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Abstract

Spatial expansions occur across multiple scales, from the expanding range of a species
to the growth of tumors and microbial biofilms. In ecology, range expansions are be-
coming more frequent due to environmental changes and rare long distance dispersal,
often facilitated by anthropogenic activities. Simple models in theoretical ecology
explain many emergent properties of range expansions, such as a constant expansion
velocity, in terms of organism-level properties such as growth and dispersal rates.
Moreover, the evolution and potentially even the survival of an expanding popula-
tion depends on its genetic diversity, which is also predicted to reduce drastically
during range expansions. However, testing these quantitative predictions in natural
populations is difficult because of large environmental variability and the inability of
replicating historical processes. In this thesis, I describe the use of a microbial model
system to gain a deeper understanding of spatial range expansions in a controlled and
replicable setting. In particularly, I study the role of cooperative growth in spatial
expansions. Given the prevalence of cooperative growth in nature, understanding the
effects of cooperativity is essential to managing invading species and understanding
their evolution. For non-cooperative growth, the expansion dynamics are dominated
by population growth at the low-density front, which pulls the expansion forward. I
find these expansions to be in close quantitative agreement with the classical theory
of pulled waves by Fisher and Skellam, suitably adapted to my experimental system.
However, as cooperativity increases, the expansions transition to being pushed, i.e.
controlled by growth in the bulk as well as in the front. In addition to the population
dynamics, cooperation within populations is also predicted to significantly alter the
evolutionary fate of expanding populations. This difference in evolutionary dynamics
within pulled and pushed waves is also studied experimentally.

Thesis Supervisor: Jeff Gore
Title: Associate Professor
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Chapter 1

Introduction

Physically one of the largest in size in the world, the Cane toad is a species of toad

that is native to southern and mainland central America. It derives its name from

the function it plays in controlling pests that afflict sugarcane crops in this region.

For this reason, between 1935 to 1937, approximately 60,000 individuals of this toad,

taken from Hawaii, were introduced in Queensland in northeastern Australia, in an

attempt to control local pests, the grey-backed cane beetle (Dermolepida albohirtum)

and French’s beetle (Lepidiota frenchi). While the toads took very well to the new

territory, it turned out that they were not at all effective against these particular pests.

However, without the natural predators and competitors of the toad from their native

ecosystem, their population in Australia exploded, and they rapidly spread across the

continent. The toads have a poisonous skin, causing the death of their Australian

predators, thus affecting the food chain, and hence the entire ecology of the region.

Today, their population in Australia is estimated to be over 1.5 billion, and they

continue to expand their territory by 50 to 60 kilometers every year [1, 2, 3]. Moreover,

they have been found to evolve longer legs over time, resulting in an accelerating

expansion, subjecting ever larger areas to extensive environmental, social, health and

economic damage.

In a similar turn of events, the Gypsy moth was brought to the US from its native

Europe in 1869 with the intention of breeding it for silk production. It was released

into the wild, this time by accident, in Medford, Massachusetts, and now extends its
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range all the way to Wisconsin in central US. This invasive pest has caused defoliation

of millions of hectares of forests, once again causing extensive environmental and

economic damage estimated at billions of dollars. Without any intervention, it has

been found to expand on average at the rate of about 20 km/year, but unlike the

toads, the expansion speed of the moths hasn’t undergone any evolution. Curiously,

however, the expansion speed is not constant, but oscillates, so that the geographical

range of the moths increases approximately every alternate year and stays stable

during the intervening time [4, 5, 6].

Over the past few decades, invasive species have been introduced around the world

at an increasing rate because of increase in trade and travel [7]. Although it initially

takes time for the invaders to adapt to and establish in the new area, they also do not

have to face their native predators and competitors. Consequently, once established,

they often outcompete local species, resulting in extensive (and usually detrimental)

reorganization of the local ecology. Extensive studies of specific invaders as well as

a good general understanding of the dynamics of spatial expansion is critical for

devising strategies to control and mitigate such biological invasions.

Even without invaders, species undergo range shifts and range expansions natu-

rally in response to changing climate and environmental conditions. For instance, in

the past, repopulations from small geographical reserves into extensive areas have oc-

curred on a global scale following ice ages [8, 9, 10]. The survival of the species during

such large scale repopulations depends on their ability to adapt and, as in the case

of the toads, evolve during the expansion, which in turn depends on the availability

of a diverse genetic pool within the population. The very process of expansion, how-

ever, also erodes genetic diversity because every time the population advances into a

new territory, it does so by establishing a small subpopulation of founders (carrying

only part of the total gene pool), which then grows to occupy the territory. Thus,

along with the population dynamics, it is also necessary to understand evolutionary

dynamics during expansions to successfully predict the establishment, survival and

expansion rates of species.

Spatial population expansions occur at multiple length and time scales, including
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the growth of bacterial biofilms, growth of tumors, and the spread of infectious dis-

eases. General principles connecting the demographic properties of individuals within

the populations, such as the growth and dispersal rate, to the emergent properties

of the expansion wave in one system can potentially shed light on a broad range of

other systems. For instance, cells in tumors have been shown to have a very high

genetic diversity, and undergo non-darwinian evolution (i.e. evolution is not driven

by fitness, so that even individuals with a lower fitness survive and proliferate) [11]. A

similar phenomenon of non-Darwinian evolution has been observed in the ecological

and microbial expansion contexts where the expansion causes the continued prolif-

eration of even deleterious mutations in the population [12]. Since it is easier to

manipulate and observe bacterial cells compared to mammalian ones, a reasonable

approach to further our understanding of the genetics of tumors might be to tease

apart the mechanisms behind non-darwinian selection in bacterial expansions.

Given their small size and generation time, microbial populations are often used

in ‘microcosm experiments’, where eco-evolutionary phenomena can be studied in a

much more controlled and replicable setting over shorter time scales (days to months)

compared to ecological field studies (that might take years or decades and are sub-

ject to large environmental fluctuations that often confound the results). While this

approach trades off some potentially relevant complexities of real ecosystems, it adds

biological realism and has been successfully employed in the past to bridge the gap

between theory and field observations. For instance, ecosystems often show multiple

stable states, such as a healthy and a eutrophic lake, and ecologists are interested

in predicting how much fertilizer the lake can absorb before transitioning into the

unhealthy state. Microcosm experiments with yeast have been used to demonstrate

how the critical slowing down of dynamics near the bifurcation point of a dynamical

system can be used to predict such an ecological state transition under deteriorating

environmental conditions [13]. In the same spirit, my research has been focused on

using a microbial system to observe some interesting phenomena that occur during

the spatial expansion of populations. In particular, considerable effort has been put

into understanding how cooperative behaviour within a population alters its expan-
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sion and evolutionary dynamics, and I test some of these predictions using yeast as a

model organism.

When growing in the presence of finite resources, the per capita availability of

resources decreases with increasing population density, and as a result, so does the

per capita growth rate. Thus, in general, it is assumed that a species will grow fastest

in the limit of zero density, and the per capita growth rate decreases monotonically

with increasing density. However, the growth rate of a species at very low densities

can be subdued due to numerous reasons - in a larger group the individuals may

better survive predators, hunt more effectively, or find mates more easily. In such

populations, there is a range of densities over which the growth rate depends positively

on the density, and such populations are said to grow cooperatively. In contrast,

populations that do not display this subdued growth at low densities are said to grow

competitively.

In the presence of simple diffusive dispersal, it has been long known that competi-

tively growing populations expand at a constant velocity. Moreover, the local growth

rate of such populations is the highest at the very tip of the expanding front (which

is at the lowest density), and the expansion velocity of these populations depends on

the single growth parameter, the growth rate at the low density tip. Cooperation is

predicted to add numerous interesting features to this simple picture. First of all,

since growth is now fastest in the interior of the population rather than the expand-

ing tip, the velocity dependence on growth is much more complex. Moreover, in the

presence of a spatially structured environment, cooperation is predicted to cause ef-

fects such as the pulsed expansion that was seen empirically in the Gypsy moths,

invasion pinning (where over an extended range of parameters like the diffusion rate,

the expanding front is pinned and does not move) [14, 15], velocity locking (where

the velocity of the front becomes insensitive to changing parameters) and in some

cases, even negative velocities (where the population remains stable in the absence

of dispersal, but by adding dispersal, the population actually contracts rather than

expand). Besides the rich phenomenology at the population level, cooperation is also

predicted to dramatically alter the dynamics of evolution during expansion.
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In the microcosm experiments that we have developed, yeast expands in a struc-

tured landscape consisting of discrete patches of space, where we have precise control

over dispersal between patches. By changing the growth medium of the yeast, we

can also tune the amount of cooperation within the yeast populations. This com-

bination allows us to quantitatively examine some of the aforementioned theoretical

predictions. In the following two chapters, I describe how we use this system to first

characterize the differences in expansion dynamics with and without cooperation; and

then go on to examine the consequences of these differences on the evolutionary fate

of these expansions.
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Chapter 2

Range expansions transition from

pulled to pushed waves with

increasing cooperation

This chapter was published in similar form in [16]. This work was done in collabora-

tion with Eugene Yurtsev and Prof. Kirill Korolev.

2.1 Significance statement

Species undergo range shifts in response to changing climate or following an intro-

duction to a new environment. Invasions often incur significant economic cost and

threaten biodiversity. Ecological theory predicts two distinct types of expansion

waves: pulled and pushed, depending on the degree of cooperativity in the popu-

lation. Although pulled and pushed invasions differ dramatically in how population-

level properties such as the expansion rate depend on the organism-level properties

such as rates of growth and dispersal, these theoretical predictions have not been

tested empirically. Here, we use a microbial model system to perform these tests

and demonstrate that pulled and pushed waves can be distinguished based on their

dynamics.
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2.2 Introduction

From a local disturbance by an invasive species to the global expansion of the bio-

sphere after an ice age, range expansions have been a major ecological and evolu-

tionary force [8, 17]. Range expansions and range shifts are becoming increasingly

frequent due to the deliberate introduction of foreign species [3, 18], unintentional

introductions caused by global shipping [7], and temperature changes associated with

climate change [19, 20]. Many invasions disturb ecosystem functions, reduce bio-

diversity, and impose significant economic costs [21, 22]. The interest in invasion

forecasting and management resulted in a substantial effort to develop predictive

mathematical models of range expansions [18, 4, 23, 24, 25], but empirical tests of

these models have been less extensive.

Species invade new territory through a combination of dispersal and local growth.

Mathematically, these dynamics can be described by a variety of models depending

on the details of the species ecology or simplifying assumptions [26]. For example,

the invasion of house finches in North America has been successfully modeled with

integrodifference equations [18]. Continuous reaction-diffusion equations have been

used to describe the expansion of trees following the end of an ice age and the ex-

pansion of musk rats form central Europe [27], while metapopulation models with

disjoint patches of suitable habitat and discrete generations are more appropriate for

certain butterflies living in temperate climate [28]. One of the great achievements

of mathematical ecology is the discovery that all these diverse models of population

expansion can be divided into two broad classes of pulled and pushed expansion with

very different properties.

The class of the expansion is determined by how the per capita growth rate de-

pends on population density [29, 30]. While some populations experience only in-

traspecific competition and grow best at very low densities, others exhibit an Allee

effect and grow best at intermediate densities, due to intraspecific facilitation, higher

chances of finding mates, or other factors [31, 32, 33, 34]. These Allee effects may

be weak (reduced but positive growth rate at low density) or strong (inability to
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survive at low density). Pulled expansions occur when Allee effects are small, and

the expansion velocity depends only on the growth rate at low densities and the rate

of dispersal. Such expansions are dominated by the dynamics at the very edge of

the expanding wave front, which effectively pulls the wave forward [29, 30, 35]. As

a result, pulled invasions are known to be sensitive to demographic fluctuations and

lead to rapid loss of genetic diversity because the population size at the expansion

edge is very small [36, 37, 38, 39, 40]. When the Allee effect is more severe, including

but not restricted to the case of strong Allee effects, the expansions are pushed. In

contrast to the simple and universal theory of pulled expansions, the velocity and

other properties of pushed expansions depend on the per capita growth rate at all

population densities, and thus, are sensitive to all the details of the species ecology

[29, 30, 35].

Since direct observations of the Allee effect are often challenging, it is important

to find alternative ways to distinguish pulled and pushed expansions. Unfortunately,

these two invasion classes share many generic properties. In particular, both expan-

sions advance as population waves that move at constant velocity and maintain a

constant shape of the expansion front. Even the qualitative shape of the expansion

front is the same for pulled and pushed waves because population densities decay ex-

ponentially at the expansion edge in both cases [29, 30]. Thus, one needs quantitative

rather than qualitative comparison between theory and observations to distinguish

pulled and pushed waves.

Although high quality quantitative data on range expansions is often limited,

several studies have successfully tested theories of range expansions in natural and

laboratory populations. Veit and Lewis could accurately describe the spread of house

finches in North America by incorporating an Allee effect and long-distance dispersal

[18]. Importantly, this was one of the early studies highlighting the difference between

pulled and pushed invasions. Lewis and Kareiva later showed that the rate of spread

also depends on the initial spatial abundance profile of the invader [41]. Melbourne

and Hastings have carried out a very detailed comparison between theory and exper-

iment for a laboratory population of flour beetles and showed that the unavoidable
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heterogeneity of the founding organisms leads to large variation in the rate of spread

between replica populations [42]. At the microscopic scale, Wakita tested the ex-

pected relation between the rate of spread and nutrient availability in E. coli [43] and

Giometto et. al. used the theory of pulled waves to describe the expansion of tetrahy-

mena in linear channels [44]. All of these studies however focused only on the rate of

invasion and did not test theoretical predictions for the shape of the invading fronts.

More importantly, these studies were conducted in a single environment and did not

attempt to distinguish pulled and pushed expansions; in part because there was no

experimental population that could undergo both pulled and pushed expansions.

Experimental microbial populations are a tractable system to study ecological

phenomena without the overwhelming complexity of the natural world. Yet, such

experiments can guide our thinking, show which theoretical predictions may be ob-

servable in nature [45, 46], and help develop new models [47]. For example, range

expansions of microbial populations have revealed the dependence of the invasion ve-

locity on the supply of resources [48] and demographic stochasticity [44]. Experiments

with microbes have also shown the strong effect of range expansion on competition

[49, 50, 51, 52, 53, 54, 55] and neutral evolution via the founder effect or gene surfing

[56, 57]. In this study, we focus on expansions with and without the Allee effect and

quantify their differences. Since it is possible to control and measure population sizes

in microbial populations over a few orders of magnitude, our experimental system is

particularly well suited for studying the shape of the expansion fronts, as well as for

future investigations on the rates of diversity loss and effects of habitat fragmentation

such as invasion pinning [58, 14].

To recreate a range expansion in the laboratory, we used a metapopulation of

budding yeast S. cerevisae. Yeast grows best at low densities on simple sugars such

as glucose or galactose, but has a well-characterized Allee effect in the disaccharide

sucrose [59, 13, 60, 61]. Sucrose is digested cooperatively because the yeast cells

secrete an enzyme to hydrolyze extracellular sucrose into glucose and fructose, which

are then transported into the cell. Higher cell densities facilitate the utilization of

glucose, and therefore the growth rate of yeast on sucrose is maximum at intermediate
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population densities, where glucose utilization is high but competition is not strong

enough. Importantly, the strength of the Allee effect can be controlled by tuning

the relative concentrations of glucose and sucrose in the growth medium. Using

this experimental system, we tested nontrivial properties of invasions including the

exponential decay of population density at the front. We then observed the transition

from pulled to pushed expansion waves as the Allee effect was made more severe, and

found signatures of this transition in the expansion velocity and front shape. Our work

confirms that Allee effects substantially affect invasion dynamics and demonstrates

that pushed and pulled invasions can be distinguished by quantitative measurements.

2.3 Results

2.3.1 Experimental system

To study range expansions, we allowed the yeast populations to expand in one di-

mension along the columns of a 96-well plate. Each well represented a patch of

suitable environment in a metapopulation where growth and death cycles occurred

via a resupply of nutrients and dilution. Dispersal was achieved via exchange of small

volumes of the growth media, corresponding to the migration rate (𝑚), between the

nearest wells (Fig. 2-1a). The experiments were started with a steep exponential

initial population density profile, and after the profiles equilibrated over a few cycles,

we used flow cytometry to measure the density profiles of the emergent waves. This

allowed us to measure with high accuracy the velocity (𝑣) and the spatial decay rate

of the exponential front (𝜆) over multiple orders of magnitude of population density

(Fig. 2-1b,c).

Range expansions of yeast in our metapopulations are well-described by the fol-

lowing model, which describes migration between nearest neighbor wells followed by

growth over one experimental cycle:

𝑛𝑡+Δ𝑡,𝑥 = 𝑔Δ𝑡

(︂
𝑛𝑡,𝑥 + 𝐷𝑒𝑓𝑓

∆𝑡

∆𝑥2
(𝑛𝑡,𝑥+Δ𝑥 + 𝑛𝑡,𝑥−Δ𝑥 − 2𝑛𝑡,𝑥)

)︂
(2.1)
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Here, 𝑡 and 𝑥 are time and position; ∆𝑡 and ∆𝑥 are time of the dilution cycles

and separation between the wells and is the dispersal rate determined by how much

fluid is exchanged between the wells; 𝐷𝑒𝑓𝑓 is the dispersal rate determined by how

much fluid is exchanged between the wells (see eqn. A.12 for the relationship between

𝐷𝑒𝑓𝑓 and the experimental parameter,𝑚); and 𝑔Δ𝑡 (𝑛) specifies net growth during one

cycle. Note that, in the limit of small ∆𝑡 and ∆𝑥, this discrete model is equivalent to

the well-known equation proposed by Fisher, Kolmogorov, and Skellam to describe

biological invasions:

𝜕𝑛

𝜕𝑡
= 𝐷

𝜕2𝑛

𝜕𝑥2
+ 𝑛𝑟 (𝑛) (2.2)

Thus our experiments can be viewed as both mimicking metapopulation dynamics

typical for many ecosystems and approximating the continuous dynamics frequently

assumed in mathematical ecology. The dynamics of pulled expansions are completely

determined by linearized growth (𝑔Δ𝑡 (𝑛𝑡,𝑥) ≈ 𝑛𝑡,𝑥𝑒
𝑟0Δ𝑡; 𝑟0 = 𝑟 (𝑛 = 0)) and the ex-

pansion velocity is given by:

𝑣𝑙𝑖𝑛 = 𝑚𝑖𝑛𝜆>0

(︂
1

𝜆∆𝑡
𝑙𝑛

[︂
𝑒𝑟0Δ𝑡

[︂
1 +

𝐷𝑒𝑓𝑓∆𝑡

∆𝑥2
(𝑐𝑜𝑠ℎ (𝜆∆𝑥) − 1)

]︂]︂)︂
≈ 2

√︀
𝑟0𝐷 (2.3)

where the population density at the front decays exponentially with a rate 𝜆, such

that the velocity is minimized (eqn. A.10). In the limit of vanishing ∆𝑡 and ∆𝑥,

this gives the classic Fisher velocity, 𝑣 = 2
√︀

𝑟0𝐷𝑒𝑓𝑓 , and the spatial decay rate of the

population density at the expansion edge, 𝜆 =
√︀

𝑟0/𝐷𝑒𝑓𝑓 .

In sharp contrast, the knowledge of linearized growth is not sufficient to determine

the velocity of a pushed expansion, because immigration from fast growing regions

behind the front increases the rate of invasion. Therefore, the deviations between

the velocity and decay rate observed in the experiment and the corresponding values

given by equation indicate that the expansion is pushed, not pulled. In our analysis,

we use this difference between the observed expansion velocity and the linearized-

growth-velocity to distinguish pulled and pushed waves.
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2.3.2 Testing the theory of pulled waves

A surprising prediction for pulled waves is that the emergent properties of the wave

front, its velocity (𝑣) and spatial decay rate (𝜆), depend on the per capita growth

rate of the population only at low density, 𝑟0, and not at higher densities. To the

first order, 𝑣 ∝ √
𝑟0, and consequently, an apparently healthy population that grows

to a very high carrying capacity can in fact be a poor invader if it grows slowly, as

compared to a fast growing population that saturates at lower densities. To test this

hypothesis, we compared the range expansion of S. cerevisae in two different media:

0.125% glucose, and 0.5% galactose. In both media, growth was exponential at low

densities (Fig. 2-2a), but the two carbon sources showed a trade-off between faster

low-density growth versus higher carrying capacity. Specifically, yeast cells initially

grew at a faster rate in glucose, but saturated to a lower carrying capacity compared

to galactose (Fig. 2-2b). Furthermore, there wasn’t a measurable Allee effect in

either media (Fig. A-2), and so we expected the expansions in both media to be

pulled, and hence dependent only on the low-density growth rate. Consistent with

the pulled-wave prediction, the resulting expansion waves indeed had a higher velocity

in glucose, even though the bulk grew to a larger density in galactose (Fig. 2-2c).

To further quantify the qualitative agreement with theory that we observed above,

we repeated the range expansion experiment in a wide range of environmental con-

ditions, with the same two media, 0.125% glucose or 0.5% galactose. We varied

the migration rate (𝑚 = 0.4,𝑚 = 0.5) and the death rate (diluting each cycle by

amounts ranging from 2 to 4), which resulted in invasion velocities ranging from 0.2

𝑤𝑒𝑙𝑙𝑠/𝑐𝑦𝑐𝑙𝑒 up to 0.9 𝑤𝑒𝑙𝑙𝑠/𝑐𝑦𝑐𝑙𝑒. Because the growth rate at very low densities

needs to be known accurately, flow cytometry was used to count the number of di-

visions (fold growth) that cells undergo over the course of each 4 hour cycle (Fig.

A-2). We found excellent agreement between the experimentally observed velocities

and the linearized-growth-velocities predicted based only on the rates of dispersal and

growth at low densities (Fig. 2-3a). Although this agreement is expected given the

near-logistic growth in glucose and galactose, it provides a quantitative confirmation
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of the theory of pulled waves.

A similar comparison between the observed and predicted spatial decay rates was

more challenging due to stochastic effects and long equilibration times. Stochastic

effects appear due to the small number of individuals at the front and create much

larger deviations between the deterministic theory (Eqn. 2.1) and the actual popula-

tion dynamics for the spatial decay rate compared to the velocity (Fig. A-4). These

deviations are known to make the fronts steeper (larger 𝜆) [62, 63]. Instead of using

the analytical approximations that account for the stochastic effects, we chose a more

direct and precise approach to test the theory of pulled waves. Since the distinction

between pulled and pushed waves lies only in the degree to which the growth dy-

namics can be linearized, we performed individual-based simulations that included

demographic fluctuations using only the growth rate measured at low densities. For

pulled but not pushed waves, the observed velocity and spatial decay rates must match

simulations. As expected for expansions in glucose and galactose environments, the

observed spatial decay rate was generally close to simulated values confirming that

these expansions are pulled (Fig. 2-3b). However, moderate deviations were observed

under some experimental conditions. All four of these outliers occurred when the

predicted spatial exponent was much smaller than that of the initial profile. As a

result, these expansion profiles required much longer time to reach their equilibrium

shape and could still be out of equilibrium by the end of our experiments. Thus,

the observed deviations might be due to insufficient observation time rather than the

deviations from the theory of pulled waves.

2.3.3 Expansions transition from pulled to pushed as cooper-

ativity increases

Populations in which the per capita growth rate decreases monotonically with increas-

ing density always expand as pulled waves [64]; similarly, expansions of populations

with a strong Allee effect are always pushed [29]. However, populations with a weak

Allee effect may be either pulled or pushed, depending on the magnitude of the Allee
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effect (Fig. 2-4a). Thus, the transition from pulled to pushed waves occurs at some

intermediate magnitude of the Allee effect, within the weak Allee effect regime (Fig.

2-4b).

To study this transition from pulled to pushed waves with increasing magnitude of

the Allee effect, we studied the expansion of yeast on sucrose, where growth is known

to be cooperative. In our experiments, low-density growth rate measurements in 2%

sucrose showed an Allee effect over densities ranging from ∼ 103 to 105 𝑐𝑒𝑙𝑙𝑠/𝑤𝑒𝑙𝑙,

where the per capita growth rate increased with density (Fig. 2-5a). We note that this

region of inverse density dependence is two orders of magnitude below the carrying

capacity. As a result, the Allee effect would not have been visible with optical density

measurements alone, and it was only revealed by fold growth measurements using

flow cytometry - a situation that parallels the difficulty of detecting Allee effects in

natural populations. We show below that even this weak Allee effect was sufficient

to make the expansion in 2% sucrose pushed instead of pulled.

We tuned the magnitude of the Allee effect by modulating the amount of sucrose

in the media. As sucrose concentration is increased, the growth rate at very low

densities increases slowly, because only a fraction of the hydrolysis products can be

captured before they diffuse away (Fig. A-7). In contrast, the maximal per capita

growth rate, observed at intermediate cell densities, increases much more rapidly

because dense populations use sucrose more efficiently (Fig. A-5). As a result, the

magnitude of the Allee effect, measured as the difference between the low-density and

the maximal per capita growth rate, increases with increasing sucrose concentration

(Fig. A-8). Thus, by looking at expansions in different concentrations of sucrose,

we were able to observe the transition from pulled to pushed expansions. We found

that up to a sucrose concentration of 0.07%, the observed velocities were close to the

linearized-growth-velocities, indicating that the expansions were pulled. However, as

the Allee effect increased in magnitude, the observed and linearized-growth-velocities

started to differ, reflecting the transition to pushed expansions (Fig. 2-5b).

We further confirmed that the observed differences between the pushed and the

pulled waves were significant, by focusing on three sucrose concentrations: 0.22%,
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0.67% and 2%. Since the migration rates were known and the low-density growth

rates were measured, we could directly compute the linearized-growth-velocity in

each of the environments and compare it to the experimentally measured rate of

invasion. While the velocities of pulled waves fluctuated in a small region around the

linearized-growth-velocities due to demographic and environmental stochasticity, the

expansion velocities at high sucrose concentrations were much larger than, and well

separated from, the corresponding linearized-growth-velocities (Fig. 2-5c). Thus, we

indeed observed a transition from pulled to pushed waves.

We also tested whether the transition from pulled to pushed waves occur in our

simulations when we use the entire dependence of the growth rate on population den-

sity. For high sucrose concentration we found that the expansion velocity in simula-

tions with the entire growth curve exceeded the linearized-growth-velocity. However,

the simulated and experimentally observed expansion velocities differed quantita-

tively, possibly because of the insufficient number of measurements of the growth

rate at high cell concentrations (Fig. A-6).

To illustrate the difference between pulled and pushed waves, we compared a

pulled expansion in glucose to a pushed expansion in sucrose with the same velocity

and dispersal rate. If both waves are pulled, the density profiles must have identical

decay rates, but, if the expansion in sucrose is pushed, then it must have a steeper

front. Keeping all other experimental parameters the same, media with 0.125% glu-

cose allowed such a comparison. The low-density growth rate in 0.125% glucose was

marginally higher than in 2% sucrose (Fig. 2-5a), and the velocity of expansion in

both the glucose and sucrose environments was nearly the same within measurement

error. However, the spatial decay rates of the wave fronts were very different for the

two waves. As predicted, the wave profile in sucrose was steeper than that in glucose,

providing additional support to our finding that expansion in sucrose was a pushed

wave (Fig. 2-5d) and demonstrating that the differences in the decay rates can also

be used for distinguishing pushed from pulled expansions.
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2.4 Discussion

Although range expansions have been studied extensively in ecology, many theoretical

predictions have remained untested. Since pulled and pushed waves appear qualita-

tively similar, with a constant expansion velocity and exponential fronts, expansions

are often assumed to obey the universal theory of pulled waves. Our study provides

a proof of principle that pulled and pushed waves can be distinguished with quanti-

tative measurements. We demonstrated that these two classes of expansions can be

empirically distinguished based on the violation of the expected relationship between

the velocity and either the front shape or the low-density growth rate. At the same

time, our work also shows that such measurements are difficult even in the controlled

laboratory settings.

Distinguishing between pushed and pulled expansions could be important for fore-

casting invasion dynamics and understanding species evolution. Predicting the rate

of colonization may be particularly challenging for pushed waves because they can

advance slowly in the beginning due to an Allee effect, but accelerate later as the

bulk density increases [58, 6]. Pushed waves are also expected to have slower rates of

neutral evolution and diversity loss compared to pulled expansions [37, 65]. The con-

servation strategies to limit pulled and pushed invasions could also be very different.

For pulled waves, the best way to limit the expansion is to eradicate the invaders at

the very edge of the expansion. In contrast, a balanced eradication strategy over the

entire invasion front is more effective for pushed waves [58, 66].

Beyond the specific results described above, our work established a tractable ex-

perimental system where many ecological and evolutionary scenarios or theories can

be tested. Given the increasing rate of range shifts, it is important to experiment with

how populations respond to unavoidable changes in their spatial distribution as well

as to specific ecological perturbations designed as mitigation measures. Laboratory

microbial systems could be very useful for studying such phenomena in greater detail,

complementing more realistic but less tractable field studies.

Some questions that can be immediately investigated in our experimental system
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are the response of invasions to environmental fragmentation and the effects of range

expansions on species evolution. Habitat fragmentation is likely to increase due to an-

thropogenic activities and might be especially important for species moving to barely

hospitable regions as they escape the warming climate. Theory predicts that pushed,

but not pulled, waves can become pinned or stuck in a fragmented environment, yet

empirical tests of this prediction are scarce. Species evolution also depends critically

on whether it invades as pulled or a pushed wave. For example, the founder effect

has a much greater role in pulled compared to pushed invasions. Quantitatively ex-

periments in controlled laboratory settings are likely to provide valuable insights into

these important phenomena.
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Figure 2-1: Theoretical predictions for the velocity and spatial density pro-
file of pulled and pushed waves were quantitatively tested in metapopu-
lations of budding yeast, S. cerevisae, in a controlled experimental setup.
(a) Yeast populations expanded along the columns of a 96-well plate. The experi-
ments were started with an exponentially decaying spatial density profile. After every
growth cycle of 4 hours, cells were diluted into a new plate and dispersal was achieved
by transferring small amounts of media to neighboring wells along the columns (b)
Optical density measurements at the end of each cycle revealed an emergent wave
traveling at constant velocity. (c) At later times, after allowing the fronts to equi-
librate, the density profiles were also measured using flow cytometry. These high
resolution measurements at the low density fronts showed exponential fronts extend-
ing over 4 orders of magnitude in density. The spatial decay rate (SDR), 𝜆, was
estimated by averaging over density profiles over the last few cycles, after the expan-
sion wave had equilibrated. The profiles measured using flow cytometry were also
used to measure the velocity more accurately (SI A.1).
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Figure 2-2: In pulled waves, expansion velocity depends on the growth rate
only at low densities irrespective of the carrying capacity. (a) A popula-
tion of S. cerevisiae grows exponentially at low densities in 0.125% glucose and 0.5%
galactose. Growth rate at low densities is higher on 0.125% glucose compared to 0.5%
galactose, and decreases monotonically in both environments. (b) The galactose envi-
ronment has a higher carrying capacity compared to glucose. The two environments
thus show a trade-off between the low-density growth rate and the carrying capac-
ity. (c) Although the galactose environment is more favorable in terms of the total
nutrient availability (carrying capacity), expansions are faster in glucose because the
populations grow faster in glucose at low density.

34



0.2 0.5 0.8
Linearized-growth velocity (vlin)

0.2

0.5

0.8

O
bs

er
ve

d
ve

lo
ci

ty
(v

o
b

s
)

1 2 3
Linearized-growth SDR (λlin)

1

2

3

O
bs

er
ve

d
S

D
R

(λ
o

b
s)

a b

Figure 2-3: For pulled waves, the growth rate at low density is sufficient
to determine the emergent wave properties quantitatively. Over a wide
range of environmental conditions, the observed expansion velocities and
the spatial decay rates (SDR) of the population density at the front closely
match the predictions based on the measured low-density growth rate. (a)
Predicted and observed velocities in two different media are shown (glucose in blue,
galactose in green). The migration rate (triangles: 𝑚 = 0.5, squares: 𝑚 = 0.4)
and the death rate (darker colors are smaller death rates) were varied. Independently
measured growth rates, only at low densities, in the two different media were sufficient
to predict the velocities accurately. (b) A similar comparison for the spatial decay
rates (𝜆, 𝑤𝑒𝑙𝑙−1) also shows close agreement for steep predicted fronts (large 𝜆).
However, shallow predicted fronts deviated slightly from predictions, which may be
a consequence of the long relaxation time to equilibrium for such fronts. x-axis
error bars: standard error of the mean of the measured low-density growth rates,
propagated to the errors in predicted velocity (a) and spatial decay rate (b). y-axis
error bars: (a) standard deviation of velocity measured for five different thresholds,
and (b) standard deviation in spatial decay rate measured over three different regions
of the front.
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Figure 2-4: Expansions transition from pulled to pushed at an intermediate
strength of Allee effect within the weak regime. (a) Three different growth
profiles displaying with increasing magnitude of Allee effect (growth profile 0 is purely
logistic; 1, 2 have a weak Allee effect), but with the same low-density growth rate.
Unlike pulled waves, the velocities of expansion in the three cases are not the same.
In particular, both logistic (0) and the less severe Allee effect (1) result in pulled
waves with the same velocity, given by 2

√
𝑟0𝐷. In contrast, condition (2), with a

larger but still weak Allee effect leads to a pushed wave with velocity greater than
2
√
𝑟0𝐷. (b) To illustrate the transition from pulled to pushed waves in the weak Allee

effect regime, we simulated expansions using a model (eqn. A.13), keeping growth
rate at low density constant at 𝑟0. The velocities begin to deviate from predictions
based on the low-density growth rate, once cooperative effects start to contribute
significantly to growth. When growth rate decreases monotonically (blue shaded
region), the resultant expansions are always pulled. For low cooperativity (up to the
red line), the expansions are pulled, even though there is a weak Allee effect. Beyond
the threshold, however, the expansions are pushed, reflected in the deviations from
the linearized-growth-velocities.

36



−0.1 0.0 0.1 0.2
vobs-vlin

0

1

2

3

4

N
um

be
ro

fo
cc

ur
an

ce
s

10−4 10−3 10−2 10−1 100 101

[suc] (% wt/vol)

0.2

0.3

0.4

0.5

0.6

Ve
lo

ci
ty

(w
el

ls
/c

yc
le

)

Observed

linearized-
growth-
velocity

a b

c d

102 103 104 105 106

Population density (cells/well)

0.25

0.35

0.45

Pe
rc

ap
ita

gr
ow

th
ra

te
(h

r−
1 )

0.125% glucose

2% sucrose

−4 −2 0 2 4 6 8
Position in comoving frame

(well)

100
101
102
103
104
105
106

Po
pu

la
tio

n
de

ns
ity

(c
el

ls
/w

el
l)

λ
p

u
ll

λ
p

u
s
h

vpull = vpush

λpull < λpush

37



Figure 2-5: A sufficiently large Allee effect gives rise to pushed waves that
can be identified based on their deviations from predictions based on lin-
earized growth. (a) Experimental measurement of growth rates in sucrose (red)
and glucose (blue) show that growth rate in glucose decreases monotonically with
increasing density. In sucrose, the per capita growth rate increases with density for
densities ranging from 103 to 105 𝑐𝑒𝑙𝑙𝑠/𝑤𝑒𝑙𝑙. This weak Allee effect is sufficient to
cause the expansions in sucrose to be pushed. (b) The prediction that increasing mag-
nitude of Allee effect leads to a transition from pulled to pushed waves was tested by
increasing the sucrose concentration in the media, which increases the magnitude of
the Allee effect (Fig. A-8). Confirming our expectation, the observed velocities devi-
ated significantly from pulled-wave predictions (linearized-growth-velocities) for high
sucrose concentrations, indicating a transition into the . Under all of these conditions,
the Allee effect was weak. Shaded region indicates S.D. in measured velocity (red)
and S.E.M. of low-density growth rate propagated to the error in predicted velocity
(gray). (c) Pushed waves can be quantitatively distinguished from pulled waves based
on the deviations of observed velocity from linearized-growth predictions. Although
the observed velocities of pulled waves were distributed around the predicted velocities
(based on linearized growth), observed velocities of pushed waves were well separated
from this distribution and clearly distinguishable (p-value 0.0015). (d) Superimposing
the front profiles at different times after equilibration (which is the same as observing
the wave profile in a frame moving with the same velocity as the front - the comoving
frame), allows for a more accurate measurement of the spatial decay rate of the front.
Measurements in this comoving frame show that when conditions are chosen so that
the glucose and sucrose waves travel at the same velocity, the pushed wave in sucrose
is steeper than the pulled wave in glucose. Thus, pushed waves can be distinguished
from pulled waves based on their deviation from the universal relationship between
either the low density growth rate and velocity, or velocity and front shape.
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Chapter 3

Cooperation mitigates diversity loss

during microbial range expansions

3.1 Significance statement

Spatially expanding populations lose genetic diversity rapidly because of the repeated

bottlenecks formed at the front as a result of the serial founder effect. However, the

rate of diversity loss depends on the specifics of the expanding population, such as its

growth and dispersal dynamics. We have previously demonstrated that changing the

amount of within-species cooperation leads to a qualitative transition in the nature of

expansion from pulled (driven by migration at the low density tip) to pushed (driven

by migration from the high density region at the front, but behind the tip). Here we

demonstrate experimentally that pushed waves, caused in the presence of sufficiently

strong cooperation, result in strongly reduced genetic drift during range expansions,

thus preserving genetic diversity in the newly colonized region.

3.2 Introduction

Spatial population expansions occur at multiple scales, from the growth of bacterial

biofilms and tumors to the spread of epidemics across the globe [67, 68, 69]. Natural

populations often undergo range shifts or range expansions, in response to chang-
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ing climate [20, 70], and increasingly, following introduction into novel geographical

areas due to trade, travel and other anthropogenic factors [7]. The fate of moving

populations depends on their genetic diversity, which allows them to adapt to the

new environment [71]. The very process of spatial expansion is, however, predicted

to erode the diversity of the population [72, 73], since the newly colonized territory

is seeded by only a subset of the genotypes that exist in the original population.

This phenomenon, known as the founder effect, greatly amplifies genetic drift in

the population and leads to diversity loss and accumulation of deleterious mutations

[74, 75, 12]. Thus, a firm understanding of the founder effect is necessary to predict

and control the fate of expanding species.

While diversity is lost during all expansions, the rate of loss is expected to be

strongly influenced by the expansion dynamics, which depend on the details of dis-

persal and growth. Expansions can be classified into two categories - pulled and

pushed [76, 29]. In populations that do not exhibit any within-species cooperation,

the growth rate is maximum at low densities and decreases monotonically as the den-

sity increases. In such populations, migrants at the low density tip of the wave grow

at the fastest rate, and drive the expansion into the new area. Such expansions are

called pulled waves, and their expansion velocity, also known as the Fisher velocity,

depends solely on the diffusion rate of the individuals and the growth rate of the

species at low density. On the other hand, pushed waves occur in the presence of

cooperative growth within the population (i.e. positive density dependence of the

growth rate, also known as the Allee effect) whereby the tip grows at a much lower

rate than the higher density bulk [77, 31]. Since the growth rate at low density in

such populations is lower than in the bulk, the fisher velocity for such populations is

lower than the actual expansion velocity. The difference in the dynamics of pulled

and pushed waves has substantial genetic consequences [56, 78, 79, 80, 65, 81].

In its simplest form, range expansions can be viewed as a series of founding events,

where a small subsample of a population establishes a founding colony in a new

territory and then grows rapidly even as the process repeats itself. The series of

population bottlenecks at each of the founding events quickly erodes the genetic
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diversity in the population, in a process aptly called the serial founder effect. However,

among species with the Allee effect, growth in the low density founding colonies is

much more subdued, and the colonization of the new territory is driven by migrants

from well-established high-density regions with high genetic diversity, rather than by

the quick growth of the founders. Consequently, populations experiencing the Allee

effect are predicted to maintain genetic diversity over longer distances and times (Fig.

3-1A).

This differential rate of diversity loss in pulled and pushed waves is well-characterized

in a wide range of theoretical models [56, 78, 79, 80, 65, 81, 37, 82, 83], and has also

been observed empirically in field studies [10, 84, 38]. However, it has been difficult

to directly connect the empirical observations to theory [10], in part because these

natural expansions cannot be replicated, and also because numerous environmental

factors cannot be as well-controlled. Microcosm experiments have helped address this

chasm between theory and experiments by partially trading off realism for much bet-

ter controlled and replicable biological systems [85, 42, 86, 87]. Indeed, some ingenious

experiments with bacterial colonies expanding on agar have previously demonstrated

diversity eroding and diversity preserving range expansions [46, 56, 49, 53]. In these

experiments, microbial colonies expanded on the surface of agar, and formed mono-

clonal sectors during expansion, leading to loss of diversity. However, this sectoring

phenomenon was lost when two different mutualist species were inoculated together

at the center instead of a single species. The sector formation in the former case and

its lack in the mutualists can be well-understood mechanistically for this particular

system in terms of the (microscopic) demographic and geometrical properties of the

expanding species. In contrast, in our current study, we explore the differential rate of

diversity loss more generally as a consequence of growth demographics, independent

of species-specific mechanisms.

We endeavor to experimentally understand the genetic consequences of range ex-

pansions using the framework of pulled and pushed waves with a focus on establishing

the general relationship between cooperatively vs competitively growing populations,

and their neutral evolution during expansion. Towards this end, we extend a pre-
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viously developed experiment, where we demonstrated the transition from pulled to

pushed waves with increasing cooperation in yeast [16], to now include two other-

wise identical genotypes with different fluorescent markers, whose frequency can be

tracked to study neutral evolution. We find that yeast populations expanding as a

pulled wave undergo a drastic reduction in genetic diversity, unlike the same popu-

lation expanding as a pushed wave. Moreover, we quantify the rate of diversity loss

in terms of the effective population size, and show that the effective population size

correlates well with how pushed the expansion is (aka ‘pushedness’).

We also observe a few evolutionary jackpot events during which one of the geno-

types abruptly increases in frequency. Such events are predicted to arise naturally due

to rare stochastic excursions of the expansion front ahead of its expected position [88].

Our results support this theory because abrupt changes in allele frequency co-occur

with substantial changes in front shape. Importantly, we show that these evolutionary

jackpot events can be distinguished from selective sweeps without additional follow

up experiments.

3.3 Results

The stepping-stone metapopulation model is widely used to describe the spatiotempo-

ral population dynamics in patchy landscapes [28]. In this model, populations grow in

discrete patches that are connected to nearest neighbor patches via migration, which

is reflected in our experimental setup. The budding yeast, S. cerevisiae, expands

in one dimension, along the rows of a 96-well plate, with cycles of growth, nearest-

neighbor migration, and dilution into fresh media (Fig. 3-1B). At the beginning of

every cycle, a fixed fraction (𝑚/2) of culture in each well is transferred into wells at

adjacent locations on either side, while the remaining (1 −𝑚) is transferred into the

well at the same location (migration rate, 𝑚 = 0.4, unless stated otherwise). At the

same time, the culture is also diluted into fresh media by a constant factor. After

dilution, the cultures are allowed to grow for 4 hours before the cycle is repeated.

Starting with a steep initial spatial density profile of yeast, this process leads to a
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stable wavefront (as defined in Fig. 3-1A, Materials and Methods (B.1)) moving at a

constant velocity (Fig. 3-2A).

Previous studies have shown that yeast typically do not display cooperative be-

havior when growing on simple sugars such as galactose or glucose, but grow coop-

eratively on sucrose [59]. Thus, without any Allee effect, we expect that expansions

in galactose and glucose would lead to pulled waves, where the velocity is given by

the Fisher velocity. We confirm this in experiments, by first explicitly measuring the

low-density growth rate of our strain (DH, Materials and Methods (B.1)) in galac-

tose (Fig. B-1). We also measure the expansion velocity and spatial density profile

using flow cytometry, and find that it is indeed consistent with the Fisher velocity

corresponding to the measured growth rate. We thus establish that the expansions

in galactose are pulled waves.

3.3.1 Loss of diversity during expansions

In order to quantify the neutral genetic drift during these pulled expansions, we use

two otherwise identical genotypes of the same strain, but with different constitutively

expressed fluorescent markers, whose frequency can be tracked using flow cytometry.

We start with a 1:1 ratio of the two strains in the initial density profile for the

expansion experiment. Over the course of about 100 cycles, the relative frequencies

of the two genotypes in the expansion front (as defined in Materials and Methods)

change rapidly, undergoing large fluctuations, occasionally leading to fixation of one

of the genotypes. Tracking the genotype fractions over 24 replicate realizations of the

experiment reveals that while the waves are nearly identical in terms of the velocity

and wavefront shape, the internal dynamics of individual fractions is highly different

(Fig. 3-2B). This can be clearly seen from the variance in fractions across replicates

(Fig. 3-2E), which grows from 0 at the beginning of the experiment to the maximal

value of 0.5. The measured variance allows us to quantify the rate of loss of diversity

in terms of the effective population size using the following relationship:
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𝑣𝑎𝑟(𝑡) = 𝑓0(1 − 𝑓0)

(︂
1 − 𝑒𝑥𝑝

(︂ −𝑡

𝑁𝑒𝑓𝑓

)︂)︂
(3.1)

where 𝑣𝑎𝑟(𝑡) is the variance in the fractions across replicates as a function of time,

𝑓0 = 0.5 is the initial fraction at 𝑡 = 0, and 𝑡 is in the units of generation time (cycles

in this case, since the entire front is effectively diluted by 2x every cycle, and so,

each cycle corresponds to one generation). For the pulled waves in galactose, the

effective population size is approximately 210 - four orders of magnitude smaller than

the actual size of the population in the wavefront (Fig. 3-2E). We thus see that there

is a tremendous loss of genetic diversity during pulled expansions.

We repeat the same experiment, but now with yeast growing on sucrose, where

we expect growth to be cooperative and hence, the expansions to be pushed [16]. The

expansion speed and bulk population density in sucrose is similar to that in galactose

(Fig. 3-2A). Yet, while the waves are physically similar, their effect on the genetic

diversity is drastically different. The frequencies of the two genotypes, starting at an

equal 1:1 ratio, remain almost unchanged at the end of the experiment (Fig. 3-2D).

The diversity preserving nature of these pushed expansions is reflected in the large

effective population size, estimated to be higher than 15,000 - at least two orders of

magnitude larger than in pulled waves (Fig. 3-2E).

3.3.2 Effective population size is correlated to the ‘pushed-

ness’ of expansion wave

While the dynamics of genotype fractions during galactose and sucrose expansions

is consistent with intuition from theory, the dynamics of fractions during expansions

in another simple sugar, glucose, are observed to be rather surprising. Although we

expect the expansions to be pulled, and hence lose diversity quickly, similar to the

galactose expansions, the effective population size in glucose is actually intermediate

between that in galactose and sucrose (Fig. 3-2C,E). Diversity during glucose expan-

sions is lost much faster than in sucrose, but not quite as rapidly as in galactose.

In order to better understand the unexpected behavior in glucose, we explicitly
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test the pulled or pushed nature of expansions in all three media. Pulled waves expand

at the Fisher velocity, which is determined solely by growth rate at low density and

the migration rate, while pushed waves expand at a velocity greater than the Fisher

velocity. We define a ‘pushedness’ parameter, given by the ratio of the actual velocity

to the Fisher velocity, so that pushedness = 1 for pulled waves, and > 1 for pushed

waves. Indeed, the pushedness of the galactose expansions is observed to be close to

1, whereas that for sucrose is 2.3, clearly confirming that the galactose expansions

are pulled and the sucrose ones are pushed (Fig. 3-3A). Surprisingly, the pushedness

for glucose expansions is also greater than 1, suggesting that contrary to our naïve

expectation, the waves in glucose are in fact not pulled. More careful measurements

of the growth profile of the DH strains in 0.2% glucose reveal a very tiny amount of

cooperative growth at extremely low densities (below 103𝑐𝑒𝑙𝑙𝑠/𝑤𝑒𝑙𝑙), making them

very weakly pushed (Fig. B-1). While this Allee effect might originate due to many

possible factors such as collective pH modulation [89], it is important to note that the

emergent property of the wave, pushedness, explains the decreased rate of diversity

loss without the need to understand species-specific growth mechanisms.

We further probe the relationship between pushedness and the rate of diversity

loss experimentally, by repeating the expansion experiments in multiple environments

using two different pairs of strains (DH-RFP/DH-CFP and BY-RFP/BY-YFP). The

different strain-media combinations give rise to expansions spanning a broad range of

pushedness values (Fig. 3-3B). We find that the pushedness correlates well with the

effective population size during expansions (Fig. 3-3C). Broadly, for all instances of

pulled waves, Neff was under 500, over four orders of magnitude below the actual pop-

ulation size. Within the pushed waves, we find two regimes with very different rates

of diversity loss. In the weakly pushed regime, the effective population size ranged

between 500 and 4000. We thus see that even for pushed waves, if the cooperativity is

not strong enough, diversity can be lost quite rapidly. Finally, in thestrongly pushed

regime, we can only set a lower bound on the effective population sizes (Materials

and Methods), and the lower bounds are at or over 15,000 (Fig. 3-3C). Overall, for

populations with approximately equal bulk densities within a factor of 3, the rate of
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diversity loss is seen to be strongly modulated by the pushedness.

3.3.3 Distinguishing selective sweeps from jackpots

Throughout our experiments, we observe a few instances where one of the genotypes

appears to take over the population very rapidly. Fig. 3-4A shows two such rapid

takeover events, which closely resemble evolutionary sweeps. However, during range

expansions, such sweeps can also occur purely as a consequence of spurious migration.

For instance, rare long distance dispersal might help establish a clonal population

in an unoccupied territory near the front. This clonal population merges with the

expanding front, resulting in a sudden increase of the fraction of that genotype in

the front. This process, called the ‘embolism effect’ has been previously proposed

in theoretical literature [83], and we found one instance of it in our experiments

(Fig. B-2). In addition to embolism, rapid takeovers in experiments might also occur

when a clump of cells of the single genotype is transferred over to the front of the

wave, leading to increased frequency of that genotype in the front. As the expansion

progresses, this increased frequency propagates to higher and higher densities till it

takes over the entire front (Fig. 3-4B, top panel). We call this phenomenon a jackpot,

to distinguish it from aa selective sweep, and observe it in simulations as well, in the

presence of noisy migration (Fig. 3-4B,C).

The excess migration at the front that results in jackpots enables us to distinguish

them from selective sweeps. As a consequence of the excess migration, the wavefront

widens (i.e. the front width increases) transiently (Fig. 3-4B, bottom panel). This

also leads to the wave expanding faster transiently, but both the velocity and front

width return to their mean values as the front equilibrates back. We confirm this

mechanism in simulations, where, by following the trajectory of a rapid takeover

event in the front width - velocity state-space, we see the transient front widening

accompanied by an increased velocity, before the trajectory returns to the mean front

width and velocity (Fig. 3-4E). On the other hand, selective evolution towards a

higher growth rate (migration rate is fixed in our assay and cannot be selected for)

leads to increased velocity but decreased front width (front width of pulled waves
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∼ 1√
𝑟0
, [29]). Moreover, in the case of selective sweeps, the trajectories in the velocity-

front width space do not return to the previous mean, but rather settle at the new

equilibrium. This phenomenological intuition is also confirmed by explicitly adding a

low mutation rate in the simulations and following the state space trajectory during

periods of rapid takeover (Fig. 3-4E).

Among the rapid takeovers that we observe in experiments, a subset can be clearly

seen to follow the selection template. Fig. 3-4D shows the state space trajectory for

one replicate that putatively evolved to a higher growth rate (red trajectory, compare

to a jackpot shown in blue), corresponding to the takeover trajectories shown in Fig.

3-4A. We observe these putative selective sweeps only in a single growth medium

among several that we used in our experiments; this medium was limiting in terms

of an essential amino acid, and thus, is likely to apply a higher evolutionary pressure

than the others. Taken together, this suggests that the rapid takeovers that we see in

this particular medium are indeed instances of selective sweeps (Fig. B-3). We also

observe a few rapid takeover events that do not follow the selection template, but

rather, look like jackpots (Fig. B-2). In fact, even though the two fraction timeseries

shown in Fig. 3-4A are nearly identical, the two can be clearly distinguished as

selective sweep or jackpot based on their state space trajectories. Given the rarity of

both jackpots and selective sweeps due to mutation, we only see anecdotal evidence

of the two in our experiments. However, the few instances that we indeed see for both

processes are consistent with theoretical predictions and simulations.

3.4 Discussion

In this study, we used a well-controlled laboratory microcosm setup to probe the

distinct evolutionary consequences of pulled and pushed expansions. We observed

the rapid loss of diversity due to the serial founder effect when yeast expanded as a

pulled wave, and a much more subdued loss of diversity when it expanded as a pushed

wave. Moreover, we found environmental conditions that span across different levels

of pushedness, and saw that the effective population size in the front is strongly corre-
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lated with the amount of pushedness of the expansion wave. Thus, pushedness proves

to be a useful measure in predicting the rate of diversity loss during range expansions.

Finally, we also discovered that in one of the expansion media, the yeast evolved to

have a higher growth rate, and we were able to distinguish such evolutionary sweeps

from rapid takeovers occurring simply due to stochasticity, although they look very

similar when only the genetic structure is being tracked.

The extensive theoretical work on range expansions has led to other very inter-

esting predictions that could also be addressed using our experimental system. One

prediction pertains to the quantitative dependence of the effective population size

on the actual population size of the wavefront [82]. It has been established that,

with growth and migration held fixed, 𝑁𝑒𝑓𝑓 scales linearly with 𝑁𝑏𝑢𝑙𝑘 in fully-pushed

expansions, and 𝑁𝑒𝑓𝑓 ∼ 𝑙𝑜𝑔3 (𝑁𝑏𝑢𝑙𝑘) in pulled expansions. Moreover, in the presence

of a very weak Allee effect, Birzu et al predict a third class of expansions that is

intermediate between pulled and pushed, where 𝑁𝑒𝑓𝑓 scales sublinearly with 𝑁𝑏𝑢𝑙𝑘.

We made an attempt to observe these different scaling relationships by varying the

bulk population size in experiments in two different ways - by changing the total vol-

ume, and thus the population size, and by changing the amount of a limiting amino

acid. Unfortunately, in the former case, the altered volume also altered the density-

dependence of the growth, while in the latter case, the low amino acid condition led to

evolution during expansion (Fig. B-1). We speculate that the expansions in glucose,

where the loss of diversity is intermediate between galactose and sucrose, might in

fact belong to the newly predicted third class of expansions. Modifying our assay

to modulate the bulk density without changing growth properties would help resolve

this speculation.

In addition to genetic drift, demographic stochasticity and environmental noise

have also been predicted to cause fluctuations in the position of the expansion front

[62, 88, 82], leading to its diffusion around the mean position. Much like the case of

genetic drift, in pushed waves, the effects of demographic noise on front diffusion are

predicted to be subdued, and the diffusion largely reflects environmental noise. In

contrast, in pulled waves, front diffusion is predicted to be faster, owing to the large
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influence of demographic noise. We observefront diffusion in both pulled and pushed

waves in our experiments, where the variance in front position remains constant for

some initial period before it starts increasing linearly with time (Fig. B-4). However,

we do not see a significant quantitative difference in front diffusion in pulled vs pushed

waves, in part due to lack of a sufficiently long timeseries of data, and partly because

environmental noise might be dominating both pulled and pushed waves.

Allee effects, or the inability of organisms to grow optimally at very low densities,

is often considered to have a negative impact on populations. For instance, it leads to

lower expansions velocities compared to the velocity if growth were not suppressed at

the low density tip. However, in this study we demonstrate that the Allee effect can

in fact have a very beneficial effect on the expanding population by helping preserve

diversity as the population enters novel territories, where the diversity is especially

critical for survival. Even a miniscule Allee effect at very low densities, such as we

found in the glucose expansions, can go a long way in helping mitigate diversity loss.

Perhaps such tiny Allee effects pervasive in many invading species explain the lower

than predicted rates of diversity loss during their expansion.
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Figure 3-1: Yeast expanding in

a 1D metapopulation land-

scape is used to study the ge-

netic consequences of pulled

and pushed range expansions.

A. Range expansions can be

broadly classified as pulled or

pushed depending on the primary

drivers of the expansion. In pulled

expansions, the small number of

founders from the tip of the ex-

pansion grow rapidly in the new

territory (top panel). This small

founding population only contains

a small subset of the total diver-

sity in the bulk of the population.

Thus, diversity is quickly eroded as

the population expands into new

area. Pushed waves are driven by

migration out of the bulk, because

the small density of founders at the

front has a subdued growth rate

(bottom panel). As a result, ge-

netic diversity is maintained even

as the population expands. B.

The experimental setup consists

of yeast expanding in a discrete

space, discrete time 1D metapop-

ulation landscape. Adjacent wells

are connected via migration, and

exchange a fixed fraction of cells,

m, every cycle, and then grow for

4 hrs (top panel). This process re-

sults in an emergent wavefront of

a fixed density profile moving to

the right with a fixed velocity (bot-

tom panel). The location of the

wavefront is determined as the in-

terpolated well position where the

density profile crosses a predeter-

mined threshold. Velocity is then

measured as the rate of advance of

the wavefront location. The entire

area to the right of the threshold

location is defined as the ‘front’ for

subsequent computation of geno-

type frequencies.
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Figure 3-2: Yeast expanding in different growth media loses diversity at very dif-

ferent rates even though the wavefronts have similar physical properties, such as

velocity and bulk density A. Populations of S. cerevisiae growing in galactose, glucose

or sucrose media expand spatially in a 1-dimensional discrete landscape as traveling waves

with a constant velocity and an exponentially decaying wavefront. The velocities, popula-

tion density in the bulk as well as the spatial profile are similar in all three environments.

B. Yeast expanding on galactose lose diversity drastically. Starting with equal initial fre-

quencies of two genotypes that differ only in terms of a single fluorescent marker (RFP or

CFP), the fraction of one of the genotypes in the front (RFP) fluctuates randomly, before

reaching fixation on some occasions. The expansion experiments are replicated 24 times,

and the dynamics of fractions varies by a large amount across replicates. C, D. The same

experiments when repeated in different media, glucose and sucrose, show very different rates

of diversity loss and fraction dynamics. In glucose (C), although we still see a loss of diver-

sity over time, it is much slower compared to the galactose expansions. When expanding in

sucrose (D), we do not see a significant loss of diversity over the observed time period (the

replicate shown in grey was mis-pipeted in cycle 30, and hence diverges from the rest (SI).

This replicate is ignored in further analysis). E. The rate of diversity loss can be quantified

in terms of the rate of increase of variance in fractions across replicates as a function of time

(Eqn. 2.1, 𝑓 = 0.5). In galactose and glucose, the variance increases significantly above zero,

allowing us to quantify the effective population size. In sucrose, the increase in variance is

not statistically significant, allowing us to only set a lower bound on the effective population

size. The drastic loss of diversity in galactose is reflected in the effective population size in

the expanding front, ∼ 220, over four orders of magnitude lower than the actual population

size in the front. Effective size in glucose is around 1500, and that in sucrose is estimated

to be over 15,000.
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Figure 3-3: The ratio of observed velocity to the Fisher velocity (defined
as the pushedness) determines the rate of diversity loss during expansions
A. Range expansions can be pulled or pushed as defined in terms of the ratio of the
observed velocity to the Fisher predicted velocity, which we define as the pushedness of
the expansion. Pulled waves expand at the Fisher velocity, and have a pushedness of 1,
whereas pushed waves have pushedness larger than 1. Consistent with the observed
rates of diversity loss, the waves in galactose have pushedness = 1, and those in
sucrose have pushedness = 2.3, much larger than 1. Surprisingly, expansions in glucose
were also found to be pushed (even though, given that glucose is a simple sugar, we
expect growth to not be cooperative in glucose), although not as strongly as those
in sucrose. This explains the intermediate rate of diversity loss in glucose compared
to galactose and sucrose. B. We repeat the expansion experiments across multiple
environmental conditions (media, death rate, migration rate), for two different pairs
of yeast strains (BY and DH) and observe a wide range of pushedness values for the
different expansions. C. Effective population size is plotted against the pushedness for
the different strain-media combinations. We find that 𝑁𝑒𝑓𝑓 correlates strongly with
the pushedness. For pulled waves, the effective population size is between 100 to 700
- over 4 orders of magnitude lower than the actual population size in the wavefront.
For pushed waves, the effective size is over 15,000, much closer to the actual size in
the wavefront, which is of the order of 106.
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Figure 3-4: Rapid takeover of the front population by one of the genotypes
caused by rare fluctuations of the front can be distinguished from selective
sweeps based on the trajectory in the front width - velocity state space A.
In some instances of the expansion experiments, the fraction of one of the species is
seen to increase very rapidly. The fraction of the species that eventually dominates
is plotted as a function of time for two such instances. Such rapid takeovers are
reminiscent of selective sweeps in well-mixed cultures. B. During spatial expansions,
rapid takeovers can occur without any selection, simply as a result of stochasticity
in migration and growth, or rare long distance dispersal. The top panel shows the
density of two genotypes in a simulation at different times. In an early cycle, at the
very tip, stochasticity in migration led to excess colonization of the purple genotype in
a well near the front (jackpot event). This fluctuation then propagated back towards
the bulk as the purple genotype rapidly took over the front population. Note how
this process was accompanied by a transient widening of the front (bottom panel).
C. Two instances of rapid takeovers in simulations. The orange curve is from a
simulation of a selective sweep during expansion, whereas the blue curve corresponds
to a jackpot event. The dotted lines are the entire trajectory, and the solid sections
correspond to the takeover times that are analyzed further. D, E. Trajectories in the
front width-velocity space for experiments (D) and simulations (E) corresponding to
the solid takeover trajectories in A and C. Each dot corresponds to the front width
and velocity at a single time point for one of the replicates. The axes are rescaled so
that the front width and velocity have mean 0 and standard deviation of 1 (to allow
for comparison across different environmental conditions) Arrows indicate increasing
times. The evolver (orange) in simulations (E) first fluctuates around the mean value
of the width and velocity. After a while however, a mutant establishes in the front,
and the trajectory moves monotonically to the top left after that, towards increasing
velocity and decreasing front width. In contrast, for the jackpot event (blue), the
front width transiently increases, along with an increase in the velocity, and relaxes
back towards the mean velocity and width at later times. Although the timeseries
of the fractions in experiments looks nearly identical in the two instances shown, the
state space trajectories are clearly distinct. The takeover in the red replicate was due
to selection as opposed to a jackpot in the blue replicate.
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Appendix A

Appendix to chapter 2

A.1 Materials and methods

A.1.1 Strains

The yeast strain used is the same as the cooperator strain in (58), derived from

haploid cells BY4741 [mating type a, European Saccharomyces Cerevisiae Archive for

Functional Analysis (EUROSCARF)]. It has a yellow fluorescent protein (yEYFP)

expressed constitutively by the TEF1 promoter inserted into the HIS3 locus using the

backbone plasmid pRS303.

A.1.2 Experimental protocols

All cultures were grown at 30𝑜𝐶 in standard synthetic media (Yeast Nitrogen Base

and Complete Supplement Mixture). The two media used for pulled wave experiments

had 0.125% glucose and 0.5% galactose. The media used for studying the transition

from pulled to pushed waves consisted of 0.008% background glucose (to reduce the

sensitivity of the low-density growth rate to sucrose hydrolysis), in addition to 2%,

0.67%, 0.22%, 0.07%, 0.025%, 0.008%, 0.003% and 0.001% sucrose. All concentrations

are wt/vol.

All experiments were performed in 200𝜇𝐿 batch culture in BD Biosciences Falcon

96-well Microtest plates. Migrations and dilutions were performed every 4 hours using
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the Tecan Freedom Evo 100 robot. Plates were not shaken during growth. Optical

densities were measured on the robot before every dilution cycle in the Tecan Sunrise

platereader. Cell densities for selected cycles were measured in the MacsQuant flow

cytometer after dilution in PBS using the yellow fluorescence channel. Preliminary

growth rate measurements on glucose and galactose were performed using overnight

optical density measurements every 15 mins. The more sensitive low-density growth

rate measurements were performed in 96-well plates without shaking, by measuring

initial and final cell densities over 4 dilution cycles, and ignoring the first 2 cycles for

to transient effects.

In the analysis, front positions were determined as the interpolated well position

where the density (as measured by flow cytometry) crossed a fixed threshold. These

were then used to calculate the velocity of expansion. The final velocity was obtained

by averaging over multiple thresholds ranging between 100 and 1000 cells per well.

The threshold were chosen so as to be sensitive to the dynamics at low density but

at the same time not too low to be affected by Poisson errors in cell counts. Spatial

decay rates were measured after translating the profiles at different times so that they

coincide, and using the combined data to obtain a reliable fit.

A.2 Reaction-diffusion models for one-dimensional

range expansions

Populations expanding via short-range migration in one spatial dimension are often

modeled as a continuous space, time reaction-diffusion equation:

𝜕𝑛

𝜕𝑡
= 𝐷

𝜕2𝑛

𝜕𝑥2
+ 𝑛𝑔 (𝑛) (A.1)

where 𝑛(𝑥, 𝑡) is the density of population at position 𝑥 at time 𝑡. 𝐷 is the dispersal

coefficient, which is assumed to be constant in the simple model, and 𝑔 (𝑛) is the

density dependent per capita growth rate of the population. Many properties of this

model can be computed analytically by linearizing the growth term, 𝑛𝑔 (𝑛) ≈ 𝑛𝑔 (0)

56



at low densities (Fig. A-1); we will also denote 𝑔 (0) as 𝑟0. This approximation is often

accurate because population densities are low at the expansion front. Kolmogorov et.

al. proved that, when 𝑔 (𝑛) is a monotonically decreasing function, this linearization

is guaranteed to capture the expansion dynamics [64]. Expansions described by the

linearized growth term are called pulled because they advance via growth at the low-

density front, which effectively pulls the waves forward. Importantly, the condition

derived by Kolmogorov et al. is sufficient but not necessary. In particular, the

linear approximation continues to hold even when a small Allee effect is present. For

larger Allee effects, dispersal from the faster growing high density region of the front

dominates the growth at the low-density expansion edge, effectively pushing the wave

forward. These ‘pushed’ waves advance at a higher velocity than one would predict

using just 𝑔 (0) [29].

Although the model (Eqn. A.1) can be analyzed in numerous ways [29, 30, 35],

a solution using Fourier transforms is most useful for extending the results to the

case of discrete space and time systems, such as in our experiments. Here, we briefly

outline the solution to the continuous model using Fourier modes as described by

van Saarloos [29]. We then apply a similar analysis to a model appropriate for our

experimental system, which was used to predict the linearized-growth-velocities in

the main text. The spatial Fourier modes of the front can be written as:

𝑛̃(𝑞, 𝑡) =

∫︁ ∞

−∞
𝑛(𝑥, 𝑡)𝑒−𝑖𝑞𝑥𝑑𝑥 (A.2)

where 𝑞 is the wave number of the Fourier modes. To obtain the spreading speed

of a front, we start with an Ansatz assuming the Fourier modes are of the form

𝑛̃(𝑞, 𝑡) = 𝑛̃(𝑞)𝑒−𝑖𝜔(𝑞)𝑡. Substituting back in eqn. A.1 gives the dispersal relationship

(𝜔(𝑞) = 𝑖(𝑟0−𝐷𝑞2)). Assuming that the front moves with some constant asymptotic

velocity, 𝑣⋆, we perform inverse Fourier transforms in the coordinate frame moving

with the front (𝜁 = 𝑥− 𝑣⋆𝑡):

𝑛(𝜁, 𝑡) =
1

2𝜋

∫︁ ∞

−∞
𝑑𝑞 𝑒𝑖𝑞𝜁−𝑖[𝜔(𝑞)−𝑣⋆𝑞]𝑡 (A.3)
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In the large time limit, only those modes near the saddle point of [𝜔(𝑞) − 𝑣⋆𝑞]

survive [90], which results in the following condition:

𝑣⋆ =

[︂
𝑑𝜔

𝑑𝑞

]︂
𝑞⋆

(A.4)

where 𝑞⋆ is the saddle point. Further, in the commoving reference frame, the wave

profile neither grows nor decays in time, so the imaginary part of the exponent must

vanish:

Φ(𝜔(𝑞⋆)) − Φ(𝑞⋆)𝑣⋆ = 0 (A.5)

This gives the set of relationships that can be used to calculate the asymptotic

velocity:

𝑣⋆ =

[︂
Φ(𝜔(𝑞))

Φ(𝑞)

]︂
𝑞⋆

=

[︂
𝑑𝜔

𝑑𝑞

]︂
𝑞⋆

(A.6)

Using the above two relationships, the asymptotic speed and the exponential decay

rate at the front for the F-KPP equation (eqn. A.1) become (note that from eqn.

A.3, is seen as the spatial decay rate):

𝑣⋆ = 2
√︀

𝑟0𝐷, 𝜆 =

√︂
𝑟0
𝐷

(A.7)

A.3 Expansions in discrete space and time models

The discretized form (corresponding to the experimental protocol) of the F-KPP

equation can be written as:

𝑛𝑥,𝑡+Δ𝑡 = 𝑔Δ𝑡

(︁
𝑛𝑥,𝑡 +

𝑚

2
(𝑛𝑥+Δ𝑥,𝑡 + 𝑛𝑥−Δ𝑥,𝑡 − 2𝑛𝑥,𝑡)

)︁
(A.8)

where 𝑥 is the spatial coordinate, and 𝑡 is the cycle number. 𝑔Δ𝑡(𝑛) is the per

capita growth rate, which upon linearization can be written as:
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𝑔Δ𝑡(𝑛) = 𝑛
𝑒𝑟0Δ𝑡

𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛
(A.9)

corresponding to exponential growth at rate 𝑟0 followed by a dilution. Substituting

the Fourier mode 𝑛𝑥 = 𝑒𝑖𝑞𝑥−𝑖𝜔𝑡 in the above linearized equation gives the dispersion

relation:

𝑒−𝑖𝜔Δ𝑡 =
𝑒𝑟0Δ𝑡

𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛
[1 + 𝑚 (𝑐𝑜𝑠ℎ(−𝑖𝑞𝑥) − 1)] (A.10)

Following the analysis of the continuous case, we use saddle point approximation

and require that the front is not changing in the commoving reference frame. The

resulting equations are equivalent to requiring that 𝑣(𝜆) = 𝑠/𝜆 is minimized over 𝜆.

Here, 𝜆 = Φ(𝑞), 𝑠 = Φ(𝜔). For small ∆𝑡, the corrections can be derived analytically

by Taylor expansion. However, since in our experiments, ∆𝑡 = 4 hrs, which is longer

than the time scale set by the growth rate ( 2 hrs), the velocity and spatial decay rate

for the discretized system cannot be calculated as small corrections to the continuous

solution, but have to be evaluated by minimizing eqn. A.10 numerically.

The magnitude of these corrections from the continuous model are shown in Fig.

A-3. Note that the discretized dynamical equation corresponding to the experiment is

not the same as the discretized version of the F-KPP equation, which can be written

as:

𝑛𝑥,𝑡+Δ𝑡 = 𝑛𝑥,𝑡𝑒
𝑟0,𝑒𝑓𝑓Δ𝑡 + 𝐷𝑒𝑓𝑓

∆𝑡

∆𝑥2
(𝑛𝑥+Δ𝑥,𝑡 + 𝑛𝑥−Δ𝑥,𝑡 − 2𝑛𝑥,𝑡) (A.11)

Comparing this with the experiment, the effective growth and diffusion rates in

the continuous space-time model can be written in terms of experimental parameters

as:

𝑟0,𝑒𝑓𝑓 = 𝑟0 −
𝑙𝑛(𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛)

∆𝑡

𝐷𝑒𝑓𝑓 =
𝑚

2

∆𝑥2

∆𝑡
(1 + 𝑟𝑒𝑓𝑓∆𝑡)

(A.12)
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(∆𝑡 = 4 hr, ∆𝑥 = 1 well). The effective parameters can then be used in continuous

models to compare them to the discrete space-time experimental model and evaluate

the magnitude of ’corrections’ that are introduced due to the discretization.

The finite number of organisms per spatial patch also changes the velocity and

spatial decay rate. Although stochastic effects obviously cause fluctuations in the

velocity, the expectation value of the velocity is also reduced as compared to predic-

tions that do not incorporate demographic stochasticity. The deviations have been

shown to be of the order of 1/𝑙𝑜𝑔2𝑁 , where 𝑁 is the number of individuals per unit

length, when space and time are continuous [63]. Moreover, the fronts have been

shown to be steeper when demographic stochasticity is added [62, 63]. We see this

in our experiments, where, without accounting for the demographic stochasticity, the

observed spatial decay rate is larger than predicted. This discrepancy vanished when

we incorporated the effects of stochasticity in our predictions (Fig. A-4).

A.4 Cubic model of the Allee effect

A generic model of the Allee effect was used for making the cartoon in Fig. 4 in the

main text. In this model, the density dependence of growth is given by:

1

𝑛

𝑑𝑛

𝑑𝑡
=

𝑟0
𝑎

(︁
1 − 𝑛

𝑘

)︁
(𝑛 + 𝑎) (A.13)

This model shows no Allee effect for 𝑎 > 𝑘 (per capita growth rate monotonically

decreases with increasing density), and a weak Allee effect for (𝑎 < 𝑘). Further, as

𝑎 is varied, the growth rate at low density remains constant and is given by 𝑟0. The

transition from pulled to pushed waves occurs at 𝑎 = 𝑘/2 inside the weak Allee effect

regime [35].
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A.5 A mechanistic growth model captures the Allee

effect and shows a transition from pulled to pushed

waves with increasing sucrose

We developed a mechanistic model for yeast growth in our experiments. The model

incorporates previously well-studied mechanisms such as Monod growth on glucose

[91] and a Michaelis-Menten kinetics of sucrose hydrolysis [59, 61, 92]. Using previ-

ously measured values of the model parameters A.1, we found that the magnitude of

the Allee effect increases with the amount of sucrose in the medium. Importantly,

the model also displayed a transition from pulled to pushed waves, consistent with

the experimental observations in Fig. 2-5 (Fig. A-7). This transition was observed

for a wide range of model parameters and is a generic prediction of the model. To

test for quantitative agreement between the model and the experiments, we fitted the

parameters of the model to our independent measurements of the growth rates, and

confirmed that the predicted velocities closely match experimental observations (Fig.

A-8).

The model describes growth of yeast in the presence of glucose and sucrose, and

assumes that there are no other limiting resources. Furthermore, while glucose is

metabolized directly by the yeast, sucrose needs to be hydrolyzed to monosaccharides

before it can be utilized. Although sucrose is hydrolyzed to glucose and fructose,

we treat these sugars equivalently and refer to the combined concentration of the

monosaccharides as the glucose concentration [59]. This hydrolysis reaction is cat-

alyzed by an enzyme invertase produced by yeast cells. Most of the invertase stays

attached to the cell surface resulting in higher rates of hydrolysis in the immediate

vicinity of the cell and creating a local cloud of glucose in excess of the bulk glucose

concentration. Thus, yeast cell benefit from both the glucose produced by themselves

and from the glucose produced by their neighbors [59]. These dynamics are captured

by the following Monod growth law and glucose consumption equation:
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1

𝑛

𝑑𝑛

𝑑𝑡
=

𝑔𝑙𝑜𝑐
𝑔𝑙𝑜𝑐 + 𝑘𝑔

𝛾𝑚𝑎𝑥 (A.14)

𝑑𝑔

𝑑𝑡
= −𝑌

𝑑𝑛

𝑑𝑡
+ 𝑛𝑉 (A.15)

Here, the first equation describes cell division, where 𝑛 is the cell density, 𝑔𝑙𝑜𝑐 is

the local glucose concentration around each cell, 𝑘𝑔 is the Michaelis-Menten constant

for glucose utilization and 𝛾𝑚𝑎𝑥 is the maximum division rate. The second equation

gives the corresponding rate of utilization of glucose (𝑔), which is proportional to the

division rate of the cells (the proportionality constant, 𝑌 , determines the carrying

capacity of the population). The additional term, 𝑛𝑉 , corresponds to the production

of glucose due to sucrose hydrolysis. The per capita rate of sucrose hydrolysis, 𝑉 , is

given by

𝑉 = 𝑣𝑠
𝑠

𝑠 + 𝑘𝑠
= − 1

𝑛

𝑑𝑠

𝑑𝑡
(A.16)

where 𝑠 is the sucrose concentration, 𝑣𝑠 is the maximum rate of sucrose hydrolysis,

and 𝑘𝑠 is the Michaelis-Menten constant. Finally, the local glucose concentration

around the cell is the sum of the bulk glucose concentration, and the additional cloud

of glucose due to the sucrose hydrolysis on the cell surface. The contribution of this

cloud is proportional to the rate of sucrose hydrolysis, and thus

𝑔𝑙𝑜𝑐 = 𝑔 + 𝑔𝑒𝑓𝑓𝑉 (A.17)

where 𝑔𝑒𝑓𝑓 is the proportionality constant that accounts for the glucose escape through

diffusion [59].

To infer model parameters, we measured growth rates in varying sucrose concen-

trations, and different cell densities. The growth rate measurements and the corre-

sponding range expansions were carried out in 9 different media: 0.125% glucose, and

0.008% glu + varying amounts of sucrose.

Before we describe the specifics of how the model parameters were determined from
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the experimental data, it is important to discuss how each parameter contributes to

the different aspects of the experimental data and demonstrate that the data con-

tains sufficient information to constrain the model parameters. The yield parameter,

𝑌 , determines the number of cells that can be produced given a certain amount of

glucose. For the growth rate measurements in pure glucose, 𝑌 therefore controls

the population densities at which the growth rate precipitously drops to zero. We

determined 𝑌 by fitting the model prediction to our growth measurement at high

cell densities in 0.125% glucose (Fig. A-9). The growth rate at low cell densities in

pure glucose media is completely determined by 𝛾𝑚𝑎𝑥 and 𝑘𝑔, and our data contained

sufficient information to infer these parameters because we had low-density growth

rate measurements in pure glucose as well as in several sucrose concentrations that

produced varying local concentrations of glucose as specified by eqn. A.17. The low-

density growth rates at different sucrose concentrations also depend on 𝑘𝑠 and 𝑣𝑠𝑔𝑒𝑓𝑓 ;

therefore, we could use our low-density measurements to infer four model parameters

𝛾𝑚𝑎𝑥, 𝑘𝑔, 𝑘𝑠, 𝑣𝑠𝑔𝑒𝑓𝑓 .

The dynamics at high population densities depend not only on the product of

𝑣𝑠 and 𝑔𝑒𝑓𝑓 , but on the individual values of these parameters. In particular, higher

values of 𝑣𝑠 and lower values of 𝑔𝑒𝑓𝑓 (keeping their product fixed) result in a larger

Allee effect and more cooperative growth because of the faster sucrose hydrolysis and

greater sharing of glucose via diffusion away from the cell. Therefore the magnitude

of the Allee effect at high sucrose concentration provided the last necessary constraint

to determine all of the model parameters.

Instead of directly fitting to the entire data set simultaneously, we used a modular

approach of fitting the growth dynamics at low-density and high-density separately.

We also bootstrapped on our data to determine the uncertainty in model parameters

and model predictions.

To obtain a set of low density growth parameters, we bootstrapped over the mea-

sured values of growth rates in each of the media, and fitted the parameters by

minimizing the squared distance from the bootstrapped data using Python package

scipy (curve_fit). All data at starting densities below OD 0.004 was included, as
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indicated in Fig. A-10. However, all outliers more than 2.5 SD away from the mean,

were excluded from the analysis. Moreover, growth was unusually slow in one of the

measurements, in 0.003% sucrose. This is the regime where the low-density growth

rate is independent of sucrose concentration, since the concentration of sucrose is

lower than that of glucose, which was 0.008%. Therefore, we excluded this particular

condition while fitting the parameters. The bootstrapping procedure was repeated to

obtain 100 sets of low-density growth parameters, 𝛾𝑚𝑎𝑥, 𝑘𝑔, 𝑘𝑠, 𝑣𝑠𝑔𝑒𝑓𝑓 . Out of these, a

few iterations of the curve_fit routine did not converge on the fit, leaving 89 sets of

parameters for downstream analysis. Fig. A-11 shows the low-density growth rates

that the model predicts for each of the parameter sets.

Next, for each of the 89 sets obtained above, we determined the individual pa-

rameters, 𝑣𝑠 and 𝑔𝑒𝑓𝑓 , keeping the product constant. As noted earlier, the relative

magnitudes of these two parameters control the magnitude of the Allee effect. There-

fore, parameters 𝑣𝑠 and 𝑔𝑒𝑓𝑓 were determined by minimizing the squared distance

from growth rates at intermediate densities in 2%, 0.67% and 0.22% sucrose – the

media that exhibit a substantial Allee effect. The sum of squared distance from all

the data points in the selected regions of the cell densities was calculated for values of

ranging from 0.2 to 4 % OD−1hr−1, and the value of 𝑣𝑠 minimizing the sum was cho-

sen. These regions of cell densities were selected such that the growth rates increase

with density (i.e. exhibit an Allee effect) and are summarized below:

2% sucrose: OD 5 × 10−3 to 2 × 10−1,

0.67% sucrose: OD 5 × 10−3 to 2 × 101,

0.22% sucrose: OD 5 × 10−3 to 3 × 10−1.

Table A.1 shows a comparison between the previously reported values of the pa-

rameters for yeast, and the median parameter values that we have obtained by the

procedure described above. The distribution of parameter values is shown in Fig.

A-12. Most of the fitted values were consistent with literature. The exception is

𝑔𝑒𝑓𝑓 , which is an order of magnitude larger than previously reported. However, this

parameter depends strongly on the diffusion rate of glucose, such that slower diffu-

sion leads to larger 𝑔𝑒𝑓𝑓 . Since the cells in our experiments are not being shaken
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(both during range expansions as well as in the experiments we performed to mea-

sure growth rates), most of the hydrolysis products remain in the vicinity of the cell,

resulting in lower diffusion, and a larger 𝑔𝑒𝑓𝑓 . Other factors that affect 𝑔𝑒𝑓𝑓 such as

genetic background, cell size, etc. could also contribute to the observed difference

with previous measurements. The lack of mixing is also consistent with the slightly

lower 𝑣𝑠 that we estimate compared to literature, since the efficiency of hydrolysis is

reduced.

These 89 parameter sets fit the observed growth rates well over the entire range

of cell densities and sucrose concentrations as shown in Fig. A-13.

We then simulated expansions using the mechanistic growth model and the 89

parameter sets obtained above. The simulated velocities for each of the 89 param-

eter sets all show a transition from pulled to pushed waves with increasing sucrose

concentration, and are distributed closely around experimentally observed velocities

(Fig. A-8).

The excellent agreement between the model and the experimental observations

further supports our conclusions that the break-down of the theory of pulled waves at

high sucrose concentrations is due to an increasing strength of the Allee effect makes

yeast expand as a pushed wave.

A.6 Simulations

Stochastic simulations were performed for computing the rate of exponential density

decay at the front as well as for testing the predictions of the mechanistic growth

model. In the simulations, the expansions were allowed to proceed for longer times

than in the experiment, so as to completely remove all transients. Expansions were

typically simulated for 60 cycles across a sufficiently long landscape so that the waves

do not reach its edge. The total carrying capacity in each spatial patch was the same

as in the experiments.

The simulations reflect exactly dynamics in our experiments (Fig. A-14). The

cells start with an exponential spatial density profile. For each cycle, logistic model
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(in simulations for calculating the exponent at the front) or the mechanistic growth

model is integrated over a period of 4 hours to obtain the final population density

in each well. Growth is thus deterministic in the simulations. At the end of the

growth cycle, the number of cells is rounded off to the nearest integer. Binomial

sampling is used to determine the number of cells that are transferred for the next

cycle, taking into account the migration rate as well as the dilution rate. This step

therefore accounts for the demographic fluctuations.

Finally, since growth in the mechanistic model explicitly depends on sugar con-

centrations, we also include the effects of sugar transfer due to migration and dilution

in the simulations.

Velocities in the simulations are calculated in the same way as experiments (Sec-

tion A.1). A threshold density of 2000 cells per well and the location of the wavefront

is defined as the position at which the profile crosses this threshold. Velocity is then

calculated by obtaining a linear fit between the position and time.

A.7 Supplementary figures
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Figure A-1: Reaction-diffusion equations are classical models for expansion in theoret-
ical ecology. When populations grow logistically, Fisher’s equation predicts traveling
waves of constant velocity, with an exponential spatial profile near the front. Both of
these emergent properties depend only on the low-density growth rate, and are inde-
pendent of the carrying capacity. (a) Populations that obey logistic growth increase
exponentially with rate 𝑟0 at low density, and the per capita growth rate decreases
monotonically until the population density saturates at some carrying capacity, 𝐾.
Three growth curves with identical low-growth rate, but different carrying capacities
are shown. (b) Emergent properties of the expansion front, such as velocity (𝑣) and
spatial decay rate of density at the front (𝜆), depend only on the per capita growth
rate at low density (𝑟0) and the diffusion constant (𝐷), and are independent of the
carrying capacity (𝑣0 = 𝑣1 = 𝑣2, 𝜆0 = 𝜆1 = 𝜆2 = 𝜆). The bulk density, however, does
depend on the carrying capacity (𝐾).
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Figure A-2: The maximal per capita growth rate in galactose (a) and glucose (b) never
significantly exceeds the per capita growth rate at low density. We measured the fold
growth by counting the number of yeast cells before and after 4 hours of growth in a
96-well plate. Each well started with a small number of yeast cells. After propagating
the cultures with dilution for two 4-hour cycles (to remove transient effects caused
by a change of growth environment), the number of cells in the wells were counted
by flow cytometry at the beginning and end of the third and fourth cycle. Cells were
counted after diluting by 100x. Due to the small numbers, the actual counts at low
density had a large sampling noise. The figure shows the growth rate as an average
over a Gaussian moving window. Shaded region indicates standard deviation in the
average over the window in bootstrapped data. Since density doesn’t change much
over the course of four hours, growth rate was estimated from the fold growth by
assuming exponential growth at a constant rate.
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Figure A-3: Effect of discretizing space and time (and addition of demographic
stochasticity) on predicted velocity in glucose (a), galactose (b) and sucrose (c) envi-
ronments. Each set of bars represents an experimental condition (different migration
and death rates). In (c), the 8 conditions have constant migration and death rate, but
decreasing amount of sucrose starting with 2% in condition 1 to 0.001% in condition
8. Red bars indicate predicted Fisher velocities in continuous space-time models with
the same effective growth and diffusion rate as the discrete experimental system (SI
eqn. A.12). Here, we show a decomposition of the effects due to discrete space-time,
and demographic stochasticity. Discreteness of space and time (green): Since migra-
tion is limited to one well at a time in the linear stepping stone model, emergent
wave velocities can never exceed 1 𝑤𝑒𝑙𝑙/𝑐𝑦𝑐𝑙𝑒. For short cycles (on the time scale
set by the growth rate), these corrections can be approximated analytically. For the
4 hour experimental discretization, however, the corrections are large, and have to
be calculated numerically (SI eqn. A.10). Demographic stochasticity (blue): Demo-
graphic stochasticity has been predicted to reduce expansion velocity. The correction
to the continuous space-time model due to demographic stochasticity is of the order of
1/𝑙𝑜𝑔2(𝑁). In our experiments, we calculated the corrections using simulations with
measured growth rates and other known experimental parameters. Experimental data
(gray): We see that the observed velocities are in close agreement with predictions
once the effects of discretization and stochasticity are incorporated (subplots a, b).
Subplot (c) shows data for expansions in sucrose, where the observed velocities are
much larger than predicted velocities (even after incorporating the effects described
above). Conditions 1 through 8 correspond to sucrose concentrations starting from
2%, decreasing by a factor of 3 in consecutive conditions. Thus, observed velocities
are close to predictions for condition 5 onwards, when the Allee effect is no longer
sufficiently strong. Error bars indicate S.D. in measured velocity at five different
threshold densities.
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Figure A-4: Demographic stochasticity significantly affects the spatial decay rate at
the front. (a) Predicted spatial rate of decay at the front, based on linearized growth,
is less than what is experimentally observed when demographic stochasticity is not
taken into account. (b) When finite population effects (demographic stochasticity)
are included, the observed front shape is close to predictions. The predicted spatial
decay rate is based on simulations using measured values of low-density growth rate
and known experimental parameters such as migration and death rate. y-axis error
bars indicate S.D. in measured decay rate for three different fitting regions at the
front.
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Figure A-5: Low density growth rate increases slowly with increasing sucrose
concentration. Since some of the hydrolyzed sucrose is captured by the yeast cells
before it can diffuse away, increasing the sucrose concentration leads to increased
growth rates even at low densities, when cooperative effects are absent (section )A.50.
However, the maximal growth rate increases faster than the low density growth rate,
resulting in an increasingly severe Allee effect (Fig. A-6). Error bars represent SEM
in measured low density growth rates (Fig. A-10).
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Figure A-6: Magnitude of Allee effect increases with increasing sucrose con-
centration.. The magnitude of the Allee effect is estimated as the difference between
the maximal growth rate, 𝑟𝑚𝑎𝑥 and the low density growth rate, 𝑟0. Error bars in-
dicate SEM of low-density growth rate, (∆𝑟0). 𝑟𝑚𝑎𝑥 was determined as the maximal
value of the growth rate after averaging over a moving Gaussian window as shown in
Fig. A-2 for 0.125% glucose and 0.5% galactose.
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Figure A-7: A mechanistic model of yeast growth on sucrose and glucose
predicts a transition from pulled to pushed waves (Section A.5). A simple
mechanistic model where yeast grows on glucose following Monod kinetics, and hy-
drolyzes sucrose to glucose (section A.5) was used to simulate expansions. All the
parameters in the model have been reported previously in various studies. Using
typical parameter values from published literature (Table A.1), the model predicts
a transition from pulled to pushed waves as the sucrose concentration in the media
is increased. At low sucrose concentrations, expansions are pulled, reflected in the
agreement between simulated velocities and linearized-growth predictions. At larger
sucrose sucrose concentrations, expansion velocities exceed the linearized-growth pre-
diction, indicating that the expansions are pushed.
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Figure A-8: A mechanistic model for growth on glucose and sucrose predicts velocities
close to what are observed experimentally. Experimentally observed velocities in 8
different sucrose concentrations and in 0.125% glucose are shown as red points with
SD errorbars. Gray points show the predicted linearized-growth velocities. Error
bars are obtained by bootstrapping on the measured growth rates at low densities
and calculating the linearized growth velocities. Shaded regions indicate predictions
of the model. The observed velocities match well with the predictions of the model.
The model also captures the transition from pulled to pushed waves as the devia-
tion between observed and linearized-growth velocities (gray shading) around sucrose
concentrations of around 0.025%. The width of the shaded regions is the standard
deviation of simulation results for 89 parameter sets obtained by bootstrapping over
the growth rate measurements and fitting the model to the bootstrapped data.
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Figure A-9: The yield parameter in the mechanistic model, 𝑌 , was obtained by fitting
the model to growth rate measurements in 0.125% glucose, at high densities, where
there is a sharp decrease in growth rate with density. The yield parameter reflects
the amount of glucose that a cell utilizes per division. At high cell densities, glucose
is depleted quickly causing the per capita growth rate to decrease sharply as starting
OD is increased. By fitting the model to this region of growth, the value of 𝑌 can
be determined accurately: 𝑌 = 0.057𝑂𝐷−1. Data is shown as green points, only at
high densities, where growth rate is strongly affected by the yield parameter due to
resource limitation.
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Figure A-10: Low density growth rates were measured by averaging the growth rate measurements over densities up to OD
0.004 (corresponding to 1000 cells per well). Population density is plotted along the x-axis, in terms of OD600, and growth rate
is plotted along the y-axis for each panel. Data in the unshaded region is included as growth rate at low density. this region
includes all data at ODs below 0.004 except for the outliers that are more than 2.5 SD away from the mean. Inset text indicates
mean and SEM of the unshaded data in ℎ𝑟−1.
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Figure A-11: Low-density growth rates predicted across different sucrose concen-
trations by the model. We used 89 low-density parameter sets (𝛾𝑚𝑎𝑥, 𝑘𝑔, 𝑘𝑠, 𝑣𝑠𝑔𝑒𝑓𝑓 )
obtained by fitting to bootstrapped low-density growth rate measurements. Black cir-
cles with error bars represent the mean growth rate and SEM. Gray lines are model
predictions. The details of the bootstrapping procedure can be found under section
A.5.
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Figure A-12: Distribution of parameter values in the 89 independent parameter sets
obtained by bootstrapping over the data. Median values of the parameters are in-
dicated in the title. Most median parameter values are in close agreement with
previously reported values in the literature (Table A.1). The exception is 𝑔𝑒𝑓𝑓 , which
is expected to differ because the media is not shaken in our experiments (section A.5).
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Figure A-13: Allee effect increases with sucrose concentration. Measured growth rates at various cell densities are shown as
blue points. Blue curves are the predictions of the model for each of the 89 parameter sets. For all parameter sets, the model
matches the data well and shows an increasing Allee effect as sucrose concentration is increased.
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Figure A-14: The figure shows how the density of cells and sugar concentrations as a function of space change over a cycle, in
the simulation, following the dynamics in a single well highlighted above. At the end of cycle 𝑡, the cell density has a certain
spatial profile (row 1). At the beginning of cycle 𝑡 + 1, cells are diluted by a factor 𝑑𝑓 and at the same time, a small fraction
(𝑚/2) is transferred to the neighboring wells (row 2). The exact factor by which the densities change is illustrated next to the
arrows from row 1 to row 2. The residual glucose and sucrose in the wells is also transferred over along with the cells. The fresh
media into which the cells are diluted contains additional sugars (concentrations 𝑠0, 𝑔0) for the cells to grow. Concentrations
and cell densities at this intermediate step are denoted by 𝑛, 𝑔, 𝑠. The cells are then allowed to grow for 4 hrs (row 3). In the
simulations, the density at the end of 4 hrs is obtained by integrating the growth model starting from the intermediate densities.
Thime within the growth phase is denoted by 𝜏 . The mechanistic model of growth, involving the cell densities as well as the
sugar concentrations, is illustrated to the right. The profile at time 𝑡+1 is obtained at the end of growth (row 4), and the entire
cycle of dilution/migration and growth is repeated. As can be seen, after the completion of a cycle, the profile is shifted in
space. At a given time 𝑡, the exact position of the wave is defined by the position at which the density profile crosses a certain
threshold value (2000 cells, in the simulations). The velocity of expansion is given by the distance by which the profile shifts
averaged over multiple cycles (bottom right).
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Parameter Median Literature References
Maximal growth rate on glucose, 𝛾𝑚𝑎𝑥 [ℎ𝑟−1] 0.390 0.3 – 0.55 (0.39) [50, 59, 13, 60]
𝐾𝑀 for growth on glucose, 𝑘𝑔 [%W/V] 0.0019 0.002 – 0.003 (0.002) [93]
𝐾𝑀 for sucrose hydrolysis, 𝑘𝑔 [%W/V] 0.781 0.5 – 1.5 (0.8) [59, 94, 92]
Maximal sucrose hydrolysis rate, 𝑣𝑠 [%OD−1hr−1] 0.833 2.4 (2.4) [59]
Privatization parameter, 𝑔𝑒𝑓𝑓 [OD hr] 0.02 0.0015 (0.0015) [59]
Yield on glucose, 𝑌 [%OD−1] 0.057 – (0.07) –

Table A.1: The table shows a comparison between previously reported and median values of model parameters obtained by
fitting the model to measured growth rates. Values in brackets under the literature column are used for the simulation in Figure
A-7.
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Appendix B

Appendix to chapter 3

B.1 Materials and methods

Strains

The expansion experiments were performed using two pairs of strains, BY-RFP/BY-

YFP and DH-RFP/DH-CFP. The BY strains were derived from the haploid BY4741

strain (mating type a, EUROSCARF, CITE Jeff paper). The BY-YFP strain has a

yellow fluorescent protein expressed constitutively by the ADH1 promoter (inserted

using plasmid pRS401 containing MET17). The BY-RFP strain has a red fluores-

cent protein inserted into the HIS3 gene using plasmid pRS303. The DH strains are

the same as those used in Healey et al (CITE). They are derived from the diploid

strain W303, with the RFP/CFP strains harboring constitutively expressed fluores-

cent markers integrated into the URA3 gene. This pair is auxotrophic to uracil.

B.1.1 Growth rate measurements and calculation of Fisher

velocities

Growth rates for both strain pairs were measured independently for all media, in

growth conditions identical to the final expansion experiments. For each pair, the two

fluorescent strains were mixed in 1:1 ratio in log phase and the cultures were diluted
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into a wide range (10𝑐𝑒𝑙𝑙𝑠/𝑤𝑒𝑙𝑙 to 105𝑐𝑒𝑙𝑙𝑠/𝑤𝑒𝑙𝑙) of initial cell densities. They were

then diluted 2x every 4 hours into fresh media. Initial and final densities of each

fluorescent strain for each dilution cycle were measured using flow cytometry, and

their growth rates as a function of cell density were derived from these measurements.

The data is shown in SI. Low density growth rates were obtained by linear regression

on the log of initial and final densities, for initial densities under 500𝑐𝑒𝑙𝑙𝑠/𝑤𝑒𝑙𝑙. The

Fisher velocities were then derived by simulating expansions with logistic growth,

with the fitted low density growth rate. Uncertainty in Fisher velocities was obtained

by bootstrapping.

B.1.2 Expansion experiment protocols

All experiments were performed at 30 in standard synthetic media (yeast nitrogen

base and complete supplement mixture), in 200−𝜇𝐿 batch culture in BD Biosciences

Falcon 96-well Microtest plates. Expansions occurred along the 12 well long rows of

the plate. Migrations and dilutions were performed every 4 h using the Tecan Free-

dom EVO 100 robot. Plates were not shaken during growth. Optical densities were

measured on the robot before every dilution cycle in the Tecan Sunrise platereader

with 600-nm light. Cell densities of individual fluorescent strains were also measured

every 6 cycles in the MacsQuant flow cytometer after dilution in phosphate buffered

saline (PBS). All expansions started with a steep exponential initial density profile.

Periodically during the expansion, the leftmost well (in the bulk of the wave, away

from the wavefront) was discarded and the entire profile was shifted to the left, so

as to create empty wells for further expansion to the right. It was ensured that the

rightmost two wells were always at zero cell density so as to avoid any edge effects on

the expansion.

B.1.3 Definition of front

The ‘front’ is defined as the region of the wave density profile that fell below a

threshold density, set at 0.2×𝑁𝑏𝑢𝑙𝑘. ‘Fractions in the front’ correspond to the fraction
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of fluorescent cells added up over the entire front region as defined above. The location

of the front is defined as the interpolated well position where the density profile crosses

the threshold.

B.2 Supplementary figures
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Figure B-1: Density dependence of growth and fits for low density growth rate for
different strain-media combinations
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Figure B-2: Jackpots in experiments
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Figure B-3: All evolution state space diagrams
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Figure B-4: Front diffusion figure
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Strain, Media Growth Rates Fisher Velocities (𝑚, 𝑑𝑓)
DH, 0.2% galactose 0.4 ± 0.06ℎ𝑟−1 0.78 ± 0.12 𝑤𝑒𝑙𝑙𝑠/𝑐𝑦𝑐𝑙𝑒 (0.4, 2)

DH, 0.2% glucose 0.42 ± 0.21ℎ𝑟−1

0.60 ± 0.23 𝑤𝑒𝑙𝑙𝑠/𝑐𝑦𝑐𝑙𝑒 (0.3, 2)
0.72 ± 0.25 𝑤𝑒𝑙𝑙𝑠/𝑐𝑦𝑐𝑙𝑒 (0.5, 2)
0.70 ± 0.19 𝑤𝑒𝑙𝑙𝑠/𝑐𝑦𝑐𝑙𝑒 (0.25, 1.33)
0.64 ± 0.22 𝑤𝑒𝑙𝑙𝑠/𝑐𝑦𝑐𝑙𝑒 (0.25, 1.54)

DH, 0.02% glucose 0.45 ± 0.2ℎ𝑟−1 0.64 ± 0.26 𝑤𝑒𝑙𝑙𝑠/𝑐𝑦𝑐𝑙𝑒 (0.4, 2)
DH, 0.2% sucrose 0.16 ± 0.08ℎ𝑟−1 0.34 ± 0.16 𝑤𝑒𝑙𝑙𝑠/𝑐𝑦𝑐𝑙𝑒 (0.4, 2)
BY, 1% galactose, 2x URA 0.31 ± 0.1ℎ𝑟−1 0.51 ± 0.16 𝑤𝑒𝑙𝑙𝑠/𝑐𝑦𝑐𝑙𝑒 (0.3, 2)
BY-YFP, 1% sucrose 0.19 ± 0.04ℎ𝑟−1 0.30 ± 0.17 𝑤𝑒𝑙𝑙𝑠/𝑐𝑦𝑐𝑙𝑒 (0.3, 2)
BY-RFP, 1% sucrose 0.23 ± 0.11ℎ𝑟−1 0.37 ± 0.16 𝑤𝑒𝑙𝑙𝑠/𝑐𝑦𝑐𝑙𝑒 (0.3, 2)

Table B.1: Growth rates and Fisher velocities of yeast strains in different growth
media

90



Bibliography

[1] Michael J. Tyler. Australian Frogs: A Natural History. Cornell University Press,
Ithaca, NY, December 1997.

[2] Benjamin L. Phillips, Gregory P. Brown, Jonathan K. Webb, and Richard Shine.
Invasion and the evolution of speed in toads. Nature, 439(7078):803–803, Febru-
ary 2006.

[3] Benjamin L. Phillips, Gregory P. Brown, Matthew Greenlees, Jonathan K. Webb,
and Richard Shine. Rapid expansion of the cane toad (Bufo marinus) invasion
front in tropical Australia. Austral Ecology, 32(2):169–176, April 2007.

[4] Derek M. Johnson, Andrew M. Liebhold, Patrick C. Tobin, and Ottar N. Bjørn-
stad. Allee effects and pulsed invasion by the gypsy moth. Nature, 444(7117):361–
363, November 2006.

[5] Andrew M. Liebhold, Joel A. Halverson, and Gregory A. Elmes. Gypsy Moth
Invasion in North America: A Quantitative Analysis. Journal of Biogeography,
19(5):513–520, September 1992.

[6] Andrew M. Liebhold and Patrick C. Tobin. Growth of newly established alien
populations: comparison of North American gypsy moth colonies with invasion
theory. Population Ecology, 48(4):253–262, September 2006.

[7] Jonathan M. Levine and Carla M. D’Antonio. Forecasting Biological Inva-
sions with Increasing International Trade. Conservation Biology, 17(1):322–326,
February 2003.

[8] Godfrey Hewitt. The genetic legacy of the Quaternary ice ages. Nature,
405(6789):907–913, June 2000.

[9] Thomas Schmitt. Molecular biogeography of Europe: Pleistocene cycles and
postglacial trends. Frontiers in Zoology, 4(1):11, April 2007.

[10] Stephen R. Keller, Matthew S. Olson, Salim Silim, William Schroeder, and Peter
Tiffin. Genomic diversity, population structure, and migration following rapid
range expansion in the Balsam Poplar, Populus balsamifera. Molecular Ecology,
19(6):1212–1226, March 2010.

91



[11] Shaoping Ling, Zheng Hu, Zuyu Yang, Fang Yang, Yawei Li, Pei Lin, Ke Chen,
Lili Dong, Lihua Cao, Yong Tao, Lingtong Hao, Qingjian Chen, Qiang Gong,
Dafei Wu, Wenjie Li, Wenming Zhao, Xiuyun Tian, Chunyi Hao, Eric A. Hun-
gate, Daniel V. T. Catenacci, Richard R. Hudson, Wen-Hsiung Li, Xuemei Lu,
and Chung-I Wu. Extremely high genetic diversity in a single tumor points to
prevalence of non-Darwinian cell evolution. Proceedings of the National Academy
of Sciences of the United States of America, 112(47):E6496–E6505, November
2015.

[12] S. Peischl, I. Dupanloup, M. Kirkpatrick, and L. Excoffier. On the accumu-
lation of deleterious mutations during range expansions. Molecular Ecology,
22(24):5972–5982, December 2013.

[13] Lei Dai, Daan Vorselen, Kirill S. Korolev, and Jeff Gore. Generic Indicators
for Loss of Resilience Before a Tipping Point Leading to Population Collapse.
Science, 336(6085):1175–1177, June 2012.

[14] Timothy H. Keitt, Mark A. Lewis, and Robert D. Holt. Allee Effects, Inva-
sion Pinning, and Species’ Borders. The American Naturalist, 157(2):203–216,
February 2001.

[15] M. C. Köhnke and H. Malchow. Wave pinning in competition-diffusion models
in variable environments. Journal of Theoretical Biology, 461:204–214, January
2019.

[16] Saurabh R. Gandhi, Eugene Anatoly Yurtsev, Kirill S. Korolev, and Jeff Gore.
Range expansions transition from pulled to pushed waves as growth becomes
more cooperative in an experimental microbial population. Proceedings of the
National Academy of Sciences, 113(25):6922–6927, June 2016.

[17] Eva Graciá, Andrés Giménez, José Daniel Anadón, D. James Harris, Uwe Fritz,
and Francisco Botella. The uncertainty of Late Pleistocene range expansions
in the western Mediterranean: a case study of the colonization of south-eastern
Spain by the spur-thighed tortoise, Testudo graeca. Journal of Biogeography,
40(2):323–334, February 2013.

[18] Richard R. Veit and Mark A. Lewis. Dispersal, Population Growth, and the
Allee Effect: Dynamics of the House Finch Invasion of Eastern North America.
The American Naturalist, 148(2):255–274, August 1996.

[19] Rachel M. Pateman, Jane K. Hill, David B. Roy, Richard Fox, and Chris D.
Thomas. Temperature-Dependent Alterations in Host Use Drive Rapid Range
Expansion in a Butterfly. Science, 336(6084):1028–1030, May 2012.

[20] Gian-Reto Walther, Eric Post, Peter Convey, Annette Menzel, Camille Parme-
san, Trevor J. C. Beebee, Jean-Marc Fromentin, Ove Hoegh-Guldberg, and Franz
Bairlein. Ecological responses to recent climate change. Nature, 416(6879):389–
395, March 2002.

92



[21] David Pimentel. Biological Invasions: Economic and Environmental Costs of
Alien Plant, Animal, and Microbe Species. CRC Press, October 2014.

[22] Jefferson H. Mayo, Thomas J. Straka, and Donna S. Leonard. The Cost of
Slowing the Spread of the Gypsy Moth (Lepidoptera: Lymantriidae). Journal of
Economic Entomology, 96(5):1448–1454, October 2003.

[23] Robert W. Sutherst, Robert B. Floyd, and Gunter F. Maywald. The Poten-
tial Geographical Distribution of the Cane Toad, Bufo marinus L. in Australia.
Conservation Biology, 10(1):294–299, February 1996.

[24] Brian Leung, John M. Drake, and David M. Lodge. Predicting invasions: propag-
ule pressure and the gravity of allee effects. Ecology, 85(6):1651–1660, June 2004.

[25] Greta Bocedi, Stephen C.F. Palmer, Guy Pe’er, Risto K. Heikkinen, Yiannis G.
Matsinos, Kevin Watts, and Justin M.J. Travis. RangeShifter: a platform for
modelling spatial eco-evolutionary dynamics and species’ responses to environ-
mental changes. Methods in Ecology and Evolution, 5(4):388–396, April 2014.

[26] J. G. Skellam. Random Dispersal in Theoretical Populations. Biometrika,
38(1/2):196–218, June 1951.

[27] R. A. Fisher. The Wave of Advance of Advantageous Genes. Annals of Eugenics,
7(4):355–369, June 1937.

[28] Ilkka Hanski. Metapopulation Ecology. OUP Oxford, March 1999.

[29] Wim van Saarloos. Front propagation into unstable states. Physics Reports,
386(2–6):29–222, November 2003.

[30] J. D. Murray, editor. Mathematical Biology, volume 18 of Interdisciplinary Ap-
plied Mathematics. Springer-Verlag, New York, 1993.

[31] Franck Courchamp, Tim Clutton-Brock, Bryan Grenfell, Franck Courchamp,
Tim Clutton-Brock, Bryan Grenfell, Franck Courchamp, Tim Clutton-Brock,
Bryan Grenfell, Franck Courchamp, Tim Clutton-Brock, Bryan Grenfell, Franck
Courchamp, Tim Clutton-Brock, and Bryan Grenfell. Inverse density dependence
and the Allee effect. Trends in Ecology & Evolution, 14(10):405–410, January
1999.

[32] Warder Clyde Allee. Principles of Animal Ecology. Saunders Co., 1949.

[33] Andrew M. Kramer, Brian Dennis, Andrew M. Liebhold, and John M. Drake.
The evidence for Allee effects. Population Ecology, 51(3):341–354, April 2009.

[34] P. A. Stephens, W. J. Sutherland, and R. P. Freckleton. What Is the Allee Effect?
Oikos, 87(1):185–190, October 1999.

[35] Mark Kot. Elements of Mathematical Ecology. Cambridge University Press, July
2001.

93



[36] Oskar Hallatschek and David R. Nelson. Gene surfing in expanding populations.
Theoretical Population Biology, 73(1):158–170, February 2008.

[37] K. S. Korolev, Mikkel Avlund, Oskar Hallatschek, and David R. Nelson. Genetic
demixing and evolution in linear stepping stone models. Reviews of modern
physics, 82(2):1691–1718, June 2010.

[38] Eva Graciá, Francisco Botella, José Daniel Anadón, Pim Edelaar, D. James
Harris, and Andrés Giménez. Surfing in tortoises? Empirical signs of genetic
structuring owing to range expansion. Biology Letters, 9(3):20121091, June 2013.

[39] Kris J. Hundertmark and Larry J. Van Daele. Founder effect and bottleneck
signatures in an introduced, insular population of elk. Conservation Genetics,
11(1):139–147, November 2009.

[40] Sohini Ramachandran, Omkar Deshpande, Charles C. Roseman, Noah A. Rosen-
berg, Marcus W. Feldman, and L. Luca Cavalli-Sforza. Support from the rela-
tionship of genetic and geographic distance in human populations for a serial
founder effect originating in Africa. Proceedings of the National Academy of
Sciences of the United States of America, 102(44):15942–15947, November 2005.

[41] M. A. Lewis and P. Kareiva. Allee Dynamics and the Spread of Invading Organ-
isms. Theoretical Population Biology, 43(2):141–158, April 1993.

[42] Brett A. Melbourne and Alan Hastings. Highly Variable Spread Rates in
Replicated Biological Invasions: Fundamental Limits to Predictability. Science,
325(5947):1536–1539, September 2009.

[43] Jun-ichi Wakita, Kenji Komatsu, Akio Nakahara, Tohey Matsuyama, and Mit-
sugu Matsushita. Experimental Investigation on the Validity of Population Dy-
namics Approach to Bacterial Colony Formation. Journal of the Physical Society
of Japan, 63(3):1205–1211, March 1994.

[44] Andrea Giometto, Andrea Rinaldo, Francesco Carrara, and Florian Altermatt.
Emerging predictable features of replicated biological invasion fronts. Proceedings
of the National Academy of Sciences, 111(1):297–301, January 2014.

[45] Christine M. Jessup, Rees Kassen, Samantha E. Forde, Ben Kerr, Angus Buck-
ling, Paul B. Rainey, and Brendan J. M. Bohannan. Big questions, small worlds:
microbial model systems in ecology. Trends in Ecology & Evolution, 19(4):189–
197, April 2004.

[46] Babak Momeni, Kristen A. Brileya, Matthew W. Fields, and Wenying Shou.
Strong inter-population cooperation leads to partner intermixing in microbial
communities. eLife, 2:e00230, January 2013.

[47] Eshel Ben-Jacob, Inon Cohen, Ofer Shochet, Igor Aranson, Herbert Levine, and
Lev Tsimring. Complex bacterial patterns. Nature, 373(6515):566–567, February
1995.

94



[48] S. J. Pirt. A Kinetic Study of the Mode of Growth of Surface Colonies of Bacteria
and Fungi. Journal of General Microbiology, 47(2):181–197, May 1967.

[49] Kirill S. Korolev, Melanie J. I. Müller, Nilay Karahan, Andrew W. Murray, Oskar
Hallatschek, and David R. Nelson. Selective sweeps in growing microbial colonies.
Physical Biology, 9(2):026008, April 2012.

[50] Manoshi Sen Datta, Kirill S. Korolev, Ivana Cvijovic, Carmel Dudley, and Jeff
Gore. Range expansion promotes cooperation in an experimental microbial
metapopulation. Proceedings of the National Academy of Sciences, 110(18):7354–
7359, April 2013.

[51] Kirill S. Korolev. The Fate of Cooperation during Range Expansions. PLoS
Comput Biol, 9(3):e1002994, March 2013.

[52] Lin Chen, Javad Noorbakhsh, Rhys M. Adams, Joseph Samaniego-Evans, Ger-
maine Agollah, Dmitry Nevozhay, Jennie Kuzdzal-Fick, Pankaj Mehta, and Gá-
bor Balázsi. Two-Dimensionality of Yeast Colony Expansion Accompanied by
Pattern Formation. PLoS Comput Biol, 10(12):e1003979, December 2014.

[53] J. David Van Dyken, Melanie J. I. Müller, Keenan M. L. Mack, and Michael M.
Desai. Spatial Population Expansion Promotes the Evolution of Cooperation
in an Experimental Prisoner’s Dilemma. Current Biology, 23(10):919–923, May
2013.

[54] Markus F. Weber, Gabriele Poxleitner, Elke Hebisch, Erwin Frey, and Madeleine
Opitz. Chemical warfare and survival strategies in bacterial range expansions.
Journal of The Royal Society Interface, 11(96):20140172, July 2014.

[55] Benjamin Kerr, Margaret A. Riley, Marcus W. Feldman, and Brendan J. M.
Bohannan. Local dispersal promotes biodiversity in a real-life game of
rock–paper–scissors. Nature, 418(6894):171–174, July 2002.

[56] Oskar Hallatschek, Pascal Hersen, Sharad Ramanathan, and David R. Nelson.
Genetic drift at expanding frontiers promotes gene segregation. Proceedings of
the National Academy of Sciences, 104(50):19926–19930, December 2007.

[57] Kirill S. Korolev, João B. Xavier, David R. Nelson, and Kevin R. Foster. A Quan-
titative Test of Population Genetics Using Spatiogenetic Patterns in Bacterial
Colonies. The American Naturalist, 178(4):538–552, October 2011.

[58] Caz M. Taylor and Alan Hastings. Allee effects in biological invasions. Ecology
Letters, 8(8):895–908, August 2005.

[59] Jeff Gore, Hyun Youk, and Alexander van Oudenaarden. Snowdrift game dy-
namics and facultative cheating in yeast. Nature, 459(7244):253–256, May 2009.

95



[60] Alvaro Sanchez and Jeff Gore. Feedback between Population and Evolution-
ary Dynamics Determines the Fate of Social Microbial Populations. PLoS Biol,
11(4):e1001547, April 2013.

[61] John H. Koschwanez, Kevin R. Foster, and Andrew W. Murray. Sucrose Utiliza-
tion in Budding Yeast as a Model for the Origin of Undifferentiated Multicellu-
larity. PLoS Biol, 9(8):e1001122, August 2011.

[62] Éric Brunet and Bernard Derrida. Effect of Microscopic Noise on Front Propa-
gation. Journal of Statistical Physics, 103(1-2):269–282, April 2001.

[63] Eric Brunet and Bernard Derrida. Shift in the velocity of a front due to a cutoff.
Physical Review E, 56(3):2597–2604, September 1997.

[64] A.N. Kolmogorov, N Piscounov, and I Petrowski. Étude de l’équation de la dif-
fusion avec croissance de la quantité de matière et son application a un problème
biologique. Moscow University Bulletin Of Mathematics, 1:1–25, 1937.

[65] Lionel Roques, Jimmy Garnier, François Hamel, and Etienne K. Klein. Allee
effect promotes diversity in traveling waves of colonization. Proceedings of the
National Academy of Sciences, 109(23):8828–8833, June 2012.

[66] Patrick C. Tobin, Luděk Berec, and Andrew M. Liebhold. Exploiting Allee effects
for managing biological invasions. Ecology Letters, 14(6):615–624, June 2011.

[67] Jintao Liu, Rosa Martinez-Corral, Arthur Prindle, Dong-yeon D. Lee, Joseph
Larkin, Marçal Gabalda-Sagarra, Jordi Garcia-Ojalvo, and Gürol M. Süel. Cou-
pling between distant biofilms and emergence of nutrient time-sharing. Science
(New York, N.Y.), 356(6338):638–642, May 2017.

[68] Antonio Brú, Sonia Albertos, José Luis Subiza, José López García-Asenjo, and
Isabel Brú. The Universal Dynamics of Tumor Growth. Biophysical Journal,
85(5):2948–2961, November 2003.

[69] Dirk Brockmann and Dirk Helbing. The Hidden Geometry of Complex, Network-
Driven Contagion Phenomena. Science, 342(6164):1337–1342, December 2013.

[70] Andrea R. Pluess. Pursuing glacier retreat: genetic structure of a rapidly ex-
panding Larix decidua population. Molecular Ecology, 20(3):473–485, February
2011.

[71] Yvonne Willi, Josh Van Buskirk, and Ary A. Hoffmann. Limits to the Adap-
tive Potential of Small Populations. Annual Review of Ecology, Evolution, and
Systematics, 37(1):433–458, 2006.

[72] Laurent Excoffier, Matthieu Foll, and Rémy J. Petit. Genetic Consequences
of Range Expansions. Annual Review of Ecology, Evolution, and Systematics,
40(1):481–501, 2009.

96



[73] Montgomery Slatkin and Laurent Excoffier. Serial Founder Effects During Range
Expansion: A Spatial Analog of Genetic Drift. Genetics, 191(1):171–181, May
2012.

[74] Lars Bosshard, Isabelle Dupanloup, Olivier Tenaillon, Rémy Bruggmann, Martin
Ackermann, Stephan Peischl, and Laurent Excoffier. Accumulation of Deleteri-
ous Mutations During Bacterial Range Expansions. Genetics, 207(2):669–684,
October 2017.

[75] Kimberly J. Gilbert, Stephan Peischl, and Laurent Excoffier. Mutation
load dynamics during environmentally-driven range shifts. PLOS Genetics,
14(9):e1007450, September 2018.

[76] A. N. Stokes. On two types of moving front in quasilinear diffusion. Mathematical
Biosciences, 31(3):307–315, January 1976.

[77] Franck Courchamp, Ludek Berec, and Joanna Gascoigne. Allee Effects in Ecology
and Conservation. Oxford University Press, Oxford ; New York, April 2008.

[78] Jimmy Garnier and Mark A. Lewis. Expansion Under Climate Change: The
Genetic Consequences. Bulletin of Mathematical Biology, 78(11):2165–2185,
November 2016.

[79] Nathan G. Marculis, Roger Lui, and Mark A. Lewis. Neutral Genetic Patterns
for Expanding Populations with Nonoverlapping Generations. Bulletin of Math-
ematical Biology, pages 1–25, March 2017.

[80] Devin W. Goodsman, Barry Cooke, David W. Coltman, and Mark A. Lewis. The
genetic signature of rapid range expansions: How dispersal, growth and invasion
speed impact heterozygosity and allele surfing. Theoretical Population Biology,
98:1–10, December 2014.

[81] Jimmy Garnier, Thomas Giletti, François Hamel, and Lionel Roques. Inside
dynamics of pulled and pushed fronts. Journal de Mathématiques Pures et Ap-
pliquées, 98(4):428–449, October 2012.

[82] Gabriel Birzu, Oskar Hallatschek, and Kirill S. Korolev. Fluctuations uncover a
distinct class of traveling waves. Proceedings of the National Academy of Sciences,
115(16):E3645–E3654, April 2018.

[83] R. Bialozyt, B. Ziegenhagen, and R. J. Petit. Contrasting effects of long dis-
tance seed dispersal on genetic diversity during range expansion. Journal of
Evolutionary Biology, 19(1):12–20, January 2006.

[84] Susanne Lachmuth, Walter Durka, and Frank M. Schurr. The making of a rapid
plant invader: genetic diversity and differentiation in the native and invaded
range of Senecio inaequidens. Molecular Ecology, 19(18):3952–3967, September
2010.

97



[85] Daniel R. Amor, Raúl Montañez, Salva Duran-Nebreda, and Ricard Solé. Spatial
dynamics of synthetic microbial mutualists and their parasites. PLOS Compu-
tational Biology, 13(8):e1005689, August 2017.

[86] Christoph Ratzke and Jeff Gore. Self-organized patchiness facilitates survival
in a cooperatively growing Bacillus subtilis population. Nature Microbiology,
1(5):16022, May 2016.

[87] Shreyas Gokhale, Arolyn Conwill, Tanvi Ranjan, and Jeff Gore. Migration alters
oscillatory dynamics and promotes survival in connected bacterial populations.
Nature Communications, 9(1):5273, December 2018.

[88] E. Brunet, B. Derrida, A. H. Mueller, and S. Munier. Phenomenological theory
giving the full statistics of the position of fluctuating pulled fronts. Physical
Review E, 73(5):056126, May 2006.

[89] Christoph Ratzke and Jeff Gore. Modifying and reacting to the environmental
pH can drive bacterial interactions. PLOS Biology, 16(3):e2004248, March 2018.

[90] Carl M. Bender and Steven A. Orszag. Advanced Mathematical Methods for
Scientists and Engineers I. Springer New York, New York, NY, 1999.

[91] Mandisi Mrwebi. Testing Monod : growth rate as a function of glucose concen-
tration in Saccharomyces cerevisiae. Thesis, Stellenbosch : University of Stellen-
bosch, December 2004.

[92] Antonio José Goulart, Andréa Francisco dos Santos, Olga Luisa Tavano, Julio Ce-
sar Vinueza, Jonas Contiero, and Rubens Monti. Glucose and Fructose Produc-
tion by Saccharomyces cerevisiae Invertase Immobilized on MANAE-Agarose
Support. Revista de Ciências Farmacêuticas Básica e Aplicada, 34(2):169–175,
June 2013.

[93] E. Ben-Jacob, H. Brand, G. Dee, L. Kramer, and J. S. Langer. Pattern prop-
agation in nonlinear dissipative systems. Physica D: Nonlinear Phenomena,
14(3):348–364, March 1985.

[94] Michele Vitolo and Miriam T. Yassuda. Effect of sucrose concentration on the
invertase activity of intact yeast cells (S. cerevisiae). Biotechnology Letters,
13(1):53–56, January 1991.

98


