM is

such that 𝑟p = 𝑟m. Under this condition the carrier field is critically coupled to the

power-recycling cavity with a vanishing field in reflection, 𝐸 ′
in = 0. This condition

was approximately satisfied in the aLIGO’s first and second observing runs when

Γc ≃ 100 ppm. However, before the third observing run, new ETMs with better coat-

ing qualities are installed, which reduced the round-trip loss in the arm cavity down

to about Γc ≃ 80 ppm. If we want to maintain the critical coupling condition with

the new arm cavities, the optimal power transmissivity of the PRM should be set to

𝑇p = 2.1%.

To summarize, we can write the fields at different ports in terms of the input field

and the different cavities’ gain as

𝐸p = −𝑔p𝐸in, (5.11)

𝐸x = −
√
2

2
𝑔p𝑔a

(︀
1 + i𝑔2aΔ𝜑x

)︀
𝐸in, (5.12)

𝐸y =

√
2

2
𝑔p𝑔a

(︀
1 + i𝑔2aΔ𝜑y

)︀
𝐸in, (5.13)

𝐸s ≃
(︂
1

4
𝑔p𝑔

2
aΓd −

1

2
i𝑔p𝑔2aΔ𝜑d

)︂
𝐸in, (5.14)

𝐸out =

(︂
−1

2
𝑔p𝑔s𝑔

2
aΓd + i𝑔p𝑔s𝑔2aΔ𝜑d

)︂
𝐸in. (5.15)

In the above set of equations, 𝐸in is the input field with 𝑃in = |𝐸in|2 being the input
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power, and 𝐸out is the output field at the anti-symmetric port of the interferometer.

The quantities 𝐸p, 𝐸x, 𝐸y, and 𝐸s correspond to the field inside the power-recycling

cavity, the X-arm, the Y-arm, and the signal-recycling cavity, respectively, and 𝑔p =

𝑡p/(1 − 𝑟p𝑟m) = 6.7, 𝑔s = 𝑡s/(1 + 𝑟s𝑟m) = 0.31, and 𝑔a = 𝑡i/(1 − 𝑟i) = 16 are the

amplitude gains in the power-recycling cavity, the signal recycling cavity, and the

arms. In the expressions of 𝑔p and 𝑔s the effective reflectivity 𝑟m of the compound

Michelson-arms cavity is given by 𝑟m ≃ 1− 1
2
𝑔2aΓc ≃ 0.99.

In terms of power, we have

𝑃p = 𝑔2p𝑃in ≃ 1.8×
(︂

𝑃in

40W

)︂
kW, (5.16)

𝑃x = 𝑃y = 𝑃a =
1

2
𝑔2p𝑔

2
a𝑃in ≃ 240×

(︂
𝑃in

40W

)︂
kW, (5.17)

𝑃
(Δ𝜑d)
out = 𝑔2p𝑔

2
s 𝑔

4
aΔ𝜑

2
d𝑃in ≃ 43×

(︂
Δ𝐿d

10 pm

)︂2(︂
𝑃in

40W

)︂
mW, (5.18)

𝑃
(Γd)
out =

1

4
𝑔2p𝑔

2
s 𝑔

4
aΓ

2
d𝑃in ≃ 0.31×

(︂
Γd

10 ppm

)︂2(︂
𝑃in

40W

)︂
mW, (5.19)

where in the last two equations we have separated the contribution to the output

power due to DARM detuning (the Δ𝜑d term) and that due to differential arm losses

(the Γd term). We have scaled the input power to 40 W which is typical for aLIGO’s

third observing run.

5.2.2 The RF sidebands

To sense the length of each cavity in a global way, two phase-modulation sidebands are

also injected to the interferometer at RF frequencies 𝑓1 = 9.1MHz and 𝑓2 = 45.5MHz.

The RF sidebands resonate differently from the carrier field in each of the cavities,4

and thus have different responses to the cavity’s length fluctuations. By comparing

the phases between the carrier and sidebands one can therefore infer the cavity’s

length. This is the working principle of the PDH technique (Drever et al., 1983).

4This can be that either a field is on-resonant inside a cavity while the other is off-resonant, or
both the carrier and the sideband are resonant inside the cavity yet they experience different cavity
gains.
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Table 5.2: Lengths in aLIGO’s central cavities.

Symbol Definition Value
𝜆1 Wavelength of the 𝑓1 = 9.1MHz sideband. 33m.
𝜆2 Wavelength of the 𝑓2 = 45.5MHz sideband. 6.6m.
𝑙p One-way length of the power-recycling cavity. 83

4
𝜆2 = 57.7m.

𝑙s One-way length of the signal-recycling cavity. 81
2
𝜆2 = 56m.

𝑙sch Schnupp asymmetry. 8 cm.

More specifically, the 𝑓1 = 9.1MHz sideband is resonant only in the power recycling

cavities while 𝑓2 = 45.5MHz sideband is resonant in both the power- and signal-

recycling cavities. On the other hand, neither of the RF sidebands is on-resonance

in the arm cavity. In this Section we will describe their “DC” buildups (that is,

without perturbations at audio frequencies) quantitatively. Some critical lengths are

summarized in Table 5.2 and we will use those numbers when calculating numerical

quantities.

The steps to study the RF sidebands are essentially the same as the ones we have

used for the carrier filed in Section 5.2.1. We can start by considering the arm cavity.

Since both RF sidebands are off-resonance in the arm cavity, to a good approximation

the effective reflectivity of the arm cavity can be written as

𝑟i,rf ≃ −𝑟𝑖 −
𝑡2i

1 + 𝑟i
≃ −1. (5.20)

At the Michelson, in order to achieve finite transmissivity of the RF sidebands

when the carrier field is on a perfect dark fringe, we deliberately set the distance be-

tween BS and ITMX and the one between BS and ITMY to be different by a few cen-

timeters. This is know as the Schnupp asymmetry (Schnupp, 1988). Quantitatively,

we can still use the input-output relations for the Michelson given in equation 5.5 but

replace 𝑟x(y) by

𝑟x(y)(𝑓rf) = 𝑟i,rf exp

[︂
−4𝜋i𝑓rf

𝑙x(y)
𝑐

]︂
≃ − exp

[︂
−4𝜋i𝑓rf

𝑙x(y)
𝑐

]︂
, (5.21)

where 𝑙x(y) is the distance between BS and ITMX (ITMY), and 𝑓rf can be either 𝑓1
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or 𝑓2. This further leads to

𝑟m(𝑓rf) =
1

2
[𝑟x(𝑓rf) + 𝑟y(𝑓rf)] ≃ − cos

(︂
2𝜋𝑓rf

𝑙sch
𝑐

)︂
, (5.22a)

𝑡m(𝑓rf) =
1

2
[𝑟x(𝑓rf)− 𝑟y(𝑓rf)] ≃ i sin

(︂
2𝜋𝑓rf

𝑙sch
𝑐

)︂
, (5.22b)

where in the above set of equations we have dropped the exp [−2𝜋𝑓rf(𝑙x + 𝑙y)/𝑐] term

as it will be absorbed in our definition of recycling cavities’ lengths. Numerically, we

have

|𝑡m(𝑓rf)| ≃ 0.015×
(︂

𝑓rf
9.1MHz

)︂
, (5.23)

for a Schnupp asymmetry of 𝑙sch ≡ 𝑙x − 𝑙y = 8 cm.

Next we add the recycling cavities to the system. The signal-recycling cavity has

a one-way length of 𝑙s = (17/2)𝜆2 = 56m. As a result, the 𝑓2 sideband will be on-

resonance in this cavity (note that 𝑟m(𝑓2) < 0 and 𝜑s = 𝜋/2). Furthermore, the 8 cm

of Schnupp asymmetry is chosen such that the effective reflectivity of the compound

Michelson-signal-recycling cavity as seen by the 𝑓2 sideband matches approximately

to the reflectivity of the PRM. Since the 𝑓2 sideband is also resonant in the power-

recycling cavity (one-way length 𝑙p = (83
4
)𝜆2 = 57.7m), the 𝑓2 sideband is close to

being critically-coupled through the interferometer. Numerically we have

𝑃p(2𝑓2)

𝑃in(2𝑓2)
= 𝑔2p(𝑓2) ≃ 15, (5.24a)

𝑃out(2𝑓2)

𝑃in(2𝑓2)
= 𝑔2p(𝑓2)𝑔

2
s (𝑓2)𝑡

2
m(𝑓2) ≃ 0.90, (5.24b)

where 𝑃in(2𝑓2), 𝑃out(2𝑓2), and 𝑃p(2𝑓2) are respectively the input power, the output

power, and the power circulating in the power-recycling cavity for the 𝑓2 = 45.5MHz

sideband. Note that there is a factor of 2 in the frequency for power as we look at

the interference between 𝐸(+𝑓2) and 𝐸(−𝑓2) = −𝐸*(+𝑓2). Similar to our treatment

for the carrier field, we have defined 𝑔p(s)(𝑓2) as the power-(signal-)recycling gain

in amplitude with appropriate substitution of 𝑟m(𝑓2) and 𝑟s(𝑓2). Their values are

𝑔p(𝑓2) ≃ 3.9 and 𝑔s(𝑓2) ≃ 3.2.
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As for the 𝑓1 sideband, it is nearly anti-resonance in the signal-recycling cavity,

making its reflectivity from the Michelson-signal-recycling cavity almost unity. As a

result, it is strongly over-coupled in the power-recycling cavity with 𝑔p(𝑓1) ≃ 11, and

𝑃p(2𝑓1)

𝑃in(2𝑓1)
= 𝑔2p(𝑓1) ≃ 127, (5.25a)

𝑃out(2𝑓1)

𝑃in(2𝑓1)
≃ 0.0028, (5.25b)

for the 𝑓1 = 9.1MHz sideband. Note that nearly all of the input power at 𝑓1 is

reflected by the interferometer back to the input port.

5.3 PROPAGATION OF THE AC FIELDS

In this Section we consider how the “AC” fluctuations of the ETMs at audio fre-

quencies are translated to optical fields, and how those fields propagate through the

interferometer. Meanwhile, we will also consider the propagation of the quantum

fluctuation entering through the anti-symmetric port of the interferometer, and fur-

ther derive the instrument’s limitation. The derivation follows closely Martynov et al.

(2017); for the AC optical response of other mirrors we refer the reader to Izumi &

Sigg (2017) for further discussion.

5.3.1 From mirror motion to optical field

To see the connection between a mirror’s motion and the optical field reflected from

it,5 we can consider the following example. Suppose the incident field is 𝐸1 =

𝐸 exp(−2𝜋i𝑓0𝑡) where 𝑓0 ≃ 3 × 1014Hz is the laser oscillation frequency, and the

mirror (with 𝑟 = 1) has a sinusoidal motion Δ𝑙 cos (2𝜋𝑓𝑡) where 𝑓 ≪ 𝜔0/2𝜋 is an

audio-frequency on the order of a few Hz to a few kHz. The mirror’s motion modu-

lates the phase of the field in reflection with an amplitude of Δ𝜑 = 2𝜋𝑓0Δ𝐿/𝑐 and a

5We focus on the normal incidence case for simplicity here.
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frequency 𝑓 , which can be written as

𝐸 ′
1 = 𝐸ei[2𝜋𝑓0𝑡+2Δ𝜑 cos(2𝜋𝑓𝑡)],

= 𝐸ei2𝜋𝑓0𝑡

[︃
∞∑︁

𝑚=−∞

i𝑚𝐽𝑚 (2Δ𝜑) e2𝜋i𝑚𝑓𝑡

]︃
, (5.26)

where 𝐽𝑚 is the Bessel function of the first kind. For small displacements, this ex-

pression can be further simplified as

𝐸 ′
1 ≃ 𝐸ei2𝜋𝑓0𝑡

[︀
1 + iΔ𝜑e2𝜋i𝑓𝑡 + iΔ𝜑e−2𝜋i𝑓𝑡]︀ . (5.27)

Thus the field in reflection upon an oscillatory mirror can be modeled as the sum

of an unperturbed DC field and two sidebands that are phase-shifted by 𝜋/2 with

respect to the DC field and vary respectively at ±𝑓 .

5.3.2 DARM signal

In Section 5.2 we have derived the DC fields at each point of the interferometer, which

serve as the ‘seed’ fields from which the AC fields are generated. We now consider

the propagation of the AC fields due to differential motions of the ETMs. Similar to

the DC field study, we start by considering a single Fabry-Perot cavity correspond

to the arm cavity. Since the AC motion is already a small quantity, we can thus

ignore other small DC effects such as the DC detuning to the leading order. The

steady-state solution satisfies the following set of equations,

𝐸 ′
1(𝑓) = 𝐸1(𝑓) + iΔ𝜑(𝑓)𝐸1(0), (5.28a)

𝐸1(𝑓) = 𝑟ie−4𝜋i𝑓𝐿/𝑐𝐸 ′
1(𝑓), (5.28b)

where 𝐿 = 3995m is the one-way arm length, Δ𝜑(𝑓) = 2𝜋𝑓0Δ𝐿(𝑓)/𝑐 with Δ𝐿(𝑓)

being the AC motion of the ETM. The point at which each field is evaluated is indi-

cated in Figure 5-3, Panel 1. Again we have assumed the ETM is perfectly reflective

for simplicity. In the above equations we have explicitly indicated the frequency at
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Figure 5-3: Schematics for deriving the AC fields in aLIGO.
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which each quantity is varying (𝑓 for the AC quantities and 0 for the DC ones). This

time, instead of solving all the fields in terms of an input field, we solve them in terms

of the DC field 𝐸1(0) which we have derived in the previous section. This leads to

𝐸 ′
1(𝑓) =

iΔ𝜑(𝑓)
1− 𝑟ie−i4𝜋𝑓𝐿/𝑐𝐸1(0) ≃

iΔ𝜑(𝑓)
(1− 𝑟i) + i𝑟i4𝜋𝑓 𝐿𝑐

𝐸1(0). (5.29)

Note that due to causality, a field, after propagating a round trip in the cavity, will

experience a phase shift of −4𝜋𝑓𝐿/𝑐 relative to the original one. When the phase lag

is sufficiently large, the returning field will no longer be in-phase with the original

field, thereby decreasing the amount of constructive interference. This naturally leads

to the pole frequency of the arm cavity 𝑓a, obtained by equating the magnitudes of

the denominator’s real and imaginary parts,

1− 𝑟i ≃ 4𝜋𝑟i𝑓a
𝐿

𝑐
, or

𝑓a ≃
(1− 𝑟i)

𝑟i

𝑐

4𝜋𝐿
≃ 1

𝑔2a

𝑐

2𝜋𝐿
≃ 45Hz. (5.30)

For motions with 𝑓 > 𝑓a, the cavity field will experience an asymptomatic 1/𝑓 filter-

ing.

Now we consider how the AC fields generated by the differential-arm motion,

or the DARM motion in the LIGO literature, propagate through the interferome-

ter. Defining Δ𝐿x(y)(𝑓) to be the AC motion of ETMX (ETMY), for DARM we

have Δ𝐿d(𝑓) = Δ𝐿x(𝑓) − Δ𝐿y(𝑓) with Δ𝐿x(𝑓) = −Δ𝐿y, and the corresponding

phase Δ𝜑d(𝑓) = 2𝜋𝑓0Δ𝐿d(𝑓)/𝑐. Using the Michelson’s input-output relation [equa-

tion (5.6)] and the fact that the DC field inside the X and Y arm cavities satis-

fies 𝐸x(0) = −𝐸y(0) [equations (5.12) and (5.13); ignoring DC detunings], for the

DARM motion we can conveniently combine the two arm cavities and the Michelson

into a single DARM cavity, with the DC field inside this cavity given by 𝐸d(0) =

−
√
2/2𝐸x(0) ≃ 𝑔p𝑔a𝐸in/2, and the corresponding detuning of the combined differ-

ential ETM given by Δ𝜑d. The problem now becomes field propagation inside the

signal-recycled DARM cavity.
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To proceed, we first combine the signal-recycling cavity formed by the SRM and

ITM into a single effective ITM. The phase delay due to field propagation is ignored

in the signal-recycling cavity because it is much shorter than the arms. The input-

output relation is given by the following set of equations:

𝐸s = −𝑟i𝐸 ′
s − 𝑡i𝐸1, (5.31a)

𝐸 ′
s = −𝑟s𝐸s, (5.31b)

𝐸 ′
1 = 𝑟i𝐸1 − 𝑡i𝐸

′
s, (5.31c)

𝐸out = −𝑡s𝐸s, (5.31d)

where the fields are defined in Panel 2 of Figure 5-3. All the fields here vary at 𝑓 and

thus we omit it in the notation. Note that while the DC carrier field is anti-resonant

in the signal-recycling cavity, the AC signal sidebands are actually resonant. The

difference is that for the DC fields, its reflectivity off the the ITM is determined by

the interference between the field resonant in the arm cavity leaking through the ITM

and the field directly reflecting off the ITM, whereas for the signal sidebands there is

no direct reflection fields.

The above set of equations can be solved to obtain the reflectivity and trans-

missivity of the effective ITM formed by the signal-recycling cavity, which leads to

𝑟i ≡
𝐸 ′

1

𝐸1

=
𝑟i − 𝑟s
1− 𝑟i𝑟s

, (5.32a)

𝑡i ≡
𝐸out

𝐸1

=
𝑡i𝑡s

1− 𝑟i𝑟s
. (5.32b)

Once the effective ITM is computed, the AC field inside the DARM cavity as well

as the one propagate to the anti-symmetric port can be easily obtained by replacing

the 𝑟i with 𝑟i in equation (5.29). See also Panel 3 of Figure 5-3. This leads to

𝐸d(𝑓) ≃
iΔ𝜑(𝑓)

(1− 𝑟i) + i𝑟i4𝜋𝑓 𝐿𝑐
𝐸d(0), (5.33)

123



for the AC field inside the DARM cavity, and the corresponding signal-recycled

DARM cavity pole 𝑓d, given by

𝑓d = (1− 𝑟i)
𝑐

4𝜋𝐿
≃ 𝑓a

1 + 𝑟s
1− 𝑟s

≃ 450Hz. (5.34)

Thus, the signal-recycling cavity increases the single-arm cavity pole by a factor of

(1 + 𝑟s)/(1− 𝑟s) ≃ 1/𝑔2s ≃ 10 for 𝑇s = 0.32. The AC field at the output port is given

by

𝐸out(𝑓) = 𝑡i𝐸d(𝑓)

≃ i𝑔p𝑔s𝑔2a𝐸in(0)
1

1 + i𝑓/𝑓d
Δ𝜑(𝑓)

2
, (5.35)

where we have used 𝐸d(0) = 𝑔p𝑔a𝐸in(0)/2. An overall propagation phase in the

numerator has been omitted which does not affect any measureables.

Note that while the signal-recycling cavity reduces the DC amplitude of the signal

field by a factor of 𝑔s ≃ 0.3, it broadens the signal bandwidth by a factor of 1/𝑔2s .

Therefore for high-frequency signals with 𝑓 > 𝑓d, the signal field is enhanced by

a factor of 1/𝑔s ≃ 3. As the merger frequency of coalescing NS or BH binaries is

approximately given by the GW frequency at the system’s innermost stable circular

orbit, 2𝑓isco ≃ 1.6× 103 (2.8𝑀⊙/𝑀tot) Hz > 𝑓d > 𝑓a, with 𝑀tot being the total mass

of the binary, such broadening is significant for increasing the instrument’s sensitivity

to the signals close to the final merger.

So far we have been focused on the upper sideband with frequency +𝑓 . Propaga-

tion of the lower sideband with −𝑓 can be derived similarly. Without cavity detuning,

it is easy to show that

𝐸out(−𝑓) = −𝐸*
out(𝑓), (5.36)

where we have used the “*” symbol to denote complex conjugation.

The detection of the signal fields is accomplished by interfering the signal side-

bands 𝐸out(±𝑓) with a local oscillator field, 𝐸lo, which creates a power fluctuation

varying at 𝑓 > 0 that can then be sensed by a photodiode (PD). Without special
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quantum manipulations that are beyond the scope of this Thesis, a natural choice of

the local oscillator field’s phase is such that it maximizes the response to the signal.

Without loss of generality we can set the input field to the interferometer 𝐸in to be

real and positive. Then to maximize the response to signal fields given by equa-

tions (5.35) and (5.36), the local oscillator field should then satisfy 𝐸lo/|𝐸lo| = ±i.

We can see from equation (5.15) that a DC detuning of DARM creates such a local

oscillator field as long as the differential detuning is greater than the differential arm

loss, Δ𝜑d(0) ≫ Γd/2. This is the DC readout technique currently used in aLIGO in

which a DC DARM detuning of ∼ 10 pm is introduced to sense the DARM displace-

ments. Alternatively, one can pick off a small portion of the laser beam upstream as

the local oscillation field and deliver it to the readout port with proper phase control

to enable the balanced-homodyne readout scheme (Fritschel et al., 2014).

In either case, the interference between the local oscillator and the signal fields

can be written as

𝑈(𝑓) = 𝐸*
lo(0)𝐸out(𝑓) + 𝐸*

out(−𝑓)𝐸lo(0), (5.37)

for the term varying as exp(2𝜋i𝑓𝑡). Similarly, we have 𝑈(−𝑓) = 𝑈*(𝑓) for the term

varying at exp(−2𝜋i𝑓𝑡). By choosing the proper demodulation phase one can select

which phase to observe at the readout. Conventionally, we define

I(𝑓) = Re [𝑈(𝑓)] + Re [𝑈(−𝑓)] , Q(𝑓) = Im [𝑈(𝑓)]− Im [𝑈(−𝑓)] , (5.38)

for the in-phase (I) signal and the in-quadrature (Q) signal, respectively. We can

combine the I- and Q-phase signals into a complex vector as I + iQ to write the final

response in power at the readout PD, as

𝑃 (𝑓) = 2𝑈(𝑓) = 2𝑔p𝑔s𝑔
2
a

1

1 + i𝑓/𝑓d

√︀
𝑃in𝑃loΔ𝜑d(𝑓), (5.39)

where 𝑃in = |𝐸in|2 is the input power and 𝑃lo = |𝐸lo|2 the power in the local oscillator

field. By writing Δ𝜑d(𝑓) = 2𝜋𝑓0Δ𝐿d(𝑓)/𝑐, we obtain the optical transfer function
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𝑍d from DARM displacement to the readout PD as

𝑍d(𝑓) ≡ d𝑃d

dΔ𝐿d

= 4𝜋𝑔p𝑔s𝑔
2
a

1

1 + i𝑓/𝑓d

√
𝑃in𝑃lo

𝜆0
,

=
8.3× 109

1 + i𝑓/ (450Hz)

(︂
𝑃in

40W

)︂1/2(︂
𝑃lo

0.04W

)︂1/2
W

m
. (5.40)

Note that 𝑍d scales as 𝑔2a. This is because both the DC field building-up inside the

arm cavity and the AC field generated from the DC field will experience the arm

cavity’s amplification. In contrast, the power-recycling cavity affects only the DC

seed field and the signal recycling cavity affects only the AC signal field. As a result

𝑍d scales with 𝑔p and 𝑔s only to the linear order. As for the local oscillator field, it is

given by equation (5.18) in the case of DC readout.

5.3.3 Quantum fluctuations

The quantum noise of the interferometer can be modeled as a quantum field 𝐴in(𝑓)

entering from the antisymmetric port (Panel 4 of Figure 5-3; Buonanno & Chen

2001; Miao 2012; Martynov et al. 2017). This field reflects off the interferometer and

interferes with the local oscillator field at the detection PD to create perturbations in

the readout signal. Meanwhile, it also enters the arm cavities and interferes with the

DC fields therein to create power fluctuations that can displace the test masses via

radiation pressure. The former corresponds to the shot noise and the latter is known

as the quantum radiation pressure noise (QRPN). In this Section we provide a semi-

classical derivation of those quantum limits. We will treat 𝐴in(𝑓) as a classical field

instead of a quantum operator, and we simply enforce the amplitude spectra density

of the beat note between 𝐴in and a classical DC field 𝐸 (after summing over the

signals at ±𝑓) to be
√
2~𝜔0𝑃 with 𝑃 = |𝐸|2. Without quantum squeezing, 𝐴in has

an equal amount of fluctuations in the amplitude and phase quadratures.6 Despite

6Here we only focus on the case that the signal recycling cavity has no detuning, so that the
shot noise and the QRPN are uncorrelated and can be studied independently. This simplification
is consistent with the fact that aLIGO nominally operates at the resonant-sideband extraction
configuration (Mizuno et al., 1993). A derivation of quantum noises in more generic cases can
be found in, e.g., Miao (2012).
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our semi-classical simplifications, the input-output relation holds for both classical

fields and quantum operators.

The derivation of the propagation of 𝐴in is similar to the one presented in the

previous Section. Thus we drop the details but just outline the procedures. Again

consider the case of the signal-recycled DARM cavity, we can first map the ITM and

ETM into a single effective ITM, and then combine to SRM and the effective ITM

to compute the reflectivity of 𝐴in by the interferometer. This gives us the shot noise.

We can also solve for 𝐴in’s propagation into the signal recycling cavity and then the

DARM cavity. The important quantities in terms of 𝐴in are

𝐴′
in(𝑓) =

1− i𝑓/𝑓d
1 + i𝑓/𝑓d

𝐴in(𝑓), (5.41)

𝐴a(𝑓) = 𝑔s𝑔a
1

1 + i𝑓/𝑓d
𝐴in(𝑓). (5.42)

The shot noise of the system is given by beating 𝐴′
in(𝑓) with the local oscillator

field 𝐸lo at the readout port. The amplitude spectral density of it is given by

𝑛shot(in W/
√
Hz) =

√︀
2~𝜔0𝑃lo. (5.43)

At the PD, such a noise is indistinguishable to the real signal generated by DARM mo-

tions. Consequently, dividing it by the DARM optical response [cf. equation (5.40)]

leads to the shot-noise-limited DARM sensitivity

𝑛shot =
𝜆0
4𝜋

√︀
2~𝜔0/𝜁

𝑔p𝑔s𝑔2a𝑃
1/2
in

⃒⃒⃒⃒
⃒1 + i

(︂
𝑓

𝑓d

)︂ ⃒⃒⃒⃒
⃒,

= 1.8× 10−20

⃒⃒⃒⃒
⃒1 + i

(︂
𝑓

450Hz

)︂ ⃒⃒⃒⃒
⃒
(︂

𝑃in

40W

)︂−1/2
m√
Hz
. (5.44)

In the above equation we have included the efficiency of the the PD 𝜁 ≃ 0.7 that

takes into account both the loss from SRM to the PD and the PD’s intrinsic quantum

efficiency.

On the other hand, the power fluctuation inside the arm cavity due to quantum
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fluctuation is obtained by beating 𝐴a(𝑓) with the DC field inside the DARM cavities.

In our mapping, to keep the power fluctuation inside the DARM cavity equal to

the real differential power fluctuation Δ𝑃d = Δ𝑃x − Δ𝑃y, the DC field should be

−
√
2𝐸x(0) = 𝑔p𝑔a𝐸in. Then the amplitude spectral density of the differential power

fluctuation is given by

𝑛Δ𝑃d
(in W/

√
Hz) = 𝑔p𝑔s𝑔

2
a

√
2~𝜔0𝑃in

|1 + i𝑓/𝑓d|
. (5.45)

Note that the DC field inside the arm and the local oscillator field at the antisymmetric

port are 𝜋/2 out of phase [cf. equations (5.12) and (5.15)]. Therefore, while the shot

noise is due to the fluctuations of 𝐴in in the ‘phase’ quadrature, the power fluctuation

inside the arm is due to the fluctuations in the ‘amplitude’ quadrature of 𝐴in. This

power perturbation can directly cause displacement noise of the test masses which

we will model as free masses. For a single mirror its displacement is related to power

fluctuations Δ𝑃 (𝑓) as

Δ𝑥(𝑓) =
Δ𝑃 (𝑓)

2𝜋2𝑐𝑀

1

𝑓 2
, (5.46)

with 𝑀 being the mirror’s mass. For the arm cavity another factor of two needs to be

included to account for pushing both the ITM and ETM. Thus the amplitude spectra

density of the QRPN is given by

𝑛qrpn(𝑓) =
𝑔p𝑔s𝑔

2
a

𝜋2𝑐𝑀

√
2~𝜔0𝑃in⃒⃒

1 + i𝑓/𝑓d
⃒⃒ 1
𝑓 2
,

=
1.8× 10−19⃒⃒

1 + i𝑓/ (450Hz)
⃒⃒ (︂ 𝑓

10Hz

)︂−2(︂
𝑃in

40W

)︂1/2
m√
Hz
. (5.47)
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Chapter 6

Overview of alignment sensing and

control in aLIGO

A realistic interferometer is more complicated than the one-dimensional case we have

considered in the previous Chapter. This is because both seismic motions and thermal

drifts may induce a significant amount of angular misalignment. The misalignment

both reduces the buildups in the optical cavity and consequently its sensitivity to,

e.g., the DARM motion, and increases cross-couplings between different noise terms.

Without correcting for the angular motions, the interferometer may not even be able

to stay at its nominal resonant condition. Consequently, an active alignment sensing

and control system is critical for the proper operation of optical interferometers. We

thus devote this Chapter to describing how the angular control is accomplished in

aLIGO.

In Section 6.1 we introduce the concepts of transverse electromagnetic modes

(specifically, the Hermite-Gaussian modes) which are convenient tools for analyzing

cavity misalignments. The angular degrees of freedom (DOFs) needed to be con-

trolled and their corresponding detection schemes are discussed in a generic sense in

Sections 6.2 and 6.3, respectively. These components are further integrated together

to form the alignment sensing and control system of aLIGO in Section 6.4. Lastly,

in Section 6.5 we study the error tolerance of each DOF. Here the discussion will be

focused on the corner of the interferometer (that is, the recycling cavities and the
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Michelson DOF). A comprehensive study of the arm cavities will be provided in the

following Chapter.

6.1 OPTICAL CAVITIES AND GAUSSIAN BEAMS

In this Section, we review the basic concepts of Gaussian beams that are essential in

our discussions of the alignment of optical cavities. The paraxial approximation is

assumed throughout the Chapter and it is generally well-satisfied in aLIGO’s case.

For a more detailed and complete analysis, we refer the reader to Siegman (1986).

An optical cavity can be formed with an input mirror and an end mirror, separated

by a distance 𝐿. The cavity is stable if

0 < (1− 𝐿

RoCi

)(1− 𝐿

RoCe

) < 1, (6.1)

where RoCi(e) is the radius of curvature of the input (end) mirror. The quantities

gi,e ≡ (1− 𝐿/RoCi,e) are known as the cavity g-factors.1 The eigenmodes of a cavity

define a complete orthonormal basis that allows us to expand an electric field as

𝐸(𝑓, 𝑥, 𝑦, 𝑧) =
∑︁
𝑚𝑛

𝑎𝑚𝑛(𝑓)𝑢𝑚𝑛(𝑥, 𝑦, 𝑧), (6.2)

where the 𝑢𝑚𝑛 ∈ C are the Hermite-Gauss functions, and the 𝑎𝑚𝑛 ∈ C are the ampli-

tudes of the modes. The spatial coordinate (𝑥, 𝑦, 𝑧) is chosen to be right-handed with

the 𝑧-axis pointing along the direction of beam propagation and the 𝑦-axis vertically

up. In this coordinate system, the mode order 𝑚 (𝑛) corresponds to number of nodes

in the 𝑥 (𝑦) direction and we can further separate 𝑢𝑚𝑛(𝑥, 𝑦, 𝑧) = 𝑢𝑚(𝑥, 𝑧)𝑢𝑛(𝑦, 𝑧). We

have omitted the temporal dependence as all the modes vary at the same frequency

as 𝐸. For future convenience we further write 𝐸𝑚𝑛 = 𝑎𝑚𝑛𝑢𝑚𝑛 and drop the (𝑥, 𝑦, 𝑧)

part as the indices 𝑚, 𝑛 carry the spatial information already. Furthermore, to be

consistent with FINESSE (Brown & Freise, 2014), we let the amplitude coefficient 𝑎𝑚𝑛

1We will use the Roman g for the g-factors to distinguish them from an optical’s amplitude gain
inside a cavity, which is denoted with an Italic 𝑔.
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to absorb the Gouy phase (i.e., the excess propagation phase relative to a plane wave

due to the transverse spatial confinement; see Feng & Winful 2001) of the Hermite-

Gauss modes, while leaving the rest of the spatial dependence in the function 𝑢𝑚𝑛

normalized such that
∫︀∞
−∞ 𝑢*𝑚′(𝑥)𝑢𝑚(𝑥)d𝑥 = 𝛿𝑚𝑚′ and similarly for 𝑢𝑛(𝑦). In the fol-

lowing, when we refer to a mode 𝐸𝑚𝑛 alone, unless specified, we will generally refer to

its complex amplitude 𝑎𝑚𝑛 that includes the Gouy phase, whereas when we consider

the interference between two fields ∝ 𝐸*
𝑚′𝑛′𝐸𝑚𝑛, we will let them follow the orthogo-

nality dictated by 𝑢𝑚𝑛 with the integration range specified by the PD type (e.g., the

whole-plane for a regular PD, or the upper/lower half-plane for a quadrant PD). A

more detailed discussion on the Gaussian beam is presented in Appendix E.

When the input beam is perfectly aligned and mode-matched to a cavity, the

mode resonating inside the cavity corresponds to the spherical Gaussian mode with

𝑚 = 𝑛 = 0. We will also refer to such a mode as the 00 mode for conciseness.

Now consider the case where a mirror is misaligned in pitch2 with respect to

the beam incident onto it. Upon reflection, the beam’s wavefront will experience a

differential phase delay at different locations in the 𝑥𝑦-plane as it no more matches

exactly to the curvature of the mirror. As a result, modes with different spatial orders

will be generated. To the leading order in misalignment angle Δ𝜃, this can be written

as (Hefetz et al., 1997)3

⎡⎣𝐸 ′
00

𝐸 ′
01

⎤⎦ = 𝑟

⎡⎣ 1 i2𝜋𝑤
𝜆0

Δ𝜃

i2𝜋𝑤
𝜆0

Δ𝜃 1

⎤⎦⎡⎣𝐸00

𝐸01

⎤⎦ , (6.3)

where the unprimed fields are the incident fields and the primed ones are the ones on

reflection, and 𝑤 is the spot size at the mirror’s locations.

On the other hand, if a beam is shifted laterally along the 𝑦-axis by Δ𝑦, the

2Pitch corresponds to a rotation about the 𝑥-axis in our coordinate system. Yaw, or rotation
about the 𝑦-axis, will be similar and hence our discussion will be focused on the pitch case.

3Note that our sign convention follows the one used in FINESSE which has an overall sign flip
relative to the one used in Hefetz et al. (1997). Also here we consider only the case of normal inci-
dence. For the non-normal incident case, e.g., the alignment of the main BS, the pitch misalignment
angle is reduced by a factor of cos𝛼 where 𝛼 = 𝜋/4 is the incident angle whereas yaw is unaffected.
See the FINESSE manual (Brown & Freise, 2014) for a more detailed discussion.
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leading-order scattering matrix connecting the original basis to the shifted beam

reads ⎡⎣𝐸 ′
00

𝐸 ′
01

⎤⎦ = 𝑟

⎡⎣ 1 Δ𝑦
𝑤

−Δ𝑦
𝑤

1

⎤⎦⎡⎣𝐸00

𝐸01

⎤⎦ . (6.4)

We can thus see that Re [𝐸 ′
01/𝐸

′
00] ∝ Δ𝑦/𝑤 while Im [𝐸 ′

01/𝐸
′
00] ∝ 𝑤Δ𝜃. In other

word, if we choose the 00 mode to be real, then a real 01 mode indicates a lateral

shift and an imaginary 01 mode corresponds to a tilt with respect to the basis.

Also note that relative to the 00 mode, the 01 mode will experience an extra

propagation phase shift 𝜂 due to the Gouy phase [generically, for mode 𝑚𝑛 the Gouy

phase shift relative to the 00 mode will be (𝑚+ 𝑛)𝜂].

Knowing how a field reflects upon a mirror and how it propagates through free

spaces allows us to solve for the steady-state solution of an optical system with mis-

alignments. The principles of this calculation (Hefetz et al., 1997) are similar to the

ones we have used in, e.g., Section 5.2. As an illustration, we consider the case of

a single Fabry-Perot cavity consisting of an ITM and an ETM, and focus on fields

that vary temporally as exp (2𝜋i𝑓rf𝑡). Now instead of a single field 𝐸, we will con-

sider a vector 𝐸 = [𝐸00, 𝐸01]
T. Here we focus on pitch and thus include only 𝐸01;

including 𝐸10 as well as modes with higher spatial order to the system is nonetheless

straightforward. For the reflection upon the ETM, we can define a matrix

𝑀 e = 𝑟ee2𝜋iΔ𝜑e

⎡⎣ 1 i2𝜋𝑤e

𝜆0
Δ𝜃e

i2𝜋𝑤e

𝜆0
Δ𝜃e 1

⎤⎦ , (6.5)

where 𝑟e, 𝑤e, Δ𝜑e, and Δ𝜃e are the amplitude reflectivity, spot size, microscopic

detuning, and misalignment of the ETM, respectively. And similarly we define 𝑀 i

for the ITM. The propagation through free space is given by a propagation matrix

𝑃 = e−2𝜋i𝑓rf𝐿/𝑐

⎡⎣1 0

0 e(0+1)i𝜂

⎤⎦ , (6.6)

where 𝐿 and 𝜂 are the one-way length and Gouy phase shift of the cavity. We are
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Table 6.1: Spot sizes on the aLIGO mirrors in [mm].

PRM PR2 PR3 ITM ETM SR3 SR2 SRM
2.3 6.2 54 53 62 54 8.2 2.1

now ready to obtain the cavity fields as

𝐸c = −𝑡i𝐸in +𝑀i𝑃𝑀e𝑃𝐸c, (6.7)

where 𝐸c is the cavity field evaluated right after the HR surface of the ITM, and

𝐸in is the input field entering the cavity. The above equation can be solved easily

to obtain the higher-order mode content inside a cavity. Using the techniques of

mapping a cavity into a single mirror as we have done in Section 5.2 then allows us

to extend the analysis to complex optical system such as aLIGO.

In Table 6.1 we summarize the spot size on each aLIGO mirror and in Table 6.2 the

one-way Gouy phase of each cavity. These are the parameters needed when solving

equation (6.7).

Note that in the propagation matrix 𝑃 the Gouy phase shift is frequency-independent.

The significance of this property is the following. Suppose the carrier field is ei-

ther propagating in the free space (which by construction is set to an integer num-

ber of 𝜆0; see Brown & Freise 2014) or is exactly on-resonance or anti-resonance

inside a cavity, the 00 modes of the upper and lower RF sideband will then sat-

isfy the relation that 𝐸00(+𝑓rf) = −𝐸*
00(−𝑓rf), as their propagation phases satisfy

𝜑00(+𝑓rf) = −2𝜋𝑓rf𝐿prop/𝑐 = −𝜑00(−𝑓rf) where 𝐿prop is the propagation distance.

Therefore when consider the propagation of the 00 modes we can focus only on the

upper sidebands. This is no more the case when the higher-order modes are present

because 𝜑𝑚𝑛(+𝑓rf) = 𝜑00(+𝑓rf) + (𝑚+ 𝑛)𝜂 ̸= −𝜑𝑚𝑛(−𝑓rf)! Consequently, the higher-

order modes at +𝑓rf will generally experience propagation effects and/or cavity fil-

tering in an asymmetric manner with respect to the higher-order sidebands at −𝑓rf .
Evan if [𝜑00(+𝑓rf) mod 𝜋] = 0, the symmetry between the higher-order modes is such

that 𝜑𝑚𝑛(+𝑓) = 𝜑𝑚𝑛(−𝑓), different from the RF propagation effect.

Due to the orthogonality of the Hermite-Gauss function, the interference between
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Table 6.2: One-way Gouy phases of aLIGO cavities.

Power-recycling Signal-recycling Arm
25∘ 21∘ 146∘

a 01 mode and a 00 mode will vanish on a whole-plane-integrated PD. Nevertheless,

if the integration is performed over only the upper half-plane, the 00 and 01 mode

will have a non-zero overlap,
∫︀∞
0
𝑢*0𝑢1d𝑦 = 1/

√
2𝜋. As a result, to have a signal

that is linearly dependent on the amplitude of the 01 mode encoding the alignment

information, we can interfere the signal 01 mode with a reference 00 mode and detect

the signal using a PD split into two halves.4 Subtracting the upper and lower signals

thus lead to the alignment information of interest. We will discuss the detection

schemes in more details in Section 6.3.

Similar to that tilt and shift of a beam will generate 01/10 modes, if an incident

beam has a spot size greater or smaller than that of the eigenmode of a cavity,

real 02/20 modes will be generated from the 00 mode. On the other hand, if there

exists a mismatch in the radius of curvatures between the input beam and the cavity

eigenmode, it generates imaginary 02/20 modes. Those effects are closely related to

the thermal state of the interferometer as the thermal lenses created by the high-input

power will create radius of curvature mismatches between different cavities (Brooks

et al., 2016). We will explore some of the consequences due to this effect in Chapter 8.

6.2 DEGREES OF FREEDOM

In this Section, we consider the alignment DOFs present in complex interferometers,

which serves as a crucial first step in understanding the full alignment control system

of aLIGO.

To start, we consider the case of aligning a Fabry-Perot cavity (for example, the

arm cavity) to an input beam, as shown in Figure 6-1 Panel 1. We use the red-solid

line to represent the input axis and the orange-dash line for the cavity axis. To

4In reality we want the PD to be able to detect both pitch and yaw signals simultaneously, and
therefor a PD is usually divided into 4 quadrants.
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Figure 6-1: Cartoon illustrating the alignment DOFs.
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achieve the maximum power buildup inside the cavity, the two axes need to be fully

overlapped. This includes two DOFs, corresponding respectively to a tilt and a shift

of the cavity axis with respect to the input axis at the cavity’s waist. We will refer to

the combined motion of the ITM and the ETM that generates a tilt at the cavity’s

waist as the “hard mode”, and the one that generates a shift as the “soft mode”. The

reason for these names will become transparent when we discuss the effect of radiation

pressure torque in Section 7.2.2. Note that besides aligning the cavity to the input

beam, it is also possible to steer the input beam with two mirrors separated by some

Gouy phase (ideally 𝜋/2) to align the input axis to the cavity, or to use one steering

mirror at the input and one combinations of the test masses.

The two DOFs discussed above involve the overlap between the axes of two optical

components. We will refer to such a DOF as an “interferometric” DOF. In contrast,

another type of freedom exists in the system. Note that we can move the input axis

and cavity axis together, which will change the spot position on, e.g., the ETM. The

power buildup inside the cavity, however, will not be affected as long as the motion

keeps the two optical axes overlapped. We will refer to it as a “pointing” DOF. Despite

that a pointing DOF does not directly affect the circulating power inside a cavity, we

still need to control it to minimize the scattering losses due to inhomogeneity of the

mirror surface. As we will see shortly in Section 6.3.2, a pointing DOF also affects

the angle-to-length noise coupling.

Now suppose we have the arm cavity and the input beam aligned both interfer-

ometrically and in pointing, and we want to add a recycling mirror (RM) into the

system. Consider first the case that the recycling cavity is a linear cavity. Adding the

RM will create a new interferometric DOF as shown in the upper part of Panel 2 in

Figure 6-1. Consider the beam returning from the arm cavity to the input port, when

hitting the RM, it needs to be reflected back to be along the cavity axis to maximize

the recycling gain. This condition thus determines the alignment of the RM. In real-

ity, the recycling cavity is a folded cavity formed with three recycling mirrors (RM,

RM2, and RM3). Thus, in addition to the interferometric freedom discussed above,

there will also be a new pointing DOF as illustrated in the lower part of Panel 2.
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For instance, it is possible to change the alignment of RM2 and RM3 to modify the

spot position on the RM2, while keeping all the axes aligned as well as the pointing

to the arm cavity fixed. Note that we illustrated this new pointing freedom as the

spot position on the RM2 only for conceptual simplicity. In reality it can be the spot

on a different mirror depending on how we choose the interferometric DOFs to be

controlled first. The only critical thing is that the control scheme needs to include

the right number of DOFs (both the interferometric and the pointing ones), whereas

the detailed implementation is non-unique and depends on other constrains such as

the signal-to-noise ratio of sensors.

We then consider the scenario that the input axis and the X-arm cavity axis have

been aligned, and we want to add a beamsplitter and an ITMY to the system. This

is illustrated in Panel 3. We can let the ITMY’s location to be arbitrary and then the

beamsplitter needs to be aligned such that it bisects the angle formed by the norms to

the two ITMs. This corresponds to a new interferometric DOF due to the Michelson

interferometer.

Lastly, we can add the ETMY into the system. As can be seen from Panel 4, this

corresponds to a new interferometric DOF, because we need to align the ETMY so

that the cavity axis of the Y-arm overlaps with the axis formed by the input beam and

the BS in order to maximize the Y-arm’s circulating power. Adding the ETMY also

leads to a new pointing DOF, as we can shift the entire Y-arm cavity perpendicular

to its input while keeping its cavity axis overlapped with the input one.

While in the cartoon above we separately consider the X-arm and the Y-arm,

in practice it is often convenient to combine them into the common (X+Y) and

differential (X−Y) basis. Such a change of basis is fine as long as the total number of

DOFs is preserved. Also note that in the cartoon we have only illustrated the motion

in the plane of the page (i.e. the YAW motions). Similar motion can happen in pitch

as well and therefore the total DOFs should be doubled.
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6.3 DETECTION SCHEMES

Before combining the components above together to form the full aLIGO system, we

will discuss here first how we can extract an alignment signal. As we have separated

the DOFs into two types, the interferometric ones and the pointing ones, we will

consider their detection schemes individually.

6.3.1 Interferometric DOFs

The most commonly used detection scheme for an interferometric DOF is to interfere

a carrier field with a pair of RF sidebands at a PD. When the PD is a regular

full-plane integrated PD, the same carrier-sidebands pair is used to lock the cavity in

length using the PDH technique (Drever et al., 1983). To detect the misalignment, we

further divide the PD into 4 quadrants. A pitch signal can be obtained by subtracting

the upper and lower quadrants while a yaw signal by subtracting the right and left

quadrants. Such a device is also known as a wave-front sensor (WFS) in LIGO

literatures.5

The generic working principle of this scheme is illustrated in Figure 6-2. For

simplicity we assume the RF sidebands (indicated by the blue trace) are off-resonance

in the cavity. They directly reflects off the ITM and propagate to the WFS. The

carrier field (illustrated by the red trace) is resonant in the cavity and thus probes its

alignment. If the cavity is misaligned (modeled as a misalignment of the ETM), then

it creates 01/10 mode from the carrier field. The carrier 01/10 mode also propagates

to the WFS and interferes with the RF 00 modes. The interference pattern is detected

by the WFSs to yield the alignment signal of interest. In other words, we use the RF

sidebands that encode the input beam’s alignment as a spatial reference and compare

the carrier field that samples the cavity’s alignment to the reference. By zeroing the

difference in power in the WFS’s upper and lower, or right and left quadrants, we

ensure the cavity is aligned with respect to the input beam.

5Note that a WFS operates at RF frequencies. This is in contrast with a DC quadrant PD, or a
DC QPD, which, as indicated by its name, detects signals at DC.
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Figure 6-2: The generic principle of detecting an alignment signal with WFSs. The
carrier field (represented by the red line) is resonant in the cavity and probes the cav-
ity mode. The RF sidebands (the blue trace; they are generated by the electro-optic
modulator, or the EOM) are off-resonance and hence encodes only the information
about the input beam. The two wave-fronts are compared at the WFSs. Subtracting
the upper and lower (right and left) halves leads to signals for pitch (yaw) misalign-
ment. To account for the Gouy phase shift, two WFSs (A and B) separated by 𝜋/2
in Gouy phase are used. The carrier-sidebands pair is also used for the longitudi-
nal locking via the PDH technique, which ensures the WFS signal to be free from
contaminations due to DC spot drifts on the sensor.

Note that since the WFS operates at RF frequencies, to demodulate the signal

down to DC a demodulation phase needs to be specified. Often this phase is chosen to

be the same as the demodulation phase for the longitudinal PDH signal, and we will

use I and Q to refer to the in-phase and in-quadrature signals, respectively. Moreover,

since the 01/10 modes experience an extra Gouy phase shift 𝜂 with respect to the 00

mode during propagation, to fully reconstruct the signal we need to put at least two

WFSs separated by 𝜋/2 in Gouy phase per detection port. We will call them WFS

A and B in the future.

A nice property of a WFS is that its signal is not contaminated by the spot’s

motion on the PD. If we again choose the carrier 00 field 𝐸00(0) to be real with

the spatial basis defined by the cavity’s eigenmodes, then the RF 00 modes will

satisfy 𝐸00(+𝑓rf) = −𝐸*
00(−𝑓rf) for the upper and lower sidebands when the cav-

ity is PDH locked. Therefore, the power due to the interference between carrier

and RF 00 modes vanishes as 𝑃spot(𝑓rf) ∝ 𝐸*
00(0)𝐸00(+𝑓rf) + 𝐸*

00(−𝑓rf)𝐸00(0) =

[𝐸00(+𝑓rf) + 𝐸*
00(−𝑓rf)]𝐸00(0) = 0. In other words, even if the spot position on
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a WFS shifts with respect to the cavity basis, this motion will not be picked up

by the WFS as the total power vanishes at 𝑓rf without cavity misalignment6. Conse-

quently, a WFS senses only the true wavefront distortion signal of the form 𝑃wfs(𝑓rf) ∝
𝐸*

01(0)𝐸00(+𝑓rf) +𝐸*
00(−𝑓rf)𝐸01(0) ̸= 0 in general, as 𝐸01(0) ∈ C when we set 𝐸00(0)

to be real. Also note that when detecting a pitch signal at the WFS, the spatial

integration is performed only over half planes and then the difference between the

upper and lower halves is used (and similarly for yaw).

Besides using a WFS, an interferometric DOF can also be detected by dithering

an optic and and then demodulate the fluctuations in the cavity’s circulating power

at the dithering frequency. This is because the fluctuations in power Δ𝑃 depends on

the alignment quadratically, as

Δ𝑃

𝑃0

≃ 1

2

(︂
Δ𝜃

𝜃0

)︂2

+
1

2

(︂
Δ𝑦

𝑤0

)︂2

, (6.8)

where 𝑃0 is the cavity’s nominal circulating power (which is also the maximum power),

Δ𝜃 and Δ𝑦 are the tilt and shift at the cavity’s waist, and 𝜃0 and 𝑤0 are the cavity’s

divergence angle and spot size at the waist. Now suppose our dithering excitation

creates a tilt signal Δ𝜃exc(𝑓exc),7 then the power fluctuation at the dithering frequency

𝑓exc can be written as

Δ𝑃 (𝑓exc)

𝑃0

∝
[︂
Δ𝜃exc(𝑓exc)

𝜃0

]︂ [︂
Δ𝜃(0)

𝜃0

]︂
. (6.9)

Therefore, by introducing the dithering, the power fluctuation Δ𝑃 (𝑓exc) becomes a

signal linearly proportional to the cavity’s misalignment Δ𝜃(0). This technique can

be used to probe the cavity’s alignment at DC or at frequencies much smaller than

the dithering frequency 𝑓exc.

In general, the dithering scheme is a much simpler setup than using the WFS,

6This is the same reason why a PDH signal is insensitive to amplitude fluctuations.
7We will ignore the Δ𝑦exc term as the analysis is similar. To fully sample the cavity’s alignment

we need two excitations respectively for the Δ𝜃exc and Δ𝑦exc terms, or for two different linear
combinations of them. This is conceptually equivalent to using two WFSs separated by 𝜋/2 in Gouy
phase.
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as it only requires a whole-plane PD operating at “DC” (that is, capable to detect

signals in the audio-frequency band), whereas a WFS requires RF electronics capable

to detect signals up to tens of MHz. Similar to the WFS technique, the dithering

scheme is also insensitive to small spot motions on the diode as long as the incident

beam is not clipping. The draw back, however, is that due to realistic constraints

such as noise performance, the dithering excitation is small in general. As a result,

the dithering technique’s sensitivity is usually orders of magnitude worse than that

of using the WFS.

6.3.2 Pointing DOFs

To detect a pointing degree of freedom, for example the spot position on the ETM,

one can read out the signal at DC quadrant PDs (DC QPDs) on transmission of

the ETMs. The signal takes the form of 𝑃spot(0) ∝ Re [𝐸*
01(0)𝐸00(0)]. Note that

𝐸*
01(0) ∈ C due to the Gouy phase. Therefore two DC QPDs separated by 𝜋/2 are

used at each detection port. However, one major drawback of the DC QPD is that it

cannot distinguish a true cavity signal from that due to the spot drift on the sensor.

This is a serious issue in aLIGO as the table where the QPDs are mounted drifts

with respect to the arm cavity in the timescale of a few hours because of the seismic

motion and thermal variations.

Another approach for sensing a pointing DOF is again using the dithering tech-

nique, but this time instead of reading the output signal from power fluctuations, the

pointing information is encoded in the length perturbations. The “angle-to-length”

coupling process can be easily understood geometrically, as shown in Figure 6-3. If

the spot position on a mirror does not correspond to the mirror’s rotational pivot, a

length signal is created as

Δ𝐿(𝑓exc) ≃ Δ𝑦(0)Δ𝜃exc(𝑓exc), (6.10)

where Δ𝑦(0) is the distance between the spot position and the pivot. If we want

to lock the spot instead to the pivot but another position, we can feedforward the
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Figure 6-3: cartoon illustrating the angle-to-length coupling due to spot miscentering.

angular signal to length as Δ𝐿ff(𝑓) = −Δ𝑦ffΔ𝜃(𝑓), then the demodulated length

signal will give us spot position measured in [Δ𝑦(0)−Δ𝑦ff ].

The difference between the angle-to-length (for sensing a pointing DOF) and the

angle-to-power (for sensing an interferometric DOF) couplings can also be understood

in the modal picture. For convenience, we consider the case that the 00 mode is

resonant inside the cavity and set its amplitude to be real and positive. Suppose the

DC spot position is off-centered on a mirror. In the modal picture this corresponds

to a real 01 mode at DC incident onto the mirror. As we dither the mirror at AC,

we scatter the real 01 mode into an imaginary AC 00 mode. This is exactly the same

signal created by a longitudinal AC motion of the mirror. This thus corresponds to

the angle-to-length coupling due to spot mis-centering (i.e., the existence of a real

01 mode at DC). Note that the scattered AC 00 mode is out-of-phase with the DC

cavity field, and therefore it will not modify the power circulating inside the cavity.

In contrast, if a beam is misaligned with respect to the mirror at DC, it means

there is an imaginary 01 mode incident onto the mirror. The AC angular motion

of the mirror will then scatter this imaginary 01 mode into a real 00 mode, which
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will further interfere with the DC cavity field and cause power fluctuations at AC,

leading to an angle-to-power coupling. However, due to the finite mass of the mirrors,

the power fluctuation will also create a length signal via the radiation pressure force.

This angle-to-power-to-length coupling may confuse the geometrical angle-to-length

coupling due to spot mis-centering, and consequently contaminate the error signal

used for sensing a pointing DOF. This effect can be significant when aLIGO reaches

100W of input power, and would thus deserve more detailed study in the future.

6.4 ALIGNMENT SENSING AND CONTROL IN

aLIGO

We are now ready to consider the alignment sensing and control in aLIGO. Based on

our discussion in Section 6.2, for the pitch alignment, there are in total 6 interferomet-

ric DOFs and 4 pointing DOFs, and for yaw, the numbers are the same. To further

assist our discussion, we can geometrically divide the interferometer into three parts,

the symmetric/input part, the Michelson, and the anti-symmetric/output part, and

study the DOFs at each part individually.

Consider first the interferometric DOFs. On the symmetric (or the input) side of

the interferometer, which consists of the input beam, the power-recycling cavity, and

the common-arm cavity, there are three interferometric DOFs (cf. Panels 1 and 2 in

Figure 6-1; note that we have replaced the single X-arm cavity by the common-arm

cavity).

The first freedom is the common-hard mode of the arm cavities measured with

respect to the input axis coming from the power-recycling cavity. It can be sensed

with a combination of WFSs located at the REFL port (which picks up the beam

reflected-off the interferometer; see Figure 5-1) and the error signal is fed-back to

the combination of test masses that corresponds to the common-hard motion with

a bandwidth of 3 Hz.8 The second DOF aligns the power-recycling cavity’s axis to

8The actual alignment sensing and control of the arm cavity is an involved topic and we will
devote the next Chapter to present a more detailed discussion

143



PR2

ITMY

ETMY

ITMX ETMX

SRM

BSIM4

REFL_A/B_RF9/RF45_I
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Figure 6-4: Alignment sensing and control of the interferometric DOFs in aLIGO.
On the symmetric side, we use three different linear combinations of REFL WFSs to
overlap the axes of the input beam, the power-recycling cavity, and the common arm
cavity. The Michelson and the differential arm axis are sensed with AS_A_RF36_Q
and AS_A_RF45_Q, respectively. Lastly, the signal-recycling cavity’s axis is aligned
to the differential-arm cavity’s axis by using AS_A_RF72_Q as the error signal.
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the common-soft mode of the arm cavity (i.e., to minimize the lateral shift between

the recycling cavity’s axis and the arm cavity’s axis at the waist of the arm cavity).

Instead of controlling it with the test masses, this freedom is controlled with the PR2

mirror with a bandwidth of 0.8Hz. Lastly, the input axis is aligned to the power-

recycling cavity’s axis by actuating on a steering mirror (IM4) with approximately

0.1Hz bandwidth.

All the three DOFs are sensed with the REFL WFSs. Specifically, we use four error

signals which we will refer to as REFL_A/B_RF9/RF45_I. Here “REFL” stands for

the detection port from which the signal is derived and different ports are defined in

Figure 5-1. The “A” and “B” account for the two Gouy phases separated by 𝜋/2. The

“RF9” and “RF45” are the RF frequencies at which a WFS is demodulated. Specifi-

cally, the “RF9” signal corresponds to the beat note between the carrier field and the

±9.1MHz sidebands, and similarly, the “RF45” signal corresponds to the interference

between the carrier field and ±45.5MHz sidebands. Lastly, the “I” stands for one of

the RF demodulation phases that maximizes the whole-plane integrated signal’s re-

sponse to the common-arm (CARM) motion in length; the other demodulation phase

corresponds to the “Q” signal which we do not use here. The right combination of

sensors can be determined by exciting each DOF individually and measuring the re-

sponse in each individual sensor. Then such a sensing matrix can be inverted to give

the proper linear combinations of sensors to be used as the error signal for each DOF.

Note that here we use four sensors (which are treated as linearly-independent) for

three DOFs. Such a system can be inverted with the Moore-Penrose pseudo-inverse

algorithm (Penrose, 1955).

The Michelson (cf. Panel 3 in Figure 6-1) is sensed with the AS_A_RF36_Q.

Note here the “RF36” is from the beat note between the 9.1MHz and 45.5MHz

sidebands. Unlike the beat note between the carrier and sidebands, the beat note

between two sidebands will have a non-vanishing (whole-plane-integrated) power at

the beat-note frequency.9 Therefore, we define the demodulation phase such that

after demodulating the signal at 36.4MHz, for each quadrant the DC power shows

9https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=43574
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up all in the I phase. Then the orthogonal Q-phase signal is used here for sensing the

the Michelson alignment. We feedback this error signal to the BS with a bandwidth

of 0.8Hz.

On the anti-symmetric side, there are two more interferometric DOFs. One cor-

responds to the differential-hard mode of the arm cavities. This DOF is sensed with

AS_A_RF45_Q, where the Q phase is defined to maximize the signal’s response

to the longitudinal DARM motion. The control is accomplished by feeding back

the error signal to the four test masses in the linear combination that leads to the

differential-hard motion with a bandwidth of 3Hz.

The last interferometric DOF is to align the signal-recycling cavity’s axis to the

axis of the differential arm cavity by actuating on the SRM. Originally this signal was

sensed using AS_A_RF36_I. However, it turned out that this signal was subject to

thermal distortion of the system and could not be used when the input power exceeded

20W. To overcome this issue, a new RF sideband has been added at 118.3MHz, and

we instead sense the SRM error signal using AS_A_RF72_Q, which is the beat note

between the 118.3MHz and 45.5MHz sidebands at 72.8 MHz. The control bandwidth

of this loop is set to around 0.1Hz. We will discuss this sensing scheme in more detail

in Section 8.1.

To summarize the discussions above, we show in Figure 6-4 a cartoon illustrating

the sensing and control of all the interferometric DOFs in aLIGO.

As for the four pointing DOFs, two of them correspond to the spot positions on

the two ETMs. They are sensed by dithering each ETM in angle individually and

then demodulate the longitudinal DARM signal at the excitation frequencies. In

other words, they are sensed utilizing the angle-to-length coupling effect [cf., equa-

tion (6.10)]. The error signals are then fed back to the combination of test masses

corresponding to the soft-mode of each arm with a bandwidth of a few mHz. Simi-

larly, we control the pointing DOF in the power-recycling cavity by locking the PRM

alignment to a fixed spot on ITMX using the same angle-to-length coupling effect.

Lastly, we point the SR2 alignment to a fixed spot on a DC QPD on the transmission

of SRM to fix the pointing freedom of the signal-recycling cavity.
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6.5 TOLERANCE ON THE RESIDUAL ANGULAR

MOTION

To complete our discussion on aLIGO’s alignment sensing and control, we consider

here the requirements set on each control loops. We will focus first on the corner

degrees of freedom (i.e., the alignment of the recycling cavities and the Michelson),

and defer the discussion of the arm cavities’ requirements to the next Chapter.

In general, the major consideration on the alignment is that the control loop

needs to suppress the residual angular motion to a sufficiently small value such that

the interferometer can stay at its proper working point. Therefore, the question to

ask naturally becomes the following. What is the definition of “sufficiently small” for

each DOF?
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Figure 6-5: Fractional power build-up inside the power-recycling cavity as a function
of the recycling mirrors’ misalignment.

First consider the power-recycling cavity. Its purpose is to enhance the DC power

input to the arm, so that the shot-noise-limited sensitivity of DARM decreases by a

factor of 𝑔p [cf. equation (5.44)], with 𝑔p being the carrier field’s amplitude gain inside

the power-recycling cavity. If the power-recycling cavity is misaligned, however, the

value of 𝑔p decreases as the carrier 00 mode loses its power to the higher-order modes.
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In Figure 6-5 we plot the fractional power build-up inside the power-recycling cavity

(∝ 𝑔2p) as a function of the misalignment of recycling mirrors (PRM, PR2, and PR3).

The misalignments are plotted in units of the normalized angle 2𝜋𝑤Δ𝜃/𝜆0 where 𝑤

is the spot size on the mirror (cf. Table 6.1). For a normalized angle of 0.01, it

corresponds to misaligning the PRM, PR2, and PR3 by 0.74, 0.27, and 0.03𝜇rad,

respectively. To reduce the power by 1% (corresponding to 0.5% increase in the

shot noise), it requires a misalignment of at least 0.05 normalized angle, or at least

0.15𝜇rad misalignment of PR3. On the other hand, the input angular perturbation

due to the seismic motion has a root-mean-square (rms) on the order of 0.1𝜇rad for

each recycling mirror, already smaller than the value we could tolerant. Consequently,

we only need a low-bandwidth (∼ 0.1Hz) control loop to overcome the long-term drift

of power-recycling cavity’s axis with respect to the input beam.
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Figure 6-6: The DARM cavity frequency 𝑓d as a function of the misalignment of the
signal recycling mirrors.

As for the signal-recycling cavity, the requirement is based on the DARM cavity

pole frequency 𝑓d [cf. equation (5.34)]. As misalignment increases the loss inside

the signal-recycling cavity, the DARM pole 𝑓d decreases to lower frequency, reducing

the instrument’s sensitivity to GW signals with 𝑓 > 𝑓d. In Figure 6-6 we plot 𝑓d

as a function of the signal recycling mirrors’ misalignment. The 𝑥-axis is again the

148



normalized angle. The conversion is that a 0.01 normalized angle corresponds to a

misalignment of SRM, SR2, and SR3 by 0.81, 0.21, and 0.03𝜇rad, respectively. To

control the fluctuation in 𝑓d to be less than 10Hz, the rms in normalized angle needs

to be . 0.03 (or at least 0.1 𝜇rad SR3 misalignment). This is once again satisfied by

the input motion without extra loop suppression. Therefore, we also control SRM’s

alignment with a low-bandwidth feedback loop compensating only for the long-term

drift.
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Figure 6-7: Requirements on the alignment of the Michelson DOF.

Lastly, we consider the tolerance on the BS’s alignment. One apparent considera-

tion is that we need to keep the DC power level in both arms as high as possible. This

is considered in Figure 6-7a where we plot the difference in the DC power buildup in

the two arm cavities as a function of the BS’s misalignment. At a misalignment of

100 nrad, the beamsplitter only induces a difference in the DC power level of 0.05%.

As a comparison, the typical difference in the arm losses (|Γx − Γy|/2 ∼ 10 ppm) and

the imbalance in ITMs’ power transmissivity (|𝑇ix − 𝑇iy|/2 ∼ 100 ppm) will lead to a

difference in the two arms’ DC power on the order of 1%.

However, a more contingent requirement exists. If the Michelson does not stay

on a perfect dark fringe, the common-mode motion such as the input laser’s intensity
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and frequency noise will not be perfectly reflected back to the symmetric port but will

instead leak to the anti-symmetric port, contaminating the DARM signal. In Figure 6-

7b we consider the cross-coupling from the CARM motion (which is equivalent to the

input laser’s frequency noise) to the DARM signal. When the BS is perfectly aligned,

the cross-coupling is due to the mismatch in the two arm’s cavity pole frequencies

caused by the difference it the ITM transmissivity [see, e.g., Izumi et al. 2015; we

assume it to be (𝑇ix − 𝑇iy)/2 = 100 ppm here]. When the BS is misaligned, the DC

01 modes it generated will enter the arm cavity and be modulated by the AC CARM

motion. As the AC 01 mode propagates back to the misaligned beamsplitter, it will

be scattered back to an AC 00 mode that is equivalent to a length fluctuation of

the Michelson. This noise further couples to DARM with a coefficient |1 + i𝑓/𝑓d|/𝑔2a.
Meanwhile, part of the AC 00 mode will also enter the arm cavities again and interfere

with the DC cavity fields. This leads to an excess radiation pressure noise dominating

the low-frequency cross coupling with a characteristic 1/𝑓 3 slope (note that in addition

to the 1/𝑓 2 filtering due to the pendulum, there is another 1/𝑓 due to the filtering in

the power-recycled CARM cavity). Based on the CARM-to-DARM cross-coupling,

the residual beamsplitter motion should be controlled to . 10 nrad. Nevertheless, this

requirement can still be satisfied by the raw input motion, as the vacuum chamber

hosting the BS (also know as a BSC) provides 10 times more seismic isolation at the

suspension point compared to the chambers hosting the recycling mirrors (Matichard

et al., 2015a,b,c). To further increase the safety margin, we also have a relatively

high-control bandwidth of 0.8Hz on the Michelson’s alignment control compared the

loops used for the recycling cavities’ alignment.
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Chapter 7

Alignment control of the arm cavities

In the previous Chapter, we provided an overview of aLIGO’s active alignment con-

trol system. We find that for DOFs in the corner, the rms of the seismic input

generally satisfies the requirement on the residual angular motion, and hence only

low-bandwidth controllers are needed for them. This is, however, not the case for the

DOFs in the arm cavities. As we will see in Section 7.1, active loop suppression is nec-

essary in order to maintain the interferometer at a proper working point. Meanwhile,

the controllers’ bandwidth must be limited to reduce the injection of excess sensing

noise which is one of the dominant noise sources below 30 Hz for aLIGO. Further-

more, hundreds of kW of circulating power in the arm cavities creates a significant

amount of optical torque even dwarfing the restoring torque from the pendulum. This

can dramatically complicate the control design and we will devote Section 7.2 to dis-

cussing it in detail. Specifically, we will provide the general mathematical background

of radiation torques in Section 7.2.1. A comprehensive study on the Sidles-Sigg radi-

ation torque is provided in Section 7.2.2, including discussions on both its dynamical

interactions with the suspension and a newly implemented compensation scheme to

remove its effects in aLIGO. Section 7.2.3 is dedicated to the discussion of yet another

kind of radiation interaction, known as the d𝑃/d𝜃 effect. After these discussions on

the optical torques, we will return to the noise discussion in Section 7.3 and consider

recently implemented or future upgrades to enhance the controller’s performance.
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7.1 CONTROL LOOP DESIGN CONSIDERATIONS

Similar to Section 6.5, we discuss in this Section various requirements we should

consider for designing the control feedback of the arm cavity.

S

K

✓out

✓
(sens)
in

⌧
(disp)
in

Figure 7-1: Model for the alignment feedback control.

Consider a feedback-loop model as illustrated in Figure 7-1. Here 𝑆 is the suspen-

sion transfer function with in units of [rad/N ·m], and 𝐾 is the control feedback gain

in [N ·m/rad]. We consider two kinds of noise input here. One is the displacement

perturbation input to the system 𝜏
(disp)
in , and the other is the sensing noise 𝜃(sens)out . The

closed-loop response to the noises can be respectively written as

𝜃
(disp)
out =

𝑆

1 +𝐾𝑆
𝜏
(disp)
in , (7.1a)

𝜃
(sens)
out =

−𝐾𝑆
1 +𝐾𝑆

𝜃
(sens)
in . (7.1b)

In Figure 7-2 we show the typical pitch noise input to the aLIGO’s arm cavities. For

the displacement noise, the dominant contribution is from the ground’s longitudinal

motion coupling to the test mass’ pitch angle due to the suspension length-to-pitch

coupling (see, e.g., Rakhmanov 2000; it is labeled with “Seismic” in the Figure). This

is a unique coupling to pitch and the seismic noise input to yaw is thus much smaller.

Another significant contribution is the local damping noise. This is the noise coming

from the shadow sensors (Carbone et al., 2012) that are used for reducing the quality

factors of the suspension resonances. The total rms of the input displacement is

∼ 30 nrad. At the same time, the hard modes of the arm cavities generally has a
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sensing noise of 𝜃(sens)in ≃ 1014 rad/
√
Hz.1
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Figure 7-2: Typical pitch noise input to the aLIGO arm cavities. In the left we show
noise in [rad/

√
Hz] and in the right we calibrate the displacement noise into the torque

exerting on the test masses in [N · m/
√
Hz]. The total displacement (the grey-solid

trace) is the quadratic sum of the seismic (blue-dotted) and local damping (orange-
dotted) noises. The cumulative rms of the displacement perturbation is shown in the
dashed-grey trace. Also shown in the purple-dotted line is the typical sensing noise
level.

After knowing the input noise level, we need to consider next the requirements

should be set on the closed-loop noises 𝜃(disp) and 𝜃(sens). Specifically, there are two

requirements related respectively to the low-frequency (. 1Hz; dominated by the

displacement noise) and the high-frequency (& 10Hz; dominated by the sensing noise)

portions of the spectrum.

At low frequencies, we need to have sufficient suppression of the residual rms

motion. This is similar to our consideration in Section 6.5. In Figure 7-3 we present

the fractional power build-up inside the arm cavity as a function of arm misalignment

(in the hard/soft basis). Note that the shot-noise-limited DARM sensitivity scales as

1/𝑔2a [cf. equation (5.44)], and thus a reduction of the power build-up inside the arms

by 1% will lead to an increase in the shot noise level by 1%. This is in contrast to

the case of the buildup inside the power-recycling cavity where the DARM sensitivity
1https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=46178
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scales only as 1/𝑔p. From Figure 7-3 we can see that to keep the buildup above 99%

of its nominal value, we should control the hard modes to within 5 nrad rms. The

requirements on the soft modes2 is less strict and it can tolerate up to 20 nrad of rms

fluctuation.
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Figure 7-3: Fractional power build-up in the arm cavities as a function of the mis-
alignment in the hard and soft modes. For a 1% reduction in the arm build-up (cor-
responding to 1% degradation in the shot-noise-limited sensitivity) it corresponds to
5 nrad misalignment in the hard modes and 20 nrad in the soft modes.

Another consideration is the degradation of the common-mode rejection because

of misalignment, which we study in Figure 7-4. Here we can see that misalignments

in the differential-hard mode (and similarly in the common-hard mode) enhances the

CARM-to-DARM coupling at . 30Hz via the radiation pressure effect. While the

CARM/input frequency noise is usually well-suppressed below 100 Hz, other common-

mode noise such as the input jitter will couple in a similar manner (Martynov et al.,

2016). Consequently, we would like to control the hard-mode motion to an rms of

around 1 nrad, which is a more stringent constraint than the one set on power-build

up.

2Here we mean specifically the “interferometric” soft mode, which is measured with respect to
the power-recycling cavity’s axis. It is actually controlled by actuating on PR2. See Section 6.4.
This should be distinguished with the “pointing” soft mode which measures the mirrors motion with
respect to the ground. See also Section 7.2.3.
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Figure 7-4: CARM to DARM cross-coupling at different levels of misalignment in the
differential hard mode Δ𝜃dh.

At high frequencies (& 10Hz), the control loop feeds back the sensing noise and

perturbs the test masses in angle. It can further couple to the DARM readout via

the angle-to-length cross-coupling (Section 6.3.2; also also Barsotti et al. 2010). The

typically coupling coefficient is (Martynov et al., 2016)

𝑍a2l ≃ 1
[︁mm

rad

]︁
. (7.2)

This is greater than the residual spot motion created by the rms fluctuations of the

alignment loops (which should be . 0.1mm), and is likely to be due to the DC offsets

in the pointing loops. If we want the angular noise to be below the designed DARM

sensitivity at 10Hz, or 6 × 10−19m/
√
Hz, we need to reduce the closed-loop sensing

noise 𝜃(sens)(10Hz) < 6 × 10−16 rad/
√
Hz. In other words, the open-loop transfer

function needs to be reduced to 𝐾𝑆 < 0.06 at 10Hz.

To summarize, the alignment control of the arm cavity should have a sufficiently

large bandwidth to suppress the sub-1Hz input motion from an rms of about 30 nrad

down to 1 nrad. At the same time, it needs to be rolled-off fast enough to be smaller

than 0.06 at 10 Hz. These two regions need to be connected in the 1 − 10Hz band

such that it satisfies the stability requirement, 1 +𝐾𝑆 ̸= 0. Yet another constraint
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is that the control loops need to stabilize the radiation torques and we will discuss it

soon in the coming Section.
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Figure 7-5: Control filters currently used for stabilizing the differential-hard mode’s
alignment in pitch. It is evaluated at an input power level of 10W (or 57 kW of
circulating power in each arm).

Currently, the filter used for controlling the pitch motion of the differential-hard

mode at the Hanford site is shown in Figure 7-5. Combine it with the input mo-

tion shown in Figure 7-2 leads to the closed-loop residual angular motion3 shown in

Figure 7-6.

From Figure 7-6 we can see that our current controller satisfies the low-frequency

requirement on the residual rms; it suppresses the input motion to an rms of 0.4 nrad <

1 nrad. However, in the 10 − 20Hz band our current control loop fails to meet the

aLIGO’s requirement on the roll-off of the sensing noise (shown in the red curve).

One reason we do not use a lower-bandwidth and a more aggressively rolled-off loop

is that the effect of radiation pressure will modify the suspension transfer function 𝑆

as a function of arm circulating power. It further means that a controller designed at

3Note that multiplying the input noise in [rad/
√
Hz] as shown in the left panel of Figure 7-2

by [1/(1 +𝐾𝑆)](10W) does not lead the appropriate closed-loop displacement noise as it does not
account for the effect of radiation pressure correctly. See Section 7.2.2. The correct way is to take
the noise input in torque (the right panel of Figure 7-2) and then multiply it by [𝑆/(1 +𝐾𝑆)]

⃒⃒
(10W)

.

156



0.1 0.3 0.6 1 3 6 10 30
Frequency [Hz]

10 16

10 15

10 14

10 13

10 12

10 11

10 10

10 9

Di
sp

la
ce

m
en

t [
ra

d/
Hz

]

Total
Displacement
Sensing
roll-off requirement

Figure 7-6: The closed-loop residual pitch motion of the differential-hard mode. The
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the sensing (purple-dotted) noises in quadrature. The cumulative rms motion is
shown in the dashed-grey trace. While the residual rms motion of ≃ 0.4 nrad satisfies
the requirement, the > 10Hz roll-off of the sensing noise is not sufficient to meet
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angle-to-length coupling of 1mm/rad.
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one power-level may become unstable at another power. Consequently a conservative

design is chosen. We will use the next Section to discuss how the effect of radiation

pressure modifies the control loop, and more importantly, how we can compensate

for such an effect so that in the future we do not need to worry about variations in

the plant. This will further open up the possibility of reducing the alignment control

noise to a level below the aLIGO’s fundamental quantum and thermal limits.

7.2 EFFECTS OF RADIATION PRESSURE

7.2.1 Introduction

In this Section, we study the interactions between the radiation torques and the

suspended test masses, which are the key component of designing the controller for

the arm cavities’ alignment in aLIGO.

To start, consider first the radiation torque exerted on a test mass in the time

domain. The torque exerted on the upper-half plane can be written as

𝜏 (up)(𝑡) =
2

𝑐

∫︁ ∞

−∞
d𝑥
∫︁ ∞

0

d𝑦 [𝑦𝐸00(𝑡, 𝑥, 𝑦)𝐸01(𝑡, 𝑥, 𝑦)] , (7.3)

where we have omitted terms such as 𝐸00𝐸00 as terms with even parity will be canceled

out when we subtract the upper and lower halves and thus not contribute to the total

torque. To proceed, we can further write the fields as

𝐸𝑚𝑛(𝑡, 𝑥, 𝑦) = 𝑎𝑚𝑛(𝑡)𝑢𝑚𝑛(𝑥, 𝑦), (7.4)

where 𝑢𝑚𝑛 = 𝑢𝑚𝑢𝑛 is the normalized Hermite-Gauss function [cf. equation (6.2)].

The spatial integration thus leads to

∫︁ ∞

0

𝑦𝑢0(𝑦)𝑢1(𝑦)d𝑦 =
𝑤

4
, (7.5)

where 𝑤 is the spot size on the mirror. By subtracting the upper and lower halves
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and utilizing the spatial symmetry 𝜏 (low) = −𝜏 (up), we have

𝜏(𝑡) = 2𝜏 (up)(𝑡) =
𝑤

𝑐
𝑎00(𝑡)𝑎01(𝑡). (7.6)

Now we can transfer to the Fourier domain4 and use the bi-linear approximation to

compute the fluctuations in the torque 𝛿𝜏(𝑓) at frequency 𝑓 , which leads to [without

losing generality, we set 𝑎00(0) to be real in the equations below],

𝛿𝜏(𝑓) ≃ 𝑤

𝑐
[𝑎01(𝑓) + 𝑎*01(−𝑓)] 𝑎00(0) +

𝑤

𝑐
𝑎01(0) [𝑎00(𝑓) + 𝑎*00(−𝑓)]

+( terms at −𝑓 )

≃ 2𝑎200(0)

𝑐

(︂
𝑤Re

[︂
2𝑎01(𝑓)

𝑎00(0)

]︂)︂
+
2𝑎200(0)

𝑐

(︂
𝑤Re

[︂
𝑎01(0)

𝑎00(0)

]︂)︂
Re

[︂
𝑎00(𝑓) + 𝑎*00(−𝑓)

𝑎00(0)

]︂
. (7.7)

Or

𝛿𝜏(𝑓) ≃ 2𝑃DC

𝑐
𝛿𝑦(𝑓) +

2𝑃DC

𝑐
𝑦(0)

[︂
𝛿𝑃 (𝑓)

𝑃DC

]︂
, (7.8)

where we have used

𝑃𝐷𝐶 = 𝑎200(0), (7.9)

𝑦(𝑓) = Re

[︂
2𝑎01(𝑓)

𝑎00(0)

]︂
, (7.10)

𝛿𝑃 (𝑓)

𝑃DC

= Re

[︂
𝑎00(𝑓) + 𝑎*00(−𝑓)

𝑎00(0)

]︂
. (7.11)

Note that in the above equations the fields are double-sided with frequency 𝑓 ∈
(−∞,∞), whereas the direct observables 𝛿𝜏(𝑓), 𝑦(𝑓), and 𝛿𝑃 (𝑓) are single-sided

with 𝑓 ∈ [0,∞).

Clearly, there are two effects that may cause a radiation torque perturbation on

the test mass. One is associated with the fluctuation in the spot position 𝛿𝑦(𝑓) [i.e.,

4Instead of denoting the Fourier transform of a quantity 𝑞(𝑡) as 𝑞, we will omit the “hat” symbol
and denote it as 𝑞(𝑓).
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the first term in equation (7.8)]. As we shall see soon, this term directly leads to

the Sidles-Sigg effect (Sidles & Sigg, 2006) that has been a critical concern in LIGO’s

commissioning (Hirose et al., 2010; Dooley et al., 2013). We will discuss this effect in

detail in Section 7.2.2 and provide there a technique that can compensate for it. The

second term illustrates another type of radiation pressure effect, a torque that is due

to power fluctuation 𝛿𝑃 (𝑓). Although in the ideal case, if a cavity is perfectly aligned

in DC, any small AC misalignment will not generate fluctuations in power in the

linear order. Nevertheless, in reality offsets in the alignment loops exist inevitably,

which creates linear coupling to power fluctuations, and instabilities due to this effect

were observed during aLIGO’s second observing run.5 We will talk about this effect

in Section 7.2.3.

7.2.2 The Sidles-Sigg effect

Interactions between the radiation torque and the suspenstion pendulum

In the original work by Sidles & Sigg, the authors described the radiation torque in

terms of an effect potential of the optical cavity. Specifically, the authors showed

that the potential energy 𝑊 depends quadratically on the alignments of the two test

masses 𝜃, as 𝑊 = 𝜃T𝑅𝜃/2. In other words, the radiation torque couples the two test

masses together to form an “optical spring”, with the two eigenvectors of the stiffness

matrix6 𝑅 corresponding to the hard and soft modes. The geometrical representation

of the hard and soft modes has been shown in Panel 1 of Figure 6-1. As illustrated

in the cartoon, if the two test masses are misaligned in the hard mode, the radiation

torque will then tend to push them back to the original location. Hence the hard

mode “hardens” the optical spring. In contrast, a soft mode misalignment creates an

optical torque that pushes the mirrors to be even more misaligned, and consequently

“softens” the optical spring.

In this Section, we present an alternative way to study the same effect. Suppose
5See https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=26367 and https://

alog.ligo-la.caltech.edu/aLOG/index.php?callRep=37576.
6Note that we have changed the notation of the stiffness matrix to be 𝑅 instead of 𝜅 used in

Sidles & Sigg (2006).
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that some initial torque perturbation causes the test masses to be misaligned by 𝛿𝜃.

The misaligned mirrors alter the cavity axis and modify the spot positions on the test

masses by 𝛿𝑦. Then, as we have shown in equation 7.8, the perturbation in the spot

positions in turn creates an optical torque on the test masses. The whole process can

be modeled as a feedback loop as shown in Figure 7-7. In the plot, 𝑆0 is the free

pendulum transfer function, and the torsional stiffness can be further written as

𝑅 =
2𝑃a

𝑐

d𝑌
dΘ

, (7.12)

where 𝑃a is the power circulating in the arm cavity [cf. equation (5.17)], and the

matrix d𝑌/dΘ connects mirrors’ misalignment 𝛿𝜃 to the spot position variations on

the test masses 𝛿𝑦.

S0

SR(Pa)

R(Pa)

✓⌧

⌧ ✓

Figure 7-7: The signal flow diagram illustrating the Sidles-Sigg effect.

If we first consider the case of a single Fabry-Perot cavity. We let 𝛿𝜃 = [𝛿𝜃e, 𝛿𝜃i]

with 𝛿𝜃e(i) being the misalignment of the ETM (ITM), and similarly for 𝛿𝑦. Then in

terms of the cavity g-factors we can write d𝑌/dΘ as

d𝑌
dΘ

=
𝐿

1− gige

⎡⎣−gi 1

1 −ge

⎤⎦ . (7.13)

Note that it has the same set eigenvectors as 𝑅. The hard and soft modes can be

respectively written as

𝛿𝜃h =
[︁
1 g

]︁T
, (7.14a)

𝛿𝜃s =
[︁
−g 1

]︁T
, (7.14b)

161



where

g =
(ge − gi) +

√︁
(ge − gi)

2 + 4

2
≃ 0.87. (7.15)

When evaluating g, we have plugged in the g-factors for aLIGO, which are ge = −0.78

and gi = −1.06. The corresponding eigenvectors are

d𝑦
d𝜃

⃒⃒⃒
h
=
𝐿

2

(ge + gi)−
√︀
(ge − gi)2 + 4

(gegi − 1)
≃ 4.5× 104

m

rad
, (7.16a)

d𝑦
d𝜃

⃒⃒⃒
s
=
𝐿

2

(ge + gi) +
√︀
(ge − gi)2 + 4

(gegi − 1)
≃ −2.1× 103

m

rad
. (7.16b)

The numerical values are again evaluated with aLIGO g-factors. As pointed out in

Sidles & Sigg (2006), for cavities with spot sizes 𝑤e ≃ 𝑤i ≫
√︀
𝐿𝜆/𝜋, the eigenvalues

can be further simplified as

d𝑦
d𝜃

⃒⃒⃒
h
≃
(︂
2𝜋𝑤e𝑤i

𝜆𝐿

)︂2
𝐿

2
, (7.17a)

d𝑦
d𝜃

⃒⃒⃒
s
≃ −𝐿

2
. (7.17b)

When we consider the full aLIGO interferometer, in addition to the hard/soft

modes for each arm cavity, there are also the common/differential modes due to the

Michelson nature of the interferometer. As a result, for the full interferometer there

are four eigenmodes in total, corresponding respectively to the common/differential-

hard/soft modes. For the common-hard mode, the eigenvalue is the same as that of

the single-arm’s hard mode, while the eigenvector is 𝜃T
ch =

[︀
𝜃T
xh, 𝜃

T
yh

]︀
, where 𝜃x(y)h is

the eigenvector of the X(Y)-arm’s hard mode in the single-arm basis. Similarly, for

differential hard the eigenvector is 𝜃T
dh =

[︀
𝜃T
xh, −𝜃T

yh

]︀
. The common/differential soft

eigenmodes can be obtained in a similar manner.

Based on the diagram shown in Figure 7-7, we can define a radiation-pressure-

modified suspension transfer function as

𝑆𝑅 =
𝑆0

1 +𝑅𝑆0

, (7.18)
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where 𝑆0 is the free-pendulum transfer function, and𝑅 can be either𝑅h = (2𝑃a/𝑐)(d𝑦/d𝜃)h >

0 for the hard mode, or 𝑅s = (2𝑃a/𝑐)(d𝑦/d𝜃)s < 0 for the soft mode. Note that for

the hard mode, it is a negative feedback loop and therefore the radiation torque tends

to stabilize the system. On the contrary, for the soft mode it is a positive feedback

that tends to amplify the perturbations.

To proceed, we can consider a simple model of 𝑆0 and see how it interacts with

the radiation pressure effect. We can write

𝑆0(𝜔) =
1/(𝐼𝜔2

0)

1− 𝜔2/𝜔2
0

, (7.19)

where 𝜔0 is the natural frequency of the pendulum, and 𝐼 is the moment of inertial.

For aLIGO’s test mass, the pitch torque-to-angle transfer function has 𝐼 = 0.61 kgm2

and 𝜔0/2𝜋 = 0.56Hz. The radiation-pressure-modified pendulum [equation (7.18)]

can thus be written as

𝑆𝑅(𝜔) =
𝑆0

1 +𝑅𝑆0

=
1/ [𝐼(𝜔2

0 +𝑅/𝐼)]

1− 𝜔2/ (𝜔2
0 +𝑅/𝐼)

=
1/(𝐼𝜔2

𝑅)

1− 𝜔2/𝜔2
𝑅

, (7.20)

where we have defined 𝜔2
𝑅 = 𝜔2

0 + 𝑅/𝐼 as the effective natural frequency of the

pendulum. For future convenience we further define

𝜔2
h = 𝜔2

0 +𝑅h/𝐼, and (7.21a)

𝜔2
s = 𝜔2

0 +𝑅s/𝐼, (7.21b)

for the hard and soft modes, respectively.

Thus the effect of radiation pressure is that it modifies the effective resonant

frequency of the pendulum. Note that 𝑅 ∝ 𝑃a ∝ 𝑃in [cf. equation (5.17)]. We can

thus plot 𝜔h and 𝜔s as a function of the input power as shown in Figure 7-8. To get

the circulating power in the arms, we have assumed 𝑃a = 57× (𝑃in/10W) kW.
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Figure 7-8: The square of the radiation-pressure-modified pendulum’s resonant fre-
quency as a function of input power.

First consider the soft mode, a significant feature is that 𝜔2
s decreases as 𝑃a ∝ 𝑃in

increases. When 𝑃a reaches a critical value of 𝑃a = 0.55MW, the resonant frequency

𝜔2
s < 0, or 𝜔s becomes imaginary. This means in the time-domain the motion will

grow exponentially as exp (|𝜔s|𝑡). As the targeted power circulating in the arms is

≃ 0.7MW, this instability will eventually happen and will have to be stabilized by

external control.

The instability can also be viewed as the following. Note that the radiation

pressure forms a feedback loop, and consequently it is subject to the regular loop-

stability requirement 1+𝑅𝑆0 ̸= 0. However, at DC we have 𝑆0(0) = 1/ (𝐼𝜔2
0) > 0 and

𝑅s < 0. Consequently, for sufficiently large |𝑅s| the instability threshold 1+𝑅s𝑆0(0) =

0 will eventually be satisfied at DC. The critical 𝑅s,crit is thus given by

𝑅s,crit = −𝐼𝜔2
0, (7.22)

which is exactly the same as the 𝑅s we would obtain by setting 𝜔s = 0 in equa-

tion (7.21b).

As for the hard mode, the radiation pressure shifts the pendulum resonance to

a higher frequency than 𝜔0. Therefore it is always stable at DC. Nonetheless, dy-
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namically even the hard mode will become nearly unstable. We can see this effect

again by considering the criterion 1 + 𝑅𝑆0 = 0 for the feedback to become unstable.

Note that at 𝜔 ≫ 𝜔0, 𝑆0(𝜔) ≃ −1/(𝐼𝜔2) < 0 while 𝑅h > 0. For sufficiently high

radiation torque, the open-loop gain 𝑅h𝑆0(𝜔) will cross the unity gain with a phase

that asymptotically approaches −𝜋. The critical frequency at which 1 +𝑅𝑆0(𝜔) ≃ 0

happens is given by

𝜔2
h,crit ≃ 𝑅/𝐼. (7.23)

This is actually the same as the shifted resonant frequency of the hard mode in

equation (7.21a) (note that we have assumed 𝜔h ≫ 𝜔2
0). Thus external control will

also be required to damp the hard mode motion at its shifted resonance.

The real aLIGO suspension is more complicated than the simple pendulum we have

considered above. Nevertheless, the radiation-pressure-modified suspension transfer

function can be straightforwardly obtained from equation (7.18), and the result is

shown in Figure 7-9. We can see that the dynamics of the pendulum can be signif-

icantly modified due to the radiation pressure effect. Therefore it is critical to take

it into account when we design the relevant control loops. In fact, the complicated

shape of the current control filters for the hard modes (cf. Figure 7-5) is partially

due to that it needs to maintain the system’s stability over a range of ∼ 20− 30W of

different input powers. The price has to be paid for such a design is that it does not

roll-off fast enough to meet the aLIGO noise requirement in the 10− 30Hz band.

As an aside, we point out that while our discussion above focuses on the test mass

(which is the bottom stage of the quadruple suspension chain; see Aston et al. 2012),

the radiation pressure will modify the other stages in a similar manner. For example,

consider the transfer function from a torque drive at the penultimate stage to an an-

gular response at the test-mass stage. If we define the free-pendulum transfer function

to be 𝑆(pum)
0 , then the radiation pressure will modify it as 𝑆(pum)

𝑅 = 𝑆
(pum)
0 /(1+𝑅𝑆0).

Note that in the denominator the 𝑆0 is still the torque-to-angle transfer function at

the test-mass stage (instead of at the penultimate stage) as the radiation pressure

feedback happens there. In general, the transfer function of torque drive at any point
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(a) Hard mode.
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(b) Soft mode.

Figure 7-9: The radiation-torque-modified pendulum transfer functions for the pitch
DOF at different levels of input power.

of the suspension to the angular response of the test mass will be modified by the

factor of 1/(1 +𝑅𝑆0) due to the radiation pressure effect.

Loop dynamics

In this Section, we consider how we can modify the dynamics by adding an external

control 𝐾 to the system.7 Now the signal flow can be modeled as the loop diagram

as shown in Figure 7-10.

First we can consider how the sensing noise 𝜃(sens)in propagates in the loop.8 It is

7Note that the spot-position motion causing the radiation torque is measured with respect to the
mirror. Therefore they should be sensed as “pointing” DOFs with, e.g., DC QPDs. Nevertheless, up
to order unity corrections due to the Gouy phase propagation, the fluctuation in the arm cavity’s
axis will cause a spot-position motion on the test masses ∼ 1/(1−𝑟i) ≃ 𝑔2a/2, or more than 100 times
greater than that caused by perturbations in the recycling-cavity’s axis. Therefore in practice we
can treat the recycling-cavity’s axis as being static and use a WFS signal to control the radiation-
pressure effects. For example, we use a single control loop for the differential-hard mode sensed
with the AS_A_RF45_Q WFS signal to simultaneously maximize the interferometric buildup and
damp the radiation pressure effects.

8Note that the sensing noise happens at the detection PD. It thus enters after the radiation-torque
feedback that is inside the cavity. There will be quantum 01/10 entering the arm cavity and create
“quantum-radiation-torque noise”, similar to the QRPN. This is nonetheless a small effect because,
unlike the quantum 00 mode that is resonant in the arm cavity, the quantum 01/10 modes are off
resonance and do not get the amplification due to the cavity buildup. We thus ignore this effect in
our discussion.
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Figure 7-10: The signal flow diagram in the presence of both radiation-torque and
digital control.

straightforward to show that the closed-loop output can be written as

𝜃
(sens)
out =

−𝑆0𝐾

1 + 𝑆0 (𝑅 +𝐾)
𝜃
(sens)
in , (7.24)

which, by substituting in 𝑆𝑅 = 𝑆0/(1 + 𝑆0𝐾), can be further written as

𝜃
(sens)
out =

−𝑆𝑅𝐾
1 +𝐾𝑆𝑅

𝜃
(sens)
in . (7.25)

Meanwhile, the open-loop transfer function 𝐺ol is given by

𝐺ol ≡
−𝜃1
𝜃2

= 𝐾𝑆𝑅. (7.26)

Note that this is same open-loop transfer function we would measure (e.g., the one

shown in Figure 7-5a) by exciting the error point of the control loop and then measure

the ratio between the points right before and right after the excitation.

Specifically, equations (7.25) and (7.26) suggest that for the sensing noise we can

first combine the free pendulum 𝑆0 and radiation pressure feedback 𝑅 into a single

system 𝑆𝑅, and then directly consider the interaction between the controller 𝐾 and

𝑆𝑅.
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How about the displacement noise then? Similarly, we can show that the closed

loop torque-to-angle transfer function satisfies

𝜃
(disp)
out =

𝑆0

1 + 𝑆0 (𝑅 +𝐾)
𝜏
(disp)
in

=
𝑆𝑅

1 +𝐾𝑆𝑅
𝜏
(disp)
in =

𝑆𝑅
1 +𝐺ol

𝜏
(disp)
in . (7.27)

Once again, we see that by using the modified suspension transfer function we obtain

the correct closed-loop torque-to-angle response.

However, subtlety comes in when we consider the open-loop gain as seen by the

torque disturbance,

𝐺′
ol ≡

𝜏1
𝜏2

= 𝑆0(𝑅 +𝐾) ̸= 𝑆𝑅𝐾. (7.28)

Therefore, when consider the residual closed-loop displacement noise in angle (cf.

Figure 7-6), we should use the input torque noise (cf. the right panel of Figure 7-

2) multiplied by equation (7.25), with the free-pendulum transfer function replaced

by the radiation-torque-modified one. If instead we want to treat the input dis-

placement noise in angle as a constant as 𝑆0𝜏
(disp)
in , we have implicitly treated the

pendulum as unchanged. As a result we need to separately consider the radia-

tion pressure feedback, and in this picture the proper closed-loop noise is given by

𝑆0𝜏
(disp)
in / [1 + 𝑆0(𝑅 +𝐾)] = 𝑆0𝜏

(disp)
in /(1 +𝐺′

ol).

Compensating for the Sidles-Sigg effect

From the discussion above we see that to stabilize the system in the presence of

the Sidles-Sigg radiation torque, one can design different control filters such that at

each input power level, the transfer function 𝑆𝑅/(1 +𝐾𝑆𝑅) is stable. This, however,

can be both challenging and time-consuming, as 𝑆𝑅 depends sensitively on power

(Figure 7-9) and will thus require many different filters to be tuned individually. If

instead one makes a filter that is stable over a relatively large span of input power,

then it is hard to keep to filter to be optimal at the same time. For example, the

current control filter used at the LIGO Hanford site (cf. Figure 7-5) is stable for
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an input power ranging from 0 to ∼ 20W. However, this controller is not optimal

as it suppresses the input displacement more than required yet does not have a fast

enough high-frequency cutoff.

Nevertheless, a simple solution to tackle the Sidles-Sigg effect exists. Note that

𝑅 = (2𝑃a/𝑐) (d𝑦/d𝜃) is a frequency-independent quantity that relies only on the

cavity geometry (i.e., the g-factors) and the power circulating in the arms. The

former was carefully measured with high accuracy prior to the installation of aLIGO,

and the latter can be measured in real time via, e.g., the PDs on the transmission

of the ETMs. Moreover, we also know the suspension transfer function 𝑆0 and can

infer the angular motion 𝜃out from the alignment sensing systems. In other words,

we know every single component of the radiation pressure torque. Consequently, we

can create a new path in the digital control system with a loop gain of −𝑅𝑆0 that

exactly cancels out the Sidles-Sigg torque 𝑅𝑆0. With this scheme, when changing the

power circulating in the arms, we only need to change the DC gain of this radiation

compensation path accordingly, and the suspension will stay as a power-independent

(i.e., a “free”) pendulum. As a result, we only need to design a single controller 𝐾

that optimally stabilizes the system, and this filter will stay valid over at least a large

range of, if not any, input power levels.

The scheme is illustrated in the diagram shown in Figure 7-11. While ideally

we would just put a −𝑅 in the compensation path, in reality we want to add some

gain-adjustment factor 𝐹 in the path. This is because when we compensate for the

hard mode, we need to send to the suspension a digital torque corresponding to the

soft mode. If over-compensation accidentally happens, we will destabilize the system

with the digital soft mode we create. To avoid such a situation, we deliberately

under-compensate for the hard mode by making 𝐹 < 1. Specifically, we can define

𝑆 ′
𝑅 =

𝑆0

1 + (1− 𝐹 )𝑅𝑆0

. (7.29)

When 𝐹 = 1, we have 𝑆 ′(𝑅) = 𝑆0 the free-pendulum transfer function. This is what

we do for the soft modes. On the other hand, we set 𝐹 = (𝑃in − 10W)/𝑃in, which
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Figure 7-11: The diagram illustrating the compensation scheme for the Sidles-Sigg
radiation torque.

makes 𝑆 ′
h = 𝑆h(10W). In other words, the suspension transfer function will always

look like a hard-mode pendulum at an input power of 10W, and small errors in the

compensation path will not turn it into a destabilizing soft mode. Another usage of

𝐹 is to provide extra cut-off at high frequencies. Since we feedforward the same error

signal used in the regular control path to the compensation path, we will inject the

same sensing noise as well. Therefore, when |𝑅𝑆0| ≪ 1, we will low-pass the digital

torque signal to reduce the excess sensing noise.

The conceptual design in Figure 7-11 can be implemented in the diagram shown

in Figure 7-12. For aLIGO, the angular control is actuated with the penultimate

stage (PUM) instead of the test-mass stage (TST), as it has a larger actuation range.

Therefore we need to digitally invert the suspension transfer function to make it looks

like the test-mass stage. This is accomplished by the filter 𝑆(tst)
0 /𝑆

(pum)
0 . Note that

this is the only frequency-dependent part in the compensation scheme (except for the

high-frequency cut-off filter), and it requires only the free-pendulum transfer functions

that can be measured accurately at the observatories.9 The other quantities are all

DC calibration factors. The mirror’s angular motion in radiants is converted to the

9https://alog.ligo-la.caltech.edu/aLOG/index.php?callRep=41815
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digital counts by 𝐺opt, and the digital counts are further converted into actuation

torque by 𝐺act. As a result, once 𝑆(tst)
0 /𝑆

(pum)
0 is measured, we only need to adjust

the DC gain of the compensation path which is ∝ 𝑃a. This is a much easier way of

tackling the Sidles-Sigg effect than designing different frequency-dependent control

filters at different power levels.
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Figure 7-12: The implementation of the compensation scheme for the Sidles-Sigg
effect in aLIGO.

This compensation scheme has been tested out at both the Hanford the Livingston

observatories,10 and we summarize the results in Figure 7-13. In the plot we show

with red pluses the measured open-loop transfer functions 𝐾𝑆 ′
𝑅 at an input power of

10W, and with brown crosses the transfer functions measured at 20W and with the

radiation-pressure compensation on to keep the suspension plant the same as the 10W

one. We can see that the two measurements match well to each other, and they both

show good agreement with the modeled open-loop transfer function at 10W shown in

10See https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=45750 and https://
alog.ligo-la.caltech.edu/aLOG/index.php?callRep=41855.
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(b) Common-hard mode in yaw.

Figure 7-13: The modeled and measured open-loop transfer functions of the hard
loops. Using the radiation pressure compensation (RPC) technique, the transfer
functions measured at an input power of 20W (brown-crosses) are essentially identical
to the ones measured at 10W (red-pluses), and match well to the model (blue trace).
As a comparison, we also show in the orange trace how the transfer function would
look like if we do not compensate for the radiation pressure torque.

the blue traces.11,12 As a comparison, in the orange traces we also present the open-

loop transfer function at 20W without radiation-pressure compensation. As indicated

by the plots, our technique works well and it successfully removes the radiation-

induced power dependence in the suspension transfer functions. This further implies

that in the future we only need to optimize for a single controller 𝐾. The variations

in the arm power 𝑃a will be taken care of by the compensation path −𝐹𝑅 that

requires only DC gain adjustments. This will greatly simplify the commissioning of

the alignment system at high-power operations.

11For the pitch DOF there exists a phase mismatch between the measurement and the model
which is likely due to loop cross couplings; see https://alog.ligo-wa.caltech.edu/aLOG/index.
php?callRep=46469.

12The open-loop transfer functions shown in Figure 7-13 are measured in the “high-bandwidth”
configuration, which has about factor of 2 higher DC gain than the one shown Figure 7-5. The
high-bandwidth filters also has less aggressive high-frequency cutoffs.
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Sensing noise from the compensation path.

As mentioned above, the compensation path will be subject to the same sensing noise

as the regular control loop. The total closed-loop sensing noise is

𝜃
(sens)
out =

−𝐾𝑆 ′
𝑅 + 𝐹𝑅𝑆 ′

𝑅

1 +𝐾𝑆 ′
𝑅

𝜃
(sens)
in . (7.30)

In the numerator, the 𝐾𝑆 ′
𝑅 term is the coupling due to the conventional feedback

control, and the 𝐹𝑅𝑆 ′
𝑅 term is the contribution from the radiation-compensation

path. To avoid this noise contaminating the GW readout, we introduce extra high-

frequency cut-off filters in 𝐹 . We choose the filter to maximize the roll-off above

10Hz while keeping its phase delay at 3Hz less than 10∘. In Figure 7-14 we show the

quantity 𝐹𝑅𝑆 ′
𝑅 at different input power levels (the different dotted lines) and compare

it with 𝐾𝑆 ′
𝑅 (the black trace). We can see that the sensing noise contribution from

the radiation-pressure compensation path is always much less than that from the

regular control feedback in the 10−20Hz band. Moreover, with the current low-path

filters, the compensation path also meets aLIGO’s requirement on the noise roll-off

(assuming 𝜃
(sens)
in = 10−14 rad/

√
Hz and 1mm/rad of angular-noise coupling) up to

≃ 70W of input power.

Error tolerance

While we have demonstrated that the radiation-torque compensation technique works

in aLIGO with real data in Section 7.2.2, it is also critical to know how much error

can be tolerate in this scheme. Thus we investigate its robustness in this Section

using the small-gain theorem (See, e.g., Bosgra et al. 2001 and references therein).

Consider a simple model shown in the left panel of Figure 7-15. Here 𝐻 is the

system whose stability robustness is under investigation and Δ𝐻 represents an un-

certainty of the dynamics of the system. Such a system is also known as the basic

perturbation model. The small-gain theorem states that if both 𝐻 and Δ𝐻 are sta-

ble, then a sufficient condition for internal stability of the basic perturbation model
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is (Bosgra et al., 2001):

||𝐻Δ𝐻 ||∞ < 1, (7.31)

where the ∞-norm of a proper and stable system 𝐻 is given by

||𝐻||∞ = sup
𝜔∈R

𝜎 [𝐻(i𝜔)] . (7.32)

Here 𝜎 denotes the largest singular value. For a single-input-single-output system,

the infinity norm is simply the largest value of the frequency response magnitude.

More conveniently, equation (7.31) can be reformulated as

𝜎 [Δ𝐻(i𝜔)] <
1

𝜎 [𝐻(i𝜔)]
, ∀𝜔 ∈ R. (7.33)

The small-gain theorem can be applied to our case as illustrated in the right panel

of Figure 7-15. We can combine our nominal system as the function 𝐻, leading to

𝐻 ≡ 𝑞

𝑝
= − 𝑆 ′

𝑅

1 +𝐾𝑆 ′
𝑅

. (7.34)

The sufficient condition for the loop to be stable in the presence of perturbation Δ𝑅

can now be written as ⃒⃒⃒Δ𝑅
𝑅

⃒⃒⃒
<
⃒⃒⃒1 +𝐾𝑆 ′

𝑅

𝑅𝑆 ′
𝑅

⃒⃒⃒
∝ 1

𝑃a

. (7.35)

The bound in equation (7.35) is valid for any perturbation Δ𝑅 as long as Δ𝑅

is stable by itself. Here we consider two types that are most likely to occur in the

system.13 To proceed, we first write 𝐹 = 𝐹0𝐹lp, where 𝐹0 . 1 is the overall DC gain

and 𝐹lp carries the low-pass filter whose DC gain is set to unity. For simplicity we

can set our nominal compensation gain such that 𝐹 = 𝐹0 = (𝑃in − 10W)/𝑃in. The

first type is then the error in the DC gain of the compensation path, which may be

caused by fluctuations in the arm power. We can model it as Δ𝑅/𝑅 = Δ𝐹 , where

13The small-gain theorem is actually more suited to study unstructured uncertainties than the
structured ones we will consider here, as for a structured uncertainty it provides only the sufficient
stability condition, which is in general more contingent than the real stability requirement. Nonethe-
less, as we will see, even such strict conditions can be satisfied with the uncertainty levels typical
for aLIGO.
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Δ𝐹 is a DC constant accounting for the gain mismatch. The second type is due

to that we have ignored the extra low-pass 𝐹lp in the “nominal” compensation path

(this is actually an error that will always happen by our construction and should thus

be added with other perturbations). Due to causality constraints the cut-off filter

will introduce phase delays in the subtraction band which makes our compensation

imperfect. This effect can be modeled by noting 𝐹𝑅 = 𝐹0𝑅 − (1 − 𝐹lp)𝐹0𝑅, which

leads to Δ𝑅/𝑅 = (1− 𝐹lp)𝐹0 . (1− 𝐹lp).

The tolerance to each type of uncertainties is shown in Figure 7-16. Here we

evaluate it at an input power of 40W, or about 0.23 MW of power circulating in each

arm. This is the typical power level aLIGO will operate at for the third observing run.

Note that while our compensation scheme keeps the suspension independent of power,

the error tolerance decreases linearly with power [cf. equation (7.35)]. Nevertheless,

the stability margin is sufficiently large. At 40 W of input power, the tolerance on the

DC-gain mismatch can be as large as 40%. Even if the power increased by a factor

of 3 to reach aLIGO’s designed operation level, the tolerance is still more than 10%.

This is still much greater than the typical power fluctuations in the arm cavity due

to alignment fluctuations (cf. Figure 7-3). Moreover, the long-term (on timescale of

a few hours) drift in power and optical sensing gain can be easily measured in real

time and feedback to the DC gain of the compensation path, making it even more

robust to this type of perturbations. Meanwhile, the error due to the low-pass filter’s

phase delay is also more than a factor of 3 below the error tolerance, and will thus

not cause instabilities in the loop.

7.2.3 The d𝑃/d𝜃 effect

So far we have been focused on the Sidles-Sigg effect: a mirror’s angular motion

perturbs the spot position on the mirror, which in turn creates a torque that may

lead to either more or less angular motion depending on the phase of the feedback.

This process corresponds to the first term in equation (7.8). Meanwhile, the second

term in equation (7.8) indicates another potential feedback channel. If a mirror’s

angular motion perturbs the circulating power, then the radiation force may couple
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Figure 7-16: The error tolerance on |Δ𝑅/𝑅| in the radiation-compensation path. If
a perturbation is below the black trace (evaluated at 𝑃in = 40W), it satisfies the
sufficient condition for stability. The controller we use currently can tolerate at
least 40% error in the DC gain in the compensation path (shown in the blue trace).
The phase delay due to the high-frequency cut-off filter is also well-below the error
tolerance and thus affect the stability of the loop.

with the DC spot miscentering on the mirror to create a torque feedback as well.

Moreover, in addition to the coupling via DC spot miscentering, the radiation force

can also push the mirror in length, which may also close the feedback loop via the

length-to-pitch cross-coupling in the suspension. In fact, the suspension length-to-

pitch coupling is much greater than that due to the spot mis-centering in aLIGO and

we will consider only this path. It also means that effect is most relevant for the

pitch DOF as there exists no direct length-to-yaw coupling in the suspension. In this

Section, we will refer to this feedback channel due to power fluctuations as the d𝑃/d𝜃

channel whose diagram is shown in Figure 7-17, and discuss its significance. As we

will see, this is the main factor determines the design of the soft loops.

In principle, the feedback gain due to the d𝑃/d𝜃 is much smaller compared to

that from the Sidles-Sigg effect. This is because in an ideal cavity small misalignment

will only create power fluctuations in the quadratic order. However, during aLIGO’s

second observing run, both observatories saw growing oscillations at 0.4 − 0.6Hz

exclusively in pitch in the common-soft mode when the circulating power in the arms
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Figure 7-17: The diagram illustrating the d𝑃/d𝜃 radiation pressure feedback.

reaches 𝑃a ≃ 160 kW. Here we present a model that may explain this oscillation. We

can define

𝐺spot(𝑓) = 𝑅s𝑆
(p2p)
0 (𝑓) =

2𝑃a

𝑐

d𝑦
d𝜃

⃒⃒⃒
s
𝑆
(p2p)
0 (𝑓), (7.36)

as the feedback gain due to the Sidles-Sigg effect for the soft mode. To distinguish

the angular torque-to-angle transfer function from the longitudinal force-to-pitch one,

we label the former explicitly with a superscript “p2p” as 𝑆0 = 𝑆
(p2p)
0 , while for the

latter we define it as 𝑆(l2p)
0 . At the same time, the d𝑃/d𝜃 effect creates a feedback

gain in the soft loop as14

𝐺power(𝑓) =
2𝑃a(0)

𝑐

d [𝑃a(𝑓)/𝑃a(0)]

d𝜃
𝑆
(l2p)
0 (𝑓). (7.37)

To have a non-vanishing d𝑃/d𝜃 term, we introduce small alignment offset at DC of

14Strictly speaking, the radiation force will create an angle ∝ [−1, 1] in the [𝛿𝜃e, 𝛿𝜃i] basis, which
does not correspond exactly to the soft mode [−g, 1]. Nevertheless, since g ≃ 0.87 ∼ 1, and other
uncertainties of similar or greater level exist in the model, we will ignore this effect for simplicity.
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𝒪(1) nrad in the common-soft loop.15 This leads to

d [𝑃𝑎/𝑃𝑎(0)]

d𝜃
(𝑓) ≃ 6× 103

1 + i𝑓/𝑓c
×
(︂

Δ𝜃cs
1 nrad

)︂
, (7.38)

for aLIGO in the second observing run with a power-recycling gain of 𝑟2p = 32 and

a CARM-cavity pole of 𝑓c = 0.7Hz. Here Δ𝜃cs is the DC offset in the common-soft

loop and it can be either positive or negative. When this effect was first observed,

both sites had only low-bandwidth (∼ 10mHz) control on the soft modes to control

the DC spot position on the test masses, and therefore we ignore the control filters

when considering the loop stability. Consequently, the total open-loop gain can be

written as (𝐺spot +𝐺power), and the system becomes unstable if (𝐺spot +𝐺power) = 1.
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(b) Δ𝜃cs = 12.5 nrad.

Figure 7-18: Two scenarios that the d𝑃/d𝜃 effect may lead to the observed instabilities
in the 0.4 − 0.6Hz band. In each plot we use the blue trace to indicate the open-
loop gain and the black trace the closed-loop response. The contributions from the
Sidles-Sigg effect and the d𝑃/d𝜃 effect are represented respectively with the orange-
and the red-dotted lines.

In Figure 7-18 we present two possibilities that the d𝑃/d𝜃 channel could produce

the observed instabilities at 0.4− 0.6Hz with a circulating power of 𝑃a ≃ 160 kW. In

the left panel we let the DC offset in the common-soft loop to be −1.7 nrad. Without

15This is not the unique mechanism to have linear angle-to-power coupling. For example, if the
scattering loss at the test masses varies with spot location, it could also lead to linear coupling.
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the d𝑃/d𝜃 effect, the Sidles-Sigg feedback cross the unity gain at around 0.4Hz with

a small phase margin. This corresponds to the shift in the resonant frequency of

the radiation-torque modified plant as shown in the right panel of Figure 7-9, and

the resultant gain peaking is . 10, comparable to the quality factor of the original

suspension resonance . The d𝑃/d𝜃 effect, while much smaller effect elsewhere, is

comparable to the Sidles-Sigg effect at the suspension resonance ∼ 0.5Hz. This

decreases the phase margin and eventually leads to an instability in the loop at 0.4Hz.

Another possibility is illustrated in the right panel of Figure 7-18. In this case we

introduce a DC offset of Δ𝜃cs = 12.5 nrad. This makes the d𝑃/d𝜃 effect roughly equals

to the Sidles-Sigg effect in amplitude around the suspension resonances. However, the

two effects can be out of phase and thus lead to extra unity-gain crossings with fast-

evolving phase. As a result, we once again see an instability develops in the system

at 0.6Hz.

Note that the instabilities in the above examples happen at a circulating power

of ≃ 160 kW, much smaller than the critical power ≃ 550 kW for the soft mode to

become unstable due to the Sidles-Sigg effect alone (cf. Section 7.2.2). This indicates

the necessity of having a relatively high-bandwidth [𝒪(1)Hz] external control on the

soft loop even at an input power of ∼ 30W. However, before realizing this d𝑃/d𝜃

effect, the soft mode was controlled with the dithering loop that could support only

∼ 10mHz bandwidth because of limited sensitivity (cf. Sections 6.3.2 and 6.4). To

circumvent this, we utilize a signal-blending technique. At AC (& 0.01Hz) frequen-

cies, we use a combination of DC QPDs on the transmission of ETMs to sense the soft

mode motion.16 This error signal is used for both compensating for the Sidles-Sigg ef-

fect (Section 7.2.2) and damping of the residual d𝑃/d𝜃 radiation torque and/or other

unmodeled perturbations. To avoid the long-term drift of the QPDs with respect to

the arm cavity at timescales of & 1 hr, the damping loop is flat below 0.1Hz. On the

other hand, the dithering loop that is a simple integrator with 1/𝑓 slope and it takes

16Note that the “soft mode” here measures the test masses with respect to the ground and it needs
to be sensed as a pointing DOF. There is also an “interferometric soft mode”, which measures the
translational shift of the arm cavity’s axis with respect to the power-recycling-cavity’s axis. This is
the Δ𝜃cs we need in order to have linear angle-to-power coupling. As discussed in Section 6.4, this
interferometric DOF is controlled with PR2 and thus cannot damp the radiation torques.
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over the control below about 10mHz to fix the spot position on the ETM at DC. The

control loop is presented in the left panel of Figure 7-19.

0.01 0.03 0.1 0.3 1
10 1

100

101

M
ag

ni
tu

de

Damping
Dithering
data

0.01 0.03 0.1 0.3 1
Frequency [Hz]

100

0

100

Ph
as

e 
[d

eg
]

(a) Open-loop transfer function.
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Figure 7-19: Left: the open-loop transfer function for controlling the soft-mode in
pitch. The blue trace uses error signal from DC QPDs to damp the d𝑃/d𝜃 radiation
torque. The same error signal is also used to compensate for the Sidles-Sigg effect,
which removes the power dependence of the suspension pendulum. The orange trace
indicates the dithering control that locks the DC spot position on the ETM to a fixed
location. Right: error-tolerance of the soft-mode controller. If a perturbation creates
feedback gain whose peak magnitude is below the black trace, it satisfies the sufficient
condition for the system to maintain internal stability.

Once we specify the controller, we can derive its error tolerance again using the

small-gain theorem. This result is shown in the right panel of Figure 7-19. Note that

this time we show the tolerance on the total feedback gain instead of that on a certain

parameter as we have done in Figure 7-16. For example, we show the feedback gain

due to 100% gain mismatch in the radiation pressure compensation path for the soft

mode in the blue-dotted line, and the feedback gain due to the d𝑃/d𝜃 effect with

10 nrad offset in the (“interferometric”) soft loops at DC. All the values are evaluated

at an input power of 40W, or 𝑃a ≃ 0.23MW. With the damping loop engaged,

neither of them will cause instabilities any more. The high-bandwidth soft-mode

control is thus a crucial step towards aLIGO’s high-power operation.
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7.3 NOISE REDUCTION TECHNIQUES

Having discussed the effects of radiation pressure torques extensively in the previous

Section, we now return to the noise considerations mentioned at the beginning of

this Chapter and discuss in this Section techniques to further reduce the noise in the

alignment systems.

7.3.1 Length-to-pitch feedforward

As shown in Figure 7-2 the displacement noise is dominated by the seismic motion

(the blue trace). As the ground move longitudinally, it will also cause the mirror to

move in the pitch direction. For a simple pendulum, this transfer function can be

written as (we will ignore the damping terms for simplicity; see Rakhmanov 2000)

𝜃

𝑥
≡ 𝐻𝜃(𝜔) ≃

𝜔2
𝜃

𝑙 + 𝑏

𝜔2

(−𝜔2 + 𝜔2
1) (−𝜔2 + 𝜔2

2)
, (7.39)

where 𝑥 is the longitudinal motion of the ground and 𝜃 the mirror’s motion in pitch.

We use 𝑙 and 𝑏 to represent respectively the length of the pendulum suspension, and

the distance between the binding point and the mirror’s center of mass. We will

further write the mirror’s mass and moment of inertia as 𝑚 and 𝐼. The frequencies

of the resonances 𝜔1,2 are thus given by

𝜔2
1,2 =

𝑔

2𝑙𝐼

[︂
𝐼𝜃 +𝑚𝑏(𝑙 + 𝑏)∓

√︁
[𝐼 −𝑚𝑏(𝑙 + 𝑏)]2 + 4𝑚𝑏2𝐼

]︂
, (7.40a)

𝜔1 ≃ 𝜔𝜃 ≃
𝑚𝑔𝑏

𝐼
, 𝜔2 ≃ 𝜔𝑥 =

𝑔

𝑙
, (7.40b)

where in the second line we have assumed 𝑏 ≪ 𝑙 and expanded the quantities to

first order in 𝑏/𝑙. Since the ground’s motion 𝑥 can be readout from seismome-

ters (Matichard et al., 2015a) and its coupling to pitch is known both theoretically

and can be measured in situ. at the observatories, it means that we can predict the

angular motion of the mirrors and thus feedforward the signal to cancel the mirror’s

displacement (Bonila, 2012).
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While we can also stabilize the motion using feedback controls, the feedforward

subtraction has its unique advantages. This is because the feedback control is subject

to loop stability requirements, which limits the high-frequency sensing noise rolloff to

be at most 1/𝑓 2 around the unity-gain frequency. On the other hand, the feedforward

subtraction is always stable (as long as the filter itself is stable) and can be cut off

much faster. Such a property is especially valuable for the alignment system because

currently the sub-30Hz sensitivity of aLIGO is limited by the residual angular sensing

noise from these 3-Hz-bandwidth feedback loops (Martynov et al., 2016). If we instead

stabilize the mirror’s motion with feedforward subtraction, the required bandwidth

of the feedback loops can thus be reduced,17 thereby improving the low-frequency

sensitivity of ground-based GW detectors.

This effort has been carried out at both observatories.18 We first excite the suspen-

sion point of each test mass in length and measure its angular response with optical

levers (Mageswaran & Black, 2010), which allows us to estimate the length-to-angle

transfer function 𝐻𝜃(𝜔).19 We then send the signal −𝐻𝜃(𝜔)𝑥 to cancel the seismically

induced motion 𝐻𝜃(𝜔)𝑥.

The performance of the feedforward subtraction is shown in Figure 7-20. Here we

actively excite the longitudinal motion of suspension point. The blue-solid trace is

the pitch motion of the test mass measured locally with optical levers, and the blue-

dashed line is its cumulative rms value. As we enable the feedforward cancellation,

the displacement is dramatically reduced to the orange trace. In terms of power, we

reduced the motion by about 80% with the feedforward cancellation.

More importantly, we can examine the benefits of feedforward with global align-

17Actually, currently the bandwidth of angular feedback control is limited by the requirement of
stabilizing radiation pressure effects instead of suppressing the residual seismic motion. Nonetheless,
with the compensation of the Sidles-Sigg effect we have shown that we can remove the variation in
the suspension transfer functions. This would make the suppression of seismic motion again the main
factor determining the control bandwidth. This will also be the case for future GW detectors with
more massive test masses than aLIGO as the significance of radiation torque is naturally mitigated
by the increased moment of inertia.

18See, e.g., https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=42851, https:
//alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=44599, and https://alog.ligo-la.
caltech.edu/aLOG/index.php?callRep=41810.

19The transfer functions are fitted using https://iirrational.readthedocs.io/en/latest/.
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Figure 7-20: The performance of the length-to-angle feedforward subtraction mea-
sured locally with the optical levers.

ment signals. This is illustrated in Figure 7-21. In the plots the blue traces are the

input displacement noises measured in the differential- and common-hard modes in

pitch (corresponding to the left and right panels, respectively) without the feedfor-

ward. As a comparison, the input displacement noises when the feedforward can-

cellation is turned on are represented by the orange traces. We can see that for

the differential-hard mode (measured with AS_A_RF45_Q), we achieve a robust

subtraction of input motion in the 0.1-0.3 Hz microseismic band with approximately

60% reduction in power. This significantly reduces the rms of the input motion and

opens up the possibility of reducing the feedback control’s bandwidth in the future.

The performance in the common-hard mode, however, is limited. In part, this is due

to a non-ideal inversion of the input matrix at the REFL port. At the same time,

people have noticed that the common-hard mode signal exhibits large coherence with

the motion of the chamber hosting the REFL port sensors. This might be further

caused by thermally induced offsets creating a non-vanishing RF spot on the WFS,

which cross-couples the local centering loops (which sees the chamber motion) and

the interferometric WFS signals. To solve this issue in the future, a better seismic

isolation system is planned for the chamber hosting the REFL sensors (Fritschel,
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2018). Meanwhile, people are actively researching the possibility of feeding forward

the global longitudinal signals (i.e., measured with the interferometric sensors in-

stead of local seismometers) to mirrors’ alignment (Adhikari et al., 2018), which,

based on the coherence between signals, might remove up to 90% of input motion to

the common-hard mode.
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(a) Differential-hard mode.
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(b) Common-hard mode.

Figure 7-21: The performance of the length-to-angle feedforward subtraction mea-
sured with global alignment signals.

7.3.2 Signal blending

At the beginning of this Chapter we said that the typical sensing noise for the align-

ment control loops is about 10−14 rad/
√
Hz. This is the case for the differential-

hard modes measured with AS_A_RF45_Q as illustrated in Figure 7-22a. For the

common-mode signals sensed with a combination of REFL WFSs (the red-dotted

curve in Figure 7-22b), however, the sensing noise is significantly worse, at a level of

as high as a few×10−13 rad/
√
Hz. This is partially due to an intrinsically higher shot

noise level at the REFL port than at the AS port (Barsotti et al., 2010). Moreover,

the REFL sensors are subject to the cross-couplings from chamber motions we have

just discussed above. This is further suggested by the fact that in the 10-30Hz band

the spectrum of the REFL WFS error signal is not flat (which is characteristic for
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shot noise and dark noise). As we have discussed in Section 7.1, with a sensitivity of

10−14 rad/
√
Hz the alignment control loop will already inject so much sensing noise

that limits aLIGO’s sub-30Hz sensitivity. A higher level of sensing noise will lead to

an even worse contamination to the main GW readout.

5 10 15 20 25 30
Frequency [Hz]

10 14

10 13

10 12

10 11

10 10

10 9

10 8

Re
sid

ua
l E

rro
r S

ig
na

l [
ra

d/
Hz

]

DHARD PIT
DSOFT PIT (Damping; AC coupled)

(a) Differential modes in pitch.
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Figure 7-22: Sensing noise level of alignment loops.

To circumvent this, note that we only need an interferometric error signal (cf.

Section 6.2) of the common-hard modes at DC. At AC frequencies, the motion of the

recycling cavity’s axis is much smaller than the motion of the arm cavity’s axis [by

a factor of ∼ 1/(1 − 𝑟i) ≃ 𝑔2a/2] and thus we can treat the recycling cavity’s axis as

being essentially static at AC. Consequently, we can use non-interferometric sensors

such as the QPDs on the transmissions of the ETMs to control the AC hard-mode

motion. These QPDs typically have sensing noise of a few×10−14 rad/
√
Hz, much

lower than the REFL WFSs’ noise level.

In practice, we blend the REFL WFSs’ output and QPDs’ output together to

form the final error signal of the common-hard modes. The REFL WFSs’ signals are

DC-coupled and then low-passed with two poles at 0.8Hz. The compliment of this

low-pass filter is then multiplied with the QPDs’ output to form the AC part of the

error signal. As a result, the sensing noise of common-hard mode is reduced from the

red-dotted line to the orange-solid line (which is essentially the same as the purple-
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dotted line above 10Hz) in Figure 7-22b. It consequently reduces the common-hard

loop’s contamination to DARM by about a factor of 10.

Lastly, we also show the sensing noise for the soft modes (for the damping part;

see Section 7.2.3) in the solid-blue traces. While their sensing noise is about a factor

of 20 higher than that of the hard mode, their bandwidth is also smaller (. 1Hz)

and thus their contribution to the DARM noise is less severe than the hard modes.

7.3.3 Optimal control design using the ℋ∞method

We have discussed in Section 7.1 that our current controller for the alignment loop

is suboptimal because it needs to maintain the loop stability as the suspension plant

varies significantly over a range of different circulating powers. On the other hand,

we have shown in Section 7.2.2 that the newly implemented radiation compensation

techniques allows the removal of the Sidles-Sigg effect and thus keep the effective

suspension plant unchanged. It thus opens up the possibility of plant inversion in our

controller to optimize the overall loop performance. In this Section, we introduce the

ℋ∞optimization method (for a nice review of optimal control methods, see Bosgra

et al. 2001) and show that with this approach we can improve our alignment control to

simultaneously reach the requirements set on both the suppression of low-frequency

rms motion and the cutoff of high-frequency sensing noise (cf. Section 7.1).

K S W1

W2

z1

z2
w

Figure 7-23: The generic form of the mixed sensitivity problem.

The alignment control of aLIGO can be treated as a mixed sensitivity prob-

lem (Kwakernaak, 1983, 1985; Kwakernaak, 2002), which is a special kind of ℋ∞problem.
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The generic diagram for this problem is illustrated in Figure 7-23, where, to be con-

sistent with the previous sections, we have labeled the plant as 𝑆 (which we know)

and the controller as 𝐾 (which we want to find as the solution to the problem). With

noise input 𝑤 and outputs 𝑧 = [𝑧1, 𝑧2]
T, the system can be described as

𝑧 =

⎡⎣𝑧1
𝑧2

⎤⎦ =

⎡⎣ 𝑊1/(1 + 𝑆𝐾)

−𝑊2𝐾/(1 + 𝑆𝐾)

⎤⎦
⏟  ⏞  

𝐻

𝑤, (7.41)

where 𝑊1 and 𝑊2 are some custom weighting functions. As we shall see soon that the

output 𝑧1 weighted by 𝑊1 corresponds to the residual displacement noise that sets the

low-frequency requirements, and the 𝑧2 weighted by 𝑊2 corresponds to the residual

sensing noise that determines the high-frequency cutoff. For future convenience, we

will also introduce 𝑊3 = 𝑊2/𝑆. The objective of the problem can be stated as the

following. Given the above system (that is, we know the plant 𝑆 as well as the weights

𝑊1,3), we want to find a controller 𝐾 such that

1. it stabilizes the closed-loop system, and

2. it minimizes the ∞-norm ||𝐻||∞ of the closed-loop transfer matrix 𝐻 from input

𝑤 to outputs 𝑧.

In the single-input-single-output case, the second point reduces to finding 𝐾 such

that the quantity

sup
𝜔∈R

⎡⎣⃒⃒⃒⃒⃒𝑊1(𝜔)
1

1 + 𝑆(𝜔)𝐾(𝜔)

⃒⃒⃒⃒
⃒
2

+

⃒⃒⃒⃒
⃒𝑊3(𝜔)

𝑆(𝜔)𝐾(𝜔)

1 + 𝑆(𝜔)𝐾(𝜔)

⃒⃒⃒⃒
⃒
2
⎤⎦ (7.42)

is minimized.

To proceed, let us first discuss the choice of the frequency-dependent weight-

ing functions 𝑊1 and 𝑊3 = 𝑊2/𝑆. Thanks to the equalizing property, it implies

that when the optimal solution is obtained, the quantity in (7.42) is often a con-

stant (Kwakernaak, 1985). Let us denote this constant as 𝛾2 with 𝛾 ≥ 0. It then
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implies

⃒⃒⃒⃒
⃒𝑊1(𝜔)

1

1 + 𝑆(𝜔)𝐾(𝜔)

⃒⃒⃒⃒
⃒
2

≤ 𝛾2, (7.43a)⃒⃒⃒⃒
⃒𝑊3(𝜔)

𝑆(𝜔)𝐾(𝜔)

1 + 𝑆(𝜔)𝐾(𝜔)

⃒⃒⃒⃒
⃒
2

≤ 𝛾2, (7.43b)

for 𝜔 ∈ R. At low frequencies with 𝜔 ≪ 𝜔bw where 𝜔bw corresponds to the angular

frequency of the control bandwidth, we want the quantity |𝑆𝐾| ≫ 1 so that we have

sufficient loop suppression. Consequently we want |𝑊1| ≫ |𝑊3| there so that the

term (7.43a) dominates, with |𝑊1/(1 + 𝑆𝐾)| ≃ |𝑊1/𝑆𝐾| ≃ 𝛾. In other words, the

low-frequency loop suppression is given by

|𝑆𝐾| ≃ 𝛾|𝑊1| for 𝜔 ≪ 𝜔bw. (7.44)

Similarly, at high frequencies with 𝜔 ≫ 𝜔bw, we want |𝑆𝐾| ≪ 1 to minimize the

injection of the sensing noise. Therefore we want the term (7.43b) to be dominant,

with |𝑊3𝑆𝐾/(1 + 𝑆𝐾)| ≃ |𝑊3𝑆𝐾| ≃ 𝛾. This leads to a high-frequency cutoff

|𝑆𝐾| ≃ 𝛾

|𝑊3|
for 𝜔 ≫ 𝜔bw. (7.45)

Pratically, we usually have some goals |𝑆𝐾|(trgt) that we would like the control loop

to achieve. Therefore, we can turn the above equations around to set the weighting

functions as

|𝑊1(𝜔)| = 𝛾|𝑆(𝜔)𝐾(𝜔)|(trgt) for 𝜔 ≪ 𝜔bw, (7.46a)

|𝑊3(𝜔)| =
𝛾

|𝑆(𝜔)𝐾(𝜔)|(trgt) for 𝜔 ≫ 𝜔bw. (7.46b)

In general, the constant 𝛾 ∼ 1 − 10. The problem thus is further reduced to finding

𝐾 that “optimally” satisfies the goals set by the weights 𝑊1,3.

Actually, the optimal solution to this problem is generically challenging. Never-

theless, what is easier to find is the suboptimal solution. In this suboptimal problem,
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one can determine first if there exists a stabilizing 𝐾 that achieves ||𝐻||∞ < 𝛾 for

some given 𝛾 > 0, and if such 𝐾 exists, it can be obtained explicitly based on Doyle

et al. (1989). Then a search in 𝛾 can bring us to approach the optimal controller

𝐾. This algorithm has been implemented in commercially available softwares. For

instance, the results we will show for aLIGO’s alignment loop design are calculated

with the hinfsyn function20 in MATLAB’s Robust Control Toolbox.21

We are now ready to consider how we can use this ℋ∞method to improve our

aLIGO’s alignment control. Let us focus here on the control of the hard modes in

pitch as an example. In our case, the plant is given by 𝑆 = 𝑆𝑅h
(10W) [cf. equa-

tion (7.18)] and is unaffected by the real input power thanks to the radiation pressure

compensation system. The weighting functions 𝑊1 and 𝑊3 we use are shown in

Figure 7-24. They are determined based on the following considerations.
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Figure 7-24: Weighting functions used for the ℋ∞design.

The displacement noise input to the system is given by 𝑆𝑅h
(10W)𝜏

(disp)
in where

𝜏
(disp)
in is given by the right panel of Figure 7-2.22 To suppress such a noise, we

would like to have the controller rising as 1/𝑓 2 between the secondary and primary

20https://www.mathworks.com/help/robust/controller-synthesis.html
21https://www.mathworks.com/products/robust.html
22Equivalently, it can be obtained by 𝜃

(disp)
in (10W) = 𝜃

(disp)
in (0)/(1 + 𝑅h𝑆0) with 𝜃

(disp)
in (0) given

by the left panel of Figure 7-2.
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resonances and as 1/𝑓 below the primary resonance so that the spectral shape of the

residual noise is essentially white below 1Hz. At the 0.1-0.3Hz microseismic band, we

would like a factor of 20 suppression from the control loop. We thus fine tune the zeros

of 𝑊1 until it reaches |𝑊1(0.2Hz)| = 100 from the smooth part [cf. equation (7.46a);

we have assumed 𝛾 = 5 in our design]. We further enhances the loop suppression by

adding resonant gains at both the microseismic band and the suspension resonances.

For the sensing noise, as noted in Section 7.1, we need |𝑆𝐾|trgt < 0.06 in order

to reach aLIGO’s noise requirement at 10Hz. Therefore we set |𝑊3(10Hz)| = 100

according to equation (7.46b). We also let |𝑊3| rises as 𝑓 5 locally at 10Hz so that

the alignment noise decreases faster than the fundamental quantum noise (∝ 𝑓−2)

and the suspension thermal noise (∝ 𝑓−5/2).

Once the weights are specified, we can solve for the optimal controller 𝐾 using

MATLAB’s hinfsyn function. The open loop transfer function 𝑆𝐾 is shown in Figure 7-

25. In the figure the red trace represents the result obtained with the ℋ∞design, and

the black trace is the one we use currently (cf. Figure 7-5). The ℋ∞design has a

significantly faster roll-off at 10Hz compared to the original design. On the hand,

the stability of the loop is not compromised by the sharp cutoff, as the red trace has

a phase margin of ≃ 30∘, as large as the original design.
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Figure 7-25: The open-loop transfer function 𝑆𝐾 of the hard modes in pitch.
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Figure 7-26: The residual motion of the hard loop using the controller designed with
the ℋ∞method.

While the low-frequency gain is smaller for the new controller, in Figure 7-26

we show that the residual low-frequency motion is sufficiently low, with an rms of

0.8 rad/
√
Hz. Note that here we does not include any length-to-angle feedforward

subtractions. With the feedforward on, the low frequency motion can be further

reduced. Consequently, the ℋ∞controller meets the requirements on both the cutoff

of high-frequency sensing noise, and the suppression of low-frequency input motion.

The ℋ∞method is thus a promising way to improve the alignment control for both

aLIGO and future generations of GW detectors.
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Chapter 8

Thermal distortions in aLIGO

In addition to the radiation pressure effects, the thermal distortion is another chal-

lenge posed by aLIGO’s high-power operation. The significant amount of circulating

power (up to 0.7MW) in aLIGO’s arm cavities may be absorbed by the mirror coat-

ings with a coefficient of about 0.5 ppm. The spatial Gaussian distribution of the

laser beam may thus lead to a radial temperature gradient, which subsequently cre-

ates both thermorefractive substrate lenses and thermoelastic surface deformation.

As a result, the beam’s wavefront will be distorted by the thermal lenses as the

circulating power increases, degrading the mode-matching between different optical

cavities. To tackle this challenge, a thermal compensation system has been developed

for aLIGO (Brooks et al., 2016). However, the performance of this system is limited

by the presence of point absorbers that are difficult to anticipate, and challenging

to observe until the circulating power reaches 𝒪(0.1)MW. Moreover, the current

actuators for the thermal compensation system are designed for absorptions whose

spatial profiles are given by the cavity’s 00 mode and consequently are not capable

to compensate for distortions due to point absorbers involving high spatial orders.

In this Chapter we will explore some phenomena induced by the thermal wave-

front distortion. While in reality the residue distortion is caused mainly by point

absorbers involving high spatial orders, here we will nonetheless simplify the problem

by modeling it as excess thermal lens and truncate the spatial order to second order

(i.e., we include only up to 02/20 modes in our calculations). Consequently, we do

193



not intend to reproduce the exact aLIGO interferometer in our study, but instead

focus on capturing the key consequences generated by the thermal distortions.

8.1 ALIGNMENT OF THE SIGNAL-RECYCLING

CAVITY

As we have briefly mentioned in Section 6.4, the signal-recycling cavity’s axis was

originally controlled by actuating on the SRM using an error signal derived from the

AS_A_RF36_I signal.1 However, at both observatories this ceased to be functional

once the input power increased above ∼ 20W. To understand why this situation

happened, we discuss here two major drawbacks of this signal.

Note first that here the “RF36” signal (at 36.4MHz) is the beat note between the

two RF sidebands at 𝑓1 = 9.1MHz and 𝑓2 = 45.5MHz. In an ideal interferometer

without cavity offsets, the 00 modes of the RF sidebands satisfy 𝐸(−𝑓𝑖) = −𝐸*(𝑓𝑖)

for 𝑖 = 1, 2 if we set the input carrier field to be real. Thus the whole-plane integrated

36.4MHz signal can be written as

𝑆(36.4MHz) = 𝐸*(−𝑓2)𝐸(−𝑓1) + 𝐸*(𝑓1)𝐸(𝑓2) = 2𝐸*(𝑓1)𝐸(𝑓2), (8.1)

which does not vanish. This is in contrast to the beat note between a RF sideband

and the carrier field 𝐸(0) ∈ R, which is given by

𝑆(𝑓𝑖) = 𝐸*(−𝑓𝑖)𝐸(0) + 𝐸(0)𝐸(𝑓𝑖) = 0. (8.2)

Therefore for the RF36 signal we define the I phase to be the phase at which 𝑆(36.4MHz)

shows up. In other words, the RF beam spot shows up in the I phase.

In Figure 8-1 we show the simulated AS_RF36 responses to SRM misalignment

as function of the detector’s Gouy phase (and therefore we have dropped the “A” in
1Recall from Section 6.4 that the “AS” part means that the signal is derived from the antisym-

metric port of the interferometer (cf. Figures 5-1 and 6-4). The “A” part labels the Gouy phase of
detector and the “RF36” part means the signal is demodulated at 36.4 MHz. Lastly, the demodula-
tion phase is given by the “I” part. This is the phase at which the demodulated power appears.
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Figure 8-1: The response of the AS_RF36 signal to SRM misalignment as a function
of the detector’s Gouy phase. The top and bottom panels show the error signal in the
I and Q phases, respectively. The blue trace corresponds to an ideally mode-matched
interferometer and the orange trace represents the case with wavefront distortion
induced by 100 km of thermal lens. We have normalized the signals by the maximum
amplitude of the response in the ideal interferometer.

the sensor’s name) using FINESSE (Brown & Freise, 2014). Here we can first focus

on the blue trace that assumes an ideal interferometer with perfect mode matching.

From the figure, the SRM alignment signal shows up mainly in the I phase, and this is

the first issue of the AS_RF36 signal. As we have discussed in Section 6.3, a WFS’s

signal derived from a carrier-sideband pair has the nice property that it is insensitive

to spot centering thanks to equation (8.2). This is, however, no more true for the

36.4MHz signal due to equation (8.1) and the fact that the SRM alignment signal

is mainly in the I phase. As a result, if the sensors drift in position with respect to

the main interferometer, the AS_RF36 signal cannot distinguish such effects from

real SRM misalignments. Moreover, as the interferometer powers up, the thermally

induced carrier contrast defect may leak to the anti-symmetric port and contaminate

the centering loops that steer the DC spot to the PD. The centering loops then drive

the spot at 36.4MHz to be off-centered, and consequently offsets the SRM’s alignment

via the alignment feedback (Fulda & Brown, 2015).

The second drawback of the scheme is illustrated by the orange trace in Figure 8-
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1. Here we introduce an extra thermal lens in the ITMX substrate. The focal length

of the lens is set to fix = 100 km, which creates approximately the same amount of

scattering loss in the carrier 00 field as the point absorber observed at the Hanford

observatory during the second observing run (Yamamoto, 2017). The thermal lens

dramatically changes the error signal’s response. While in the nominal case two

sensors separated by 𝜋/2 in Gouy phase would be sufficient to reconstruct error signals

in the entire Gouy phase space, when 02/20 modes are present, this is no longer the

case. For instance, if we happen to place the two sensors at Gouy phases of 30∘ and

120∘, the response may essentially vanish in both sensors. Moreover, the signal at

Gouy phase of ≃ 120∘ (which corresponds to the peak sensitivity in the nominal case)

changes sign as we include the thermal lens. This will clearly destabilize any control

system based on this signal.
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Figure 8-2: Decomposition of the AS_RF36_I signal. On the left is the ideal case
with the interferometer perfectly mode-matched. On the right 100 km of extra ITMX
thermal lens is introduced.

We further examine the error signal decomposition in Figure 8-2. In the legend we

use ⟨𝑓 ′
𝑚′𝑛′ , 𝑓𝑚𝑛⟩ to denote the beat note between the 𝑚′𝑛′ mode of RF sideband with

frequency 𝑓 ′ and the 𝑚𝑛 mode of sideband 𝑓 . The beat note is detected at a WFS

(i.e., we subtract the upper- and lower-half planes to derive the signal). Here we focus

on alignment in pitch so 𝑚 = 𝑚′ = 0, and parity enforces a vanishing signal if 𝑛− 𝑛′
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is even. In the ideal interferometer, the error signal is dominated by the 9.1MHz 00

mode beating 45.5MHz 01 mode and their complex conjugates (note that the signals

are not symmetric because of the Gouy phase; see Section 6.1). When differential

wavefront distortion is taken into account, however, the 02 mode of the 9.1MHz

sideband creates a beat note with the 45.5 MHz 01 mode which is much stronger than

the one generated by the 9.1MHz 00 mode. Furthermore, ⟨9.101, 45.500⟩ also increases

significantly. This is because the 01 mode can be generated not only from the 00 mode

but also the 02 mode by reflection from a misaligned mirror. As the 02 mode of the

9.1MHz has a greater amplitude than the 00 mode in the signal-recycling cavity, it

becomes the main source from which the 01 mode is generated. As a consequence of

both effects, the signal content of the AS_RF36 changes dramatically when 02/20

modes are included.

Figure 8-2 indicates that the drastic modification is due to a large |𝐸02(𝑓1)|/|𝐸00(𝑓1)|
ratio (with 𝑓1 = 9.1MHz) at the anti-symmetric port. The question then becomes the

following. What determines this ratio and why is it so large? Since both 𝐸00(𝑓1) and

𝐸02(𝑓1) are off-resonance in the low-finesse signal-recycling cavity, we can ignore the

signal-recycling cavity’s filtering effects. Then each mode’s amplitude is determined

by how much it transmits through the Michelson. For the 00 mode, the transmissivity

is determined by the Schnupp asymmetry 𝑙sch = 0.08m (cf. Section 5.2.2),

|𝐸00(𝑓1)| ∝ sin

(︂
2𝜋𝑓1𝑙sch

𝑐

)︂
≃ 2𝜋𝑓1𝑙sch

𝑐
= 1.5%. (8.3)

For the 02 mode, on the other hand, it is due to the differential wavefront distortion,

|𝐸02(𝑓1)| ∼
1/Δf

1/RoCi

≃ 2%×
(︂
100 km

Δf

)︂
, (8.4)

where Δf is the differential thermal lens and RoCi is the radius of curvature of the

ITM. In the above expression we have ignored order unity corrections. Because of

the small transmissivity of 𝐸00(𝑓1) through the Michelson, even a few percent of

differential wavefront distortion can lead to a significant amount of high-order mode

compared to the main 00 component. Note that the above equations are all for
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amplitudes. In terms of contrast defect defined in power, it means the 𝐸00(𝑓1) will

be greater than the higher-order-mode contaminations only if the contrast defect is

better than 100 ppm. Such a condition is hardly satisfied in aLIGO even without

point absorbers.

Consequently, an error signal that is more robust against wavefront distortion is

in demand. This leads to the addition of a third RF sideband to the interferometer at

𝑓3 = 118.3MHz and the new AS_RF72_Q detection scheme (Yu & Sigg, 2017). In

this scheme, the error signal will be derived from the beat note between the existing

45.5MHz sideband and the new 118.3MHz sideband. To see why this signal is more

robust, we again consider the ratio |𝐸02(𝑓3)|/|𝐸00(𝑓3)|. For the 00 mode, note that the

transmissivity through the Michelson is proportional to the RF frequency, meaning

that the transmissivity of the 𝐸02(𝑓3) is about 13 times greater than that of 𝐸00(𝑓1).

The transmissivity of the 02 mode, nonetheless, is independent of frequency and about

same fractional amount of 𝐸02(𝑓3) is leaked to the anti-symmetric port as 𝐸02(𝑓1).

Overall, this leads to
|𝐸02/𝐸00(𝑓3)|
|𝐸02/𝐸00(𝑓1)|

≃ 𝑓1
𝑓3

≃ 1

13
. (8.5)

After taking the signal-recycling cavity’s filtering effect into account, a FINESSE sim-

ulation leads to a ratio of 1/8.5. Therefore, we should expect the RF72 error signal

to be about 10 times more robust than the RF36 signal against thermal distortions.

This is confirmed by the numerical simulation shown in Figure 8-3 where we

consider the signal’s response to SRM alignment in both the ideal case and the case

with thermal distortion. The signal decomposition is shown in Figure 8-4. In the new

72.8MHz signal, the fractional variations both in the overall response and in each

individual beat note pair are significantly reduced compared to the 36.4MHz signal.

Moreover, in this scheme the SRM signal shows up equally in the I and Q phases.

This means that we can use the Q phase signal to sense the signal-recycling cavity’s

alignment, and it is orthogonal to the spot position variation that shows up only in

the I phase. Consequently, even if the carrier contrast defect contaminates the DC

centering loop, the alignment of the signal-recycling cavity will not be biased with
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the AS_RF72_Q signal.
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Figure 8-3: Similar to Figure 8-1 but this time it shows the AS_RF72 error signal
as a function of the detector Gouy phase. Compared to the AS_RF36 signal, the
AS_RF72 signal sees significantly less variations due to differential thermal lenses.
Moreover, the response is largely in the Q phase, decoupling the decoupling between
spot position drifts and the true signal-recycling cavity’s alignment signal.

The new scheme has been implemented at both LIGO observatories prior the third

observational run and works properly at an input power of 40W. In contrast, the

original RF36 signal could not be used once the input power increases beyond 20W.2

8.2 DETUNING OF THE SIGNAL-RECYCLING

CAVITY

In Section 5.3.2 we derived the DARM optical response in the resonant-sideband-

extraction configuration, corresponding to a microscopic longitudinal tuning of the

SRM of 𝜑s = 90∘. If 𝜑s deviates from an integer number times 𝜋/2, an optical spring

will be formed (Buonanno & Chen, 2002). In Figure 8-5 we present the DARM optical

responses at 𝜑s = 90∘, 89.5∘, and 90.5∘, corresponding to the blue, the orange, and the

red traces, respectively. We choose these values because in aLIGO’s second observing
2https://alog.ligo-la.caltech.edu/aLOG/index.php?callRep=41784
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Figure 8-4: Decomposition of the AS_RF72_I signal.

run, the Hanford observatory experienced an unintentional detuning of the SRM of

−0.5∘ from its nominal position, or 𝜑s = 89.5∘ (Hall, 2017; Cahillane et al., 2017).3

The detuning reduces the DARM optical response at . 30Hz and thus degrades the

sensitivity in the same band. In this Section we propose a model to explain this

effect (Yu, 2017), and show that the same extra ITMX thermal lens causing SRM

alignment issues in the previous Section is also responsible for the detuning of SRM.

The physical process can be summarized as the following. The thermal lens creates

a phase shift on the RF sidebands quadratic in the radius of curvature mismatch (for

the carrier field this effect is at a higher order as it is resonant in the arm cavity). Such

a phase shift breaks the symmetry between the upper and lower sidebands such that

−𝐸(𝑓RF) ̸= 𝐸*(−𝑓RF). Consequently, the PDH error signal is not zeroed anymore

even there is no real detuning in that DOF (as experienced by the carrier field).

However, the control loop cannot distinguish such a higher-order-mode contamination

from the real error signal, and as the controller tries to zero the signal, it actually

introduces an offset.

In Figure 8-6 we show the error signal,4 𝑆srcl, for the signal-recycling cavity’s

3Our sign convention follows that defined in FINESSE, which is opposition to the one used by Hall
(2017).

4In aLIGO, it is a linear combination of POP_9_I and POP_45_I that is insensitive to length
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Figure 8-5: The optical response of DARM at different SRM tunings. The orange
trace (𝜑s = 89.5∘) is consistent with the measured optical response of the LIGO
Hanford observatory during the second observing run.

length, or SRCL, as a function of the inverse of extra ITMX thermal lens, or 1/fix.

In the process, no physical detuning in SRCL (experienced by the carrier filed that

contains the GW signal) is introduced, and the error signal deviates from zero because

of the higher-order-mode contamination in the RF sidebands. As a comparison, the

red-dotted line is the error signal caused by a real SRCL detuning of 0.5∘, and we

have normalized the response such that it corresponds to 𝑆srcl = 1. The plot indicates

that for an extra ITMX thermal lens of fix ≃ 100 km, it may induce an error signal

equivalent of 0.5∘. Then as the negative feedback control is engaged, it will detune

the SRM to 𝜑s = 89.5∘ to zero this signal, which further induces the anti-spring in

the DARM optical response.

To further confirm the above mechanism, we utilize the lock command in FINESSE (Brown

& Freise, 2014). Specifically, in our numerical models we construct an error signal for

SRCL as it is done in the real aLIGO interferometer, and feed it to the SRM longitu-

dinal tuning 𝜑s iteratively to zero the error signal. Therefore, we are able to simulate

the real interferometer’s control loops in our numerical models, thereby studying the

detuning in a realistic way.

fluctuations of the power-recycling cavity.
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Figure 8-6: The SRCL error signal as a function of the inverse of extra ITMX thermal
lens. The differential thermal lens induces an offset that is quadratic in the radius of
curvature mismatch (it is not exactly symmetric about 1/fix = 0 due to the intrinsic
mode-mismatch in our numerical model). When fix ≃ 100 km, the higher-order mode
induced offset equals to that from a real 0.5∘ detuning of SRM (indicated by the
red-dotted line).

The results are illustrated in Figure 8-7. The blue trace shows the nominal DARM

optical response with 𝜑s = 90∘ (i.e., the resonant-side-band extraction configuration).

To study the effect of thermal distortion, we introduce an extra ITMX thermal lens

of fix = 100 km to mimic the point absorber in the second observing run. Meanwhile,

we use the lock command to keep the SRM at a position zeroing its PDH error

signal. After the lock is completed, we then compute the DARM optical response

and the result is shown in the orange trace. Indeed, a loss of response at sub-30 Hz

is observed, consistent with the −0.5∘ detuning of the SRM (cf. the orange trace in

Figure 8-5) measured at the Hanford observatory. To verify this is an effect due to

the offset in the feedback control, we also present the DARM optical response in the

purple-dashed line where we introduce the same amount of thermal lens but do not

engage the SRCL feedback. It is inconsistent with the measurement (actually, a small

positive optical spring is formed due to effects at higher orders in radius of curvature

mismatch), and thus indicates that the thermal lens by itself is unlikely to explain

the observed anti-spring. Lastly, for completeness we also consider the effects due to
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a common thermal lens. This time we put fix = fiy = 100 km to both the ITMX and

ITMY, and then engage the lock command for SRCL. The result is illustrated in the

red trace, which is essentially consistent with the nominal case.

10 30 100 300 103 3 × 103

Frequency [Hz]

1

3

6

10

DA
RM

 O
pt

ica
l R

es
po

ns
e 

[W
/n

m
]

Nominal
100 km diff. lens
100 km comm. lens
100 km diff. lens; no SRCL locking

Figure 8-7: The optical response of DARM at different interferometer configurations.
The thermal lens induces an offset in SRCL locking point, which detunes the SRM via
the control feedback and creates an anti-spring in the DARM response (the orange
trace). On the other hand, with only the thermal wavefront distortion but no control
feedback it is insufficient to create the anti-spring as indicated by the dashed-purple
trace.

To summarize, we have proposed a mechanism to explain the observed loss of low-

frequency DARM response. That is, the thermal lens that contaminates mostly the

RF sidebands induces on offset in the PDH error signal, and to zero this signal, the

control loop detunes the SRM, which affects both the RF sidebands and the carrier

field. The net result is thus a detuning on the carrier field that carries the GW signal.
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Chapter 9

Prospects for detecting gravitational

waves at 5 Hz with ground-based

detectors

9.1 INTRODUCTION1

The detection of GWs from coalescing binary BHs (Abbott et al., 2016b, 2018a)

by aLIGO (Aasi et al., 2015) and Advanced Virgo (aVirgo; Acernese et al. 2015b)

heralded the era of GW astrophysics. However, detecting binaries that are more

massive and further away than the current BH catalog is challenging. Since the

merger frequency decreases as the total mass of the binary increases, systems more

massive than a few ×100𝑀⊙ will no longer lie in the most sensitive band of aLIGO.

Intermediate-mass black holes (IMBHs) are an example of systems likely to be missed

by aLIGO (Miller & Colbert, 2004; Mandel et al., 2008; Graff et al., 2015; Veitch et al.,

2015b; Haster et al., 2016; Abbott et al., 2017b) . At the same time, a pair of 30𝑀⊙

BHs at 𝑧 = 2 will appear to have a total mass of 180𝑀⊙ due to the cosmological

redshift (Cutler & Flanagan, 1994), illustrating the difficulties of detecting even the

stellar-mass BHs at cosmological distances. Therefore, improving the low-frequency

1This Chapter is based-on Yu et al. (2018).
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sensitivity plays a crucial role in extending both the mass and the spatial range of

detectability.

Another scientific goal of GW detectors is to enable multimessenger astronomy, as

demonstrated by the detection of a merging neutron star (NS) binary in GW and the

follow-ups by electromagnetic telescopes (Abbott et al., 2017c; Abbott et al., 2017d).

To help the subsequent observations, GW observatories need to provide the source

location not only accurately but also quickly. Since the time to merger scales with

frequency 𝑓 as 𝑓−8/3, if the error area can shrink small enough at a lower frequency, the

location information can be sent out at a much earlier time. Consequently, improving

the low-frequency sensitivity allows for more timely follow-up observations.

In this Chapter we propose an upgrade to aLIGO (and its evolution A+; Lazzarini

et al. 2016) that enables a significant enhancement in sensitivity in the 5-30Hz band

while maintaining high frequency performance. This new design, dubbed “LIGO-LF”,

can be implemented on a timescale of ∼10 yr and serve as a pathfinder for later

upgrades like the Voyager (Adhikari et al., 2017) and next-generation detectors like

the Einstein Telescope (Hild et al., 2010; Sathyaprakash et al., 2012) and Cosmic

Explorer (Abbott et al., 2017a).

9.2 LIGO-LF DESIGN

The current aLIGO sensitivity below 30Hz is limited by nonstationary technical

noises (Martynov, 2015; Martynov et al., 2016; Hall, 2017). Here we describe the

solutions that we propose to reach the LIGO-LF sensitivity shown in Figure 9-1.

The first element of the upgrade reduces the angular control noise. Angular motion

of the optics is actively stabilized using wavefront sensors with a typical sensitivity

of 5× 10−15 rad/
√
Hz (Barsotti et al., 2010; Martynov et al., 2016). The bandwidths

of the arm cavity angular loops are set to 3Hz for aLIGO to simultaneously suppress

the radiation torque (Sidles & Sigg, 2006; Hirose et al., 2010; Dooley et al., 2013) and

reduce the seismically induced motion to a few nrad rms (cf. Chapter 7). However, the

control noise disturbs the test masses above 5Hz and contaminates the GW readout
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Figure 9-1: Proposed sensitivity for LIGO-LF (solid black line) and its noise budget
(dashed lines). Also shown in the dotted red curve is the spectrum of a 200𝑀⊙-
200𝑀⊙ binary BH merger (in the detector frame) at 10Gpc. LIGO-LF’s sensitivity
to such systems is greatly enhanced relative to aLIGO (solid blue line) and A+ (solid
magenta line). Throughout this Letter, we will adopt the same coloring convention
when we compare different sensitivities (i.e., we use black, magenta, and blue for
LIGO-LF, A+, and aLIGO, respectively).

via beam mis-centering on the mirrors. To reach the LIGO-LF requirements, we thus

need to reduce the control bandwidth to . 1Hz.

Consider first the effects of radiation pressure. As we have discussed in Sec-

tion 7.2.2, the shift in the suspension resonant frequency due to the radiation torque

is given by

Δ(𝜔2
±) =

𝑃𝐿

𝐼𝑐

[︃
(ge + gi)∓

√︀
(ge − gi)2 + 4

(gegi − 1)

]︃
, (9.1)

where we have used +(−) to represent the hard (soft) mode. To mitigate it, we

propose to increase LIGO-LF’s test masses from 40 to 200 kg, which also improves the

fundamental noises and is a fundamental part of next-generation GW detectors. The

moment of inertia of the test masses consequently increased by a factor of 55/3 ≃ 15

if we assume the mirror geometry stays the same as that of the aLIGO mirror. With

further geometrical optimization, a factor of 30 increase in 𝐼 would be possible. For

LIGO-LF, we also slightly reduce the radius of curvature of the ITMs to gi = −1.21

so that the spot size on the ETMs are increased by 50% to reduce the coating thermal
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Figure 9-2: Inertial sensor noise for aLIGO (blue line) and the requirement for LIGO-
LF (black line). Custom tiltmeters can be used to improve aLIGO sensor noise
below 0.5 Hz (blue dashed line). A novel 6D seismometer (red line) can surpass the
requirement in the entire band.

noise. As a result, for LIGO-LF we have Δ(𝜔2
+) = (2𝜋 × 1.0Hz)2 for the hard mode

and Δ(𝜔2
−) = −(2𝜋 × 0.11Hz)2 for the soft mode with 0.8MW of power circulating

in each arm. As a comparison, for aLIGO with the same amount of circulating power

the numbers are Δ(𝜔2
+) = (2𝜋×3.0Hz)2 and Δ(𝜔2

−) = −(2𝜋×0.64Hz)2, respectively.

We can further remove the radiation torque with the compensation technique we have

discussed in Section 7.2.2 which injects approximately the same amount of sensing

noise as the 1-Hz-bandwidth feedback control.

Now the question becomes how can we reduce the residual angular motion to

. 1 nrad with a control bandwidth of only 1Hz. We propose to achieve this by

further suppress the motion of the optical benches.

Despite the sophistication of LIGO’s seismic isolation (Matichard et al., 2015a,b,c),

it does not significantly reduce the microseismic motion at ∼0.2Hz. This is due to

tilt-to-horizontal coupling (Lantz et al., 2009; Matichard & Evans, 2015; Matichard

et al., 2016), which causes the noise of the aLIGO inertial sensors to grow as 1/𝑓 4

at low frequencies as shown in Figure 9-2. To reduce the bandwidth of the angular

controls to 1Hz, the tilt motion needs to be suppressed to 10−10 rad/
√
Hz in the 0.01-
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0.5Hz band. The corresponding horizontal sensitivity is shown in Figure 9-2. Above

1Hz we require an improved sensitivity to reduce the direct coupling of the ground

motion.

There are two approaches to reach the required sensitivity of the inertial seismic

sensors. The first one is to actively stabilize the tilt motion using custom-built tilt-

meters (Venkateswara et al., 2014, 2017), which can achieve the requirement below

0.5Hz. The second approach uses a novel 6D seismometer (Mow-Lowry & Martynov,

2018). In the core of this instrument is a quasimonolithically suspended (Cumming

et al., 2012) mass whose position is monitored using an interferometric readout. Fig-

ure 9-2 shows that the design performance of the 6D seismometer satisfies the re-

quirement in the entire band.

In Figure 9-3 we compare the residual pitch motion for aLIGO and LIGO-LF after

the alignment control is engaged; the yaw motion is similar at high frequencies and

is significantly less than pitch below 1Hz, so the low frequency rms requirement for

yaw is less critical. The control bandwidth is set to be 3Hz and 1Hz for LIGO-LF2.

In the calculation for aLIGO, we use the measured ground motion and shadow sensor

noise to represent the contributions due to seismic and due to suspension damping,

respectively. For LIGO-LF, we adopt the required sensor noise (the black trace in Fig-

ure 9-2) for the residual seismic motion, and scale the shadow sensor noise of aLIGO

down by a factor of 100 for the damping noise. Therefore our results here should be

interpreted as the requirement set for the future seismic and damping sensors. The

sensing noise from the wave-front sensors is assumed to be 5×10−15 rad/
√
Hz for both

aLIGO and LIGO-LF. For LIGO-LF we also include the contribution to the sensing

noise from the radiation pressure compensation path. Also shown in the red curve as

a comparison is the equivalent quantum noise: with 1mm of spot mis-centering, an

angular fluctuation per test mass given by the red curve will be converted to a length

noise equal to the LIGO-LF’s quantum limit.

2Here we have assumed a controller with 1/𝑓 shape around the unity-gain frequency. We then add
high-frequency cutoff filters while keeping the phase margin to be at least 30∘. The optimal control
design is not used here. Therefore Figure 9-3 serve as a conservative estimation of the alignment
noise.
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Figure 9-3: The residual pitch motion of aLIGO (left panel) and LIGO-LF (right
panel). The black-solid curves are the total angular motion and the black-dashed
ones are the corresponding cumulative rms values. The dotted curves are the noise
contributions due to seismic (blue), suspension damping (orange), and wave-front
sensing (purple), respectively. The red-solid curve is shown for comparison; it cor-
responds to a noise level equivalent to the LIGO-LF’s quantum noise if the spot
mis-centering is 1mm.

The coupling of the longitudinal motion of the signal recycling cavity contami-

nates aLIGO’s sensitivity in the 10-50Hz band (Martynov et al., 2016). This coupling

is proportional to the arm detuning (Izumi & Sigg, 2017) introduced to enable the dc

readout of the GW signal (Fricke et al., 2012). For LIGO-LF, we assume balanced-

homodyne readout (Fritschel et al., 2014) will be implemented instead, which essen-

tially eliminates the coupling.

In aLIGO, high-quality-factor suspension resonances are damped using shadow

sensors (Carbone et al., 2012) with a sensitivity of 2×10−10m/
√
Hz. A global control

scheme has been proposed (Shapiro et al., 2015) to reduce its direct coupling to the

GW output. However, this noise still enters the auxiliary loops and couples to the

GW output indirectly. This calls for an improvement of the sensor noise by a factor

of 100. Interferometric sensors (Aston, 2011) are promising candidates and are used

in the LIGO-LF design.

Once technical noises are suppressed, LIGO-LF sensitivity will be limited by quan-
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tum and thermal noises. Our strategy to improve the fundamental limits is similar

to the Strawman Team Red design (Hild et al., 2012).

Quantum noise (Buonanno & Chen, 2001; Miao, 2012; Martynov et al., 2017)

manifests both as sensor shot noise and as displacement noise by exerting quantum

radiation pressure (QRP) forces on the test masses. LIGO-LF will operate under

“resonant-sideband extraction” (Mizuno et al., 1993) with the same amount of power

circulating in the arms as aLIGO. A signal recycling mirror transmissivity of 0.25 is

chosen to optimize the broadband sensitivity.

The quantum noise can be further reduced with squeezed light (McClelland et al.,

2011; Ligo Scientific Collaboration, 2011; Aasi et al., 2013). Here we assume a

frequency-dependent squeezing (Kimble et al., 2001; Harms et al., 2003; Kwee et al.,

2014; Oelker et al., 2016) that provides 3 dB reduction of the QRP and 6 dB of the

shot noise. Relative to aLIGO, QRP is further suppressed by the heavier test masses

mentioned above.

Thermal noise (Saulson, 1990) from the suspension (González, 2000; Cumming

et al., 2012) and the optical coatings (Levin, 1998; Hong et al., 2013; Yam et al.,

2015; Gras et al., 2017; Martynov et al., 2017) dominates the sensitivity from 5 to

100Hz. Suspension thermal noise can be lowered by doubling the length of the last

suspension stage to 1.2 m (Young & Budynas, 2002; Hammond et al., 2012) and

by applying more sophisticated surface treatments (Mitrofanov & Tokmakov, 2003).

LIGO-LF’s penultimate masses will also need to be suspended with fused silica fibers

to avoid excess noise. Furthermore, the vertical suspension resonance can be shifted

down to 4.3Hz by increasing the fiber tension to 1.7 GPa. Overall, a factor of 5

improvement over aLIGO suspension thermal noise is possible (details of the LIGO-

LF suspension are available in Appendix F.1).

The larger test masses and better seismic isolation open up the possibility of

increasing spot sizes on the test masses by 50%, with a corresponding reduction in

the coating thermal noise. Furthermore, a factor of 2 improvement in the coating loss

angle is expected by the time of LIGO-LF (Steinlechner et al., 2016).

Further sensitivity improvement below 30Hz is limited by gravity gradient noise (Saul-
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son, 1984; Hughes & Thorne, 1998; Driggers et al., 2012; Creighton, 2008; Harms,

2015). It can be mitigated with offline regression (Coughlin et al., 2016), and in our

calculation we assume a factor of 10 cancellation (Abbott et al., 2017a). The residual

is combined with the residual seismic motion in Figure 9-1 under the label “seismic”.

Scattering is another critical noise source below 30Hz (Flanagan & Thorne, 1994;

Ottaway et al., 2012; Martynov, 2015). A small amount of light can scatter off the test

masses due to surface imperfections, hit the baffles along the beam tubes, and finally

recombine with the main beam. These stray photons induce differential power fluctu-

ations which perturb the test masses via radiation pressure. In Figure 9-1, we present

a scattering noise curve estimated from the typical ground motion at the LIGO sites

with an anticipated 50% improvement in the mirror surface quality relative to aLIGO.

As the relative displacement between the test mass and the tube is comparable to the

laser wavelength (1𝜇m), the coupling can become nonlinear, up-converting the baffle

motion below 0.4Hz up to 5Hz (Canuel et al., 2013; Martynov et al., 2016) . For rare

cases where the ground motion is severe, an up-conversion shelf can form (Martynov,

2015) and limit the low-frequency sensitivity. The antireflection surfaces along the

optical path also create scattering noise. To suppress it, baffles should be constructed

to block 99.9% of the stray light (details available in Appendix F.2).

In summary, the key LIGO-LF advancements consist of low-noise, interferometric

sensors for seismic isolation and suspension damping, and heavy test masses with large

spot sizes for improving the fundamental limits. The LIGO-LF suspension system is

also redesigned. Combined with the squeezed light, balanced-homodyne readout, and

low-loss coating that are planned for A+, the upgrades lead to the final LIGO-LF

sensitivity.

9.3 ASTROPHYSICAL APPLICATIONS

LIGO-LF can deliver a rich array of science in astrophysics. Here we consider three

examples: (i) binary BHs, including the expected range of detectability and detection

rate, and parameter estimation of events, (ii) binary NSs, focusing on the source
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localization and the detectability of the tidal excitation of NS r-modes, and (iii) the

GW memory effect. The searches for the stochastic GW background (Allen, 1997)

and the continuous GW (Bejger, 2017) rely mostly on the instrument’s high-frequency

performance, and are not enhanced by LIGO-LF.

9.3.1 Binary BHs.

Detectability.

With the LIGO-LF upgrade, both the maximum detectable distance and mass and the

number of detections are larger than with aLIGO and A+, as illustrated in Figure 9-

4. In the left, we plot the single-detector horizon and range (Chen et al., 2017) (in

both redshift 𝑧 and luminosity distance 𝐷𝐿) for binaries with different total masses

𝑀tot. The systems are assumed to be nonspinning and to have equal masses. A

single LIGO-LF could detect binary BHs to cosmological distances (𝑧 ≃ 6), whereas

a network of four detectors would observe to 𝑧 ∼ 10, potentially accessing the first

generation of stellar BHs (Sesana et al., 2009).

The detection range allows us to estimate the detection rate. To proceed, we adopt

the standard power-law mass distribution used in LIGO event rate estimation (Abbott

et al., 2016b). The probability densities of the primary mass 𝑀1 and the secondary

mass 𝑀2 are respectively given by

𝒫1(𝑀1) = 𝒜𝑀1𝑀
−𝛼
1 Θ(𝑀1 −𝑀gap) exp

(︂
− 𝑀1

𝑀cap

)︂
, (9.2)

𝒫2(𝑀2) = 𝒜𝑀2Θ(𝑀2 −𝑀gap)Θ (𝑀1 −𝑀2) , (9.3)

where 𝒜𝑀1 and 𝒜𝑀2 are overall normalizations, and Θ denotes the Heaviside step

function. Following the convention we use a slope of 𝛼 = 2.35 and a lower limit

of the mass distribution 𝑀gap = 5𝑀⊙. Consistent with Kovetz (2017), we have an

exponential cutoff on 𝑀1 which is set to 𝑀cap = 60𝑀⊙. Additionally we require

𝑀1 +𝑀2 ≤ 100𝑀⊙. We do not consider the IMBHs in our rate calculation because

of the large uncertainty in their formation; they are sufficiently rare and are thus
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Figure 9-4: Left: The horizon (solid line) and range (dashed line) for binaries with
different (source-frame) total masses. A single LIGO-LF may reach a cosmological
redshift of 𝑧 ≃ 6. Right: Expected detections rate of coalescing stellar-mass BH
binaries as a function of the total mass. We marginalize over the mass ratio in the
plot. LIGO-LF can detect ∼ 3600 events per year, 18 times more than the expected
number for aLIGO. All the numbers are calculated assuming a single detector.

unlikely to affect the total number of detections. For the merging rate, we adopt a

simple, mass-independent approximation (Kovetz, 2017)

ℛ(𝑧) = 97(1 + 𝑧)2Gpc−3 yr−1. (9.4)

The expected number of detection per unit time d𝑇 in the mass interval [𝑀tot,𝑀tot + d𝑀tot]

is given by

d𝑁 (𝑀tot)

d𝑇d𝑀tot

= 4𝜋

∫︁ 𝑀tot

𝑀tot/2

d𝑀1𝒫1 (𝑀1)𝒫2 (𝑀tot −𝑀1)

×
∫︁ 𝑧ran(𝑀1,𝑀tot−𝑀1)

0

𝑐𝜒(𝑧)2ℛ(𝑧)

(1 + 𝑧)𝐻(𝑧)
d𝑧, (9.5)

where 𝑧ran(𝑀1,𝑀2) is the detection range for a binary system with 𝑀1 and 𝑀2, 𝜒(𝑧)

the radial comoving distance, and 𝐻(𝑧) the Hubble parameter. In the calculation

we have assumed a flat universe with Hubble constant 𝐻0 = 67 km s−1Mpc−1 and

matter (dark energy) fraction of Ω𝑚 = 0.32 (ΩΛ = 0.68), consistent with the Planck
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result (Planck Collaboration, 2016). The 𝑧ran(𝑀1,𝑀2) is calculated with a single

detector when we do the rate estimation. This is because we would like to focus on

the improvements due to better sensitivity, instead of due to more detectors or more

optimized network configuration.

The result is shown in the right panel of Figure 9-4. If we integrate over 𝑀tot, we

find a single LIGO-LF instrument will enable the detection of ∼ 3600 stellar mass

BH binaries per year. As a comparison, a single aLIGO (A+) can detect only about

∼ 200(1600) mergers in the same observational length. Note that the number of detec-

tions 𝑁 yields a Poisson distribution, with a statistical uncertainty of
√
𝑁 . Therefore

the statistical SNR grows as
√
𝑁 , illustrating LIGO-LF’s greatly enhanced ability

to constrain the population properties of binary BHs relative to aLIGO. Consider

a simple case where the merging rate ℛ is the only unknown, then with LIGO-LF

we would be able to constrain it to within ±0.5Gpc−3 yr−1 for a total observational

period of 10-year, 4 times better than what aLIGO can achieve. As ℛ is sensitive to,

e.g., the metallicity at the time of binary formation (Abbott et al., 2016e), an accu-

rate measurement of ℛ thus constrains the metal enrichment history of the Universe.

Furthermore, the event rate per mass interval can also be used to place constraints on

the fraction of dark matter in the Universe that is in the form of primordial BHs (Bird

et al., 2016; Kovetz, 2017).

Parameter estimation

Moreover, LIGO-LF enables a more accurate parameter estimation than aLIGO. To

emphasize the improved low-frequency sensitivity, we consider binaries with detector-

frame total mass 𝑀 (d)
tot ≥ 100𝑀⊙. Since the sensitivity of A+ and aLIGO is similar

below 20Hz, we consider the comparison between LIGO-LF and aLIGO. Qualita-

tively, the improvements are due to two facts: A more total SNR is accumulated

in LIGO-LF than in aLIGO, and the SNR starts to accumulate at lower frequen-

cies. Thus, if aLIGO can measure only the merger-ringdown phase of a coalescence,

with LIGO-LF we could access the inspiral phase as well, allowing for a more precise

estimation of the component masses and spins.
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To quantify these improvements, we simulate GW signals with the IMRphenomPv2

waveform (Hannam et al., 2014) and inject them to mock detector noise. We con-

sider five total mass bins from 100𝑀⊙ to 2000𝑀⊙, each with three spin configura-

tions: (𝜒eff = 𝜒p = 0), (𝜒eff = 0.5, 𝜒p = 0.6), and (𝜒eff = −0.5, 𝜒p = 0.6). Here

𝜒eff is the mass-weighted sum of component spins along the orbital angular momen-

tum (Ajith et al., 2011; Santamaría et al., 2010), and 𝜒p captures the precessing

components (Schmidt et al., 2015). The effect of the mass ratio has been studied

in Veitch et al. (2015b); Haster et al. (2016), so we focus on the equal mass case.

We consider a four-detector network formed by the Hanford (H) and the Livingston

(L) sites, LIGO-India (I), and aVirgo (V). For HLI, we consider both the LIGO-LF

and aLIGO sensitivities; for V, we fix it at its design sensitivity (Acernese et al.,

2015b). KAGRA (Somiya, 2012) is not included as it is less sensitive to IMBHs. For

each source, the inclination is fixed to 30∘ and the distance is chosen such that the

network SNR is 16 with aLIGO’s sensitivity. We then use the LALInference (Veitch

et al., 2015a) to get posterior distributions of source parameters. The parameter

estimation results refer to the detector frame and we denote them with a superscript

‘d’.

In Figure 9-5, we plot the 90% credible intervals of the chirp mass ℳ(d)
𝑐 , total

mass 𝑀 (d)
tot , and 𝜒eff . For the masses, we present the results for the nonspinning case.

When spins are included, an aligned (antialigned) spin tends to improve (degrade) the

inference accuracy (Ng et al., 2018). Similar effects can also be seen in the posterior

distributions of 𝜒eff , as illustrated in the bottom panels. The precession term 𝜒p

cannot be well constrained even with LIGO-LF.

To obtain the source-frame masses, the value of inferred redshift is required (Cutler

& Flanagan, 1994). The conversion is

ℳ𝑐 =
ℳ(d)

𝑐

1 + 𝑧
(9.6)

for the chirp mass ℳ𝑐, and similarly for the total mass 𝑀tot.

In Figure 9-6 we present the 90% credible intervals of the redshift 𝑧. To yield a net-

216



100  400 103 2 × 103

M(d)
tot  [M ]

0.8

0.9

1.0

1.1

1.2

(in
fe

r)
c

/
(tr

ue
)

c

LIGO-LF
aLIGO

100  400 103 2 × 103

M(d)
tot  [M ]

0.8

0.9

1.0

1.1

1.2

M
(in

fe
r)

to
t

/M
(tr

ue
)

to
t

eff = p = 0

100 400 103

-0.3

0.0

0.3

0.6

(in
fe

r)
ef

f
(tr

ue
)

ef
f

eff = 0.5, p = 0.6

LIGO-LF
aLIGO

100 400 103

M(d)
tot  [M ]

eff = p = 0

100 400 103 2 × 103

eff = 0.5, p = 0.6

Figure 9-5: The 90% credible intervals of the detector-frame chirp mass ℳ(d)
𝑐 (top

left), total mass 𝑀 (d)
tot (top right), and effective spin 𝜒eff (bottom) are all significantly

smaller for LIGO-LF than for aLIGO. LIGO-LF also reduces biases, especially for
ℳ(𝑑)

𝑐 and 𝜒eff when the spin is antialigned (bottom left).
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Figure 9-6: Mock sources for each total mass were placed at the redshifts indicated by
the red-dashed line. The redshifts were chosen to give a network SNR of 16 in aLIGO.
The black (blue) bars indicate the 90% credible interval for the inferred redshift with
LIGO-LF (aLIGO) sensitivity. LIGO-LF typically improves the constrain in 𝑧 by a
factor of 2.

work SNR of 16 with aLIGO design sensitivity, the redshifts are 𝑧 = (0.53, 0.82, 1.1, 0.92, 0.22)

for the 5 injections we have with 𝑀
(d)
tot = (100, 200, 400, 1000, 2000) 𝑀⊙, respec-

tively. LIGO-LF typically improves the accuracy in the redshift inference by a factor

of 2 relative to aLIGO.

We show the 90% credible intervals of the source-frame masses in Figure 9-7. The

injected source-frame total masses are 𝑀tot = (65, 109, 187, 521, 1644) 𝑀⊙, and chirp

masses ℳ𝑐 = (28, 48, 82, 227, 716) 𝑀⊙. Due to the statistical error in measuring

the redshift, LIGO-LF only constrains the source-frame values 2 times better than

aLIGO.

The effective spin, nonetheless, is unaffected by the redshift and thus LIGO-LF

can achieve 3-5 times better accuracy than aLIGO, which will be essential for dis-

criminating between different formation scenarios that predict different spin configu-

rations (Rodriguez et al., 2016; Farr et al., 2018).
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Figure 9-7: The 90% credible interval of the source-frame chirp mass ℳ𝑐 (left panel)
and total mass 𝑀tot (right panel). The uncertainty is about a factor of 2 smaller for
LIGO-LF compared to aLIGO, and is dominated by the uncertainty in inferring the
redshift.

9.3.2 Binary NSs

Localization

We use the Fisher matrix to examine LIGO-LF’s ability to localize a binary NS

including effects of Earth’s rotation. We consider the same HLIV network as in the

PE section. The coordinates of HLV can be found in Jaranowski et al. (1998), and

we use the same location for I as in Vitale & Evans (2017).

The data seen in the 𝑖th detector in the network can be written as (Zhao & Wen,

2017; Wen & Chen, 2010)

𝑑𝑖(𝑓) =
[︀
𝐹+
𝑖 (𝑓)ℎ+(𝑓) + 𝐹×

𝑖 (𝑓)ℎ×(𝑓)
]︀
exp [−i2𝜋𝑓𝜏𝑖(𝑓)] , (9.7)

where ℎ+(×) is the GW signal in the plus (cross) polarization, 𝐹+(×) the antenna

response whose functional form is provided in Jaranowski et al. (1998), and 𝜏𝑖 the

traveling time from the coordinate origin to the 𝑖th detector. The frequency de-

pendences of 𝐹+(×) and 𝜏𝑖 originate from the rotation of the Earth, and with the
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stationary-phase approximation they can be written as,

𝐹+(×)(𝑓) = 𝐹+(×) [𝑡𝑓 (𝑓)] , (9.8)

𝜏𝑖(𝑓) = 𝜏𝑖 [𝑡𝑓 (𝑓)] , (9.9)

𝑡𝑓 = 𝑡𝑐 −
5

256

(︂
𝐺ℳ𝑐

𝑐3

)︂−5/3

(𝜋𝑓)−8/3 . (9.10)

Here 𝑡𝑐 is the time of the coalescence. We compute the signal ℎ(𝑓) using the post-

Newtonian (PN) expansion, including phase corrections to the 1.5 PN order.

We parameterize the signal in terms of 9 parameters: 𝑝 = (ℳ𝑐, 𝑞, 𝑡𝑐, 𝜑𝑐, 𝜄, 𝜃𝑠, 𝜑𝑠, 𝜓𝑠, 𝑑L),

corresponding to the chirp mass, mass ratio (≤ 1), time and phase at the merger,

the source’s inclination, declination, right ascension, polarization, and luminosity dis-

tance. The spin is not included since the NS is expected to be slow spinning (Abbott

et al., 2017c; Burgay et al., 2003). The statistical error of each parameter can be

estimated using the Fisher matrix with element

Γ𝑗𝑘 =

⟨
𝜕𝑑

𝜕𝑝𝑗
,
𝜕𝑑

𝜕𝑝𝑘

⟩
, (9.11)

where the inner product for data from the network, 𝑎 and 𝑏, is defined as

⟨𝑎, 𝑏⟩ (𝑓up) = 2
HLIV∑︁
𝑖

∫︁ 𝑓up

0

d𝑓
[︂
𝑎*𝑖 (𝑓)𝑏𝑖(𝑓) + 𝑎𝑖(𝑓)𝑏

*
𝑖 (𝑓)

𝑆𝑖(𝑓)

]︂
. (9.12)

Here 𝑆𝑖(𝑓) is the noise power spectra density of the 𝑖th detector, 𝑓up ≤ 2𝑓isco is the

upper limit of the integration, and 𝑓isco is the orbital frequency at the system’s inner-

most stable circular orbit (ISCO). We have treated 𝑓up as a free parameter so that

we can consider the cumulative accuracy using only data with 𝑓 < 𝑓up,

The full covariance matrix Σ can be obtained by inverting Γ,

Σ = Γ−1, (9.13)
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and the statistical error for the 𝑗th parameter 𝑝𝑗 is given by

Δ𝑝𝑗 =
√︀
Σ𝑗𝑗. (9.14)

We are especially interested in the uncertainty solid angle covering the source’s loca-

tion, which is given by

ΔΩ𝑠 = 2𝜋| sin 𝜃𝑠|
√︁

⟨Δ𝜃2𝑠⟩ ⟨Δ𝜑2
𝑠⟩ − ⟨Δ𝜃𝑠Δ𝜑𝑠⟩2. (9.15)

In order to demonstrate the improvement made by LIGO-LF over aLIGO and

A+, we focus on 1.4𝑀⊙-1.4𝑀⊙ NS binaries, and fix the source location to the Coma

cluster. We consider two inclination angles, a face-on one with 𝜄 = 30∘, and a more

edge-on one with 𝜄 = 75∘. The arriving time and polarization of the sources are

marginalized over. The result is shown in Figure 9-8. Here we plot the cumulative

localization error, ΔΩ𝑠(𝑓up) as a function of 𝑓up. In other words, instead of integrating

equation (9.12) over the entire signal band, we integrate it only up to 𝑓up. We can thus

know the localization accuracy at each instant of the inspiral. As shown in the figure,

LIFO-LF localize the source 5 (10) times better than A+ (aLIGO) at 30Hz, and 10

(15) times better at 20 Hz. Note that the time prior to the final merger increases

sharply as the frequency decreases, as

𝑡𝑐 − 𝑡𝑓 = 54

(︂ ℳ𝑐

1.2𝑀⊙

)︂−5/3(︂
𝑓

30Hz

)︂−8/3

s. (9.16)

Despite that the final uncertainties are similar for A+ and for LIGO-LF, LIGO-

LF would be able to send out the source location minutes before the final merger,

while for A+ similar accuracy cannot be achieved until seconds before the merger.

This illustrates LIGO-LF’s ability to achieve a more timely localization than A+ and

aLIGO.
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Figure 9-8: The cumulative uncertainty in localization, ΔΩ𝑠, for the HLIV network.
We consider NS binaries at the Coma cluster with two inclinations, 30∘ (solid line) and
75∘ (dashed line), and marginalize over the polarization and time of arrival. LIGO-LF
improves the localization accuracy by a factor of 5 over A+ using only the sub-30Hz
data.

NS r-modes

The (linear) tidal response of the NS can be decomposed into an equilibrium tide

and a dynamical tide. The equilibrium tide accounts for the quasi-static, large-scale

distortion of the star and the dynamical tide (Lai, 1994; Reisenegger & Goldreich,

1994) accounts for the internal modes of oscillation which can be resonantly excited

as the orbit decays and sweeps up in frequency. Here we consider the excitation of

the NS’s rotational modes (i.e. the r-modes) due to its companion’s gravitomagnetic

tidal field (Flanagan & Racine, 2007). We focuse on the detectability of the 𝑙 = 2,

𝑚 = 1 r-mode which does not require misalignment between the NS spin and the

orbital angular momentum. The GW frequency of mode resonance 𝑓𝑟 is related to

the NS’s spin frequency 𝑓spin as

𝑓𝑟 =
4

3
𝑓spin. (9.17)

Since the NSs in binary NS systems are expected to be slow-spinning (with a rate

less than a few×10Hz), the r-mode is naturally an interesting science case for the
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LIGO-LF upgrade.

The tidal interaction induces a phase shift, 𝛿Φ𝑟, relative to the point-particle (pp)

GW waveform. As the duration of the mode resonance is typically ∼ 1% of the total

GW decay timescale (Flanagan & Racine, 2007), the resonance can thus be treated as

an instantaneous process. In this limit, the phase of the frequency-domain waveform

Ψ(𝑓) can be written as (Yu & Weinberg, 2017b)

Ψ(𝑓) = Ψpp(𝑓)−
(︂
1− 𝑓

𝑓𝑟

)︂
𝛿Φ𝑟Θ(𝑓𝑟 − 𝑓) , (9.18)

where Ψpp is the phase of the point particle waveform (calculated to the 1.5 PN order

in our study). In the expression above we have aligned the tidal waveform to the pp

one at the merger.

While in the case of equilibrium tides the orbital energy is absorbed by the star

and thus the inspiral is accelerated, in the case of the r-mode interaction the direction

of energy transfer is reversed. The orbit extracts the NS spin energy which decelerates

the inspiral. This unique feature of the r-mode corresponds to a negative 𝛿Φ𝑟 in the

expression above. While large theoretical uncertainties exist, previous work suggests

that (Flanagan & Racine, 2007)

𝛿Φ𝑟 ∼ −0.1

(︂
𝑓spin

100Hz

)︂2/3

. (9.19)

To estimate the detectability of this effect, we once again use the Fisher ma-

trix method. A fully Bayesian analysis is deferred to future studies. For simplic-

ity, we focus on the single-detector case and fix the sources at 50Mpc with opti-

mal orientation. This allows us to write the waveform in terms of 9 parameters,

(ℳ𝑐, 𝑞, 𝜒1, 𝜒2, 𝑡𝑐, 𝜑𝑐, 𝑑L, 𝑓𝑟, 𝛿Φ𝑟), corresponding to the chirp mass, mass ratio,

dimensionless spin of mass 1 and 2, time and phase at the coalescence, luminosity dis-

tance, and the resonant frequency and the phase shift of the r-mode. The equilibrium

tidal deformation is not included here because it is only relevant at 𝑓 & 600Hz (Hin-

derer et al., 2010). We consider here binaries with 𝑀1 = 1.4𝑀⊙ and 𝑀2 = 1.35𝑀⊙.
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The mass ratio is slightly off 1 because otherwise 𝜒1 and 𝜒2 will be completely de-

generate. The relation between the spin frequency 𝑓spin and the dimensionless spin

parameter 𝜒 depends on the NS equation of state. Here we pick the SLy equation of

state (Douchin, F. & Haensel, P., 2001) as a typical representation; this equation of

state is consistent with the GW170817 event (Abbott et al., 2017c). It leads to

𝜒 ≃ 0.06

(︂
𝑓spin

100Hz

)︂
, (9.20)

for a typical 1.4𝑀⊙ NS. A softer equation of state yields a larger 𝜒 for a NS with

fixed mass. We then vary the spins of the two masses simultaneously (i.e., 𝑓spin1 =

𝑓spin2 = 𝑓spin), and evaluate the Fisher matrix at different values of 𝑓spin to obtain the

uncertainty on the phase shift, Δ(𝛿Φ𝑟).

The results are shown in Figure 9-9. The r-mode is detectable if the statistical

error is smaller than the real phase shift calculated from equation (9.19), i.e., we

set Δ(𝛿Φ𝑟) ≤ |𝛿Φ𝑟| as the detectability threshold3. We find that if the NS spins

at a rate greater than 35Hz (which is approximately the rate of the fastest rotating

pulsar in a binary NS system known today when it enters the sensitivity band of a

ground-based GW detector; see Burgay et al. 2003), a single LIGO-LF may detect

the r-mode resonance up to a distance of 50Mpc. Since the phase shift of the 𝑙 = 2,

𝑚=1 r-mode depends on the NS stratification, which is sensitive to the internal

composition and the state of matter (Yu & Weinberg, 2017a,b), a detection may thus

place constraints on the NS equation of state from physics beyond the star’s bulk

properties (Andersson & Ho, 2018). Furthermore, the r-mode resonance provides an

independent measurement of the NS spin, which may help break the spin-mass ratio

degeneracy (Cutler & Flanagan, 1994) and improve the accuracy in measuring the

(equilibrium) tidal deformability (Hinderer et al., 2010; Abbott et al., 2017c).

3Note that we included only a single set of (𝑓𝑟, 𝛿Φ𝑟) in equation 9.19, whereas in a merging
binary NS system each NS should contribute individually a r-mode phase shift. Nevertheless, the
typical uncertainty of the resonant frequency is Δ𝑓𝑟 ≃ 50Hz, corresponding to a resolution in the
spin frequency of Δ𝑓spin ≃ 40Hz > 𝑓spin. We are thus unlikely to resolve the individual resonance
but only the combined effect of the two NSs. Therefore we included an extra factor of 2 when
computing the theoretical prediction (the red-dashed curve in Figure 9-9) according to equation
(9.19).

224



10 30 100 300
fspin [Hz]

0.06

0.1

0.3

0.6

1

(
r) 

[ra
d]

LIGO-LF
A+
aLIGO

Figure 9-9: The uncertainty (solid lines) in measuring the phase shift due to resonant
excitation of the NS r-mode 𝛿Φ𝑟 as a function of the NS spin frequency 𝑓spin. We
consider the single detector case and fix the sources at 50 Mpc with optimal orienta-
tion. Also shown in the red dashed line is the expected magnitude of the real r-mode
phase shift |𝛿Φ𝑟|. The effect is detectable when the real phase shift is greater than
the statistical error.

9.3.3 The GW memory

The GW memory causes a DC displacement of the test masses that persists after the

GW has passed (Christodoulou, 1991). As the effect builds up over a finite amount

of time, it can thus be detected by a LIGO-like GW detector which effectively high-

passes the signal. The detection of this effect may provide a strong-field test of the

general theory of relativity. Therefore we consider it as one of the science cases for

LIGO-LF.

Here we adopt the minimal-waveform model proposed in Favata (2009),

ℎ
(mem)
+ (𝑓) =

𝐺𝜂𝑀tot/𝑐
2

384𝜋𝐷L

sin2 𝜄
(︀
17 + cos2 𝜄

)︀
ℎ(mem)(𝑓), (9.21)

where 𝜂 = 𝑀1𝑀2/𝑀
2
tot is the symmetric mass ratio, and ℎ

(mem)
× (𝑓) = 0. The term
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ℎ(mem)(𝑓) is further given by

ℎ(mem)(𝑓) =
i

2𝜋𝑓

{︁8𝜋𝐺𝑀tot

𝑐2𝑟m
[1− 2𝜋i𝑓𝜏rr𝑈(1, 7/4, 2𝜋i𝑓𝜏rr)]

− 𝑐3

𝐺𝜂𝑀tot

𝑛max∑︁
𝑛,𝑛′

𝜎22𝑛𝜎
*
22𝑛′𝐴22𝑛𝐴

*
22𝑛′

2𝜋i𝑓 − (𝜎22𝑛 + 𝜎*
22𝑛′)

}︁
. (9.22)

The value of 𝜏rr = (5/256) (𝐺𝑀tot/𝑐
3𝜂) (𝑐2𝑟𝑚/𝐺𝑀tot)

4 is the characteristic orbital

decay time scale at 𝑟, and 𝑈 is Kummer’s confluent hypergeometric function of the

second kind. The 𝜎𝑙𝑚𝑛 are angular frequencies of the final BH’s quasi-normal modes,

whose value are given in Berti et al. (2006). The coefficients of 𝐴𝑙𝑚𝑛 can be solved

by matching the leading order quadrupole moments in the inspiral phase to the sum

of the ringdown normal modes at 𝑟m. Here we choose 𝑟m to correspond to the orbital

separation at the ISCO.

In our calculation we consider a simple case where we fix the source distance to

𝑧 = 0.1 (𝐷L = 0.48Gpc) and inclination to 𝜄 = 30∘. We further assume that the

signal is purely in the “+” polarization. We then vary the source-frame total mass

(while keeping the mass ratio to 1) and compute the single-detector matched-filter

SNR for each source with different detector sensitivities.

The result is shown in Figure 9-10. LIGO-LF increases the peak SNR by a factor

of 4 relative to aLIGO. While it may still be challenging to detect the effect from a

single event, LIGO-LF nonetheless has a promising future in detecting this event via

event-stacking. As suggest in Lasky et al. (2016), aLIGO will need ∼ 90 GW150914-

like (Abbott et al., 2016c) events to be able to achieve a SNR of 5 detection of the

memory effect. Accumulating these many events will require aLIGO to operate at full

sensitivity for ∼ 10 years (note that the detection rate calculations in Section 9.3.1

assumes an SNR lower limit of 8 or a range of 𝑧 ≃ 0.4 for a 30𝑀⊙-30𝑀⊙ system;

restricting to a range of within 𝑧 . 0.1 will lower the detection rate by a factor of

≃ 64). For LIGO-LF, however, only ∼ 25 events will be sufficient to reach a similar

level of detection. As the detection rate of LIGO-LF also increased by a factor of

almost 20 relative to aLIGO, it means within a few months of observation with LIGO-
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Figure 9-10: SNR from the GW memory effect as a function of the source-frame total
mass. The sources are fixed at 𝑧 = 0.1 and an inclination of 30∘. The peak SNR seen
in LIGO-LF is 4 (2) times greater than that seen in aLIGO (A+).

LF will be sufficient to achieve a high SNR (≥ 5) detection of the memory effect.

9.4 CONCLUSTIONS

In this Chapter we proposed LIGO-LF, an upgrade improving aLIGO’s low-frequency

performance. With technologies currently under development, such as suspension sys-

tems with 200 kg test masses, interferometrically sensed seismometers, and balanced-

homodyne readout, LIGO-LF can reach the fundamental limits set by quantum and

thermal noises down to 5Hz. These technologies are also directly applicable to the

future generation of detectors. We went on to consider this upgrade’s implications for

the astrophysical output of an aLIGO-like detector. Comparing LIGO-LF to aLIGO,

we found that the mass and spatial range of binary BHs detectable would be greatly

enhanced, and the localization of NS binaries would be achieved at a much earlier

time, enabling more timely follow-up.
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Appendix A

Details of the MESA setup for the

super-Eddington-wind models

Our simulations start from the NS_envelope model provided in the MESA test suite.

We set 𝑀 = 1.4𝑀⊙ and 𝑅 = 10 km at the inner boundary. The module provides

a thin NS envelope of pure 56Fe, on top of which we accrete an extra layer of 56Cr

with a column depth of 109 g cm−2 (see footnote 4). We accrete pure 4He onto this

envelope until 4He ignition using commands similar to the ns_he model provided in

the MESA test suite.

The column depth of the ignition base, 𝑦b, depends on the pre-burst flux 𝐹pre

(Bildsten, 1998; Cumming & Bildsten, 2000). For pure helium accretion, 𝐹pre =

𝑄crust𝑀̇acc/4𝜋𝑅
2, where 𝑀̇acc is the accretion rate and 𝑄crust is the energy release

per nucleon in the crust (Brown & Bildsten, 1998; Cumming, 2003; Cumming et al.,

2006). In MESA, this flux can be controlled by a combination of the mass accre-

tion rate 𝑀̇acc and the core luminosity 𝐿c using the commands “mass_change” and

“relax_initial_L_center,” respectively (Paxton et al., 2011). To determine the

value of 𝐿c, we adopt the following procedure. First, we perform a side calcula-

tion in which we evaluate the ignition condition d𝜖3𝛼/d𝑇 = d𝜖cool/d𝑇 , where 𝜖3𝛼 is

the triple-alpha energy generation rate and 𝜖cool = 𝑎𝑐𝑇 4/3𝜅𝑦2 is the radiative cool-

ing rate. Here we assume that the thermal profile of the pre-burst atmosphere is

given by 𝑎𝑐𝑇 4 ≃ 3𝜅𝑦𝐹pre, with 𝐹pre = 𝑄crust𝑚̇acc. We determine 𝑄crust by requiring
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that ignition occur at 𝑦b = 5 × 108 g cm−2 when 𝑀̇acc = 3 × 10−9𝑀⊙ yr−1.1 With

𝑄crust fixed at this value, we obtain an ignition curve 𝑦b(𝑀̇acc). We then determine

the value of 𝐿c by requiring that the MESA model ignite at a depth that matches

the ignition curve 𝑦𝑏(𝑀̇acc). For the {𝑦1, 𝑦2, 𝑦3} models, we find (𝑀̇acc, 𝐿c) equals

{(3, 2.45), (0.5, 1.36), (0.08, 0.85)}, in units of (10−9𝑀⊙ yr−1, 1034 erg s−1).

Once the base becomes convective, we use the following inlist file to simulate the

hydrostatic burst rise.

&star_job

change_initial_net = .true.

new_net_name = ‘approx21.net’

kappa_file_prefix = ‘gs98’

relax_initial_tau_factor = .true.

relax_to_this_tau_factor = 100d0

dlogtau_factor = .1

change_v_flag = .true.

change_initial_v_flag = .true.

new_v_flag = .true.

&controls

max_timestep = .5d-2

use_GR_factors = .false.

varcontrol_target = .75d-4

which_atm_option = ‘grey_and_kap’

Pextra_factor = 2

accrete_same_as_surface = .false.

accrete_given_mass_fractions = .true.

num_accretion_species = 1

accretion_species_xa(1) = 1

1 These are typical ignition parameters (see, e.g., Table 1 of WBS); we find very similar wind
simulation results when we instead require 𝑦b = 3× 108 g cm−2 at 𝑀̇acc = 3× 10−9𝑀⊙ yr−1.
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accretion_species_id(1) = ‘he4’

mass_change = 5d-10

mixing_length_alpha = 1.5

MLT_option = ‘Henyey’

okay_to_reduce_gradT_excess = .false.

use_Ledoux_criterion = .false.

We use the ‘approx21.net’ network for the n21 models and the ‘basic_plus_fe56.net’

for the n9 models. For simplicity, we neglect the composition gradient’s contribu-

tion to convection (use_Ledoux_criterion = .false), since we assume pure He

accretion. Such a simplification would not be appropriate for mixed H/He accre-

tion (WBS). The choice of mixing_length_alpha is motivated by the value given in

the test suite ns_he, although we find that the results are not particularly sensitive to

this choice. In order to be consistent with the subsequent hydrodynamic simulations,

we turn off the MLT++ option by setting okay_to_reduce_gradT_excess=.false.;

using it in the hydrodynamics calculation would have suppressed the generation of a

wind (Paxton et al., 2013; Quataert et al., 2016).

We edited the extras_check_model function in run_star_extras.f in order to

stop the hydrostatic simulation when 𝐿rad first exceeds 𝐿Edd at the top boundary. We

pass the final profile of the hydrostatic simulation to the hydrodynamic simulation,

which uses the following inlist file.

&star_job

relax_initial_tau_factor = .true.

relax_tau_factor = .true.

relax_to_this_tau_factor = 1

dlogtau_factor = .1

set_initial_dt = .true.

seconds_for_initial_dt = 1d-4

remove_surface_by_density = 1d-14

repeat_remove_surface_for_each_step =.true.
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&controls

varcontrol_target = 2d-5

MLT_option = ‘none’

Dutch_scaling_factor = 0.0

Dutch_wind_lowT_scheme = ‘de Jager’

Hot_wind_scheme = ‘Dutch’

which_atm_option = ‘grey_and_kap’

Pextra_factor = 3

use_compression_outer_BC = .true.

use_zero_dLdm_outer_BC = .true.

shock_spread_linear = 0.0

shock_spread_quadratic = 1d-2

use_ODE_var_eqn_pairing = .true.

use_dPrad_dm_form_of_T_gradient_eqn = .true.

use_dvdt_form_of_momentum_eqn = .true.

use_ODE_form_of_density_eqn = .true.

okay_to_remesh = .true.

min_dq = 1d-12

max_center_cell_dq = 5e-6

max_allowed_nz = 14000

max_surface_cell_dq = 1d-12

P_function_weight = 40

log_tau_function_weight = 22

log_kap_function_weight = 20

logQ_min_limit = -18d0

newton_iterations_limit = 7

iter_for_resid_tol2 = 4

tol_residual_norm1 = 1d-8

tol_max_residual1 = 1d-7
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fe_core_infall_limit = 1d99

tiny_corr_coeff_limit = 999999

newton_itermin_until_reduce_min_corr_coeff = 999999

The values controlling the numerical mesh and function weights are for the y2n21

model; in order to achieve convergent solutions, some models require slightly different

settings (e.g., different values for varcontrol_target, log_tau_function_weight,

min_dq, and max_surface_cell_dq). Typically, each profile has approximately 1000

zones in our simulations.
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Appendix B

Thermodynamic relations and

superfluid Entrainment

In this Appendix we present the thermodynamic relations for a superfluid NS. In

Section B.1 we give the expressions that we use in order to calculate the background

quantities (such as density and pressure). In Section B.2 we describe our implemen-

tation of the entrainment effect and provide the connection between our notation and

that used in previous studies. Lastly, in Section B.3 we estimate the damping rate

due to the direct Urca process.

B.1 BACKGROUND QUANTITIES

We model the superfluid neutron star as a zero-temperature system consisting of

two fluids: the superfluid neutrons (denoted by subscript n for “neutrons”) and a

normal fluid mixture of protons, electrons, and muons whose abundances are linked

through charge neutrality (denoted by subscript c for “charged”). According to the

thermodynamic identity, the total energy density 𝜀tot satisfies

d𝜀tot =
∑︁

𝑗=npe𝜇

𝜇𝑗d𝑛𝑗 + 𝛼dv2r , (B.1)
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where 𝑛𝑗 and 𝜇𝑗 are the number density and chemical potential of particle species 𝑗

(=n, p, e, 𝜇), vr = vc − vn is the relative velocity between the charged and neutron

flows, and 𝛼 is a function representing the entrainment effect. Since the relative

velocity between the two flows is small (and zero for the background model we consider

here), we can separate the entrainment part from the bulk motion and write

𝜀tot = 𝜀+ 𝛼v2r , (B.2)

where the bulk energy density 𝜀 can be represented as a sum of the baryonic and

leptonic contributions

𝜀 = (𝑛n + 𝑛p)
[︀
𝑚N𝑐

2 + 𝐸nuc(𝑛n, 𝑛p)
]︀
+ 𝑇e + 𝑇𝜇. (B.3)

Here 𝑚N is the nucleon rest mass, 𝐸nuc is the interaction energy per baryon given by

the nuclear equation of state, and 𝑇e and 𝑇𝜇 are the total energy of the electrons and

muons, respectively. We use the SLy4 nuclear equation of state with 𝐸nuc given by

equation (3.18) in Chabanat et al. (1997). We assume the leptons are described by a

zero-temperature, relativistic free Fermi gas with

𝑇e =
3

4
~𝑐(3𝜋2)1/3(𝑛e)

4/3, (B.4a)

𝑇𝜇 =
𝑚4
𝜇𝑐

5

~3
1

8𝜋2

{︁
𝑥
(︀
1 + 𝑥2

)︀1/2 (︀
1 + 2𝑥2

)︀
− ln

[︁
𝑥+

(︀
1 + 𝑥2

)︀1/2]︁}︁
, (B.4b)

where 𝑥 = 𝑝𝐹/𝑚𝜇𝑐 = ~(3𝑛𝜋2𝑛𝜇)
1/3/𝑚𝜇𝑐. It is worth noting that to fully parameterize

the bulk energy density 𝜀 of the npe𝜇 NS under the constraint of charge neutrality,

we need three independent variables (for example, 𝑛n, 𝑛e and 𝑛𝜇, with 𝑛p = 𝑛e + 𝑛𝜇

by charge neutrality; cf. equation B.1). This is fundamentally different from the npe

NS (studied by, e.g., Lee 1995, Andersson & Comer 2001 and Prix & Rieutord 2002),

which requires only two independent variables.
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The chemical potential for each species is given by

𝜇n = 𝑚N𝑐
2 + 𝐸nuc + (𝑛n + 𝑛p)

𝜕𝐸nuc

𝜕𝑛n
, (B.5a)

𝜇p = 𝑚N𝑐
2 + 𝐸nuc + (𝑛n + 𝑛p)

𝜕𝐸nuc

𝜕𝑛p
, (B.5b)

𝜇e = ~𝑐(3𝜋2𝑛e)
1/3, (B.5c)

𝜇𝜇 =
√︁
(𝑚𝜇𝑐2)2 + ~2𝑐2(3𝜋2𝑛𝜇)2/3, (B.5d)

where we have assumed 𝐸nuc = 𝐸nuc(𝑛n, 𝑛p). Note that because 𝜕𝜇n/𝜕𝑛p ̸= 0 and

𝜕𝜇p/𝜕𝑛n ̸= 0, even if we neglect entrainment (i.e., terms containing 𝛼), neutrons

and protons are still coupled through the equation of state (see also Prix & Rieutord

2002).

Although we use Newtonian equations to describe the stellar structure and oscil-

lations, we write the mass density as 𝜌 = 𝜀/𝑐2 (and not 𝜌 = (𝑛n + 𝑛p)𝑚N) in order

to capture the composition gradients that arise from the nuclear interaction energy

𝐸nuc and lepton fraction gradients. If we write the total mass density as the sum of

each particle species 𝜌 = 𝜌n + 𝜌p + 𝜌e + 𝜌𝜇, then

𝜌n = 𝑛n

(︂
𝑚N +

𝐸nuc

𝑐2

)︂
, (B.6a)

𝜌p = 𝑛p

(︂
𝑚N +

𝐸nuc

𝑐2

)︂
, (B.6b)

𝜌e =
𝑇e

𝑐2
, (B.6c)

𝜌𝜇 =
𝑇𝜇
𝑐2
. (B.6d)

The generalized pressure function 𝑃 for a two-fluid problem can be defined through

the usual enthalpy density 𝑤 as

𝜀+ 𝑃 = 𝑤 =
∑︁

𝑗=npe𝜇

𝜇𝑗𝑛𝑗. (B.7)
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This gives the differential form

d𝑃 =
∑︁

𝑗=npe𝜇

𝑛𝑗d𝜇𝑗 − 𝛼dv2r . (B.8)

It is convenient to define the specific chemical potential

d𝜇̃𝑗 =
d𝜇𝑗
𝑚𝑗

, (B.9)

where 𝑚𝑗 = 𝜌𝑗/𝑛𝑗. Note that 𝑚𝑗 is not the usual rest mass of particle 𝑗 (in particular,

it is a function of density). Our definition of d𝜇̃𝑗 is slightly different from that used

in Andersson & Comer (2001) and Prix & Rieutord (2002) who take 𝜌 = (𝑛n+𝑛p)𝑚N

because they do not focus on g modes induced by composition gradients. Nonetheless,

if we approximate d𝜇̃n (which is the only specific chemical potential that explicitly

enters our numerical calculations; see appendix C.1) as d𝜇n/𝑚N, it only changes our

results at the few percent level.

In our analytic work, it is also convenient to introduce a chemical potential 𝜇̃c

corresponding to the normal fluid component of the fluid and defined such that

𝜌cd𝜇̃c = 𝜌pd𝜇̃p + 𝜌ed𝜇̃e + 𝜌𝜇d𝜇̃𝜇, (B.10)

where 𝜌c = 𝜌p + 𝜌e + 𝜌𝜇. Note that 𝜇̃c is not itself an independent variable, but

rather a function 𝜇̃c = 𝜇̃c(𝜇̃p, 𝜇̃e, 𝜇̃𝜇). Moreover, our calculation of the background

model and the set of oscillation equations we solve numerically do not depend on

𝜇̃c; we explicitly use 𝜇̃c only in Section C.1 when manipulating the set of differential

equations defining the linear perturbation operator ℒ .

Given the definitions above, we have

d𝑃 = 𝜌nd𝜇̃n + 𝜌cd𝜇̃c − 𝛼dv2. (B.11)
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In hydrostatic and beta equilibrium, this implies

d𝜇̃n

d𝑟
+

dΦ
d𝑟

= 0, (B.12)

(up to small corrections due to leptonic contribution to the mass density). Note

that this relation only holds in the static background and not in an oscillating fluid

element.

Furthermore, if we define the deviation from beta equilibrium as

d𝛽 = d𝜇̃c − d𝜇̃n, (B.13)

then equation B.11 implies (Andersson & Comer, 2001)

1

𝜌
=

(︂
𝜕𝜇̃n

𝜕𝑃

)︂
𝛽

, (B.14)

𝜌c

𝜌
= −

(︂
𝜕𝜇̃n

𝜕𝛽

)︂
𝑃

, (B.15)

𝜌2
𝜕

𝜕𝑃

(︂
𝜌c

𝜌

)︂
𝛽

=

(︂
𝜕𝜌

𝜕𝛽

)︂
𝑃

. (B.16)

These relations are used in Appendix C.1 when we manipulate the oscillation equa-

tions in order to express them in a form convenient for proving the Hermiticity of

ℒ.

B.2 ENTRAINMENT FUNCTION

The entrainment function 𝛼 accounts for the “drag” between the superfluid neutrons

and the protons when they are in relative motion (see equation B.1). Many stud-

ies have discussed the entrainment effect in the context of oscillations of superfluid

NSs (see, e.g., Lindblom & Mendell 1994, Lee 1995, Andersson & Comer 2001, Prix

& Rieutord 2002, Kantor & Gusakov 2014, Passamonti et al. 2016, and Dommes

& Gusakov 2016). Most of the discussions originate from the study by Andreev

& Bashkin (1976), who parametrize the entrainment effect in terms of the Landau
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effective masses of neutrons and protons, 𝑚*
n and 𝑚*

p. However, different authors

adopt different notational conventions; the purpose of this appendix is to provide the

connection between our notation and that of other studies.

Following Andersson & Comer (2001) and Prix & Rieutord (2002), we parameter-

ize 𝛼 as

2𝛼 =

(︀
𝑚N −𝑚*

p

)︀
𝜌c

𝑚N + 𝑥𝑝(𝑚N −𝑚*
p)

(B.17)

and define the dimensionless entrainment functions

𝜖n =
2𝛼

𝜌n
, (B.18)

𝜖c =
2𝛼

𝜌c
=
𝜌n

𝜌c
𝜖n. (B.19)

Typical values of 𝑚*
p are in the range 0.3 ≤ 𝑚*

p/𝑚N ≤ 0.8 (Sjöberg, 1976; Chamel,

2008); the smaller the 𝑚*
p is the greater 𝛼 is and the stronger the entrainment effect

is.

Lindblom & Mendell (1994) and Lee (1995) describe the entrainment effect through

a mass density matrix 𝜌𝑖𝑗 which relates the mass current and the macroscopically av-

eraged velocities (𝑉c, 𝑉n):⎛⎝ 𝜌cvc

𝜌nvn

⎞⎠ =

⎛⎝ 𝜌cc 𝜌cn

𝜌nc 𝜌nn

⎞⎠⎛⎝ 𝑉c

𝑉n

⎞⎠ . (B.20)

Note that (𝑉c, 𝑉n) are different from the microscopic velocities (vc, vn) we use here,

which follow the definitions in Andersson & Comer (2001) and Prix & Rieutord (2002;

see the discussion in Appendix A2 of Andersson & Comer 2001). The elements of 𝜌𝑖𝑗

satisfy

𝜌cc + 𝜌cn = 𝜌c, (B.21a)

𝜌nc + 𝜌nn = 𝜌n, (B.21b)

𝜌cn = 𝜌nc. (B.21c)
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In terms of 𝑚*
p and 𝑚*

n (Andreev & Bashkin, 1976)

𝜌cc = 𝜌c
𝑚N

𝑚*
p
, (B.22a)

𝜌nn = 𝜌n
𝑚N

𝑚*
n
, (B.22b)

𝜌cn = 𝜌c
𝑚*

p −𝑚N

𝑚*
p

= 𝜌n
𝑚*

n −𝑚N

𝑚*
n

. (B.22c)

Two useful relations connecting our notation to 𝜌𝑖𝑗 are

2𝛼 = − 𝜌c𝜌n

det 𝜌
𝜌cn, (B.23)

1− 𝜖n − 𝜖c =
𝜌c𝜌n

det 𝜌
, (B.24)

where det 𝜌 = 𝜌cc𝜌nn − 𝜌2cn is the determinant of 𝜌𝑖𝑗.

Gusakov et al. (2014), Dommes & Gusakov (2016), and Passamonti et al. (2016)

take finite-temperature and general-relativistic effects into account. Nonetheless, their

notations can be connected to ours in the appropriate zero-temperature, Newtonian

limit. In this limit, the 𝑦 parameter used in Gusakov et al. (2014) and Dommes &

Gusakov (2016) is given by

𝑦 ≃ 1

𝑥n
(𝑥p − 𝜖n) , (B.25)

while the entrainment coefficient 𝛽PAH defined in Passamonti et al. (2016) is given by

𝛽PAH ≃ 1− 2𝛼

𝜌n
= 1− 𝜖n (B.26)

(here we include a “PAH” subscript to distinguish it from the variable 𝛽 we use

elsewhere and define as d𝛽 = d𝜇̃c − d𝜇̃n).
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B.3 RATE OF DIRECT URCA PROCESS

We show here that the timescale for a resonantly oscillating fluid element to relax

toward chemical equilibrium by the Λ-hyperon direct Urca process

Λ → p + L + 𝜈L, p + L → Λ + 𝜈L, where L = e, 𝜇 (B.27)

is much longer than its oscillation timescale. While the nucleonic direct Urca [equa-

tion (B.27) but with n in place of Λ] is also possible in the core (Lattimer et al.,

1991), its rate is greatly suppressed because the neutrons are superfluid and the core

temperature is well-below the critical temperature for neutron superfluidity (see, e.g.,

Yakovlev et al. 2001). Previous studies have shown that other damping mechanisms

are also slow compared to the oscillation timescales we consider (Reisenegger & Gol-

dreich, 1992, 1994; Lai, 1994). We therefore conclude that the composition of the

fluid element is nearly frozen and that the modes can be treated as adiabatic to a

good approximation.

Our calculation is similar to one given inYakovlev et al. (2001; Section 3.5). We

focus on the reaction with L = e; the reaction with L = 𝜇 occurs at a similar rate

(Prakash et al., 1992). Note that while our calculation should hold for an NS with

npΛe𝜇 composition, as is the case for the models we consider, for more massive NSs

or NSs with different equation of state that also host other hyperon species, non-Urca

weak interactions like n + Λ 
 p + Σ− can have a much higher reaction rate than

direct Urca processes and might therefore modify the calculation (Yakovlev et al.,

2001).

We first define the chemical equilibrium parameter 𝛽Λ = 𝜇Λ − 𝜇p − 𝜇e and the

deviation from equilibrium relative to the background temperature

𝜂 =
𝛿𝛽Λ
𝑘𝑇

, (B.28)

where 𝛿𝛽Λ = 𝛿𝛽Λ(𝑃, 𝜇n, 𝑥𝜇e, 𝑥Λe). Although we are interested in the disequilibrium

of a perturbed fluid element, and thus the Lagrangian perturbation Δ𝛽Λ, since the
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background is in chemical equilibrium 𝛽Λ = 0 and therefore to linear order 𝛿𝛽Λ =

Δ𝛽Λ.

The timescale to relax toward chemical equilibrium is

𝜏urca ≈
𝜂

𝜂̇
. (B.29)

To proceed, we estimate 𝜏urca in an iterative manner. First, we obtain a zeroth

order solution by assuming the composition is frozen and thus Δ𝑥Λe = 0 (and also

Δ𝑥𝜇e = 0). We then use this solution to evaluate 𝜂 and 𝜏urca. As long as the resulting

reaction timescale is much longer than the oscillation timescale, our approach is self-

consistent. This approach implies

𝜂 ≈ 1

𝑘𝑇

(︂
𝜕𝛽Λ
𝜕𝑥Λe

)︂
𝛿𝑥Λe = − 𝑏𝑎

𝑘𝑇

(︂
𝜕𝛽Λ
𝜕𝑥Λe

)︂
d𝑥Λe
d𝑟

𝜉𝑟c , (B.30)

where 𝑏𝑎 is the amplitude of the resonantly driven mode. The first equality follows

because 𝑃 and 𝜇𝑛 adjust to the background values on very short timescales, and 𝑥𝜇e

is nearly constant in the inner core (cf. Figure 4-1). The second equality follows

because in our zeroth order solution Δ𝑥Λe = 0. In order to calculate 𝜉𝑟c and 𝑏𝑎, we use

the numerical solution for the 𝑛(Λ1.6)
𝑎 = 1 mode, which has a post-resonance amplitude

𝑏𝑎 ≃ 1 × 10−3. We find that 𝛿𝛽Λ ∼ 2 MeV ≫ 𝑘𝑇 for the largest perturbations and

therefore for a cold NS we are in the limit 𝜂 ≫ 1.

Due to the Urca process, the deviation from chemical equilibrium changes at a

rate

𝜂̇ ≈ 1

𝑘𝑇

(︂
𝜕𝛽Λ
𝜕𝑥Λe

)︂
𝑥̇Λe, (B.31)

with

𝑥̇Λe =
𝑛𝑒𝑛̇Λ − 𝑛Λ𝑛̇e

𝑛2
e

=
(1 + 𝑥Λe)

𝑛𝑒
𝑛̇Λ = −(1 + 𝑥Λe)

𝑛𝑒
𝛿Γ. (B.32)
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The net reaction rate per unit volume

𝛿Γ = Γ(Λ → p + e− + 𝜈e)− Γ(p + e− → Λ + 𝜈e)

= 𝑞
𝜖

𝑘𝑇
𝐻(𝜂)𝜂 (B.33)

[equations (144)-(147) in Yakovlev et al. 2001]. Here 𝜖 is the equilibrium neutrino

emissivity [eq. (124) and Table 4 in Yakovlev et al. 2001; we use the rest masses

rather than the effective masses, which is sufficiently accurate here] and is given by

𝜖 = 1.6× 1026
(︁ 𝑛e

0.16 fm−3

)︁(︂𝑚Λ

𝑚N

)︂(︂
𝑇

109 K

)︂6

erg cm−3 s−1. (B.34)

Although we calculate 𝜖 based on the hyperonic direct Urca proceess, we use the nu-

cleon direct Urca values (assuming normal fluid nucleons) for the numerical prefactor

𝑞 = 0.158 and for the function

𝐻(𝜂) = 1 +
10𝜂2

17𝜋2
+

𝜂4

17𝜋4
≃ 𝜂4

17𝜋4
. (B.35)

The hyperon process should yield very similar values for 𝑞 and 𝐻(𝜂) [cf. Section 3.3

and equations (112)-(117) in Yakovlev et al. 2001; the energy integral 𝐼 is the same

for all direct Urca processes and the angular integrals 𝐴 are similar].

Since the threshold of the hyperon direct Urca process is expected to nearly coin-

cide with the threshold for the creation of hyperons (Prakash et al., 1992), we assume

that equation (B.33) applies for 𝑟 ≤ 𝑅Λ. We thereby find

𝜏−1
urca ≈ 𝑞

(︂
𝜕𝛽Λ
𝜕𝑥Λe

)︂(︂
1 + 𝑥Λe
𝑛e

)︂
𝜖

(𝑘𝑇 )2
𝐻(𝜂)

≈ 1.5× 10−2

(︂
𝛿𝛽Λ

1 MeV

)︂4

s−1. (B.36)

Although both 𝑥Λe and (𝜕𝛽Λ/𝜕𝑥Λe) depend on density 𝜌, to obtain the numerical

result on the second line we treated them as constant since 𝜌 varies slowly in the

inner core. Note that 𝜏−1
urca is independent of temperature in the limit 𝜂 ≫ 1.
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Since 𝜏−1
urca is much smaller than the oscillation frequency of the g-modes, we

conclude that we can safely neglect the hyperonic direct Urca process and adopt the

frozen composition approximation.
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Appendix C

Superfluid oscillation equations and

hermiticity of the linear operator

In this Appendix we describe the superfluid oscillation equations in further detail. In

Section C.1we present the form of the Newtonian oscillation equations that we use in

our numerical calculations and in Section C.2 we describe the boundary conditions

that we assume. Our mode decomposition (eq. 3.36) relies on the linear operator ℒ
of the oscillation equations being Hermitian, which we prove in Appendix C.3.

C.1 OSCILLATION EQUATIONS

As we are considering a two-fluid problem, we need to consider the continuity and

momentum conservation of both the charged flow and the neutron flow, which are

given respectively by (Prix & Rieutord, 2002)

𝜕𝑡𝜌c +∇ · (𝜌cvc) = 0, (C.1)

𝜕𝑡𝜌n +∇ · (𝜌nvn) = 0, (C.2)

(𝜕𝑡 + vc ·∇) (vc − 𝜖cv𝑟)− 𝜖cv𝑟,𝑖∇v𝑖c = −∇ (𝜇̃c + Φ) , (C.3)

(𝜕𝑡 + vn ·∇) (vn + 𝜖nv𝑟) + 𝜖nv𝑟,𝑖∇v𝑖n = −∇ (𝜇̃n + Φ) . (C.4)
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The set of equations is closed by the Poisson equation

∇2Φ = 4𝜋𝐺(𝜌c + 𝜌n). (C.5)

We use 𝛿 to denote Eulerian perturbations and assume all perturbed quantities

have an ei𝜎𝑡 time dependence. The Lagrangian displacements of the charged and

neutron flows are thus given by

𝜕𝑡𝜉c = i𝜎𝜉c = 𝛿vc, (C.6)

𝜕𝑡𝜉n = i𝜎𝜉n = 𝛿vn. (C.7)

We further simplify the equations by assuming a spherical, hydrostatic background

star and separating the variables into radial and angular functions using the stan-

dard spherical harmonic decomposition [equations (3.21) and (3.22)]. The linearized

equations then reduce to a set of coupled ordinary differential equations in the radial

direction

1

𝑟2
d
d𝑟
(︀
𝑟2𝜉𝑟c

)︀
+

d ln 𝜌c

d𝑟
𝜉𝑟c − 𝑙 (𝑙 + 1)

𝜉ℎc
𝑟

+
𝛿𝜌c

𝜌c
= 0, (C.8)

1

𝑟2
d
d𝑟
(︀
𝑟2𝜉𝑟n

)︀
+

d ln 𝜌n

d𝑟
𝜉𝑟n − 𝑙 (𝑙 + 1)

𝜉ℎn
𝑟

+
𝛿𝜌n

𝜌n
= 0, (C.9)

𝜎2 [𝜉𝑟c − 𝜖c (𝜉
𝑟
c − 𝜉𝑟n)] =

d
d𝑟

(𝛿𝜇̃c + 𝛿Φ) , (C.10)

𝜎2 [𝜉𝑟n + 𝜖n (𝜉
𝑟
c − 𝜉𝑟n)] =

d
d𝑟

(𝛿𝜇̃n + 𝛿Φ) , (C.11)

𝜎2
[︀
𝜉ℎc − 𝜖c

(︀
𝜉ℎc − 𝜉ℎn

)︀]︀
=

1

𝑟
(𝛿𝜇̃c + 𝛿Φ) , (C.12)

𝜎2
[︀
𝜉ℎn + 𝜖n

(︀
𝜉ℎc − 𝜉ℎn

)︀]︀
=

1

𝑟
(𝛿𝜇̃n + 𝛿Φ) , (C.13)

1

𝑟2
d
d𝑟

(︂
𝑟2

d𝛿Φ
d𝑟

)︂
− 𝑙 (𝑙 + 1)

𝑟2
𝛿Φ = 4𝜋𝐺 (𝛿𝜌c + 𝛿𝜌n) . (C.14)

Since we have factored out the time-dependency by assuming perturbations vary as

ei𝜎𝑡, we can write 𝜕/𝜕𝑟 as d/d𝑟.
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For numerical reasons, it is convenient to define a ‘mass-averaged’ flow

𝜉+ =
1

𝜌
(𝜌c𝜉c + 𝜌n𝜉n) . (C.15)

The corresponding continuity and momentum conservation equations are then

d𝜉𝑟+
d𝑟

+

(︂
2

𝑟
+

d ln 𝜌

d𝑟

)︂
𝜉𝑟+ − 𝑙(𝑙 + 1)

𝜉ℎ+
𝑟

+
𝛿𝜌

𝜌
= 0, (C.16)

𝜎2𝜉𝑟+ =
1

𝜌

d𝛿𝑃
d𝑟

+ 𝑔
𝛿𝜌

𝜌
+

d𝛿Φ
d𝑟

, (C.17)

𝜎2𝜉ℎ+ =
1

𝑟

(︂
𝛿𝑃

𝜌
+ 𝛿Φ

)︂
, (C.18)

where by equation (B.11)

𝛿𝑃 = 𝜌n𝛿𝜇̃n + 𝜌c𝛿𝜇̃c. (C.19)

Summarizing, the set of oscillation equations we use to find numerical solutions are

equations (C.9, C.11, C.13, C.14, C.16, C.17, C.18) and our independent variables

are (𝜉𝑟n, 𝜉
ℎ
n , 𝜉

𝑟
+, 𝜉

ℎ
+, 𝛿𝑃, 𝛿𝜇̃n, 𝛿Φ). Following Kantor & Gusakov (2014) and Passamonti

et al. (2016), we use (𝑃 , 𝜇̃n, 𝑥𝜇e) to parametrize the equation of state in the perturbed

superfluid NS. For dependent variables 𝛿𝜌 and 𝛿𝜌n appearing in the equations, we

project them onto the independent ones through the Jacobian

𝛿𝜌 =

(︂
𝜕𝜌

𝜕𝑃

)︂
𝜇̃n,𝑥𝜇e

𝛿𝑃 +

(︂
𝜕𝜌

𝜕𝜇̃n

)︂
𝑃,𝑥𝜇e

𝛿𝜇̃n +

(︂
𝜕𝜌

𝜕𝑥𝜇e

)︂
𝑃,𝜇̃n

𝛿𝑥𝜇e,

=

(︂
𝜕𝜌

𝜕𝑃

)︂
𝜇̃n,𝑥𝜇e

𝛿𝑃 +

(︂
𝜕𝜌

𝜕𝜇̃n

)︂
𝑃,𝑥𝜇e

𝛿𝜇̃n −
(︂
𝜕𝜌

𝜕𝑥𝜇e

)︂
𝑃,𝜇̃n

d𝑥𝜇e
d𝑟

𝜉𝑟c , (C.20)

where in the second line we use the fact that the Lagrangian perturbation Δ𝑥𝜇e

vanishes because electrons and muons move at the same speed in the charged flow

and therefore

Δ𝑥𝜇e = 𝛿𝑥𝜇e +
d𝑥𝜇e
d𝑟

𝜉𝑟c = 0. (C.21)

We compute 𝛿𝜌n through a similar expansion. Finally, the 𝜉𝑐 terms are expressed in

terms of (𝜉+, 𝜉n) via equation (C.15).
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In addition to 𝜉+, in the main text we also introduce the displacement

𝜉− = (1− 𝜖n − 𝜖c)(𝜉c − 𝜉n) =
𝜌c𝜌n

det 𝜌
(𝜉c − 𝜉n), (C.22)

which represents the difference between the normal fluid flow and the superfluid flow.

Although we do not use 𝜉− when numerically solving the oscillation equations, it is

useful for proving the Hermiticity of the linear perturbation operator ℒ (Appendix

C.3). Using (𝜉+, 𝜉−) and defining 𝛿𝛽 = 𝛿𝜇̃c − 𝛿𝜇̃n, we can recast the oscillation

equations as (see Lindblom & Mendell 1994, Andersson & Comer 2001, and equations

B.14-B.16)

𝛿𝜌+∇ · (𝜌𝜉+) = 0, (C.23)(︂
𝜕𝜌

𝜕𝛽

)︂
𝑃

(︂
𝛿𝑃

𝜌

)︂
+
𝜌2n
𝜌

𝜕

𝜕𝛽

(︂
𝜌c

𝜌n

)︂
𝑃

𝛿𝛽

+
1

𝜌

(︂
𝜕𝜌

𝜕𝛽

)︂
𝑃

𝜉+ ·∇𝑃 +∇ ·
(︀
𝜌𝜉−

)︀
= 0, (C.24)

𝜕2𝜉+
𝜕𝑡2

= −∇
(︂
𝛿𝑃

𝜌
+ 𝛿Φ

)︂
+

∇𝑃

𝜌2

(︂
𝜕𝜌

𝜕𝛽

)︂
𝑃

𝛿𝛽, (C.25)

𝜕2𝜉−
𝜕𝑡2

= −∇𝛿𝛽, (C.26)

where

𝜌 =
det 𝜌

𝜌
=

𝜌c𝜌n

(1− 𝜖n − 𝜖c)𝜌
. (C.27)

Writing the oscillation equations in this form simplifies the proof of the Hermiticity

of ℒ given in Appendix C.3. Note that here we choose (𝑃 , 𝛽) to be the independent

variables in our parameterization of the equation of state, and we use the relation

𝛿𝜌 =

(︂
𝜕𝜌

𝜕𝑃

)︂
𝛽

𝛿𝑃 +

(︂
𝜕𝜌

𝜕𝛽

)︂
𝑃

𝛿𝛽. (C.28)

As we discuss in Appendix B.1, there are three independent variables when we pa-

rameterize an equation of state including muons. Indeed, 𝛿𝛽 is a function of two

independent variables since 𝛿𝛽 = 𝛿𝜇̃c − 𝛿𝜇̃n and 𝜇̃c is a function of two independent

variables [cf. equation (B.10); note that charge neutrality decreases the number of
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degrees of freedom by one].

C.2 BOUNDARY CONDITIONS

The oscillation equations can be solved numerically when boundary conditions are

specified. Here we focus on the set of equations described by the averaged flow (𝜉+)

and the superfluid neutron flow (𝜉n), as they form the set of equations we solve

numerically in practice. Other combination can be derived accordingly.

At the center (𝑟 = 0) we apply the usual regularity condition

𝜉𝑟+ = 𝜉𝑟0+
𝑙

𝜎2
𝑟𝑙−1, (C.29a)

𝜉ℎ+ = 𝜉ℎ0+
1

𝜎2
𝑟𝑙−1, (C.29b)

𝜉𝑟n = 𝜉𝑟0n
𝑙

𝜎2
𝑟𝑙−1, (C.29c)

𝜉ℎn = 𝜉ℎ0n
1

𝜎2
𝑟𝑙−1, (C.29d)

𝛿𝑃 = 𝛿𝑃0𝑟
𝑙, (C.29e)

𝛿𝜇̃n = 𝛿𝜇̃𝑛0𝑟
𝑙, (C.29f)

𝛿Φ = 𝛿Φ0𝑟
𝑙, (C.29g)

where

𝜉𝑟0+ = 𝜉ℎ0+, (C.30a)

𝜉𝑟0n = 𝜉ℎ0n, (C.30b)

𝜉𝑟0+ =
𝛿𝑃0

𝜌
+ 𝛿Φ0, (C.30c)[︂(︂

1− 𝜖n
𝜌

𝜌− 𝜌n

)︂
𝜉𝑟0n + 𝜖n

𝜌

𝜌− 𝜌n
𝜉𝑟0+

]︂
= 𝛿𝜇̃n + 𝛿Φ0, (C.30d)

and all the background quantities are evaluated at 𝑟 = 0.

At the core -crust interface (𝑟 = 𝑅cc), we assume that the fluid becomes a normal

fluid whose oscillation equations are identical to those of the averaged flow [equations
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C.16 - C.18], but setting 𝜉+ → 𝜉NF, where 𝜉NF denotes the Lagrangian perturbation

of normal fluid in the crust. Continuity across the interface (from 𝑅−
cc to 𝑅+

cc) then

requires

𝜉𝑟+(𝑅
−
cc) = 𝜉𝑟n(𝑅

−
cc) = 𝜉𝑟NF(𝑅

+
cc), (C.31a)

𝜉ℎ+(𝑅
−
cc) = 𝜉ℎn(𝑅

−
cc) = 𝜉ℎNF(𝑅

+
cc), (C.31b)

𝛿𝑃 (𝑅−
cc) = 𝛿𝑃 (𝑅+

cc), (C.31c)

𝛿Φ(𝑅−
cc) = 𝛿Φ(𝑅+

cc), (C.31d)
d
d𝑟
𝛿Φ(𝑅−

cc) =
d
d𝑟
𝛿Φ(𝑅+

cc). (C.31e)

Finally at the surface (𝑟 = 𝑅), we require the Lagrangian perturbation of the

pressure Δ𝑃 to vanish and the gravitational potential to be continuous, which gives

(see, e.g., Prix & Rieutord 2002)

Δ𝑃 = 𝛿𝑃 − 𝜌𝑔𝜉𝑟NF = 0, (C.32a)
d𝛿Φ
d𝑟

+
𝑙 + 1

𝑟
𝛿Φ + 4𝜋𝐺𝜌𝜉𝑟NF = 0. (C.32b)

C.3 HERMITICITY OF THE LINEAR PERTUR-

BATION OPERATOR

In this section we prove that the linear perturbation operator ℒ is Hermitian (see also

Lindblom & Mendell 1994; Andersson et al. 2004). Let (𝜉+, 𝜉−) and (𝜉′+, 𝜉′−) denote

two independent perturbations. We want to show that

⟨⎡⎣𝜉+
𝜉−

⎤⎦ ,ℒ
⎡⎣𝜉′+
𝜉′−

⎤⎦⟩ =

⟨
ℒ

⎡⎣𝜉+
𝜉−

⎤⎦ ,
⎡⎣𝜉′+
𝜉′−

⎤⎦⟩ (C.33)
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i.e., by equation (3.29),

∫︁
d3𝑥

[︀
𝜌𝜉*+ · ℒ

(︀
𝜉′+
)︀
+ 𝜌𝜉*− · ℒ

(︀
𝜉′−
)︀]︀

=

∫︁
d3𝑥

[︀
𝜌
{︀
ℒ
(︀
𝜉+
)︀}︀* · 𝜉′+ + 𝜌

{︀
ℒ
(︀
𝜉−
)︀}︀* · 𝜉′−]︀ (C.34)

where ℒ(𝜉+) and ℒ(𝜉−) are given by the right hand sides of equations (C.25) and

(C.26), respectively. Using equations (C.23)-(C.26) and defining

𝛿𝑊 =
𝛿𝑃

𝜌
+ 𝛿Φ, (C.35)

we have

∫︁
d3𝑥𝜌𝜉*+ · ℒ

(︀
𝜉′+
)︀

=

∫︁
d3𝑥𝜌𝜉*+ ·

[︂
−∇𝛿𝑊 ′ +

∇𝑃

𝜌2

(︂
𝜕𝜌

𝜕𝛽

)︂
𝑃

𝛿𝛽′
]︂

=

∫︁
d3𝑥

[︂
∇ · (𝜌𝜉*+)𝛿𝑊 ′ +

𝛿𝛽′

𝜌

(︂
𝜕𝜌

𝜕𝛽

)︂
𝑃

𝜉*+ ·∇𝑃

]︂
=

∫︁
d3𝑥

[︂
−𝛿𝜌*𝛿𝑊 ′ +

𝛿𝛽′

𝜌

(︂
𝜕𝜌

𝜕𝛽

)︂
𝑃

𝜉*+ ·∇𝑃

]︂
, (C.36)

and

∫︁
d3𝑥𝜌𝜉*− · ℒ

(︀
𝜉′−
)︀
= −

∫︁
d3𝑥𝜌𝜉*− ·∇𝛿𝛽′

=

∫︁
d3𝑥∇ · (𝜌𝜉*−)𝛿𝛽′

= −
∫︁

d3𝑥

[︂(︂
𝜕𝜌

𝜕𝛽

)︂
𝑃

(︂
𝛿𝑃 *

𝜌

)︂
+
𝜌2n
𝜌

𝜕

𝜕𝛽

(︂
𝜌c

𝜌n

)︂
𝑃

𝛿𝛽*

+
1

𝜌

(︂
𝜕𝜌

𝜕𝛽

)︂
𝑃

𝜉*+ ·∇𝑃

]︂
𝛿𝛽′, (C.37)

where we have integrated by parts (the surface terms can be shown to vanish by the

continuity relation at the core-crust interface and the assumption of vanishing surface
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density). Adding the two equations together and using equation (C.28) we find

∫︁
d3𝑥

[︀
𝜌𝜉*+ · ℒ

(︀
𝜉′+
)︀
+ 𝜌𝜉*− · ℒ

(︀
𝜉′−
)︀]︀

= −
∫︁

d3𝑥

[︃(︂
𝜕𝜌

𝜕𝛽

)︂
𝑃

𝛿𝛽* +

(︂
𝜕𝜌

𝜕𝑃

)︂
𝛽

𝛿𝑃 *

]︃
𝛿𝑊 ′

−
∫︁
𝑑3𝑥

[︃(︂
𝜕𝜌

𝜕𝛽

)︂
𝑃

(︂
𝛿𝑃 *

𝜌

)︂
+
𝜌2n
𝜌

𝜕

𝜕𝛽

(︂
𝜌c

𝜌n

)︂
𝛽

𝛿𝛽*

]︃
𝛿𝛽′

= −
∫︁
𝑑3𝑥

{︃(︂
𝜕𝜌

𝜕𝛽

)︂
𝑃

[𝛿𝛽*𝛿𝑊 ′ + 𝛿𝛽′𝛿𝑊 *] + 𝜌

(︂
𝜕𝜌

𝜕𝑃

)︂
𝛽

𝛿𝑊 *𝛿𝑊 ′

+
𝜌2n
𝜌

𝜕

𝜕𝛽

(︂
𝜌c

𝜌n

)︂
𝑃

𝛿𝛽*𝛿𝛽′ − 𝜌

(︂
𝜕𝜌

𝜕𝑃

)︂
𝛽

𝛿Φ*𝛿Φ′

}︃

+

∫︁
d3𝑥𝛿Φ*

[︃(︂
𝜕𝜌

𝜕𝑃

)︂
𝛽

𝛿𝑃 ′ +

(︂
𝜕𝜌

𝜕𝛽

)︂
𝑃

𝛿𝛽′

]︃
. (C.38)

The last term can be rewritten using equations (C.28) and (C.14), which give

(︂
𝜕𝜌

𝜕𝑃

)︂
𝛽

𝛿𝑃 ′ +

(︂
𝜕𝜌

𝜕𝛽 𝑃

)︂
𝛿𝛽′ = 𝛿𝜌′ =

∇2𝛿Φ′

4𝜋𝐺
, (C.39)

and noting that ∫︁
d3𝑥𝛿Φ*∇2𝛿Φ′ = −

∫︁
d3𝑥∇𝛿Φ* ·∇𝛿Φ′, (C.40)

where the surface term vanishes. We thus prove that all the terms are symmetric

under the exchange of (𝛿𝑊 *, 𝛿𝛽*, 𝛿Φ*) and (𝛿𝑊 ′, 𝛿𝛽′, 𝛿Φ′), demonstrating that ℒ is

an Hermitian operator.

C.4 NUMERICAL ACCURACY OF TIDAL COU-

PLING COEFFICIENT CALCUATION

The oscillatory nature of the g-modes makes the calculation of the tidal coupling

coefficient 𝑄𝑎𝑙𝑚 subject to numerical error (Reisenegger, 1994; Reisenegger & Goldre-

ich, 1994; Weinberg et al., 2012). We validated the accuracy of our calculations by
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Figure C-1: Fractional difference between the three different methods of calculating
|𝑄𝑎𝑙𝑚| (see text for details). The black solid lines are |𝑄(1)

𝑎𝑙𝑚 − 𝑄
(3)
𝑎𝑙𝑚|/|𝑄

(3)
𝑎𝑙𝑚| and the

red dotted lines are |𝑄(2)
𝑎𝑙𝑚 −𝑄

(3)
𝑎𝑙𝑚|/|𝑄

(3)
𝑎𝑙𝑚|.

evaluating 𝑄𝑎𝑙𝑚 in three different ways as given by equations (4.19) and (3.41):

𝑄
(1)
𝑎𝑙𝑚 =

1

𝑀𝑅𝑙

∫︁
d𝑟𝑙𝜌𝑟𝑙+1

[︀
𝜉𝑟𝑎+ + (𝑙 + 1)𝜉ℎ𝑎+

]︀
, (C.41a)

𝑄
(2)
𝑎𝑙𝑚 =

1

𝑀𝑅𝑙

∫︁
d𝑟𝑟𝑙+2𝛿𝜌𝑎, (C.41b)

𝑄
(3)
𝑎𝑙𝑚 = −2𝑙 + 1

4𝜋

𝛿Φ𝑎(𝑅)

𝐺𝑀/𝑅
. (C.41c)

Although in the main text we give values based on 𝑄
(3)
𝑎𝑙𝑚, we find that all three

methods agree very well. For example, in Figure C-1 we show the fractional differences

|𝑄(1)
𝑎𝑙𝑚 − 𝑄

(3)
𝑎𝑙𝑚|/|𝑄

(3)
𝑎𝑙𝑚| and |𝑄(2)

𝑎𝑙𝑚 − 𝑄
(3)
𝑎𝑙𝑚|/|𝑄

(3)
𝑎𝑙𝑚| for the superfluid NS model with

(𝑀/𝑀⊙, 𝑚
*
p/𝑚N) = (1.4, 0.8). The differences are at the ∼ 1 per cent level.
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Appendix D

Phase shift

In this Appendix we derive the phase Ψ(𝑓) of the frequency-domain waveform ℎ̃(𝑓) ∝
exp [iΨ(𝑓)] due to the resonant excitation of a single mode with eigenfrequency 𝑓𝑎.

Following Flanagan & Racine (2007; see also Reisenegger & Goldreich 1994), the

resonance induces a sudden perturbation 𝛿𝑓 to the rate of frequency evolution relative

to the point particle model

𝑓(𝑓) = 𝑓pp(𝑓) + 𝛿𝑓(𝑓). (D.1)

The time taken by the binary to evolve to some frequency 𝑓 after the resonance is,

to linear order in 𝛿𝑓 ,

𝑡(𝑓) =

∫︁ 𝑓

0

d𝑓
𝑓

≃
∫︁ 𝑓

0

1

𝑓pp

(︃
1− 𝛿𝑓

𝑓pp

)︃
d𝑓 = 𝑡pp(𝑓)− 𝛿𝑡𝑎, (D.2)

where 𝛿𝑡𝑎 = −𝛿𝜑𝑎/2𝜋𝑓𝑎 (see Section IV of Flanagan & Racine 2007; note that their

sign convention for 𝛿𝜑𝑎 is opposite ours). Here we ignore the bandwidth of the

resonance and treat the perturbation 𝛿𝑓 proportional to a delta function at 𝑓 = 𝑓𝑎

since the duration of the resonance is much shorter than the orbital decay time scale

(their ratio ≃ 0.1 × [(ℳ/1.2𝑀⊙)(𝑓𝑎/500 Hz)]5/6; Lai 1994). Since 𝛿𝜑𝑎 < 0, the

mode resonance speeds up the inspiral and it takes slightly less time to reach a given
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post-resonance 𝑓 . After the resonance, the phase

𝜑[𝑡(𝑓)]

2𝜋
=

∫︁ 𝑡(𝑓)

0

𝑓(𝑡′)d𝑡′≃
∫︁ 𝑓

0

[︃
𝑓 ′

𝑓pp
− 𝑓 ′𝛿𝑓

𝑓 2
pp

]︃
d𝑓 ′=

𝜑pp(𝑓) + 𝛿𝜑𝑎
2𝜋

. (D.3)

The phase of the frequency domain waveform post-resonance is therefore

Ψ(𝑓) = 2𝜋𝑓𝑡(𝑓)− 𝜑[𝑡(𝑓)]− 𝜋

4
= Ψpp(𝑓)−

(︂
1− 𝑓

𝑓𝑎

)︂
𝛿𝜑𝑎, (D.4)

where the first equality comes from the stationary phase approximation and Ψpp =

2𝜋𝑓𝑡pp(𝑓)−𝜑pp(𝑓)−𝜋/4 is given by equation (4.33). If we had chosen the parameters

so that the perturbed and unperturbed waveforms coincide after the resonance rather

than before the resonance then the (1 − 𝑓/𝑓𝑎) factor would have the opposite sign.

For the small 𝛿𝜑𝑎 due to g-mode resonances, we find that both choices give nearly

identical rms errors Δ(𝛿𝜑𝑎) and Δ𝑓𝑎 due to the covariance with 𝑡𝑐 and 𝜑𝑐.
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Appendix E

More on Gaussian beams

The Gaussian beam inside a cavity is fully specified given the g-factors. Consider

a simple Fabry-Perot cavity formed with an input mirror and an end mirror. If we

choose the location of the waist to be at 𝑧 = 0, then the input and end mirror’s

locations are respectively given by

𝑧i = −𝐿 ge(1− gi)

gi(1− ge) + ge(1− gi)
, (E.1a)

𝑧e = 𝐿
gi(1− ge)

gi(1− ge) + ge(1− gi)
, (E.1b)

and the waist size 𝑤0

𝑤2
0 =

𝐿𝜆0
𝜋

√︃
gige(1− gige)

(gi + ge − 2gige)2
. (E.2)

Once the waist is specified, we can write the spot size at any location inside the

cavity as

𝑤(𝑧) = 𝑤0

√︃
1 +

(︂
𝑧

𝑧0

)︂2

, (E.3)

where 𝑧0 = 𝜋𝑤2
0/𝜆0 is the Rayleigh range. For |𝑧| < 𝑧0 it is known as the near field

of the beam with the spot size 𝑤(𝑧) ≃ 𝑤0 stays approximately a constant, and for

|𝑧| > 𝑧0 it corresponds to the far field where the spot size diverges as 𝑤(𝑧) ≃ 𝑤0𝑧/𝑧0 =

𝜃0𝑧, with 𝜃0 = 𝑤0/𝑧0 the diffraction angle. The distinction between the near and far

fields can also be characterized in terms of the Gouy phase 𝜂(𝑧) = arctan(𝑧/𝑧0), with

259



|𝜂(𝑧)| < 𝜋/4 for the near field and 𝜋/4 < |𝜂(𝑧)| < 𝜋/2 for the far field.

Similarly the radius of curvature of the wavefront is given by

RoC(𝑧) =
𝑧2 + 𝑧20
𝑧

. (E.4)

Note that RoC
[︀
𝑧i(e)
]︀
= RoCi(e).

The spatial dependence of a Gaussian beam is thus given by Hermite-Gauss func-

tion1

𝑢𝑚(𝑥, 𝑧) =

(︂
2

𝜋

)︂1/4(︂
1

2𝑚𝑚!𝑤(𝑧)

)︂1/2

𝐻𝑚

(︃√
2𝑥

𝑤(𝑧)

)︃

× exp

[︂
−𝑥2

(︂
1

𝑤2(𝑧)
+

i𝜋
𝜆0𝑅(𝑧)

)︂
+ i
(︂
𝑚+

1

2

)︂
𝜂(𝑧)

]︂
, (E.5)

where 𝐻𝑚 is the Hermite polynomial; the lowest-order terms are given by 𝐻0(𝑥) =

1, 𝐻1(𝑥) = 2𝑥,𝐻2(𝑥) = 4𝑥2 − 2. Note that the spot size and radius of curvature

characterize the real and imaginary parts of the wavefront, respectively.

A set of Hermite-Gaussian modes can be conveniently described in terms of the

Gaussian beam parameter 𝑞, defined as

1

𝑞(𝑧)
=

1

RoC(z)
− i

𝜆0
𝜋𝑤2(𝑧)

. (E.6)

The spot size and radius of curvature can now be written in terms of 𝑞 as

𝑤2(𝑧) =
𝜆0
𝜋

|𝑞|2
Im(𝑞)

, (E.7a)

RoC(𝑧) =
|𝑞|2
Re(𝑞)

. (E.7b)

The propagation of the Gaussian parameter 𝑞 is given by the 𝐴𝐵𝐶𝐷 formal-

ism (Siegman, 1986). Suppose a beam initially with 𝑞1 propagates through an optical

1Here we included the Gouy phase term in 𝑢𝑚(𝑥, 𝑧). Note, however, that in Section 6.1 we
typically let the mode amplitude 𝑎𝑚 to absorb the Gouy phase.
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component 𝑀 , the resultant Gaussian parameter 𝑞2 is given by

𝑞2
𝑛2

=
𝐴𝑞1/𝑛1 +𝐵

𝐶𝑞1/𝑛1 +𝐷
, (E.8)

with 𝑛1(2) the refractive index at the initial (final) point. The optical component 𝑀

can thus be associated with an coefficient matrix

𝑀 =

⎡⎣𝐴 𝐵

𝐶 𝐷

⎤⎦ . (E.9)

It is easy to show that the 𝐴𝐵𝐶𝐷 formalism is associative. A beam consecutively

passing through two optical components with coefficient matrices 𝑀1 and 𝑀2 can be

equivalent modeled as it passing through a single component with coefficient 𝑀2𝑀1.

Some commonly used 𝐴𝐵𝐶𝐷 matrices

𝑀 (refl) =

⎡⎣ 1 0

−2𝑛1/RoC 1

⎤⎦ , for reflection upon a mirror, (E.10a)

𝑀 (trans) =

⎡⎣ 1 0

(𝑛2 − 𝑛1)/RoC 1

⎤⎦ , for transmission through a surface, (E.10b)

𝑀 (prop) =

⎡⎣1 𝐿/𝑛

0 1

⎤⎦ , for propagation in free-space. (E.10c)

We can thus find the eigenmode of a cavity by computing the cavity 𝐴𝐵𝐶𝐷

matrix. In the simple Fabry-Perot cavity case this is given by

𝑀cav =𝑀 (prop)𝑀
(refl)
i 𝑀 (prop)𝑀 (refl)

e ≡

⎡⎣𝐴cav 𝐵cav

𝐶cav 𝐷cav.

⎤⎦ (E.11)

The Gaussian beam parameter of the cavity’s eigenmode (evaluated at the point right

before it hits the end mirror) is then obtained by finding 𝑞cav such that

𝑞cav =
𝐴cav𝑞cav +𝐵cav

𝐶cav𝑞cav +𝐷cav

. (E.12)
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To maximize the optical coupling, the incident beam should have a Gaussian param-

eter 𝑞in that matches the cavity’s 𝑞cav. In general, the mode mismatch parameter 𝐾

is given by

𝐾 = i
(𝑞in − 𝑞cav)

*

2Im(𝑞cav)
. (E.13)
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Appendix F

Supplemental materials for the

LIGO-LF design

F.1 LIGO-LF SUSPENSION DESIGN

LIGO-LF adopts a 4-stage suspension system similar to that of aLIGO (Aston et al.,

2012). The suspension chain consists of a top mass (TOP), an upper-intermediate

mass (UIM), a penultimate mass (PUM), and a main test mass (TST), with the

parameters for each stage summarized in Table F.1. The blade design used for LIGO-

LF vertical support is similar to that of aLIGO. Two requirements are set for the

system above 5Hz: the suspension needs to provide sufficient filtering of the residual

ground motion (cf. Figure 9-2), and its total thermal noise should be dominated by

the pendulum mode from the TST stage.

To achieve the seismic isolation requirement, the mass ratio between the TOP

and the TST stages should be similar to that of aLIGO. Decreasing the TOP mass

Table F.1: Summary of the LIGO-LF suspension parameters

Stage mass [kg] length [m] Wire diameter [mm] Material
TOP 80 0.32 1.8 C70 steel
UIM 80 0.32 1.2 C70 steel
PUM 200 0.36 1.2 Silica
TST 200 1.2 0.6 (thin); 1.8 (thick) Silica
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Figure F-1: LIGO-LF’s suspension thermal noise from different stages (represented
by dotted lines with different colors). The quantum noise is also plotted in the red-
solid line as a reference. In the left we plot the direct horizontal (along the beam line)
displacement noises. The dominant contribution above 5 Hz is from the last stage and
it is similar to the quantum noise in the 5 − 20Hz band. In the right are the noises
due to the vertical-to-horizontal coupling. The bounce mode is at 4.3Hz, making the
vertical contributions subdominant above 5Hz.

shifts the highest suspension resonance to higher frequencies, making the pendulum

filtering less efficient at 5Hz. Consequently we choose 𝑚TOP = 𝑚UIM = 80 kg, and

the resultant seismic noise is shown in the dotted-brown curve of Figure 9-1.

In addition to the direct length coupling, the longitudinal ground motion can also

couple to the pitch motion of the test mass. The main pitch resonance frequency

can be controlled by tuning the distance between the fiber binding point and the

mirror’s center of mass. Similarly, the ground rotation can couple to the yaw motion

of the test mass, and the resonance frequency can be controlled as well (Rakhmanov,

2000). For LIGO-LF, the main pitch and yaw resonances are set to 0.42 Hz and

0.35Hz, respectively, to balance the requirements for more filtering at high frequency

(> 5Hz) and for less rms angular motions at low frequency (< 1Hz).

We present the suspension thermal noise for LIGO-LF in Figure F-1. In the

sensitivity band above 5Hz, the dominant contribution comes from the pendulum

mode of the test mass stage. In the calculation we have assumed an effective loss
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angle of 5×10−10 (Hammond et al., 2012) and the resultant suspension thermal noise

is similar to the quantum noise from 5 to 20 Hz. In order to reduce the contamination

from other stages, we replace the suspension for the PUM stage from C70 steel wire

to silica fiber. Meanwhile, the wire stress in the TOP and UIM stages is increased by

30% relative to aLIGO for better dilution of the losses.

Besides the thermal motion along the beam line, the vertical vibration of the test

masses also couples to the GW channel due to the Earth’s radius of curvature. A

conservative estimation of the vertical-to-horizontal cross coupling is 0.1% (Cumming

et al., 2012). The eigenfrequency 𝑓v of the last stage’s vertical mode (also known as

the “bounce mode”) scales as (Fritschel et al., 2002)

2𝜋𝑓v ≈
√︂
𝑔𝑌

𝑙𝜎

𝑚TST +𝑚PUM

𝑚PUM

, (F.1)

where 𝑔, 𝑌 , 𝑙, 𝜎, 𝑚TST, and𝑚PUM are the local gravitational acceleration, the Young’s

modulus of the material, the length of the suspension, the stress inside the fiber, the

mass of the test mass, and the mass of the penultimate mass, respectively. To make

𝑓v low, we maintain the mass ratio between the PUM and the test mass to 1 as

aLIGO, and double 𝑙 to 1.2m. Meanwhile, the fibers suspending the test mass have

a tapered geometry: for the thick part where most of the bending energy is stored, it

has a diameter of 1.8𝜇m to cancel the thermal-elastic noise, while the thin part has

a diameter of 0.6𝜇m to increase the stress 𝜎 to 1.7 GPa. Consequently, the bounce

mode has an eigenfrequency of 𝑓v = 4.3Hz, which provides sufficient filtering of the

vertical motion in the sensitivity band.

F.2 CALCULATION OF THE SCATTERING NOISE

For the scattering noise calculation, we introduce the effective displacement 𝑥̄scatter

defined as

𝑥̄scatter(𝑡) =
𝜆

4𝜋
sin

[︂
4𝜋

𝜆
𝑥scatter(𝑡)

]︂
, (F.2)
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Figure F-2: The noises due to scattering in the arm tubes (dotted-blue) and in the
vertex (dotted-orange). The total LIGO-LF noise is shown in the solid-black as a
reference.

where 𝑥scatter(𝑡) is the (physical) relative displacement between a mirror and a scat-

tering surface at time 𝑡, and 𝜆 = 1064 nm the laser wavelength. The corresponding

frequency-domain displacement is thus given by

^̄𝑥scatter(𝑓) =
𝜆

4𝜋

∫︁
sin

[︂
4𝜋

𝜆
𝑥scatter(𝑡)

]︂
exp (−2𝜋i𝑓𝑡) d𝑡. (F.3)

Notice that when 𝑥scatter ∼ 𝜆, the effective displacement no more varies linearly with

the physical displacement. Consequently, the large ground motion below 1Hz can

be up-converted to the sensitivity band, making scattering a significant noise source

when the ground motion is severe.

The olive trace in Figure 9-1 of the main Letter is calculated including two effects:

scattering in the arm tubes, and scattering in the vertex of the interferometer, with

each one’s contribution individually shown in Figure F-2.

For the former, the calculation follows from Ottaway et al. (2012). There are two

coupling channels need to be considered. The phase quadrature of the scattered light

directly enters the GW readout, with a flat transfer function from ^̄𝑥scatter(𝑓) to the
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differential arm displacement given by

𝑍
(Im)
tube(𝑓) ≃ 2.5× 10−12

(︂
𝐴scat

5.0× 10−12

)︂
m

m
. (F.4)

In the equation above 𝐴scat is the amplitude scattering coefficient that is further

defined as

𝐴2 =

(︂
𝜆

𝐿mb

)︂
BRDF2

mBRDFbΔΩb, (F.5)

where 𝐿mb is the distance between the mirror and baffle, ΔΩb the solid angle sub-

tended by the baffle, and BRDFm(b) the Bi-directional Reflectivity Distribution (Flana-

gan & Thorne, 1994) of the mirror (baffle).

Meanwhile, the amplitude quadrature of the scattered light can beat with the

static optical field inside each arm to cause a differential power fluctuation, which

further induces differential arm motions due to the radiation pressure force. The

transfer function for this mechanism is given by

𝑍
(Re)
tube(𝑓) ≃ 8.2× 10−12

(︂
10Hz

𝑓

)︂2(︂
𝐴scat

5.0× 10−12

)︂
×
(︂
200 kg

𝑚TST

)︂(︂
𝑃a

0.8MW

)︂(︂
𝑇s
0.25

)︂
m

m
, (F.6)

where 𝑃a is the power circulating in each arm and 𝑇s is the power transmissivity of

the signal recycling mirror. Below 20Hz, the amplitude quadrature dominates the

coupling.

The scattering in the vertex is caused by the anti-reflecting (AR) surfaces along

the optical path. If not properly baffled, the stray light may hit the chamber wall

and be reflected back to the optical path. The coupling coefficient per stray beam is1

𝑍vertex(𝑓) ≃ 1.0× 10−12

(︂
𝑇baffle

0.001

)︂1/2(︂
𝑅AR

250 ppm

)︂(︂
2mm

𝑤wall

)︂
m

m
, (F.7)

where 𝑅AR is the power reflectivity of the AR surface creating the beam, 𝑤wall is

the stray light’s spot size on the chamber wall, and 𝑇baffle is the fraction (in power)

1https://alog.ligo-la.caltech.edu/aLOG/index.php?callRep=29665
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of the stray light that leaks through the baffle. There are 10 AR surfaces that can

contribute to this noise, 2 from the input test masses (𝑅AR ≃ 250 ppm), 4 from the

beam splitter (𝑅AR ≃ 50 ppm), and 4 from the compensation plates (𝑅AR ≃ 20 ppm).

To achieve the proposed LIGO-LF sensitivity, the baffles need to reduce the power of

the stray light by

𝑇
(LIGO−LF req.)
baffle < 0.1%. (F.8)
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