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ABSTRACT

In the Alcator C-Mod tokamak, a magnetic confinement fusion experiment, electrons are ac-
celerated to relativistic energies—on the order of tens of MeV—during steady-state conditions
of Ohmic, elongated, and diverted plasma discharges. These so-called “runaway” electrons emit
synchrotron radiation in their direction of motion due to their gyration in the background toroidal
magnetic field, with values of B0 ranging from 2.7 to 7.8 T at the plasma axis. Two spectrome-
ters, a wide-view camera, and a polarimeter are used to measure time-evolving spectra, images,
and polarization information, respectively, of the synchrotron radiation in the visible/near-infrared
wavelength range, λ ≈ 300-1000 nm. The kinetic equation solver Code [Landreman et al 2014
Comput. Phys. Commun., Stahl et al 2016 Nucl. Fusion] and synthetic diagnostic Soft [Hoppe
et al 2018 Nucl. Fusion] are used to model the evolution of the runaway electron phase space
distribution and to simulate the detected synchrotron emission, respectively. The major contri-
butions of this thesis work to the fields of plasma physics and fusion energy research are the
following: Spectral measurements are consistent with runaway electrons’ attaining lower energies
as the magnetic field increases, a positive sign for future high-field fusion devices. The runaway
electron density profile and other spatiotemporal dynamics, such as increased radial transport due
to magnetohydrodynamic activity, are inferred from the two-dimensional synchrotron intensity dis-
tributions captured in camera images. Finally, for the first time in a tokamak plasma experiment,
polarized synchrotron light is used as a novel diagnostic of the pitch angle distribution of runaway
electrons. For all three measurements, discrepancies between experiment and theory/simulation
are identified, and opportunities for future work are presented.
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Chapter 1

Introduction

1.1 A need for clean, carbon-free energy

In 2018, the United States’ Fourth National Climate Assessment (NCA) [1] reported that without

a dedicated effort to curb greenhouse gas emissions, the global average temperature could rise

over 5◦C by the year 2100. This would be accompanied by a rising sea level, estimated to be at

least 30 cm higher than the current global mean by the end of the century [2]. The ramifications

of these, among other related climate changes, threaten the health of the environment, economy,

and humans. Both the NCA and preceding Climate Science Special Report (CSSR) [2] are clear

that it is “extremely likely” that human activities are the dominant cause of the increased climate

change documented over the last ∼100 years. In fact, 85% of current US carbon emissions come

from the burning of fossil fuels. In 2017, the CSSR noted that recent emission rates had slowed,

but unfortunately not enough so as to keep the projected global temperature rise below 2◦C.

To remain below this limit, carbon dioxide emissions must be substantially reduced by 2040 and

become net-zero or even net-negative later in the century.

The outlook for humanity is no doubt bleak, that is unless a radical change is made. One path

forward is of course the pursuit of clean, carbon-free energy sources. Wind and solar have garnered

the most attention as of late; however, windless and sunless days mean that, without adequate

battery/energy storage technology, these two energy sources cannot always serve everyday power

needs. What is needed is a baseload and load-following energy source which can provide constant

baseline power and increase/decrease output as electricity usage demands. Fusion energy could

be the solution if it can be made efficiently and economically.

Making fusion energy a reality has been a global effort for the past ∼70 years. Yet no

experimental devicea has achieved net energy, i.e. more (fusion) power out than (external) power

aNot including the hydrogen bomb....
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Chapter 1. Introduction

in. Only recently, the US National Academy of Sciences (NAS) commissioned a report on a

“Strategic Plan for US Burning Plasma Research.” In their 2018 final report [3], the NAS

committee recommended that the US set its sights on building a compactb, net-electric fusion

power plant at low capital cost. This would be a stepping stone toward commercial fusion reactors,

which could one day produce hundreds of megawatts (MW, i.e. millions of Watts) of power with

zero carbon emissions and only short-lived radioactive byproducts. For reference, the US Energy

Information Administration reported that the entire state of Massachusetts averaged ∼1500 MW

of electric power from burning natural gas (a fossil fuel) in November 2018 [4]. If fusion and

other renewable energy sources can replace coal, oil, and gas within the next few decades, some

of climate change’s worst catastrophes could be avoided.

1.2 Fusion: the star-making business

1.2.1 Nuclear fusion reactants and products

Nuclear fusion is the process by which two atomic nuclei combine—or fuse—to form a heavier

nucleus of a new element. Usually, the products of fusion are thousands of times more energetic

than the initial reactants. This energy comes from the newly-formed nucleus occupying a lower

energy state—i.e. having a higher binding energy—and is realized as conversion of mass to energy

via Einstein’s famous relation E = ∆mc2, where E is the energy, ∆m is the total change in rest

mass, and c is the speed of light.

Consider the fusion of two hydrogrenic isotopes—a deuterium nucleus 2
1D, comprising one

proton and one neutron, with a tritium nucleus 3
1T, containing one proton and two neutrons—to

produce a helium nucleus (or alpha particle) 4
2He, with two protons and two neutrons, along with

a neutron. From the masses of these particles given in table 1.1, the total energy released in

this reaction is calculated to be ∼2.8 × 10−12 J or ∼17.6 MeV. This is less than one-tenth

of the energy produced in a typical nuclear fission reaction (which splits large nuclei); however,

the energy per particle (or per mass) is almost five times greater, making nuclear fusion a more

mass-efficient energy source.

From conservation of momentum, the energy is shared in the DT fusion reaction: one-fifth

to the alpha particle and four-fifths to the neutron,

2
1D + 3

1T −→ 4
2He (3.5 MeV) + 1

0n (14.1 MeV).

These high energy neutrons can be used to heat water, producing steam, spinning turbines, and

bAt least smaller than the current international fusion project ITER.
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1.2. Fusion: the star-making business

Table 1.1: Masses of common fusion reactants and products. (1 amu ≈ 1.6605 × 10−27 kg)

Particle Mass (amu)
1
1H 1.0073
1
0n 1.0087

2
1D 2.0141
3
1T 3.0160

4
2He 4.0026

generating electricity. This is the leading idea for extracting the energy from fusion.

Fusion powers the stars, including our sun. In fact, the light that reaches our eyes and heat

we feel on our skin both originated as fusion energy. While we “see” fusion every day, it is

actually rather difficult to fuse any material. Nuclei are positively charged due to their proton

constituents. Thus, as two nuclei are forced closer together (in an attempt to fuse), they also

increasingly repel each other via the Coulomb force; that is, until the nuclei get so close (on the

order of 1 fm = 10−15 m) that the attractive strong force overcomes Coulomb repulsion and

holds the fused nucleus together. The reactants must necessarily have significant kinetic energies

(on the order of 1-100 keV = 10 million-1 billion K) to surpass this Coulomb energy barrier.c

However, high energies are not sufficient to fuse nuclei as two almost-head-on reactants

can easily glance past each other. Therefore, a sufficiently large number of particles must be

contained within a volume to increase the probability of their interaction and fusion. Moreover,

to continually produce fusion energy, the fusion reaction rate must be greater than the rate at

which energy is lost to the surrounding environment. This is quantified through the Lawson

criterion which identifies a minimum “triple product” [5]

nT τE ≥ 8 atm · s (1.1)

of the reactant temperature T and density n, as well as the energy confinement time τE .

1.2.2 An introduction to plasmas

Fusion combines two nuclei and not two atoms. Recall that the binding energy of the single

electron in the hydrogen atom is at most 13.6 eV. Thus, for temperaturesd higher than that,

the electron can easily escape the Coulomb attraction of the hydrogen nucleus. In fact, the

cActually, the nuclei will quantum-mechanically “tunnel” through the Coulomb potential barrier.
dThroughout this thesis, the units of temperature are energy; i.e. T → kBT where kB = 1.381 × 10−23 J/K

is the Boltzmann constant.
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Chapter 1. Introduction

calculation of (1.1) actually assumes a temperature on the order of 10 keV. At this temperature,

all materials become a soup of positively and negatively charged particles, an ionized “gas” called

a plasma. This is the fourth state of matter and the most common form of it in the universe—

besides dark matter. Stars, interstellar media, lightning, flames, and fluorescent light bulbs are all

examples of plasmas. One of the most interesting properties of plasmas is that the interactions

between particles are dominated by long-range electromagnetic forces resulting in small-angle

collisions; this is very different from the standard picture of hard-sphere (“billiard-ball”) collisions

of a neutral gas.

In general, there are three criteria (italicized below) which qualify a substance as a plasma.

These are based on three basic parameters described here:

1. The Debye length: Subject to an externally-applied, static electric field, the charged parti-

cles in a plasma will rearrange themselves so as to “shield out” the applied field. Because

the electrons have much lighter masses compared to the ions (nuclei), they move most

readily to cancel out the electric field’s effects. The distance over which the electric field

amplitude decays from the source location is called the Debye length and is computed as

λDe =

(
ε0Te

e2ne

)1/2

, (1.2)

where ne and Te are the electron density and temperature, respectively, e = 1.6 × 10−19 C

is the electric charge, and ε0 = 8.85 × 10−12 F/m is the permittivity of free space. A

typical value for a fusion plasma with ne = 1020 m−3 and Te = 10 keV is λDe ≈ 75 μm.

The first criterion for a plasma requires that its size a must be much larger than the Debye

length, i.e. a� λDe.

2. The plasma frequency: Subject to an externally-applied, dynamic electric field (like an

electromagnetic wave), charged particles in a plasma—electrons, in particular—will oscillate

in an attempt to “screen out” the electromagnetic perturbations. However, the inertia of

the electrons (and ions) does not allow them to respond instantaneously; instead, they have

a characteristic frequency called the plasma frequency,

ωpe =

(
nee

2

meε0

)1/2

. (1.3)

Here, me = 9.11 × 10−31 kg is the mass of the electron. Thus, a dynamic field with

timescale τ > 2π/ωpe is effectively screened by a plasma with density ne.e A typical value

eIn general, a plasma can support electromagnetic waves with many different frequencies, including ω < ωpe;
however, the details are not discussed here.
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1.3. Tokamak plasmas: stellar donuts

for a fusion plasma, with ne = 1020 m−3, is fpe = ωpe/2π ≈ 90 GHz. The second criterion

for a plasma is then that its typical evolution timescale(s) must be much longer than the

plasma response time. This is typically quantified by the transit time of a thermal electron

across the plasma; i.e. a/vT e � 1/ωpe, where vT e =
√
Te/me.

3. The plasma parameter: The behavior of particles in a plasma is governed primarily by col-

lective effects; in other words, the dynamics of one particle is affected by many neighboring

particles instead of binary particle-particle interactions. To quantify this, we require that

the mean distance between particles must be much larger than the distance at which their

Coulomb potential energies become similar to their kinetic energies. In the end, it is enough

to calculate the so-called plamsa parameter

ΛD =
4π

3
neλ

3
De ∝

T
3/2
e

n
1/2
e

, (1.4)

which is simply the number of electrons (or ions, by quasi-neutrality) within a sphere of

radius λDe. A typical value for a fusion plasma with ne = 1020 m−3 and Te = 10 keV

is ΛD ≈ 108. The third criterion for a plasma is that ΛD � 1. This may seem slightly

counter-intuitive, but note that the dependencies indicate that ΛD increases with increasing

Te and decreasing ne.

1.3 Tokamak plasmas: stellar donuts

1.3.1 An introduction to tokamaks

The sun confines its plasma with its own gravity, creating the hot, dense conditions required

to satisfy (1.1) and produce net fusion energy. However, since about 1 million Earths could fit

inside the sun, gravity cannot be used to keep a plasma in place on Earth. Instead, we can

leverage the electromagnetic properties of a plasma, shaping it with magnets. Perhaps the most

promising approach to fusion plasma confinement is the donut-shaped “magnetic bottle” called

the tokamak. See figure 1.1 for a schematic.

The toroidal field (TF) coils are electromagnets producing a magnetic field Bt in the toroidal

direction—the long way around the torus—with characteristic radial dependence

Bt(R) =
B0R0

R
, (1.5)

where B0 is the magnetic field at the major radius R0, which extends to the center of the

plasma. Because charged particles orbit along magnetic field lines, a toroidal magnetic field

15



Chapter 1. Introduction

Figure 1.1: A diagram showing a poloidal (vertical) cross-section of an axisymmetric tokamak
geometry. The toroidal magnetic field is produced by external coils; the poloidal magnetic field
is created by a toroidal plasma current (into the page). The plasma is “confined” by a limiter.
From [6].

should keep plasma particles spiraling (gyro-orbiting) within the torus forever. However, both the

radial dependence of the magnetic field and the outward centrifugal force from circular motion

cause charged particles to drift vertically in a purely toroidal B-field. These drift velocities are

appropriately called the grad-B drift

v∇B =
v2
⊥

2ωB

B ×∇B
B2

, (1.6)

due to the field gradient, and the curvature drift

vκ =
v2
‖

ωB

Rc ×B
R2

cB
2
. (1.7)

Here, v‖ and v⊥ are the components of the particle velocity v parallel and perpendicular to the

magnetic field B, Rc is the radius of curvature of the guiding center motion (not gyro-motion),

and ωB = qB/γm is the (relativistic) gyro-frequency of a signed charge q. From (1.6) and (1.7),

it is seen that positive and negative charges will separate vertically in a purely-toroidal field B.

Then the resulting vertical electric field from charge separation would cause a radial E ×B drift

16



1.3. Tokamak plasmas: stellar donuts

out of the plasma,

vE×B =
E ×B
B2

. (1.8)

To resolve this, an additional poloidal magnetic field Bp can be used to “twist” magnetic field

lines such that particle trajectories sample both the high-field (R < R0) and low-field (R > R0)

sides of the tokamak. This effectively averages out the vertical particle drifts, adequately confining

the plasma.f In a tokamak, Bp is created by the plasma itself through its toroidal plasma current

Ip, which is typically driven by an externally-applied toroidal loop voltage Vloop induced by varying

the magnetic flux of a central solenoid. Plasma currents on the order of mega-amperes (MA, i.e.

millions of amps) lead to stored magnetic energies of 100 kJ-100 MJ, tremendous amounts of

free energy which must be carefully sustained and contained.

1.3.2 The Alcator C-Mod tokamak

The Alcator C-Mod tokamak was operated from 1992-2016 at the Massachusetts Institute of

Technology. Machine and plasma parameters for C-Mod are given in table 1.2. A CAD model

and an inside look are shown in figures 1.2 and 1.3, respectively. This compact device operated

with one of the highest toroidal magnetic fields in the world, ranging from B0 = 2-8 T, allowing

it to achieve a world-record plasma pressure of 2 atm averaged over the plasma volume. Usually,

the B-field on-axis was 5.4 T, slightly higher than the 5.3 T design [8] of ITER, the world’s

largest tokamak currently under construction in France. C-Mod’s usual plasma density, on the

order of 1020 m−3, is also comparable to ITER’s planned density. Two major differences between

C-Mod and ITER are the sizes and plasma current: ITER has a major radius of 6 m (∼10× larger

than C-Mod’s) and a target plasma current of 15 MA (while C-Mod’s was usually Ip ≈ 1-2 MA).

Additional machine parameters for ITER, as well as MIT’s newest initiative SPARC [9] and the

conceptual power plant ARC [10, 11], are provided in table 1.2.

fActually, a vertical magnetic field is also required to achieve radial force balance.
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Chapter 1. Introduction

Figure 1.2: An engineering CAD-model of the Alcator C-Mod tokamak. From the center outward:
The central solenoid (brown) drives the toroidal plasma current. The plasma (pink) is contained
inside the vacuum vessel (grey). The toroidal (cyan) and poloidal/vertical (red) magnetic field
coils confine and shape the plasma. The surrounding super-structure (light grey and green) is
held together by bolts (purple). The tokamak is surrounded by a cryostat (clear), shielded by a
concrete igloo (clear), and supported by three posts (orange). From [7].
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1.3. Tokamak plasmas: stellar donuts

Table 1.2: Comparing machine and plasma parameters of Alcator C-Mod with several other
tokamaks: ITER, SPARC, and ARC.

Parameter Symbol C-Mod ITER [8, 12] SPARC [9] ARC [10, 11]

Major radius (m) R0 0.68 6.2 1.65 3.3

Minor radius (m) a 0.22 2.0 0.5 1.13

Toroidal B-field (T) B0 2-8 5.3 12 9.2

Plasma current (MA) Ip 1-2 15 7.5 7.8

Elongation κ 0.9-1.8 1.7-1.85 1.8 1.84

Density (1020 m−3) n 0.5-2 1 3-6.5 1.3-1.8

Temperature (keV) T 0.5-8 ∼10 15-25 14-27

Edge safety factor q95 3-5 3 3.05 4.7-7.2

Heating power (MW) Pext 10 73 30 38.6

Fusion power (MW) Pfus <0.001 500 50-100 525

Discharge duration (s) ∆t 2 400 20 ∞

Figure 1.3: A fish-eye view inside the Alcator C-Mod tokamak, taken from F-port. The inner wall
(center) is covered with high-Z molybdenum tiles. Radio frequency antennas (copper covered by
steel “bars”) are on the left and right. The lower hybrid waveguide “grill” is seen to the left of
the right antenna. Note that this is approximately the location of the wide-view WIDE2 camera
used for the synchrotron radiation studies in this thesis. From [13].

19



Chapter 1. Introduction

1.4 Disruptive (and eruptive) phenomena

1.4.1 Macroscopic stability

The macroscopic evolution of a plasma is governed by its fluid description, called magnetohydro-

dynamics (MHD). In steady state, ideal MHD gives force balance in the form

∇P = J ×B (1.9)

where P = nT is the plasma pressure and J is the current density. In the tokamak configuration,

this implies that a hot, dense plasma is confined by the interaction of its own current with the

magnetic fields both produced internally and applied externally. By taking the dot product of

(1.9) with J and B, we see that both J and B lie in surfaces of constant pressure. These

so-called flux surfaces can be identified by a value called the safety factor

q(r) =
Bt

R0

r

Bp

, (1.10)

which indicates the number of toroidal transits a magnetic field line makes before completing

one poloidal revolution. Here, r is the minor radius measured from R0. A typical C-Mod plasma

magnetic configuration, from an Efit [14] reconstruction, is shown in figure 1.4 with several flux

surfaces labeled. Note in the figure that all magnetic field lines outside of the last closed flux

surface (LCFS) impact the tokamak first wall; therefore the plasma only really “exists” within

the LCFS. Moreover, the plasma shown is diverted such that there is a poloidal magnetic null

at the bottom of the machine; this is used to conduct heat and particles to the lower divertor,

which is essentially a plasma exhaust system.

There are many ways in which a plasma configuration can become unstable. For instance,

an MHD instability can occur when a magnetic field perturbation pushes a small volume of

plasma with high P into a region of lower B. Thus, equation (1.9) will not be satisfied locally,

and the perturbation will grow continuously. For a perturbation that is periodic poloidally and

toroidally, its growth rate is typically greatest for flux surfaces with low, rational values of q.

Perturbations on these surfaces have long wavelengths and bend the magnetic field lines the

least. As the perturbations grow, adjacent flux surfaces overlap, causing magnetic reconnection

and the formation of magnetic islands. Plasma mixing within these islands can then lead to a

loss of confinement, stochasticization of the magnetic field, and eventual plasma death.
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Figure 1.4: A poloidal cross-section of the Alcator C-Mod vacuum vessel (black) with poloidal
flux contours labeled for the magnetic axis (center dot), rational surfaces q = 1, 4/3, 3/2, 2,
and 3, and the last closed flux surface (LCFS, dotted). The safety factor at the plasma edge is
q95 ≈ 4.5.
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1.4.2 Plasma disruptions

The sudden termination of a plasma is appropriately called a disruption. Figure 1.5 shows the time-

evolution of plasma parameters from the final (ever) plasma discharge of Alcator C-Mod which

(unfortunately) ended in a disruption. As is seen in figure 1.5a, the plasma current ramps up to

Ip ≈ 1.4 MA over t ≈ 0-0.5 s, while the density and temperature eventually reach ∼2 × 1020 m−3

and ∼3 keV, respectively. The stored thermal energy was about 150 kJ, and approximate mag-

netic energy was 1.1 MJ. Figure 1.5b zooms in on the disruption which occurs over only a few

milliseconds, from t ≈ 1.294-1.296 s. Note how the density and temperature start to decrease

slightly before the plasma current; this causes an increase in plasma resistivity, which goes like

η ∝ T−3/2 in a plasma. What follows is a decay of Ip, usually at a rate consistent with the

inductor-resistor L/R time. A large loop voltage (∼60 times its normal value) is induced from

L dIp/dt, and a spike in radiated power is observed.
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Figure 1.5: Plasma parameters for C-Mod’s final discharge 1160930043 for (a) the entire discharge
(t = 0-1.5 s) and (b) zoomed in on the disruption (t = 1.2-1.3 s). From top to bottom: the
plasma current (MA), loop voltage (V), density (1020 m−3), temperature (keV), and radiated
power (MW). (B0 = 5.7 T, Wth ≈ 150 kJ, Wmag ≈ 1.1 MJ)

As observed in the discharge of figure 1.5, a disruption usually occurs in two stages: the

thermal quench (TQ) during which essentially all of the plasma thermal energy is conducted,

convected, or radiated away, followed by the current quench (CQ) during which the magnetic
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1.4. Disruptive (and eruptive) phenomena

energy is lost. Timescales of the TQ and CQ of C-Mod disruptions were on the order of 100 μs

and 1 ms, respectively. Disruptions not only lead to delays in tokamak (or future power plant)

operation, but can also cause serious damage to the machine and plasma-facing components

(PFCs). In general, there are three main dangers:

1. High heat fluxes: The rapid loss of thermal energy can lead to high heat loads on the first

wall and divertor. In C-Mod, almost 100 kJ of stored thermal energy would be dissipated

in ∼100 μs; that’s approximately 1 GW of thermal power! Thus, disruptions certainly

have the potential to melt PFCs, especially if the radiated and conducted powers are

asymmetric. At the beginning of his graduate career, the author of this thesis participated

in some experiments measuring radiation asymmetries from both natural and mitigated (i.e.

purposefully-triggered) disruptions; the results are published in [15].

2. Halo currents: Diverted and elongated tokamak plasmas are vertically-unstable due to the

additional poloidal field coils required to shape/pull the plasma. During a disruption, the

plasma can then drift and contact the first wall, allowing a significant fraction of the plasma

current, called the halo current, to flow through the vacuum vessel. This can lead to large

J ×B forces and torques, which can damage PFCs. The author of this thesis has studied

the time evolution and poloidal distribution of halo currents from vertical displacement

events in C-Mod, using a high spatial resolution poloidal array of Langmuir “rail” probes;

the findings are published in [16].

3. Runaway electrons: Large electric fields, induced by the decaying plasma current, can

accelerate electrons up to relativistic speeds. These runaway electrons can attain energies

of tens of MeV (∼104 times the energy of a thermal electron) and sometimes carry a

significant fraction of the pre-disruption plasma current: as much as 50% in ASDEX-

Upgrade and 66% in COMPASS [17], 60% in JET [18], and 80% in FTU [19]. (All of

these are tokamak experiments.) Upon losing confinement, runaway electrons can impact

the wall and damage PFCs, as seen in figure 1.6. The dynamics of runaway electrons will

be the focus of this thesis work. Papers published and submitted for publication by the

author on this topic include [20–23].

Plasma disruptions threaten the operation and success of future tokamaks, like ITER and

SPARC. They must be avoided or their deleterious effects at least mitigated. Of course, a

disruption must be first be predicted with sufficient warning time to allow for avoidance or

mitigation efforts. A novel approach to disruption prediction, using the statistical framework of

survival analysis and Random Forest machine learning methods, has recently been submitted for

publication by the author of this thesis [24].
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Limiter

Figure 1.6: A shower of sparks, captured by a false-colored visible camera, resulting from runaways
impacting a limiter (labeled) during the plasma current ramp-down at the end of Alcator C-
Mod discharge 1160824028. (See the analysis of synchrotron spectra from this discharge in
appendix C.)
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1.5 Outline

The outline of the rest of this thesis is as follows: Chapter 2 describes the nature of runaway

electrons and their generation and evolution in phase space. Then, in chapter 3, a derivation

and explanation of synchrotron radiation, which is emitted by runaway electrons, is given. The

diagnostics used for detection of runaway electron synchrotron emission are detailed in chapter 4,

and overviews of the numerical tools used to compare theory with experiment are provided in

chapter 5. The bulk of experimental analyses (and comparisons with synthetic data) are presented

in chapters 6, 7, and 8, which focus on spectra, images, and polarization measurements of

synchrotron emission, respectively. (The content of these three chapters originates from their

respective publications [21], [22], and [23].) Finally, a summary of this thesis work and a future

outlook are given in chapter 9.
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[19] J.R. Mart́ın-Soĺıs, B. Esposito, R. Sánchez, F.M. Poli, and L. Panaccione. Enhanced pro-
duction of runaway electrons during a disruptive termination of discharges heated with lower
hybrid power in the Frascati Tokamak Upgrade. Phys. Rev. Lett., 97:165002, 2006.
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Chapter 2

Runaway electrons

2.1 Runaway electron generation

2.1.1 Threshold electric fields

Charged particles in a plasma interact primarily via the long-range (∼ 1/r2) Coulomb force.

Therefore, “collisions” between particles are typically small -angle deflections, as opposed to the

large-angle, hard-sphere collisions idealized in a neutral gas. Recall that a single charge only feels

the electric force from neighboring charges within a Debye sphere, with radius equal to the Debye

length given in (1.2). The typical collision frequency ν of an electron with mass me and speed

v moving through such a plasma is calculated (i) using the well-known Rutherford scattering

cross-section and (ii) including only impact parameters b < λDe. The frequency νei of an electron

colliding with a plasma ion is given by equation (9.48) in [1],

νei ≈
1

4π

ne4 ln Λ

ε20m
2
e

1

v3 + 1.3v3
T i

. (2.1)

Here, vT i =
√
Ti/mi is the thermal speed of an ion with mass mi and temperature Ti, the

assumption n ≈ ne ≈ ni is made for a single ion species plasma due to quasi-neutrality, and the

parameter ln Λ ≈ 10-20 is the Coulomb logarithm where

Λ =
12π(ε0Te)

3/2

e3n1/2
. (2.2)

The collision frequency of an electron with another electron νee takes a similar form,

νee ≈
1

2π

ne4 ln Λ

ε20m
2
e

1

v3 + 1.3v3
T e

, (2.3)
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where vT e =
√
Te/me is the electron thermal speed.

An important (and fascinating) property of plasmas is contained in (2.1) and (2.3): As a

particle’s speed increases (v � vT e � vT i), its probability of colliding with another particle de-

creases. Thus, provided a sufficiently strong force, a charged particle can continuously accelerate,

i.e. “run away,” to relativistic velocities v → c. Due to their light masses (me � mi), electrons

are most susceptible to this behavior and are then called “runaway” electrons, hereafter referred

to as runaways.

The first postulation of runaways is attributed to Dreicer in 1959-1960 [2, 3]. Following a

derivation similar to that in those works, consider a plasma in which an electron moves with

velocity v exactly parallel to the background magnetic field B—i.e. there is no gyro-motion.

If an external electric field E is applied parallel to B, then the 1D non-relativistic equation of

motion along B is

me
dv

dt
= −eE −mev (νei + νee) . (2.4)

Solving for force balance gives a threshold electric field

Ethr = |E| = 1

4π

ne3 ln Λ

ε20me

v

(
1

v3 + 1.3 v3
T i

+
2

v3 + 1.3 v3
T e

)
. (2.5)

Note that (2.4) and (2.5) constitute “test-particle” equations; that is, they consider only a

test electron interacting with distinct populations of electrons and ions. However, in [2, 3],

Dreicer argues that the total momentum and energy of one particle species does not change from

interactions between like-particles. Neglecting the second terma of (2.5) and assuming v � vT i

gives the new threshold field

Ethr ≈
mv

e
νei =

ne3 ln Λ

4πε20mev2
. (2.6)

From this, we can calculate the critical (Dreicer) field at which the bulk population of (thermal)

electrons would run away by substituting v = vT e =
√
Te/me,

ED =
ne3 ln Λ

4πε20Te

. (2.7)

When the entire population of electrons runs away in experiment, it is called electron “slide-away.”

This can often happen during plasma start-up when densities n are quite low.

aBecause νei and νee are of similar order, neglecting νee only changes the final result by a factor of order unity.
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2.1. Runaway electron generation

Naturally, relativistic effects will come into play as electrons run away to v ≈ c. In [4], Connor

and Hastie derived the critical electric field below which no electrons could run away,

EC =
ne3 ln Λ

4πε20mec2
, (2.8)

which is simply (2.6) with v → c, or EC = ED×Te/mec
2. Note that with mec

2 = 511 keV and a

temperature of Te ∼ 5 keV, the ratio ED/EC ∼ 100. In more practical units, the Connor-Hastie

critical field is

EC [V/m] ≈ 0.005n20 ln Λ, (2.9)

where n20 is the density measured in units of 1020 m−3. Since ln Λ is relatively insensitive to

changes in density and temperature, we see that the electric field required for runaway production

is really just a function of density, and E > EC can be attained in different phases of the plasma

discharge: For example, if the plasma density is sufficiently low, the normal loop voltage Vloop

driving the plasma current could also drive runaways. In addition, during plasma disruptions, the

induced electric field often exceeds EC by factors of 10-100.

Note that this calculation—and the results, (2.7) and (2.8)—included only collisions with

singly-charged ions, but no other damping effects, such as collisions with high-Z impurities, radi-

ation reaction, or wave-particle interactions. For multiply-charged ions (resulting from impurities),

the effective charge,

Zeff =

∑
i Z

2
i ni∑

i Zini

, (2.10)

will be used, where the sum is over all ion species.

Two groundbreaking studies in [5] and [6] showed that the electric field needed for runaway

generation and suppression was several (∼2-5) times higher than EC. This is perhaps unsurprising

since other runaway power loss mechanisms make it more difficult for runaway populations to form.

This may bode well for future devices. The ratio E/EC for more recent runaway experiments on

C-Mod will be explored later in this thesis, in chapters 6 and 7.

2.1.2 Runaway electron growth rates

While the previous section discussed the plasma conditions required for runaways to be born,

nothing was mentioned about their population growth rates. A simple formulation of the bulk

runaway density evolution is
dnr

dt
= Γlinn+ Γexpnr, (2.11)

where Γlin and Γexp are linear and exponential growth rates, respectively.
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Figure 2.1: A diagram depicting the magnitude of forces experienced by an electron in a plasma.
Note how collisional friction decreases as the particle’s speed increases. The friction force Fcoll

(black) is calculated from (2.5). If an external electric field E > EC is applied, all electrons with
velocities v > vthr, from (2.12), will run away. If radiation or other deceleration mechanisms
are included, represented as Fcoll + Frad, then runaways can only accelerate to v = vmax. (Not
to-scale.)

Consider first the linear, or primary (Dreicer), growth rate. Rearranging (2.6) gives the

threshold velocity

vthr =

(
ne3 ln Λ

4πε20meE

)1/2

(2.12)

For a given electric field E, electrons with velocities v > vthr should run away to c, thus depleting

that same region of (1D) velocity space. Connor and Hastie, in [4], performed the relativistic

calculation of the rate at which the thermal electron population “diffuses” into (or “feeds”) the

runaway regime. The result is given as equations (62)-(64) in [4],

Γlin = C ν(vT e)

(
ED

E

)h(Ê,Zeff)

exp

[
−f(Ê)

ED

E
− g(Ê, Zeff)

√
2ED

E

]
(2.13)

where C is a constant of order unity, ν(vT e) is the collision frequency evaluated at the electron
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thermal speed, Ê = E/EC (recall EC = ED × Te/mc
2), and

f(Ê) = 2Ê

(
Ê − 1

2
−
√
Ê(Ê − 1)

)
, (2.14)

g(Ê, Zeff) =

√
(Zeff + 1)Ê2

8(Ê − 1)

[
π

2
− arcsin

(
1− 2

Ê

)]
, (2.15)

h(Ê, Zeff) =
1

16(Ê − 1)

Ê(Zeff + 1)− Zeff + 7 + 2

√
Ê

Ê − 1
(Zeff + 1)(Ê − 2)

 . (2.16)

No doubt, equation (2.13) is complex, but it is included here for completeness as it is utilized

later in chapter 6. From equation (67) in [4], the non-relativistic limit can be written as

Γlin ≈ C ν(vT e)

(
ED

E

)3(Zeff+1)/16

exp

(
−1

4

ED

E
−
√

(Zeff + 1)
ED

E

)
(2.17)

In general, it is found that Γlin increases with increasing temperature through the ratio ED/E ∝
Te/E, specifically when E/ED � 1, which is generally the case in experiment (at least for this

thesis work). In addition, Γlin decreases with increasing effective charge Zeff . These dependencies

make sense intuitively as higher values of Te provide a larger population of electrons available to

run away, while high Zeff leads to increased collisional friction and damping.

The exponential growth term Γexp in (2.11) is the secondary generation mechanism called

“avalanching.” This is the process by which a runaway electron with velocity v1 > vthr collides

with a thermal electron with velocity v2 < vthr; after the collision, the runaway electron has lost

energy but maintains v′1 > vthr, while the second electron’s speed has increased such that now

v′2 > vthr. In this way, the runaway electron has “knocked” the thermal electron into the runaway

regime without leaving the regime itself, and a runaway avalanche process occurs.

Based on the work of Jayakumar [7], it was first shown that the avalanching mechanism was

exponentially sensitive to the bulk plasma current. The number of e-folds expected during a

disruption—in which all of the magnetic energy could be converted to runaway electron energy—

was given by

Γexp ∆t ≈ Ip

IA ln Λ
(2.18)

where IA = 4πε0mec
3/e ≈ 17 kA. For C-Mod with Ip ≈ 1 MA, an exponential increase of e3

might be expected, whereas for ITER, with Ip = 15 MA, the factor could be as large as e40!
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Chapter 2. Runaway electrons

The most well-known calculation of the runaway avalanche growth rate was carried out by

Rosenbluth and Putvinski [8], with the result given by equation (18) therein,

Γexp =
eEC

mec ln Λ

√
πα

3(Zeff + 5)

(
Ê − 1

)(
1− 1

Ê
+

4π(Zeff + 1)2

3α(Zeff + 5)(Ê2 + 4/α2 − 1)

)−1/2

.

(2.19)

Here, α ∼ 1 in the high aspect ratio limit (a/R → 0), and Ê = E/EC > 1 is assumed. Again,

this is a complicated formula but is included for completeness as it is used in chapter 6. In the

limit that E/EC � Zeff + 1, we obtain

Γexp ≈
eEC

mc ln Λ

1√
Zeff + 5

(
Ê − 1

)
(2.20)

As one might expect, Γexp is found to increase with increasing Ê ∝ E/n and decrease with

increasing Zeff .

2.1.3 Other runaway generation mechanisms

The previous sections described how runaways can be generated as electrons are (i) accelerated

from the tail of the distribution function via the Dreicer mechanism or (ii) boosted to relativistic

speeds via a collision with an already-formed runaway. In addition, there are several other ways

that runaways can form. These are not the focus of this thesis, but they are noted here. First,

the non-thermal, yet non-relativistic electron population (vT e < v � c) can be enhanced from

wave-particle interactions, like electron cyclotron heating (ECH) or lower hybrid current drive

(LHCD). In fact, LH was often used on C-Mod to encourage runaway growth during runaway

experimental studies. In this scenario, a higher fraction of the electron population is available to

run away for lower values of an applied electric field, when compared to a Maxwellian distribution.

This is slightly worrisome as future fusion devices will likely rely on ECH or LHCD for steady-state

operation. During a disruption, these “hot-tail” electrons will slow down less efficiently than the

bulk population—see (2.1) and (2.3)—potentially exacerbating the runaway problem.

The nuclear/radiation environment of future machines unfortunately provides other opportuni-

ties for runaway generation [9]: The beta-decay of tritium can result in an electron with an energy

up to 18.6 keV. Thermal electrons can also gain energy through collisions with the 3.5 MeV alpha

particles produced from DT reactions. Gamma radiation from neutron-irradiated wall materials

can inverse Compton scatter with cold electrons. All of these potential non-thermal electron

sources need further investigation, as noted in [9], especially to assess their possible impacts on

machines like ITER and SPARC. However, as also noted in [9], some of these effects—the first
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2.2. Momentum space evolution of runaway electrons

two, in particular—may be negligible for a sufficiently hot tail of the Maxwellian distribution,

which could remain even after a disruption.

2.2 Momentum space evolution of runaway electrons

The analysis of the previous section was only one-dimensional, considering electron velocities v

and applied electric fields E parallel to the background magnetic field B. Of course, there are

three components of v, but it is enough to consider just two: the velocity components parallel

(v‖) and perpendicular (v⊥) to B. This is the guiding center “picture”; the precise angle of the

electron in its gyro-orbit about the magnetic field line is inconsequential and averaged out.

The perpendicular velocity v⊥ is needed to understand the full picture of runaway dynamics. In

particular, even if v‖ decreases due to, say, collisions with other particles, energy can be transferred

into v⊥, so the total energy is not actually lost. This is a process called pitch angle scattering,

where the pitch angle is defined as tan θp = v⊥/v‖. In addition, it is v⊥ (gyro-motion) that most

readily produces synchrotron radiation which acts as a power loss mechanism for runaways. The

details of synchrotron radiation will be handled in chapter 3. For now, we need only consider the

total synchrotron power radiated by a gyrating electron, given by the Larmor formula

Psynch =
e4γ2v2

⊥B
2

6πε0m2
ec

3
, (2.21)

where γ = 1/
√

1− v2/c2 is the relativistic Lorentz factor. Note that a characteristic radiation

timescale can be extracted from (2.21), defined as

τrad =
6πε0m

3
ec

3

e4B2
. (2.22)

This timescale is often compared to the runaway collisional timescale, calculated from (2.4) and

(2.8),

τcoll =
mec

eEC

=
4πε20m

2
ec

3

e4n ln Λ
. (2.23)

The ratio τ̂rad = τrad/τcoll is then used to indicate the relative strengths of synchrotron radiation

reaction compared to collisional damping on runaways,

τ̂rad =
3men ln Λ

2ε0B2
≈ 280

n20

B2
. (2.24)

Here, n20 is measured in units of 1020 m−3. Thus, for low values of τ̂rad, the power loss from

synchrotron radiation dominates over that from friction. However, this ratio is slightly misleading
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Chapter 2. Runaway electrons

since τ̂rad = 1 does not necessarily mean that the damping mechanisms are of equal magnitude.

We are really interested in the ratio of powers

Psynch

Pcoll

=
(γv⊥

c

)2 1

τ̂rad

, (2.25)

which is energy-dependent. If runaway energies are not known a priori—which is the case in

experiment—only estimates of Psynch/Pcoll can only be made.

2.2.1 A test-particle model

One way to calculate the trajectories of runaways in momentum space (v‖, v⊥) is using a test-

particle model (TPM), through which the equation of motion of a single test electron is solved

given bulk plasma parameters. The TPM used for this thesis work was developed by Mart́ın-Soĺıs

et al [10] and incorporates the effects of both collisions and synchrotron radiation. The evolution

of the parallel runaway momentum is given by equation (1) of [10],

dp‖
dt

= eE‖ −
nee

4me ln Λ

4πε20

γ2

p2

(
1 +

Zeff + 1

γ

)
p‖
p
− e2

6πε0
β3γ4

〈
R−2

〉 p‖
p
, (2.26)

Here, p‖ = γmev‖ is the parallel relativistic momentum, p = γmev is the total relativistic

momentum, and β = v/c is the normalized velocity. The first term corresponds to the electric

force in the direction of the magnetic field, where E‖ is the component of the electric field

parallel to B. The second term is recognizable as collisional friction, with the additional factor

(Zeff + 1)/γ, computed by Fussmann [11], including pitch angle scattering from multiply-charged

ions. The last term is the gyro-averaged synchrotron reaction force, where 〈R−2〉 is the inverse-

square of the radius of curvature, calculated by Kurzan et al [12], accounting for both gyro- and

toroidal motion in a tokamak. This is approximated as〈
1

R2

〉
≈ 1

R2
0

+
sin4(θp)

ρ2
L

, (2.27)

where R0 is the tokamak major radius and ρL = p⊥/eB is the Larmor gyro-radius. Note that for

a runaway electron in Alcator C-Mod, ρL is usually on the order of mm (certainly sub-cm), so

synchrotron radiation is typically gyro-motion dominated.

The total runaway momentum is given by equation (2) of [10],

dp

dt
= eE‖

p‖
p
− nee

4me ln Λ

4πε20

γ2

p2
− e2

6πε0
β3γ4

〈
R−2

〉
. (2.28)
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2.2. Momentum space evolution of runaway electrons

The evolution of the perpendicular momentum (dp⊥/dt) can be computed from (2.26) and (2.28)

if needed.

This set of coupled momentum equations can be solved with a standard ordinary differen-

tial equation solver, like the Runge-Kutta methods, given time-dependent parameters E‖, ne,

Zeff , and B. Examples of test-particle trajectories in momentum space, solved using time-

independent parameters, are shown in figure 2.2. The initial electron momentum was set to

(p‖0, p⊥0)/mec = (1, 10−3)b, and the plasma density set to ne = 1019 m−3. Then, equa-

tions (2.28) and (2.26) were evolved from t = 0-1 s. The dots in figure 2.2 represent time

intervals of ∆t = 0.1 s. As is seen in the figure, the distance between points along each trajec-

tory decreases in time, indicating that the test particle is approaching an “attractor” or equilibrium

in momentum space.

The dependencies of the test-particle trajectories on input parameters are intuitive: As the

ratio E/EC increases, the electric field increasingly dominates over collisional friction; thus, as

shown in figure 2.2a, the runaway momentum increases, mostly parallel but also perpendicular

to the magnetic field. As the magnetic field strength increases, a smaller perpendicular mo-

mentum p⊥ is required to radiate the same synchrotron power—see (2.21); for the case shown

in figure 2.2b, both the total runaway momentum and pitch angle decrease with increasing B.

Increasing Zeff results in higher collisionality and pitch angle scattering; this is seen as an increase

in p⊥ and decrease in p‖ in figure 2.2c.

2.2.2 The kinetic equation

An advantage of the TPM presented in the previous section is that it is computationally inex-

pensive to solve, allowing many scans over different plasma parameters. However, the result of

the TPM is a delta function δ(p) in momentum space, when in reality the runaway population

will have an entire distribution of energies and pitch angles. The distribution function f(p) of

runaways in momentum space can be calculated from the kinetic equation which takes the general

form
dfe

dt
=
∂fe

∂t
+

dr

dt
· ∂fe

∂r
+

dp

dt
· ∂fe

∂p
. (2.29)

Here, fe(t, r,p) is actually the phase space distribution of electrons, including position space

effects through ∂fe/∂r. In the case of no spatial dependence, e.g. in an infinite homogeneous

plasma, the kinetic equation can be rewritten as

∂fe

∂t
− e (E + v ×B) · ∂fe

∂p
=
∑
i

Cei {fe, fi} . (2.30)

bNote that if p⊥0 = 0, then p⊥ = 0 for all time.
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Figure 2.2: TPM trajectories in momentum space from (2.26) and (2.28), varying parameters
(a) E/EC, (b) B, and (c) Zeff . All parameters are constant in time; the dots denote time intervals
∆t = 0.1 s from t = 0-1 s. The initial momentum is p‖0/mec = 1 and p⊥0/mec ≈ 10−3. Note
that for B = 2.7, 5.4, and 7.8 T, the ratio τ̂rad ≈ 4, 1, and 0.5, respectively, for ne = 1019 m−3.
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2.3. Position space dynamics of runaway electrons

Here, the Lorentz force was substituted, and Cei is the operator representing collisions between

electrons and all ion species i. This can be solved numerically given an appropriate form of Cei.

The code COllisional Distribution of Electrons (Code) [13, 14] was used for this task, and its

details are discussed further in chapter 5.

It should be noted that there are certain cases in which a TPM is sufficient to capture runaway

evolution and dynamics and to explain diagnostic measurements. This is the case in the analysis

of chapter 6 which utilizes a bulk measurement of the runaways, so fine details of the full runaway

distribution are unresolvable. Other times, the full distribution is required to adequately match

theory and experiment, as is the case in chapters 7 and 8 for which effects of the full spatial and

pitch angle distributions are diagnosed.

2.3 Position space dynamics of runaway electrons

The previous section considered runaway dynamics in momentum space, but neglected any posi-

tion space (real space) effects. These play an important role in runaway evolution—e.g. spatially-

varying plasma parameters, radial transport, and drifts—as well as the diagnosis of runaways—e.g.

is the emission from runaways even within a detector’s field-of-view? The following sections will

focus specifically on runaway drift orbits and radial diffusion. The former will be needed when

comparing experimental and synthetic data in chapter 6. The latter is observed in and inferred

from experimental measurements of chapters 7 and 8, but detailed calculations are left for future

work.

2.3.1 Drift orbits

As mentioned in chapter 1, charged particles experience drifts in a tokamak magnetic geometry

due to the curvature of magnetic field lines as well as the radially-decreasing magnetic field

strength. The total vertical drift velocity, summing (1.6) and (1.7), can be expressed as

vd =
1

ωBR

(
v2
‖ +

v2
⊥
2

)
, (2.31)

where ωB = qB/γme is the cyclotron frequency. Following the derivation performed by Knoepfel

and Spong [15], the drift radius—i.e. the radial deviation from the flux surface—can be calculated

as rd/r = vd/vp, where r is the minor radial position and vp is the poloidal velocity given by the

rotational transform

vp = v‖
Bp(r)

Bt

. (2.32)
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Thus, the drift radius can be expressed as

rd =
r

R0

γme

eBp(r)

1

v‖

(
v2
‖ +

v2
⊥
2

)
. (2.33)

Because runaway motion is primarily in the toroidal direction, we expect that v2
‖ � v2

⊥. Thus,

the second term in (2.33) can usually be neglected, so that

rd ≈
p‖ q(r)

eBt

, (2.34)

where q(r) = Btr/BpR is the safety factor. Note that the drift radius in (2.34) is essentially the

same as those derived in later works, such as [16–18].

To approximate q(r) and Bp(r), first consider the current profile of a cylindrical plasma of the

form J(r) = J0 (1− (r/a)n) where n is a positive number and a is the maximum minor radius.

The total current in the plasma is given by

Ip =

∫ 2π

0

dθ

∫ a

0

J(r) r dr = 2πJ0

∫ a

0

[
1−

(r
a

)n]
r dr. (2.35)

Solving this integral gives the appropriate form of J0

J0 =
n + 2

n

Ip

πa2
. (2.36)

In a similar way, the poloidal field can be calculated through Ampere’s law

2πr Bp(r) = 2πµ0a
2J0

[
1

2

(r
a

)2

− 1

n + 2

(r
a

)n+2
]
. (2.37)

Rearranging and substituting for J0 gives

Bp(r) =
µ0Ipr

πa2

{
1

2
+

1

n

[
1−

(r
a

)n]}
. (2.38)

Finally, the approximate drift orbit radius can be written in its final form

rd =
π

eµ0

a2

R0

p‖
Ip

(
1 +

tan2 θp

2

){
1

2
+

1

n

[
1−

(r
a

)n]}−1

, (2.39)

where tan θp = v⊥/v‖ was substituted.
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2.3. Position space dynamics of runaway electrons

A particle will lose confinement when its drift orbit leaves the plasma, i.e. r+ rd +ρL > a. In

the small gyro-radius limit (neglecting ρL), the parallel momenta for which particles are confined

are given by

p‖ ≤
eµ0

π

R0

a
Ip

(
1− r

a

){1

2
+

1

n

[
1−

(r
a

)n]}
, (2.40)

where the tan2 θp � 1 was assumed. The ratio of threshold energy to plasma current for several

profiles are shown in figure 2.3. As the current profile peaks (low n), the local Bp increases and

higher energy runaways are better confined. For a parabolic current profile (n = 2) and C-Mod

machine parameters, this reduces to

p‖
mec

≤ 724 IMA

(
1− r

a

)[
1− 1

2

(r
a

)2
]

(2.41)

which implies that runaways generated on the magnetic axis (r = 0) require energies E ≥ 360 MeV

to lose confinement in a C-Mod plasma with Ip = 1 MA. This threshold is quite high, reflecting

the impressive confining “power” of the poloidal magnetic field. Note however that, in practice,

runaways could not reach this energy during a standard ∼2 s plasma discharge (or disruption) in

C-Mod. This also does not account for diffusion/transport of runaways or magnetic perturbations.

2.3.2 Diffusion and radial transport

Because runaways experience far fewer collisions than thermal electrons, their radial diffusion

and transport are primarily influenced by magnetic perturbations and wave-particle interactions.

The effect of magnetic fluctuations on runaway dynamics has been studied extensively in theory

[19–21], simulation [22–25], and experiment [17, 26].c Here, a brief overview of runaway diffusion

is given.

In their seminal paper on electron transport in stochastic fields [19], Rechester and Rosenbluth

suggested that the radial diffusion coefficient for high energy electrons should scale like

Dr ≈ vR

(
δB

B

)2

(2.42)

where v is the velocity (v ≈ c for runaways), R is the major radius, and δB is the ampli-

tude of magnetic fluctuations (at a particular flux surface) in the background magnetic field B.

The experimentally-measured confinement times of runaways in the LT-3 tokamak [27] could be

matched for δB/B ∼ 10−4. Later works—for instance, see [16, 20, 21]—considered the effects of

cThis is a non-exhaustive list of references.
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Figure 2.3: The maximum confined runaway energy (in MeV) for a given plasma current (in MA)
versus normalized minor radius, calculated from (2.40), for three current density profiles of the
form J(r) ∝ 1− (r/a)n: parabolic (n = 2, solid), cubic (n = 3, dotted), and uniform (n =∞,
dot-dashed).

the finite Larmor radiusd and drift velocity, concluding that runaway diffusion should be reduced

compared to (2.42). In [21], it was estimated that fluctuation amplitudes of δB/B ≥ 10−3 would

be required to suppress a runaway avalanche; that is, for the diffusion rate to be greater than the

avalanche growth rate. A similar value was also found from simulations by Papp et al [23].

A thorough analysis of runaway diffusion is not performed in this thesis due to uncertainties

in measured δB/B. The diagnostics measuring magnetic fluctuations, like the Mirnov coils, are

located outside the plasma in the vacuum vessel wall and are not always appropriately calibrated.

Thus, it is difficult—or practically impossible—to estimate the amplitude of magnetic perturba-

tions at specific locations within the plasma. The cumulative errors accrued in estimating δB/B

would then propagate to the calculations of the diffusion coefficient. Nevertheless, the effects

of MHD activity, measured as high frequency magnetic oscillations, on runaway dynamics have

been observed in C-Mod and are explored further in chapters 6, 7, and 8.

dThe Larmor radius of a runaway electron can be up to γc/vT e larger than that of a thermal electron.
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2.4 Other energy and particle loss mechanisms

In this section, we briefly discuss some other runaway energy and particle loss mechanisms which

are observed in experiment and could play important roles in the dynamics of runaway beams

in future tokamaks. However, these mechanisms are not major foci of this thesis work because

they were either not relevant to or not directly measured in the runaway experiments of Alcator

C-Mod.

2.4.1 Bremsstrahlung

Bremsstrahlung is the “braking radiation” emitted by a charged particle as it is deflected (and

often decelerated) by a charged nucleus. Runaway electrons produce bremsstrahlung when either

colliding with plasma ions (typically the high-Z impurities) or impacting the tokamak first wall

after loss of confinement. The energy of a bremsstrahlung photon is at maximum the energy

of the runaway itself, meaning that hard X-rays (HXR) and gammas are often emitted. These

signals will be used later in chapters 6-8 to indicate the generation of runaways. As will be

discussed, HXR measurements are recorded outside of the C-Mod vacuum vessel, meaning that

much of the detected bremsstrahlung is likely produced through runaway-wall impacts. A radially-

viewing HXR camera was also available to measure bremsstrahlung from runaway-ion interactions;

however, overwhelming photon fluxes caused signal saturation and resulted in inaccurate pulse-

height analysis. Thus, the HXR camera data were never analyzed.

Almost all studies of runaways in tokamak plasmas make some use of HXR bremsstrahlung

signals. A literature review will not be presented in this section; instead, we argue here that

synchrotron radiation is a more significant power loss mechanism for runaways compared to

bremsstrahlung. Therefore, it is allowable to neglect bremsstrahlung in the above runaway mo-

mentum space evolution of section 2.2 and throughout the rest of this thesis. From [28], the

bremsstrahlung reaction force, in the high runaway energy limit, is given by

Fbrems =
α(Zeff + 1)eEC

π ln Λ
(γ − 1)

(
ln 2γ − 1

3

)
, (2.43)

where α ≈ 1/137 is the fine-structure constant, and γ is again the relativistic factor. As one

might expect, this drag force increases with both Zeff (impurities) and density through EC ∝ n.

Note that (2.43) also depends on the runaway energy through γ, just like the synchrotron

radiation reaction forces in (2.26) and (2.28). This indicates that there are runaway energies at

which synchrotron power loss will dominate that from bremsstrahlung, and vice versa. In [28], a

parameter scan of kinetic simulations (using Code [13, 14], to be described in chapter 5) found
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that the effect of synchrotron radiation on the runaway momentum space distribution function is

more significant than that of bremsstrahlung when

B2 & n20
E

EC

. (2.44)

Here, B is the magnetic field strength in Tesla, n20 is the plasma (electron) density in 1020 m−3,

and E/EC is the typical ratio of the electric and critical [4] fields. For typical runaway discharges

in C-Mod, with B ≈ 5 T, n20 ≈ 0.5, and E/EC ≈ 5, we see that synchrotron radiation dominates

bremsstrahlung by an order of magnitude. However during disruptions, when densities increase

multifold due to impurity injections and the induced electric field is E/EC � 1, bremsstrahlung

could become comparable to or surpass even synchrotron radiation as a power loss mechanism

for runaways.

Interestingly, there is no Zeff dependence in (2.44). As described in [28], while synchrotron

power does not explicit depend on Zeff , increased collisions lead to pitch angle scattering, which

enters the Larmor formula (2.21) through v⊥ = v sin θp. Thus, the Zeff dependencies of syn-

chrotron radiation and bremsstrahlung effectively cancel each other out.

2.4.2 Kinetic instabilities

As discussed in section 2.3, magnetic fluctuations can enhance runaway electron losses due to

increased radial transport. Sometimes, these magnetic perturbations are even excited by the

runaway beam itself, through kinetic instabilities and wave-particle interactions. Runaway-driven

waves and modes are an active area of research, and the purpose of this section is not to provide

an exhaustive review of the topic. Rather, we will give a general physical picture for how these

excitation processes occur, note some recent theoretical and experimental work on runaway-related

instabilities, and mention possible future applications for runaway mitigation strategies.

A good physical picture of the runaway beam instability was given in the early theoretical work

of Parail and Pogutse [29] and was well-summarized in a later experimental study by Luckhardt

et al [30]: Subject to a sufficiently strong external electric field or other electron-heating mech-

anisms (such as lower hybrid current drive), the plasma electron distribution function becomes

increasingly elongated in the direction of acceleration, parallel to the magnetic field. For sufficient

densities of energetic electrons, wave-particle resonances can occur, satisfying

ω − k‖v‖ − `ωB = 0, (2.45)

where ω and k‖ are the frequency and parallel wavevector of excited wave, respectively; v‖ is the

electron parallel velocity; ` is an integer; and ωB is again the relativistic gyro-frequency. The
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anomalous Doppler, Cherenkov, and Doppler resonances occur when ` = -1, 0, and 1, respectively.

From [29], as electrons accelerate to higher parallel velocities, the anomalous Doppler reso-

nance will cause pitch angle scattering, thereby transferring parallel to perpendicular energy and

making the distribution function more isotropic. This effective decrease in the population of

high-v‖ electrons can then trigger a Cherenkov resonance, which further reduces the energetic

electron population. If the driving force is still present, this population can reform, and the cycle

continues. The loss of confinement of this hot electron tail, due to this resonance cycle, has been

observed, for instance, on the Versator II tokamak [30].

Note that sufficiently large pitch angle scattering could lead to trapped electron orbits. Recall

that the classical trapped particle criterion is

sin θp ≥
(
Bmin

Bmax

)1/2

, (2.46)

where Bmin and Bmax are the minimum and maximum strengths of the magnetic field along the

particle’s trajectory. For a tokamak with aspect ratio A ≈ 3, a particle must have a pitch angle

θp ≥ π/4 rad in order to be trapped. As will be seen in upcoming chapters, runaways with such

large pitch angles are either too low in number or low enough in energy that their synchrotron

radiation is not measurable by our detectors. Thus, trapped runaways are not treated explicitly

in this thesis work. Even so, kinetic instabilities are still likely excited and may even be observed

in C-Mod, as discussed in chapter 7.

Recently, high frequency magnetic fluctuations have been observed and correlated with run-

away electrons in the DIII-D tokamak. For the first time in a tokamak plasma, runaway-driven

Whistler waves were detected, in the range 100-200 MHz [31].e The generation of these Whistlers

was attributed to runaways, with energies ≥7 MeV, exciting an anomalous Doppler resonance.

Furthermore, magnetic fluctuations, with frequencies of a few MHz, were measured during the

formation of a runaway plateau in DIII-D [32]. It was inferred from these observations that run-

aways with energies ≥2.5-3 MeV were required to excite this kinetic instability, although the exact

type of wave was not determined. In the former study [31], the Whistler waves were correlated

with oscillations in electron cyclotron emission, indicating increased pitch angle scattering; the

latter study [32] concluded that the excited modes were correlated with runaway losses. Thus,

future runaway mitigation strategies could involve injecting Whistler waves or exciting appropriate

plasma modes in order to increase runaway power and particle losses.

eTo the author’s knowledge, C-Mod does not have magnetic probes that can measure such high frequencies.
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Soldan, T. Rhee, J.C. Wesley, L. Zeng, and ITPA MHD Group. An ITPA joint experiment
to study runaway electron generation and suppression. Physics of Plasmas, 21(7):072506,
2014.

[7] R. Jayakumar, H.H. Fleischmann, and S.J. Zweben. Collisional avalanche exponentiation of
runaway electrons in electrified plasmas. Physics Letters A, 172(6):447 – 451, 1993.

[8] M.N. Rosenbluth and S.V. Putvinski. Theory for avalanche of runaway electrons in tokamaks.
Nuclear Fusion, 37(10):1355, 1997.

[9] A.H. Boozer. Runaway electrons and ITER. Nuclear Fusion, 57(5):056018, 2017.
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Chapter 3

Synchrotron radiation

As a non-relativistic charged particle executes circular motion due to its presence in a magnetic

field, it emits quasi-isotropic cyclotron radiation primarily at low-integer harmonics of its rotation

frequency. However, if its speed should approach that of light, the now relativistic particle

emits velocity-directed synchrotron emission in a continuum of frequencies much higher than its

now relativistically-lowered gyro-frequency. The properties of observed synchrotron emission—

including intensity, wavelength, polarization, and spatial distribution—can reveal properties of the

emitting relativistic particle, like its position and momentum.a Ultimately, synchrotron emission

will be used in this work to study properties of the entire phase-space distribution of relativistic

runaway electrons in a magnetized (tokamak) plasma.

This chapter is organized as follows: In section 3.1, we will derive the relativistic equations

of motion of an electron in a magnetic field. Section 3.2 will follow the derivation of polarized

synchrotron radiation (spectra) from Westfold [1]. Synchrotron radiation spectra, from Schwinger

[2] and Pankratov [3], will be discussed in section 3.3, with a (synthetic) calculation of the

expected spectral radiance (or brightness) presented in section 3.4.

3.1 Relativistic gyro-motion

Consider an electron with (rest) mass m and charge −e moving in a background magnetic field B

(assuming no electric field, E = 0).b The relativistic equation of motion is given by the Lorentz

force,
dp

dt
= −ev ×B, (3.1)

aUncertainties still governed by the Heisenberg principle.
bNote that we drop the subscript e from me → m in this chapter.
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Chapter 3. Synchrotron radiation

where p = γmv is the relativistic momentum, γ = 1/
√

1− v2/c2 is the relativistic factor, v

is the electron velocity, and c is the vacuum speed of light. Normalizing by c and assuming

conservation of energy (E = γmc2 = constant),

d

dt

mβ√
1− β2

=
m√

1− β2

dβ

dt
= −eβ ×B. (3.2)

Note how the acceleration is always perpendicular to the both the velocity and magnetic field.

Define the relativistic gyro-frequency to be ωB = eB/γm so that

β̇ = −ωB × β. (3.3)

This is just helical motion, with a constant velocity parallel to B and cyclotron motion perpen-

dicular to B. Let the Cartesian coordinate system be such that the electron starts at z = 0

on the x-axis, with initial perpendicular velocity in the y-direction and B = B0ẑ . Define the

pitch angle as tan θp = β⊥/β‖, where β⊥ and β‖ are the components of the velocity parallel and

perpendicular to B, respectively. Let the gyro-angle be χ = ωBt, where t is time. Then the

position vector is

r(t) =
βc

ωB
[(x̂ cosχ+ ŷ sinχ) sin θp + ẑ χ cos θp] , (3.4)

and velocity vector is

β(t) = β [(−x̂ sinχ+ ŷ cosχ) sin θp + ẑ cos θp] . (3.5)

The instantaneous curvature can be related to (3.5) via the tangent vector β̂ = β/β and

˙̂
β = −ωB sin θp (x̂ cosχ+ ŷ sinχ+ 0ẑ ) . (3.6)

The radius of curvature is constant in this case,

Rc =
1

κ
=
|v|

| ˙̂β|
=

βc

ωB sin θp

. (3.7)

The total power radiated by the particle is given by the relativistic Larmor formula,

P =
q2

6πε0c
γ6

[
β̇2 −

(
β × β̇

)2
]
, (3.8)
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Inserting (3.5) and (3.6), we find the familiar relation

P =
e4p2
⊥B

2

6πε0m4c3
. (3.9)

For an electron with energy E = 30 MeV (γ ≈ 60) and pitch angle θp = 0.1 rad inside Alcator

C-Mod (B0 = 5.4 T), the power radiated away is over 100 MeV/s!

3.2 Polarized synchrotron radiation

This section follows the derivation of the polarization and spectrum of synchrotron radiation per-

formed by Westfold in 1959 [1]. Note that the synchrotron spectrum had already been calculated

by Scwhinger in 1949 [2], but polarization had not been considered. There are several other ways

to perform the following derivation—some even more straightforward, like that in [4]. However,

the following gives a solution in a form typically used when modeling runaway electrons.

3.2.1 Geometric considerations

An accelerating charge, like a gyrating electron, always emits electromagnetic radiation. The aim

of this chapter is to calculate the frequency-dependent, oscillating electric field E, observed at

position ro and produced by one electron at position r with energy E = γmc2 and pitch angle

θp. As will be described in the next section, this cyclotron radiation becomes highly-directional

for relativistic particles (β ≈ 1) with the peak of emission along β; this is then called synchrotron

radiation. The geometry to consider is shown in figure 3.1.

The gyro-motion of the electron is shown at right in figure 3.1, with gyro-angle χ. As in the

previous section, the instantaneous perpendicular velocity at t = 0 is in the ŷ -direction, and the

magnetic field B is in the ẑ -direction. The pitch angle between B and β is θp. The synchrotron

emission is shown schematically in grey with a finite angular width ξ ≈ 1/γ, which will be derived

in the next section. The vector from the electron position to the observation point is R = ro−r,

with unit vector n̂ in that direction. The angle between β and n̂ at this moment in time is called

ψ; for other gyro-angles χ this angle will be called ϑ. This notation is chosen for consistency

with the original sources, e.g. [1].

The following calculation will rely on the smallness of certain quantities: For γ � 1, it

follows that ξ � 1, and because n̂ must lie within this angular width for any radiation to be

observed, ψ ∼ O(ξ) � 1. The gyro-motion will ultimately sweep the emission to produce a

“cone,” but there is only a small range of χ � 1 which will direct emission toward ro. Finally,

a far-field approximation is assumed such that |ro| � |r|, which leads to the approximation
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Figure 3.1: A schematic representation of synchrotron emission (in grey) at one moment in time t.
A relativistic electron, instantaneously located at the origin, executes gyro-motion in a magnetic
field B = B0ẑ with normalized velocity β = ŷ β⊥+ ẑ β‖, pitch angle θp, and gyro-angle χ = ωBt.
The emission, with angular width ξ ∼ 1/γ, is observed at position R along line-of-sight n̂, with
angle ψ from β to n̂.

R = |R| ≈ ro − n̂ · r. Therefore, in the following section, expansions will be carried out for ξ,

ψ, and χ, but not for the pitch angle θp.

3.2.2 Electric field calculation

The oscillating electric field observed at position ro and time t arising from a arbitrarily-moving

charge (electron) is given by the Liénard-Wiechert field,

E(ro, t) =
µ0ec

4π

 c

γ2

n̂− β
R2(1− β · n̂)3

+
n̂×

(
(n̂− β)× β̇

)
R(1− β · n̂)3


tr

. (3.10)

Here, all terms within the brackets are evaluated at the retarded time tr = t−R(tr)/c, and µ0 is

the permeability of free space. The corresponding magnetic field is just B = n̂×E/c, assuming

propagation in free space.c We are interested in electromagnetic radiation, which means that

energy must be transported by the waves to arbitrary distances. That is,∫
4πR2 S · dR > 0 (3.11)

cElectromagnetic wave propagation in plasmas is quite complex; however, we are ultimately interested in
visible/infrared light frequencies far greater than the plasma frequency.
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for R→∞. Here, S = E×B/µ0 is the Poynting vector. The first term in (3.10) is proportional

to 1/R2, whereas the second goes like 1/R; thus, we only consider the second term

E(ro, t) ≈
µ0ec

4πR

 n̂×
(

(n̂− β)× β̇
)

(1− β · n̂)3


tr

. (3.12)

To show that this radiation will be highly-directional for relativistic particles, let the angle between

β and n̂ be ϑ, so that the denominator goes like (1 − β cosϑ)3. For β ≈ 1, this implies that

the peaks of emission occur at ϑ = 0, i.e. when β and n̂ are parallel. The angular width of the

emission can be estimated in the “ultra-relativistic” limit (i.e. γ � 1, β → 1). Rearranging the

relativistic factor and Taylor expanding in terms of ξ = 1/γ gives

β =
√

1− γ−2 ≈ 1− 1

2
ξ2. (3.13)

For small values of ϑ, we Taylor expand and compute

1− β cosϑ ≈ 1−
(

1− 1

2
ξ2

)(
1− 1

2
ϑ2

)
≈ 1

2

(
ξ2 + ϑ2

)
(3.14)

For fixed γ = 1/ξ, a “threshold” is reached when ϑ ∼ ξ. Thus, ϑ ∼ 1/γ is taken to be the

approximate angular width of the “cone” of synchrotron emission produced from the gyro-motion.

The total electric field received at ro can be represented as a superposition of the harmonics

n of ωB:

E(ro, t) =
∞∑

n=−∞

En exp(−inωBt). (3.15)

Therefore, an individual harmonic can be selected via

En(ro) =
ωB
2π

∫ 2π/ωB

0

E(ro, t) exp(inωBt)dt. (3.16)

Plugging in (3.12) for E(ro, t) and converting to the particle (retarded) time yields

En(ro) =
µ0ecωB
8π2ro

∫ 2π/ωB

0

n̂×
(

(n̂− β)× β̇
)

(1− β · n̂)3
exp

[
inωB

(
tr +

ro − n̂ · r
c

)]
dtr
dt

dtr (3.17)

Here, all quantities are evaluated at the retarded time tr, the derivative dtr/dt = 1−β ·n̂, and the

far-field approximation has been used. Removing (and dropping) the phase factor exp(inωBro/c)
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from the integral and simplifying leaves

En(ro) =
µ0ecωB
8π2ro

∫ 2π/ωB

0

n̂×
(

(n̂− β)× β̇
)

(1− β · n̂)2
exp

[
inωB

(
tr −

n̂ · r
c

)]
dtr (3.18)

This is the equation we need to solve. Using the geometry described in the previous section,

define

n̂ = 0x̂ + ŷ sin(θp − ψ) + ẑ cos(θp − ψ) (3.19)

= 0x̂ + ŷ (sin θp cosψ − cos θp sinψ) + ẑ (cos θp cosψ + sin θp sinψ) (3.20)

where the second line results from the double angle formulas. Next, define the unit vector in the

direction of β,

β̂ = β/β = −x̂ sin θp cosχ+ ŷ sin θp sinχ+ ẑ χ cos θp. (3.21)

The denominator of (3.18) can then be calculated via

1− β · n̂ ≈ 1−
(

1− 1

2
ξ2

)
cosϑ ≈ 1−

(
1− 1

2
ξ2

)(
1− 1

2
ϑ2

)
≈ 1

2

(
ϑ2 + ξ2

)
(3.22)

where expansions were carried out in ϑ and ξ. Furthermore, a direct computation of β · n̂ gives

β · n̂ = sin(θp − ψ) sin θp cosχ+ cos(θp − ψ) cos θp (3.23)

1− 1

2
ϑ2 ≈ 1− 1

2
ψ2 − 1

2
χ2 sin2 θp

(
1− 1

2
ψ2

)
+

1

2
ψχ2 sin θp cos θp (3.24)

Keeping only terms to second order gives ϑ2 ≈ ψ2 + χ2 sin2 θp; thus, the denominator of the

integral is

(1− β · n̂)2 ≈ 1

4
(ξ2 + ψ2 + χ2 sin2 θp)2 (3.25)

Next, consider the exponent in (3.18), ωB(tr − n̂ · r/c) = χ− ωBn̂ · r/c. The second term can

be computed from (3.4) and (3.20):

ωB
c
n̂ · r = β (sin(θp − ψ) sin θp sinχ+ χ cos(θp − ψ) cos θp)

≈
(

1− 1

2
ξ2

)[
χ

(
1− 1

2
ψ2

)
− 1

6
χ3 sin2 θp

(
1− 1

2
ψ2

)]
(3.26)
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Keeping terms up to third order gives

χ− ωB
c
n̂ · r ≈ 1

2
χ(ξ2 + ψ2) +

1

6
χ3 sin2 θp (3.27)

The numerator of (3.18) gets quite messy, so I quote it directly from equation (17) of [1]:

En(ro) =
µ0ecωB sin θp

4π2ro

∫ ∞
−∞

dχ exp

[
1

2
inχ

(
ξ2 + ψ2 +

1

3
χ2 sin2 θp

)]
×
x̂
(
ξ2 + ψ2 + χ2 sin2 θp

)
+ 2ψχ sin θp (ŷ cos θp − ẑ sin θp)(

ξ2 + ψ2 + χ2 sin2 θp

)2 . (3.28)

Here, the integration variable χ = ωBtr has been substituted, and the integration is performed

over all possible values.

Westfold [1] and others [2] recognized that (3.28) takes the form of a modified Bessel function

of the second kind Kν [z]. From equation (19) of [1], one harmonic of the electric field can be

recast as

En(ro) =
µ0ec

4
√

3π2ro

nωB
sin θp

exp
(
inωB

ro

c

)
×
{
x̂
(
ξ2 + ψ2

)
K2/3 [z] + (ŷ cos θp − ẑ sin θp) iψ

(
ξ2 + ψ2

)1/2
K1/3 [z]

}
, (3.29)

where

z =
n

3 sin θp

(
ξ2 + ψ2

)3/2
. (3.30)

In (3.29), the extra phase factor has been added back in for completeness. To reiterate, given

one electron with energy γ = 1/ξ and pitch angle θp, the total electric field observed at the

far-field position ro, where the angle between the electron velocity vector and viewing direction

is ψ, is the sum over all harmonics nωB, using (3.29) in (3.15). From this, the polarization of

the observed synchrotron emission can be calculated, and the power spectrum can be related to

the integral of the Poynting vector.

Recall that the relativistic gyro-frequency is a factor 1/γ smaller than the classical gyro-

frequency. Therefore, a relativistic electron with γ = 50, gyrating in C-Mod’s typical toroidal

magnetic field B0 = 5.4 T, has a relativistic gyro-frequency of ωB/2π ≈ 3 GHz; this corresponds

to a fundamental (n = 1) radiation frequency of ∼3 GHz and corresponding wavelength of

2πc/ωB ≈ 10 cm. The radiation wavelengths of interest in this thesis are in the visible/near-

infrared range, i.e. λ ≈ 300-1000 nm or f ≈ 300-1000 THz. At these high frequencies, with

n ∼ O(106), the harmonics are so closely spaced that the spectrum is effectively a continuum,

i.e. nωB → ω.
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3.2.3 Stokes parameters

As the electromagnetic wave travels toward the observer/detector, we assume that its polarization

angle does not change. In fact, for such high frequency visible light (λ ≈ 400-1000 nm), an effect

like Faraday rotation would only cause a change in angle of

∆θpol ≈
e3nBR

2ε0m2cω2
≈ 0.001 rad,

for typical C-Mod parameters. The measured polarization angle θpol will depend on the orientation

of the detector. Let the detector normal be n̂d. Note that n̂d does not necessarily have to be

(anti)-parallel to n̂; instead, we require that n̂d · (−n̂) ≥ cosα, where α is the opening half -angle

of the detector field-of-view.

To find the projection of E onto the detector plane, define unit vector ê1 to be perpendicular

to n̂d and lie in the horizontal plane, i.e. ê1 × n̂d = ê1 × Ẑ = 0. Similarly, define unit vector

ê2 = ê1 × n̂d to form a left-handed coordinate system, i.e. ê1 × ê2 = −n̂d.d The components

of E along the new axes are simply E1 = E · ê1 and E2 = E · ê2. The polarization angle θpol

measured from ê1 toward ê2—i.e. from the horizontal—is then tan θpol = E2/E1.

To include the contribution from all runaways throughout the plasma, all E-field vectors

reaching the detector would need to be summed, i.e. Etot =
∑

iEi. However, a more convenient

way to keep track of amplitude and polarization information is in the form of a Stokes vector

[I,Q, U, V ] in which the Stokes parameters are

I = |E1|2 + |E2|2, (3.31)

Q = |E1|2 − |E2|2, (3.32)

U = 2Re(E1E
∗
2), (3.33)

V = − 2Im(E1E
∗
2), (3.34)

where the asterisk (∗) means the complex conjugate, and subscripts 1 and 2 refer to an arbitrary

orthogonal basis (ê1, ê2). Conveniently, the total Stokes vector from Etot is the sum of all

individual Stokes vectors from each Ei. We see that I is just the total intensity. The intensities

of linearly and circularly-polarized light are given by L =
√
Q2 + U2 and V , respectively. Thus,

the degrees or fractions of linearly and circularly-polarized light are flin = L/I and fcirc = V/I.

Finally, the polarization angle is given by tan(2θpol) = U/Q, measured from ê1 toward ê2.e Note

that θpol is degenerate with θpol + π due to the oscillatory nature of E.

dThis is done as a matter of convenience since the motional Stark effect diagnostic measures the polarization
angle from Ẑ toward R̂. For φ̂ counterclockwise, (R̂, Ẑ, φ̂) is left-handed.

eThis is the opposite of typical C-Mod MSE measurements, where θpol is measured from ê2 toward ê1.
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3.3 Synchrotron radiation spectra

Calculated by Schwinger in 1949, the angular and spectral synchrotron power density is given by

equation (II.34) of [2],

dP

dΩdω
=

3e2

4π2ε0Rc

(
ω

ωc

)2

γ2
(
1 + γ2ψ2

)2
[
K2

2/3 (z̄) +
γ2ψ2

1 + γ2ψ2
K2

1/3 (z̄)

]
, (3.35)

where Rc is the radius of curvature given by (3.7), ωc = 3γ3c/2Rc, and

z̄ =
ω

2ωc

(
1 + γ2ψ2

)3/2 ≈ n

3 sin θp

(
ξ2 + ψ2

)3/2
. (3.36)

The approximation assumes β ≈ 1 and ω = nωB. As expected, (3.35) shares many similarities

with (3.29). This can be integrated over all solid angles to obtain the spectral power density in

equation (II.16) of [2],
dP

dω
=

3
√

3e2γ4c

4πε0R2
c

ω

ω2
c

∫ ∞
w/ωc

K5/3 [z] dz. (3.37)

This equation is general, accounting for any radius of curvature Rc. In [3], Pankratov computed

(3.37) for particle motion in a tokamak magnetic geometry, including the effect of the vertical

centrifugal drift and averaging over gyro-angles. The final form of the synchrotron power spec-

tra can be found in equation (15) of [3], but is more conveniently expressed as a function of

wavelength λ in equations (2)-(4) of [5]:

dP
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=
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(3.38)

where J0(z) is a Bessel function of the first kind, J ′0(z) = dJ0(z)/dz = −J1(z),

a = ζη/(1 + η2), (3.39)

ζ =
4π

3

R0

λγ3
√

1 + η2
, (3.40)

η = ωBR0
β⊥
β2
‖
, (3.41)

and R0 is the tokamak major radius.
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Wrapped up in (3.38) are the runaway energy (E = γmc2), runaway pitch angle (tan θp =

β⊥/β‖), and magnetic field (ωB = eB/γm). The synchrotron power spectra, scanned over these

three parameters, are plotted in figure 3.2 for the visible and infrared wavelength ranges. The

calculations were performed with the code Syrup, first introduced in [5], which numerically

integrates the strongly-oscillating integrands of (3.38).

As seen in figure 3.2, the spectral amplitude increases with p/mc, θp, and B while holding all

other variables constant; this means that the total power radiated—the area under the curve—also

increases, as expected. Note that the spectral peak shifts toward shorter (“bluer”) wavelengths

as these same parameters increase. Therefore, for the range of toroidal fields on Alcator C-

Mod of B0 ≈ 2-8 T, we expect a non-negligible fraction of synchrotron light to be observed in

the visible/near-IR wavelength range, λ ≈ 300-1000 nm. Moreover, the spectral peak is even

predicted to move within this range for high enough energies, pitch angles, and/or magnetic

fields. The observation of visible synchrotron emission by in-vessel cameras (λ ≈ 400-900 nm)

and the motional Stark effect diagnostic (λ ≈ 660 nm) motivated the purchase of two visible

spectrometers to specifically study runaway spectra. The prospect of measuring this spectral

peak motivated this thesis work.

3.4 Synthetic brightness calculations

The quantity measured by spectrometers is usually not the spectral power density dP/dλ, but

rather a brightness or spectral radiance B = d3P/dAdΩdλ in terms of power emitted (or re-

ceived) per unit area per unit solid angle per unit wavelength (μW/m2/sr/m). Thus, a “synthetic

diagnostic” calculation is required to connect the spectral power density to typical spectral mea-

surements. To my knowledge, the first attempt is given in [6] as equation (10) therein,

Bsyn =
2πR0

ec

Ir

ΩrAr

dP

dλ

∣∣∣∣
λmax

. (3.42)

Here, R0 is the major radius of the tokamak, Ir is the runaway current, λmax is the wavelength

at which dP/dλ is maximum, Ωr = π/γ is the solid angle into which synchrotron radiation is

emitted, and Ar is the poloidal cross-sectional area of the runaway beam. Note that Ir ≈ nrecAr,

where nr is the (average) runaway density, giving

Bsyn = 2R0nrγ
dP

dλ

∣∣∣∣
λmax

. (3.43)
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(a) (b)

(c)

Figure 3.2: Synchrotron spectral power density dP/dλ (a.u.) versus wavelength over the visible
and infrared ranges, varying (a) runaway momentum p/mc, (b) runaway pitch angle θp, and
(c) toroidal magnetic field strength B. Note how the peak of the power spectrum increases
in magnitude and shifts toward shorter (bluer) wavelengths for increasing p/mc, θp, and B.
(Computed using Syrup [5].)

A more detailed and intuitive derivation of the synthetic brightness is given in [7], with the

result differing slightly from that above. The observed brightness is determined from the spectral

power density per electron dP/dλ, the number of those runaways observed Nobs, the area of the

detector Adet, and solid angle subtended by it Ωdet. This calculation assumes a single-energy

distribution for simplicity. In principle, the contributions from different numbers of runaways

observed at different energies could be summed together.
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Consider the “cone” of synchrotron radiation, with an opening half-angle θp and angular

spread ∼ 1/γ. Assuming that θp � 1 and 1/γ � θp, the solid angle of emission per runaway isf

Ωr = 2π(1− cos θp) ≈ πθ2
p. (3.44)

The highly-directional nature of synchrotron emission also implies that only runaways within a

small toroidal “wedge” are observed by the detector; the observed fraction is estimated to be

fobs ≈ 2θp/2π = θp/π. (3.45)

Note that this assumption is most accurate for collimated views looking near the magnetic axis,

where there is little-to-no poloidal field and the total field is nearly toroidal.

The total number of runaways can be related to the runaway density nr and beam cross-section

Ar (as before) by Ntot ≈ 2πR0Arnr. Thus,

Nobs = fobsNtot = 2πR0Arnr ×
θp

π
, (3.46)

and

Bsyn = 2R0θpnr
dP

dλ

Ar

AdetΩdet

. (3.47)

By conservation of etendue, AdetΩdet = ArΩr, so that the final formulation as given by

equation (2) in [7] is

Bsyn =
2R0

πθ
nr

dP

dλ
. (3.48)

Note that (3.48) differs from (3.42) due to the different approximations of the solid angle;

(3.44) assumes that synchrotron radiation is “smeared” over the entire solid angle of the cone,

which could in some way be due to helical runaway trajectories. Regardless, the spectral shape

will remain the same because (3.42) is just (3.48) scaled by a factor of πγθp, which is independent

of wavelength.

In [5], the calculation of (3.48) is extended to account for a distribution of runaway energies

f(p‖, p⊥). This involves an integration over momentum-space,

Bsyn =
2R0

π

∫
dP

dλ

1

θeff

f(p) d3p (3.49)

fIn what follows, the notation θ ≡ tan(θp) of [5–7] is not used, since θp ≈ θ for small values. (And it’s
confusing!)
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3.4. Synthetic brightness calculations

where

θeff =
√
θ2

p + γ−2 + (rap/ro)2 (3.50)

is the effective pitch angle, accounting for such geometric effects as the pitch angle θp, angular

width of the cone 1/γ, and approximate solid angle subtended by an aperture of radius rap at a

distance ro from the point of synchrotron emission.

The equations for Bsyn in this section were a first important step in the analysis of synchrotron

spectra. However, for wide-view detectors/spectrometers, helical trajectories and other spatial

effects complicate the picture. Thus, more advanced synthetic diagnostics, like Soft [8] and

Korc [9], have been developed and incorporate the magnetic field topology, detector geometry

and spectral response, and both momentum and spatial distributions of runaways. Soft is used

in this thesis work for the detailed analysis of experimental results.
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Chapter 4

Synchrotron diagnostics

This chapter will detail the diagnostics used for measurements of visible synchrotron emission in

Alcator C-Mod. Sections 4.1, 4.2, and 4.3 will describe the spectrometers, wide-view camera,

and motional Stark effect (MSE) diagnostic which measured synchrotron spectra, images, and

polarization information, respectively.

A top-down schematic of the positions and views of each diagnostic are shown in figure 4.1.a

Together, the diagnostics provide good coverage of the entire plasma with both clockwise (CW)

and counter-clockwise (CCW) views for the spectrometers at the In-Vessel Platform (IVP) and

wide-view (WIDE2) camera. Unfortunately, as will be discussed, these diagnostics rarely collected

(good) synchrotron data on the same discharges; reasons included particulate matter building up

on windows, data acquisition systems malfunctioning, diagnostics viewing the wrong direction

(i.e. experimenter error), or simply being turned off.

4.1 Visible spectrometers

For the study of synchrotron radiation spectra from runaway electrons, two visible spectrome-

ters were installed and absolutely calibrated on Alcator C-Mod. This section will detail their

specifications, installation, viewing geometry, calibration, and operation.

4.1.1 Spectrometer specifications and installation

Two Ocean Optics visible spectrometers, model USB2000+, were used to measure synchrotron

emission in the wavelength range λ ≈ 350-1000 nm during the 2015 and 2016 Alcator C-Mod

experimental campaigns. Table 4.1 contains the spectrometer specifications. Figure 4.2 shows

aNote there is no I-port; it’s imaginary.
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Figure 4.1: A top-down schematic of the tokamak midplane. The ten ports A-K are labeled, with
RF antennas depicted at D, E, and J-ports. The plasma is pink, with the major radius of the
plasma axis dotted. The spectrometer views (CW: 23/24, and CCW: 25/27) are located on the
In-Vessel Platform (IVP). Note that the field-of-view of IVP25 lies within that of IVP27. The
wide-view (WIDE2) camera views both CW and CCW directions. The MSE diagnostic has ten
CCW views; here, only the lines-of-sight are shown.

the laboratory setup of the spectrometers. Trigger wires were connected to the plasma control

system (PCS) for synchronized timing with the plasma discharge. Several bundles of silica optical

fibers (400 μm in diameter) were connected to different apertures inside the tokamak; these could

be easily connected to and switched between the spectrometers in the lab.
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4.1. Visible spectrometers

Table 4.1: Specifications for Ocean Optics spectrometers installed on Alcator C-Mod.

Specification Spectrometer 1/2

Serial number USB2+H14948/14949

Wavelength range (nm) 348-1024/349-1022

Grating (lines/mm) 600

Slit width (μm) 100

FWHM spectral resolution (nm) ∼4

Minimum integration time (ms) 1

Minimum duty cycle (ms) 10

(a) (b)

Figure 4.2: Laboratory setup of Ocean Optics spectrometers. Labeled are spectrometers 1 and
2, trigger wires, computer cable connections, and optic fibers.

4.1.2 Spectrometer viewing geometries

Four apertures (23, 24, 25, and 27) on the In-Vessel Platform (IVP), located between B and

C-ports, were used for synchrotron spectral measurements. Refer to table 4.2 for IVP geometry

specifications. As seen in figure 4.3, IVP23 and IVP24 view the CW toroidal direction (when

viewed from above), whereas IVP25 and IVP27 view CCW. Each view was backlit with a bright

light source to determine the line-of-sight (LOS) and total viewing angle. Enhanced images of

this backlighting are shown in figure 4.4. IVP23 and 24 view the right straps of the two-strap

D- and E-port radio frequency (RF) antennas, respectively; IVP25 and 27 both view the right

two straps of the four-strap J-antenna. Note that the IVP24 field-of-view (FOV) also extends
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to the inner wall, seen on the right side of figure 4.4b. Additionally, comparing figures 4.4c and

4.4d, IVP27 has a wider viewing angle than 25. In fact, the IVP25 FOV is contained within that

of IVP27. Thus, IVP24 and 27 were used for most spectral analyses as they viewed the largest

portion of the plasma and received most light.

(a)

(b) (c)

Figure 4.3: The In-Vessel Platform apertures: IVP23, 24, 25, and 27.
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(a) IVP23 (b) IVP24

(c) IVP25 (d) IVP27

Figure 4.4: Backlighting of In-Vessel Platform (IVP) views (a) 23, (b) 24, (c) 25, and (d) 27.
Note that images have been converted to greyscale and enhanced to highlight illuminated areas.

Table 4.2: Specifications of the IVP apertures. Lines-of-sight are assumed to be horizontal
(parallel to the midplane). The major radius of all apertures is R ≈ 1.01 m. Note that here the
center of A-port is regarded as φ = 0◦.

Specification IVP23/24 25/27

Toroidal angle (φ) -47.3◦ -42.9◦

FOV opening angle 11.6◦/15.0◦ 13.6◦/18.8◦

Vertical positions (cm) 2.5/3.8 3.8/2.5
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4.1.3 Spectrometer calibration

The absolute calibration of the spectrometers was facilitated by the use of a Labsphere USS-

600V Uniform Source System, hereafter referred to simply as the “labsphere.” Inside the 6 inch

diameter spherical shell of the labsphere, white light from a photodiode reflects off the inner

surface and is emitted almost uniformly through an aperture ∼2 inches in diameter. For these

calibrations, two labspheres were used and are pictured in figure 4.5. The uncalibrated labsphere,

with portable power supply, could be taken inside the tokamak to perform in-vessel calibrations.

The absolutely-calibrated labsphere was used for cross-calibrations in the lab; its known spectral

radiance is shown in figure 4.6b.

Figure 4.5: Uncalibrated and calibrated labspheres used in-vessel and in-lab, respectively, for spec-
trometer absolute calibration. Aluminum foil is covering the aperture of the calibrated labsphere
to keep out contaminants.

The procedure for calibration of the spectrometers through each of the IVP views was as

follows: First, “dark” spectra were obtained by recording data with all vessel lights turned off; this

background noise would later be subtracted from all signals. Second, the uncalibrated labsphere

was positioned in-vessel so that the IVP FOV was totally contained within the labsphere opening;

in other words, the spectrometer only received light emitted by the labsphere. Third, two hundred

spectra were measured at ∆t = 10 ms intervals, with integration times varying between 3-7 ms

to increase photon counts and improve counting statistics. These spectra were then averaged
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together and smoothed over the wavelength resolution of ∼4 nm to produce the curves shown in

figure 4.6a. Note that absorption features from the silica optical fibers can be seen at λ ≈ 600

and 740 nm. In the lab, spectra were also measured to cross-calibrate the uncalibrated and

calibrated labspheres as well as spectrometers 1 and 2.
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Figure 4.6: (a) Averaged spectra (normalized to integration time) measured by spectrometer 1 for
each of the IVP views. (Note that IVP23, 24, and 27 have almost overlapping curves.) Spectra
from the calibrated (dot-dashed blue) and uncalibrated (dotted red) labspheres are also shown;
the former is scaled by a factor of 1/2. (b) The linear interpolation of spectral radiance (black
squares) known to be emitted by the calibrated labsphere.
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4.1.4 Spectrometer operation

The operation of the Ocean Optics spectrometers and their integration into the PCS was non-

trivial. First, proprietary Ocean Optics software was required to run the spectrometers, and while

many spectral measurements could be triggered in succession by an external source, the initiation

of “waiting” for the triggers was a manual click of a “Go” button. Moreover, parameters such as

the integration time, number of spectra to measure, data output folder, etc. were also required to

be manually written into GUI’s text boxes. Making matters even more complicated, this program

was run on a Windows computer next to the spectrometers in the lab, which could only be

controlled through a virtual connection.

The work-around was the following: A Matlab script read spectrometer settings, like the

integration time or fiber view, from the spectroscopy.ocean optics Mdstcl tree; these were

written into a text file accessible by the Windows computer controlling the spectrometers. A

Python script running on Windows read those settings, manually “clicked” in the appropriate text

boxes of the Ocean Optics GUI, and entered the inputs. The same Python program also clicked

the “Go” button so that the spectrometers were waiting for an external trigger synchronized with

the plasma discharge. After the plasma discharge, spectral data were written to text files, which

were collected and stored back in the tree.
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4.2. Wide-view camera

4.2 Wide-view camera

This section will detail the calibration and distortion correction of the wide-view video camera

which was used to measure images of runaway electron synchrotron emission. The following

sections will include the camera specifications, viewing geometry, in-vessel calibration, distortion

correction, data acquisition, and comparison/validation with the synthetic diagnostic Soft [1].

4.2.1 Camera specifications

The wide-view WIDE2 video camera was used in Alcator C-Mod to capture images of visible

and near-infrared emission from the plasma and plasma-facing components inside the tokamak.

Located at F-port, the camera viewed both co- and counter-current directions, so visible syn-

chrotron emission from relativistic runaway electrons could be observed as coming from (only)

the counter-Ip side. Specifications for the camera are given in table 4.3. The black-and-white

camera measured intensities in 256 levels or bins, and Auto Gain Control was always turned off.

This unfortunately led to some saturated images, but more importantly allowed comparisons of

relative intensities from frame-to-frame and even discharge-to-discharge, assuming the camera

window stayed clean. The camera LOS is nominally parallel to the radial vector through the

center of F-port; however, as will be shown in later sections, calibration determines that this is

slightly off.

Table 4.3: Specifications for the wide-view video camera. Note that a toroidal angle of φ = 0◦

is defined at the center of A-port, and in this case a positive angle is measured in the CCW
direction from a top-down view.

Specification Value

Model ELMO QN42H

Aperture diameter (mm) 7

Pixel dimensions 640 × 480

Spectral range (nm) ∼400-900

Major radius (cm) 106.9

Vertical position (cm) -20.655

Toroidal angle (degrees) 176.6

Frame rate (fps) 59.94
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4.2.2 Camera calibration and distortion correction

Due to its fish-eye lens, the wide-view camera image has barrel distortion, i.e. straight lines in real

space appear bent outward near the edges of the image. To glean physical understanding from

these images and compare them to synthetic diagnostics, a proper calibration was performed

to correct for the distortion. A 3 cm × 3 cm grid was printed in the shape of the poloidal

cross-section of the vacuum vessel, as shown in figure 4.7. The grid was placed in-vessel at

three locations: extending approximately radially at E and G-ports, as well as lying approximately

tangent to the inner wall at F-port. A bright LED light source was used to illuminate the grid,

and calibration images can be seen in figure 4.8.

Figure 4.7: A foam board cut-out of a C-Mod vacuum vessel poloidal cross-section used for
calibration of the wide-view camera. Each square is 3 cm × 3 cm.

The procedure for distortion correction was as followsb: The pixel locations, (xi, yi), of 439

total grid points were identified in the distorted calibration images and can be seen overlaying

the grids in figure 4.8. The real-space positions of these grid points were also computed using

knowledge of the grid’s location in each calibration image. These data provided a discrete

bThere are software packages available for such distortion correction procedures; however, the author was
unfamiliar with them, and a cursory attempt to learn was abandoned for the adopted, straightforward method.
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mapping from distorted image pixel locations to real-space positions; however, a general relation

was required to correct the entire image. To simplify the analysis, it was assumed that the camera

lens—and thus the distortion—was cylindrically symmetric. Therefore, pixel radii ri =
√
x2
i + y2

i

were mapped to angles θi between the camera LOS and vectors from the camera to real-space

positions, while the pixel angles φi = arctan(yi/xi) were treated as a constant. Here, the camera

LOS was calculated as the vector from the camera position to the real-space location at the image

center (0,0). To be agnostic of the absolute number of pixels, pixel radii were normalized by half

the horizontal extent of the image. This mapping from θi to ρi is plotted for all grid points in

figure 4.9. Since θ = 0◦ should correspond with ρ = 0, a linear regression through the origin was

performed, determining that ρ ≈ θ/C, where C = 0.7423.

(a) G-port. (b) F-port. (c) E-port.

Figure 4.8: Camera images of the calibration grid located at (a) G, (b) F, and (c) E-ports,
respectively. Colored dots indicate the pixel locations of grid points used in the calibration. Note
that the images in (a) and (c) are cropped, the grid in (b) is slightly tilted, and the author is also
captured by the camera at left in (b).

For a pinhole camera, the relationship between image height h and distance d from the pinhole

is simply given by h/d = tan(θ), with θ defined previously. Thus, to produce a rectilinear image

from the distorted data, the new normalized pixel radius is given by ρ′ = tan(θ(ρ))/ tan(C),

where ρ is the distorted normalized pixel radius, and the normalization factor is used such that

ρ′ = 1 when ρ = 1. This relation is shown in figure 4.9 as the dot-dashed line. Note that all

distorted data points lie above the rectilinear relation; this implies that for an object at a given

position in real space (i.e. a given θ), the distorted image shows this object at a radius greater

than in real life, consistent with the expected barrel distortion.
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Figure 4.9: Normalized pixel radius ρ (from the center of the image) as a function of angle θ
from the camera LOS vector to the location in real space for grid points at ports E (circles), F
(squares), and G (triangles). Overlaid lines are the linear regression of all data through the origin
(solid) and the relation for a rectilinear image (dot-dashed), where C = 0.7423.

4.2.3 Comparisons of corrected and synthetic camera images

After correcting for barrel distortion, the camera images can be compared to those generated by

synthetic diagnostics like the Synchrotron-detecting Orbit Following Toolkit (Soft) [1]. In order

to accurately assess the camera viewing direction, tilt angle, and total viewing angle, a simple

synthetic camera was used to “see” the vacuum vessel walls as the wide-view camera would; by

varying camera geometry parameters, the walls could be “fit” to the distortion-corrected camera

images. From this analysis, the best-fit camera parameters are given in table 4.4. The tilt angle,

or roll, was determined simply by aligning the inner wall in the camera image with the vertical

axis; for the 2014 and 2015 campaigns, it was ∼3.9◦. The yaw, defined here as the angle in

the midplane between the LOS and the local major radial vector R̂, was varied to move the

horizontal position of the synthetic inner wall left and right, while the total viewing angle, defined

from the left to right side of the image, was increased/decreased to grow/shrink the synthetic

inner wall size. The yaw was found to be about half of that predicted from engineering drawings,

but the total viewing angle was similar to that expected from the calibration. Finally, the angle of
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Table 4.4: WIDE2 camera parameters determined using a Soft synthetic camera system. Note
that the tilt angle (roll) applies for the 2014 and 2015 campaigns.

Parameter Value

Tilt/roll 3.9◦

Yaw 1.9◦

Inclination/pitch 1.7◦

Total viewing angle 86.8◦

inclination, or pitch, of the camera was used from the in-vessel calibration. The resulting synthetic

vacuum vessel is shown overlaying a distortion-corrected experimental image in figure 4.10. Good

agreement is observed.

Figure 4.10: The “synthetic” vacuum vessel wall is plotted in toroidal angle increments of ∆φ = 5◦

over a corrected experimental image (averaging all frames from C-Mod discharge 1140403014).
The “horizontal” line corresponds to the plasma midplane Z = 0. Note the slight disagreement
around the divertor in the camera’s near view.

When simulating this wide-view camera in Soft, the parameters of tables 4.3 and 4.4 were

used with the exception of the total viewing angle. This is because Soft defines the opening

angle αdiag of its camera as that of the circular cone within which the resulting square image

is inscribed. Since the experimental images are rectangular, we defined the total opening angle

αhoriz as that covering the horizontal extent of the image itself. Thus, the two angles can be

related by tan(αdiag/2) =
√

2 tan(αhoriz/2).
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4.2.4 Camera data acquisition

Because the wide-view camera captures spatiotemporal dynamics of runaway electron synchrotron

emission, the timing of data acquisition must also be calibrated. Disruptions provide a convenient

way to mark time: In one frame, a plasma is visible; in the next frame, it’s gone. An analysis

of 50 disruptions from 2014-2016 was performed, comparing the disruption time reported by the

wide-view camera (with an error of ±1 frame ≈ ±16.7 ms) and the disruption time as calculated

by the fast decay of the plasma current (with an error on the order of 1 ms). From this, it was

found that the WIDE2 camera captures its first image at t ≈ (-42 ± 14) ms, when the plasma

current ramp-up begins at t ≈ 0 s. The standard Efit calculations are performed every 20 ms,

so the uncertainty in image capture time is approximately one Efit time.c One other subtlety

of the WIDE2 camera data acquisition is that images are actually stored as the combination of

two frames; each frame captured is 640 × 240 pixels, and then the two frames are “interwoven”

to form the full 640 × 480 pixel image at a reduced frame rate of ∼30 Hz. To improve the

time resolution, images were split into their original frames and then interpolated over 640 × 480

pixels to fill in the “gap” rows.

cFun fact: The author also discovered that the WIDE2 camera frames were being stored in the order
(t2, t1, t4, t3, ...) instead of (t1, t2, t3, t4, ...).
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4.3 Motional Stark Effect diagnostic

This section will detail the Motional Stark Effect (MSE) diagnostic, which has been used to

measure polarized synchrotron radiation from runaway electrons. The following sections will

include an overview of the motional Stark effect, as well as the specifications, geometry, and

measurement capabilities of the MSE system on Alcator C-Mod.

4.3.1 An overview of the motional Stark effect

The Stark effect is the quantum process by which atomic energy levels split due to the presence

of a background electric field. In a similar way, the motional Stark effect (MSE) arises due to the

effective electric field (E = v×B) arising from particle motion (with velocity v) in a background

magnetic field B. A transformation from the lab frame to particle rest frame shows how the

magnetic field can be experienced as an electric field.

In a tokamak plasma, radiation is emitted as excited, bound electrons transition between

Stark-split energy levels; this can be used to diagnose the local magnetic field, from which the

safety factor and current density profile can be inferred. An MSE device was first deployed on

the PBM-X tokamak for this purpose [2]. Typically, a diagnostic neutral beam (DNB) of neu-

tral hydrogen or deuterium is injected into the plasma. (See figure 4.11a, for an illustration.)

Before complete ionization, these neutral particles collide with the background plasma, exciting

electrons into higher energy states. Of particular interest is the quantum n = 3 state, which

is split into 2n−1 = 5 distinct energy levels. The electron can then decay—through collisions

or spontaneously—to one of the three levels of the n = 2 state. Thus, there are fifteen pos-

sible transitions corresponding to fifteen distinct photon energies; however, only nine are easily

measureable: six “π” lines and three “σ” lines, all separated by the same ∆λ. The wavelengths

are all near the normal Balmer-α wavelength, λ ≈ 656 nm. These lines are also shifted by the

Doppler effect, which depends on the geometry and beam energy, usually on the order of 50 keV.

Of the nine observable lines, some are polarized perpendicular to the local (motional) electric

field, while others have parallel polarization. Thus, analyzing the polarization angle θpol of different

wavelength ranges allows inference of the local magnetic field pitch. To do this, light from the

plasma passes in series through two photo-elastic modulators (PEMs), i.e. birefringent materials

with tuneable, polarization-dependent refractive indices. Slightly different high-frequency (tens

of kHz) voltages are applied to each PEM, thereby varying the linear polarization of passing light

which is incident on a final, stationary polarization filter. The resulting amplitude modulation,

measured at the appropriate harmonics of the PEM frequency, can then be decomposed into

sin θpol and cos θpol. This procedure and calculation are described in detail in [3]. While the
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synchrotron radiation spectrum is quite different from line radiation, it is still polarized and falls

into the MSE wavelength range. Thus, the MSE system can be used to measure the polarization

of synchrotron light.

4.3.2 MSE detector specifications and geometry

The MSE system on Alcator C-Mod measures radiation in the visible wavelength range, within a

∆λ ≈ 0.8 nm band around λ = 660 nm. See table 4.5 (and references [4–6], among others) for

additional diagnostic specifications. Therefore, during runaway electron discharges, this diagnostic

can capture visible synchrotron emission. There are ten MSE channels which span the plasma

across major radii R > 59 cm, approximately on the midplane, as seen in figure 4.11b. Thus,

the MSE system can provide spatiotemporal information of runaway evolution and the underlying

runaway distribution function.

Table 4.5: Specifications of the MSE diagnostic in Alcator C-Mod. Note that φ is the toroidal
angle measured CCW with φ = 0◦ at A-port.

Specification Value

Major radial position R ≈ 98.1 cm

Vertical position Z ≈ 2.9 cm

Toroidal location φ ≈ 162.1◦

Wavelength range λ ∈ 660±0.4 nm

Time resolution ∆t ∼ 1 ms

FOV opening angle 2α ∼ 1.7◦

Light is collected by the MSE diagnostic through an in-vessel periscope which has a CCW

view of the plasma (as depicted in figure 4.11a). The periscope is situated slightly above the

midplane such that the ten LOS have a slight downward orientation—i.e. an inclination δ ≈ -3◦—

to intersect the DNB (which is approximately horizontal on the midplane). The opening angle of

each channel was estimated from the radial extent of the beam observed by each channel FOV.

Further specifications for the ten channel views are provided in table 4.6. For normal MSE

operation, the geometric quantities of interest are the following: (i) the “geometric” major radius

Rgeo at which each MSE chord intersects the DNB trajectory, and (ii) the angle Ω between the

MSE LOS and the local toroidal unit vector φ̂. However, when considering synchrotron emission—

which is forward-directed, parallel to the runaway velocity vector—the geometric quantities of

interest are (i) the “tangency” radius Rtan at which each channel LOS is orthogonal to the local

radial vector R̂ (and thus tangent to a toroidal circular orbit) and (ii) the LOS direction, which

can be described by the angle ψ between the LOS and the MSE radial vector RMSE.
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Figure 4.11: (a) CAD model of the MSE periscope in-vessel with three channels’ fields-of-view
(FOV) intersecting a schematic DNB. (Courtesy of R. Mumgaard.) (b) A top-down view of the
ten channels’ FOV overlaying a plasma with boundary (solid) and major radius (dashed) shown.

To calculate Rtan and ψ from known RMSE, Rgeo, and Ω, consider the schematic shown in

figure 4.12. We see that

Rtan = Rgeo sin
(π

2
− Ω

)
= Rgeo cos Ω (4.1)

and

sinψ =
Rtan

RMSE

=
Rgeo

RMSE

cos Ω. (4.2)

The calculated values for Rtan and ψ are reported in table 4.6.
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Figure 4.12: A schematic top-down view of the MSE diagnostic geometry, with relevant geometric
quantities labeled and described in the text.

Table 4.6: Specifications for the ten LOS of the MSE diagnostic on Alcator C-Mod. Note that ψ
is the angle measured CW from a radially-inward vector (−R̂) at the periscope location toward
the channel LOS in the horizontal plane (Z = 0). An inclination of δ < 0 implies a downward
view. These specific values were taken for shot 1140403026 and can vary slightly for different
experimental campaigns.

Channel 1 2 3 4 5 6 7 8 9 10

Rtan (cm) 59.1 63.0 66.3 69.7 73.0 75.6 78.7 81.6 84.0 86.4

ψ (◦) 37.1 40.0 42.6 45.3 48.1 50.5 53.4 56.3 59.0 61.7

δ (◦) -2.8 -3.3 -3.1 -2.9 -3.4 -3.4 -3.4 -3.2 -3.2 -3.1
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4.3.3 MSE measurement capabilities

While the MSE system calculates the Stokes parameters [I,Q, U, V ], encoding all intensity and

polarization information of the incoming light, the data stored in the Mdstcl tree are

(i) the intensity of linearly-polarized light L =
√
Q2 + U2 (atot),

(ii) the degree of linearly-polarized light flin = fpol = L/I (pf linear),

(iii) the degree of circularly-polarized light fcirc = V/I (pf circular), and

(iv) the polarization angle 2θpol = arctan(U/Q) (a mse).

Here, the node names in the tree are given in parentheses.

Unfortunately, the absolute calibration of L varies from channel-to-channel, so it is most

useful to consider the other intensity-independent quantities (ii)-(iv). The noise floor used for

data analysis is L ≤ 10−3 (a.u.). It is important to note that the MSE system measures θpol from

the vertical axis downward, i.e. approximately Ẑ toward R̂ as viewed by the detector. Also, there

is a 180◦ degeneracy of θpol. Finally, since synchrotron radiation is primarily linearly-polarized,

we will only consider the fraction flin = fpol in our experimental analyses.
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Chapter 5

Simulations of runaway electrons and

synchrotron radiation

Ultimately, the goal of this thesis is to infer properties of the runaway electron phase space

distribution from experimental measurements of synchrotron emission. To do this, we must also

understand which regions of phase space we are interrogating or “seeing”; that is, synchrotron

emission from runaways within only certain regions of phase space will be observed. This is really

a convolution or integration of the runaway phase space distribution, synchrotron power density,

and detector response function. Solving the full inverse problem—i.e. inferring the entire runaway

phase-space distribution from synchrotron data—is intractable as there is almost never a unique

solution. For example, many runaway energies and pitch angles can result in the same synchrotron

spectrum, as discussed in chapter 6. On the other hand, completely solving the forward problem

requires (i) accurate theories of runaway electron phase space dynamics and (ii) good synthetic

diagnostic simulations. Oftentimes, it is useful to meet somewhere in the middle. For instance,

we can use experimentally-measured plasma parameters to either evolve a test-particle model

(TPM) or solve the kinetic equation for the runaway momentum space distribution, and then

invert a density profile by comparing synthetic and experimental measurements, as is done in

chapter 7.

Either way, simulations are needed to perform these tasks. Two codes in particular have

been used extensively throughout this thesis, and the analyses performed would not have been

possible without them. These are the kinetic equation solver COllisional Distribution of Electrons

[1, 2] and the synthetic diagnostic Synchrotron-detecting Orbit Following Toolkit [3], hereafter

referred to as Code and Soft. These were developed by the Plasma Theory group, at Chalmers

University in Göteborg, Sweden, with whom the author of this thesis has kept a close collaboration.

The codes will be described in the following sections, with supplemental sections showing the
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Chapter 5. Simulations of runaway electrons and synchrotron radiation

dependencies of the outputs (e.g. runaway momentum space distribution functions and synthetic

measurements) on the inputs (e.g. plasma, runaway, and detector parameters).

5.1 CODE simulations

A test-particle model, as described in chapter 2, is one way of calculating the energies and pitch

angles of runaways, i.e. as delta functions in momentum space. As will be discussed, this can

sometimes be sufficient to reproduce and explain experimental data. However, to explore the

full distributions of runaway energies and pitch angles, we need to calculate the full momentum

space distribution function.

5.1.1 Solving the kinetic equation

The general kinetic equation, describing the evolution of a distribution of particles in phase space,

was introduced in chapter 2 in (2.29). Here, it is rewritten in the form

∂fe

∂t
+

dr

dt
· ∂fe

∂r
+

dp

dt
· ∂fe

∂p
=
∑
i

Cei {fe, fi}+ S. (5.1)

The left-hand side (LHS) takes into account spatial variations (∂fe/∂r) and forces acting on the

population (dp/dt), while the right-hand side accounts for collisions between different species

(Cei) and particle sources (S). Several assumptions and approximations are sometimes made in

order to make the computation of fe(t, r,p) tractable:

(i) Spatial homogeneity is sometimes assumed in order to eliminate the second term on the

LHS of (5.1). While a tokamak plasma is spatially inhomogeneous, this assumption can

hold in some limits; for instance, in the case of large aspect ratio, i.e. R0/a� 1.

(ii) In a magnetized plasma, the fast gyro-motion of charged particles motivates the averaging

over gyro-angles, so that momentum space is reduced from three dimensions to two: p‖
and p⊥, momenta parallel and perpendicular to the magnetic field.

(iii) As discussed in chapters 1 and 2, interactions between particles in a plasma are dominated

by small-angle deflections. Therefore, the Fokker-Planck collision operator can be used to

approximate Cei.

(iv) However, as noted in chapter 2, large-angle collisions can occur during the runaway electron

avalanching process, significantly affecting the distribution function. Because Cei now only

accounts for small angle collisions, these large momentum transfers can be included in S.
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(v) The collision operator can also be linearized when the total distribution function fe is only

a slight modification of a known distribution; i.e. fe = fe0 + fe1, and fe1 � fe0. For these

analyses, fe0 is taken to be a Maxwellian distribution.

The code Code [1, 2] was developed to solve the time-dependent, spatially-homogeneous,

linearized Fokker-Planck equation for the distribution of electrons f(t,p), where the subscript e

has been dropped for convenience. The forces on electrons are those due to an applied electric

field E and the (synchrotron) radiation reaction force, also called the Abraham-Lorentz-Dirac

force [4],

Frad =
e2γ2

6πε0c2

{
β̈ + 3γ2

(
β · β̇

)
β̇ + γ2

[
β · β̈ + 3γ2

(
β · β̇

)2
]
β

}
. (5.2)

The relativistic factor γ and normalized velocity β are familiar, with dots representing time

derivatives d/dt. Typically, the β · β̇ terms can be ignored because the velocity and acceleration

are almost perpendicular.

Small-angle collisions of (i) runaways on thermal electrons and (ii) thermal electrons on

runaways are taken into account in Code, but the collisions of runaways with other runaways are

neglected as it they are of second order, O(f 2
1 ). Pitch angle scattering from collisions between

electrons and ions is also included, although essentially no energy is exchanged between the light

electrons and massive ions.

Primary (Dreicer) generation of runaways is accounted for in (5.1) through the electric field

acceleration, embedded in dp/dt, and momentum space diffusion through small angle collisions,

in Cei {fe, fi}. The avalanche source term S, however, must be specified explicitly. That from

Rosenbluth and Putvinski (RP) [5], as described in chapter 2 and given in (2.19), is implemented

in Code. Recall, from chapter 2, that avalanching occurs through knock-on collisions, in which

an incident runaway electron collides with a thermal electron; post-collision, both electrons are

relativistic runaways. One limitation of the RP growth rate is that “outgoing” runaways are

produced with artificially high energies; this is a result of simplifications made in the mathematics

of [5].

A more realistic avalanching operator was derived by Chiu et al [6], where the outgoing

runaway momentum is limited by the incident runaway’s, i.e. pout ≤ pin.a This so-called Chiu-

Harvey (CH) operator is also available in Code. Once again, due to assumptions made in the

mathematics, the CH source term (like the RP operator) does not conserve momentum because

the primary runaway momentum pin does not decrease after the interaction. In addition, while

a number of runaway electrons are created by the RP and CH source terms, the same number

aNote that momentum of the thermal electron, pre-collision, is much smaller than the incident runaway’s, i.e.
pth � pin.
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of thermal electrons are not removed from the bulk population; thus, particle number is not

conserved. This assumption is only allowable when the runaway population is small compared to

the bulk. See [7] for a more in-depth discussion.

The inputs to Code are the time-evolutions of bulk plasma temperature T and density n,

electric field E parallel to the magnetic field of strength B,b and effective charge Zeff . The

avalanching source term—like RP, CH, or none at all—can also be specified. Numerically, mo-

mentum space is decomposed into the total momentum p and cosine of the pitch angle cos θp; the

former has a finite difference discretization, while the latter is expanded in Legendre polynomials.

Details can be found in [1, 2]. Code is written in Matlab, and computation times range from

CPU-seconds to CPU-hours.

5.1.2 Momentum space distributions

A sample momentum space distribution function calculated with Code is shown in figure 5.1.

The time-independent parameters used are similar to those measured for low-density C-Mod

discharges: n = 1019 m−3, T = 1 keV, Zeff = 4, E/EC = 15, and B = 5.4 T. The RP avalanche

source was enabled, and the distribution function was evolved from t = 0-1 s, with initial condition

f(t = 0,p) a Maxwellian at temperature T . Figure 5.1a shows the distribution function at one

time t = 1 s; as is seen, the electrons in the tail of f(p) have been accelerated along the magnetic

field to relativistic energies (p‖/mc � 1) with relatively small pitch angles (p⊥ � p‖). While

there is a significant fraction of runaways with p‖/mc ≈ 10-30, the gradient ∂f/∂p‖ becomes

much steeper for p‖/mc ≥ 30.

The time evolution of the runaway distribution is depicted in figure 5.1b. Each curve is the

contour log10(f) = -12 with colors indicating steps from t = 0-1 s in steps ∆t = 0.1 s. Note how

the change in parallel momentum ∆p‖/mc is fairly constant for each time interval; this is due to

the constant electric field accelerating runaways along the magnetic field. The change in perpen-

dicular momentum ∆p⊥/mc between time steps, however, decreases as time increases. Through

collisions with ions (Zeff), parallel momentum can be transferred to perpendicular momentum;

this is pitch angle scattering. But as both runaway energies and pitch angles increase, so too

does the power lost due to synchrotron radiation. (Recall that Psynch ∝ p2
⊥B

2.) Therefore, p⊥ is

limited in a way that p‖ is not, and the gradient ∂f/∂p⊥ is much steeper than ∂f/∂p‖.

It should be noted that the distribution functions calculated for this thesis work are all

monotonically-decreasing, i.e. ∂f/∂p⊥ ≤ 0 and ∂f/∂p‖ ≤ 0. However, in principle, Code

distribution functions can exhibit non-monotonic features if runaways “pile up” at an energy

which is balanced by the electric force, collisional friction, and synchrotron damping, as well as

bIn Code, E can be time-dependent, but B must be time-independent.
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Figure 5.1: (a) The electron momentum space distribution function f(p), calculated from Code,
for one time t = 1 s. (b) The time-evolution of the contour log10(f) = -12 from t = 0-1 s in
time steps ∆t = 0.1 s. Parameters used were n = 1019 m−3, T = 1 keV, Zeff = 4, E/EC = 15,
and B = 5.4 T, and the RP avalanche source term was enabled.

diffusion into and out of that region of momentum space. It is not known whether such momen-

tum space distribution functions are achievable in reality, but it is thought that such a “bump” in

the distribution function would soon excite kinetic instabilities and be smoothed out via processes

similar to inverse Landau damping; see [8, 9], for example. The effects of kinetic instabilities and

wave-particle interactions are not included in Code, which is likely why non-monotonic features

in f(p) can be obtained.

5.1.3 Regions of peak synchrotron emission

Our measurements of synchrotron radiation will not be able to probe the entire runaway electron

distribution in momentum (or phase) space. Instead, we will only “see” a region of it: the part

that “shines brightest,” emitting the most synchrotron radiation. Even this is not completely

true as our detector will respond differently to light emitted by runaways within various regions

of momentum space, depending on the detector geometry and specifications. Discussing these

diagnostic effects is left for the section 7.1.4, in which the synthetic diagnostic Soft is described.

Here, we assume that the entire momentum space distribution f(p) can be probed.

Recall that the synchrotron power spectrum dP/dλ from a single runaway electron, given in

(3.38), depends on the runaway’s energy and pitch angle as well as the magnetic field strength.

The spectra of figure 3.2 indicate how the spectral peak increases in amplitude and shifts toward

shorter wavelengths as p, θp, and B all increase. Now, instead of a delta function in momentum
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space (i.e. one energy and one pitch angle), there is a distribution of p and θp for the run-

away electron population. The synchrotron power emitted by runaways within a small region of

momentum space into a small wavelength range dλ is given by

dP =
dP

dλ
dλ f(p)dp dr =

dP

dλ
dλ f(p‖, p⊥) p⊥dp‖dp⊥ dV, (5.3)

where dV is taken to be a small volume of position space, and p⊥ = p sin θp is the Jacobian.

It is instructive to compute the quantity P × f(p‖, p⊥) × p⊥ to find the region of momentum

space within which runaways emit the most synchrotron emission. When considering a specific

wavelength range of interest λ ∈ [λmin, λmax] (e.g. of a detector), this quantity is calculated as

I(p‖, p⊥) = p⊥ f(p‖, p⊥)

∫ λmax

λmin

dP (p‖, p⊥, λ)

dλ
dλ. (5.4)

Here, I is just a dummy variable.

The momentum space distribution function in figure 5.1a is plotted again in figure 5.2a.c Note

that the color-scale limits of the logarithmic plot are different, but the domain is similar. The

calculation of I in (5.4) is shown in figures 5.2b and 5.2c for two wavelength ranges: visible/near-

infrared (λ = 500-1000 nm) and infrared (λ = 2-3 μm). These are both normalized to their

respective maxima and have the same linear color-scale. The region of peak emission is highly

localized in momentum space. We denote this momentum pc as that of a “super-particle,”

or dominant runaway electron. In other words, the synchrotron power radiated by the entire

distribution function f(p) in figure 5.2a is quite similar to that of a delta function nr δ(p− pc)

of runaways, with density nr appropriate to match the amplitude. The values of pc are slightly

different for the two wavelength ranges investigated: pc/mc = (p‖c, p⊥c)/mc ≈ (33, 3.9) for

λ = 500-1000 nm and (26, 3.3) for λ = 2-3 μm.

The localization of maximum synchrotron emission in momentum space is one of the moti-

vations for using a TPM—described in chapter 2—for estimations of synchrotron measurements

when calculations of the full distribution function are infeasible or too computationally-intensive.

Referring to figure 2.2c, we can compare the momentum of the test electron from the TPM

calculation to the momenta of the super-particles in figure 5.2. For the same plasma parame-

ters, the TPM momentum is (p‖, p⊥)/mc ≈ (35, 3.5); this differs from the super-particles of

figures 5.2b and 5.2c by ∼10-30%. This close agreement is actually quite fortuitous since the

TPM calculation does not account for any wavelength dependencies. The TPM estimation of the

runaway energy to within 30% is likely sufficient for our purposes. When evaluating mitigation

cThe plots in figure 5.2 were made using codeviz, a visualization tool for Code, which can be downloaded
at https://github.com/hoppe93/codeviz.
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Figure 5.2: (a) The same electron momentum space distribution function log10(f) from fig-
ure 5.1a, but with a different logarithmic color-scale. The convolutions f × p⊥ × P , from (5.4),
for wavelength ranges (b) λ = 500-1000 nm and (c) λ = 2-3 μm. Note that (b) and (c) have
the same linear color-scale. These plots were made using codeviz.

strategies for machine protection, an experimental runaway energy resolution of ∆E ∼ 5 MeV

(∆p/mc ∼ 10) is probably good enough. For example, the author opines that it is more impor-

tant to know if there are numerous runaways with energies of 20, 30, or 40 MeV in your plasma

than to distinguish among individual energies of 28, 30, and 32 MeV.
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Chapter 5. Simulations of runaway electrons and synchrotron radiation

5.2 Parameter scans in CODE

This section will explore further the dependencies of the electron momentum space distribution

on driving, damping, and source terms. For each of the following Code simulations, all input

parameters—n, T , E/EC, B, and Zeff—are time-independent, and the distribution function

f(t,p) is allowed to evolve from t = 0-1 s, starting from a Maxwellian with temperature T .

The plasma density and temperature are always n = 1019 m−3 and T = 1 keV. “Base case”

parameters are B = 5.4 T and Zeff = 1, and the RP avalanche source term is used, unless

otherwise noted. Finally, the distribution function is always shown for the last time, t = 1 s, in

the following figures.

5.2.1 Driving force, E/EC

Figure 5.3 shows the resulting electron distribution function for three ratios of the electric to

critical field [10]: E/EC = 5, 10, and 20. Note that because the avalanche growth rate increases

with E/EC—refer to (2.19)—each distribution function f(p) must be normalized to the runaway

density nr in order for them all to be plotted with the same color-scale. As expected, f(p) is

elongated in the parallel direction (p‖/mc) for higher values of E/EC since the electric field

accelerates runaways parallel to the magnetic field. The perpendicular extent of f(p) increases

only slightly with increasing E/EC.
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Figure 5.3: Electron momentum space distribution functions, calculated with Code, for three
ratios of the applied to critical electric field: E/EC = (a) 5, (b) 10, and (c) 20. The distribution
function f(p) is normalized to the calculated runaway density nr so that all color-scales are the
same. Compare to the TPM of figure 2.2a. (B = 5.4 T, Zeff = 1, RP avalanche source.)

Note also the “wiggles” of the contour log10(f) ≈ -5 in figure 5.3c; these are artifacts of

the pitch angle discretization via Legendre polynomial expansion in Code. This is typically only
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5.2. Parameter scans in CODE

seen at low values of f(p) so that it has little effect on the expected synchrotron measurement;

the pitch angle resolution in the simulation can also be increased, if necessary.

5.2.2 Radiation reaction, B

The effect of increasing magnetic field strength B on the electron distribution function is shown

in figure 5.4. Code simulations were run with B = 2.7, 5.4, and 7.8 T. These are three fields

at which runaways were generated in Alcator C-Mod; synchrotron spectral measurements from

these discharges are analyzed in chapter 6. The distribution functions f(p) are all plotted on the

same logarithmic color-scale, so that they can be compared directly. As is seen, the pitch angle

(and perpendicular momentum) distribution narrows significantly as B increases. Again, this is

due to synchrotron power growing like p2
⊥B

2: for higher B, smaller p⊥ is required to radiate away

the same power. The parallel momentum also decreases slightly with B. This implies that total

runaway energies decrease as the magnetic field increases, a hopeful outlook for future high-field

tokamaks.
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Figure 5.4: Electron momentum space distribution functions, calculated with Code, for three
magnetic fields: B = (a) 2.7 T, (b) 5.4 T, and (c) 7.8 T. All color-scales and axes are the same.
Compare to the TPM of figure 2.2b. (E/EC = 12, Zeff = 1, RP avalanche source.)
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Chapter 5. Simulations of runaway electrons and synchrotron radiation

5.2.3 Pitch angle scattering, Zeff

In figure 5.5, the effect of increasing Zeff on the electron distribution function is depicted. As Zeff is

increased from 1 to 2 to 4, the runaway population decreases in parallel momentum and density.

This matches expectations because Zeff contributes to collisional friction and also decreases

the primary and secondary growth rates—see (2.13) and (2.19). However, the perpendicular

momentum decreases only slightly with increasing Zeff , meaning that the pitch angle remains

approximately constant or even increases. This is a result of higher Zeff leading to increased pitch

angle scattering.
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Figure 5.5: Electron momentum space distribution functions, calculated with Code, for three
effective charges: Zeff = (a) 1, (b) 2, and (c) 4. All color-scales and axes are the same. Compare
to the TPM of figure 2.2c. (E/EC = 15, B = 5.4 T, RP avalanche source.)
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5.2. Parameter scans in CODE

5.2.4 Avalanche sources

In Code, the avalanche source term S in (5.1) can be turned on and off. If off, then primary

(Dreicer) generation [10] is the only mechanism accelerating runaways from the tail of f(p).

The resulting distribution function, shown in figure 5.6a, is highly elongated along p‖/mc since

runaways are primarily diffusing from the region of the Maxwellian distribution aligned with the

magnetic field.
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(b) Rosenbluth-Putvinski [5]
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Figure 5.6: Electron momentum space distribution functions, calculated with Code, using (a) no
avalanche source term (i.e. only primary generation from [10]) or the avalanche source terms
from (b) Rosenbluth and Putvisnki [5] and (c) Chiu et al [6]. All color-scales and axes are the
same. (E/EC = 20, B = 5.4 T, Zeff = 1.)

Figures 5.6b and 5.6c show the resulting runaway distributions when secondary avalanching is

enabled, using the RP [5] and CH [6] source terms, respectively. Notice that these two distribution

functions are almost indistinguishable from each other, indicating that the RP term is often an

allowable approximation. However, a large discrepancy is seen when comparing with the no-

avalanche case in figure 5.6a. With avalanching on, the density of runaways is greatly increased

at larger values of p‖/mc and p⊥/mc as secondary runaways are knocked into these regions via

large-angle collisions. Note that the color-scales for all three plots are the same, so that they can

be compared directly.
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Chapter 5. Simulations of runaway electrons and synchrotron radiation

5.3 SOFT simulations

The versatile synthetic diagnostic Soft is needed to adequately reproduce and explain the ex-

perimental measurements of synchrotron radiation analyzed in this thesis. Soft takes as inputs

the detector geometry and specifications, magnetic topology, and runaway phase space distribu-

tion and then outputs the desired synthetic signal, such as the spectrum, image, or polarization

information of the modeled synchrotron emission. Detector properties are normally determined

from installation and calibration. A magnetic reconstruction, like Efit [11], which uses experi-

mental magnetic measurements, is usually sufficient if the runaway current is small compared to

the plasma current, i.e. Ir � Ip. This is inferred from loop voltage measurements in C-Mod.

However, if Ir is a significant fraction of Ip, which can happen in post-disruption runaway beams,

then the magnetic geometry must be determined by another method. The runaway distribution

in phase space can either be (i) forward-modeled using Code, a TPM, or other numerical tools

or (ii) inverted using Green’s functions, as discussed below. The former allows validation of the-

oretical models of runaway evolution; however, if they cannot fully reproduce experiment, then

inferring some aspects of the phase space distribution can provide insight into missing physics.

5.3.1 Synchrotron detection

The full details of the calculations in Soft can be found in [3]. Here, they are briefly overviewed.

Consider a detector (observer) located at position ro with detector normal n̂d and opening half-

angle α. All lines-of-sight (LOS) with unit vectors n̂k such that n̂k · n̂d ≥ cosα have the potential

to detect radiation. This is depicted in figure 5.7, which has been updated from figure 3.1 to

include the detector geometry. The synchrotron power detected per unit area per unit solid angle

in the wavelength interval [λ, λ+ dλ] along LOS n̂k is given by equation (1) of [3]

d3Po(ro, n̂k, λ)

dA dΩk dλ
=

∫
dr dp δ(X/X − n̂k)

n̂k · n̂d

X2

d2P (r,p, λ)

dΩ dλ
f(r,p). (5.5)

Here, the notation is kept as close as possible to that in chapter 3, except now X = r − ro,

and R is reserved for the major radius, to be used later. The delta function selects out radiation

along the LOS, and the dot product relates the detector area and subtended solid angle via

dΩ/dA = n̂k · n̂d/X
2. The runaway phase space distribution is f(r,p), and d2P/dΩdλ is the

power radiated per unit solid angle per unit wavelength from [12] given in (3.35). Note that

d2P/dΩdλ can be decomposed into power radiated along each axis of an orthogonal basis via

the electric field calculations from [13] and given in (3.29). The actual implementation in Soft,

however, is slightly different than the derivation provided in chapter 3; further details are provided
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5.3. SOFT simulations

in appendix B and [14].

𝑩,  𝑧

 𝑦

𝜷
𝜉 = 1/𝛾

𝜓

𝜃p

𝜒

𝛼

 𝑛d

 𝑛𝑘

Figure 5.7: An updated version of figure 3.1, now with a detector at left with detector normal n̂d

and opening half-angle α. Synchrotron radiation will be visible along the LOS with unit vector n̂k.
See figure 3.1 for the definitions of the other parameters.

As discussed previously in chapter 3 and shown in figure 5.7, the angular distribution of

synchrotron radiation at one instant in time has a characteristic width ξ ∼ 1/γ. Therefore, the

small gyro-radius and fast gyro-frequency of a runaway effectively produces a cone of synchrotron

emission, with the direction determined by the runaway’s parallel velocity v‖ and opening half-

angle approximately equal to the runaway pitch angle θp = arctan(v⊥/v‖). Calculating the full

angular distribution of emission in Soft is possible but also computationally-expensive. Synthetic

data can be approximated more efficiently using the so-called cone model, for which all of the

synchrotron power is emitted along the runaway velocity vector v = βc; this is the limit when

γ � 1, so that ξ → 0. In Soft, the cone model is implemented as〈
d2P

dΩdλ

〉
=

1

2π

dP

dλ
δ(1− cosψ), (5.6)

where 〈·〉 denotes averaging over the gyro-motion, dP/dλ is given by (3.37), and ψ is the

angle between the runaway velocity β and detector viewing direction n̂k, as shown in figure 5.7.

Simulations using the cone model can run over 100 times faster than those using the full angular

distribution. As will be described in the next section, the cone model adequately approximates

the full calculation and is typically sufficient when producing synthetic data to compare with

experiment.
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Chapter 5. Simulations of runaway electrons and synchrotron radiation

5.3.2 Particle trajectories

The integral of (5.5) is carried out numerically in Soft. While the detector geometry is encoded

in ro, n̂d, and n̂k, the locations of the runaways r are determined from the magnetic topology,

which is modeled as axisymmetric. Zeroth-order guiding center motion is used to follow particle

trajectories, reducing p from three to two dimensions, i.e. (p‖, p⊥, χ) to (p‖, p⊥), by averaging

over the gyro-angle χ. Therefore, only the initial position—the major radius R on the outboard

midplane, in this case—is needed to follow the helical orbits. Note that drift orbits are not yet

included in Soft because the effect on the synthetic signal is estimated to be similar to that

caused by first-order corrections to guiding center motion, e.g. non-circular gyro-orbits.

When running Soft, a discretization in phase space must be provided. The discretization

of position space is dictated by the FOV of each pixel; for the wide-view camera in C-Mod, at

least 1 particle/mm (i.e. ∆R ≤ 1 mm) was sufficient for the radial resolution. Typically, the

runaways are “initiated” at points of minimum magnetic field in the simulation; since these are

usually on the outer midplane, the prescribed R of each runaway is the maximum major radius

experienced on any single trajectory. The phase space distribution f(R,p) does not evolve in time

in a Soft simulation; that is, Soft provides a “snapshot” in time, and f(R,p) is assumed to

be approximately constant on the transit timescale: one toroidal period is τt ≈ 2πR0/c ≈ 10−8 s,

while the energy loss timescales τrad and τcoll are on the order of 100 ms in C-Mod discharges—

see equations (2.22) and (2.23). Thus, energy is conserved, and so is the (classical) magnetic

moment

µ =
mv2
⊥

2B
. (5.7)

Even though the total velocity is relativistic, the perpendicular velocity is not: v2
⊥ � v2

‖. Addi-

tionally, using the relativistic mass, i.e. m→ γm, does not change the conservation law since γ

(energy) is conserved. Thus, it is adequate to use the classical magnetic moment here.

The conservation of magnetic moment will play an important role in the production of syn-

chrotron emission by runaways in a non-uniform magnetic field. We already know from the Larmor

formula that Psynch ∝ p2
⊥B

2. From (5.7), we also have that p2
⊥/B = constant on the transit

timescale. Thus, Psynch ∝ B3, which means that runaways will produce much more synchrotron

power on the high-field side of their helical orbit than on the low-field side. Note that this cubic

scaling is even greater for finite wavelength ranges of the synchrotron spectrum, as described

in [15].
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5.3. SOFT simulations

5.3.3 Green’s functions

Before performing the full integration of (5.5), we can first integrate over known geometric

dependencies: (i) the detector area and all acceptable n̂k acquired from the detector specifications;

(ii) the toroidal and poloidal angles, since the trajectories follow field lines; and (iii) gyro-angles

due to the guiding center approximation. Thus, a measured signal at detector pixeld (i, j) can

be calculated from the integral

dPij
dλ

=

∫
dR dp f(R,p)

dĜij(R,p, λ)

dλ
, (5.8)

where p is now two-dimensional, and Ĝij represents the Green’s function calculated by Soft.

(Compare (5.8) to (5.5).) This Green’s function is essentially a detector response function which

incorporates all geometric effects like the detector setup and magnetic geometry. It is a very

powerful feature of Soft; once Ĝij is computed, two avenues can be explored: (i) Many distri-

bution functions f(R,p) can be integrated via (5.8) to best match synthetic and experimental

signals, or (ii) the properties of Ĝij itself, along with experimental data, can be studied to better

constrain f(R,p).

Unless spectral information is required, Soft can also integrate over wavelength such that

(5.8) can be simplified as

Pij =

∫
dR dp f(R,p) Ĝij(R,p), (5.9)

where dλ has been absorbed into Ĝij. It is important to note that the momentum space Jacobian

is not absorbed into Ĝij; instead, it is included in dp. In chapters 6 and 7, the distribution

function will be given in terms of f(R, p‖, p⊥) so that dp = p⊥ dp‖ dp⊥. However, in chapter 8,

the pitch angle distribution will be explored so that the distribution function is f(R, p, θp) and

dp = p2 sin θp dp dθp.

dNote that non-camera data just has one pixel, i.e. i = 1, j = 1.
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5.4 Parameter scans in SOFT

The purpose of this section is to explore the dependencies of Soft outputs (i.e. synchrotron

spectra, images, and polarization measurements) on Soft inputs (e.g. detector geometry and

spectral range, runaway phase space distribution, etc.). The following parameter scans will help

the reader better understand the experimental measurements analyzed in chapters 6, 7, and 8.

The magnetic geometry used for all of these Soft simulations is shown in the poloidal cross-

section of figure 5.8a. The toroidal field B0 = 5.4 T and plasma current Ip = 800 kA are directed

into the page in figure 5.8a, so that both are counter-clockwise in the top-down schematic of

figure 5.8b. This direction of Ip means that the poloidal magnetic field is in the clockwise

direction in figure 5.8a.
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Figure 5.8: (a) Poloidal flux contours, including the last closed flux surface (grey), overlay a
vertical cross-section of the C-Mod vacuum vessel (black). (b) A top-down view of the reference
Soft simulation; the radial/toroidal intensity distribution corresponds to the intensity of syn-
chrotron radiation detected by the detector located in the midplane, with field-of-view (solid) and
line-of-sight (dashed) indicated by the thick lines. This is not the synchrotron radiation pattern
that would be measured by a detector looking down on the tokamak. The midplane major radii
of the last closed flux surface (solid) and magnetic axis (dashed) are shown as thin-lined circles.
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The “reference” position of the detector is on the midplane (Z = 0) with line-of-sight (LOS)

tangent to the major radius of the plasma axis (R = R0 = 68 cm), as shown by the thick dashed

line in figure 5.8b. The detector is located 1 m from the poloidal cross-section to which the

LOS is normal. The total opening angle modeled in Soft is 2α = π/4. However, as mentioned

previously in chapter 4, this is the angle spanning the diagonal of the output square image,

meaning that the angle spanning the horizontal (or vertical) extent of the square image is given

by

tan(αdiag) =
√

2 tan(αhoriz). (5.10)

Here, α is again the opening half-angle. The detector field-of-view (FOV) falls within the thick

solid lines of figure 5.8b.

The detector modeled in Soft is really an imaging spectropolarimeter in that it captures

an image along with spectral and polarization information; i.e. the Stokes parameters can be

calculated for each pixel and wavelength.e The synthetic image is 400×400 pixels and has an

aperture of 1 cm2; the reference wavelength range is in the visible/near-infrared, λ = 500-1000 nm.

The reference runaway phase space distribution has the following properties: All runaways have

the same momentum p/mc = 60 (E ≈ 30 MeV) and pitch angle θp = 0.1 rad, and the runaway

density profile decreases linearly from the magnetic axis to plasma edge, R = 68-88 cm. The

cone model is used unless noted otherwise.

5.4.1 Reference image and radial structure

The reference image of synchrotron radiation intensity (from the reference scenario) is shown in

figure 5.9a, with the high-field side (HFS) on the left. Note that this plot and all others in this

section are false-colored. This is really a greyscale image because the intensity has been integrated

over the visible wavelength range. The colormapf used is perceptually-uniform, allowing the eye

to distinguish features while maintaining the perceived brightness if converted to greyscale.

Figure 5.9a is chopped up into radial bands in figure 5.9b, in which synchrotron emission

is only shown for runaways within eleven radial bands of width ∆R = 1 cm at radial steps of

2 cm from R = 68-88 cm. Here, the emission is normalized within each band to highlight the

structure. The center-most ring corresponds to runaways nearest the magnetic axis; the reason

that this appears as a ring, instead of a dot, is because runaways were not populated directly at

the magnetic axis. While this is not physically-realistic, it is useful in this analysis as the center

of the runaway beam can be identified by this black dot (i.e. no emission).

eTo my knowledge, such an imaging spectropolarimeter has never been used for synchrotron studies, but could
be very useful.

fCredit goes to Geri Papp, who introduced this colormap to me.
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Chapter 5. Simulations of runaway electrons and synchrotron radiation

As expected, the synchrotron pattern expands outward from the center for runaways at larger

minor radii. For helical trajectories near the magnetic axis, runaways are visible on the entire

flux surface, which is seen as a ring. However, as the minor radius increases, there are only

certain sections of a runaway’s trajectory along which its synchrotron emission is directed into

the detector’s FOV. Since runaways travel in the counter-Ip direction, their poloidal motion is

counter-clockwise here (see figure 5.8a). Therefore, synchrotron emission is directed into the

detector’s FOV by runaways at the top-left and bottom-right; this creates the backward-S-like

pattern in the synthetic images. Due to the major-radially-decreasing magnetic field strength,

the measured synchrotron emission is brighter on the high field side (HFS, left) compared to the

low field side (LFS, right).

(a) (b)

Figure 5.9: (a) The reference Soft image. (b) The same figure as (a), but with eleven radial
bands of runaways highlighted. Each band has width ∆R = 1 cm extending from R = 68-88 cm
in steps of 2 cm. The detected intensity from runaways within each radial band is normalized to
the maximum intensity from that band. Because runaways within the same band can produce
non-circular features on either side of the central “ring,” those features on the left (HFS) are
brighter than their right (LFS) counterparts.

Refer back to figure 5.8b; it shows the toroidal and radial positions of runaway electrons which

contribute synchrotron emission to the reference image in figure 5.9a. The intensity distribution

of figure 5.8b indicates the actual intensity of synchrotron radiation received by the midplane

detector from runaways at each location. Thus, figure 5.8b is not what an observer would
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see when looking down on the tokamak. Instead, it shows the region of position space probed

by the detector. In other words, there are runaways located at all positions within the plasma

boundaries (solid white circles), but those in regions of zero emission (black) are not detectable.

By comparing figures 5.8b and 5.9a, it can be inferred that the detector views an S-like “tube”

of runaways, with emission dominated by runaways on the HFS (with R0 indicated by the dashed

line in figure 5.8b). In addition, peak intensities near the edges of the S in the detected image

(figure 5.9a) can be explained by line-integration effects as detector LOS pierce the so-called

surface-of-visibility [3, 15]. Note that Soft accounts for the inner wall, which can obstruct

light, but reflections off the first wall are not yet implemented.
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5.4.2 Cone model vs full angular distribution

Figure 5.10 compares reference images produced using the cone model approximation and full

angular distribution calculation. Each figure is normalized to its own maximum intensity. The

overall shape and intensity distribution is quite similar between the two images. The major

difference is the fuzziness resulting from the full angular distribution, which slightly “spreads” out

the radiation, as expected. Though not shown here, a distribution of pitch angles will also cause

a similar effect; this is discussed further in chapter 7. The Soft computation time required for

the full angular distribution was almost a factor over 1000 longer than that needed for the cone

model. Therefore, using the cone model is justified in most situations.

(a) Cone model. (b) Full angular distribution.

Figure 5.10: Reference images produced using (a) the cone model approximation (reference) and
(b) the full angular distribution calculation. The intensity is normalized in each image.
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5.4.3 Detector vertical position, Z

The vertical position of the detector was scanned, with resulting images shown in figure 5.11.

Note that the LOS remains horizontal for each simulation. As the virtual detector is displaced

downward (below the midplane), the synchrotron pattern moves upward, as expected. Recall

that the runaway beam minor radius is 20 cm, so that the bottom-most position, Z = -20 cm,

is really only viewing the bottom half of the runaway beam. Because the brightness peaks on

the HFS, most light is visible from runaways in the bottom-left quadrant of the runaway beam.

This leads to a distinct synchrotron intensity pattern which more closely resembles a parabola

than a backward-S. Having multiple cameras at different vertical positions could therefore help

diagnose different regions of position space. The wide-view camera in C-Mod, which captured

images of synchrotron emission, is also located significantly below the midplane, at Z = -22 cm,

as discussed in chapter 4. Therefore, the experimental images analyzed in this thesis work are

most similar to that in figure 5.11c.

(a) Z = 0 cm (b) Z = -10 cm (c) Z = -20 cm

Figure 5.11: Synthetic synchrotron images resulting from a scan in detector vertical position:
Z = (a) 0 (reference), (b) -10 cm, and (c) -20 cm. All images have the same color-scale, so they
can be compared directly.

A scan in the virtual detector’s major radial position was also performed, but the result was

only a left-right shift of the synchrotron pattern without any other noticeable changes. Similarly,

increasing/decreasing the detector opening angle only shrinks/grows the overall synchrotron spot

size. The results of these scans are not included here.
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5.4.4 Detector spectral range, λ

The spectral range of the virtual detector was also varied to simulate visible (λ = 500-1000 nm),

near-infrared (λ = 1-1.5 μm), and infrared (λ = 2.5-3 μm) cameras. The resulting images are

shown in figure 5.12. For these Soft simulations, the spectral response function is treated as

uniform over the given wavelength range. Note that all three images are plotted with the same

color-scale; thus, the intensity distributions can all be compared directly. It is seen that the shape

of the intensity distribution does not vary among the images, but the absolute intensity increases

with λ. This indicates that the peak of the spectral power density is in the infrared instead of

the visible, as predicted for parameters p/mc = 60, θp = 0.1 rad, and B0 = 5.4 T in figure 3.2.

(a) λ = 500-1000 nm (b) λ = 1-1.5 μm (c) λ = 2.5-3 μm

Figure 5.12: Synthetic synchrotron images resulting from a scan over detector spectral ranges:
λ = (a) 500-1000 nm (reference), (b) 1-1.5 μm, and (c) 2.5-3 μm. All images have the same
color-scale, so they can be compared directly.
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5.4.5 Runaway electron momentum (energy), p (E)

Figure 5.13 shows the synthetic images resulting from a scan in runaway momentum, while

keeping the pitch angle fixed at θp = 0.1 rad. As is seen, the shape of the synchrotron pattern

does not change with energy; however, the intensity increases nonlinearly. The intensities of

figures 5.13a and 5.13b are scaled by factors 10 and 5, respectively, in order to make them visible

on the same color-scale as figure 5.13c. Unless the detector is absolutely-calibrated and the total

density/number of runaways can be estimated, it is probably better to estimate the runaway

energies from the synchrotron spectrum (see figure 5.12) rather than from the absolute intensity

seen here. This could involve a camera measuring intensities at different wavelengths.

(a) p/mc = 50, scale = 10 (b) p/mc = 60, scale = 5 (c) p/mc = 70, scale = 1

Figure 5.13: Synthetic images resulting from a scan in momentum: p/mc = (a) 50, (b) 60
(reference), and (c) 70. Each intensity distribution is scaled by a factor of (a) 10, (b) 5, and
(c) 1 in order to be plotted on the same color-scale. Note that (a)-(c) correspond to energies of
E ≈ 25, 30, and 35 MeV, respectively.
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Chapter 5. Simulations of runaway electrons and synchrotron radiation

5.4.6 Runaway electron pitch angle, θp

Unlike the energy, changing the runaway pitch angle significantly alters the synchrotron spot

shape. The synchrotron S is slim for small pitch angles, as seen in figure 5.14a, and broadens as

θp increases. For θp = 0.2 rad, shown in figure 5.14c, the synchrotron spot has almost filled the

entire detector FOV. Increasing θp beyond this essentially creates a blob-like shape. Note that

the intensity also increases nonlinearly with θp, but each image is normalized to its peak intensity

in order to highlight the changes in shape.

(a) θp = 0.05 rad (b) θp = 0.10 rad (c) θp = 0.20 rad

Figure 5.14: Synthetic images resulting from a scan in pitch angle: θp = (a) 0.05 rad, (b) 0.1 rad
(reference), and (c) 0.2 rad. Each image is normalized to its own maximum intensity. If the
maximum intensity of (a) is scaled to be 1 (a.u.), then the maximum value of (b) is ∼54 and of
(c) is ∼380.
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5.4.7 Runaway electron density profile, nr

Figure 5.15 shows the synthetic images resulting from three different runaway density profiles

across the minor radius: uniform, linearly-decreasing (used in the reference image), and Gaussian

of the form

nr ∝ exp

[
− 1

σ2

(
r

ar

)2
]

(5.11)

with ar = 20 cm the runaway beam radius, and σ = 1/3 in this case. Each image is normalized

to its own maximum intensity.

(a) Uniform. (b) Linear. (c) Gaussian (σ = 1/3).

Figure 5.15: Synthetic images resulting from three different runaway density profiles: (a) uniform,
(b) linearly-decreasing from r = 0 to ar (R = 68-88 cm, reference), and (c) Gaussian with
σ = 1/3, as described in the text. Each image is normalized to its own maximum intensity.

For the uniform profile, in figure 5.15a, the synchrotron emission detected is completely

dominated by runaways at the beam edge on the HFS. A linearly-decreasing profile, in figure 5.15b,

helps to even out the synchrotron intensity distribution. The highly centrally-peaked Gaussian

profile, in figure 5.15c, emphasizes the central region of the runaway beam. As explored in

chapter 7, experimental observations of non-saturated, full synchrotron shapes indicate that nr

must decrease with minor radius, or else only a sliver of light on the HFS would be seen. For the

calculation of nr in Code, refer to appendix D.
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Chapter 5. Simulations of runaway electrons and synchrotron radiation

5.4.8 Polarization measurements

Because synchrotron emission is polarized, a polarization filter could be placed in front of our

virtual detector to capture images of horizontally and vertically-polarized light. The following

synthetic images were created using the Stokes parameters calculated with Soft (see appendix B

for more details). From (B.6), the intensity of light passing through a polarization filter is

I(θ0) =
1

2
[I +Q cos(2θ0) + U sin(2θ0)] , (5.12)

where θ0 is the angle of the transmission axis with respect to the horizontal axis of the detector,

in this case. The resulting horizontally and vertically-polarized images are shown in figures 5.16a

and 5.16b, respectively. Both are plotted on the same color-scale, so they can be compared

directly.

Note that (5.12) can be recast in a more familiar form using the intensity L and polariza-

tion angle θpol of detected linearly -polarized light at each pixel. Since Q = L cos(θpol) and

U = L sin(θpol), we can write

I(θ0) =
1

2
(I − L) + L cos2 (θpol − θ0) . (5.13)

The first term corresponds to light that is not linearly-polarized, with the factor of 1/2 coming

from an average over all angles, i.e. 〈cos2(·)〉= 1/2. The second term is the expected contribution

from linearly-polarized light.

Polarization angles are shown in figure 5.16c, where θpol = 0◦ (grey) and 90◦ (black) indicate

horizontal and vertical polarization, respectively. Interestingly, the edges of the backward-S shape

are primarily horizontally-polarized, while the center of the S is vertically-polarized. As will be

discussed further in chapter 8, this bifurcation in θpol is highly sensitive to the runaway pitch

angle distribution, magnetic topology, and detector geometry. Foreshadowing what is to come,

note how there are two 90◦ transitions in θpol, from θpol = 0◦ to 90◦ and then θpol = 90◦ back

to 0◦, as the detector LOS moves across the midplane of the image. This will be shown to be a

unique property of runaway synchrotron emission.
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5.4. Parameter scans in SOFT

(a) Horizontally-polarized. (b) Vertically-polarized. (c) Polarization angle (◦).

Figure 5.16: (a) Horizontally-polarized and (b) vertically-polarized light from the reference
image—except here the runaway beam has a uniform runaway density profile—plotted with the
same color-scale. (c) The polarization angle of light detected at each pixel, in degrees. The white
region in (c) indicates zero detected synchrotron light, which is otherwise black in (a) and (b).
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Chapter 6

Analysis of synchrotron spectra

As part of this thesis work, runaway electron experiments were performed during low density,

diverted, flattop plasma discharges in C-Mod at three magnetic field strengths: B0 = 2.7, 5.4,

and 7.8 T, the last being the highest field to-date at which runaways have been generated

and observed in any tokamak. Synchrotron radiation spectra were measured in the visible/near-

infrared wavelength range (λ ≈ 300-1000 nm) by two absolutely-calibrated spectrometers viewing

co- and counter-plasma current directions, as described in chapter 4 and shown in figure 6.1.

In this chapter, the test particle model and runaway growth rates from chapter 2 are im-

plemented to predict momentum-space and density evolutions, respectively, of runaways on the

magnetic axis and flux surfaces with q = 1, 3/2, and 2. Drift orbits and subsequent loss of

confinement are also incorporated into the evolution. These spatiotemporal results are then

input into Soft which reproduces experimentally-measured spectra. As will be discussed, for

these discharges, it is inferred that (i) synchrotron radiation dominates over collisional friction

as a power loss mechanism and (ii) runaway energies decrease as the magnetic field strength

increases. These results are published in [1]. Additionally, the threshold electric field for run-

away generation, deduced from these most recent runaway experiments, is compared to current

theoretical predictions.

6.1 Measurements of synchrotron spectra at three mag-

netic field strengths

Recall that in C-Mod, multi-MeV runaways—i.e. those emitting visible synchrotron radiation—are

generally not observed after disruptions of diverted plasmas, likely due to the fast stochasticization

of magnetic flux surfaces [2, 3]. However, these runaways can be generated during flattop

discharges of sufficiently low plasma density (n̄e ∼ 5×1019 m−3), sometimes with the aid of lower
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Chapter 6. Analysis of synchrotron spectra

Figure 6.1: A top-down schematic of the tokamak midplane. The plasma is pink, with the major
radius of the plasma axis dotted. The spectrometer views (CW: 23/24 and CCW: 25/27) are
located on the In-Vessel Platform (IVP). Note that the field-of-view of IVP25 lies within that of
IVP27. This is the same figure as figure 4.1, shown again here for reference.

hybrid (LH) seeding or short ramps in Ip (∼200 kA/100 ms) to increase the loop voltage. This

section explores the effects of varying toroidal magnetic field strength B on the evolution of flattop

(“quiescent”) runaways and their synchrotron radiation in C-Mod. Here, B is approximately

constant throughout the time that runaways evolve; thus, discharges with similar runaway-relevant

parameters are simply reproduced—to the best of our experimental abilities—with different, but

constant B0. In appendix C, the effects of time-changing B0 on an already-formed runaway

beam and its synchrotron radiation will be discussed. While the magnetic field was ramped from

B0 = 5.4-6.2 T in this discharge, the percent change in B0 was not enough to measure significant

changes in synchrotron spectra.

The test particle model (TPM) of momentum evolution from [4] and runaway density evolution

from [5, 6]—both detailed in chapter 2—are coupled with Soft—described in chapter 5—to

produce synthetic spectra which are directly compared with experiment. For the first time,

spatial effects are included in the runaway evolution and resulting spectra. As will be discussed,
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6.1. Measurements of synchrotron spectra at three magnetic field strengths

good agreement is seen between experimental and predicted spectra, and it is shown that higher

magnetic fields are consistent with greater synchrotron power loss and therefore lower expected

runaway energies.

6.1.1 Experimental setup

To explore the impact of increased magnetic field on synchrotron power loss and runaway evo-

lution, flattop runaways were generated at three time-independent magnetic field strengths in

C-Mod: B0 = 2.7, 5.4, and 7.8 T.a The experimental plasma parameters for the three discharges

are shown in figure 6.2. For each discharge, ne was decreased in time to achieve E0/EC & 5

on-axis. In addition, to encourage runaway production, the plasma current was ramped from

Ip = 0.5-0.6 MA and 1.0-1.4 MA during the 2.7 and 7.8 T discharges, respectively, and LH

current drive was used for a short time from t = 0.74-0.76 s during the 2.7 T discharge. These

three discharges were chosen for comparison due to their similar ratios of E0/EC on-axis; thus,

they have similar runaway-driving forces. Low values of τrad/τcoll ∼ 2-4 for the 5.4 and 7.8 T dis-

charges indicate the potential for synchrotron power to surpass collisional friction as the dominant

power loss mechanism.

Prior to 2015, several diagnostics were available for the study of runaways on C-Mod. Wide-

view visible cameras—like the one discussed in chapter 4—allowed observation of runaway spatial

evolution; however, the images would often be obscured by hard X-ray (HXR) “white-noise” or

particulate build-up on camera windows. A radially-viewing, energy-resolved HXR camera with

32 chords measured HXR emission from runaway bremsstrahlung within the plasma for energies

up to ∼240 keV. Unconfined runaways impacting the vessel wall also produced bremsstrahlung

radiation in the form of HXRs and gammas; the latter generate photoneutrons through (γ,n)

reactions. (See figure 6.2f-g). In addition, the Motional Stark Effect diagnostic was able to

measure synchrotron radiation spectra in the visible wavelength range, but only over a narrow

spectral range, with width ∆λ < 5 nm.

As described in chapter 4, two visible spectrometers—see table 4.1 for specifications—were

installed on Alcator C-Mod for better spectral measurements. Both clockwise (CW) and counter-

clockwise (CCW) viewing directions allow (i) determination of the presence of runaways as syn-

chrotron emission is only observed from one direction, (ii) synchrotron measurements for forward

and reversed experimental configurations of B and Ip, and (iii) subtraction of background light.

Refer to figure 6.1 for a top-down schematic view of the tokamak midplane with the CW and

CCW fields-of-view (FOV) overlaying a typical C-Mod plasma. Spectrometer views In-Vessel

Platform 24 and 27 were used exclusively for the following analysis. Note that the spectrometers

aTo the author’s knowledge, 7.8 T is the highest magnetic field strength at which runaways have been generated
and observed in a tokamak, or at least at the publication date of [1].
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Figure 6.2: Parameters for three plasma discharges with time-independent B0 = 2.7 T (black),
5.4 T (blue), and 7.8 T (red): (a) plasma current in MA, (b) central electron density in 1020 m−3,
(c) central electron temperature in keV, (d) ratio of the synchrotron radiation timescale to the
collisional timescale—see (2.24), (e) measured synchrotron brightness at wavelength λ = 850 nm
in μW/mm2/sr/nm, (f) signal from HXR and photoneutrons in s−1, (g) HXR signal, and (h) ratio
of the electric field on-axis to the critical electric field [5]. The shaded regions in (h) highlight
the time windows in (e) during which synchrotron radiation is observed. Note that in (e)-(h),
some data have been scaled by the factors given.

do not view an entire plasma poloidal cross-section, and the CW FOV does not view a tangent

point on the magnetic axis. Since highly relativistic electrons will experience outward radial drifts

along their helical trajectories, these combined geometric effects must ultimately be considered

when analyzing synchrotron data.

Raw synchrotron spectra (photon counts) and absolutely-calibrated brightness spectra

(μW/mm2/sr/nm) from the 7.8 T discharge are shown in figures 6.3a-b, respectively, with each

solid curve representing one measurement in time and colors corresponding to the time trace in

figure 6.3c. The low-signal grey line in figure 6.3a is the time-averaged background spectrum from

the co-Ip (non-runaway) viewing spectrometer. The contrast between spectra clearly indicates a

measurement of synchrotron radiation for the counter-Ip viewing system. The absolute calibration
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6.1. Measurements of synchrotron spectra at three magnetic field strengths

of the spectrometers allows qualitative comparison of the measured brightnesses with theoretical

power spectra dP/dλ in the visible wavelength range, such as those shown in figure 3.2 in

chapter 3. While deuterium Balmer peaks (λ ≈ 488 and 658 nm) are visible in both the raw

and absolute brightness spectra, the fiber absorption “dips” (λ ≈ 590, 730, and 880 nm) are

essentially removed by the absolute calibration. The time evolution of brightness amplitude can

also yield information about runaway dynamics; figure 6.3c interestingly displays two peaks in time

at t ≈ 0.8 and 0.9 s, somewhat similar to the HXR signal (black), which occur approximately

after the Ip-ramp shown in figure 6.2a.
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Figure 6.3: Synchrotron spectral data for the 7.8 T plasma discharge: (a) Raw photon count
spectra from the CW spectrometer are plotted for times between t = 0.6-1.1 s at ∆t = 10 ms
intervals. The grey line is the time-averaged background spectrum from the opposite-direction-
viewing (CCW) spectrometer. (b) Absolute brightness spectra corresponding to the same times
(colors) as the photon count spectra. (c) Brightness at λ = 850 nm is plotted as a function
of time with the same color-coding as spectra. The HXR signal (black, arbitrary units) from
figure 6.2g is shown in (c) for comparison.

6.1.2 Approach

The analysis of synchrotron spectra is subtle; many factors contribute to the measured bright-

ness, so careful interpretation of data is necessary. First attempts [7, 8] to determine runaway

parameters from spectra assumed that mono-energetic (i.e. single-energy, single-pitch) distribu-

tions of runaways, concentrated in the plasma core, emitted synchrotron radiation directly into

the spectrometer’s FOV. For a highly-collimated spectrometer viewing the magnetic axis, such

as that reported in [8], this approximation has some merit. However, for un-collimated spec-

trometers, like those used in this study, the situation is much more complicated: The runaway
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population has a distribution of energies and pitches which evolves in time with changing plasma

parameters. Furthermore, these momentum and density evolutions will vary on different flux

surfaces as plasma parameters and magnetic field are spatially-dependent. The path of runaways

along helical trajectories coupled with particle drifts can also bring runaways into and out of the

spectrometer FOV. Solving the inverse problem, i.e. determining the spatiotemporal runaway

population and momentum distribution functions from time-evolving spectra, is intractable for

these volume-averaged spectral measurements. Instead, for this analysis, the forward problem is

pursued by using a methodology similar to that used in [9–11]:

1. Flux-surface-averaged plasma parameters are obtained for the magnetic axis and surfaces

with q = 1, 3/2, and 2.

2. A TPM is implemented to evolve runaway momenta and densities on each surface.

3. Drift orbits are calculated, and runaways which lose confinement are removed from the

population.

4. At each time step, the highest energy runaways on each surface, as predicted by the TPM,

are assumed to contribute most to the synchrotron spectra.

5. The resulting evolutions of energy and density in time and space are input into Soft to

produce synthetic synchrotron spectra, which are then compared to experiment.

This approach differs from those employed previously in [10, 11] by (i) including spatial and

drift orbit effects, (ii) not attempting to approximate the full runaway energy distribution, and

(iii) utilizing Soft. In [9], drifts and radial diffusion—the latter of which was not explored here—

were used to compare TPM energies to those measured by gamma ray spectra resulting from

unconfined runaways impacting plasma-facing components.

Regarding steps 1 and 2, the reader may wonder why runaway evolution is simulated only at

four locations throughout the plasma. The reason for this is two-fold: First, these locations cover a

large volume of the plasma, spanning the FOV of both spectrometers; thus, they should adequately

capture the spatial variation of plasma parameters and thus resulting runaway generation and

evolution. Second, because spectra are volume-integrated measurements with low (i.e. almost

no) spatial resolution, there is no real motivation to use finer spatial resolution.

Furthermore, regarding steps 2-4, the reader may inquire as to why a TPM was used instead

of Code, which should give a fuller picture of the runaway distribution as discussed in chapter 5.

Here, the reason is three-fold: First, some numerical difficulties arose for the high-B (7.8 T)

case; however, Code is compared to the TPM for B0 = 2.7 T below. Second, as described

in chapter 5, a TPM can capture the dynamics of the runaways which dominate the production

(intensity) of synchrotron radiation. Finally, as this is a bulk measurement of the runaway beam,

it is enough to know the approximate maximum energies, pitch angles, and (relative) densities,
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6.1. Measurements of synchrotron spectra at three magnetic field strengths

and not concern ourselves with finer details of the phase space distribution, which would not be

resolvable anyway.

6.1.3 Motivation

When runaways are generated during the flattop current of C-Mod discharges, little variation is

seen in the loop voltage; thus, it is inferred that the current carried by runaways is small compared

to the plasma current (i.e. Ir � Ip), making the total number of runaways, or runaway density

nr, difficult to estimate. Moreover, the amplitude of synchrotron emission is a poor indicator of

nr, as only those runaways with sufficient energy (E > 10 MeV) will contribute to the visible

spectra. Thus, in this analysis of synchrotron spectra, the effect of changing density is removed by

normalizing the measured experimental brightness at one wavelength. The resulting normalized

brightness spectra B̄(λ, t) then only depend on the momenta and relative densities of runaways

on different flux surfaces and their contributions to the total spectra. For this study, signal-to-

noise and calibration factors limit the wavelength range of interest to λ = 500-850 nm. (Refer

to figure 6.3a.) A normalization wavelength λ0 = 675 nm is chosen, away from the line radiation

peaks and fiber absorption features.b The normalized brightness spectra are shown for several

times in figure 6.4a. It is observed that the “slope” of the spectra increases in time, meaning that

the relative fraction of synchrotron power emitted at longer wavelengths (λ > λ0) is increasing

compared to shorter wavelengths (λ < λ0). This slope will be useful in determining the evolution

of runaway energy.

The “traditional” approach of analyzing synchrotron spectra involves fitting experimental

spectra using a single-particle, mono-energetic approximation, as in [8, 10, 11].c To demonstrate

this, a scan in momentum space was performed from p‖/mc = 0-120 and p⊥/mc = 0-60 in

increments of ∆p‖/mc = 1 and ∆p⊥/mc = 0.5. (Recall that p/mc ≈ 2EMeV for electrons.) At

each point, the power spectrum dP/dλ was calculated, and the (normalized) synthetic brightness

B̄syn was estimated from (3.48), presented in chapter 3. Then the χ2 degree-of-fit of B̄syn to

normalized experimental data B̄exp was calculated as

χ2(t) =
∑
i

[
B̄exp(λi, t)− B̄syn(λi, t)

]2
B̄exp(λi, t)

, (6.1)

with the sum taken over each wavelength λi.

bConveniently, λ0 = 675 nm is halfway between 500 and 850 nm.
cIn [8], the runaway pitch angle was estimated from camera images of the synchrotron spot size; unfortunately,

camera images were not available for these particular C-Mod discharges. In [10, 11], a similar TPM was used to
determine the pitch angle, and the best-fit energy was found to be consistent with that model.
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Regions of χ2 ≤ 0.1 are shown in figures 6.4b and 6.4c as functions of normalized parallel

versus perpendicular momenta (p‖/mc, p⊥/mc) and normalized total momenta versus pitch angle

(p/mc, θp), respectively. As is seen, there is no unique solution for this simple approach. If we

were to assume that all runaways had a constant pitch angle θp = 0.1 rad, this would imply a

change in energy of E ∼ 25 to 20 MeV in time. As will be described in section 7.1.6, a TPM

governed by the electric field, collisional friction, and synchrotron losses confines runaways to the

region of momentum space inside the shaded box in figure 6.4b. In other words, experimental

conditions and the equations of motion require that (the bulk of) runaway electrons have momenta

with values p‖/mc . 43 and p⊥/mc . 4.
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Figure 6.4: (a) Brightness data from figure 6.3a is normalized at λ0 = 675 nm (dotted) for six
times in t = 0.75-1.00 s. Regions of χ2 ≤ 0.1 when fitting the experimental data in (a) to
mono-energetic B̄syn are shown for two representations of momentum space: (b) p‖/mc vs p⊥/c
and (c) p/mc vs θp. A TPM using plasma parameters from the 7.8 T discharge predicts runaway
momenta confined within the shaded box in (b) and maximum p/mc as indicated by dots in (c).

What is more, the time evolution of the maximum value of p/mc (and corresponding θp) from

the same TPM are represented as dots in figure 6.4c. Runaway electrons with these energies and

pitch angles live at the boundary of the box in figure 6.4b. While the TPM-predicted pitch angle

is θp ≈ 0.08-0.10 rad—not too far off from the previous assumption—the energies shown in

figure 6.4c are lower than the fits suggest, and the time evolution (dark-to-light in colors) does

not match. Thus, a more physically-motivated approach must be taken.

A complete analysis would require the full runaway phase space distribution function. However,

as argued, because synchrotron emission is dominated by runaways localized in momentum space,

a single-particle approximation is sufficient to reproduce synchrotron data. Figure 7.5a shows the

normalized runaway momentum space distribution function f(p) calculated with Code [12, 13]—
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6.1. Measurements of synchrotron spectra at three magnetic field strengths

refer to chapter 5—using experimental plasma parameters on-axis for the 2.7 T discharge. As

expected, f(p) is highly elongated parallel to the magnetic field, since electrons are primarily

accelerated in that direction. As runaways are scattered to larger perpendicular momenta, they

emit synchrotron radiation, lose energy, and repeat the cycle.

A convolution of f , dP/dλ, and Jacobian p⊥ determines the region of momentum space in

which most synchrotron power is radiated. This normalized convolution, evaluated at λ = 800 nm,

is shown in figure 7.5b. At the time shown, the maximum emission results from runaways with

average momenta p‖/mc ≈ 81 and p⊥/mc ≈ 8. (Recall from chapter 5 that the peak location

is relatively insensitive to λ in the visible range.) The TPM predicts a single-particle on-axis

momentum of p‖/mc ≈ 76 and p⊥/mc ≈ 8, indicated by the dot. Since parameter scans

and iteration of the TPM were more feasible—i.e. less computationally-intensive—than the full

kinetic solvers, a TPM was pursued in this analysis. Moreover, as will be described in section

6.1.7, spectra produced using the TPM match experimental data as well or even better than

those generated using Code.
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Figure 6.5: (a) The normalized momentum space distribution function f(p‖, p⊥) generated by
Code for on-axis plasma parameters of the 2.7 T discharge at t = 1.6 s, and (b) the normalized
convolution of spectral power density dP/dλ at λ = 800 nm, f , and Jacobian p⊥. The dot in
(b) represents the TPM prediction of p‖/mc and p⊥/mc on-axis at time t.
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Chapter 6. Analysis of synchrotron spectra

6.1.4 Test particle model

The TPM used in this analysis is the same as that described in chapter 2 with parallel and total

momenta evolutions described by (2.26) and (2.28), respectively [4]. In addition, the runaway

density evolution given by (2.11)—with linear and exponential growth rates for Dreicer generation

[5] and Rosenbluth-Putvinski avalanching [6]—can be used to predict the density of runaways on

each surface, thereby constructing an ad hoc density profile and estimating relative contributions

to the total synchrotron emission.

Because runaways can be generated at any time throughout the discharge, new TPM are

initiated starting at t = 60 ms (corresponding to the first Efit [14] time) and in ∆t = 10 ms

intervals. Example time-evolutions of p‖/mc for many initiation times are shown in figure 6.6. The

early start time is motivated by spikes in HXR signals early in the three discharges (see figure 6.2f).

Regardless of the time of initiation, most runaways generated during the first ∼0.5-1.0 s reach an

approximately steady-state momentum by the time of observed synchrotron emission. In general,

runaways initiated earliest in time gain the highest energies and densities; however, they can lose

confinement, as described in the next section, and thus lower energy runaways generated at later

times can become important (see figure 6.6). For simplicity, the initial momenta were chosen to

be p‖0/mc = 1 (as done in [9]) and p⊥0/mc = 0.001, which are representative of an electron

above the threshold velocity (along B) to run away, but not yet highly relativistic. In addition, the

initial density was simply chosen to be n0 = 1 m−3. For both momentum and density evolutions,

the TPM is insensitive to initial conditions.

6.1.5 Spatial profiles and drifts

Since our spectrometers make volume-integrated measurements over significant cross-sections of

the plasma (refer to figure 6.1), it is important to account for the energy and density evolutions

of runaways on different flux surfaces, as well as the spatial variation of the magnetic field. The

spatial profile of runaways is approximated by calculating the evolutions for four locations: the

magnetic axis and on rational flux surfaces with q = 1, 3/2, and 2. Surface-averaged plasma

parameters were input into the TPM: The q-profile and electric field E = (∂ψp/∂t)/(2πR)

were determined from Efit magnetic reconstructions [14], where ψp is the poloidal magnetic

flux. Thomson scattering profiles of ne and Te on the outer midplane were used and assumed

to be flux surface functions. Because B and E both decrease as ∼1/R, particles on helical

trajectories necessarily experience varying electric and magnetic fields; it was assumed that all

runaways are passing particles with constant speeds (v ≈ c) to calculate the surface-averages.

Due to stray synchrotron light overwhelming/contaminating the diagnostic measuring effective

charge, values of Zeff could not be accurately measured for these discharges. Therefore, a scan
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B : 0

pk;max=mc

1160824021

0 0.5 1 1.5 2
t (s)

0

50

100
p

||
/m

c

Figure 6.6: Time evolution of parallel momenta for particles initiated every ∆t = 50 ms on the
q = 2 surface for the 2.7 T discharge. The maximum parallel momenta are shown for runaway
confinement (p‖,max/mc, grey) and when synchrotron radiation is neglected (B = 10−4 T ≈ 0,
dashed). (Zeff = 4)

was performed from Zeff = 1-4, which was also assumed to be constant in time and space in each

TPM simulation. (Note that Zeff ∼ 3-4 is common for low density C-Mod discharges.) In this

analysis, data are only shown for those values of Zeff which best reproduced experimental results.

As derived in chapter 2, highly relativistic electrons can also experience large particle drifts

in a toroidal magnetic field. Thus, runaways of sufficient energy can lose confinement, especially

if they are generated on outer flux surfaces. Recall from (2.41), that the maximum parallel

momentum for runaway confinement, in a plasma with a parabolic current profile, is given by

p‖,max

mc
≈ 724 IMA

(
1− r

a

)[
1− 1

2

(r
a

)2
]

(6.2)

where IMA is Ip expressed in MA. This neglects other radial transport mechanisms, such as

magnetic field perturbations.

An illustration of the TPM and drift orbit calculations is shown in figure 6.6. Here the TPM

was simulated for plasma parameters on the surface q = 2 for the 2.7 T discharge. Each curve

represents the momentum evolution, from (2.26), of a particle generated at a different time step

within the discharge. If drift orbit losses are not considered, it can be seen that runaways produced

in the first ∼1 s of the discharge reach a momentum space attractor at p‖/mc ≈ 100 around
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Chapter 6. Analysis of synchrotron spectra

t = 1.5 s; this is where the electric, friction, and synchrotron radiation reaction forces balance.

The importance of synchrotron power loss is highlighted by the dashed curve for which the

magnetic field was artificially reduced to B ≈ 0.d In the case that drifts and orbit losses

are not considered, these runaways would reach a maximum energy of p‖/mc ≈ 120; that is

∆E ≈ 10 MeV higher than particles subject to synchrotron power loss. The maximum allowable

momentum beyond which runaways would drift out of the plasma is calculated from (6.2) and is

shown by the grey line. This indicates that runaways on the surface q = 2 would lose confinement

early in the shot, around t = 0.6 s, and therefore the maximum momentum expected is actually

only p‖/mc ≈ 50-60, or ∼25-30 MeV. Note that for plasmas with higher Ip and for runaways

inside q < 2, the TPM-predicted energies are often much lower than the maximum allowable for

confinement.

6.1.6 Spectrometer implementation in SOFT

The synthetic spectrometer capabilities of the Soft code [15] were utilized in this work. Recall

that inputs to Soft include the magnetic geometry from Efit; spectrometer specifications

(e.g. position, orientation, viewing angle, and spectral response) provided in table 4.1; runaway

momenta and pitch angles from the TPM (or momentum space distribution functions from

Code); and midplane major radial locations of the runaways. Because drift orbit effects are not

yet fully implemented in Soft, they are only utilized for the calculation of the input momenta

and densities. The full angular distribution of synchrotron emission was used for the synchrotron

power computation, although the simplified cone model—with opening half-angle θp and zero

angular width—was found to work just as well.

In this analysis, separate Soft simulations were performed for each flux surface qi and time

of interest. In each simulation, the same number of particles were distributed uniformly in a

radial band of width ∆R = 1 cm centered at the outer midplane major radius corresponding to

the flux surface. The resulting spectra were scaled by the total number of runaways expected on

each surface, calculated using the runaway density and cylindrical plasma approximation

Nr(qi, t) ≈ nr(qi, t)× 2πR0 × 2π (R(qi, t)−R0) ∆R. (6.3)

The total brightness was then calculated as

BSoft,tot(t) =
∑
i

Nr(qi, t)BSoft(qi, t), (6.4)

dActually, a small value, B = 10−4 T, was used since the numerical solver breaks for B = 0.
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6.1. Measurements of synchrotron spectra at three magnetic field strengths

which was normalized at λ0 and compared to experiment.

6.1.7 Experimental analyses

The following subsections detail the application of the aforementioned methodology to the three

plasma discharges of interest with magnetic field strengths on-axis B0 = 2.7, 5.4, and 7.8 T.

The organization of each subsection is as follows: Plasma parameters ne, Te, E/EC, and outer

midplane major radial position R are shown for the magnetic axis and surfaces with q = 1, 3/2,

and 2 as subplots (a)-(d), respectively, in figures 6.7, 6.9, and 6.11. In the same figures, TPM

results of p/mc, θp, and nr are shown in subplots (f)-(h), respectively, for each surface. Note that

drift orbits are accounted for in the TPM calculation and are shown as dotted lines in subplot (d).

The time evolution of experimentally-measured synchrotron brightness is shown in subplot (e) for

qualitative comparisons with TPM parameters; vertical lines indicate the times at which synthetic

spectra are produced with Soft.

In figures 6.8, 6.10, and 6.12, synthetic Soft spectra are compared to experimental spec-

tra for the 2.7, 5.4, and 7.8 T discharges, respectively. In each figure, subplot (a) shows the

experimentally-measured normalized brightness spectra. The synthetic spectra shown in the ac-

companying subplots (b) and (c) are calculated using (b) only on-axis TPM data input into

Bsyn (3.48) and (c) TPM data from all surfaces input into Soft. Subplot (d) is different for

each discharge and figure. Finally, the χ2 degree-of-fit is shown in figure 6.13 and discussed in

section 6.1.8.

6.1.7a Synchrotron spectra measured at B0 = 2.7 T

During the 2.7 T discharge, ne was decreased in time (see figure 6.7a) and Ip was ramped from

0.5-0.6 MA over t = 0.9-1.0 s (see figure 6.2a) to encourage runaway generation. LH current

drive was also used to help produce a seed population of non-thermal electrons, but was not

modeled explicitly. The resulting increase in E/EC due to the Ip ramp can be seen during this

time interval in figure 6.7c, especially for the outer flux surfaces with q = 3/2 and 2. Higher

values of E/EC on the outer flux surfaces lead to higher predicted runaway momenta early in the

plasma discharge, as seen in figure 6.7f. However, the resulting drift orbits, shown in figure 6.7d,

approach the plasma boundary (R ≈ 0.9 m), and runaways begin to lose confinement at t ≈ 0.6

and 1.2 s, on the q = 2 and 3/2 surfaces, respectively; these are seen as decreases in energy

and density in figures 6.7f-h. The former time, t ≈ 0.6 s, is approximately the time at which

photoneutron and HXR signals rise in figure 6.2f-g. While it is predicted that the highest energy

runaways are on the q = 3/2 surface, the runaway density nr there is much lower than on-axis.

Thus, it is expected that runaways at the core will dominate the synchrotron spectra.
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Figure 6.7: For the 2.7 T discharge, parameters on the magnetic axis and surfaces with q = 1,
3/2, and 2: (a) electron density in 1020 m−3, (b) electron temperature in keV, (c) ratio of electric
to critical fields, and (d) outer midplane major radius with (dotted) and without (solid) including
drifts; (e) measured synchrotron brightness at λ = 850 nm (in μW/mm2/sr/nm) with times
of interest corresponding to figure 6.8 indicated as vertical lines; and TPM results for runaway
(f) total normalized momentum, (g) pitch angle, and (h) density in m−3. (Zeff = 4)

Synchrotron emission was measured by the CCW spectrometer (see figure 6.1) for the 2.7 T

discharge. The experimental normalized brightnesses at five times, as indicated in figure 6.7e,

are compared to synthetic spectra in figure 6.8. Considering only on-axis runaways, and using the

brightness formula for B (3.48), produces spectra similar to experiment, as seen in figure 6.8b.

This is consistent with measured synchrotron emission dominated by runaways in the core, as

expected. Combining TPM data from all surfaces and inputting it into Soft produces synthetic

spectra most similar to experiment, except at t = 1.2 s, as seen in figure 6.8c. This discrepancy

is due to a significant contribution of synchrotron emission from high energy runaways on the

q = 3/2 surface, before they lose confinement. However, at t = 1.23 s, slightly after the loss

of these runaways on the q = 3/2 surface, the modeled spectra match experiment. This could

indicate that runaways on the q = 3/2 surface are lost ∼30 ms earlier than the TPM and drift orbit

calculations predict, perhaps through an additional transport mechanism. Such an explanation
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Figure 6.8: For five times during the 2.7 T discharge: comparisons of (a) experimental normalized
brightness spectra to synthetic data from (b) on-axis TPM data input into B (3.48), (c) TPM
data from all surfaces input into Soft, and (d) the on-axis Code distribution function input
into Soft. The dotted line in (c) uses runaway densities at t = 1.23 s. Note that the full angular
distribution was used for Soft in (b), while the cone model approximation was used in (d).

seems physically plausible. Finally, the full distribution function from Code (see figure 7.5), using

only on-axis plasma parameters, was input into Soft to produce the synthetic spectra shown in

figure 6.8d. As is seen, the TPM+Soft synthetic spectra match the experimental spectra as

well as the Code+Soft data, further motivating/validating the use of the TPM approximation.

In addition, note that drift orbits of ∼4 cm, shown in figure 6.7d, are predicted for runaways

on the magnetic axis and q = 1 surface at the time of observed synchrotron emission. This implies

that the trajectories of runaways “on-axis” are actually at the boundary of the CCW spectrometer

FOV (refer to figure 6.1). The Soft synthetic spectra in figure 6.8c-d do not include drift effects.

However, since both inner surfaces would still be seen by the CCW spectrometer, even with drifts,

the resulting synthetic spectra would likely be unchanged.

6.1.7b Synchrotron spectra measured at B0 = 5.4 T

Similar to the 2.7 T discharge, the plasma density ne was decreased in time during the 5.4 T

discharge to encourage the growth of runaways (see figure 6.9a). The surface-averaged values of

E/EC are consistently higher on the q = 3/2 and 2 surfaces than near the center of the plasma,

leading to higher energies predicted on outer surfaces by as much as ∼5-10 MeV. However, these

runaway energies are lower than those predicted for the 2.7 T discharge, due to the increase

in synchrotron power by a factor of ∼(5.4/2.7)2 = 4. Additionally, the poloidal magnetic field

resulting from the higher plasma current (Ip = 1 MA) is strong enough to confine runaways on

each surface. An increase in nr on inner surfaces is predicted at t ≈ 0.6 s, about the time that
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Chapter 6. Analysis of synchrotron spectra

E/EC ≥ 5 and Te increases in the core plasma. The runaway density profile nr still peaks in

the core, but the ratio of on-axis nr to that at the q = 2 surface is only ∼100 in this discharge,

which means that high energy runaways at the edge contribute more significantly to the total

brightness.
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Figure 6.9: For the 5.4 T discharge, parameters on the magnetic axis and surfaces with q = 1,
3/2, and 2: (a) electron density in 1020 m−3, (b) electron temperature in keV, (c) ratio of electric
to critical fields, and (d) outer midplane major radius with (dotted) and without (solid) including
drifts; (e) measured synchrotron brightness at λ = 850 nm (in μW/mm2/sr/nm) with times of
interest corresponding to figure 6.10 indicated as vertical lines; and TPM results for runaway
(f) total normalized momentum, (g) pitch angle, and (h) density. (Zeff = 3.5)

Synchrotron spectra were measured by the CCW spectrometer for this discharge. The exper-

imental and synthetic normalized brightnesses are compared at five times in figure 6.10. While

there is significant variation in the measured spectra plotted in figure 6.10a, almost none is pre-

dicted by the TPM results input into Soft, as shown in subplot figure 6.10c. This is due to

TPM data changing little over the times of interest, which is seen for energy, pitch angle, and

density in figure 6.9f-h. Nevertheless, at this magnetic field, the brightness formula B is no longer

able to reproduce experimental spectra, as seen in figure 6.10b. Note that the TPM+B model

predicts far more emission at wavelengths λ > 675 nm compared to λ < 675 nm, and the time
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Figure 6.10: For five times during the 5.4 T discharge: comparisons of (a) experimental normalized
brightness spectra to synthetic data from (b) TPM data only on-axis input into B (3.48), (c) TPM
data from all surfaces input into Soft, and (d) TPM data from only the q = 3/2 surface input
into Soft. The dashed lines in (b) are linear extrapolations of the spectral curves to wavelengths
at which the oscillating integrand of dP/dλ caused large errors.

evolution is opposite to that measured. The Soft contribution from only the q = 3/2 surface

is shown in figure 6.10d to highlight that this data better matches earlier times, while that in

figure 6.10b is more similar to later times. A more precise prediction of the spatial density profile

could be needed to best match experiment. Even so, Soft better predicts the spectral shape

and evolution than the traditional approach.

6.1.7c Synchrotron spectra measured at B0 = 7.8 T

While the same procedure of decreasing the plasma density ne was employed in the 7.8 T dis-

charge, synchrotron radiation was only observed after the current ramp Ip = 1.0-1.4 MA from

t = 0.6-0.8 s. The resulting increase in E/EC is most significant on the outer surfaces, at q = 3/2

and 2, as seen in figure 6.11c. The TPM-predicted energies peak at t ≈ 0.8 s and then decay;

this follows quite closely the evolution of synchrotron brightness in figure 6.11e. However, the

sharp “dip” in experimental brightness around t ≈ 0.88 s is not captured in the TPM. Instead,

the start of a locked mode at this time likely causes increased transport of runaways which would

otherwise be confined by the relatively high plasma current. Nonetheless, predicted synchrotron

spectra are still similar to experimental spectra, even after this time, suggesting that the large

amplitude MHD activity primarily affected the runaway density but not the energy distribution

in this case. The predicted runaway densities, on different flux surfaces, are also much closer in

magnitude than for the other discharges, differing by only a factor of ∼10 between the magnetic

axis and at the q = 2 surface. Thus, for this discharge, we expect an even greater contribution
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to the total synchrotron emission from high energy runaways on outer flux surfaces. Note also

that nr is predicted to continue increasing even after the decline in observed synchrotron emission

at t ≈ 1.1 s. This is consistent with HXR data, in figures 6.2f-g, up to the time of disruption;

however, runaway energies are simply not high enough to produce significant visible synchrotron

radiation during these later times.
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Figure 6.11: For the 7.8 T discharge, parameters on the magnetic axis and surfaces with q = 1,
3/2, and 2: (a) electron density in 1020 m−3, (b) electron temperature in keV, (c) ratio of electric
to critical fields, and (d) outer midplane major radius with (dotted) and without (solid) including
drifts; (e) measured synchrotron brightness at λ = 850 nm (in μW/mm2/sr/nm) with times of
interest corresponding to figure 6.12 indicated as vertical lines; and TPM results for runaway
(f) total normalized momentum, (g) pitch angle, and (h) density. (Zeff = 4)

The 7.8 T discharge was run in the reversed-magnetic-field configuration of C-Mod, i.e. Ip

and B opposite to the directions in the 2.7 and 5.4 T discharges; therefore, synchrotron emission

was measured by the CW spectrometer. The measured normalized brightnesses at six times

are shown in figure 6.12a. Note that the spectral “slope” increases in time, opposite to the

trends of the 2.7 and 5.4 T discharges. The synthetic spectra, produced using TPM data on

the magnetic axis and the brightness formula B (3.48), are completely unlike experiment, as

seen in figure 6.12b. One explanation for this large discrepancy is that an asymptotic expansion
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Figure 6.12: For six times during the 7.8 T discharge: comparisons of (a) experimental normalized
brightness spectra to synthetic data from (b) on-axis TPM data input into B (3.48), and (c) TPM
data from all surfaces input into Soft. Note that in (b), equation (21) in [16] was used as a
better approximation for dP/dλ.

of dP/dλ, given by equation (21) in [16], is used here to compute the spectra, as the full

calculation becomes increasingly computationally-intensive for such low runaway energies. More

importantly, as seen in figure 6.1, synchrotron emission from runaways on the magnetic axis is

never directly viewed by the spectrometer, so emission from runaways on other flux surfaces must

be considered.e Coupling the TPM with Soft is better at matching experiment, as shown in

figure 6.12c, but only for later times, t = 0.85-1.00 s. Earlier times, t = 0.75-0.80 s, have a trend

that is opposite the experimental trend, and the time evolution of the “slope” is non-monotonic,

unlike the measured data. Because all runaways should be well-confined by the high Ip = 1.4 MA,

this cannot be easily explained. Implementation of full drift orbit effects into Soft is likely needed

to best reproduce experimental spectra; future work could test this with Soft2 [17].

6.1.8 Discussion

The χ2 values comparing synthetic and experimental normalized brightnesses are shown in fig-

ure 6.13 for the three discharges. The traditional approach—i.e. assuming that synchrotron emis-

sion is dominated by on-axis runaways and using a simplified brightness formula (TPM+B)—works

well for the 2.7 T discharge, but becomes increasingly inaccurate for the higher field discharges.

The agreement in the low B case is likely due to runaways at outer surfaces losing confinement

(due to low Ip) so that emission was in fact dominated by runaways in the core. As higher

magnetic fields lead to increased synchrotron radiation, lower energies are attained by runaways

eSoft also determines zero contribution to the spectra from runaways on-axis, as expected.
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and make the calculation of dP/dλ and thus B less precise. A synthetic diagnostic like Soft—

which incorporates runaway momenta and spatial profiles, magnetic equilibria, and the detector

geometry and spectral range—is required to reproduce experimental spectra.
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Figure 6.13: Time evolution of χ2 values (log-scale) comparing experimental to synthetic spectra
for the (a) 2.7, (b) 5.4, and (c) 7.8 T discharges. The Soft (circles) and TPM+B (squares)
correspond to subplots (b) and (c), respectively, of figures 6.8, 6.10, and 6.12. The Soft* data
(triangles) highlight additional Soft simulations for comparison: Here, subplot (a) uses Code
distributions input into the Soft cone model from figure 6.8d, and subplot (b) includes the TPM
contribution from the q = 3/2 surface shown in figure 6.10d. In (a), nr(t = 1.23 s) was used for
the Soft data; in (c), the TPM+B curve has been scaled by the factor given.

In addition, the fact that experimental spectra were reproduced validates our methodology

(see section 6.1.2), which incorporated both TPM energy and density evolutions as well as drift

orbit effects on several flux surfaces throughout the plasma. The maximum energies attained by

runaways during flattop Ip, as calculated by the TPM, are shown in figure 6.14 as a function

of highest magnetic field experienced by the particle. Using a simple assumption of constant

radiated synchrotron power, i.e. p2
⊥B

2 ≈ constant, a function of the form Emax ∝ 1/B is fit

to all data, with constant of proportionality ∼124 MeV/T. Therefore, we conclude that in C-

Mod discharges with similar E/EC values, experimental synchrotron spectral data are consistent

with lower runaway energies attained at higher magnetic field strengths, as synchrotron radiation

becomes a more important power loss mechanism. A similar result was inferred from HXR

emission from runaways in DIII-D [18].

Moreover, note from figure 6.14 that, at higher magnetic field strengths, runaways on outer

flux surfaces attained higher energies than those near the plasma core. This resulted from a

combination of higher electric fields (due to E ∼ 1/R and diffusion time into the plasma), lower
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Figure 6.14: Maximum runaway energies in MeV, as predicted by the TPM, plotted as a function
of highest magnetic field experienced for particles on the magnetic axis (circles) and surfaces with
q = 1 (squares), 3/2 (triangles), and 2 (diamonds) for the B0 = 2.7, 5.4, and 7.8 T discharges. A
representative best-fit curve of the form ETPM ∝ 1/Bmax is shown, with proportionality constant
∼124 MeV/T.

plasma densities at the edge, and increased confinement from larger Ip (which is allowed by higher

B at a fixed edge safety factor q95). While a greater number of runaways are usually generated

near the magnetic axis due to higher temperatures, a full study of runaway energy and density

evolution throughout the plasma is necessary for the prediction of runaway dynamics and the

threat they pose to future tokamaks.
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6.2 Threshold electric field

As described in chapter 2, there should exist a threshold electric field Ethr below which no runaway

electrons can be generated in a plasma. This threshold effect has been tested experimentally in

many tokamaks, and its value has been found to be a factor of at least ∼2-5 higher than predicted

when assuming that collisional friction is the only damping mechanism [19, 20]. The discrepancy

between theory and experiment implies that other damping mechanisms on runaway generation—

like synchrotron emission, bremsstrahlung, or kinetic instabilities—can be significant compared

to collisional friction. Recall from 2.24 that the relative importance of synchrotron radiation

versus collisional friction is often given by the ratio of respective timescales τ̂rad = τrad/τcoll ≈
280n20/B

2, where n20 is electron density in units of 1020 m−3 and B is in Tesla. The operation

of C-Mod at high magnetic field strengths allows exploration of τ̂rad ≈ 2-4, values much lower

than for most tokamaks. The ratio of power lost per electron through synchrotron emission

compared to frictional drag is given by Psynch/Pcoll ≈ (p⊥/mc)
2 /τ̂rad. As seen in the previous

section, values of p⊥/mc ≈ 3-8 are predicted in C-Mod, meaning that synchrotron power should

dominate over collisional friction as a power loss mechanism.

An analysis of RE-producing C-Mod discharges prior to 2014 is presented in [20]. Since

then, several runaway experiments have been performed on C-Mod for a range of magnetic field

strengths, including those described in the previous section. It is of interest to study the effect of

changing B on runaway generation and Ethr. Since not all runaway discharges produce measurable

synchrotron radiation, the threshold electric field is computed at the time when photoneutron

and HXR signals increase above detector noise level, i.e. at the approximate onset of runaway

generation. See, for example, the sharp increases of signal above 1012/s in figure 6.2f. The ratios

of the electric field to critical field (E/EC) at these times are shown in figure 6.15, for runaways

generated during flattop Ip, as a function of 1/τ̂rad = τcoll/τrad. This calculation of E/EC—refer

to (2.8)—uses the line-averaged electron density n̄e, electric field approximation E = V/2πR0,

and Coulomb logarithm ln Λ = 15 to represent “bulk” plasma parameters and to be consistent

with previous studies. Here, V = Vloop − L dIp/dt, where the inductance is L ≈ 1 μH for

these C-Mod conditions. Note that some discharges used LH current drive to encourage runaway

growth, especially at low B, and are denoted by the open circles. These data indicate that the

threshold field is ∼5 times higher than predicted by purely collisional theory, in agreement with

previous experiments.

In recent years, several theoretical predictions of Ethr have gone beyond collisional friction to

account for such effects as synchrotron radiation, impurities, and pitch angle scattering. In this

study, three theories are compared to the experimental data shown in figure 6.15:
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Figure 6.15: Ratios of the experimentally-measured threshold to critical electric field (E/EC−1)
are plotted for experimental data and from theory. The threshold fields for runaway onset as
measured in C-Mod experiments are shown as circles, with open circles representing those dis-
charges using LH current drive. Theoretical predictions of the threshold field are EM (dashed)
from (6.5), EA (dotted) from (6.6), and ES (solid) from (6.7). For ES, which requires inputs of
energy and pitch angle, values of p/mc = 24 (E ≈ 12 MeV) and θp = 0.15 rad and 0.42 rad
were selected.

(i) In the FTU tokamak, the threshold field EM required for runaway suppression—i.e. to

make the growth rate negative—was empirically fit and is given by equation (3) of [19],

EM

EC

≈ 1 +
1.64 + 0.53Zeff − 0.015 (Zeff)2

(τ̂rad)δ
(6.5)

where δ = 0.45 ± 0.03. For this analysis, the effective charge Zeff = 4 was chosen as a

representative value, and the mean value of δ ≈ 0.45 was used.

(ii) In [21], the threshold field EA required to sustain runaways is derived from kinetic theory;

equation (8) therein gives an analytical fit

EA

EC

≈ 1 +
Zeff + 1

(τ̂rad)1/2

[
1

8
+

(Zeff + 1)2

τ̂rad

]−1/6

. (6.6)

However, note that (6.6) is only valid for τ̂rad > 5, or τcoll/τrad < 0.2 in figure 6.15.
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(iii) In equation (2) of [22], the effective critical field ES required for a particle with momentum p

and pitch angle θp to overcome collisional drag and the Abraham-Lorentz radiation reaction

force [23] is given by

ES

EC

= sec θp

[
1 + sin2 θp

1 + (p/mc)2

τ̂rad

]
, (6.7)

where the approximation β = v/c→ 1 (so γ = (1− β2)−1/2 � 1) was used.

Equations (6.5)-(6.7) are plotted as functions of 1/τ̂rad in figure 6.15. As is seen, experimental

data are several factors greater than EA and EM.f For ES (6.7), a particle with energy E ≈
12 MeV (p/mc = 24) was chosen as an estimate for the energy at which photoneutrons would

be produced. These occur when runaways impact the first wall, producing gamma rays of similar

energy via thick-target bremmstrahlung; these gamma rays can then “eject” neutrons from the

nuclei of wall materials, which are detected. Pitch angles of θp = 0.15 rad and 0.42 rad were

also selected to bound the experimental data. As can be seen in figure 6.15, ES provides the

best prediction of the threshold electric field; however, a model which does not require a priori

knowledge of the runaway population is necessary for predictions of the Ethr of future devices.

This motivates a more careful study of the threshold electric field at low τ̂rad (i.e. high B) values,

as an unmitigated disruption in ITER or SPARC could have τ̂rad < 10. Furthermore, as discussed

previously, spatial variation of ne, Te, and E lead to spatial variation of E/EC; this obscures the

physical meaning of a threshold field for the bulk plasma, and a more general treatment should

be pursued.

fThe subscript of each E is just the last initial of the first author of the respective publication.
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electrons in dynamic scenarios. Nuclear Fusion, 56(11):112009, 2016.

[14] L.L. Lao, H. St. John, R.D. Stambaugh, A.G. Kellman, and W. Pfeiffer. Reconstruction of
current profile parameters and plasma shapes in tokamaks. Nuclear Fusion, 25(11):1611,
1985.
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Chapter 7

Analysis of synchrotron images

As discussed in chapter 3, one of the most interesting features of synchrotron radiation produced

by runaway electrons is that the emission is primarily directed along each particle’s velocity vector;

thus, it is only seen from the counter-Ip direction, i.e. from one viewing direction. In chapter 6,

this effect was observed by two spectrometers viewing opposite directions, as shown in figure 7.1.

However, this is much more easily captured by a wide-view camera, also shown schematically

in figure 7.1 and experimentally-verified in figure 7.2. While synchrotron spectra can provide

insight into the energy distribution of runaways, camera images of synchrotron emission record

the spatiotemporal evolution of runaways throughout the plasma. The analysis of these images

is the focus of this chapter and is published in [1].

In section 7.1, the kinetic equation solver Code—described in chapter 5—is used to predict

the spatially-varying momentum space distribution of runaways in one C-Mod discharge, and the

synthetic diagnostic Soft—also described in chapter 5—is then used to infer their time-evolving

radial density profile from synchrotron images. Interesting spatial structure in these images

appears to be correlated with MHD activity, and the relationship between magnetic fluctuations

and runaways is investigated in more detail in section 7.2. Finally, section 7.3 uses a statistical

analysis of over one thousand camera images to explore the plasma conditions under which visible

synchrotron radiation is emitted by runaways and detected in C-Mod.

7.1 Spatiotemporal evolution from images of synchrotron

radiation

Table 7.1 gives an overview of previous studies in which runaways were diagnosed using syn-

chrotron images. Here, experiments are discriminated by their runaway generation phase—during

plasma start-up (S), flattop current Ip (F), or disruption (D)—and camera type—visible (V) or
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Figure 7.1: A top-down schematic of the tokamak midplane. The plasma is pink, with the major
radius of the plasma axis dotted. The wide-view (WIDE2) camera views both CW and CCW
directions. This is the same figure as figure 4.1, shown again here for reference.

infrared (IR). In addition, these studies analyzed synchrotron images in various ways. To indi-

cate this, the “spatial dimensionality” is reported: In some studies, only 0D time evolutions of

synchrotron intensity (e.g. the total number of photon counts within the detected image) were

analyzed; in others, 1D radial profiles (e.g. vertical integrations of a horizontal camera “slit”)

were used, often to explore radial diffusion. Two-dimensional (2D) data have been used to study

the spatial properties of the runaway beam: height and width, often related to the pitch angle;

shape, like crescents or hollow rings; or feature-mapping from images to flux surfaces and drift

orbits.a Some efforts have been made to go beyond the identification of spatial features and to

analyze the synchrotron intensity distribution throughout the image; these are bolded in table 7.1.

aNote that many works which utilize 2D information also include 0D and 1D analyses.

138



7.1. Spatiotemporal evolution from images of synchrotron radiation

Table 7.1: An overview of runaway synchrotron image analyses organized by device; runaway
generation during start-up (S), plasma current flattop (F), or disruption (D) phases; visible (V)
or infrared (IR) camera type; and highest “spatial dimensionality” of each analysis (as described in
the text). Bold entries indicate analyses of the intensity distribution beyond just spatial features
(e.g. width, shape, etc.).

Device Generation Camera type Spatial dim. References

Alcator C-Mod F V 2D [1, 2]

COMPASS F IR 2D [3]

DIII-D

F V

0D [4, 5]

2D [6]

2D [7]

D
V+IR

2D
[8]

V [9]

EAST
S+F

V 2D
[10, 11]

F [12]

FTU F V+IR 0D [13]

HL-2A D V 2D [14]

HT-7 F IR 2D [15]

J-TEXT F+D IR 2D [16]

KSTAR S IR 2D [17]

TEXTOR

D IR

0D [18]

1D [19]

2D [20]

F IR

0D [21]

1D [22, 23]

2D [24–26]

This section describes the analysis of 2D camera images of visible synchrotron emission from

runaways generated during the flattop phase of low density, diverted C-Mod plasma discharges.

The work presented here has been published in [1]. Novel to this analysis—compared to most

in table 7.1—is the combination of the following: (i) Experimentally-measured spatial profiles

of plasma parameters are used to simulate (with Code) the time evolution of the runaway

momentum space distribution throughout the plasma, while past studies typically only calculated

single particle momenta from plasma parameters at the magnetic axis. (ii) Soft is used to model

the synchrotron intensity pattern detected by a camera (see chapter 5), given experimentally-

measured magnetic and detector geometries, while most previous works do not account for these
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necessary geometric effects. (iii) Comparisons of the full 2D intensity distributions of synthetic

and experimental images allow diagnosis of the time-evolving runaway density profile nr; only

recently have other synchrotron image analyses moved beyond spatial feature identification.

A similar methodology was also used in chapter 6 to study the time evolution and magnetic

field dependence of runaway synchrotron spectra. However, for that analysis, spectral mea-

surements were volume-integrated within each spectrometer’s field-of-view, providing less spatial

information than an imaging camera. Consequently, a test particle approach for runaway density

and momentum evolution was sufficient to match experimental spectral measurements. As will

be discussed in section 7.1.6, the full momentum space distribution is required to adequately

reproduce experimental synchrotron images.

7.1.1 Experiment and setup

As described in chapter 4, a wide-angle visible/near-IR camera, with wavelength range λ ≈ 400-

900 nm, is used for general monitoring of the vacuum vessel during the plasma discharge. The

camera is located ∼21 cm below the midplane with a near-radially-inward view, capturing images

at (approximately) 60 frames per second. (Refer to table 4.3 for additional camera specifications.)

Because the peak of the synchrotron power spectrum shifts toward shorter wavelengths with in-

creasing magnetic field strength (assuming fixed runaway energy and pitch angle), synchrotron

radiation can be measured by the camera in the visible-NIR wavelength range for C-Mod’s typical

operational space, B0 ≈ 2-8 T. An example of raw camera data is shown in figure 7.2a. The cam-

era measures intensity only (i.e. greyscale, not in color), so no spectral information is obtained.

All other figures in this chapter are false-colored to better highlight the intensity distribution.

The “annulus” of light at the bottom of figure 7.2a comes from the divertor, or exhaust system

of the tokamak. The two brightest “rings,” one with a slightly smaller radius than the other,

show the locations of the divertor ”strike points,” i.e. where the plasma comes into contact with

the vacuum vessel first wall. This visible-NIR light results from two physical effects: First and

foremost, the plasma near the wall is cold enough such that atomic excitation and recombination

occur, producing visible line-radiation. This same process creates the narrow spectral peaks

noted in chapter 6 and seen in figure 6.3. Second, the heat flux convected and conducted to

the metal wall will cause some materials to “glow red.” The latter is likely of lesser importance

than the former since the plasma discharge is only ∼2 seconds long. Above the divertor region,

we see that visible light dominates on the right side of the image, indicating that this is in fact

synchrotron emission from runaways traveling in the counter-Ip direction. The white speckles

on the image are the result of HXR radiation impacting the camera. Recall that the camera

auto-gain is turned off; while this means that sometimes pixel saturation occurs, it also allows

frame-by-frame comparisons of pixel intensity.
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7.1. Spatiotemporal evolution from images of synchrotron radiation

Figure 7.2: The (a) original camera image and (b) right half of the corrected image after
distortion-correction, vertical-alignment, background-subtraction, and HXR-removal (described
in the text). A 2D projection of the 3D vacuum vessel geometry overlays the image. Intensity
data within the dashed box are analyzed. (t = 0.74 s)

A fish-eye lens on the camera causes barrel distortion of the images. Therefore, an in-vessel

calibration was performed to map raw pixel data to a rectilinear detector plane; details of this

procedure can be found in chapter 4. However, an absolute calibration, mapping pixel intensity

to Watts, was not performed. The right half of the corrected image is shown in figure 7.2b.

Note how the vertical extent of the distortion-corrected synchrotron spot has been shortened

significantly. This emphasizes the importance of camera calibration before synchrotron image

processing and analysis.

Background visible plasma emission, averaged from the co-Ip direction (left side of fig-

ure 7.2a), has been subtracted in figure 7.2b. Most HXR speckles have been “filtered out”

by finding pixels with intensities several times higher than the average of their immediate neigh-

bors. A 2D projection of the 3D vacuum vessel geometry overlays the corrected image and

matches reflected light features quite well. Vertical positions of the midplane (Z = 0) and lower

inboard divertor “notch” (Z ≈ -48 cm) are also indicated in figure 7.2b. Because the camera

is below the midplane, the synchrotron spot has a unique parabolic shape, different from the

crescents, ellipses, and hollow rings seen in other tokamaks. This matches expectations based

on the vertical scan performed for Soft synthetic images in chapter 5 and seen in figure 5.11.
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The dashed box outlines the subset of pixels (150 × 150) within which synchrotron emission is

primarily observed; this region will be the focus of the following analyses.

Plasma parameters for the flattop runaway discharge of interest are shown in figure 7.3e.

Camera images of the synchrotron spot (within the 150 × 150 pixel box of figure 7.2b) are

shown at four times, indicated by the vertical dashed lines in figure 7.3e-f: t = 0.44, 0.74, 1.04,

and 1.34 s. Initially, the plasma density n decreases in time, thereby reducing collisional friction

and encouraging runaway growth. (This is similar to the procedure used to generate runaways in

the discharges analyzed in chapter 6.) The measured synchrotron intensity, summed within each

frame, is brightest at t ≈ 0.4 s, as seen in figure 7.3f; in fact, the synchrotron emission actually

saturates part of the camera image, as seen in figure 7.3a.

At t ≈ 0.7 s, the plasma rotation slows as a locked mode begins. This is determined (empiri-

cally) by both a partial reduction of sawteeth in the temperature T evolution, as well as magnetic

fluctuations B̃ measured by Mirnov coils within the first wall. These magnetic fluctuations ac-

tually correspond to a high frequency (∼40-60 kHz) signal which is found to be correlated with

locked modes in C-Mod; they will be discussed further in the section 7.2. There is a reduction

in total synchrotron intensity at this time, and the synchrotron spot develops interesting spatial

structure: As seen in figure 7.3b, there appear to be three “legs” to the synchrotron spot, with

distinct “inner” and “outer” legs on the high-field (left) side of the image. During the period

of B̃ fluctuations from t ≈ 0.7-1.0 s, measured HXR and photoneutron signals also increase,

indicating the loss of runaways to the first wall.

At t = 1 s, the plasma density is increased in order to suppress runaway growth. In response,

the synchrotron spot decreases both in intensity and size, as seen in figure 7.3c. Around the same

time, sawteeth in T disappear, suggesting a fully-locked plasma. The amplitude of B̃ fluctuations

increases as the runaway beam continues to decrease in size and intensity (see figure 7.3d). Finally,

at the end of the discharge, during the Ip ramp-down, there is a sudden flash of synchrotron light

and “white noise” in the image, corresponding to spikes in HXR signals and indicating the final

loss of runaway confinement.

Poloidal flux contours, as calculated by Efit [27], are shown for one time, t = 0.74 s, in

figure 7.4. Note that this is the same as figure 1.4 and is at the same time as the camera

image in figure 7.2. Specifically highlighted are the magnetic axis, rational flux surfaces with

q = 1, 4/3, 3/2, 2, and 3, as well as the last closed flux surface. It is important to note that all

discharges analyzed in this chapter were elongated and diverted. In addition, the magnetic flux

was reconstructed in Efit by constraining (only) the on-axis safety factor qaxis; that is, a bound

was set around qaxis ≈ 1 due to observations of sawtoothing. Similar C-Mod plasma discharges,

from different experimental runs, were able to perform more accurate magnetic reconstructions
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7.1. Spatiotemporal evolution from images of synchrotron radiation

Figure 7.3: Corrected experimental images (false-colored) at four times: t = (a) 0.44 s, (b) 0.74 s,
(c) 1.04 s, and (d) 1.34 s. The observed synchrotron spot “legs” are indicated by the arrows
in (b). Plasma parameters in (e) are the plasma current in MA (multiplied by a factor of 10),
line-integrated density in 1019 m−3, and central temperature in keV; in (f) are signals (a.u.) of

summed synchrotron intensity in each frame (purple), locked-mode proxy B̃, HXR radiation, and
HXR+photoneutrons, each with a different vertical axis offset. Times (a)-(d) are marked by
vertical dashed lines in (e)-(f).

using data from the Motional Stark Effect (MSE) diagnostic operating in its normal capacity.b

The MSE-constrained q-profiles closely match those used in this work, thus improving confidence

in the validity the following analyses.

7.1.2 Spatiotemporal evolution

A wealth of information relating to the spatiotemporal evolution of the runaway phase space

distribution is encoded synchrotron images. In this section, a detailed analysis of one C-Mod

discharge (1140403026) is performed to infer the evolution of the radial density profile of the

runaway population. As discussed previously in chapter 5, solving the inverse problem—i.e. de-

termining the 3D (or higher dimensional) position and momentum space distribution of runaways

bActually, the MSE measurements of polarized synchrotron radiation from this same discharge are the focus
of the next chapter, chapter 8.
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Figure 7.4: Overlaying a poloidal cross-section of the C-Mod vacuum vessel are poloidal flux
contours from Efit [27]: the magnetic axis (black dot), rational surfaces q = 1, 4/3, 3/2,
2, and 3 (solid), and the last closed flux surface (LCFS, dotted). This figure is the same as
figure 1.4, re-plotted here for convenience. (q95 ≈ 4.5, t = 0.74 s)

from a 2D camera image—is currently intractable. First, it is unlikely that there is a “unique

enough” solution; that is, the range of possible solutions is too large to be useful, especially within

experimental uncertainties. (Refer to the discussion of chapter 6 and figure 6.4.) Second, the

computational resources required are expensive. Conversely, there is an opportunity to solve the

forward problem: Given 3D spatial distributions of all plasma parameters (e.g. E, n, T , B, etc.),

one could solve the equations of motion for all electrons, calculate their synchrotron emission, and

model its detection by a camera. Such a 6D solver—including the synthetic camera diagnostic—

has been developed [28, 29]; however, these simulations are computationally-intensive, requiring

hundreds of thousands of CPU-hours. Instead, a much more computationally-feasible, multi-step

approach is adopted here to partly solve both the forward and inverse problems, meeting in the

middle. The methodology is as follows:
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7.1. Spatiotemporal evolution from images of synchrotron radiation

(I) Flux-surface-averaged plasma parameters are obtained from experimental measurements

for the magnetic axis and rational flux surfaces with q = 1, 4/3, 3/2, 2, and 3.

(II) For each surface, the runaway momentum space distribution function is evolved using the

kinetic solver Code [30, 31], which is described in further detail in chapter 5. An ad

hoc, piecewise, radial phase space distribution, normalized to the local runaway density, is

constructed

F (R,p) =


Faxis (p) , R ∈

[
R0, (R0 +R1) /2

)
Fqm (p) , R ∈

[
(Rm−1 +Rm) /2, (Rm +Rm+1) /2

)
F3 (p) , R ∈

[
(R2 +R3) /2, R0 + a

] , (7.1)

where R is the major radial coordinate, p = (p‖, p⊥) is the 2D momentum vector, and

qm = {1, 4/3, 3/2, 2} are the inner flux surfaces. Note that all Fqm and Rm are also

functions of time, but t is dropped for convenience.

(III) This phase space distribution, F (R,p) from (7.1), is input into the synthetic diagnostic

Soft [2]—refer to chapter 5 for more details—along with the magnetic field and detector

geometry to generate a Green’s function Ĝij(R) describing the partial image produced by

the distribution function localized at radius R, as in equation (9) of [2]. Here, i and j refer

to the 2D pixel coordinates within the image.

(IV) For an array of radial positions Rk, Ĝij(Rk) is used as a set of basis functions, such that

the final 2D image in the detector plane can be calculated as

Iij =
∑
k

C(Rk) Ĝij(Rk) ∆Rk, (7.2)

where ∆Rk is the radial step, and C(Rk) can be calculated to produce the best fit between

Iij and the experimental image.

The runaway density profile nr(R) can be related to coefficients C(Rk) using F (R,p), which is

normalized to the local runaway density as given by equation (9) of [30]

F (p) =
π3/2m3 v3

ref

nref

f(p). (7.3)

Here, m is the electron mass, vref is a reference electron thermal velocity, nref is a reference

electron density, and
∫
f(p) dp = n is the total plasma density; thus, F (p) is unitless. The

reference parameters are usually taken as the initial electron thermal velocity and density (at
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t = 0) when running Code, but that is inconsequential here. Thus, analagous to (7.1), the

unnormalized ad hoc profile is given by

f(R,p) =
nref(R)

π3/2m3 v3
ref(R)

F (R,p), (7.4)

which has the typical units s3/kg3/m6. Here, nref(R) and vref(R) are also piecewise functions

like F (R,p). Code also calculates a total runaway density nCode (with units 1/m3), like that

plotted in figure 7.5d. In this work, the Green’s function Ĝij(R), from (7.2), was calculated using

normalized F (R,p) instead of f(R,p). Therefore, the fitted runaway density profile is calculated

by scaling nCode(R) by the computed coefficients C(R) and the appropriate normalization factor,

i.e.

nr(R) =
π3/2m3 v3

ref(R)

nref(R)
nCode(R)C(R). (7.5)

Again, C(R) are the best-fit coefficients of (7.2). Note that all quantities that vary with R

also vary in time, but t has been dropped for clarity. For a full derivation of (7.5) and further

discussion, see appendix D.

7.1.3 Momentum space simulations using CODE

The kinetic Fokker-Planck solver Code was used in this analysis to evolve runaway momenta on

each flux surface. As described in chapter 5, inputs to Code are time evolutions of the electric

field E, electron density n and temperature T , and effective charge Zeff ; the toroidal magnetic

field B is also input, but must be time-independent. In these experiments, a measurement of

Zeff was unavailable as visible synchrotron light dominated the diagnostic measurement; thus,

Zeff = 4 (a value consistent with previous measurements during low density C-Mod discharges)

was assumed and taken to be constant in time and space. The other parameters vary throughout

the plasma: n and T radial profiles were measured via Thomson scattering; E and q profiles were

determined using Efit [27]; and the toroidal magnetic field was approximated as B = B0R0/R.

The Chiu-Harvey knock-on collision model [32]—described in chapter 2—was used for avalanche

generation. All Code simulations described here required ∼300 CPU-hours in total.

This analysis considers runaway generation and evolution at six locations throughout the

plasma: the magnetic axis and flux surfaces with q = 1, 4/3, 3/2, 2, and 3. These were chosen

because they are approximately equally-spaced radially (see figure 7.4) and, as rational surfaces,

could potentially exhibit interesting MHD-related behavior. Additionally, as will be described,

all measurable synchrotron activity is found to occur within q ≤ 3, so analyses at higher q are

not necessary. Both n and T are assumed to be flux functions, but E and B were flux-surface
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7.1. Spatiotemporal evolution from images of synchrotron radiation

averaged.

The ratios of the electric field to the critical field E/EC [33], from (2.8), and to the Dreicer

field E/ED [34, 35], from (2.7), are shown for each location of interest in figures 7.5a-b. Notice

how E/EC increases radially from the magnetic axis to the plasma edge; this is primarily due to

the decreasing n profile, but can also be affected by the radial dependence E ∝ 1/R and finite

diffusion time as ∂E/∂t propagates into the plasma. From this, the runaway average energy E
is expected to increase from the core to edge. Conversely, the values of E/ED are higher in the

plasma center than at the boundary, due to the centrally-peaked T profile. Thus, the runaway

density nr is expected to be highest in the core because a larger population of thermal electrons

available to run away exists there. Figures 7.5c-d confirm these expectations: Code predicts

higher E on the q = 3 surface compared to on-axis, whereas nr is estimated to be approximately

two orders of magnitude larger in the core than at the edge.
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Figure 7.5: Experimentally-measured ratios (a) E/EC and (b) E/ED (%) are provided as inputs
to Code for six radial positions: the magnetic axis and rational flux surfaces with q = 1, 4/3,
3/2, 2, and 3. Code outputs the predicted (c) average runaway energy in MeV and (d) runaway
density in m−3. Contours of Code momentum space distribution functions are shown for the
(e) magnetic axis and (f) q = 3 flux surface for four times, marked as vertical lines in (a)-(d):
t = 0.44 s (solid), 0.74 s (dotted), 1.04 S (dot-dashed), and 1.34 s (dashed). Note that the
value of each contour is (arbitrarily) chosen to be log10(F ) = -15/4, where F is normalized. The
color scheme is the same as that in figure 7.4. (B0 = 5.4 T, Zeff = 4)
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The time evolution of E in figure 7.5c illustrates the complicated interplay of time-changing

plasma parameters and runaway dynamics. First, it is important to note that E is the average

energy of the high energy runaway region in momentum space, not the maximum runaway energy.

Second, a finite time is required for runaways to respond to changes in E/EC or E/ED, meaning

that E(t) will exhibit some time delay. In figure 7.5c, E increases rapidly during the Ip ramp-

up, but levels off or decreases as E/EC drops, even for values of E/EC ∼ 7-14. When the

bulk plasma density increases at t ≈ 1 s, E/EC decreases to ∼5-10, but E rises, due to both

E/EC > 5 and increased pitch angle scattering from higher collisionality.

The complex evolution can also be seen from the contours of the normalized momentum

space distribution function at the magnetic axis and q = 3 surface in figures 7.5e-f. The four

times of interest are t = 0.44 s (solid), 0.74 s (dotted), 1.04 s (dot-dashed), and 1.34 s (dashed).

At the magnetic axis, the distribution function Faxis initially has a broad pitch angle distribution

(p⊥/p‖ ≈ 0.5), which then elongates along p‖ as runaways are accelerated in the direction of

the magnetic field. From t = 1.04-1.34 s, Faxis grows in both p‖ and p⊥ with increased pitch

angle scattering due to the higher collisionality. For comparison, the distribution function F3, at

the q = 3 surface, has high energies at early times due to high E/EC values, before decreasing

in p‖ and p⊥. Similar to Faxis, F3 spreads in p⊥ later in time. While these are contours of the

distribution function normalized at each time, the density of runaways is actually predicted to

increase exponentially from secondary avalanching, as seen in figure 7.5d.

7.1.4 Synthetic images using SOFT

To best reproduce experimental synchrotron images, the synthetic diagnostic Soft [2]—refer

to chapter 5—was used for its synthetic camera capabilities. Recall that Soft takes as inputs

(i) the magnetic topology—assumed to be axisymmetric—obtained from Efit [27], (ii) detector

specifications including geometry and spectral range (refer to table 4.3), and (iii) a runaway phase

space distribution F (R,p). The use of a synthetic diagnostic, like Soft, is of utmost importance

in the analysis of synchrotron images (and other measurements) as synchrotron radiation emitted

is not always detected.

The full spectral and angular calculation of synchrotron emission is available in Soft. How-

ever, recall from chapter 3 that the angular spread of synchrotron emission is quite small (∼1/γ,

where γ is the relativistic factor); therefore, the “cone” model—where radiation is only emitted

along the runaway direction of motion—serves as an adequate approximation of the full angular

formulation, as discussed in chapter 5 and [1, 2, 7, 36]. Additionally, the cone model significantly

reduces computation time, which for all Soft simulations used in this work was ∼3700 CPU-

hours in total. Soft is based on a zeroth-order guiding center formulation, meaning that drift

orbits and associated effects have not been accounted for in this study. Using (2.39), the radial
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7.1. Spatiotemporal evolution from images of synchrotron radiation

drift of a 20 MeV runaway in a plasma with parabolic current density profile and Ip = 800 kA

is rd ≤ 3 cm. This is small but non-negligible for image analysis and should be investigated in

future work.

A powerful feature of Soft utilized in this work is its ability to calculate the Green’s function

Ĝij(R) which accounts for the momentum space distribution function as well as magnetic and

detector geometries. (Again, i and j are the 2D pixel coordinates.) This function can be

integrated with a radial density profile nr(R), as described in step (IV) of section 7.1.2, to produce

the final synchrotron image. Moreover, using Ĝij(R), it is possible to identify the contribution

of runaways on a particular flux surface to the final image, simply by using a delta function at

the flux surface location, i.e. δ(R−Rq). To highlight the contributions from runaways near the

magnetic axis and around flux surfaces with q = 1, 4/3, 3/2, 2, and 3, step functions of width

∆R 4 mm (i.e. ∆R/a ≈ 2%) centered on each surface were used instead of delta functions.

For each surface, a closed contour at a level of 50% maximum intensity, as predicted by Soft,

indicates the region of the image within which most of the synchrotron emission from runaways

on that surface will be detected. These contours are shown in figures 7.6a-c overlaying the

experimental images from figures 7.3a-c. As seen in each subplot, the contour grows in size and

moves from right-to-left with increasing q-value (and R).

Figure 7.6: (a)-(c) Closed contours (white) of 50% Soft-predicted synchrotron emission, from
the magnetic axis and rational flux surfaces with q = 1, 4/3, 3/2, 2, and 3, overlay experimental
images from figures 7.3a-c. (d) The full Soft-predicted emission of each contour in (c) is shown,
along with scaling factors required to plot all surfaces on the same color-scale. Note that the
q-value increases from right-to-left in each subplot and is labeled in (c).

Even before considering the full intensity distribution predicted by Soft, some spatial infor-

mation can be gleaned from these images. Note how, in figure 7.6a, the synchrotron spot shape

matches the curvature of the Soft contours quite well. In fact, the observed synchrotron spot

is almost completely confined within the q ≈ 2 surface. This does not necessarily imply that

runaways exist only within q ≤ 2; rather, runaways at q ≥ 2 could have too low energies (e.g.
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. 10 MeV) and/or densities to be detected by the camera. Figure 7.6b shows the experimen-

tal image with interesting spatial structure at time t = 0.74 s. Recall from figure 7.3 that, at

t ≈ 0.7 s, increased MHD activity is observed at the onset of a locked mode. From figure 7.6b,

it is clearly seen that the locations of the q = 3/2 and q = 2 surfaces match the inner and outer

“legs,” respectively, on the left side of the image. Since locked modes are usually associated with

m/n = 2/1 tearing modes, the camera is likely capturing the radial transport of runaways out

of the plasma by an island at the rational q = 2 surface. At t = 1.04 s, the synchrotron spot

shrinks within the q ≈ 4/3 surface. This reduction in size could be due to (i) decreasing energies

of runaways located at q & 4/3 caused by the increasing plasma density and/or (ii) increased

radial diffusion due to the locked mode.

Figure 7.6d is distinct from figures 7.6a-c; here, the full Soft-predicted synchrotron intensity

distribution is shown for each Soft contour in subplot 7.6c. (Compare to figure 5.9 and 5.11c.)

The factors given next to the contours are the scalings required to plot the intensities of syn-

chrotron emission from runaways at magnetic axis and on surfaces with q = 1, 4/3, and 3/2 on

the same color-scale as the q = 2 and q = 3 surfaces. The outermost surfaces are brightest due

to the ≥ B3 scaling of synchrotron power spectra in the tokamak magnetic geometry.c Geometric

factors also affect the synchrotron radiation detected. Because the camera is far below the mid-

plane, runaways close to the magnetic axis and with small pitch angles—which would otherwise

dominate synchrotron emission in this scenario—are not seen. The small contributions seen from

runaways at the magnetic axis in figure 7.6d come from particles with larger pitch angles, which

are far fewer in number.

cRefer to section 7.1.4 for an explanation of this scaling.
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7.1. Spatiotemporal evolution from images of synchrotron radiation

7.1.5 Fit and reproduction of experimental images

As seen in figure 7.6, contributions from different flux surfaces to the final synchrotron image are

almost non-overlapping. This is a consequence of the interplay between the high directionality of

synchrotron emission and magnetic and detector geometries. Thus, one approach to reproduce the

experimental images is to use Ĝij(Rk) as a set of basis functions for discrete radial positions Rk;

then, coefficients C(Rk) from (7.2) can be determined such that the resulting image Iij best

matches experimental data. Finally, the runaway density profile nr(R) can be related to C(R)

through F (R,p), as detailed in 7.1.2. The motivation for this fitting procedure is that while Code

has been used to construct a cylindrical plasma via F (R,p), spatial dynamics—such as drifts,

diffusion, and trapping—are not captured. Therefore, fitting a density profile is actually required

to provide useful spatial information about runaway density evolution from the synchrotron images.

Note that equation (7.2) can be written as a matrix equation: Although the image Iij is

visualized in 2D, it can be represented as a 1D vector I with (i × j) elements. Similarly, the

coefficients, C(Rk), also make up a 1D vector C of length k, for the k discrete values of R used

in the Soft simulations. Then, the Green’s function Ĝij can be rearranged into a 2D matrix Ĝ

with dimensions (i× j)× k, so that

I = ĜC, (7.6)

where ∆R = constant from (7.2) has been absorbed into Ĝ. While the Soft simulations

were performed with runaways at 200 radial positions, the output data were down-sampled into

k = 100 radial bins to counteract over-fitting and best match pixel resolution. The best-fit

coefficients were calculated using a linear least-squares solver subject to the constraint C ≥ 0,

i.e. requiring non-negative contributions of synchrotron emission. In this analysis, values of

C(R) = 0 occurred in regions of low measured intensity near the plasma core and edge. This

makes sense at the boundary of the synchrotron spot since we expect the runaway radial profile to

decay with R. However, values of C(R) = 0 in the plasma center—where high runaway densities

are expected—simply indicate our ignorance of the runaway population there due to the camera’s

vertical offset.

Fitted images are shown for four times in figures 7.7e-f, corresponding to the experimen-

tal images in figures 7.7a-d (reproduced from figures 7.3a-d). Note that each Soft image is

smoothed over a 5 × 5 pixel window (∼0.1% of the image area) to remove unphysical sharp

edges resulting from the piecewise structure of F (R,p). For t = 0.44 s, the fitted Soft image

does not match experiment well. This is likely because Ip and the magnetic geometry are still

evolving at this time. The simulated Code momentum space distributions also have large pitch

angles at this time, causing more overlap in the contributions of adjacent flux surfaces to the

final image. What is more, the experimental image is saturated. For these reasons, a good fit
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of Soft to the experimental image at t = 0.44 s is difficult. The fitted images of later times,

however, are more similar to experiment. As seen in figure 7.7b, the spatial structure of the

inner and outer legs can be reproduced by Soft. The location of peak intensity and intensity

gradients are also quite similar. Note that the vertical position of the synthetic image is slightly

lower than that in experiment; a likely reason for this is calibration error, but the difference is only

≤ 10 pixels, which is small compared to the full size of the camera image (640 × 480 pixels).

The fitted Soft images for the later times, t = 1.04 and 1.34 s in figures 7.7c-d, also match

experiment quite well, showing the decrease in both synchrotron spot size and intensity.

Figure 7.7: Best-fit Soft reproductions of the experimental images in (a)-(d) are shown in
(e)-(h). Note that (a)-(d) are reproduced from figures 7.3a-d.

As mentioned previously, modeling efforts are currently underway to solve the runaway forward

problem, i.e. to predict the 6D runaway phase space distribution from known plasma parameters.

If the runaway densities as calculated by Code are used for the density profile, instead of the fitted

profile, the resulting Soft image at t = 0.74 s would be that shown in figure 7.8a. Here, the two

bright features correspond to the regions around the q = 2 and q = 3 surfaces. Specifically, the

discontinuity in intensity occurs due to the piecewise nature of F (R,p) and the uniform density

throughout each radial interval assumed here. Even though the runaway densities are predicted to

be ∼100× lower in the region near the plasma edge compared to on-axis, geometric effects and

increasing synchrotron power with magnetic field lead to Code-predicted emission dominating

near the edge. This synthetic image clearly does not match experiment, further motivating the
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fitting procedure employed in this work.

Figure 7.8: (a) Soft image resulting from no experimental fitting, but instead with only the
Code-predicted radial density profile (see figure 7.5d). (b) Best-fit Soft reproduction using
a test particle model (TPM) of momentum space evolution, as described in section 7.1.6 and
chapters 2 and 6. (c) Experimental image from figure 7.3b reproduced for comparison. (d) Edge
detection [37] applied to (c), with blue/red colors corresponding to positive/negative horizontal
gradients of pixel intensity, as described in section 7.1.7. (t = 0.74 s)

7.1.6 Application of a test particle model

In previous analyses, test particle models (TPMs) of runaway evolution were used to estimate

runaway energies and pitch angles for comparison with experimental synchrotron images [8–

12, 15, 16, 24, 25]. In the current analysis, the TPM from [38] and described in chapter 2 was

applied and found to be insufficient in capturing all spatial features of the experimental intensity

distributions. As detailed in chapter 2, a coupled system of differential equations describes the

trajectory of a test runaway in momentum space, governed by time-evolving plasma parameters.

These trajectories (delta functions in momentum space) were calculated for 40 equally-spaced

flux surfaces throughout the plasma, resulting in radial profiles of runaway energy and pitch angle.

Following a similar fitting procedure as that described in section 7.1.5, the best-fit TPM+Soft

image for t = 0.74 s is shown in figure 7.8b. The fitted TPM image is still able to match the

horizontal width of the synchrotron spot, and the intensity distribution is similar to experiment,

e.g. the parabolic shape and approximate location of maximum intensity. However, the vertical

extent of the synchrotron spot is not reproduced by the TPM (compare to figure 7.8c). This is

because there is no pitch angle distribution, leading to a sharp intensity gradient at the top of the

image. Thus, it is concluded that the full momentum space distribution is needed to reproduce

the smooth intensity gradients at the edges of the synchrotron spot.
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7.1.7 Edge detection

The full analysis of spatial intensity distributions within synchrotron images can be time-consuming

and computationally-expensive. Yet useful spatial information can still be obtained from Soft

without knowing the full momentum space evolution. Specifically, spatial structure in the syn-

chrotron image can be mapped to flux surfaces in the plasma, assuming that most observed

runaways have small pitch angles (e.g. p⊥/p‖ ≤ 0.2). To demonstrate this, the Sobel operator

[37] for edge detection was applied to the experimental data. The basic idea is that the So-

bel operator approximates the gradient of pixel intensity within the image. Here, the horizontal

gradient operator was used to identify vertical edges in the images, via the 3×3 matrix

S =


-1 0 1

-2 0 2

-1 0 1

 , (7.7)

which is simple and efficient in implementation. Note that this matrix can be rotated to calculate

the vertical gradient or have signs flipped to switch gradient directions.

The edge detection algorithm works as follows: Consider a pixel at location (i, j) in an image,

as well as its neighboring pixels. A subset of the total image is the 3×3 matrix surrounding (i, j)

Ĩij =


Ii−1,j−1 Ii,j−1 Ii+1,j−1

Ii−1,j Ii,j Ii+1,j

Ii−1,j+1 Ii,j+1 Ii+1,j+1

 (7.8)

From (7.7) and (7.8), the resulting “gradient image” I′ij used for edge detection is evaluated by

(i) element-wise multiplication of S and Ĩij and (ii) summation over all (nine) elements. Explicitly,

the value of the Sobel horizontal gradient at pixel location (i, j) is

I ′ij = −Ii−1,j−1 + Ii+1,j−1 − 2Ii−1,j + 2Ii+1,j − Ii−1,j+1 + Ii+1,j+1 . (7.9)

Note that this calculation cannot be performed at the edges of the image.

The resulting horizontal gradient of pixel intensity in the experimental image is shown in

figure 7.8d for one time, t = 0.74 s. The blue/red colormap corresponds to the amplitude of

positive/negative gradients of pixel intensity in the horizontal direction from left-to-right. Thus,

the left edge of the synchrotron spot is blue, and right edge is red. By setting a threshold value of

the gradient, the edges can be detected, and the pixel locations can be mapped to flux surfaces

using Soft. Notice that in the frame shown, there are two blue regions, indicating that there is
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a more complicated spatial structure. These are the inner and outer legs of the synchrotron spot.

The white region (zero slope) between blue and red (positive and negative slopes, respectively)

were used to identify the spatiotemporal evolution of these legs, which will be described in the

next section.

7.1.8 Best-fit runaway density profile

The resulting best-fit runaway density profile is plotted versus time and normalized minor ra-

dius r/a in figure 7.9a, with one time, t = 0.74 s, highlighted in figure 7.10. Only times during

flattop Ip are shown as the fitting procedure did not reproduce experimental images before

t ≈ 0.5 s (see figure 7.7a). In addition, the spatial range only spans r/a ∼ 0.2-1.0, since little

synchrotron emission is visible from runaways near the magnetic axis by a camera displaced so far

below the midplane; this makes interpretation of results for r/a . 0.2 difficult (or impossible).

(For reference, the q = 1 surface is located at r/a ≈ 0.3.) The time resolution of this analysis

is ∆t = 100 ms, limited primarily by the long computation times of Soft simulations of each

time-slice. While the radial resolution of the Soft simulations is ∆r/a ≈ 0.01, caution should

be used when interpreting fine spatial features. Note also that the colormap of log10(nr) has

arbitrary units since no absolute calibration of the camera was performed. It follows that the

density threshold for detection cannot be inferred from this analysis; here, the scale spans 8 or-

ders of magnitude, which adequately portrays the spatiotemporal evolution while also highlighting

interesting spatial features.

As seen in figures 7.9a and 7.10, the radial profile is peaked in the core and decays toward the

plasma edge. In figure 7.9a, at the start of the flattop, the observed runaway beam is confined

within r/a ≤ 0.75. Then, at t ≈ 0.7 s, the nr profile spreads outward toward the q = 2 surface,

corresponding to the start of MHD activity (shown again in figure 7.9b) and spatial structure

observed at that time. Figure 7.10 shows the radial profile for t = 0.74 s. Note that the profile

decreases (approximately) monotonically; i.e. there is no significant “bump” in nr near the q = 2

surface (r/a ≈ 0.7). There are, however, several “steps” around r/a ≈ 0.4, 0.55, and 0.65,

which are caused by the piecewise momentum space distribution in (7.1). Beyond r/a ≈ 0.75,

nr drops off steeply. This is in contrast with the runaway density profile predicted by Code,

also shown in figure 7.10, which is broader in radial extent and predicts much higher densities at

q = 3 than inferred. For times after t ≈ 0.74 s, the density nr shrinks in size and amplitude,

as seen in figure 7.9a. This is consistent with the runaway population being suppressed by the

increasing bulk plasma density.

Overlaying the contour plot of figure 7.9a is the time-evolving location of the q = 2 surface,

as well as features determined from edge detection: the synchrotron spot boundary and legs

(see section 7.1.7). The boundary matches the shape of the density profile quite well. The low
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Figure 7.9: (a) Contour plot of best-fit runaway density log10(nr) (a.u.) versus time and normal-
ized minor radius r/a. The positions of the boundary and legs determined from edge detection,
as well as the q = 2 surface, (each labeled) overlay the radial profile. Time and radial resolutions
are ∆t ≈ 100 ms and ∆r/a ≈ 0.01, respectively. (b) Reproduction of the magnetic fluctuation
signal (a.u.) from figure 7.3e.

density “bumps” outside this boundary are likely due to mis-identification of some HXRs—with

low enough intensity to be missed by the data filtering technique—as synchrotron light. The inner

and outer legs (where the white lines diverge) form at the same time that magnetic fluctuations

and a locked mode are observed, as seen in figure 7.9b. From t ≈ 0.7-0.9 s, the inner leg follows

the density contour log10(nr) ≈ 5 in figure 7.9a, while the outer leg moves to the region near the

q ≈ 2 surface. At t ≈ 0.9 s, the two legs recombine as the B̃ signal decreases.
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Figure 7.10: (Left axis) The fitted nr radial profile (solid) at one time t = 0.74 s, plotted on
the same radial and logarithmic scales as figure 7.9a. (Right axis) The Code-predicted runaway
densities nCode (dots) for the surfaces in figure 7.5d, also at time t = 0.74 s and spanning 8
orders of magnitude.

7.2 Magnetic fluctuations and interactions with runaways

As mentioned, Mirnov coils located in the first wall measured high frequency (∼40-60 kHz)

fluctuations B̃ correlated in time with an observed locked mode (see figure 7.3). Indications

of this locked mode include the decreasing amplitude of Te sawtooth crashes around t ≈ 0.7 s

and then the almost complete disappearance of sawteeth around t ≈ 1.1 s. It is likely that B̃

is associated with the MHD activity causing or resulting from the locked mode. This section

explores further the interactions of magnetic fluctuations and runaways, speculating about the

origin of B̃ and looking at its correlation with HXR signals.

7.2.1 Magnetic fluctuations, locked modes, and REs

Figure 7.11 shows a spectrogram of magnetic fluctuations in the range f = 0-100 kHz over

the duration of C-Mod discharge 1140403026; also seen is the time evolution of the central

electron temperature Te as measured from electron cyclotron emission (ECE). At t ≈ 0.7 s, a

high frequency B̃ signal appears at f ∼ 50 kHz. At the same time, the Te sawteeth reduce in
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amplitude; this is more easily seen in the zoom-in of figure 7.12. Around t ≈ 1 s, the B̃ signal

disappears, but then reappears again at t ≈ 1.1 s. The reason for this is unclear, although some

interesting spikes in the ECE Te signal are observed in the interval t = 1.0–1.1 s. These spikes

could be signs of non-thermal ECE emission from runaways [39]. From t = 1.1 s on, the sawteeth

almost completely go away; this is seen most clearly in figure 7.13. The fluctuations continue

until t ≈ 1.6 s, when runaways are finally suppressed.

t (s)

Figure 7.11: Top: A spectrogram of magnetic fluctuations measured by Mirnov coil BP14 GHK
near the midplane on the low field side. Bottom: Central electron temperature measurement in
keV.

On Alcator C-Mod, this ∼50 kHz magnetic fluctuation is experimentally observed to be

correlated with locked modes; specifically, B̃ is seen when Te sawteeth disappear. It is not clear

why such a high frequency signal would be measured if the plasma’s rotation should be slowing

and ultimately stopping. Other experiments have also reported observation of high frequency

fluctuations during mode-locking. For instance, in FTU [40], a ∼50 kHz signal has been measured

at the same time as an m/n = 2/1 tearing mode, which eventually causes the plasma to lock.

In [40], it is assumed that the high-f signal is actually a beta-induced Alfvén Eigenmode (BAE),
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t (s)

Figure 7.12: The same as figure 7.11, but with the time range limited to t = 0.62-0.82 s. Full
sawtooth crashes are clearly seen in the Te signal for t . 0.72 s; they reduce in amplitude (i.e.
become partial sawteeth) for t & 0.72 s.

which has a frequency bounded by [41]

fBAE ≤
1

2πR0

√
2Ti

mi

(
7

4
+
Te

Ti

)
, (7.10)

where R0 is the major radius, and Ti and mi are the ion temperature and mass, respectively. For

C-Mod, with R0 = 0.68 m and Te ≈ 3 keV, an assumption of Ti ≈ Te gives fBAE ≤ 200 kHz.

Thus, the magnetic fluctuations measured in experiment could be BAEs.

In general, it is found that this high-f B̃ signal is not correlated with measurements of

runaways on C-Mod; that is, there are many discharges with runaways but without the ∼50 kHz

B̃ signal. In J-TEXT, however, BAEs in the range 20-45 kHz were observed during runaway

discharges [42]. This study concluded that BAEs could only be excited when both an m/n = 2/1

tearing mode and large enough runaway populations were present.
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7.2.2 Correlation of magnetic and HXR fluctuations

The spectrogram of figure 7.11 can be studied in more detail to determine whether a correlation

exists between observed magnetic fluctuations and runaway dynamics. Here, the hard X-ray

(HXR) and photoneutrond (n) signals (also shown in figure 7.3f) are used as indicators of runaway

confinement loss, as both are produced through bremsstrahlung radiation when runaways impact

the first wall. Figure 7.13 shows the same spectrogram as figure 7.11, but with the time and

frequency ranges restricted to t = 1.0-1.7 s and f = 40-80 kHz, respectively. Here, it can be seen

more clearly that when the B̃ signal begins at t ≈ 1.1 s, the Te sawteeth go away. At the same

time, there is a rise in HXR and HXR+n signals that lasts until t ≈ 1.35 s. One interpretation of

this is that these magnetic fluctuations lead to increased transport of runaways out of the plasma,

as discussed in chapter 2, thereby producing HXRs and photoneutrons. Conversely, a population

of high energy runaways could also excite magnetic fluctuations via kinetic instabilities; then

perhaps both the HXR+n and B̃ signals are just indicators that runaways are present.

One interesting feature of the spectrogram in figure 7.13 is the “oscillation” observed in

fluctuation frequency and amplitude. For instance, in the range t ≈ 1.1-1.3 s, the peak B̃

frequency and amplitude (indicated by the colormap) clearly rise and fall. Similarly, an oscillation

is seen in the HXR signal at the same time. Estimations of these oscillation frequencies, made

by comparing the times between successive maxima, are fB̃ ≈ 53 Hz and fHXR ≈ 56 Hz for

the interval t = 1.1-1.2 s. Thus, MHD activity and runaway transport do seem to be correlated

during this time range.

Later in time, starting at t ≈ 1.5 s, the HXR signals start to increase and oscillate rapidly. It is

inferred that runaways are losing confinement in apparent successive bursts. This is likely caused

in part by the ramp-down in plasma current as the decreasing poloidal magnetic field is no longer

able to confine the highest energy runaways. However, it is not clear what causes these oscillatory

“crashes.” The Mirnov coils also measure “bursty” fluctuations during this period, indicated by

the broadband B̃ streaks in the spectrogram. Again, measuring the periods of successive peaks in

both B̃ and HXR signals gives approximate frequencies of fB̃ ≈ 210 Hz and fHXR ≈ 222 Hz for

t ≈ 1.53 s. It is not clear if there is a correlation or anti-correlation; nevertheless, there certainly

appears to be a connection between MHD activity and runaway dynamics.

dRecall, from chapter 6, that a photoneutron is a neutron ejected from a wall material following an interaction
with a runaway-produced gamma ray.

160



7.2. Magnetic fluctuations and interactions with runaways

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

t (s)

(a
.u

.)
1140403026

log
10

(HXR)

log
10

(HXR+n)

Figure 7.13: Top and middle: Same as figure 7.11, but with time and frequency ranges restricted
to t = 1.0-1.7 s and f = 40-80 kHz, respectively. Bottom: HXR and photoneutron signals (a.u.).
The HXR-only signal is offset vertically (shifted upward) compared to the HXR+n signal, in order
to show both signals clearly. Otherwise, they almost overlap exactly.
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7.3 Aggregate analysis of synchrotron images

The original purpose of these C-Mod runaway experiments, from which images of synchrotron

emission were obtained, was to evaluate the critical electric field for runaway generation and

suppression. These results are reported in [43] and furthered in chapter 6 for discharges with

spectral measurements of synchrotron radiation. However, in those analyses, periods of runaway

growth and decay were deduced from HXR signals, not synchrotron emission, since low energy

runaways (. 10 MeV) do not radiate significantly in the visible wavelength range and therefore

would not be detected by a visible camera. Here, the analysis of [43] is extended to investigate

the plasma conditions under which visible synchrotron emission was or was not observed. Many

plasma discharges were reproduced throughout C-Mod experimental run day 1140403e, varying

such parameters as plasma density to produce runaways. In total, 23 discharges provided useful

data for this aggregate analysis, which focuses on the flattop Ip phase (t ≈ 0.5-1.5 s). Since the

camera captures images at ∼60 fps, there are ∼1400 total time-slices, and synchrotron radiation

was detected over the background plasma light and HXR speckles during ∼25% of these times.

At each time, the following RE-relevant parameters were evaluated:

a. the electric field on-axis, calculated as E0 = Vloop/2πR0, using the external loop voltage

measurement while Ip ≈ constant,

b. the theoretical Connor-Hastie threshold electric field EC [33] from (2.8),

c. the Dreicer electric field ED [34, 35] from (2.7),

d. the characteristic synchrotron radiation timescale τrad from (2.22), and

e. the runaway collisional timescale τcoll from (2.23).

In these calculations, the Coloumb logarithm ln Λ = 15 was assumed. As described in chapter 2,

three ratios of these parameters are (most) important: The first, E0/EC ∝ Vloop/n, gives in-

sight into the competition between the driving electric force and collisional friction on runaways.

The second, E0/ED ∝ Vloop T/n, indicates the population of thermal electrons available to ac-

celerate/diffuse into the runaway regime. The third, τrad/τcoll ∝ n/B2, compares the roles of

synchrotron radiation damping and collisional drag on runaways.

Histograms in figure 7.14 show the percentage of times during which synchrotron emission

was (red) or was not (black) observed, binned for each ratio of interest. Error bars are calculated

as
√
Nbin/Ntot, where Nbin is the number of counts in each bin, and Ntot is the sum of counts

in all bins. When synchrotron emission is observed, the distributions of E0/EC and E0/ED are

shifted toward higher values (see figures 7.14a-b), whereas the distribution of τrad/τcoll is slightly

skewed toward lower values (see figure 7.14c). This matches expectations: higher E0/EC and

eThat means 3 April 2014.
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Figure 7.14: Histograms (with statistical error bars) of measured ratios of (a) on-axis to Connor-
Hastie threshold electric fields E0/EC [33], from (2.8); (b) on-axis to Dreicer electric fields
E0/ED [34, 35], from (2.7); and (c) characteristic radiation to collisional timescales τrad/τcoll,
from (2.24), for flattop data when synchrotron radiation was (red) and was not (black) observed.
Note the different vertical axis limits. (t = 0.5-1.5 s)

E0/ED values lead to higher runaway energies and densities; lower τrad/τcoll values, on the other

hand, indicate more power lost—and detected—from synchrotron emission relative to that from

collisions.

It is important to note several subtleties associated with this analysis, especially since there

is significant overlap in the histograms. First, spatial variation of runaway parameters has been

neglected, i.e. only bulk plasma parameters were used. In addition, runaways dynamically evolve

in energy and number, so the runaway population at any time is always affected by plasma pa-

rameters from earlier times. While time evolution has not been considered here, this analysis of

aggregate data, collected at ∼60 Hz, still provides a general physical picture of the conditions un-

der which runaways will or will not produce detectable synchrotron emission at visible wavelengths

in C-Mod. Due to the slow variation of plasma parameters during flattop Ip, multiple data points

within the flattop period can help counteract noise and improve statistics. Even then, the energy

confinement time is ∼20-30 ms, similar to the time between camera frames, ∼17 ms; therefore,

the plasma can evolve and equilibrate on a timescale similar to that used for data collection.
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Chapter 8

Analysis of polarized synchrotron

radiation

As discussed in chapter 3, the classical polarization of electromagnetic radiation emitted by a

charged particle is known to be mostly parallel to the particle’s acceleration, or instantaneous

radius of curvature in the case of gyro-motion. The derivation of the polarization of synchrotron

radiation, presented in chapter 3, followed Westfold’s 1959 calculation [1], which was originally

motivated by experimental observations of highly polarized light coming from the Crab Nebula

[2, 3]. The most promising hypothesis at the time [4] suggested that ultra-relativistic electrons

moving in a magnetic field were the source of this polarized light emitted from astrophysical

plasmas.

This chapter describes the first analysis of experimentally-measured polarized synchrotron

radiation from runaway electrons in tokamak plasmas; the resulting work has been submitted for

publication in Nuclear Fusion [5]. The first theoretical analyses of polarization properties and

synthetic measurements of synchrotron radiation in a tokamak were performed by Sobolev [6],

who suggested that polarization information could be used to diagnose runaway beams. As will

be discussed, polarization measurements of synchrotron emission can provide insight into the

distribution of runaway pitch angles θp. Thus, synchrotron polarization can help better constrain

kinetic models of runaway evolution and investigate mechanisms of pitch angle scattering, such

as wave-particle instabilities [7, 8] and interactions with injected high-Z ions [9, 10]. Ultimately,

understanding these runaway dynamics and power loss mechanisms—such as radiated synchrotron

power which increases with pitch angle, Psynch ∝ sin2 θp—can inform runaway avoidance and

mitigation strategies for future devices like ITER [11] and SPARC [12].
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Chapter 8. Analysis of polarized synchrotron radiation

The outline of the rest of the chapter is as follows: Section 8.1 discusses experimental mea-

surements of polarized synchrotron emission made using the Motional Stark Effect diagnostic,

shown schematically in figures 8.1 and 8.2 and detailed in chapter 4. A heuristic model of polar-

ized synchrotron radiation is presented in section 8.2, and Soft is used to interrogate the phase

space distribution of runaways in section 8.3. Then, synthetic and experimental polarization

measurements from one discharge are compared in section 8.4. The analyses of sections 8.1-8.3

only consider data from times when lower hybrid current drive (LHCD) is disengaged; section 8.5,

however, expands on these to investigate the effect of LHCD on synchrotron polarization mea-

surements. Finally, in section 8.6, we explore the use of polarized synchrotron light as a diagnostic

of the runaway current density profile.

Figure 8.1: A top-down schematic of the tokamak midplane. The plasma is pink, with the major
radius of the magnetic axis dotted. The MSE diagnostic has ten CCW views; here, only the
lines-of-sight are shown. This figure is the same as figure 4.1. Refer to figure 8.2 for the full
fields-of-view.
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8.1 Measurements of polarized synchrotron emission from

runaway electrons

For these polarization analyses, runaways were purposefully generated during the flattop plasma

current of low-density, Ohmic, elongated and diverted discharges in C-Mod. Time traces of one

sample discharge, explored in further detail in section 8.4, are shown in figure 8.9a. Note that

this is the same discharge as that studied in chapter 7. It is convenient that we acquired both

images and polarization information of the synchrotron radiation produced during that discharge.

We will use the runaway density profile, inferred from images in chapter 7, later in this section.

In addition, the analysis was simplified since the Code simulations could be re-used.

As discussed in chapter 4, polarization information of synchrotron radiation is gathered by

the ten-channel Motional Stark Effect (MSE) diagnostic [13] which accepts light within a narrow

wavelength band, ∆λ ≈ 0.8 nm, centered at λ ≈ 660 nm in the visible range. During routine

tokamak operation, the MSE system serves a completely separate diagnostic purpose, measuring

a different source of polarized light: line radiation resulting from electron transitions between

Stark-shifted atomic (hydrogen) energy levels. This measurement requires neutral atoms within

an injected diagnostic neutral hydrogen beam (DNB). The field-of-view (FOV) of each MSE

channel is small (see figure 8.2), with a total opening angle of 2α ≈ 1.7◦; this means that

each channel’s measurement of emission from the DNB is radially-localized. The polarization

angle θpol
a of the detected isotropic emission indicates the pitch of the local magnetic field

tan θB = Bp/Bt, where Bp and Bt are the local poloidal and toroidal fields, respectively. The

DNB was not in use during any of the runaway experiments reported in this chapter; therefore, the

detected signal was dominated by synchrotron emission. In addition, the only times considered

in this section are those when LHCD was disengaged. Data from times when LHCD was in use

are explored in section 8.5.

A top-down schematic of the MSE diagnostic and its ten fields-of-view is depicted in figures 8.1

and 8.2. (Refer back to tables 4.5 and 4.6 for a list of detector and geometric specifications.)

Although each channel makes a volume-integrated measurement within its FOV, the tangency

major radius, or impact parameter Rtan, is used to identify the major radius at which each line-of-

sight (LOS) is orthogonal to the local major radial vector R̂. The tangency minor radius is then

defined as rtan = Rtan−R0 and falls in the range rtan ∈ [−a, a]. See figure 8.3a for the values of

the normalized tangency radius rtan/a of each channel and figure 8.4a for an illustration. When

runaway pitch angles θp are smaller than the local magnetic pitch angle θB (discussed further

in section 8.2), it is expected that most detected synchrotron emission will come from runaways

aNot to be confused with the poloidal angle.
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Figure 8.2: A top-down schematic of the ten-channel MSE diagnostic (black box) and its ten
fields-of-view. The plasma boundary (solid) and magnetic axis (dotted) are overlaid. This is the
same figure as figure 4.11b. Compare to figure 8.1.

located near Rtan. Note also that the MSE diagnostic is situated slightly above the midplane;

therefore, all channels have a small downward-viewing orientation, i.e. an inclination δ ≈ -3◦, to

intersect the midplane trajectory of the DNB.

The MSE system measures a spatial profile of synchrotron polarization information. Each

channel records the total intensity of detected light I, intensity of linearly-polarized light L, and

linear polarization angle θpol. Because the absolute value of sensitivity varies between channels,

it is most useful to consider the degree of linear polarization, or rather the fraction of detected

light that is linearly-polarized: fpol = L/I ∈ [0,1]. These polarization fraction measurements

are calibrated, with estimated uncertainties of ∼10%. The polarization angle measurement has

a lower uncertainty, less than a degree. Experimental measurements of θpol and fpol, and their

comparisons with synthetic models, will be the focus of this chapter, although qualitative trends

of L will be explored for one discharge in section 8.4.
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In total, polarization data of runaway synchrotron emission were collected from 28 plasma

discharges at over one-thousand time points. Plasma parameters for these discharges span line-

averaged electron densities n̄e ≈ 0.2-1.0 × 1020 m−3, central electron temperatures Te0 ≈ 1-

5 keV, plasma currents Ip ≈ 0.4-1.0 kA, and on-axis magnetic field strengths B0 ≈ 2-6 T.

Ranges of RE-relevant parameters include the ratios of the electric to critical field [14] from (2.8),

E/EC ≈ 3-15, and collisional to synchrotron radiation timescales, from (2.24), τcoll/τrad > 0.1.

As discussed in chapter 2, these indicate the relative strengths of the electric force and radiation

damping to collisional friction, respectively.

Histograms of measured θpol and fpol are shown in figures 8.3a and 8.3b, respectively. The

distributions of θpol are well-localized for most channels, and an interesting spatial trend is ob-

served: At the innermost radius (channel 1, rtan/a = -0.4), a polarization angle measurement of

θpol ≈ 0◦ indicates horizontally -polarized synchrotron light.b For channels 2-5 (|rtan/a| ≤ 0.23,

near the plasma center), measurements of θpol ≈ 90◦ indicate vertical polarization of the detected

synchrotron radiation. Beyond rtan/a ≥ 0.35 (channels 6-9), the polarization angle flips back to

θpol ≈ 0◦. The outermost radius (channel 10, rtan/a = 0.83) shows a more evenly-distributed

range of measured θpol, possibly due to a lack of (synchrotron-emitting) runaways at the plasma

edge. This 90◦ transition in space was predicted by Sobolev [6] and is explained more intuitively

in the next section, section 8.2. Also, note that only a range of θpol ∈ [-45◦, 135◦) is considered

because there is a 180◦ degeneracy in θpol.

Compared to θpol, experimental measurements of fpol do not exhibit as clear a spatial trend.

Still, there are some features to note in figure 8.3b: A peak in fpol (∼0.6) is often observed on

channel 4 which has a FOV near the magnetic axis (rtan/a = 0.08). There are also instances of

fpol ≈ 0.6-0.7 near the plasma edge (channels 9-10, rtan/a ≥ 0.73), but these may not always

be dominated by synchrotron light. Interestingly, values of fpol ≥ 0.7 are not seen. One plausible

explanation for this is that light from the plasma and/or reflections from C-Mod’s metal wall

are contributing to the fraction of emission which is not linearly polarized. While this could

mean that up to 30% of the detected light is not synchrotron emission, the good agreement

seen in the comparisons of synthetic and experimental θpol signals—discussed in section 8.4—

indicates that any extra light is likely mostly unpolarized. If the background light is instead

negligible compared to synchrotron radiation, this would imply that the polarization fraction of

the observed synchrotron emission is truly fpol ≤ 0.7, which is achievable according to the analysis

in section 8.4.

bRecall that this convention of measuring θpol upward from the midplane is opposite that normally used for
MSE measurements on C-Mod, where θpol is instead measured downward from the vertical axis.
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Figure 8.3: Histograms of polarization (a) angle θpol and (b) fraction fpol for each channel,
denoted by the normalized tangency radius rtan/a. Bin widths are ∆θpol = 10◦ and ∆fpol = 0.1.
For each channel, the vertical axis spans 0 to 1, and all bar heights (probabilities) sum to 1. Data
are from 28 discharges and over 1000 time-slices during the plasma current flattop (t = 0.5-1.5 s).

Furthermore, note in figure 8.3b that the mean fpol values of channels 7-9 (rtan/a ∈ [0.49,

0.73]) are higher than the those for channels 6 and 10 (rtan/a = 0.35 and 0.83). This spatial

“bump” of mean fpol values for rtan/a ∈ [0.23, 0.83] (channels 5-10) means there is usually a

local minimum in fpol around rtan/a ≈ 0.23-0.35. This is a slightly non-intuitive result since we

might expect the intensity of (linearly-polarized) light to increase from the plasma edge to the

center.
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8.2 A heuristic “cone” model of polarized synchrotron light

In the guiding-center picture (schematically represented in figures 8.4a and 8.4b), a runaway

electron travels anti-parallel c to B, emitting a “cone” of synchrotron radiation in its forward

direction with an opening half-angle equal to the runaway pitch angle θp. Once again, the pitch

angle is defined by tan θp = v⊥/v‖, where v‖ and v⊥ are the components of the runaway velocity

v parallel and perpendicular to −B, respectively. Of course, this synchrotron radiation is only

observed if the cone (or, equivalently, v) is directed within a detector’s FOV toward the detector’s

aperture.

On the plasma midplane, the pitch of B is simply given by tan θB = Bp/Bt. In tokamaks, Bt

is sufficiently larger than Bp (typically Bt/Bp ≈ 10), so that B is approximately horizontal. In

fact, for realistic safety factor profiles—e.g. q(0) ≈ 1 and q95 > 3—the magnetic field pitch angle

is |θB| ≤ 0.2 rad. Therefore, in order for a detector to measure horizontally -polarized synchrotron

emission (i.e. θpol ≈ 0◦), it must view the “top” or “bottom” of the emission cone. That is,

v should lie in the vertical plane so that E is horizontal, since E is approximately proportional to

the Lorentz acceleration v×B. Conversely, to observe vertically -polarized light (i.e. θpol ≈ 90◦),

a detector should view the “sides” of the synchrotron cone, when v lies in the horizontal plane.

As an aside, note here that synchrotron light directed along the side(s) of the emission cone is

actually radiated by a runaway electron located at the top/bottom of its gyro-orbit, and vice

versa. This reality is often forgotten when neglecting gyro-motion in the guiding center picture.

The clear spatial trends in the data of figures 8.3a and 8.3b—θpol, in particular—indicate a

strong dependence of the experimental measurements on geometry. To give the reader a better

intuition for why a 90◦ transition is observed across the plasma, consider a detector situated on

the midplane with a tangency radius Rtan < R0, inclination δ < 0, and opening half-angle α� 1.

Imagine a midplane cross-section of the plasma and detector view, as shown in figure 8.4a. For B

and Ip in the CCW direction (as viewed downward from above), runaways will travel in the CW

direction, and the poloidal magnetic field will point upward (out of the page) for Rtan < R0. In

this simplistic model, the detector will receive synchrotron light from runaways at all R ≥ Rtan,

with the observable θp increasing as R increases. For small α and δ, radiation from runaways with

θp > θB (corresponding to runaways at R > Rtan) will be primarily vertically -polarized. That is,

the velocity v of these runaways must lie approximately in the midplane for light to reach the

detector, and only the “sides” of the cone can be observed.

cIn Alcator C-Mod, the plasma current and toroidal magnetic field are usually parallel, so that a strong electric
field drives runaways in the direction anti-parallel to B.
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Figure 8.4: (a) A horizontal cross-section: A detector (bottom), with line-of-sight tangency radius
Rtan, views two runaways (black dots) moving in approximately circular orbits with different pitch
angles θp at two radii. (b) A vertical cross-section: A detector (left), with inclination δ < 0 and
opening half-angle α > 0, views runaways with pitch angles θp,min = |θB − δ| − α (upper) and
θp,max = |θB − δ| + α (lower) in a magnetic field B with local pitch tan θB > 0. The vertical

axis is Ẑ, and local toroidal vector is φ̂. (Not to-scale.)
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However, for runaways located close to Rtan with θp ≈ θB, the local magnetic field pitch

must be taken into account. A vertical cross-section near Rtan is shown in figure 8.4b. The

range of runaway pitch angles for which the detector will measure synchrotron light is bounded

by θp,min ≤ θp ≤ θp,max, where

θp,max
p,min = max (|θB − δ| ± α, 0) . (8.1)

Here, the superscript and subscript correspond to the ± sign. Both θB and δ are measured

positively CCW from φ̂ toward Ẑ (see figure 8.4b), and both α ≥ 0 and θp ≥ 0 are assumed

non-negative. Since α and δ are small, we assume that θB varies little over the finite radial and

vertical extent of the detector’s FOV. Thus, we expect that horizontally -polarized light is only

measurable for θp ∈ [θp,min, θp,max]. This implies that the 90◦ transition in θpol measurements

(horizontal to vertical) should be observed as a runaway’s pitch angle increases past the threshold

θp ≈ θp,max. Additionally, for runaways with θp ≈ θp,max, we hypothesize that a mix of light with

many polarizations will lead to low values of fpol since the total radiation from many particles will

be effectively unpolarized. Finally, we expect that a detector should see almost no synchrotron

radiation from runaways with pitch angles θp < θp,min simply because they are not emitting light

into the detector’s FOV.

The radial profile of θp ∈ [θp,min, θp,max] for a sample magnetic geometry from Efit is shown

as the bounded region in figure 8.7a; these are the pitch angles within which a measurement of

θpol ≈ 0◦ is expected. As will be discussed further in section 8.3, this simple model shows good

agreement when compared to synthetic data from Soft. Notably, measurements of θpol ≈ 90◦

are more probable close to the magnetic axis where θB is small, and the minimum runaway pitch

angle at which synchrotron emission is detected increases with increasing rtan/a.

It is important to note that these and following calculations require knowledge of the magnetic

field geometry. For runaway populations carrying a significant fraction of the plasma current, like

runaway plateaus after disruptions in some tokamaks [15–17], the interpretation of synchrotron

polarization data, specifically, would become more difficult and convoluted. The challenges and

opportunities associated with this will be discussed further in section 8.6. However, in C-Mod,

almost no variation in the externally-applied loop voltage is observed during flattop runaway

discharges as synchrotron emission increases in time; therefore, the runaway current is inferred

to be negligible compared to the total plasma current, and a magnetic reconstruction, like Efit,

is considered to be an accurate approximation of the real magnetic topology.
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8.3 Probing phase space with SOFT

Similar to the analysis of synchrotron images in chapter 7, we utilize Soft’s calculation of Green’s

functions for the analysis of polarized synchrotron emission. Recall that these Green’s functions

are essentially detector response functions which, when integrated with a runaway phase space

distribution, give the expected synthetic signal. These response functions account for the detector

geometry and spectral range, as well as the magnetic field. (Refer to chapter 5 for a description of

Soft and to appendix B for details of the modeling and implementation of polarized synchrotron

radiation in Soft.) Here, the Green’s functions are calculated for the Stokes parameters—see

chapters 3 and 5—from which our quantities of interest L, θpol, and fpol can be computed.

Unlike the Green’s functions Ĝij(R) used to invert the runaway density profile from syn-

chrotron images in chapter 7, the Green’s functions used here are functions of position and

momentum space, i.e. Ĝ(R, p, θp). The functional dependencies of Ĝ on radius R, total momen-

tum p, and pitch angle θp allow us to better constrain the runaway population in position and

momentum space when comparing synthetic and experimental measurements. In other words,

they allow us isolate the contribution of an individual electron, with initial position R, momen-

tum p, and pitch angle θp, to the final polarization measurement. In the end, we will be most

interested in the θp-dependency of Ĝ.

For this analysis, a response function was computed for each channel (and each time of

interest) using parameters in tables 4.5 and 4.6, magnetic geometries from Efit, and a phase

space spanning r/a ∈ [0, 1], p/mc ∈ [0, 100] (i.e. energies extending up to approximately

50 MeV), and θp ∈ [0, 0.3] rad. Note that the size of each Soft Green’s function (matrix)

grows with added dimensions, increased resolution, and the number of quantities of interest (4

for Stokes parameters). Nevertheless, these were computationally-feasible for the MSE system

and this analysis because each LOS is represented by only one pixel, whereas a camera image

often has over 104 pixels.

Figure 8.5 shows the intensity 〈Î〉 of light detected by each channel (and averaged over

momentum space) versus radius for runaways populated across the entire plasma. Note how each

channel’s measurements are radially-localized, as expected, approximately at the appropriate

rtan/a, indicated as a black vertical line for each channel. Recall that in Soft, runaways are

“initiated” on the outer midplane (R ≥ R0) and then follow magnetic field lines. Therefore,

while some channels only “see” runaways on the high field side (R < R0), the Green’s function

records their starting positions on the low field side. This is the case for channels 1-3 (see

figure 8.2), so their Soft-measured synthetic intensities have been mirrored over the magnetic

axis in figure 8.5, shown in grey. There is significant overlap in radial distributions of detected

intensity between adjacent channels, and some pairs of channels even view almost the same
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Figure 8.5: Synthetic intensity measurements of each MSE channel modeled in Soft, averaged
with a uniform distribution over momentum space, as a function of normalized minor radius (i.e.
initial runaway position). The experimentally-determined normalized tangency radius is indicated
by a vertical black line for each channel (labeled at left). Note that channels 1-3 have data
reflected over r/a = 0 (in grey). The locations of the magnetic axis and flux surfaces with q = 1,
4/3, 3/2, 2, and 3 are shown as solid vertical lines; shaded regions, extending halfway between
adjacent surfaces, are used in step (iii) of the methodology of section 8.4.

radial band of runaways. For instance, channels 1 and 2 are sensitive to the same runaways as

channels 5 and 4, respectively. Thus, an opportunity exists to interrogate different parts of the

same runaway phase space distribution by comparing data among multiple channels.

Sample response functions of θ̂pol and f̂pol are plotted over momentum space for channel 2

(rtan/a = -0.23) in figures 8.6a and 8.6b, respectively. These have already been integrated over

position space using the runaway density profile inferred from images of synchrotron emission

(see chapter 7). In any case, the final results are fairly insensitive to the runaway density profile

shape. The interpretation of these response functions is that a single runaway electron with a

given momentum and pitch angle—i.e. a delta function in momentum space—would produce

synchrotron emission resulting in the shown measurement of θpol or fpol. The grey areas in both
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Figure 8.6: Detector response functions, from Soft, of the polarization (a) angle θpol and (b)
fraction fpol versus normalized (total) momentum p/mc and pitch angle θp, for MSE channel 2
at time t = 1.04 s. Grey regions indicate practically-undetectable regions of phase space.

plots indicate the regions in which little-to-no signald is detected by channel 2. Therefore, this

specific channel geometry limits the diagnosis of runaways to those with momenta p/mc > 20

and pitch angles θp > 0.11 rad.

It is clear from figure 8.6a that measurements of θpol = 0◦ or 90◦ are most common, and

the phase space is bifurcated at a critical pitch angle θp,crit ≈ 0.185 rad. This implies that

if channel 2 records a measurement of θpol ≈ 90◦, then a significant fraction of the runaway

population must have pitch angles θp > θp,crit. Conversely, measuring θpol ≈ 0◦ implies that the

bulk of the runaway distribution function is confined within θp < θp,crit. An improved localization

of runaways in momentum space can be obtained by using both θ̂pol and f̂pol data. In figure 8.6b,

the minimum of f̂pol occurs near θp,crit and increases as |θp − θp,crit| increases, as expected from

the heuristic argument presented in section 8.2. Thus, for example, experimental measurements

of θpol ≈ 90◦ and fpol ≈ 0.5 would indicate that the detected synchrotron light is dominated by

runaways with pitch angles θp ≈ 0.25 rad.

As seen in figures 8.6a and 8.6b, synthetic measurements are relatively insensitive to the

runaway momentum p/mc. As mentioned, they are also insensitive to the runaway density profile

nr (see figures 7.9 and 7.10) for two main reasons: (i) measurements are dominated by runaways

within narrow radial bands (see figure 8.5) over which significant variations in nr are not expected,

and (ii) both θpol and fpol are independent of the emission amplitude. Therefore, a cross-section

dSpecifically, the cutoff for Soft data was (arbitrarily) chosen to be L/max(L) ≤ 10−8 for all channels and
times. The final results are insensitive to this choice.
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8.3. Probing phase space with SOFT

of Ĝ(R, p, θp), at one momentum and summed over each channel’s radial range, provides a

reference or “look-up” plot of a synchrotron polarization measurement versus channel rtan/a and

runaway pitch angle θp. These are shown for θpol and fpol in the contour plots in figures 8.7a and

8.7b, respectively, as well as the line plots in figure 8.8.
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Figure 8.7: Soft-predicted polarization (a) angle θpol and (b) fraction fpol versus normalized
tangency radius rtan/a of the MSE channels (vertical dotted lines) and runaway pitch angle θp,
for t = 1.04 s and p/mc = 60. The bounded region in (a) corresponds to the region of expected
θpol ≈ 0◦ from the heuristic argument presented in section 8.2, i.e. θp,min ≤ θp ≤ θp,max. See
figure 8.8 for line plots of θpol and fpol for channels 1, 3, 5, 7, and 9.

In figure 8.7a, note that only a narrow band of θpol ≈ 0◦ (white) is expected; it follows a

similar spatial pattern as that predicted by the heuristic model in section 8.2, with bounds of θp,min

(lower) and θp,max (upper) overlaying the data. The differences between heuristic argument and

simulation here are likely due to the more realistic 3D detector geometry implemented in Soft,

as well as the discrete radial resolution. The complementary reference plot for fpol is shown in

figure 8.7b, where it is again seen that the minimum in fpol always occurs at the 90◦ transition

location seen in figure 8.7a. The same data in figures 8.7a and 8.7b are also shown in figure 8.8

for only channels 1, 3, 5, 7, and 9; these plots are simply to help the reader better visualize the

spatial (between-channel) variations of the 90◦ transition in θpol and the minimum in fpol.

Comparing these plots to C-Mod experimental data can help identify the pitch angles of

runaways which dominate the synchrotron emission measurement. However, not all channels

provide useful information. For example, channel 4 (rtan/a = 0.08) should always measure a

polarization angle of θpol ≈ 90◦, which is confirmed by experiment as seen in figure 8.3a. In

addition, the fpol measurement from channel 4 should be maximal for typical runaway pitch
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Figure 8.8: Trends in Soft-predicted polarization (top) angle θpol and (bottom) fraction fpol

versus runaway pitch angle θp for channels 1, 3, 5, 7, and 9 (labeled). The data for these line
plots correspond to the same data in the contour plots of figures 8.7a and 8.7b, re-plotted here
for clarity.

angles θp > 0.05 rad; this is also seen in the experimental trends of figure 8.3b. Values of

fpol ≤ 0.6 could help constrain the pitch angle to θp ≈ 0.5 rad; however, it is difficult to make

a quantitative comparison in this situation since background/reflected light is not yet included

in Soft. Finally, note that data in figures 8.7a and 8.7b are not perfectly symmetric about

the magnetic axis; therefore, the seemingly conflicting measurements between channels which

“see” runaways on the same flux surface (approximately ± rtan/a) are actually the result of each

channel investigating a different region of phase space.

8.4 Comparisons of experimental and synthetic data

In this section, the spatiotemporal evolution of polarized synchrotron emission is explored in

detail for Alcator C-Mod discharge 1140403026. Note again that this is the same discharge for

which images of synchrotron light were analyzed in chapter 7. Time traces of several plasma

parameters are shown in figure 8.9a. In this experiment, runaways were generated during the

flattop portion of the plasma current (IMA) by decreasing the plasma density (n20) and hence

collisional friction. The intensity of linearly-polarized synchrotron emission LMSE, shown for all

channels in figure 8.9b, starts rising at t ≈ 0.4 s. Recall that there is not a reliable absolute
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8.4. Comparisons of experimental and synthetic data

calibration of LMSE among the channels; relative errors of 30-40% are expected. However, there

are certainly similar temporal trends, especially in groups of channels: 1-5, 6-7, and 8-10.
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Figure 8.9: (a) From top to bottom: the plasma current (MA), line-averaged electron density
(1020 m−3), central electron temperature (keV), HXR signal (a.u.), and locked mode indicator
(a.u.) are shown for an Alcator C-Mod plasma discharge. (b) The intensity of linearly-polarized
light (a.u.) from MSE channels 1-5 (top) and 6-10 (bottom), all normalized to the maximum of
channel 6. Compare to figure 7.3.

As seen in figure 8.9a, the hard x-ray (HXR) signal increases at t ≈ 0.7 s; this is around

the same time that a locked mode begins, indicated by a reduction in the sawtooth amplitude

of plasma electron temperature (TkeV) and an increase in magnetic fluctuations (B̃). This likely

indicates the expulsion of runaways from the plasma due to MHD activity, leading to thick-target

bremsstrahlung radiation from the first wall. In figure 8.9b, dips in the intensity (LMSE) are

also observed across all channels at this time. At t = 1 s, the density is increased to suppress

runaways, and LMSE starts to decrease, in particular for channels 6-10; these are viewing the

runaway beam edge as it shrinks in size. Sharp spikes in both HXR and LMSE signals—especially

across channels 1-5—begin at t ≈ 1.5 s, around the time of the final burst of MHD activity and

ramp-down in plasma current and density. Both the synchrotron emission and HXR signals then

disappear at t ≈ 1.7 s.
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Experimental measurements of θpol and fpol are shown in figures 8.10a and 8.10b, respec-

tively, for all channels and times. Here, the time and spatial resolutions are ∆t ∼ 1 ms and

∆rtan/a ∼ 0.1-0.2. In this analysis, we focus on the flattop portion of the discharge (t ≈ 0.5-

1.6 s) when plasma parameters are relatively stable. First consider the θpol data: Spatially, the

90◦ transition occurs in the range rtan/a = -0.4 to -0.08 (channel 1 to 3) and rtan/a = 0.23

to 0.35 (channel 5 to 6). Temporally, the most interesting θpol evolution is at rtan/a = -0.23

(channel 2) which experiences 90◦ transitions from θpol = 90◦ to 0◦ at t ≈ 0.7 s and then back

from θpol = 0◦ to 90◦ around t ≈ 1.2-1.4 s. From our reference plot, figure 8.7a, this implies

that the dominant pitch angle of runaways located within the channel 2 FOV decreases below

θp,crit = 0.185 rad for t ≈ 0.7-1.4 s.
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Figure 8.10: Experimentally-measured polarization (a) angle θpol and (b) fraction fpol from one
Alcator C-Mod discharge, versus time and normalized tangency radius of the MSE channels
(horizontal dotted lines). Time and spatial resolutions are ∆t ∼ 1 ms and ∆rtan/a ∼ 0.1-0.2.
Grey regions indicate signal below the noise floor, i.e. LMSE ≤ 10−3.

Regarding experimental fpol measurements, shown in figure 8.10b, a maximum value of

fpol ≈ 0.6 is observed near the magnetic axis (channel 4), as expected. Note how the non-

monotonic feature (i.e. the “bump”) in fpol values at outer radii decreases in radial extent as the

runaway beam contracts in size. This shrinking is confirmed by the synchrotron images analyzed

in chapter 7.

Synthetic (Soft) signals of θpol and fpol are shown in figures 8.12a and 8.12b, respectively.

They were produced using the the same methodology as in chapter 7. It is repeated here for

clarity:
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8.4. Comparisons of experimental and synthetic data

(i) Spatial profiles of experimental plasma parameters, like electron density and temperature

from Thomson scattering and electric and magnetic fields from Efit, were calculated for

six locations throughout the plasma: at the magnetic axis and on rational flux surfaces

with q = 1, 4/3, 3/2, 2, and 3. A constant Zeff = 4 was assumed.

(ii) For each location, these parameters were input into Code to solve for the time-evolving

electron momentum space distribution function. See figure 8.11a for a sample time-slice,

and refer to chapter 5 for more information on Code.

(iii) The runaway phase space distribution (i.e. in momentum and position space) was “stitched”

together via a piecewise interpolation of the six momentum space distribution functions,

with steps halfway between each flux surface as illustrated by the shaded regions in figure 8.5

and given explicitly in (7.1) in chapter 7.

(iv) The density profile nr was inferred for the range r/a ≈ 0.2-1 from experimental images

of the synchrotron emission, as described in chapter 7, and a Gaussian fit was used to

extrapolate to r/a = 0. In general, it is observed that the Soft synthetic modeling

of measurements is not sensitive to the precise shape of the nr(R). Nonetheless, the

experimentally-fit profiles were used for completeness.

(v) The entire phase space distribution was multiplied with the Soft response functions (and

Jacobian) for times t = 0.54-1.64 s, with time step ∆t = 100 ms limited by computation

time.e Integration over phase space then gives the synthetic Soft+Code results for θpol

and fpol, shown in figures 8.12a and 8.12b, respectively.

Figure 8.11b shows the convolution of the Code distribution function in figure 8.11a with

the detected intensity response function Î of channel 3 (rtan/a = -0.08). This highlights the

region of momentum space (p/mc ≈ 40 and θp ≈ 0.16 rad, in this case) which dominates the

detected synchrotron measurement and determines the synthetic measurements of θpol and fpol

shown in figures 8.12a and 8.12b, respectively.

There are a few major takeaways when comparing experimental data in figure 8.10 with

Soft+Code predictions in figure 8.12. First, it is somewhat difficult to compare fpol data

quantitatively. Although the experimental fpol measurements were calibrated, Soft does not ac-

count for the effect of background plasma light or reflections, which would decrease fpol and would

be expected to have both spatial and temporal dependencies. However, there is relatively good

qualitative agreement between experimental and synthetic spatial profiles. Both have maximum

fpol values near the magnetic axis (rtan/a = 0.08, channel 4), with minima on either side of this

peak. In general, it is observed that increasing runaway pitch angles, e.g. through increased pitch

angle scattering, gives a better match of the synthetic signals to the experimental measurements.

eThis is the same time step as that used in the analysis of chapter 7.
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Figure 8.11: (a) A momentum space distribution function f(p, θp) (log scale) calculated by
Code for plasma parameters at the magnetic axis. (b) The normalized convolution of f , the
detector response function Î(p, θp) for channel 3, and Jacobian J = p2 sin θp. The location of
peak detected emission is p/mc ≈ 40 and θp ≈ 0.16 rad.
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Figure 8.12: Soft+Code-predicted polarization (a) angle θpol and (b) fraction fpol for the Alca-
tor C-Mod discharge of interest, versus time and normalized tangency radius of the MSE channels
(horizontal dotted lines). Time and spatial resolutions are ∆t = 100 ms and ∆rtan/a ∼ 0.1-0.2.
Compare to figure 8.10a and 8.10b.
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8.4. Comparisons of experimental and synthetic data

Second, consider channel 3 (rtan/a = -0.08). In experiment, θpol ≈ 90◦ is observed for all

times (see figure 8.10a); however, from Soft+Code, θpol ≈ 0◦ is predicted for t = 0.64-0.84 s

(see figure 8.12a). As seen in figure 8.5, channel 3 only “sees” runaways near the magnetic

axis, with a momentum space distribution modeled in Code using plasma parameters from the

magnetic axis. Consulting our look-up plot, figure 8.7a, experimental θpol data indicate that a

significant fraction of runaways must maintain θp ≥ 0.12 rad for all times. This is achieved by

the distribution function, from Code, at time t = 1.24 s shown in figure 8.11a; there, emission

is dominated by runaways with θp ≈ 0.16 rad, as seen in figure 8.11b. However, the Code-

calculated pitch angle distribution falls below the threshold θp = 0.12 rad for t = 0.64-0.84 s,

which does not match experiment.

Conversely, for channel 6 (rtan/a = 0.35), experimental values of θpol = 0◦ are observed

during the flattop current (t > 0.5 s), but Soft+Code predicts 90◦ transitions at t ≈ 0.64 and

0.84 s, similar to those predicted for channel 3. As seen in figure 8.5, channel 6 views runaways

in a radial range overlapping the momentum space distributions of runaways on flux surfaces

with q = 1 and 4/3. From the look-up plot, figure 8.7a, the bulk of the observed runaway

population must have pitch angles θp < 0.12 rad for all flattop times in order for measurements

of θpol = 0◦ to be made. Therefore, the actual runaway pitch angle distribution is inferred to be

narrower for runaways in the radial range q ≈ 1-4/3 compared to that predicted by Code for

times t ≈ 0.5-0.7 s and 1.1-1.7 s.

Finally, consider once again channel 2 (rtan/a = -0.23), for which an interesting time-evolution

in experimental θpol measurements is observed in figure 8.10a. Soft+Code, however, predicts

that θpol = 0◦ for all times (see figure 8.12a). As seen in figure 8.5, channel 2 views the radial

range including the momentum space distributions of runaways at the magnetic axis and on the

q = 1 flux surface. Referencing figure 8.7a, it is seen that the runaway pitch angle distribution

from Code should broaden (past the threshold θp > 0.185 rad) for times t ≈ 0.5-0.7 s and

∼1.3-1.7 s in order to improve agreement between synthetic and experimental data. In other

words, the actual runaway pitch angle distribution is inferred to be broader than that predicted

by Code for those times. Note also from figure 8.5 that channel 4 (rtan/a = -0.08) views

the same runaway phase space distribution as channel 2. However, as previously mentioned,

channel 4 provides little additional information, and Soft+Code synthetic data for channel 4

are consistent with experiment for all times.

To summarize, the runaway pitch angle distribution is inferred from experiment to be broader

than that predicted by Code in the radial region between the magnetic axis and q ≈ 1 surface, but

narrower between the q ≈ 1 and 4/3 surfaces, for some times throughout the plasma discharge.

It is not clear which physical mechanisms would cause an increase of θp between the magnetic axis

and the q ≈ 1 surface, but a decrease of θp in the region q ≈ 1-4/3. One possible explanation is
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the interaction of the sawtooth instability with runaways within and near the so-called “inversion

radius” at q = 1. The timing of the partial reduction in Te sawteeth at the onset of the locked

mode (t ≈ 0.7 s) and complete suppression of sawteeth (t ≈ 1.1 s) correlates with the above times.

This suggests that some of the differences between experimental and synthetic measurements are

due to Code not accounting for spatial dynamics, such as radial transport. Note that while

radial transport of runaways near the q = 2 surface was inferred from synchrotron images (see

chapter 7), runaway dynamics within q < 1 were not observable; they are captured here.

In general, it is seen that the synthetic and experimental θpol data match well for most channels

and times. The observation that a broader Code-predicted runaway pitch angle distribution

would improve agreement between synthetic and experimental fpol data indicates that additional

pitch angle scattering mechanisms may not be captured in this model. The uniform Zeff = 4

profile is assumed from previous experience with low density C-Mod discharges, but was not

directly measured for this discharge. An increase in Zeff could cause the inferred increase in pitch

angle scattering. So, too, could the magnetic fluctuations related to the locked mode or perhaps

another RE-induced kinetic instability, as discussed in chapter 2. Because pitch angle scattering

increases as particle energies decrease, an unaccounted power loss mechanism might also explain

the results. These mechanisms could be isolated and better diagnosed in future experiments.
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8.5 Measurements of polarized synchrotron light during

lower hybrid current drive

Lower hybrid current drive (LHCD) was enabled for a few short time intervals during the 28

runaway discharges mentioned in section 8.1 (see figure 8.3). Sometimes LHCD was used to

encourage runaway growth through the creation of a “seed” population, while at other times

it was just turned on near the end of the discharge. As stated, the analyses of section 8.1 do

not include data from times when LHCD was on. The purpose of this section is to explore the

effect of LHCD on polarized synchrotron emission by considering the data recorded during these

times when LHCD was active. These measurements of polarization angle θpol and fraction fpol

are shown in the histograms of figures 8.13a and 8.13b, respectively. Note that there are only

∼50-100 data points (time-slices) for each channel, so the uncertainties here (∼10-15%) are

much larger than those for the data in figure 8.3. The fpol data in figure 8.13b look very similar

to those in figure 8.3b: A peak of fpol ≈ 0.7 is measured by channel 4, and there is also the

bump-like feature in the data of channels 6-10.

The polarization angle θpol data, however, is starkly different for the cases with and without

LHCD. (Compare figures 8.13a and 8.3a.) When LHCD is on, there is no 90◦ transition in θpol

observed; all channels measure θpol ≈ 90◦. Referring to our “look-up” plot (figure 8.7a), these

data could indicate that a significant fraction of the runaways observed by channels 1 and 6-10

have sufficiently large pitch angles θp, although it is not clear why LHCD would broaden the

runaway pitch angle distribution. LH waves usually damp on non-relativistic energetic electrons

with speeds ∼3-10 times higher than the electron thermal velocity (e.g. with energies ∼10-

100 keV), “pushing” them in the direction parallel to the magnetic field. Perhaps this fast electron

population somehow evolves into a relativistic electron population with higher pitch angles than

in a no-LHCD scenario, but a possible physical mechanism has not yet been identified.

Another reason why only vertically-polarized synchrotron light is measured—which the author

finds more likely than that previously stated—could be the following: LHCD seeds runaway

electrons, but does not affect their pitch angles; instead, LH waves alter the plasma current

profile Jp(r) (as intended), changing the poloidal magnetic field geometry Bp(r) and thus also

the polarization of synchrotron radiation. Recall from the discussions of section 8.1 that the

polarization of synchrotron radiation is highly dependent on both the runaway pitch angle θp and

the local magnetic field pitch angle θB. In this scenario, the LH-driven, non-thermal electrons

would perform two roles: First, they would seed and feed the runaway population, but the runaway

distribution would otherwise evolve similarly to a non-LH-seeded one. Second, the fast electrons

would locally increase the current density Jp(r), changing Bp(r) enough such that the observed

polarization E ∝ v × B is mostly vertical. See [18] for one study of LHCD experiments on
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Figure 8.13: Histograms of polarization (a) angle θpol and (b) fraction fpol for each channel,
denoted by the normalized tangency radius rtan/a. These data were taken at times when lower
hybrid (LH) current drive was on. Bin widths are ∆θpol = 10◦ and ∆fpol = 0.1. For each channel,
the vertical axis spans 0 to 1, and all bar heights (probabilities) sum to 1. Data are from 28
discharges, but from only 50-100 total time-slices within t = 0.5-1.8 s. Compare to figure 8.3.

Alcator C-Mod and comparisons with theory and simulations.

It would be difficult—maybe impossible—to disentangle the two effects of LHCD changing

θp and/or θB. However, this intriguing observation opens up the opportunity to probe the local

magnetic field (and current density) using synchrotron emission from runaways, as explored in

the next section.
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8.6 Current density profile of a runaway electron beam

Up until now, the current Ir carried by runaways has been neglected in our analyses. As argued

in chapter 5, the approximation Ir � Ip holds for runaways generated during the flattop portion

of low-density, Ohmic discharges in C-Mod. For clarity, the physics is re-explained here: In a

tokamak, an externally-applied loop voltage Vloop is required to drive the plasma current Ip, in the

absence of other current drive mechanisms (e.g. neutral beam injection, electron cyclotron current

drive, etc.). Runaway electrons, if generated, also carry a current approximately proportional to

their number Nr,

Ir ≈
ecNr

2πR0

, (8.2)

where all runaways are assumed to travel at speed v = c. Therefore, there is the potentialf for a

sufficiently large population of runaways to carry a current equal to the intended (programmed)

plasma current. Then, since runaways experience so few collisions, Vloop → 0 as it is no longer

required to drive current. In C-Mod, little-to-no variation in Vloop is seen in the presence of

runaways, confirming that Ir � Ip. Fortunately, this means that Efit reconstructions of the

magnetic field are adequate when studying runaway dynamics (and for use as Soft inputs).

It is of interest to explore how the analysis changes for Ir ∼ Ip, which can be the case for post-

disruption runaway beams and plateaus observed in other tokamaks. As discussed in section 8.5,

the effect of changing the local current density (and poloidal magnetic field) may have already

been observed in polarization measurements of runaway synchrotron radiation during lower hybrid

current drive in C-Mod.

As a first investigation into how the runaway current density profile Jr(r) could be diagnosed

using synchrotron radiation data, four current density profiles were modeled and are shown in

figure 8.14a. A cylindrical plasma with C-Mod-like parameters (R0 = 68 cm, a = 22 cm) was

assumed, with a total current Itot = Ip + Ir = 800 kA. The plasma current profile Jp(r) was

assumed to be parabolic. (See (2.35)-(2.38) for calculations of Jp(r) and Bp(r) for polynomial

degree n = 2.) The runaway number density nr was taken to be exponentially-decaying with

minor radius

nr(r) ∝ exp
(
− r

∆r

)
, (8.3)

where ∆r = 2 cm (∆r/a ≈ 0.1) was estimated from the experimentally-inferred nr profiles from

chapter 7. Here, an exponential form was chosen for simplicity, although this means that Jr(r)

is not smooth (i.e. dJr/dr 6= 0) at r = 0 or r = a, which is unphysical. However, the effect on

fPun intended.
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the final results is expected to be inconsequential. The runaway current density is given by

Jr(r) ≈ ecnr(r), (8.4)

and the total current density is Jtot = Jp + Jr, satisfying

Itot =

∫ 2π

0

∫ a

0

Jtot r dr dθ. (8.5)

The ratio Ir/Itot takes the values 0, 1/8, 1/4, and 1/2, as labeled in figure 8.14a. The poloidal

magnetic field Bp(r) was calculated from Ampere’s law for each case, and a toroidal field

Bt(R) = B0R0/R was assumed, using B0 = 5.4 T, C-Mod’s field on-axis. These four magnetic

geometries were then input into Soft.
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Figure 8.14: (a) Modeled total (plasma + runaway) current density profiles, Jtot = Jp + Jr, and
(b) Soft-predicted polarization angle θpol measurements, versus normalized radius r/a, for four
ratios of Ir/Itot: 0 (black), 1/8 (blue), 1/4 (red), and 1/2 (grey). Note the logarithmic vertical
axis in (a). All runaways were modeled with energies E = 30 MeV and pitch angles θp = 0.1 rad
in (b).

The same detector setup as that of the MSE system, described in chapter 4 and section 8.1,

was used here. All runaways were given the same energy E = 30 MeV and pitch angle θp = 0.1 rad.

This is representative of the localized region of momentum space which often dominates the

synchrotron emission measurement, as discussed in chapter 5. The runaway density profile input

into Soft is just that in (8.3) with the appropriate scaling factor.
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8.6. Current density profile of a runaway electron beam

The resulting synthetic measurements of the polarization angle θpol of synchrotron radiation

are shown in figure 8.14b. For negligible runaway current (Ir/Itot = 0), the characteristic 90◦ tran-

sitions in θpol are seen between channels 3-4 (rtan/a ≈ 0) and channels 6-7 (rtan/a ≈ 0.4). Recall

from section 8.1 that horizontal and vertical polarizations (i.e. θpol ≈ 0◦ and 90◦) are expected

when θp . θB and θp � θB, respectively. For the case of Ir/Itot = 0, this means that the local

magnetic pitch angles observed by channels 4-6 are θB . θp = 0.1 rad. (This is similar to the

trend seen in figure 8.7a.) As Ir/Itot increases to 1/8 and then 1/4, the current profile becomes

more peaked in the plasma center, as seen in figure 8.14a. This results in the poloidal field (and

magnetic pitch angle) decreasing throughout the plasma. Thus, the region of the plasma with

magnetic pitch angles θB & 0.1 rad shrinks; we can actually identify those locations based on the

switch from θpol = 90◦ to 0◦. Finally, the 90◦ transition completely disappears for large enough

runaway currents, e.g. Ir/Itot = 1/2, when θB . 0.1 rad across the minor radius. An interest-

ing feature of θpol < 0◦ does appear near the magnetic axis, possibly due to the highly-peaked

current density profile. Note that for this modified current profile, almost all polarization angle

measurements are θpol ≈ 0◦, which is opposite to the θpol data measured during LHCD shown in

figure 8.13a. This difference could be due to LHCD driving current off-axis, while this analysis

increased the current density on-axis.

While this analysis excitingly suggests that the current density profile of runaways could be

diagnosed using their own polarized synchrotron radiation, the problem of inverting/inferring the

runaway phase space distribution from these measurements could actually become more difficult

and convoluted. Because a sufficiently large runaway population would produce a magnetic field

comparable to that of the background plasma, the magnetic geometry could no longer be treated

as known, as was done in the previous analyses. Solving this problem would likely require an

iterative process; for example: The base case could assume that the true magnetic geometry

is that calculated from a reconstruction algorithm, like Efit. Then, the runaway phase space

distribution could be forward-modeled using a kinetic solver, like Code, and/or partially-inverted

from a synthetic diagnostic, like Soft. From the predicted/inferred runaway density profile, the

total current density could be calculated and the magnetic geometry updated. The analysis could

then be performed again, comparing experimental and synthetic measurements until a good level

of agreement is reached.
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impurities and radiation on the effective critical electric field for runaway generation. Plasma
Physics and Controlled Fusion, 60(7):074010, 2018.

[11] M. Lehnen, S.S. Abdullaev, G. Arnoux, S.A. Bozhenkov, M.W. Jakubowski, R. Jaspers, V.V.
Plyusnin, V. Riccardo, and U. Samm. Runaway generation during disruptions in JET and
TEXTOR. Journal of Nuclear Materials, 390-391:740 – 746, 2009. Proceedings of the 18th
International Conference on Plasma-Surface Interactions in Controlled Fusion Device.

[12] M. Greenwald, D.G. Whyte, P. Bonoli, Z.S. Hartwig, J. Irby, B. LaBombard, E. Mar-
mar, J. Minervini, M. Takayasu, J. Terry, R. Vieira, A.E. White, S. Wukitch, D. Brunner,
R.T. Mumgaard, and B.N. Sorbom. The high-field path to practical fusion energy, 2018.
https://doi.org/10.7910/DVN/OYYBNU.

[13] R.T. Mumgaard, S.D. Scott, and M. Khoury. A ten sightline multi-spectral line-
polarization MSE system for Alcator C-Mod. Review of Scientific Instruments, 87, 2016.
https://doi.org/10.1063/1.4959793.

[14] J.W. Connor and R.J. Hastie. Relativistic limitations on runaway electrons. Nuclear Fusion,
15(3):415, 1975.

194

https://doi.org/10.7910/DVN/OYYBNU


References—Chapter 8

[15] V.V. Plyusnin, V. Riccardo, R. Jaspers, B. Alper, V.G. Kiptily, J. Mlynar, S. Popovichev,
E. de La Luna, F. Andersson, and JET EFDA contributors. Study of runaway electron
generation during major disruptions in JET. Nuclear Fusion, 46(2):277, 2006.
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Chapter 9

Conclusions and future work

9.1 Contributions to the field

As a result of this thesis work, the author has become an expert in the analysis of visible syn-

chrotron radiation emitted by relativistic runaway electrons in tokamak plasmas. Specifically,

the analyses of synchrotron radiation spectra, polarization, and images have lead to greater un-

derstanding of the energy, pitch angle, and spatial distributions of runaways, respectively. The

analysis techniques developed and utilized in this thesis are applicable to future fusion devices,

which—like Alcator C-Mod—will have the potential to measure visible synchrotron radiation due

to their high magnetic fields; e.g. ITER (∼5 T), SPARC (∼12 T), and ARC (∼9 T). The major

contributions of this thesis work to the field of runaway electron physics are briefly summarized

below in chronological order. Further details are provided in section 9.2.

I. In collaboration with the Plasma Theory group at Chalmers University in Sweden, the author

provided the first experimental validation of the state-of-the-art synthetic diagnostic Soft,

described in chapter 5. The author of this thesis was the third author of the publication

introducing Soft [1] and wrote section 4.1 therein.

II. The author performed the most complete analysis to-date of spectral measurements of

synchrotron radiation from runaways, as described in chapter 6. It was shown that both

spatial information of the runaway population and a proper synthetic diagnostic (Soft)

were/are required to reproduce and explain experimental data. The agreement of synthetic

and experimental spectra is consistent with the physical picture that, all else constant,

runaway electron energies decrease as the magnetic field increases in a tokamak. This

work resulted in a first-author publication [2] in Nuclear Fusion.

III. The most detailed analysis to-date of images of runaway synchrotron emission was per-

formed by the author and described in chapter 7. Spatiotemporal dynamics of the runaway
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electron population were identified from the distribution of pixel intensities. Increased ra-

dial transport of runaways located on the q = 2 flux surface was inferred from the images

using Soft. Additionally, the time-evolving runaway density profile was inverted from the

images. The culmination of this work was a first-author publication [3] in Plasma Physics

and Controlled Fusion.

IV. The first experimental analysis of polarized synchrotron emission from runaways in a toka-

mak plasma was presented in chapter 8. A physically-intuitive explanation was provided

for the 90◦ transitions in polarization angle observed in experimental data. Importantly, it

was shown that polarization measurements can directly probe the pitch angle distribution

of runaways. Discrepancies between synthetic (Soft) and experimental data indicated

that the sawtooth instability may influence the pitch angle scattering of runaways near the

q = 1 surface. This work has been submitted for publication in Nuclear Fusion [4], with

the author of this thesis as the first author.

The author has presented this thesis work at several conferences, including the annual meetings

of the American Physical Society Division of Plasma Physics, the European Physical Society

Conference on Plasma Physics, and Runaway Electron Meetings. During his graduate career, the

author has also published several other fusion-related journal articles, both as the first author

[5–7] and as a co-author [8–12].

9.2 Summary of work

The sections below summarize the analyses, results, and conclusions of this thesis. In particular,

they focus on the “substantive” chapters 6, 7, and 8.

9.2.1 On the spectra of synchrotron radiation

As described in chapter 6, runaway electron experiments were performed at high magnetic fields

during low-density, Ohmic, elongated and diverted discharges in Alcator C-Mod. The threshold

electric field required for runaway generation was deduced from HXR and photo-neutron mea-

surements from 17 plasma discharges and compared to recent theoretical predictions [13–15].

The effective critical field was found to be a factor of ∼5 higher than that predicted by purely

collisional theory [16] and ∼3 times higher than estimates incorporating knowledge of bulk plasma

parameters, i.e. electric field, electron density, effective charge, and magnetic field [13, 15]. A

priori knowledge of the approximate runaway energies and pitch angles allowed a better prediction

of the threshold field [14], but this will likely not be possible for future fusion devices. Therefore,
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further work must be done to predict the threshold electric field for runaway onset, particularly

for high magnetic field scenarios.

Absolutely-calibrated visible spectrometers, described in chapter 4, were installed on C-Mod to

measure runaway synchrotron radiation spectra. In particular, the spectra were studied from three

plasma discharges with similar electric-to-friction force ratios E0/EC [16] but varying magnetic

field strengths, B0 = 2.7, 5.4, and 7.8 T. A test particle model (TPM) of runaway momentum

evolution [17], as well as primary (linear) [16] and knock-on (exponential) [18] runaway electron

density growth rates, were used to estimate runaway dynamics at the magnetic axis and on flux

surfaces with safety factors q = 1, 3/2, and 2. Drift orbits and loss of confinement [19] were also

included in the calculations. The synthetic diagnostic Soft [1] was used to produce synthetic

spectra, including contributions from runaways located throughout the plasma, for given magnetic

geometries and spectrometer specifications. It was found that experimental spectra could be best

reproduced when incorporating the spatiotemporal results of the TPM into Soft, especially at

high magnetic fields. Simplified calculations of the expected spectral radiance, like those used in

[20–23], could lead to unphysical interpretations of runaway energies. The major takeaway from

this analysis was the following: Experimental spectra were consistent with runaway energies’

decreasing when the toroidal magnetic field was increased, likely due to more power being lost

through synchrotron radiation. This motivates further exploration of high field fusion devices for

which high energy runaways could be of lesser concern (see appendix A).

9.2.2 On the images of synchrotron radiation

In chapter 7, runaways were also studied during the flattop plasma current phase of low density,

diverted plasma discharges in C-Mod. Images of synchrotron emission were captured by a visible

wide-angle camera viewing both co- and counter-Ip directions inside the tokamak. An in-vessel

calibration, detailed in chapter 4, was performed to correct for image distortion, thereby allowing

the diagnosis of “in-flight” runaway spatiotemporal evolution. A statistical analysis of aggregate

data from 23 runaway-producing discharges (>1000 camera images) explored the plasma param-

eter space for regions in which runaway synchrotron radiation either was or was not detected by

the visible camera. Compared to the times when synchrotron emission was not observed, visible

synchrotron emission was observed for (i) higher values of the ratio of on-axis to critical elec-

tric fields E0/EC [16], (ii) higher values of the ratio of on-axis to Dreicer electric fields E0/ED

[24, 25], and (iii) lower values of the ratio of radiation to collisional timescales τrad/τcoll. This

matches theoretical predictions: Higher E0/EC and E0/ED lead to higher runaway energies and

larger runaway growth rates, thus increasing the likelihood of detection of visible synchrotron

light. In addition, low τrad/τcoll values (<10) typically indicate that synchrotron radiation is

dominating over collisional friction as a power loss mechanism.
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For one discharge, the spatiotemporal evolution of runaways was explored in detail through the

analysis of synchrotron image evolution. Both a TPM [17] and the kinetic solver Code [26, 27]

were used to simulate runaway dynamics in momentum space at several positions throughout

the plasma: the magnetic axis and on rational flux surfaces with q = 1, 4/3, 3/2, 2, and

3. The resulting distributions of energy and pitch angle were input into Soft, from which

a Green’s function allowed identification of contributions from each flux surface to the final

synthetic image. Thus, edges detected [28] in the experimental images were mapped to the flux

surface “boundary” of the synchrotron spot; this time-evolving boundary was observed to decrease

in size with increases in both plasma density and MHD activity. In addition, an interesting spatial

feature was measured at the onset of a locked mode; a third “leg” of the synchrotron spot was

found to be located approximately at the rational surface with q = 2. Such spatial structure

could indicate that runaways were trapped in an m/n = 2/1 island and expelled from the plasma

due to increased radial transport.

Moving beyond the identification of spatial features only, the experimental synchrotron inten-

sity distribution within the images was also investigated. Due to the non-overlapping nature of

Soft-predicted emission from runaways on different flux surfaces, the Green’s function approach

was used to give a set of basis functions, from which a synthetic image could be constructed. In

this way, the Soft synthetic synchrotron images were fit to experiment, producing a runaway

density profile evolution. Fitted synthetic images were found to match experiment well during the

flattop Ip phase, but those during the Ip ramp-up did not. In addition, it was seen that the TPM

could not reproduce all spatial features of experimental images; therefore, the full momentum

space distributions from Code were needed for a complete analysis. Such a procedure as that

adopted in this analysis could be used to study the spatiotemporal dynamics of runaways in other

current tokamaks and to make predictions for future devices and designs.

9.2.3 On the polarization of synchrotron radiation

Chapter 8 presented the first experimental analysis of polarized synchrotron emission from run-

aways in a tokamak plasma and showed that polarization information can be used as a novel

diagnostic of the runaway pitch angle distribution. Once again, these runaway experiments were

performed during low density, Ohmic, diverted plasma discharges in C-Mod. Significant levels

of visible synchrotron radiation were detected by the ten-channel Motional Stark Effect (MSE)

diagnostic, described in chapter 4, which measured spatial profiles of the intensity L and fraction

fpol of detected light which was linearly-polarized, as well as the polarization angle θpol. Data from

28 plasma discharges (>1000 time points), during which synchrotron-producing runaways were

generated, indicated that measurements of θpol and fpol are strongly dependent on the detector

and magnetic geometries.
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An interesting spatial feature, a 90◦ transition in θpol first predicted by Sobolev [29], was

also observed in experimental data. This trend was intuitively explained by the “cone model” of

runaway synchrotron emission: Because the radiated electric field E is approximately proportional

to the Lorentz acceleration ∼ v ×B, horizontal or vertical polarization of synchrotron radiation

is observed when the detector “sees” the top/bottom or sides, respectively, of the emission cone.

Thus, a critical runaway pitch angle θp,crit, at which the 90◦ transition occurs, was calculated

from the detector inclination and field-of-view opening angle, as well as local magnetic field pitch.

Green’s functions from Soft confirmed the existence of θp,crit, at which the polarization fraction

fpol was also expected and confirmed to be minimal. From the Green’s functions, powerful “look-

up” plots were created from which experimental values of θpol or fpol could be used to constrain

the pitch angle θp of the runaways which dominate the synchrotron radiation measurement.

The spatiotemporal evolutions of L, θpol, and fpol signals were explored in detail for one C-

Mod discharge (actually the same as that examined in chapter 7). Like the analysis of chapter 7,

experimentally-measured plasma parameters were input into Code to calculate the momentum

space distribution of runaways located at the magnetic axis and on flux surfaces with q = 1,

4/3, 3/2, 2, and 3. These were input into Soft to compute synthetic signals which could then

be compared to experiment. In general, synthetic θpol measurements from Soft were found to

match experimental values for most channels and times. Disagreements were found in channels

viewing runaways near the magnetic axis and surfaces with q = 1 and 4/3. When compared to the

predicted runaway pitch angle distribution from Code, it was inferred that the actual runaway

pitch angle distribution was (i) dominated by larger pitch angles for runaways located within

q ≤ 1, but (ii) dominated by smaller pitch angles for runaways approximately between surfaces

with q = 1 and 4/3, possibly indicating an interaction of the sawtooth instability and/or locked

mode with runaways that was not captured by Code. Moreover, it was seen more generally that

increasing runaway pitch angles could give better agreement between synthetic and experimental

fpol measurements; therefore, additional pitch angle scattering mechanisms, e.g. from kinetic

instabilities, may need to be incorporated in future analyses.
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9.3 Opportunities for future work

Below are some opportunities for future work, listed in no particular order. Some require expertise

or knowledge beyond the (current) level of the author; others would require more time than the

author had or has available.

9.3.1 Kinetic simulations: non-linear and phase space evolutions

In chapter 6, a test-particle model (TPM) of runaway dynamics in momentum space—i.e. a delta

function nrδ(p)—was found to be sufficient when comparing experimental and synthetic syn-

chrotron spectra. In chapter 7, it was seen that the full momentum space distribution f(p‖, p⊥),

calculated with the linearized kinetic equation solver Code, was required to reproduce experimen-

tal images of synchrotron radiation. Additionally, an analysis of polarized synchrotron emission,

presented in chapter 8, demonstrated the interrogation of the distribution of pitch angles θp in

the runaway momentum space distribution function f(p, θp). For each of these analyses, some

spatial effects were incorporated by considering runaways at different locations throughout the

plasma; specifically at the magnetic axis and on a subset of the rational flux surfaces with q = 1,

4/3, 3/2, 2, and 3. However, as discussed in each chapter, the lack of an integrated model of

momentum and position space evolutions required the author to infer spatial effects not included

in the TPM or Code, like drift orbits or radial transport due to MHD activity. This motivates the

use of codes which solve the kinetic equation in phase space to see if spatiotemporal dynamics

are adequately captured.

One candidate is the code Lukea [30–32], which solves the 3D linearized, bounce-averaged

drift kinetic equation for the phase space distribution function f(ψp, p, θp). Here, ψp is the

poloidal magnetic flux which can be mapped to the minor radius r. The bounce-average is an

average over poloidal angle; specifically, “bounce” refers to particles which are trapped between

two poloidal angles due to conservation of magnetic moment µ. Furthermore, assuming axi-

symmetry and averaging over the gyro-angle allow the reduction of a 6D phase space to three

dimensions. It would be interesting to run Luke for the plasma discharges analyzed in this

thesis and then compare the output phase space distribution to the ad hoc, step-wise distribution

functions stitched together from Code as done in chapters 7 and 8. The radial density profile

nr should also be calculated by Luke, but it is unclear (to the author) if or how magnetic

fluctuations (from MHD activity) could be included.b Such a runaway density profile could be

compared to those inverted from synchrotron images.

aLuke stands for something like Lower-Upper factorized solutions of the drift Kinetic Equation.
bActually, the effect of magnetic perturbations on runaway radial transport has been explored with another 3D

kinetic equation solver called CQL3D [33]. This could be a candidate besides Luke.
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A step up from Luke—both in dimensionality and computation time—is the Kinetic Orbit

Runaway electrons Code (Korc) [34, 35], which simulates the evolution of the entire 6D phase

space distribution function f(r,p) = f(r, θ, φ, pr, pθ, pφ) using a Monte-Carlo approach. These

simulations are computationally-expensive, requiring hundreds of thousands of CPU-hours. Of-

tentimes, the simulated time, i.e. the physical time interval simulated, is ony on the order of

a few microseconds. Nevertheless, Korc is able to capture all physics which can be added to

the equations of motion. Interesting finite Larmor radius effects have been observed, including

collisionless pitch angle scattering [36, 37]. This effect could play a role in the increased pitch

angle scattering inferred from polarization measurements of synchrotron radiation in chapter 8.

The NOn-linear Relativistic Solver for Electrons (Norse) [38] does not include spatial effects

in its calculation of the 2D momentum space distribution function f(p, θp). However, Norse

is an improvement upon Codec and Luke because Norse solves the fully non-linear kinetic

equation and can thus handle scenarios when the density of runaways becomes comparable to

the plasma density. Norse was not needed for the analysis of runaways in this thesis since

Ir � Ip is inferred in C-Mod, at least during flattop phases of discharges without lower hybrid

current drive. However, Norse may be necessary for simulating post-disruption runaway beams

which carry Ir ∼ Ip (see chapter 8). Furthermore, Norse’s capabilities allow modeling of

electron “slide-away,” when all electrons accelerate to relativistic speeds (i.e. when the electric

field is comparable to the Dreicer field ED [24, 25]). In the past, this has sometimes occurred

during plasma start-up in tokamaks. Hopefully, it will not happen in any future tokamaks, but

nonetheless is a fascinating plasma phenomenon.

9.3.2 New and improved diagnostics: an imaging spectropolarimeter

and SOFT2

Unfortunately, there was never a runaway experiment in C-Mod during which measurements of

synchrotron spectra, images, and polarization information were obtained simultaneously. Never-

theless, both images and polarization measurements were recorded for one discharge (1140403026).

These data were analyzed in chapters 7 and 8, and the runaway density profile inferred from the

images was used in the analysis of polarization data. Having all three sets of data could allow us

to better constrain the runaway phase space distribution. Recently, the Runaway Electron Imag-

ing and Spectrometry (REIS) diagnostic was developed at FTU [23] and collects both images

and spectra of synchrotron radiation. The REIS system is compact and portable, allowing mea-

surements on other devices, like ASDEX-U, TCV, and COMPASS.d Here, the author proposes

cBoth Code and Norse were written by the same person, A. Stahl.
dThese experiments are recent, in progress, or upcoming; the author is unaware of related publications.
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an improved and novel diagnostic: an imaging spectropolarimeter (ISP) which would passively

measure 2D images of polarized synchrotron emission at multiple wavelengths.

Passive imaging polarimetry has become a common technique for remote sensing [39]. One

common ISP design uses dichroic mirrors to split light based on wavelength, with specialized,

commercially-available cameras measuring the polarization information of the images. This

method requires only as many cameras as wavelengths of interest. Considering the synchrotron

spectral measurements of chapter 6, only two cameras would be needed to measure the slope

of the visible spectra; however, three could be useful to estimate the curvature. In fact, three

would be required if the peak of emission would shift into the detector spectral range; this could

result from a combination of high runaway energies, runaway pitch angles, and magnetic fields.

(See figure 3.2.) Construction of this ISP would require filters to select wavelength ranges not

including visible line radiation, which could otherwise overwhelm and/or contaminate the signal.

Absolute calibration of pixel intensity could also help determine the total runaway density.

The ISP system could even be optimized using a synthetic diagnostic such as Soft. Green’s

functions Ĝ(R, p, θp) could be produced for a range of detector positions, orientations, fields-

of-view, spectral ranges, etc.e Then, the setup which provides the best interrogation of the

phase space distribution could be constructed. Soft2 [40] would be appropriate for the analysis

due to its increased functionality and improved computational efficiency. For the data analysis

itself, Soft2 now includes first-order drift-orbit effects; these were speculated to be important

in the interpretation of synchrotron spectra from chapter 6, but were not included in the analyses

of images and polarization measurements of chapters 7 and 8. Soft2 can be downloaded at

https://github.com/hoppe93/SOFT2.

9.3.3 Machine learning methods for runaway electron studies

Finally, the author would like to mention some work in progress. As noted in chapters 6-8,

inverting the runaway phase space distribution from synchrotron radiation data is difficult (and

can be ill-defined when inferring 3D functions from 1D or 2D data). Machine learning algorithms

may facilitate this process, especially when dealing with large parameter spaces like the Soft

Green’s functions discussed in the previous section. The Validation via Iterative Training of

Active Learning Surrogates (Vitals) [41] framework is currently being used to determine the

runaway phase space distribution f(R, p⊥, p‖) which produces synthetic images best matching the

experimental images of synchrotron radiation presented in chapter 7. Vitals employs optimized

genetic algorithms to scan a parameter space, calculating the fit of synthetic and experimental

eWarning: These Green’s functions can get quite large. Consider a phase space discretization of 200 ra-
dial points and 100 points in both p‖ and p⊥; a Green’s function for the 4 Stokes parameters measured by a
200×200 pixel camera at 3 wavelengths would require almost 8 TB of storage.
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9.3. Opportunities for future work

images at each point. This parameter space includes features of the phase space distribution f ; for

instance, there could be N dimensions associated with the amplitudes of N nodes of the runaway

density profile. A surrogate model then approximates the function mapping points in parameter

space to the fitting figure-of-merit; if a local minimum is located, the process is repeated for a

smaller region of parameter space surrounding the minimum. If Vitals converges, it outputs a

vector parameterizing f which best reproduces the experimental data. It can be envisioned how

multiple sets of data—i.e. images, spectra, and polarization measurements—could be used in

this way to better constrain the runaway distribution function.
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Appendix A

Post-disruption runaways: scalings with

B and R

In this section, we do some back-of-the-envelope calculations of post-disruption runaway param-

eters, like individual particle energy, total runaway beam energy/current, etc. It is of interest to

see how these quantities scale with toroidal magnetic field B and machine size, denoted by the

major radius R (where the subscript 0 is suppressed). In this way, we can semi-quantitatively

compare the compact, high-field tokamak approach (e.g. SPARC, ARC) to the large, normal-field

approach (e.g. ITER, DEMO). The general aim is to minimize both the energy per runaway elec-

tron as well as total energy of the runaway population. The former affects runaway penetration

depth into materials; for instance, according to [115, 131], the penetration depths of 12.5 MeV

runaways into beryllium, carbon, and tungsten are 2.5, 2.0, and 0.15 mm, respectively. Higher

energies would likely lead to deeper penetration, which could reach cooling channels or electron-

ics. The threat of total runaway beam energy dissipation is more likely melting of plasma-facing

components. For example, in JET it was estimated that the first wall heat flux from a runaway

strike (all with energies of 12.5 MeV) reached ∼400 MW/m2, leading to a wall temperature

increase of over 300 K [115].

For the purposes of this section, energies per particle will be assigned the variable ε, while E
will be used for total energies of the entire runaway population/beam. The quantities of interest,

their scalings with B and R, and a comparison of ITER to SPARC are summarized in table A.1

at the end of this section.
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Appendix A. Post-disruption runaways: scalings with B and R

A.1 Assumptions

Below is a list of assumptions made for the following analyses. Much theoretical work has been

done to predict post-disruption runaway evolution and its impact on the tokamak. These consider

the runaway seed population, post-thermal-quench plasma temperature, toroidal magnetic ripple,

and more. Here, the point is not to dive into details, but to provide a physically-motivated and

plausible picture of runaway parameter scalings with field.a Therefore, the following are assumed

to simplify equations and investigate solely the B and R dependencies:

(i) The aspect ratio A = R/a is assumed to be constant for all tokamaks. For current

experiments, A ≈ 3. This means a ∝ R.

(ii) The edge safety factor q95 ≈ qa = Bta/Bp(a)R is assumed to be constant for all plasmas.

Note that there exists an empirical lower bound of q95 & 3 to avoid disruptions. This

neglects advanced tokamak scenarios.

(iii) Runaways are assumed to travel at v = c. For highly relativistic runaways (with energies

&10 MeV), this is a good approximation.

A.2 Considering total energy conversion

The poloidal magnetic field at the plasma edge Bp(a) can be related to the plasma current Ip

by Ampere’s law

Bp(a) ∝ µ0Ip

2πa
, (A.1)

where the proportionality indicates that shaping factors (like elongation) are not explicit. There-

fore, Bp(a) ∝ Ip/R, using assumption (i). The edge safety factor then satisfies

qa ∝
B

R

2πa2

Ip

∝ BR

Ip

. (A.2)

Assumption (ii) implies Ip ∝ BR. Note here that this could be relaxed, since decreasing Ip

increases qa and actually makes plasma operation safer, i.e. lowers the chance of disruption.

However, Ip is also usually maximized in order to improve confinement and performance.

As described in section 2.1, the runaway density nr can grow exponentially through knock-on

avalanching, taking the form

Γexp =
1

nr

dnr

dt
∝ Ip ∝ BR. (A.3)

aAlso, the author is not a theorist.
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A.2. Considering total energy conversion

This implies that the rate of exponential runaway growth scales the same with B as with R.

The total magnetic energy carried by the plasma is

Wmag =
1

2
LI2

p, (A.4)

where L ≈ µ0R is the plasma inductance. Therefore, the magnetic energy scales as Wmag ∝ B2R3,

which can be thought of as the energy density of the magnetic field B2 multiplied by the vol-

ume R3. Obviously, the worst-case scenario for post-disruption runaways is if all plasma magnetic

energy is transferred to the runaway beam. Then, the maximum total energy of the runaway

beam would be

Emax ∝ B2R3. (A.5)

While this scales favorably with neither B nor R—i.e. it would be best to minimize both—

doubling B is better than doubling R. For a comparison of values for ITER and SPARC, see

table A.1.

It is also important to consider the final impact of runaways on the vacuum vessel if they lose

confinement. In many experiments, damage from runaways is quite localized (for instance to a few

tiles on one limiter, as shown in figure 1.6), but advanced mitigation strategies which introduce 3D

magnetic perturbations could create stochastic fields which “spread” unconfined/lost runaways

over the entire first wall [47]. If the first wall surface area is S ≈ 2πR× 2πa ∝ R2, the runaway

energy flux is bounded below by

Φr ≥
Emax

S
∝ B2R. (A.6)

In this case, doubling B is worse than doubling R.

We now consider the runaway energy per particle, which determines the penetration depth of

runaways into materials (e.g. puncturing a cooling channel), as well as the upper bound energy

of bremsstrahlung radiation (e.g. gammas produced on runaway wall impact)b. Assuming all

runaways travel at the speed of light, by assumption (iii), the number of runaways Nr needed to

sustain the plasma current (i.e. Ir = Ip in the worst-case scenario) is given by

Ip = Ir =
ecNr

2πR
, (A.7)

Therefore, Nr ∝ BR2. Again, doubling B is better than doubling R. The average runaway

bThis actually occurred due to runaway slide-away during one plasma start-up in the WEST tokamak. Localized
gamma radiation, resulting from runaways impacting the first wall, heated the nearest superconducting toroidal
field coil enough to quench it.
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Appendix A. Post-disruption runaways: scalings with B and R

energy in this scenario of total current conversion is

εmax =
Emax

Nr

∝ BR, (A.8)

which is the same relationship found in [46]. Remember that this is the worst-case scenario.

While many experiments have observed partial or even full conversion of Ip into Ir, there are

many power loss mechanisms, including collisions, radiation, and kinetic instabilities which we

have not yet taken into account.

A.3 Considering synchrotron power loss

During a disruption, it is the rapid decay of Ip which induces a large enough electric field to

accelerate runaways. However, this E-field only exists during the time of the current quench

(CQ); thus, runaways have only a finite amount of time to gain energy. Moreover, they are

subject to other power loss mechanisms. Runaways will experience collisional friction with the

background plasma, but the drag force is often negligible compared to the driving electric force

during a disruption, i.e. E/EC � 1. For tokamaks with strong enough B, synchrotron radiation

can dominate as a power loss mechanism, following the usual relation

Psynch ∝ p2
⊥B

2. (A.9)

Therefore, power balance gives

Ptot = Pelec − Pcoll − Psynch ≈ eEc− αp2
⊥B

2. (A.10)

Here, Pcoll was neglected, and α is a constant which is explicit in (2.21). The driving electric

field can be written

E ≈ Vloop

2πR
=

L

2πR

∆Ip

∆t
, (A.11)

where L ∝ R is again the plasma inductance.

The pitch angle of a runaway electron is such that p⊥ = p sin θp. Note that θp can change in

time and with B (by conservation of magnetic moment), but the bulk of the runaway population

usually has θp ≤ 0.3 rad. Furthermore, we are interested in the extreme scenario in which

runaways reach the maximum energy limited by synchrotron emission, i.e. Pelec = Psynch. Then,

p2B2 ∝ Ip

∆t
, (A.12)
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A.4. Other considerations

where it is assumed that all of Ip decays in time ∆t. Both in experiments and simulations, it has

been observed that ∆t ∝ Rm, where m is a positive integer. For instance, in the database study

of [132], the minimum CQ time was found empirically to be ∆t/S ≥ 1.7 ms/m2, where S ∝ πa2

is the plasma cross-sectional area. Thus, m = 2 implies that the CQ is a diffusive process. In

another study [76], runaway test particles were tracked as they followed magnetic field lines (some

closed, others stochastic) during a disruption simulated in NIMROD [133]. The characteristic

runaway confinement time was found to scale as ∆t ∝ R3. While a runaway confinement time is

not necessarily the same as the current decay time, runaways cannot carry current if they are no

longer confined, so it is an upper bound. The parameter m is left free in the following analyses.

Rearranging (A.12) and substituting the scalings for Ip and ∆t, the maximum runaway energy

per particle when accounting for synchrotron power loss is

εsynch ≈ pc ∝ B−1/2R(1−m)/2. (A.13)

For m ≥ 2, this calculation implies that it is favorable to maximize both B and R to reduce the

maximum energy per particle. Once again, conservatively assuming that all of Ip is converted

into Ir, the total runaway beam energy, when including synchrotron emission, is

Esynch = εsynch ×Nr ∝ B1/2R(5−m)/2. (A.14)

Thus, for m = 2 or 3, the total runaway beam energy scales with R at most as favorably as with

B. For completeness, the energy flux over the entire first wall is

Φr,synch ≥
Esynch

S
∝ B1/2R(1−m)/2, (A.15)

which scales more favorably with R than B.

A.4 Other considerations

In reality, designing a fusion reactor is a complex optimization problem. Perhaps the most

important consideration is maximizing fusion power, which scales as

Pfus ∝ β2B4R3, (A.16)

where the plasma β is the ratio of thermal to magnetic pressure, and the latter goes like the

magnetic energy density B2. Assuming constant β, which has its own empirical limit, Pfus scales

more favorably with B than R. This is, of course, a strong motivation for the high-field, compact
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(HFC) approach.

However, economics also drives design, since the electricity produced must ultimately be

affordable. It is reasonable that cost scales with the volume (∼ R3), but how about with B?

This analysis is outside the scope of this thesis work; however, note that if we construct an ad

hoc relation

Cost ∝ BjR3, (A.17)

only j ≤ 3 is required for a HFC tokamak to be competitive economically.

A.5 Summary

This section investigated how post-disruption runaway parameters scale with toroidal magnetic

field B and major radius R. A summary of the parameters of interest, their scalings, and the

ratio of values between ITER and SPARC are given in table A.1 below. The primary assumptions

made were (i) that all tokamaks have constant aspect ratios and (ii) that all plasmas have the

same edge safety factor. From these, it was derived that the runaway avalanching rate scales

as Γexp ∝ BR. To estimate individual and total runaway energies, two simple scenarios were

considered; in both, the pre-disruption plasma current Ip was assumed to be totally converted

into runaway current Ir. In the first worst-case scenario, the pre-disruption magnetic energy was

totally converted into runaway energy. For this case, the energies of a single runaway and full

runaway beam scale as BR and B2R3, respectively.

Table A.1: A summary of post-disruption runaway parameters calculated in this section, and the
ratio of values for ITER-to-SPARC. The toroidal magnetic field and major radius from table 1.2
are used: For ITER, B = 5.3 T and R = 6.2 m. For SPARC, B = 12 T and R ≈ 1.7 m. Value
pairs correspond to m = 2, 3 respectively.

Parameter Scaling ITER/SPARC Equation

Pfus B4R3 1.8 (A.16)

Γexp BR 1.6 (A.3)

Nr BR2 5.9 (A.7)

εmax BR 1.6 (A.8)

Emax B2R3 9.5 (A.5)

Φr B2R 0.7 (A.6)

εsynch B−1/2R(1−m)/2 0.8, 0.4 (A.13)

Esynch B1/2R(5−m)/2 4.6, 2.4 (A.14)

Φr,synch B1/2R(1−m)/2 0.3, 0.2 (A.15)
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A.5. Summary

In the second more realistic case, the runaways were assumed to reach an energy at which

the electric force balances the synchrotron radiation reaction force. Here, it was found that the

energies of a single runaway and full runaway beam scale as (BR)−1/2 and B1/2R3/2, respectively,

when using the multi-tokamak empirical scaling of the current quench time, ∆t ∝ R2 (i.e. m = 2).

These results indicate that increasing B is as favorable as or more favorable than increasing R

when trying to minimize runaway energies and currents. However, this is not always the case with

runaway energy fluxes to the first wall. It should be noted that this energy flux scaling relied on

the assumption that runaways impact the wall uniformly, which is not always seen in experiment

and may not be achievable in future devices.

When comparing two upcoming machines, ITER and SPARC, it appears that ITER will have

the worse runaway problem: the growth rate, number, and total energies of runaways are all higher

for ITER compared to SPARC. On the other hand, individual runaway energies and fluxes to the

first wall may be lower in ITER than SPARC. In the end, these results suggest that the threat of

high energy runaways and runaway beams is reduced for some high-field, compact tokamaks.
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Appendix B

Modeling polarized synchrotron radiation

and synthetic measurements in SOFT

This section describes the modeling of polarized synchrotron light and accompanying synthetic

diagnostic simulations in Soft. This is needed not only to understand the trends seen in ex-

perimental data, but also to validate theoretical models of runaway phase space evolution, which

should reproduce experimental results. First, the polarization of synchrotron emission and Stokes

parameters are briefly re-introduced in section B.1. Section B.2 then describes the implementa-

tion of a synthetic polarimeter in Soft. Finally, section B.3 puts the pieces together, detailing

the synthetic Stokes vector calculation for synchrotron radiation from a given runaway phase

space distribution. This work has been submitted for publication in Nuclear Fusion [23]. The

author of this thesis would like to acknowledge M. Hoppe and O. Embréus, the creators of Soft,

who performed these derivations and actually did the coding.

B.1 Polarization of synchrotron emission

For a single runaway electron, it is often simplest to decompose the synchrotron radiation electric

field vector as done in [134]

E = ê⊥E⊥ + iê‖E‖. (B.1)

Here, ê‖ is a unit vector in the direction of acceleration, pointing (mostly) toward the magnetic

field line for a runaway in gyro-motion, and ê⊥ = n̂× ê‖, where n̂ is a unit vector directed from

the electron toward the observer. Recall that for synchrotron radiation, the acceleration vector is

determined by the Lorentz force, meaning that ê‖ ∝ v×B, with v denoting the electron velocity

and B the local magnetic field vector. It can be shown that for highly relativistic electrons,

E‖ � E⊥, so that the radiation is mainly linearly-polarized in the ê‖ direction [135].
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Appendix B. Modeling polarized synchrotron radiation and synthetic measurements in SOFT

As discussed in chapter 3, a convenient—and complete—way of expressing the polarization of

electromagnetic radiation is using the four Stokes parameters [136], now written in the particle-

dependent basis (ê‖, ê⊥)

I = |E⊥|2 + |E‖|2, (B.2)

Q = |E⊥|2 − |E‖|2, (B.3)

U = 2Re
(
E⊥E

∗
‖
)
, (B.4)

V = −2Im
(
E⊥E

∗
‖
)
. (B.5)

Once again, the asterisk (∗) denotes the complex-conjugate. Our observables are straightforwardly

calculated from the Stokes parameters: I is just the total intensity. The intensity of linearly -

polarized light is L =
√
Q2 + U2, and the degree of linear polarization is fpol = flin = L/I. The

degree of circular polarization is given by fcirc = V/I, although synchrotron emission from highly

relativistic electrons is not expected to have significant circular polarization [137]. Finally, the

polarization angle, measured from ê⊥ toward ê‖ in this case, is 2θpol = arctan(U/Q).

Recall that the “total” Stokes parameters of radiation produced by an ensemble of particles,

with many different radiation fields E, can be determined simply by a linear combination of

individual Stokes vectors [I,Q, U, V ]. However, this assumes that all Stokes vectors are measured

in the same basis. This is not the case for the formulation of the Stokes parameters in (B.2)-

(B.5); therefore, we must transform each E from the particle frame to the laboratory frame, as

discussed in the next section.

B.2 Modeling a polarimeter in SOFT

Since the purpose of Soft is to simulate the signals reported by synchrotron radiation diagnostics,

the definitions of the Stokes parameters in Soft must correspond to those used by a diagnostic.

For example, the definitions (B.2)-(B.5) in section B.1 use a radiation-local coordinate system,

whereas a diagnostic will measure the radiation in a fixed coordinate system that is independent

of the propagation direction of the radiation. Thus, a realistic polarimeter must be modeled in

Soft.

A simple model for a polarization-measuring diagnostic can be obtained starting from the

idealized setup shown in figure B.1: A polarizer, or polarized filter, is placed at point A′ between

an emitter at A and an observer at A′′. As shown in [138], if the polarizer consists of just a linear

polarization filter with its transmission axis t̂ rotated about the ẑ -axis by an angle Υ from the
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Figure B.1: Illustration of an idealized setup for measuring the four Stokes parameters. Polarized
radiation E emitted at A along k̂ = ẑ is incident on the linear polarization filter with transmission
axis t̂ at A′. By rotating the polarization filter between Υ = 0, π/4, and π/2, we can solve for
I, Q, and U from the measured intensity at A′′. To also obtain V , we introduce a phase-
shift between the electric field components by putting a quarter-wave plate in front of the linear
polarizer.

horizontal, then the spectral radiance at A′′ is given by

I(Υ) =
1

2
[I +Q cos(2Υ) + U sin(2Υ)] . (B.6)

If a quarter-wave platea is placed in front of the linear polarizer, so that the relative phase of the

electric field components is shifted, the spectral radiance measured at A′′ is then

Iλ/4(Υ) =
1

2
[I +Q cos(2Υ) + V sin(2Υ)] . (B.7)

aA quarter-wave plate is usually a birefringent crystal with a polarization-dependent refractive index N . For
orthogonal “fast” and “slow” axes, light polarized in the direction of the fast axis travels with a faster phase
velocity (v = c/N) than light polarized along the slow axis.
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Appendix B. Modeling polarized synchrotron radiation and synthetic measurements in SOFT

Thus, by measuring the spectral radiance at A′′ with the linear polarizer rotated to Υ = 0,

π/4, and π/2, as well as at Υ = π/4 with the quarter-wave plate, we can solve for the Stokes

parameters of the radiation field E:

I = I(0) + I(π/2), (B.8)

Q = I(0)− I(π/2), (B.9)

U = 2I(π/4)− I(0)− I(π/2), (B.10)

V = 2Iλ/4(π/4)− I(0)− I(π/2). (B.11)

In Soft, equations (B.8)-(B.11) are taken as the definitions of the Stokes parameters. In the

idealized setup of figure B.1, where radiation is incident on the polarizer perpendicularly, these

definitions correspond to the usual definitions (B.2)-(B.5) in section B.1. However, when radiation

is incident on the polarizer along k̂ 6= ẑ , the relations (B.8)-(B.11) become approximate, with

errors of order 1− (k̂ · ẑ )2. Since the angle between k̂ and ẑ is always less than the detector FOV

opening half-angle α, the error is less than sin2 α. For the Motional Stark Effect (MSE) diagnostic,

described in chapter 4 and used for synchrotron polarization measurements in chapter 8, each

channel has α ≈ 0.9◦, meaning that the error is small, on the order of ∼10−4. Thus, (B.8)-(B.11)

are good approximations of the Stokes parameters for the analysis of polarization measurements

made by the MSE system.

Since electrons can be located anywhere in the tokamak, the direction of propagation k̂ of

the radiation and polarizer surface normal (ẑ in this case) are usually not parallel; this must be

taken into account when modeling the linear polarizer. In general, the spectral radiance is equal

to

I(Υ) = ε0c|Ein|2 = ε0c|T(Υ)E|2, (B.12)

where Ein is the electric field vector incident on the detector, and the operator T(Υ) describes

the action of the polarizer on the emitted field E. In the case when the polarizer consists of both

a linear polarization filter and a quarter-wave plate, we can write T as the product between two

matrices describing the action of each element, i.e. T(Υ) = Tλ/4Tp(Υ), where Tp describes the

action of the linear polarizer and Tλ/4 the action of the quarter-wave plate. If the quarter-wave

plate is oriented with its fast axisa along x̂ (and thus slow axis along ŷ ), Tλ/4 can be written in

dyadic notation as

Tλ/4 = x̂ x̂ + ŷ ŷ e−iπ/2 + ẑ ẑ . (B.13)
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B.2. Modeling a polarimeter in SOFT

For the linear polarization filter, represented by Tp, Soft uses the model presented in [139],

which describes the action of a linear polarization filter on obliquely incident radiation. The model

assumes that the filter absorbs radiation along its absorption axis â, which is perpendicular to

the transmission axis t̂, so that in the setup of figure B.1 the absorption axis becomes

â(Υ) = ŷ cos Υ− x̂ sin Υ. (B.14)

When the radiation is not incident on the filter perpendicularly as in figure B.1, i.e. when k̂ 6= ẑ ,

radiation is instead assumed as absorbed along an effective absorption axis âeff ,b which is the

projection of â onto the plane of the polarized radiation

âeff(Υ) =
â− k̂(â · k̂)√

1− (â · k̂)2

, (B.15)

where the denominator preserves the normalization. Using âeff , the matrix Tp for the linear

polarizer can be written

Tp(Υ) = I− âeff âeff , (B.16)

with I denoting the identity matrix. Hence, the measured spectral radiances are

I(Υ) = ε0c|E − âeff (âeff ·E) |2, (B.17)

Iλ/4(Υ) = ε0c|Tλ/4E − âeff

[
âeff ·

(
Tλ/4E

)]
|2, (B.18)

without and with the quarter-wave plate, respectively.

bCheck out that alliteration!
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Appendix B. Modeling polarized synchrotron radiation and synthetic measurements in SOFT

B.3 Synchrotron Stokes vector from a phase space distri-

bution

So far, we have only considered the radiation field from one runaway electron. Here, we detail the

Stokes vector calculation of synchrotron radiation from an entire phase space distribution f(r,p)

of runaways. The procedure is as follows:

i. At each point (r,p) in (a discretized) phase space, the radiated electric fieldE is calculated.

Actually, Soft calculates a vector-potential-like quantityA = XE, as done in [134], where

X is the distance between the emitting electron and detector—see (5.5). In the end, the

calculation is similar to (3.29).

ii. For each E, the spectral radiances, from (B.17) and (B.18), are calculated for different

polarization states Υ = 0, π/4, and π/2. The polarizer-action matrices Tp and Tλ/4 are

also determined by the detector geometry.

iii. The Stokes vector for each E is calculated from the spectral radiances via (B.2)-(B.5).

These are all now in the fixed detector basis.

iv. The power per unit solid angle Ω per unit wavelength λ can be related to the spectral

radiance by
d2P (Υ)

dΩdλ
= X2I(Υ). (B.19)

This is the angular/spectral power density “contained” in each polarization state. Note

that in the actual Soft calculation, the X2 term naturally comes from |A|2 = X2|E|2.

v. Because the total Stokes vector is just the sum of all individual Stokes vectors, this amounts

to integration of the Stokes parameters over the phase space distribution function f(r,p).

Thus, (B.19) is substituted into (5.5); integrations are performed for Υ = 0, π/4, and π/2;

and the appropriate arithmetic from (B.2)-(B.5) is carried out to obtain the total Stokes

parameters.
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Appendix C

Synchrotron radiation produced by

runaways in a time-dependent B-field

For one C-Mod discharge (1160824028)a, synchrotron emission was measured from runaways

while the magnetic field was ramped from B0 = 5.4-6.2 T over ∼600 ms. While hopes were high,

the impact of the B-field ramp on synchrotron spectral measurements was relatively minor and

practically unmeasureable. Nevertheless, this experiment was an important attempt to reproduce

the results obtained in the DIII-D tokamak [81], so it is included for completeness. The following

sections will detail the experimental parameters, test-particle model (TPM) dynamics of runaways,

inferences made from synchrotron spectra, and comparisons with the similar experiment performed

at DIII-D.

C.1 Experimental data

The bulk plasma parameters and those for specific flux surfaces (the magnetic axis and surfaces

with q = 1, 3/2, and 2) are shown in figure C.1. As is seen in figure C.1b, the plasma density

decreases during the current flattop in order to increase the electric force relative to collisional

drag; the ratio E/EC increases above 10 for times t > 0.5 s. The HXR signal becomes detectable

at t ≈ 0.7 s, while synchrotron emission increases at t ≈ 1.0 s, as seen in figure C.1f. This is

consistent with energies increasing from the (hundreds of) keV to MeV range from t ≈ 0.7-1.0 s.

However, the parameter of most interest in this discharge is the toroidal magnetic field, which

increases (approximately) linearly in time from B0 = 5.4-6.2 T over t ≈ 1-1.6 s. This was done

to determine the effect of increasing B0 on flattop runaways.

aThis discharge ended with runaways impacting a limiter, producing the shower of molten metal seen in
figure 1.6.
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Figure C.1: Plasma parameters at the magnetic axis and flux surfaces with q = 1, 3/2, and
2 for Alcator C-Mod discharge 1160824028: (a) plasma current in MA, (b) electron density in
1020 m−3, (c) electron temperature in keV, (d) ratios of electric to critical field, (e) toroidal
magnetic field on axis (black) and B0 = 5.4 T (grey), (f) synchrotron brightness measured at
λ = 850 nm (black, a.u.) and HXR signal (grey, a.u.), (g) normalized total momentum, and
(h) the estimated change in momentum if B0 was instead held constant, as shown in (e).
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C.2. Test-particle model dynamics

C.2 Test-particle model dynamics

A TPM of runaway momenta and density is used (as done for the discharges in chapter 6) to

estimate runaway dynamics in both real space (at the magnetic axis and flux surfaces with q = 1,

3/2, and 2) and in time. For this analysis, the effect of increasing B0 on the predicted runaway

momentum was investigated. Therefore, two TPMs were run: the first including the ramp in

B0, and the second with a constant B0 = 5.4 T. The resulting p/mc of the former (B ramp)

case is shown in figure C.1g. As is seen, p/mc is predicted to be highest on outer flux surfaces

since the density is lower and electric field is higher. Note that the momenta flatten at t ≈ 1.3 s,

midway through the ramp in B0. Here the maximum energies range from E ≈ 25-35 MeV (for

an assumed Zeff = 4).

Figure C.1h shows the normalized momenta gained in the case when B0 is held constant

(shown as the grey line in figure C.1e). Runaways at the magnetic axis and on the three flux

surfaces show almost identical trends: During the B0 ramp, runaways are predicted to lose up to

∼3.5 MeV (∆p/mc ≈ 7) compared to the case when there is no change in B0. This is expected

since synchrotron power scales as Psynch ∝ B2.

C.3 Experimental synchrotron spectra

As discussed previously, the time evolution of synchrotron spectra—specifically the spectral

shape—can provide information about runaway dynamics, including energy and density. Con-

sider the brightness evolution depicted in figure C.1f: The brightness increases in time while B0

increases and begins to decrease at t ≈ 1.5 s, the same time as both Ip and B0 ramp down. It is

likely that this decrease in synchrotron brightness is due to the loss of particles as the current—

and thus confining poloidal magnetic field—decays. For both the outer surfaces, at q = 3/2 and

2, the predicted p/mc also decrease at this time, from t ≈ 1.5-1.65 s. Surprisingly, at t ≈ 1.65 s,

there is another sudden increase in observed synchrotron brightness, peaking at t ≈ 1.8 s. Around

this time, a resurgence in E/EC is measured, especially on inner flux surfaces, which results in a

slight increase in runaway momenta.

The synchrotron spectral shape can also reveal information about the energy distribution of

runaways. The experimental brightness, normalized at λ = 650 nm, is shown in figure C.2a

at nine times from t = 1.1-1.9 s with ∆t = 100 ms intervals. In figure C.2b, the “slope” of

figure C.2a is simply calculated as the difference in normalized brightness between λ = 500 and

850 nm. Recall that for fixed B0, higher energy runaways will produce spectra with lower slopes

as a larger fraction of synchrotron radiation is emitted at short wavelengths compared to long

wavelengths (see figure 3.2). Similarly, for fixed p/mc, increasing B0 causes the emission to shift
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Figure C.2: (a) Normalized synchrotron brightness spectra from t = 1.1-1.9 s in intervals of
∆t = 100 ms. (b) The difference of normalized brightness values at λ = 500 and 850 nm, i.e.
B̄(850 nm) − B̄(500 nm); this is representative of the approximate linear slope of the spectrum
at each time. Note the Balmer lines and absorption features in (a) at λ ≈ 658 and 720 nm,
respectively, have not been removed.

toward shorter wavelengths, thus also lowering the slope. In time, the measured slope decreases

during the time of the B-field ramp (t ≈ 1-1.5 s), decreases sharply from t = 1.6-1.7 s, and

then increases from t = 1.7-1.9 s. The self-similarity of spectra—i.e. non-changing slope—from

t = 1.3-1.6 s likely indicates that as B0 increases, the runaway energy decreases accordingly to

keep the spectral shape the same. The sudden drop in slope at t = 1.7 s could be related to a

sharp increase in p/mc due to an increase in E/EC, even though B0 is decreasing at this time.

C.4 Comparison with DIII-D experiments

While the normalized spectra provide some qualitative information of runaway dynamics, it is

difficult to determine the true change in energy from experimental data alone. This is, in part,

due to the only slight change in expected synchrotron emission when the change in runaway

energy is less than 3.5 MeV, which is <20% of the total runaway energy. However, this should

have been expected as the percentage increase in synchrotron power loss was quite small: An

increase from B0 = 5.4-6.2 T increases Psynch by only ∼32%.

In experiments similar to this performed on the DIII-D tokamak [81], several plasma parameters

were varied independently to measure their effects on quiescent (flattop) runaways. A scan in
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B0 was performed: In one case, B0 was increased from ∼1.5 to 1.9 T; for another, B0 was

decreased from ∼1.5 to 1 T. Data from the DIII-D Gamma Ray Imager indicated shifts in the

runaway energy spectrum opposite to the change in magnetic field, i.e. decreasing energy with

increasing field, and vice-versa. However, for DIII-D, the absolute magnitude of toroidal field is

much lower than C-Mod’s; thus, the increase and decrease of B0 in those experiments result in

percent changes of the radiated power by approximately ±50-60%, which is twice that of Alcator

C-Mod. Then, the changes in runaway energy were more significant and could be more easily

observed.
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Appendix D

Calculation of the runaway density nr
from CODE

This section details the calculation of the runaway density profile nr inferred from images of

synchrotron radiation (see chapter 7). Recall from (7.2) that a synthetic 2D image can be

computed in Soft [20] as

Iij =
∑
k

C(Rk) Ĝij(Rk) ∆Rk, (D.1)

where Iij is the intensity measured at each pixel coordinate (i, j), Ĝij(R) is the Green’s function

computed from Soft, C(R) are experimentally-fit coefficients, and Rk are the major radial

positions representing the discretization of position space, with step size ∆Rk.

Equation (D.1) is really just a discrete form of the integral over the major radius in (5.9).

The integration over momentum space was already performed in Soft, i.e.

Ĝij(R) =

∫
dp f(R,p) Ĝij(R,p). (D.2)

where f(R,p) is an electron phase space distribution satisfying

ne(R) =

∫
f(R,p) dp, (D.3)

which is the electron density profile. Recall from chapter 5 that Soft assumes toroidal symmetry

and follows guiding centers; thus, f(R,p) is three-dimensional: one real space (radial) dimension

and two momentum space dimensions, parallel and perpendicular to the magnetic field.

Imagine that the electron distribution function is known. Then, the Green’s function Ĝij(R)

could be calculated from (D.2) and input into (D.1) to produce a synthetic image Iij. Because
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Soft should reproduce reality, this would imply that all coefficients C(R) = 1, in this case.

Thus, C is unitless, and Ĝij will have units of W/m, assuming the pixel intensities are measured

in Watts. If, for instance, we want to produce an image with the same setup but twice the

number of runaways, we could set C(R) = 2 in (D.1).

As described in chapter 5, the kinetic equation solver Code [36, 37] is used in this thesis to

calculate the runaway electron distribution function given experimental plasma parameters. One

of the inputs of Code is the plasma electron density ne, and one of Code’s outputs is the

fraction fr of runaways

fr(R, t) =
nCode(R, t)

ne(R, t)
. (D.4)

Here, nCode is the density of electrons in the “runaway regime,” defined as the region of momen-

tum space with total momentum p > pc, where

pc

mc
=

1√
E/EC − 1

. (D.5)

Here, E is the electric field (input into Code), and EC is the Connor-Hastie threshold field [27].

Note that for typical values of E/EC ≈ 5-10 during the flattop current of C-Mod discharges,

pc/mc ≈ 0.3-0.5. Because thermal electrons in the bulk Maxwellian have far smaller momenta,

i.e. pth � pc, we expect that slight variations in E/EC ∼ O(10) will not change the computed

value of nCode by much.a Therefore, at any one time t, it is assumed that the runaway density

profile can be calculated

nr(R) = C(R)× nCode(R). (D.6)

As discussed in chapter 7, the output distribution function F (p) from Code is unitless, with

normalization

F (p) =
π3/2m3 v3

ref

nref

f(p). (D.7)

Here, m is the electron rest mass, vref is a reference electron thermal velocity, and nref is a

reference electron density; the latter two are usually taken to be the electron thermal velocity

and density at the start of the simulation. (See [36] for more details of Code calculations.)

Note that while f(p) = f(p‖, p⊥) is two dimensional, the differential element includes the third

momentum space dimension; that is, dp = 2πp⊥dp‖dp⊥, where an integration over gyro-angle

has already been taken. Therefore, the units of f(p) are s3/(kg3 m6).

aHowever, pth ∼ pc when the electric field approaches the Dreicer field, i.e. E ∼ ED ∼ 100EC [25, 26]. In
this case, nCode would likely be large enough such that the linearization of the Code calculation would no longer
be appropriate, and a code like Norse [128] would need to be used—see chapter 9.
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In the analysis of synchrotron images of chapter 7, Code simulations were run for plasma

parameters at six locations throughout the plasma: at the magnetic axis and on rational flux

surfaces with q = 1, 4/3, 3/2, 2, and 3. A normalized phase space distribution function F (R,p)

was then “stitched” together between the different locations, as given in (7.1). In this formulation,

there are also profiles nref(R) and vref(R). A Green’s function Ĝ′ij (note the prime) was created

with the normalized F (R,p),

Ĝ′ij(R) =

∫
dpF (R,p)× (· · · ), (D.8)

where the last term, (· · · ), represents the geometric factors and spectral power density compo-

nents of the Soft calculation in (5.5). Substituting (D.7) into (D.8) gives

Ĝ′ij(R) =
π3/2m3 v3

ref(R)

nref(R)

∫
dp f(R,p)× (· · · ) (D.9)

=
π3/2m3 v3

ref(R)

nref(R)
Ĝij(R). (D.10)

Thus, we have a relationship between the Green’s functions computed with the normalized and

true distribution functions from Code.

In this section’s notation, the synthetic image can also be calculated

Iij =
∑
k

C ′(Rk) Ĝ
′
ij(Rk) ∆Rk. (D.11)

This is actually how the analysis was performed in chapter 7. Equations (D.1) and (D.11) must

produce the same final image; they are both being compared to the same experimental image,

after all. Thus, the coefficients can be related by

C(R) =
π3/2m3 v3

ref(R)

nref(R)
C ′(R). (D.12)

Plugging this result into (D.6) yields

nr(R) =
π3/2m3 v3

ref(R)

nref(R)
nCode(R)C ′(R). (D.13)

The reader will note that this is only different from (7.5) by the change of notation C ↔ C ′. In

fact, the coefficients C(R) and Green’s function Ĝij(R) of chapter 7 are what we call C ′(R) and

Ĝ′ij(R), respectively, in this section, so we have achieved the desired result.
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List of Figures

1.1 A diagram showing a poloidal (vertical) cross-section of an axisymmetric tokamak

geometry. The toroidal magnetic field is produced by external coils; the poloidal

magnetic field is created by a toroidal plasma current (into the page). The plasma

is “confined” by a limiter. From [6]. 16

1.2 An engineering CAD-model of the Alcator C-Mod tokamak. From the center

outward: The central solenoid (brown) drives the toroidal plasma current. The

plasma (pink) is contained inside the vacuum vessel (grey). The toroidal (cyan)

and poloidal/vertical (red) magnetic field coils confine and shape the plasma.

The surrounding super-structure (light grey and green) is held together by bolts

(purple). The tokamak is surrounded by a cryostat (clear), shielded by a concrete

igloo (clear), and supported by three posts (orange). From [7]. 18

1.3 A fish-eye view inside the Alcator C-Mod tokamak, taken from F-port. The inner

wall (center) is covered with high-Z molybdenum tiles. Radio frequency anten-

nas (copper covered by steel “bars”) are on the left and right. The lower hybrid

waveguide “grill” is seen to the left of the right antenna. Note that this is ap-

proximately the location of the wide-view WIDE2 camera used for the synchrotron

radiation studies in this thesis. From [13]. 19

1.4 A poloidal cross-section of the Alcator C-Mod vacuum vessel (black) with poloidal

flux contours labeled for the magnetic axis (center dot), rational surfaces q = 1,

4/3, 3/2, 2, and 3, and the last closed flux surface (LCFS, dotted). The safety

factor at the plasma edge is q95 ≈ 4.5. 21

1.5 Plasma parameters for C-Mod’s final discharge 1160930043 for (a) the entire

discharge (t = 0-1.5 s) and (b) zoomed in on the disruption (t = 1.2-1.3 s). From

top to bottom: the plasma current (MA), loop voltage (V), density (1020 m−3),

temperature (keV), and radiated power (MW). (B0 = 5.7 T, Wth ≈ 150 kJ,

Wmag ≈ 1.1 MJ) 22
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1.6 A shower of sparks, captured by a false-colored visible camera, resulting from

runaways impacting a limiter (labeled) during the plasma current ramp-down at

the end of Alcator C-Mod discharge 1160824028. (See the analysis of synchrotron

spectra from this discharge in appendix C.) 24

2.1 A diagram depicting the magnitude of forces experienced by an electron in a

plasma. Note how collisional friction decreases as the particle’s speed increases.

The friction force Fcoll (black) is calculated from (2.5). If an external electric field

E > EC is applied, all electrons with velocities v > vthr, from (2.12), will run

away. If radiation or other deceleration mechanisms are included, represented as

Fcoll + Frad, then runaways can only accelerate to v = vmax. (Not to-scale.) 32

2.2 TPM trajectories in momentum space from (2.26) and (2.28), varying parameters

(a) E/EC, (b) B, and (c) Zeff . All parameters are constant in time; the dots

denote time intervals ∆t = 0.1 s from t = 0-1 s. The initial momentum is

p‖0/mec = 1 and p⊥0/mec ≈ 10−3. Note that for B = 2.7, 5.4, and 7.8 T, the

ratio τ̂rad ≈ 4, 1, and 0.5, respectively, for ne = 1019 m−3. 38

2.3 The maximum confined runaway energy (in MeV) for a given plasma current (in

MA) versus normalized minor radius, calculated from (2.40), for three current

density profiles of the form J(r) ∝ 1 − (r/a)n: parabolic (n = 2, solid), cubic

(n = 3, dotted), and uniform (n =∞, dot-dashed). 42

3.1 A schematic representation of synchrotron emission (in grey) at one moment in

time t. A relativistic electron, instantaneously located at the origin, executes gyro-

motion in a magnetic field B = B0ẑ with normalized velocity β = ŷ β⊥ + ẑ β‖,

pitch angle θp, and gyro-angle χ = ωBt. The emission, with angular width

ξ ∼ 1/γ, is observed at position R along line-of-sight n̂, with angle ψ from β to n̂. 52

3.2 Synchrotron spectral power density dP/dλ (a.u.) versus wavelength over the

visible and infrared ranges, varying (a) runaway momentum p/mc, (b) runaway

pitch angle θp, and (c) toroidal magnetic field strength B. Note how the peak

of the power spectrum increases in magnitude and shifts toward shorter (bluer)

wavelengths for increasing p/mc, θp, and B. (Computed using Syrup [5].) 59
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4.1 A top-down schematic of the tokamak midplane. The ten ports A-K are labeled,

with RF antennas depicted at D, E, and J-ports. The plasma is pink, with the

major radius of the plasma axis dotted. The spectrometer views (CW: 23/24,

and CCW: 25/27) are located on the In-Vessel Platform (IVP). Note that the

field-of-view of IVP25 lies within that of IVP27. The wide-view (WIDE2) camera

views both CW and CCW directions. The MSE diagnostic has ten CCW views;

here, only the lines-of-sight are shown. 64

4.2 Laboratory setup of Ocean Optics spectrometers. Labeled are spectrometers 1

and 2, trigger wires, computer cable connections, and optic fibers. 65

4.3 The In-Vessel Platform apertures: IVP23, 24, 25, and 27. 66

4.4 Backlighting of In-Vessel Platform (IVP) views (a) 23, (b) 24, (c) 25, and (d)

27. Note that images have been converted to greyscale and enhanced to highlight

illuminated areas. 67

4.5 Uncalibrated and calibrated labspheres used in-vessel and in-lab, respectively, for

spectrometer absolute calibration. Aluminum foil is covering the aperture of the

calibrated labsphere to keep out contaminants. 68

4.6 (a) Averaged spectra (normalized to integration time) measured by spectrometer 1

for each of the IVP views. (Note that IVP23, 24, and 27 have almost overlapping

curves.) Spectra from the calibrated (dot-dashed blue) and uncalibrated (dotted

red) labspheres are also shown; the former is scaled by a factor of 1/2. (b) The

linear interpolation of spectral radiance (black squares) known to be emitted by

the calibrated labsphere. 69

4.7 A foam board cut-out of a C-Mod vacuum vessel poloidal cross-section used for

calibration of the wide-view camera. Each square is 3 cm × 3 cm. 72

4.8 Camera images of the calibration grid located at (a) G, (b) F, and (c) E-ports,

respectively. Colored dots indicate the pixel locations of grid points used in the

calibration. Note that the images in (a) and (c) are cropped, the grid in (b) is

slightly tilted, and the author is also captured by the camera at left in (b). 73

4.9 Normalized pixel radius ρ (from the center of the image) as a function of angle

θ from the camera LOS vector to the location in real space for grid points at

ports E (circles), F (squares), and G (triangles). Overlaid lines are the linear

regression of all data through the origin (solid) and the relation for a rectilinear

image (dot-dashed), where C = 0.7423. 74
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4.10 The “synthetic” vacuum vessel wall is plotted in toroidal angle increments of

∆φ = 5◦ over a corrected experimental image (averaging all frames from C-Mod

discharge 1140403014). The “horizontal” line corresponds to the plasma midplane

Z = 0. Note the slight disagreement around the divertor in the camera’s near view. 75

4.11 (a) CAD model of the MSE periscope in-vessel with three channels’ fields-of-view

(FOV) intersecting a schematic DNB. (Courtesy of R. Mumgaard.) (b) A top-

down view of the ten channels’ FOV overlaying a plasma with boundary (solid)

and major radius (dashed) shown. 79

4.12 A schematic top-down view of the MSE diagnostic geometry, with relevant geo-

metric quantities labeled and described in the text. 80

5.1 (a) The electron momentum space distribution function f(p), calculated from

Code, for one time t = 1 s. (b) The time-evolution of the contour log10(f) = -

12 from t = 0-1 s in time steps ∆t = 0.1 s. Parameters used were n = 1019 m−3,

T = 1 keV, Zeff = 4, E/EC = 15, and B = 5.4 T, and the RP avalanche source

term was enabled. 87

5.2 (a) The same electron momentum space distribution function log10(f) from fig-

ure 5.1a, but with a different logarithmic color-scale. The convolutions f×p⊥×P ,

from (5.4), for wavelength ranges (b) λ = 500-1000 nm and (c) λ = 2-3 μm.

Note that (b) and (c) have the same linear color-scale. These plots were made

using codeviz. 89

5.3 Electron momentum space distribution functions, calculated with Code, for three

ratios of the applied to critical electric field: E/EC = (a) 5, (b) 10, and (c) 20.

The distribution function f(p) is normalized to the calculated runaway density

nr so that all color-scales are the same. Compare to the TPM of figure 2.2a.

(B = 5.4 T, Zeff = 1, RP avalanche source.) 90

5.4 Electron momentum space distribution functions, calculated with Code, for three

magnetic fields: B = (a) 2.7 T, (b) 5.4 T, and (c) 7.8 T. All color-scales and

axes are the same. Compare to the TPM of figure 2.2b. (E/EC = 12, Zeff = 1,

RP avalanche source.) 91

5.5 Electron momentum space distribution functions, calculated with Code, for three

effective charges: Zeff = (a) 1, (b) 2, and (c) 4. All color-scales and axes are

the same. Compare to the TPM of figure 2.2c. (E/EC = 15, B = 5.4 T, RP

avalanche source.) 92
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5.6 Electron momentum space distribution functions, calculated with Code, using

(a) no avalanche source term (i.e. only primary generation from [10]) or the

avalanche source terms from (b) Rosenbluth and Putvisnki [5] and (c) Chiu et al

[6]. All color-scales and axes are the same. (E/EC = 20, B = 5.4 T, Zeff = 1.) 93

5.7 An updated version of figure 3.1, now with a detector at left with detector normal

n̂d and opening half-angle α. Synchrotron radiation will be visible along the LOS

with unit vector n̂k. See figure 3.1 for the definitions of the other parameters. 95

5.8 (a) Poloidal flux contours, including the last closed flux surface (grey), overlay a

vertical cross-section of the C-Mod vacuum vessel (black). (b) A top-down view

of the reference Soft simulation; the radial/toroidal intensity distribution corre-

sponds to the intensity of synchrotron radiation detected by the detector located

in the midplane, with field-of-view (solid) and line-of-sight (dashed) indicated by

the thick lines. This is not the synchrotron radiation pattern that would be mea-

sured by a detector looking down on the tokamak. The midplane major radii

of the last closed flux surface (solid) and magnetic axis (dashed) are shown as

thin-lined circles. 98

5.9 (a) The reference Soft image. (b) The same figure as (a), but with eleven radial

bands of runaways highlighted. Each band has width ∆R = 1 cm extending from

R = 68-88 cm in steps of 2 cm. The detected intensity from runaways within

each radial band is normalized to the maximum intensity from that band. Because

runaways within the same band can produce non-circular features on either side

of the central “ring,” those features on the left (HFS) are brighter than their right

(LFS) counterparts. 100

5.10 Reference images produced using (a) the cone model approximation (reference)

and (b) the full angular distribution calculation. The intensity is normalized in

each image. 102

5.11 Synthetic synchrotron images resulting from a scan in detector vertical position:

Z = (a) 0 (reference), (b) -10 cm, and (c) -20 cm. All images have the same

color-scale, so they can be compared directly. 103

5.12 Synthetic synchrotron images resulting from a scan over detector spectral ranges:

λ = (a) 500-1000 nm (reference), (b) 1-1.5 μm, and (c) 2.5-3 μm. All images

have the same color-scale, so they can be compared directly. 104

5.13 Synthetic images resulting from a scan in momentum: p/mc = (a) 50, (b) 60

(reference), and (c) 70. Each intensity distribution is scaled by a factor of (a) 10,

(b) 5, and (c) 1 in order to be plotted on the same color-scale. Note that (a)-(c)

correspond to energies of E ≈ 25, 30, and 35 MeV, respectively. 105
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5.14 Synthetic images resulting from a scan in pitch angle: θp = (a) 0.05 rad, (b)

0.1 rad (reference), and (c) 0.2 rad. Each image is normalized to its own maximum

intensity. If the maximum intensity of (a) is scaled to be 1 (a.u.), then the

maximum value of (b) is ∼54 and of (c) is ∼380. 106

5.15 Synthetic images resulting from three different runaway density profiles: (a) uni-

form, (b) linearly-decreasing from r = 0 to ar (R = 68-88 cm, reference), and

(c) Gaussian with σ = 1/3, as described in the text. Each image is normalized to

its own maximum intensity. 107

5.16 (a) Horizontally-polarized and (b) vertically-polarized light from the reference

image—except here the runaway beam has a uniform runaway density profile—

plotted with the same color-scale. (c) The polarization angle of light detected at

each pixel, in degrees. The white region in (c) indicates zero detected synchrotron

light, which is otherwise black in (a) and (b). 109

6.1 A top-down schematic of the tokamak midplane. The plasma is pink, with the

major radius of the plasma axis dotted. The spectrometer views (CW: 23/24 and

CCW: 25/27) are located on the In-Vessel Platform (IVP). Note that the field-

of-view of IVP25 lies within that of IVP27. This is the same figure as figure 4.1,

shown again here for reference. 112

6.2 Parameters for three plasma discharges with time-independent B0 = 2.7 T (black),

5.4 T (blue), and 7.8 T (red): (a) plasma current in MA, (b) central electron

density in 1020 m−3, (c) central electron temperature in keV, (d) ratio of the syn-

chrotron radiation timescale to the collisional timescale—see (2.24), (e) measured

synchrotron brightness at wavelength λ = 850 nm in μW/mm2/sr/nm, (f) signal

from HXR and photoneutrons in s−1, (g) HXR signal, and (h) ratio of the electric

field on-axis to the critical electric field [5]. The shaded regions in (h) highlight

the time windows in (e) during which synchrotron radiation is observed. Note

that in (e)-(h), some data have been scaled by the factors given. 114

6.3 Synchrotron spectral data for the 7.8 T plasma discharge: (a) Raw photon count

spectra from the CW spectrometer are plotted for times between t = 0.6-1.1 s at

∆t = 10 ms intervals. The grey line is the time-averaged background spectrum

from the opposite-direction-viewing (CCW) spectrometer. (b) Absolute brightness

spectra corresponding to the same times (colors) as the photon count spectra.

(c) Brightness at λ = 850 nm is plotted as a function of time with the same

color-coding as spectra. The HXR signal (black, arbitrary units) from figure 6.2g

is shown in (c) for comparison. 115
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6.4 (a) Brightness data from figure 6.3a is normalized at λ0 = 675 nm (dotted) for six

times in t = 0.75-1.00 s. Regions of χ2 ≤ 0.1 when fitting the experimental data

in (a) to mono-energetic B̄syn are shown for two representations of momentum

space: (b) p‖/mc vs p⊥/c and (c) p/mc vs θp. A TPM using plasma parameters

from the 7.8 T discharge predicts runaway momenta confined within the shaded

box in (b) and maximum p/mc as indicated by dots in (c). 118

6.5 (a) The normalized momentum space distribution function f(p‖, p⊥) generated

by Code for on-axis plasma parameters of the 2.7 T discharge at t = 1.6 s, and

(b) the normalized convolution of spectral power density dP/dλ at λ = 800 nm,

f , and Jacobian p⊥. The dot in (b) represents the TPM prediction of p‖/mc and

p⊥/mc on-axis at time t. 119

6.6 Time evolution of parallel momenta for particles initiated every ∆t = 50 ms on

the q = 2 surface for the 2.7 T discharge. The maximum parallel momenta are

shown for runaway confinement (p‖,max/mc, grey) and when synchrotron radiation

is neglected (B = 10−4 T ≈ 0, dashed). (Zeff = 4) 121

6.7 For the 2.7 T discharge, parameters on the magnetic axis and surfaces with q = 1,

3/2, and 2: (a) electron density in 1020 m−3, (b) electron temperature in keV,

(c) ratio of electric to critical fields, and (d) outer midplane major radius with

(dotted) and without (solid) including drifts; (e) measured synchrotron bright-

ness at λ = 850 nm (in μW/mm2/sr/nm) with times of interest corresponding

to figure 6.8 indicated as vertical lines; and TPM results for runaway (f) total

normalized momentum, (g) pitch angle, and (h) density in m−3. (Zeff = 4) 124

6.8 For five times during the 2.7 T discharge: comparisons of (a) experimental nor-

malized brightness spectra to synthetic data from (b) on-axis TPM data input into

B (3.48), (c) TPM data from all surfaces input into Soft, and (d) the on-axis

Code distribution function input into Soft. The dotted line in (c) uses runaway

densities at t = 1.23 s. Note that the full angular distribution was used for Soft

in (b), while the cone model approximation was used in (d). 125

6.9 For the 5.4 T discharge, parameters on the magnetic axis and surfaces with q = 1,

3/2, and 2: (a) electron density in 1020 m−3, (b) electron temperature in keV,

(c) ratio of electric to critical fields, and (d) outer midplane major radius with

(dotted) and without (solid) including drifts; (e) measured synchrotron brightness

at λ = 850 nm (in μW/mm2/sr/nm) with times of interest corresponding to

figure 6.10 indicated as vertical lines; and TPM results for runaway (f) total

normalized momentum, (g) pitch angle, and (h) density. (Zeff = 3.5) 126

239



List of Figures

6.10 For five times during the 5.4 T discharge: comparisons of (a) experimental nor-

malized brightness spectra to synthetic data from (b) TPM data only on-axis input

into B (3.48), (c) TPM data from all surfaces input into Soft, and (d) TPM

data from only the q = 3/2 surface input into Soft. The dashed lines in (b) are

linear extrapolations of the spectral curves to wavelengths at which the oscillating

integrand of dP/dλ caused large errors. 127

6.11 For the 7.8 T discharge, parameters on the magnetic axis and surfaces with q = 1,

3/2, and 2: (a) electron density in 1020 m−3, (b) electron temperature in keV,

(c) ratio of electric to critical fields, and (d) outer midplane major radius with

(dotted) and without (solid) including drifts; (e) measured synchrotron brightness

at λ = 850 nm (in μW/mm2/sr/nm) with times of interest corresponding to

figure 6.12 indicated as vertical lines; and TPM results for runaway (f) total

normalized momentum, (g) pitch angle, and (h) density. (Zeff = 4) 128

6.12 For six times during the 7.8 T discharge: comparisons of (a) experimental normal-

ized brightness spectra to synthetic data from (b) on-axis TPM data input into

B (3.48), and (c) TPM data from all surfaces input into Soft. Note that in (b),

equation (21) in [16] was used as a better approximation for dP/dλ. 129

6.13 Time evolution of χ2 values (log-scale) comparing experimental to synthetic spec-

tra for the (a) 2.7, (b) 5.4, and (c) 7.8 T discharges. The Soft (circles) and

TPM+B (squares) correspond to subplots (b) and (c), respectively, of figures 6.8,

6.10, and 6.12. The Soft* data (triangles) highlight additional Soft simula-

tions for comparison: Here, subplot (a) uses Code distributions input into the

Soft cone model from figure 6.8d, and subplot (b) includes the TPM contribu-

tion from the q = 3/2 surface shown in figure 6.10d. In (a), nr(t = 1.23 s) was

used for the Soft data; in (c), the TPM+B curve has been scaled by the factor

given. 130

6.14 Maximum runaway energies in MeV, as predicted by the TPM, plotted as a func-

tion of highest magnetic field experienced for particles on the magnetic axis (cir-

cles) and surfaces with q = 1 (squares), 3/2 (triangles), and 2 (diamonds) for the

B0 = 2.7, 5.4, and 7.8 T discharges. A representative best-fit curve of the form

ETPM ∝ 1/Bmax is shown, with proportionality constant ∼124 MeV/T. 131
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6.15 Ratios of the experimentally-measured threshold to critical electric field (E/EC−1)

are plotted for experimental data and from theory. The threshold fields for run-

away onset as measured in C-Mod experiments are shown as circles, with open

circles representing those discharges using LH current drive. Theoretical predic-

tions of the threshold field are EM (dashed) from (6.5), EA (dotted) from (6.6),

and ES (solid) from (6.7). For ES, which requires inputs of energy and pitch

angle, values of p/mc = 24 (E ≈ 12 MeV) and θp = 0.15 rad and 0.42 rad were

selected. 133

7.1 A top-down schematic of the tokamak midplane. The plasma is pink, with the

major radius of the plasma axis dotted. The wide-view (WIDE2) camera views

both CW and CCW directions. This is the same figure as figure 4.1, shown again

here for reference. 138

7.2 The (a) original camera image and (b) right half of the corrected image af-

ter distortion-correction, vertical-alignment, background-subtraction, and HXR-

removal (described in the text). A 2D projection of the 3D vacuum vessel ge-

ometry overlays the image. Intensity data within the dashed box are analyzed.

(t = 0.74 s) 141

7.3 Corrected experimental images (false-colored) at four times: t = (a) 0.44 s,

(b) 0.74 s, (c) 1.04 s, and (d) 1.34 s. The observed synchrotron spot “legs”

are indicated by the arrows in (b). Plasma parameters in (e) are the plasma cur-

rent in MA (multiplied by a factor of 10), line-integrated density in 1019 m−3, and

central temperature in keV; in (f) are signals (a.u.) of summed synchrotron

intensity in each frame (purple), locked-mode proxy B̃, HXR radiation, and

HXR+photoneutrons, each with a different vertical axis offset. Times (a)-(d)

are marked by vertical dashed lines in (e)-(f). 143

7.4 Overlaying a poloidal cross-section of the C-Mod vacuum vessel are poloidal flux

contours from Efit [27]: the magnetic axis (black dot), rational surfaces q = 1,

4/3, 3/2, 2, and 3 (solid), and the last closed flux surface (LCFS, dotted). This

figure is the same as figure 1.4, re-plotted here for convenience. (q95 ≈ 4.5,

t = 0.74 s) 144
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7.5 Experimentally-measured ratios (a) E/EC and (b) E/ED (%) are provided as

inputs to Code for six radial positions: the magnetic axis and rational flux surfaces

with q = 1, 4/3, 3/2, 2, and 3. Code outputs the predicted (c) average runaway

energy in MeV and (d) runaway density in m−3. Contours of Code momentum

space distribution functions are shown for the (e) magnetic axis and (f) q = 3

flux surface for four times, marked as vertical lines in (a)-(d): t = 0.44 s (solid),

0.74 s (dotted), 1.04 S (dot-dashed), and 1.34 s (dashed). Note that the value of

each contour is (arbitrarily) chosen to be log10(F ) = -15/4, where F is normalized.

The color scheme is the same as that in figure 7.4. (B0 = 5.4 T, Zeff = 4) 147

7.6 (a)-(c) Closed contours (white) of 50% Soft-predicted synchrotron emission,

from the magnetic axis and rational flux surfaces with q = 1, 4/3, 3/2, 2, and

3, overlay experimental images from figures 7.3a-c. (d) The full Soft-predicted

emission of each contour in (c) is shown, along with scaling factors required to

plot all surfaces on the same color-scale. Note that the q-value increases from

right-to-left in each subplot and is labeled in (c). 149

7.7 Best-fit Soft reproductions of the experimental images in (a)-(d) are shown in

(e)-(h). Note that (a)-(d) are reproduced from figures 7.3a-d. 152

7.8 (a) Soft image resulting from no experimental fitting, but instead with only

the Code-predicted radial density profile (see figure 7.5d). (b) Best-fit Soft

reproduction using a test particle model (TPM) of momentum space evolution,

as described in section 7.1.6 and chapters 2 and 6. (c) Experimental image from

figure 7.3b reproduced for comparison. (d) Edge detection [37] applied to (c),

with blue/red colors corresponding to positive/negative horizontal gradients of

pixel intensity, as described in section 7.1.7. (t = 0.74 s) 153

7.9 (a) Contour plot of best-fit runaway density log10(nr) (a.u.) versus time and

normalized minor radius r/a. The positions of the boundary and legs determined

from edge detection, as well as the q = 2 surface, (each labeled) overlay the

radial profile. Time and radial resolutions are ∆t ≈ 100 ms and ∆r/a ≈ 0.01,

respectively. (b) Reproduction of the magnetic fluctuation signal (a.u.) from

figure 7.3e. 156

7.10 (Left axis) The fitted nr radial profile (solid) at one time t = 0.74 s, plotted on

the same radial and logarithmic scales as figure 7.9a. (Right axis) The Code-

predicted runaway densities nCode (dots) for the surfaces in figure 7.5d, also at

time t = 0.74 s and spanning 8 orders of magnitude. 157
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7.11 Top: A spectrogram of magnetic fluctuations measured by Mirnov coil BP14 GHK

near the midplane on the low field side. Bottom: Central electron temperature

measurement in keV. 158

7.12 The same as figure 7.11, but with the time range limited to t = 0.62-0.82 s. Full

sawtooth crashes are clearly seen in the Te signal for t . 0.72 s; they reduce in

amplitude (i.e. become partial sawteeth) for t & 0.72 s. 159

7.13 Top and middle: Same as figure 7.11, but with time and frequency ranges re-

stricted to t = 1.0-1.7 s and f = 40-80 kHz, respectively. Bottom: HXR and

photoneutron signals (a.u.). The HXR-only signal is offset vertically (shifted up-

ward) compared to the HXR+n signal, in order to show both signals clearly.

Otherwise, they almost overlap exactly. 161

7.14 Histograms (with statistical error bars) of measured ratios of (a) on-axis to

Connor-Hastie threshold electric fields E0/EC [33], from (2.8); (b) on-axis to

Dreicer electric fields E0/ED [34, 35], from (2.7); and (c) characteristic radiation

to collisional timescales τrad/τcoll, from (2.24), for flattop data when synchrotron

radiation was (red) and was not (black) observed. Note the different vertical axis

limits. (t = 0.5-1.5 s) 163

8.1 A top-down schematic of the tokamak midplane. The plasma is pink, with the

major radius of the magnetic axis dotted. The MSE diagnostic has ten CCW views;

here, only the lines-of-sight are shown. This figure is the same as figure 4.1. Refer

to figure 8.2 for the full fields-of-view. 170

8.2 A top-down schematic of the ten-channel MSE diagnostic (black box) and its

ten fields-of-view. The plasma boundary (solid) and magnetic axis (dotted) are

overlaid. This is the same figure as figure 4.11b. Compare to figure 8.1. 172

8.3 Histograms of polarization (a) angle θpol and (b) fraction fpol for each channel,

denoted by the normalized tangency radius rtan/a. Bin widths are ∆θpol = 10◦

and ∆fpol = 0.1. For each channel, the vertical axis spans 0 to 1, and all bar

heights (probabilities) sum to 1. Data are from 28 discharges and over 1000

time-slices during the plasma current flattop (t = 0.5-1.5 s). 174

8.4 (a) A horizontal cross-section: A detector (bottom), with line-of-sight tangency

radius Rtan, views two runaways (black dots) moving in approximately circular

orbits with different pitch angles θp at two radii. (b) A vertical cross-section:

A detector (left), with inclination δ < 0 and opening half-angle α > 0, views

runaways with pitch angles θp,min = |θB−δ|−α (upper) and θp,max = |θB−δ|+α
(lower) in a magnetic field B with local pitch tan θB > 0. The vertical axis is Ẑ,

and local toroidal vector is φ̂. (Not to-scale.) 176
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8.5 Synthetic intensity measurements of each MSE channel modeled in Soft, aver-

aged with a uniform distribution over momentum space, as a function of normal-

ized minor radius (i.e. initial runaway position). The experimentally-determined

normalized tangency radius is indicated by a vertical black line for each channel

(labeled at left). Note that channels 1-3 have data reflected over r/a = 0 (in

grey). The locations of the magnetic axis and flux surfaces with q = 1, 4/3,

3/2, 2, and 3 are shown as solid vertical lines; shaded regions, extending halfway

between adjacent surfaces, are used in step (iii) of the methodology of section 8.4. 179

8.6 Detector response functions, from Soft, of the polarization (a) angle θpol and (b)

fraction fpol versus normalized (total) momentum p/mc and pitch angle θp, for

MSE channel 2 at time t = 1.04 s. Grey regions indicate practically-undetectable

regions of phase space. 180

8.7 Soft-predicted polarization (a) angle θpol and (b) fraction fpol versus normalized
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bian J = p2 sin θp. The location of peak detected emission is p/mc ≈ 40 and

θp ≈ 0.16 rad. 186

8.12 Soft+Code-predicted polarization (a) angle θpol and (b) fraction fpol for the

Alcator C-Mod discharge of interest, versus time and normalized tangency radius

of the MSE channels (horizontal dotted lines). Time and spatial resolutions are

∆t = 100 ms and ∆rtan/a ∼ 0.1-0.2. Compare to figure 8.10a and 8.10b. 186

8.13 Histograms of polarization (a) angle θpol and (b) fraction fpol for each channel,

denoted by the normalized tangency radius rtan/a. These data were taken at times

when lower hybrid (LH) current drive was on. Bin widths are ∆θpol = 10◦ and

∆fpol = 0.1. For each channel, the vertical axis spans 0 to 1, and all bar heights

(probabilities) sum to 1. Data are from 28 discharges, but from only 50-100 total

time-slices within t = 0.5-1.8 s. Compare to figure 8.3. 190

8.14 (a) Modeled total (plasma + runaway) current density profiles, Jtot = Jp + Jr,

and (b) Soft-predicted polarization angle θpol measurements, versus normal-

ized radius r/a, for four ratios of Ir/Itot: 0 (black), 1/8 (blue), 1/4 (red), and

1/2 (grey). Note the logarithmic vertical axis in (a). All runaways were modeled

with energies E = 30 MeV and pitch angles θp = 0.1 rad in (b). 192

B.1 Illustration of an idealized setup for measuring the four Stokes parameters. Polar-

ized radiation E emitted at A along k̂ = ẑ is incident on the linear polarization
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A. Fasoli, C. Gormezano, Y. Gribov, O. Gruber, T.C. Hender, W. Houlberg, S. Ide, Y. Kamada,
A. Leonard, B. Lipschultz, A. Loarte, K. Miyamoto, V. Mukhovatov, T.H. Osborne, A. Polevoi,
and A.C.C. Sips. Chapter 1: Overview and summary. Nuclear Fusion, 47(6):S1–S17, 2007.

[9] M. Greenwald, D.G. Whyte, P. Bonoli, Z.S. Hartwig, J. Irby, B. LaBombard, E. Mar-
mar, J. Minervini, M. Takayasu, J. Terry, R. Vieira, A.E. White, S. Wukitch, D. Brunner,
R.T. Mumgaard, and B.N. Sorbom. The high-field path to practical fusion energy, 2018.
https://doi.org/10.7910/DVN/OYYBNU.

[10] B.N. Sorbom, J. Ball, T.R. Palmer, F.J. Mangiarotti, J.M. Sierchio, P. Bonoli, C. Kasten, D.A.
Sutherland, H.S. Barnard, C.B. Haakonsen, J. Goh, C. Sung, and D.G. Whyte. ARC: A com-
pact, high-field, fusion nuclear science facility and demonstration power plant with demountable
magnets. Fusion Engineering and Design, 100:378 – 405, 2015.

[11] A.Q. Kuang, N.M. Cao, A.J. Creely, C.A. Dennett, J. Hecla, B. LaBombard, R.A. Tinguely, E.A.

249

https://www.eia.gov/state/?sid=MA#tabs-4
https://commons.wikimedia.org/wiki/File:HD.6D.768_(13471576805).jpg#file
https://commons.wikimedia.org/wiki/File:HD.6D.768_(13471576805).jpg#file
https://commons.wikimedia.org/wiki/File:Alcator_C-Mod_tokamak_engineering_diagram.jpg
https://commons.wikimedia.org/wiki/File:Alcator_C-Mod_tokamak_engineering_diagram.jpg
https://doi.org/10.7910/DVN/OYYBNU


Tolman, H. Hoffman, M. Major, J. Ruiz Ruiz, D. Brunner, P. Grover, C. Laughman, B.N. Sorbom,
and D.G. Whyte. Conceptual design study for heat exhaust management in the ARC fusion pilot
plant. Fusion Engineering and Design, 137:221 – 242, 2018.

[12] A.C.C. Sips, for the Steady State Operation, and the Transport Physics topical groups of the
International Tokamak Physics Activity. Advanced scenarios for ITER operation. Plasma Physics
and Controlled Fusion, 47(5A):A19–A40, 2005.

[13] The interior of Alcator C-Mod as seen from F port. https://commons.wikimedia.org/

wiki/Alcator_C-Mod#/media/File:Alcator_C-Mod_Fisheye_from_Fport.jpg. Taken by
R. Mumgaard and C. Bolin 2013-09-17. Accessed: 2019-02-13.

[14] L.L. Lao, H. St. John, R.D. Stambaugh, A.G. Kellman, and W. Pfeiffer. Reconstruction of current
profile parameters and plasma shapes in tokamaks. Nuclear Fusion, 25(11):1611, 1985.

[15] N. Commaux L.R. Baylor D. Brunner C.M. Cooper N.W. Eidietis E.M. Hollmann A.Q. Kuang
C.J. Lasnier R.A. Moyer C. Paz-Soldan R. Raman M.L. Reinke D. Shiraki, R.S. Granetz and R.A.
Tinguely. Disruption mitigation in the presence of pre-existing MHD instabilities. Proceedings of
the 26th IAEA Fusion Energy Conference, 2016.

[16] R.A. Tinguely, R.S. Granetz, A. Berg, A.Q. Kuang, D. Brunner, and B. LaBombard. High-
resolution disruption halo current measurements using Langmuir probes in Alcator C-Mod. Nuclear
Fusion, 58(1):016005, 2017.

[17] V.V. Plyusnin, C. Reux, V.G. Kiptily, G. Pautasso, J. Decker, G. Papp, A. Kallenbach,
V. Weinzettl, J. Mlynar, S. Coda, V. Riccardo, P. Lomas, S. Jachmich, A.E. Shevelev, B. Alper,
E. Khilkevitch, Y. Martin, R. Dux, C. Fuchs, B. Duval, M. Brix, G. Tardini, M. Maraschek,
W. Treutterer, L. Giannone, A. Mlynek, O. Ficker, P. Martin, S. Gerasimov, S. Potzel, R. Paprok,
P. J. McCarthy, M. Imrisek, A. Boboc, K. Lackner, A. Fernandes, J. Havlicek, L. Giacomelli,
M. Vlainic, M. Nocente, U. Kruezi, COMPASS team, TCV team, ASDEX-Upgrade team, EURO-
Fusion MST1 Team, and JET contributors. Comparison of runaway electron generation param-
eters in small, medium-sized and large tokamaks—a survey of experiments in COMPASS, TCV,
ASDEX-Upgrade and JET. Nuclear Fusion, 58(1):016014, 2018.

[18] V.V. Plyusnin, V. Riccardo, R. Jaspers, B. Alper, V.G. Kiptily, J. Mlynar, S. Popovichev,
E. de La Luna, F. Andersson, and JET EFDA contributors. Study of runaway electron generation
during major disruptions in JET. Nuclear Fusion, 46(2):277, 2006.
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ence of magnetic perturbations in magnetically confined plasmas. Journal of Plasma Physics,
81(5):475810503, 2015.

[49] O.J. Kwon, P.H. Diamond, F. Wagner, G. Fussmann, and ASDEX Team and NI Team. A study
of runaway electron confinement in the ASDEX tokamak. Nuclear Fusion, 28(11):1931, 1988.

[50] J.D. Strachan. Runaway electron transport in the LT-3 tokamak. Nuclear Fusion, 16(5):743–751,
1976.
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252



runaway electron distribution in tokamaks. Physics of Plasmas, 20(9):093302, 2013.
[61] R. Jaspers, N.J. Lopes Cardozo, A.J.H. Donné, H.L.M. Widdershoven, and K.H. Finken. A
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runaway-electron generation. Phys. Rev. Lett., 114:115002, 2015.

[84] M. Vlainic, P. Vondracek, J. Mlynar, V. Weinzettl, O. Ficker, M. Varavin, R. Paprok, M. Imrisek,
J. Havlicek, R. Panek, J.-M. Noterdaeme, and the COMPASS Team. Synchrotron radiation from
runaway electrons in COMPASS tokamak. 42nd European Physical Society Conference on Plasma
Physics, (P4.108), 2015.

[85] C. Paz-Soldan, C.M. Cooper, P. Aleynikov, N.W. Eidietis, A. Lvovskiy, D.C. Pace, D.P. Brennan,
E.M. Hollmann, C. Liu, R.A. Moyer, and D. Shiraki. Resolving runaway electron distributions in
space, time, and energy. Physics of Plasmas, 25(5):056105, 2018.

[86] C. Paz-Soldan, N.W. Eidietis, R.S. Granetz, E.M. Hollmann, R.A. Moyer, J.C. Wesley, J. Zhang,
M.E. Austin, N.A. Crocker, A. Wingen, and Y. Zhu. Growth and decay of runaway electrons
above the critical electric field under quiescent conditions. Physics of Plasmas, 21(2):022514,
2014.

[87] E.M. Hollmann, P.B. Parks, N. Commaux, N.W. Eidietis, R.A. Moyer, D. Shiraki, M.E. Austin,
C.J. Lasnier, C. Paz-Soldan, and D.L. Rudakov. Measurement of runaway electron energy distri-
bution function during high-Z gas injection into runaway electron plateaus in DIII-D. Physics of
Plasmas, 22(5):056108, 2015.

254

https://github.com/hoppe93/SOFT2


[88] R.J. Zhou, L.Q. Hu, E.Z. Li, M. Xu, G.Q. Zhong, L.Q. Xu, S.Y. Lin, J.Z. Zhang, and the EAST
Team. Investigation of ring-like runaway electron beams in the EAST tokamak. Plasma Physics
and Controlled Fusion, 55(5):055006, 2013.

[89] R.J. Zhou, I.M. Pankratov, L.Q. Hu, M. Xu, and J.H. Yang. Synchrotron radiation spectra and
synchrotron radiation spot shape of runaway electrons in Experimental Advanced Superconducting
Tokamak. Physics of Plasmas, 21(6):063302, 2014.

[90] Y. Shi, J. Fu, J. Li, Y. Yang, F. Wang, Y. Li, W. Zhang, B. Wan, and Z. Chen. Observation of
runaway electron beams by visible color camera in the Experimental Advanced Superconducting
Tokamak. Review of Scientific Instruments, 81(3):033506, 2010.

[91] Y.P. Zhang, Y. Liu, G.L. Yuan, M. Isobe, Z.Y. Chen, J. Cheng, X.Q. Ji, X.M. Song, J.W. Yang,
X.Y. Song, X. Li, W. Deng, Y.G. Li, Y. Xu, T.F. Sun, X.T. Ding, L.W. Yan, Q.W. Yang, X.R.
Duan, and Y. Liu. Observation of the generation and evolution of long-lived runaway electron
beams during major disruptions in the HuanLiuqi-2A tokamak. Physics of Plasmas, 19(3):032510,
2012.

[92] Z.Y. Chen, B.N. Wan, S.Y. Lin, Y.J. Shi, L.Q. Hu, X.Z. Gong, H. Lin, and M. Asif. Measurement
of the runaway electrons in the HT-7 tokamak. Review of Scientific Instruments, 77(1):013502,
2006.

[93] R.H. Tong, Z.Y. Chen, M. Zhang, D.W. Huang, W. Yan, and G. Zhuang. Observation of runaway
electrons by infrared camera in J-TEXT. Review of Scientific Instruments, 87(11):11E113, 2016.

[94] A.C. England, Z.Y. Chen, D.C. Seo, J. Chung, Y.S. Leev, J.W. Yoo, W.C. Kim, Y.S. Bae, Y.M.
Jeonv, J.G. Kwak, M. Kwon, and the KSTAR Team. Runaway electron suppression by ECRH and
RMP in KSTAR. Plasma Science and Technology, 15(2):119, 2013.

[95] S.A. Bozhenkov, M. Lehnen, K.H. Finken, M.W. Jakubowski, R.C. Wolf, R. Jaspers, M. Kantor,
O.V. Marchuk, E. Uzgel, G. Van Wassenhove, O. Zimmermann, D. Reiter, and the TEXTOR team.
Generation and suppression of runaway electrons in disruption mitigation experiments in TEXTOR.
Plasma Physics and Controlled Fusion, 50(10):105007, 2008.

[96] K. Wongrach, K.H. Finken, S.S. Abdullaev, R. Koslowski, O. Willi, L. Zeng, and the TEXTOR
Team. Measurement of synchrotron radiation from runaway electrons during the TEXTOR toka-
mak disruptions. Nuclear Fusion, 54(4):043011, 2014.

[97] K. Wongrach, K.H. Finken, S.S. Abdullaev, O. Willi, L. Zeng, Y. Xu, and the TEXTOR Team.
Runaway electron studies in TEXTOR. Nuclear Fusion, 55(5):053008, 2015.

[98] I. Entrop, N.J. Lopes Cardozo, R. Jaspers, and K.H. Finken. Scale size of magnetic turbulence in
tokamaks probed with 30-MeV electrons. Physical Review Letters, 84:3606–3609, 2000.

[99] I. Entrop, N.J. Lopes Cardozo, R. Jaspers, and K.H. Finken. Diffusion of runaway electrons in
TEXTOR-94. Plasma Physics and Controlled Fusion, 40(8):1513, 1998.

[100] T. Kudyakov, S.S. Abdullaev, S.A. Bozhenkov, K.H. Finken, M.W. Jakubowski, M. Lehnen,
G. Sewell, O. Willi, Y. Xu, and the TEXTOR team. Influence of Bt on the magnetic turbulence
and on the runaway transport in low-density discharges. Nuclear Fusion, 52(2):023025, 2012.
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