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Abstract

Pulsed NMR technology is applied to fluid-saturated rocks to detect the presence
of fluids in earth formations. The observed NMR signal is fit to a multi-exponential
relaxational model, with a distribution of relaxation times corresponding to the distri-
bution of pore sizes in a typicul rock matrix. The inversion of this multi-exponential
relaxation data is investigated.

Mathematically, the inversion problem is cast in the form of a Fredholm integral
equation of the first kind. Decomposition of the measurement kernel reveals only a
small subset of nonzero eigenvalues, a reflection of the high degree of redundancy in
the data. The inversion is thus formulated as a linear combination of eigenfunctions
corresponding to the non-zero eigenvalues of the kernel.

Typical of inversion problems, the solutions obtained are numerically unstable.
Approximate solutions can be obtained using only the dominant eigenvalues, exclud-
ing the oscillatory eigensolutions belonging to very small eigenvalues. Although these
solutions are stable, they cannot recover high frequency content.

Regularization theory allows the solutions to include all eigensolutions correspond-
ing to nonzero eigenvalues. Although these solutions are also non-unique, they allow
more detail in the distributions without forfeiting stability. A method for selecting
an approximately optimal regularization parameter in a data-dependent manner is
developed.

The inversion and optimal regularization algorithms were implemented and tested
both on synthetic data and data collected by a prototype pulsed NMR tool.
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Chapter 1

Introcduction

1.1 Background

In the well-logging industry, highly sophisticated tools are developed to extract petro-
physical information about the earth formation. Oil companies and interpretation
experts often use several different types of tools tc investigate a borehole, each device
designed to test for a property desirable in a producible well. The information ob-
tained can then be pooled to judge the worthwhileness of drilling a well for commercial
production.

Although there are numerous petrophysical properties which help determine the
probability of finding oil, the focus of our treatment is porosity. Defined as the ratio of
pore volume to total volume, porosity is a fundamental consideration when searching
for possible sources of hydrocarbons. Pore space in a formation is filled with fluid,
and hence a measure of porosity determines the availability of volume space for the
existence of fluid in a formation. Once the presence of fluid is detected, methods
exist to further investigate the rock to decipher the type of fluid present. Clearly, for
petroleum exploitation purposes, a rock must be porous.

A borehole logging tool is currently being developed by Schlumberger Well Ser-
vices for porosity estimation. The Pulsed Nuclear Magnetism Tool (PNMT) relies on
the physics of NMR and works much like radar. Pulses of rf power are sent into the

formation, and the returning pulses, or “spin-echoes”, reflect the nuclear magnetic



relaxation rates of hydrogen atoms in the pore space of rocks. The tool takes advan-
tage of the important fact that the tool is sensitive only to hydrogen atoms in fluids,
not to hydrogen atoms in the solid matrix.

Only in exceptional cases, if at all, does the nature of practical measurements
allow any tool to directly determine a desired quantity. For the PNMT, as in most
cases, the measurement is indirect. Once data is collected, it is essential to accompany
the measurement with some form of processing to infer useful information from the
measured data. It is here where the scope of this thesis begins. We begin with pulsed
NMR data, model the measurement process, and develop an algorithm to meet our

ultimate goal of porosity estimation.

1.2 Motivation

While pulsed NMR is not a new technology, its application to wellbore exploration is
a recent venture. In the past, NMR has been widely used in the medical field. Our
study is particularly interesting because this well-established technology is applied to
a completely different area. The mathematical puzzle which arises from describing the
process analytically is very similar to another well-studied field, remote sensing. The
prototype PNMT offers a unique opportunity to apply the mathematics of inversion
to a difficult technical problem in a new setting.

The purpose of our study is, firstly, to develop a signal processing algorithm to
estimate porosity in a formation from pulsed NMR data. Results will be benchmarked
against existing solutions due to Freedman (7] and Sezginer [17] for accuracy and
computational efficiency. Our academic, and equally important, goal is to study
the underlying mathematics rigorously and derive a strategy for insuring that the

solutions obtained are numerically stable.
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1.3 Outiine

Regardless of the type of .casurement, success of information extraction relies largely
on the experimenter’s understanding of the measurement proces:. In this light, Chap-
ter 2 begins our presentation with a review of the basic principles of NMR. The physics
sets the basis for the measurement and explains the model chosen for the data.

Chapter 3 establishes the mathematical background used in the inversion algo-
rithm. Inversion problems have been studied for decades, and the accepted equations
to model them are introduced. The nature of instabilities, which complicates the in-
version process, are studied. A highly acclaimed cure, the method of regularization,
is discussed.

The derivation of the solution is outlined in Chapter 4. We obtain a likelihood
function for a set of random variables derived directly from the collected data. The
standard minimization of the likelihood function simplifies our problem into a linear
set of equations. The formal solution is a linear combination of weighted eigenfunc-
tions of the measurement kernel. In practice, this direct inversion is highly unstable.

Eigenanalysis, or a study of the eigenvalues and associated eigenvectors, of the
measurement kernel suggests that the small (or nearly zzco) eigenvalues need to be
treated to cure the solution of wild oscillations. One method suggested in past liter-
ature is to simply exclude those terms which would contribute undesirable behavior.
The limitation in this method is that the solution would be too smooth, and high fre-
quency content would be excluded altogether. The regularization method allows high
frequency resolution and at the same time augments tiny eigenvalues which caused
difficulties in the -forma.l solution. These solutions are not unique, and are in effect
solutions to a constrained inversion problem.

Representative examples of our inversion algorithm are included. These examples
were obtained using both synthetic and real data.

Finally, the results of this thesis are summarized in Chapter 5, and relative merits
and limitations of the approach taken are considered. General conclusions are drawn

which may be applicable to research in related applications.
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Chapter 2
Data Acquisition

This introductory chapter, based on Abragam [1] and Farrar and Becker [6], reviews
some basic NMR concepts in an attempt to facilitate understanding of the behavior of
nuclear magnets in pulsed experiments. Quantitative analysis is included to supple-
ment our qualitative discussion of NMR principles. Establishment of the underlying
physics leads to a presentation of the data acquisition specifics and the relaxational

model used in this study.

2.1 Basic Principles of NMR

NMR methods rest on the fact that the nuclei of many materials have a magnetic
moment and an angular momentum, er “spin.” The magnetic moments, equivalent
to tiny magnetic dipoles, are magnetized with applied magnetic fields. They absorb
electromagnetic energy from bursts of radio frequency (rf) power which perturb the
equilibrium state. Observation of the transient spin system and intrinsic relaxation

mechanism is used to extract information about the material being tested.

2.1.1 Relaxation and Nuclear Precession

A rock matrix typically contains pores of various sizes and shapes which can contain
fluid. At the onset there is no net magnetization since the moments have random

orientation (see figure 2-1).
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An applied static field in the z direction causes the moments to line up along the
z-axis, and the material as a whole will be magnetized to some degree (see figure 2-2).

The net magnetization is proportional to the applied field.
M= xHp (2.1)

where x is the proton magnetic susceptibility.

o 30
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O 7l < < K 1‘ 206028,
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Figure 2-2. (a) Moments are randomy oriented in absence of applied field.
(b) Moments line up along direction of applied static field;
object as a whole is magnetized to some degree.

The situation depicted in figure 2-2b is the equilibrium situation for NMR ex-
periments. If this equilibrium is perturbed, i.e. the moments are tipped from their
alignment with Hg), the torque exerted by Ho on a moment inclined at an angle 8
relative to Ho will cause the moment to precess about the z axis (see figure 2-3a)

with a frequency given hy the well-known Larmor equation:

wp = —yHp (rad sec™) (2.2)

13



7 is the proton gyromagnetic ratio.

(@) ,*\ H (b)
]

Figure 2-3. (a) Precession of a single moment p about H when disturbed
from equilibrium alignment.
(b) Ensemble of moments, each precessing about H at the
Larmor frequency. A macroscopic magnetization M is
defined as the vector sum of individual moments.

Study of a single moment (or spin), however, is not useful. Instead, an ensemble
of a large number of nuclei, each precessing at the Larmor frequency about Hp, is
considered as an entity (see figure 2-3b). We define a net magnetization vector M as
the sum of the individual mements. All follo #ing discussions will refer exclusively to
the macroscopic magnetization M.

Following perturbation, the spin system we have just described will relax back
to the equilibrium condition, where M is again aligned with the applied field. The
relaxation mechanism is described by two first-order processes. The spin-lattice or
longitudinal relazation time T, accounts for the way the spin system returns to equi-
librium with its surroundings and builds up magnetization in the z-direction. A
second spin-spin or transverse relazation time T, describes how the spins come to
equilibrium with each other, effecting decay of magnetization in the x-y plane.

Before continuing with this qualitative presentation, we introduce the Bloch equa-

tions, which are useful to describe the behavior of M in pulse experiments.

14



2.1.2 The Bloch Equations

Bloch et a! [1] derived a set of differential equations to explain the motion of the
macroscopic magnetization M in the presence of an applied field. The classical equa-

tion of motion of M in a field H is as follows:

dM

In general, H consists of both a static applied field Ho and an rf field linearly
polarized along the x-axis. The latter can be thought of as two circularly polarized

fields, ro‘ating in opposite directions with respect to each other:

H; = H; coswt ¢ — Hysinwtj + Hycoswti + Hysinwty (2.4)

H- Hy

H. rotates counter to the precessing moments and can be ignored since it does not
meet the resonance condition (refer to Abragam [1]). Only H_ contributes, and the

components of H are:

H, = H, (2.5&)
H, = H,coswt (2.5b)
H, = —H;sinwt (2.5¢)

Equations (2.3) and (2.5) can be combined into differential equations for each com-

ponent of M. The complete Bloch equations, including relaxation terms, are as

follows:
M. _ (M, Ho + M, Hy sin wt) — M. (2.6)
dt T,
aM, = ~(M.H, coswt — M Hy) — M, (2.6b)
dt T,
d:tlz = —q(M.H,sinwt + M, H, coswt) — (——A!‘—;—-@ (2.6¢)
1

The Bloch equations above can be solved analytically in the laboratory frame of

15



reference, but details are, in general, laborious. They are more easily solved in a

rotating frame of reference.

2.1.3 The Rotating Frame of Reference

Pulse phenomena are best observed in a coordinate system which rotates about Hp
at the Larmor frequency. In this new coordinate system, called the rotating frame,
the x' and y; axes rotate about the z' axis (see figure 2-4). The spin motion of
M, when perturbed by other applied fields, delineates very complex paths in the
fixed laboratory frame. In the fixed frame, steady precession about Ho must be
superimposed on another (slower) precession induced by a second field which will
be introduced shortly. The spin motions can be derived in much simpler forms in
the rotating frame, which in effect eliminates the Larmor precession about Hp. This

simplification can be readily appreciated when mathematics are introduced.

Z,Z

Figure 2-4. The axes of the rotating frame (x', y', z')
rotate about the fixed frame (x, y, z)
with angular frequency ®.

The overall motion of M in the lab frame can be related to its motion in the
rotating frame, where rotation of the axes is mathematically described in terms of a

vectcr cross product:

dM M )
(7) fived = (.6_t) rotating + @ xM (2.7)

frame Jframe

16




Making use of (2.3) and simplifying yields:

(%\g) t =M x (H + %) (2.8)

Furthermore, an effective field can be defined:

oM
(gt—)rd = ‘YM X Heﬁ' (2.9)
Hep = H+ % = (Ho + %) + Hiz' (2.10)

where the term £ can be considered a fictitious field arising from effects of the rotation.
The significance of (2.10) is that it points out the validity of the ordinary Bloch
equations even in the rotating frame, provided Hg is used in place of H. Notice we

are now left with two static fields.

2.1.4 Spin Tipping in the Rotating Frame

Consider the equilibrium situation with an applied static magnetic field Ho = Hp 2.
Pulses of radio frequency (rf) fields H;, applied at right angles to Hp, perturb the
equilibrium. Energy is absorbed from H; only when its frequency satisfies the reso-

nance condition:

w = wy (2.11)

By choosing our rotating coordinate system with
@ = —vHpy (2.12)

(2.10) simplifies to give us only an rf field, which appears static in the rotating frame,
to interact with M.
Hegx = Hy (2.13)

17



Initial conditions, then, are:

M.(0) = M!(0) =0 (2.14a)
M!(0) = M, (2.14b)

T..: equations of motion reduce to:

dM! M

dt = —-—1-;2— (2158.)
dM] Mm!
v ! v

= yM,H, - — (2.15b)
dt T

dt T T; oe

For rf pulses of short duration compared to the relaxation times, relaxation effects
can be neglected. Solutions for short rf pulses of duration 7 (i.e., 7(r < T, < Ty)

the solution to the above set of equations is:

My(r) = 0 (2.16a)
M,(t) = MysinwT (2.16b)
Mi(t) = MycoswT (2.16¢)

Equations 2.16 show that, in the rotating frame, an applied rf field H; results in
precession of M about H; %'. M remains in the y' —z’ plane, and the angle of rotation
is

0 = wyt =~vH T (2.17)
Rate of precession remains constant at the Larmor frequency, but the angle of rotation
can be chosen by the experimenter using the above relation. Figure 2-5 shows the

magnetization vector being tipped by an rf field. The most common tipping pulses

are for 90° and 180° angles of rotation.

18



Figure 2-5. M being tipped by 2
90° and 180° pulses, i

respectively. M l: \

In the fixed frame, the motion of M is far more complex. While the moments

are being tipped toward the x-y plane, they would also be precessing about the z

axis. The rotating frame travels with the precession, and only the tipping needs to

be considered.

2.1.5 Relaxation in the Rotating Frame

After M has been tipped to the desired angle, H; is turned off to observe the nuclear

spin system. Recall that Hg is a permanent static field and is still on. M has been

tipped to the y’ axis with a 7 pulse, and the initial conditions can be stated as:

M;(O) = Mo
M_(0) = M;(0) =0

The equations of motion now simplify to:

M: M
dd =~ 0T
M M
i T
M, (M- M)
7

and the solutions of the Bloch equations in the rotating frame are:

Mit) = 0,
My(t) = Myexp(~t/Ts),

19
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M.(t) = Mo[l —exp(—t/T})]. (2.20¢)

2.1.6 Sclutions in the Fixed Frame

The solutions of the Bloch equations in the fixed frame are obtained simply by ap-
plying a transformation matrix to carry the results between frames of reference. The
components in the fixed frame can be simply related to their counterparts in the

rotating frame (denoted by primes) by the following:

M, M.
M, =R"'-| M (2.21a)
17 %
(2.21b)
coswt sinwt 0
R'=| —sinwt coswt 0 (2.21¢)
0 0 1

The relaxation process, after a I rf pulse has been applied and subsequently turned

off, follows directly from (2.20) and (2.21):

M.(t) = Mysinwetexp(—t/T5) (2.22a)
My(t) = Mgcoswotexp(—t/Ts) (2.22b)
M.(t) = Mol —exp(—t/Ty)) (2.22¢)

Equations 2.22 describe how M precesses about the static field Hy and simultane-
ously returns to its equilibrium position in the z direction. The transverse components
of M, My and My, dccay exponentially to their equilibrium value of zero with a time

constant T,, or *

‘spin-spin relaxation time”. If local field inhomogeneities of the
static field Hg are cignificant, the transverse magnetization decays with a faster time

constant T3. Inhomogeneities cause each moment to precess at a slightly different

20



frequency, causing dephasing of M, and M, (see figure 2-6). This in turn speeds up

the decay of transverse magnetization.

Figure 2-6. Moments dephase in the x"-y'
plane, and magnetization in
the z' direction diminishes.

The longitudinal component of M, M,, will return to its equilibrium value M,
with a time constant T;, or “spin-lattice relaxation time”. The rate with which M,
builds up is governed by molecular properties of the fluid and its environment within
the rock pore space.

Clearly, if M has returned to its equilibrium value M, there can be no component
of M in the x —y plane. Hence T,, the time describing loss of M, and M,, can never

be longer than T,, the time characterizing restoration of M,. In general, then,

T; <T, <T. (2.23)

2.2 Apparatus and Measurement Technique

2.2.1 PNMT

Conventional NMR. methods have been studied since the 1940’s, and prior applica-
tions have not necessitated revision of conventional laboratory NMR devices. Our
application, however, cannot make use of the conventional devices that place the ma-
terial being tested inside a magnet and rf coil. The prototype PNMT, based on a

novel “inside-out” design created by Kleinberg et al [12], meets the need for mea-



surements on large samples such as the earth formation (see figure 2-7). The field
is predominantly radial and is relatively homogeneous only inside the small dashed
square. The instrument also has its own radio frequency antenna which generates
oscillating rf fields perpendicular to the static field. Refer to Kleinberg for details

concerning the NMR apparatus used for the data in this study.
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Figure 2-7.  Adapted from Kleinberg er al [1991]. Cross-section of the "inside-out”
NMR apparatus. Arrows indicate direction of the static magnetic field
into the borehole. The field is relatively homogeneous inside the small
square in the earth formation.

2.2.2 CPMG Technique ¢

The spin-echo measurement sequence used by the PNMT is the Carr-Purcell sequence
with the Meiboom-Gill modification (CPMG). The rationale of the CPMG method
is shown in figure 2-8. In (a) M is shown being tipped through 90° by an applied rf
field Hy. Following removal of the rf field, the individual nuclei experience slightly
different values of the static field, and hence their frequency of precession will differ
slightly. Some nuclei travel faster, and some slower, than the rotating frame, and
hence as a collection the nuclei will fan out. For simplicity, the rate of frame rotation
is taken to be slower than the rotation frequency of the moments m;, and hence the
moments are depicted rotating in a single direction. In (c), at a time tep after the

90° pulse, a 180° pulse is applied along the y' axis, which flips each moment by 180°

22



about the y' axis. The moments continue to travel as shown in (d), and rephase to
produce an “echo”, as shown in (e). In (f), the moments are shown dephasing again,
and the cycle (c)-(f) continues as 180° pulses of rf power are applied at odd multiples

of tcp, and echoes collected at even multiples of tep-
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X' ' X'

Figure 2-8. The CPMG technique, taken from Farrar and Becker [1971].
For clarity, the frame's rate of rotation is taken to be slower than
the precession frequencies of any of the moments. Thus all
moments appear to move in the clockwise direction as viewed
down the z' axis, but some move faster than others due to local
field inhomogeneities.
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An illustrative cartoon of the CPMG technique is given in figure 2-9. The signal
is measured as voltage induced in an antenna, and the picture shows in a succinct

fashion the relationships between the periodic pulses and received echoes.
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Figure 2-9.  Cartoon illustrating CPMG technique
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2.3 Multi-Exponential Decay Model

2.3.1 Definitions

Studies show that fluids vhich have a short relaxation time are trapped in small pores
and/or are highly viscous. Hence bound fluids will not flow easily and are not easily
extractable. Conversely, fluids which will flow easily under feasible pressure gradients,
free fluids, relax with relatively long relaxation times.

An empirically determined cutoff relaxation time T, separates the total porosity
reading into “bound-fluid” and “free-fluid” porosities. Fluids with relaxation times
less than T contribute to bound-fluid porosity ¢»¢, and similarly fluids with relaxation
times greater than T. contribute to free-fluid porosity @¢s. Only free-fluid porosity

is of commercial interest.

2.3.2 Assumptions

NMR -elaxation times are very sensitive to the molecular environment. Pore size is
significant since surfaces hinder molecular motion. A distribution of pore sizes, typical
in rock formations, is responsible for the distribution of relaxation times observed.
The signal to noise ratio of borehole PNMT measurements is poor. Thermal noise
generated by the tool electronics corrupts the data. Experiments show that the noise

can be modeled as additive, zero-mean, uncorrelated Gaussian noise.

2.3.3 Relaxational Model

The signal collected by the PNMT is a series of echoes reflecting the decay of proton
nuclear magnetization of the fluids in rock pores. The decay of each echo is charac-
terized by T; due to field inhomogeneities in the rock. The larger envelope, shown by
the dotted line in figure 2-10, describes the decay rate of the NMR signal character-
ized by T;. Between successive 180° pulses, M, has not had sufficient time to return
to equilibrium. It is assumed that the net magnetization developed along the z-axis

between pulses is negligible.
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Figure 2-10. NMR spin-echo measurement

If a formation had only one pore, or pores of a single size, the decay of magnetiza-
tion would be observed as a single exponential decay, the time constant being simply
the relaxation time. Given the countless possible pore sizes in a formation, then, the
relaxation will be characterized by a distribution of respective decay times. Depend-
ing on the complexity of the model, a selected number of weighted exponentials can

be chosen to characterize the observed decaying signal, as illustrated in figure 2-11.

Signal

— Exponents modeling signal decays,
each for a particular pore size

Y

Figure 2-11. Multi-exponential relaxational model
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The p:oblem then becomes fitting the distribution of relaxation times to the ob-
served decay curve. Figure 2-12 shows a typical CPMG echo sequence. The wide
scattering in echoes shows the poor SNR inherent in the measurement. Our goal is

to fit the exponentials to the NMR signal, shown by the solid line.

PNMT data: spin-echoes
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Figure 2-12.  Signal super-imposed on collected spin-echo data
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Chapter 3

Mathematical Background

This chapter introduces the fundamental integral equation of indirect measurement,
the Fredholm integral equation of the first kind. In general, Fredholm equations are
ill-conditioned and cannot be solved analytically. The theory of Tikhonov’s regular-

ization method is applied to approximately solve the ill-posed problem.

3.1 Inversion Problems

Interpretation of data obtained through indirect measurement is a classical inversion
problem. Many practical examples, such as remote sensing, place severe demands
on the ability of users to extract key information from measurement data. Clever
schemes are necessary to truly “read” the data in any meaningful way.

In a generalized sense, we can define observables as parameters that can be mea-
sured physically. In contrast, we may define a set of natural parameters that are to
be determined. The most important problem, then, is to find the correct relation
between the observables and the natural parameters. The relation allows translation
of the observables into the desired parameters, and the problem is solved. In practical
situation:s, however, the relation can be very complicated, and exact solutions are not
attainable.

The difficulties arise because the types of equations that describe many inversion

problems are such that analytical solutions are out of the question. Routine numerical
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techniques fail because, in general, the equations are ill-conditioned, a property which
will be defined shortly. By using suitable approximations, we can obtain solutions

that are useful and sufficiently accurate for certain applications.

3.2 Fredholm Integral Equations of the First Kind

Many inverse problems can be stated in the form of the well-known Fredholm integral

equation of the first kind:

[ Kw,2) 50 dy = o(2) + e(2) (3.1)

The elements of the model are as fullows:

K(y,z) : measurement kernel (or known response function)
f(y) : unknown function which is sought
g(z) : data
e(z) : error

The problem is to est’~" the unknown function f(y) based on the observed data,
and a peculiar problem can be associated with the solution to (3.1). In Fredholm
equations of the first kind, the mapping g — f is rot continuous; that is to say, the
solutions gererally depend discontinuously on the data. Therefore small errors in
the measured g may lead to enormous variations in the solution f, and the issue of
uniqueness needs to be considered.

For implementation purposes, (3.1) is re-stated as a quadrature inversion by re-

placing the integrals by sums and is wrictten in operator form:

Kf =g+¢ (3.2)

In general, the error in the quadrature operation is not large, especially when the
functions invoived are reasonably smooth. In fact, while ouadrature does produce an

error, the quadrature error is not the dominant factor in the overall uncertainty.
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3.3 Solutions of the Fredholm equations of the
first kind

Mathematicians have studied the Fredholm equations for several decades, and it is
well accepted they are quite difficult to solve. Since the solution does not depend
continuously on the data function, an exact inversion is doomed to fail. There are in-
finitely many solutions which satisfy a slight variant of the intrinsic integral equation,

and it is common to seek “smooth” solutions rather than exact ones.

3.3.1 Direct inversion

An attempt to solve the system:

Kf=g (3.3)

for f might lead one to try the obvious direct inversion:
f=K'g (3.4)

Mathematically speaking, the inverse matrix only exists when K is square and non-
singular. In general, K does not satisfy these properties, and our direct approach fails
miserably in practice. The resulting solution, if attainable, suffers from instability:
small changes in g produce enormous changes in f. The result is a wildly oscillating
solution that is highly sensitive to noise.

The problem lies in the fact that K has small eigenvalues, a manifestation of the
high degree of interdependence among adjacent rows and columns in the measurement
kernel matrix. The small eigenvalues of K results in large elements in K1, if the
inverse exists, and the presence of these large elements inevitably produces instability.

There is also a problem of uniqueness. The matrix K is non-square, meaning the

the system is under-determined. No unique solution exists.
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3.3.2 Least squares problem

Another inversion approach is least squares optimization, where the best possible
solution is chosen from a family of solutions. The best least squares solution, i.e. one

which minimizes the norm of the residual (K f — g), is given by
f=(KTK)'K"g (3.5)

The symmetric matrix KT K has an inverse; numerically, however, this inversion is
still highly unstable. In fact, the solution given by the least squares method is no bet-
ter that than obtained through direct inversion in regard to the problem of instability.
In general, K* K has even smaller eigenvalues than K. Clearly, the eigenvalues need
to be boosted in some way. Equivalently, a smoothing term is needed to stabilize the

solution, and the method of choice has been regularization.

3.4 Regularization theory

Tikhonov’s groundbreaking paper on the method of regularization for numerical so-
lutions of Fredholm integral equations of the first kind received much attention in the
1960’s. Intensive development of the theory of the method followed, and the method
was quickly applied to a range of difficult technical problems. Regularization replaces
the ill-posed problem by a stable minimization problem[14].

We now introduce Tikhonov’s concept of well-posedness for such equations [11].

The inversion in (3.1) is said to be well-posed if

b) the solution is unique in y

a% for each g € z, there is a solution f € y
c) f depends continuously on ¢

An equation which does not meet the above conditions is termed ill-posed.
The solution to the ill-posed least squares problem can be obtained by minimizing

a likelihood function, with an added smoothing term. Thus the constrained linear
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inversion problem becomes:
f=argmin[(Kf -g)*++v(Lf)?] (3.6)
and the constrained least squares solution is
f=(KTK+49LTL)'K ¢ (3.7)

where L denotes some linear operator. The operator reflects the application’s defini-
tion of “smoothness.” Phillips [16] defined smoothness via minimization of a second-
difference expression and obtained favorable results. In general, a combination of
several k-th differences, with appropriate weights applied to each constraint, can ef-
fect a particular form of smoothing.

The positive parameter v, called a regularization parameter, penalizes large devi-
ations of the solution f or its derivatives, depending on the choice of operator L. The
duty of this parameter is to effect a trade-off between smoothness (large ¥) and fi-
delity in the approximate solution (small ) [20]. The “goodness” of the solution, and
the resulting choice of L is established by a selected criterion of desired smoothness.

The functions derived from the above likelihood function with the regularization
term will be called a “regularized family of approximate solutions” [20]. Indeed,
infinitely many solutions, for different choices of the regularization parameter 7, fit
the set of linear equations. Selection of an appropriate v involves a tradeoff between
stability and accurate data-fitting. The best fit to the data is achieved by setting v
to zero; however, as previously discussed, the solution will be numerically unstable.
A large value of v yields very stable solutions at the expense of a bias which prevents

solutions from fitting the data.
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3.5 Method of Dominant Eigensolutions

The solution can be interpreted as projections of the measurement kernel onto a
set of eigenvectors. Since highly oscillatcry eigenvectors are associated with small
eigenvalues, the method of restricting the solution to a set of dominant eigensolutions
is a filtering process which excludes high-frequency contributions. This method of
simply ignoring the smallest eigensolutions was studied by Baker, Fox, Mayers, and
Wright [2]. Respectable results are obtained, especially when the distributions we are
seeking are smooth in nature. Formally clioosing where to determine the distinction
for eigenvalues which are “dominant” will be addressed in the next chapter, and this
choice is application-dependent.

We notice that this is a simple method which does not require regular.zation. The
price we pay for the simplicity in the algorithm, though, is detail in the formal solu-
tion. The filtering employed by restricting the distribution to dominant eigensolutions
is a crude one, and utilization of a regularization term can provide more detail in the
distributions while providing numerical stability. In the next chapter, we will derive a
solution based on the mathematical theory detailed above, and regularization, rather

than the method of dominant eigenfunctions, will be used to stabilize the solutions.
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Chapter 4

Derivation of Solution

The problem is cast in the form of a Fredholm integral equation of the first kind.
Brute force methods to solve the integral equation are not computationally feasible
due to the abundance of data collected in pulsed NMR measurements. Another criti-
cal problem concerns the numerical stability of the solutions. We begin our derivation
with a data compression algorithm developed by Freedman [7]. A likelihood func-
tion is derived for the reduced data set (random variables) representing the collected
spin-echoes, and standard minimization of the likelihood function leads to a system
of linear algebraic equations. Formal solution to the linear system of equations is

attacked using an eigenvalue analysis approach.

4.1 Pre-processing

4.1.1 Data Compression

Processing of CPMG data is difficult for two reasons: the need for extensive com-
putational power, due to abundance of raw data, and poor signal to noise ratio.
Freedman developed a pre-processing method to attack these difficulties. A set of
signal-plus-noise echoes A§+) are derived from the original data set. Refer to [7] for
details, including phase estimation and rms noise estimation.

The data compression scheme consists of defining non-overlapping windows across
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the range of echoes, and simply summing the values of the echoes within each window:

. Neia
In=3% A (4.1)
J=Nm
N.» and N4, are the endpoints of the m** window. For simplicity, details to accom-
modate the classical fencepost problem faced in implementation has been omitted.
See figure 4-1 for a pictorial representation of the data compression method.
The super-echoes, or sums of echoes within each window, are the new reduced

data set. They can be interpreted as a weighted sum of amplitudes in the desired

spectrum:

N, ;
In=Y afiFu+ N, (4.2)

=1

where the weights are:

fi=1—exp(-W/((Ts,))
Nyt

Fo 3 exp(—jA/Ty)

J=Nm

fi models incomplete recovery of the longitudinal magnetization during time W. F,,
reflects the sensitivity of the m** window to the components in the spectrum. Here
we have used the approximation T; = (T, which holds for rocks. N}” is obtained by
summing the noise over time windows, using the data compression process described
earlier. The noise is zero-mean, uncorrelated Gaussian noise with variance ¥. The
time axis in the region of interest [T2,min - - Ty mae] is divided into equally spaced
components on a logarithmic scale, and the unknown distribution are the weights
a; corresponding to each relaxation time T;). Refer to Freedman [7] for explicit

derivations and details of this model.
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PNMT data: spin-echoes
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The super-echoes I,,, are random variables with a known mean and variance. The
variance in each window is the sum of variances in each echo (uncorrelated random
variables), and hence reduces to the length of the window (ie, number of echoes in

the window) multiplied by the variance in a single echo, 1.

No

<In>= Y afiFm = In{a} (4.3)
=1

0?(In) = dp(Nms1 — Nm) = %62 (4.4)

4.1.2 Likelihood Function

A likelihood function is written for the Gaussian randc.n variables I, as follows:

Ne (7 _ a})?
“p=3Y Um 25;2{ 1}) (4.5)

Stability can be ensured, as discussed in Chapter 3, by adding a regularization con-

stant: N ) .
% (Im = In{a})® | 7 &

—InL= ( i +—=Y a? 4.6

X e 29 ,Z ‘ (49)

The regularization term imposes a penalty for large amplitude deviations, behaving
as a smoothing filter on the solution. In this case we have chosen the operator to be
the L; norm.

Solving the problem in the form of a maximum likelihood function is in fact
equivalent to mean square error estimation. The mean square error criterion results
in optimmum or near optimum performance in comparison with other measures. Es-
timation of a signal received in white Gaussian noise using minimization of mean
square error is equivalent to maximum likelihood estimation.

Thus a solution will be chosen which is closest, in the mean square sense, to the
hypothetical noise-free solution, and yields a “smooth” distribution of amplitudes.

Smoothness here is synonymous with stability.
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4.1.3 Reduction to Linear System of Equations

Minimization of the likelihood function in (4.5) leads to a linear system of equations:

Mo a= d (47)

Mjp : system matrix
a : (unknown) amplitudes of the distribution function
d : “data” vector (processed)

The inversion problem is hence simplified to a form involving a symmetric, positive
definite, invertible (see [7]) kernel matrix Mo, defined by
N

= kom(Tz,k)lem(Tz.l)
[MO]z,k = Z 52

m=1

(4.8)

and a data vector d
N &
2 I fiFm(T2a)
dl = Z ——-—fl Ar;( 2'£’-. (49)
m=1 am
"M is a square matrix, whose dimensions N, are the number of exponential components

in the model
[MO]l,k € RNsxN, (4.10)

The regularized solution, obtained by minimizing (4.6) would yield a similar set

of linear equations:
Ma=d (4.11)

The regularized kernel matrix is related to the non-regularized matrix by a simple

boosting of its diagonal elements:
M =My +1I (4.12)
where I is the identity matrix.
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4.2 Eigenanalysis

Reducing the basic inversion problem to a form involving a symmetric kernel matrix
allows study of the eigenfunctions of the simplified system. In particular, we are inter-
ested in the nature of the eigenfunctions of the system matrix. They define the types

of solutions which can be expressed as linear combinations of these eigenfunctions,

weighted appropriately. The rank of the system matrix in fact reveals the subset

eigenfunctions which contains all the information necessary to derive a solution.

4.2.1 Rank of Kernel Matrix

The real, symmetric matrix Mg can be diagonalized in terms of an orthonormal set

of eigenvectors and corresponding eigenvalues:
Mg=UAU1'=UAUT (4.13)

where the orthonormality of eigenvectors has been exploited to obtain UT = U-1.
The matrix U is composed of the eigenvectors uj,uz,...,u; in columns, and the

matrix A contains the ordered eigenvalues A\; > A, > ... > J; along its diagonal.

U=(".‘ B ‘f‘) (4.14)

A
A= . (4.15)

Ai
Decomposition of Mg reveals that only a handful of the eigenvalues are non-zero.
The matrix My is said to be of finite rank r, where r is the number of non-zero
eigenvalues. The solution lies in a finite eigenspace, that is, the space spanned by the

r non-zero eigenvalues given in table 4.1 for several choices of windows.
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indez eigenvalues eigenvalues eigenvalues
for 5 windows | for 10 windows | for 15 windows

1 4737 4810 4814
2 336 351 354
3 40 50.8 51.6
4 4.2 8.5 8.7
5 0.10 1.2 1.3
6 0.15 0.16
7 0.01 0.02
8 0.001 0.001
9 0.000 0.000
10 0.000
11 0.000
12 0.000
13 0.000
14 0.000
15 0.000

Table 4.1: Eigenvalues of System Kernel for Sets of 5, 10, 15 Windows

The eigenvalues and eigenvectors corresponding to table 4.1 for the case of 5 win-
dows and 50 components in the relaxational model (N, = 50) are shown in figure 4-2.
Notice that the largest eigenvalue corresponds to the lowest frequency eigenvector;
they comprise the slowly varying portion of the solution. The smallest eigenvalue
corresponds to the highest frequency eigenvector and allows oscillation in the solu-
tion. The solution, then, is comprised of properly weighted eigenfunctions of the
measurement kernel. In effect, the solution is described as projections onto a finite
set of eigensolutions.

Similar observations can be made for the other cases using more windows. In
general, the number of non-zero eigenvalues is determined by the number of super-
echoes (windows chosen in the data compression scheme) up to a point. In other
words, the reduced data set contains all the information that can be extracted from
the complete data set. However, adding more windows beyond a certain number
does not increase the amount of information that can be retrieved. For the case of

15 windows, note that there are still only a handful of significant eigenvalues. The
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magnitude of the eigenvalues drops off very quickly, and beyond the eighth term, they

are effectively zero (up to 3 decimal places).
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Figure 4-2. Eigenvalues and eigenvectors of system matrix Mo
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What is particularly interesting about the cases involving more windows is the
corresponding eigenvectors. As the veclors are studied in order of decreasing eigen-
values, they exhibit highly oscillatory behavior. The eigenvectors corresponding to
the smallest eigenvalues (for example, the last three in the case of 15 windows) have no
visible pattern and display erratic behavior. The solution, which should be smooth,

cannot be formulated in terms of these nullspace eigenfunctions.

4.2.2 Expansion in terms of eigenvectors

We begin with our basic equation in matrix form:
Mga=d (4.16)
The eigenvalue decomposition of Mg leads to:
UAUTe=d (4.17)

By defining a vector Q whose components are the projection of the eigenvectors onto
the data,
Q:i2u;-d (4.18)

a simple solution in the non-nullspace results:

“=i Qi.ui

y (4.19)

=1

It becomes evident why small eigenvalues lead to instability in the formal solution.

Small changes in the data (namely Q;) lead to large changes in the solution (&).

4.2.3 Limitations

One of the most obvious limitations of the eigenfunction expansion is that there is no
elegant way to constrain the amplitudes to be non-negative. The simplest solution,

and the one implemented, is to clip any amplitudes which are negative. In most
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cases, the difference in the resulting porosity estimates is negligible. The solution only

oscillates slightly at th. edges, and the magnitude of the negative terms is minimal.

4.3 Stabilization of Solutions

Baker, Fox, Mayers, and Wright[2] suggested formulating the solution in terms of the
dominant eigenvalues of the kernel. Includirg only the dominant eigenvalues in the
expansion in effect filters the solution of high-frequency oscillations, producing more
stable solutions than a direct inversic.. We will also investigate stabilization via
Tikhonov’s regularization method; this soluticn will permit inclusion of all non-zero

eigensolutions. We will compare solutions which result from both these approaches.

4.3.1 Dominant Eigenvalues

Since oscillatory behavior of higher-order eigenvectors is associated with the smallest
eigenvalues, we consider limiting the expansion to include only the dominant eigen-

values A1,...,Ap.

p ;
a=y, Q:\ui , p<r (4.20)
i=1 b

In cases where the data is relatively good, meaning with high SNR, it is possible to
carry the summation out to p=r. All eigenvectors can be included without fcar of
instability. However, this is true only for lab or station borehole data, where stacking
significantly reduces the noise.

For continuous log data, the SNR is poor, and stability is a real problem. Termi-
nating the summation to include only the dominant eigensolutions filters out high-
frequency content; it is up to the user to determine where the cut-off should be. While
this approach may be suitable in some situations, filtering out all high-frequency con-

tent is likely to produce solutions that are too smooth.
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4.3.2 Tikhonov Regularization

Here we make use of the regularized kernel matrix M from 4.12, whose diagonal
elements have been boosted by the regularization constant v. Adding a regularization
term allows use of all non-zero eigenvalues and associated eigenvectors in the solution,

even in cases where SNR is very low. The following solution results for a:

N Quyy
a= ; pygp (4.21)

The regularization parameter simply augments the eigenvalues ); and has the pleasing

effect of dampening out oscillatory behavior.

4.4 Optimal Regularization

We now treat a general sirategy for choosing the regularization parameter as a func-
tion of the error level present in the data. Although many forms of regularization
have been suggested in past literature, the form chosen in this study, primarily for
reasons of simplicity in implementation, was the L, norm. Once this was established,
we wished to study a means of selecting an optimal value of the regularization param-
eter. Work due to Butler, Reeds, and Dawson [4] formed the basis for an optimality
criterion. A revised form of the BRD criterion was later implemented which is better

tailored for this application.

4.4.1 Butler-Reeds-Dawson Optimality Criterion

A criterion for optimality was chosen to be the solution which minimizes the error
between the regularized solution and a hypothetical noise-free solution. Let a denote
the regularized solution given by an eigenfunction expansion in the non-nullspace:

 Qiug
= E 4.22
¢ i=1 A" + v ( )
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Let ao be a hypothetical solution, derived from the multi-exponential model, in the

absence of noise (notice the hypothetical solution has no need for regularization):

Qo = i (—Q—()l"):ﬂ (4.23)

i=1

A vector Qg has been defined, whose components are the projections of the eigenvec-

tors onto the “noise-free data.”
N
(Qo)i =uy - do (4.24)

do=d-n (4.25)

where n is the noise:

N N fiFm(T2,)

UEDY — (4.26)
m=1 Om
and N,, is defined as the sum of the noise across the m** window.
Following Butler-Reeds-Dawson, we define a solution error:
Fy=lla-a | (4.27)

Obviously it is impossible to solve for a, since the distribution is unknown. We must
assume something about the nature of the expected solution in order to solve (4.27).
We will assume that the data is co-linear with the noise, an assumption also made by

Butler, Reeds, and Dawson:

Q=5Q (4.28)
s is defined by
_ |<93Qo >
8 = \ ——< QTQ > (4.29)

The optimal choice for the regularization parameter v, is one for which the
solution error is minimized. Solving for the minimum of (4.27) and making use of the

assumption in (4.28) yields a transcendental equation to be solved for the optimum
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It can be shown that there are bounds on 7opt, and that a solution will always exist

between the bounds:

s s
A < <
= Tort = 1-s

— M | (4.31)

provided s < 1.
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Figure 4-3.  Gaussian distribution used to generate syntethic data

To study the nature of the BRD function, an input Gaussian distribution (see
figure 4-3) was used to generate synthetic CPMG data with random additive noise.
Estimates were derived for a wide range of 7 to study the behavior of the solution
error with respect to 4. Plots of the BRD function F, for 10% and 20% noise levels

are included in figure 4-4.
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Figure 4-4, Illustrations of the BRD function vs.7
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Some qualitative observations can be made which seem to hold generally. The
solution error becomes increasingly large for small values of v as the noise level is
increased. This observation is reasonable since higher noise levels will yield more
spurious solutions in the absence of regularization, or using minimal regularization.
For a given data set, Very high velues of 7 over-regularize the distribution, and the
solution error approaches a constant as v is increased. If y is very small, the error also
increases. This agrees with Twomey’s results [23]. For either very small or very large
values of 7, solutions will not be close, in the mean square sense, to the hypothetical
noise-free solution.

Between these two extremes lies the minimum, or the optimum value of 7. Notice
that the function is fairly flat in this region, illustrating that it is not particularly
sensitive to the actual value of 4. Experimentation with actual inversions has agreed
closely with this observation. The answer products, and even the distribution itself,
do not change considerably for a range of “optimal” v values.

In the presence of random error, the residual is fairly flat for a region when plotted
against 4. In this region, the residual is somewhat independent of the particular choice

of 4.

4.4.2 Revised Optimality Criterion

A revised optimality criterion still mandates that the distribution be closest, in the
mean square sense, to the hypothetical solution. In addition, it ensures that the
porosity estimates derived from the distribution, be optimized with respect to the
hypothetical porosity estimates. It is obtained by minimization with respect to y of

the function:

Fy=|la-ao|*+B8ll¢— o’ (4.32)
The porosity estimates are simply related to the distribution function of amplitudes

originally sought:

N,
¢ = Ko Y @ (4.33)

=1
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N,
b0 = Kioat D (a0) (4.34)
=1

The constant 8 can be chosen to suit a particular application, and is particularly
useful in reducing variance in porosity estimates. For “good” data, it is possible to
accurately estimate a distribution function, and 8 would be set to zero. For noisier
data, however, it is nearly impﬁssible to estimate a distribution with any degree of
success. In such cases a relatively high value of 8 would be used to boost the priority
of selecting a solution which minimizes the variance in the porosity estimation, at the
expense of detail (and accuracy) in the resulting distribution.

A similar minimization of (4.32) again leads to an equation which can be solved

for an “optimal” 4

| Coap tAT G TR (4.35)
zm+ﬂz(§m2xﬁ'—m

where the summations range from i = 1,...,7r. The scalars v; are the sums of the

components in each eigenvector:

v = % uy; (4.36)
i=1
The notation uy; refers to the j* component of the i*? eigenvector.

Figure 4-5 shows the revised BRD condition as a function of 7. The minimum
is sharpened, and the peak has been shifted to larger values of 7. We have added
additional constraints to the optimality criterion, and fewer values of y will satisfy
the new minimum error condition.

Figure 4-6 shows our results for the automatic selection of vy for various levels
of rms noise. As expected, the noisier the data, the more smoothing is employed.
Our uswest parameter in the algorithm, 3 provides a mechanism for securing even

smoother, and hence more stable, solutions.
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Ilustrations of the revised BRD function vs.7

Figure 4-5.
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Figure 4-6. Automatic selection of regularization parameter

4.4.3 Variable Regularization

All previous discussions and derivations have assumed a constant regularization pa-
rameter 7. In the course of the study, advantages of allowing a function instead of a
constant regularization term were considered.

Firstly, we investigated the possibility of using two regularization terms, v, and
¢4, to reflect the distinction between slow and fast relaxation rates. It was hypothe-
sized that 4,4 would in general be less than vy since the components during the fast
decay should not be over-regularized. However, testing showed that it was wrong to
consider an abrupt case of simply two values for v in the two regions. Results for this
case, using two regularization constants, are presented in the next chapter.

Based on the failure of discontinuous values for v, we further investigated the
merits of using a continuously varying 7(T2). It turns out that the solutions obtained
using a function for v were fairly accurate, but the solutions using a simple constant

regularization term were also comparable. This result agrees with our previous ex-
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amination of the BRD function, which revealed that the error in our estimates is not
strictly dependent on 4. For simplicity, then, we decided to continue our study using
a constant regularization parameter.

A flowchart outlining the steps in our inversion algorithm is given in figure 4-7.

o>

v

estimate
signal phase

|

construct random
time series
waveforms

-

estimate data
rms noise compression

select optimal
regularization

covariance eigenfunction
matrix expansion

estimates

uncertainties es
(porosities, mean T)

in estimates

Figure 4-7. Flowchart of the inversion algorithm
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Chapter 5

Simulations

5.1 Distributions and Answer Products Obtained
from Inversion

We will examine the distributions of relaxation time obtained from the eigenfunction
expansion analysis. The distributions can be used to determine the final answer prod-
ucts Gnmry Py, and Tz,l,,g. The porosities are weighted integrals of the distribution
function. T3, is the logarithmic mean of the decay time distribution. The answer

products are defined as follows:

N,

¢nmr = Ktoolzal (5.18.)
i=1
N

¢ff = Kt,,;Zaz (5.1b)
=1

Topog = 10 exp(M) (5.1c)

Y

In many cases, the accuracy of the answer products derived from the distributions

are more important than the actual signal distributions obtained.
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5.2 Inversion of Synthetic Data

5.2.1 Results using Dominant Eigensolutions

The method of including only dominant eigenfunction in the expansion does not
need formal regularization. Exclusion of high-frequency terms is a form of filtering,
and smooth solutions are obtained automatically. We illustrate the effect of including
additional terms in the expansion, that is, eigenvectors other than those corresponding
to the dominant eigenvalues, in figure 5-1. The solution represented by the solid
line (corresponding to the dominant 3 eigenvectors) resembles the input Gaussian
distribution. Notice the smoothness obtained by restricting the expansion to the
dominant 3 eigenfunctions. The solution represented by the dotted line is obtained
by extending the expansion out to the fourth largest eigenvector (total of 5 eigenvalues

and eigenvectors were available for the choice of 5 windows).

0.04
—— 3eigenvalues = 00 e 4 eigenvalues
Q)m =11.5pu 9, =110pu
9, =6ipu 9, =63m
Tz.log =40 ms T2,log =42 ms
0.02 -+

o.w v L L LA T rTrry L L L 4 LS T 1T vV iy LS L] L L] LI
10° 10t 102 103
Tz (ms)

Figure 5-1. Estimated distributions using dominant eigenvectors
(5 windows)
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From this experiment it seems that, if we wish to use the dominant eigenvalues
method, three eigenvectors are sufficient to represent the solutions. That is to say,
the rank of our system matrix is 3. We further tested our theory by changing the data
compression portion to use 10 windows instead of 5. Figure 5-2 shows the solutions

obtained for expansions including 3, 4, and 5 dominant eigenvectors.

0.04
— 3 eigenvalues *ese* 4 eigenvalues = ----. 5 eigenvalues
cpmm =114 pu (pmm = 11.0 pu q)nmr =10.6 pu
(pff =6.1pu ¢ff =6.1 pu (])ff =58pu
T, Jlog = 37 ms T, log = 42 ms T2.log =46 ms
0.02 4
o.w L] ".;l TeTav L L] v L] LA AR BN A § L L v L] L l|:.'.
10° 10t 102 10®

T, (ms)

Figure 5-2.  Estimated distributions using dominant eigenvalues
(10 windows)

Notice that the case resulting from using 3 eigenfunctions (out of 10) is remarkably
similar to that of using 3 out of 5 from the previous example. Thus we concluded
that, for PNMT data with SNR = 20-25 dB, carrying the eigenfunction expansion
out to the third largest eigenfunction will yield good results. Including any terms
beyond that will result in oscillatory behavior that is not consistent with our model

of relaxation times and the smooth measurement kernel.
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5.2.2 Variable Regularization

Early ir our study we investigated the solutions obtained by using two values of the
regularization parameter to reflect the difference in our estimates for free-fluid and
bound-fluid porosities. Eager to see if this slight modification of our formal derivation
for a single constant 4 would improve our estimates, we tested the case of a simple
Gaussian input distribution. In retrospect, it is obvious that this-selection of distinct
terms for the two regions will not yield a favorable distribution; the abruptness in
the regularization term does not conform to the desired smooth distribution function.

Figure 5-3 shows the discontinuity in the resulting solution.

0.03
— Inputdistribution - Estimated distribution
@ . =96m Q. =93pu
¢ﬁ_ =4.5pu ¢ﬂ =4.2pu
0.02 Tylog =328 Ty10g =32ms
10% noise a Ym0 Ty=s

0.01 -

Figure 5-3. Solution using two discrete regularization terms

We next revised our algorithm to utilize a smooth function of vy, where the transi-
tion between v5; and 4,5 was a smooth, non-linear one. This version was significantly
more complex, since at each step a different value of v was used. Figure 5-4 shows

the result obtained for regularization effected by a function for 7.
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0.03
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Figure 5-§.
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Solution using constant 7
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Although the solutions obtained were fairly accurate, using a function for « pro-
vided no advantage over using a constant v in terms of both the distributions achieved
and final porosity estimates (see figures 5-4 and 5-5). In effect, the distributions are
relatively insensitive to the actual value of the regularization parameter. This is con-
sistent with our study of the BRD criterion used to select an “optimal” regularization
term. The flat minimum suggested there was a range of values which could perform
equally well. Regularization is certainly necessary, but the actual value used can be

somewhat flexible.

5.2.3 Mobility of Window Boundaries

The window boundaries chosen in the early stages of pre-processing, in the data
compression scheme, are based on results of numerical simulations with a variety of
distributions (investigated by Freedman [7]). We were interested in affirming that the
algorithm is robust to other choices for window boundaries. We chose two window
sets and examined their eigenvectors (see figure 5-6). There are slight differences,
as expected, but they are similar in nature and it makes sense that our estimated
distributions can be expressed equally well in terms of either set of eigenvectors.
The choice of a set of window boundaries determines our system matrix and its
eigenfunctions. Hence different window sets will yield different eigenfunctions, but
they are equally valid. Our solution, non-unique as we have stressed throughout,
can be expressed in terms of any complete set of non-nullspace eigenfunctions. The
weights for each term in the expansion will of course differ to reflect the use of different
basis functions. The distributions obtained from expansions in terms of two chosen
window sets (two different but equally valid sets of eigenfunctions) are comparable,

as shown in figure 5-7.
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Figure 5-6. Eigenvectors for two sets of window boundaries

59



0.04

== Input = e Window Set 1~ =ee= Window Set 2
@, . =1l4pu ?,e =11.6pu ¢ =118pu
9 =:fpu 9 -;-79\1 9, =57m
T2 .log’ ms T2 .log' 9 ms T 2J°8= 27 ms

0.02 4

o.m L) L} ] LA IR 2 A § L) T R 1 § TTVryy L §
10° 10! 102 102
Tz (ms)

Figure §-7. Estimated distributions from different window sets

5.2.4 Bimodal Distributions

We also showed that bimodal input distributions are recoverable. Although the exact
shape may not be preserved, the resulting porosity and mean relaxation time estimates
are still relatively accurate. Figure 5-8 is representative of the types of solutions we
obtained. The general bimodal shape is reflected, though it does not agree closely
with the actual input distribution, and the final answer products are reasonable.
Note should be taken that our algorithm is capable of inverting bimodal distri-
butions. However, the examples we chose placed heavy weight on the fast decaying
components. The algorithm is insensitive to quickly decaying parts in the spectrum,
based on the windowing data compression taken. The first window is the only one
which reflects quickly decaying components. The slowly decaying components will be
reflected in all of the windows, and hence can be recovered most reliably. The fast
components are difficult to trace, and hence distributions corresponding to mostly

bound-fluid porosity are especially difficult to invert.
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Figure 5-8. Inversion of bimodal distribution

5.3 Monte Carlo Simulations using Real Log Data

When examining real CPMG data, we often are interested simply in the answer
products. The high level of noise makes estimation of a detailed distribution function
unfeasible, but accurate estimates in porosity and mean relaxation time are still
achievable. The integral of the derived distribution, then, is more robust than the
distribution itself. We analyzed this process by taking an input Gaussian distribution
of relaxation times and generating 100 cases of CPMG data with 35% rms noise added.
It is important thut the estimates obtained are unbiased and at the same time have

the smallest level of variance possible.
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Figure 5-9 shows the answer products for 100 trials, where the amplitudes in the
“distribution” are clipped if negative. Notice there is a slight bias (overestimation)
in the estimates since negative wiggles at the tails of the derived distributions are
clipped. Nevertheless, the estimates are quite reasonable. The top graph shows the
total porosity (@nmr), the middle graph the free-fluid porosity (¢ss), and the bottom
graph the logarithmic mean relaxation time (T;,). Solid lines indicate the true
porositics and mean relaxation time, and sample means and standard deviations are
shown as well.

Figure 5-10 differs from the previous case only in that negative amplitudes were
allowed. This option, though it violates the fact that amplitudes cannot be negative,
yields less biased estimates for the answer products.

We note that, had a larger value of the regularization parameter v been chosen,
the estimates would have less variance, but the bias would be increased. Thus we
again see a tradeoff in selection of 4. Clearly both reduced variance and lack of bias
are desirable, but favoring one automatically disfavors the other.

We even ran Monte Carlo simulations for cases with 50% rms noise; results are
given in figure 5-11. This is the highest level of noise (worst possible case) we expect
to see in any logging job. Estimates are good given the high noise level.

For completion, these results were benchmarked against results obtained from
existing algorithms, and they proved to be equally valid. The following section further
explores the actual distributions obtained from another algorithm. We can then
satisfactorily claim that our eigenfunction expansion solution yields results at least

as “good” as existing solutions.
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Figure 5-9. Monte Carlo simulations for estimated answer products
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Figure 5-10. Monte Carlo simulations for estimated answer products
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Figure 5-11. Monte Carlo simulations for estimated answer products
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5.4 Comparison to Existing Inversion Schemes

Many test cases were compared to ensure that the present algorithm produces results
which agree with those from existing inversion schemes. An implementation due to
Freedman [7) was used to compare solutions. In all cases we observed close agree-
ment between distributions and porosity estimates obtained from either algorithm. A
collection of simulations follows which illustrates the similarities in the final answer
products.

Figure 5-12 show comparisons of Freedman’s algorithm and our eigenfunction
expansion algorithm for the cases of 5%, 10%, and 20% additive random noise. A
Gaussian input distribution was chosen for this example, with the peak at a moderate
relaxation time. Our estimates are not as successful when the peak rests a. iaster
relaxation times, as illustrated in figure 5-13. As discussed previously, this difficulty
arises from the fact that quickly decaying components are especially difficult to trace.
Results are better when the distribution does not give such heavy weighting to fast
components. Figure 5-14 is comprised of mostly free-fluid porosity, with a hint of a

bimodal nature.
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Figure 5-12. Comparison of inversion algorithms for an input distribution
with 5%, 10%, and 20% additive random noise
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Figure 5-13.  Comparison of inversion algorithms for an input distribution
of mostly fast relaxation times
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Figure 5-14. Comparison of inversion algorithms for an input distribution
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Chapter 6

Conclusions

An eigenvalue analysis approach was taken to derive a solution to the inversion prob-
lem. The solution was formulated as a linear combination of weighted eigenfunctions.
The finite rank of the system matrix revealed that a subset of the eigenfunctions
could be used in the solution; the solutions have no projections in the nullspace.
When signal-to-noise ratio is better than ~ 10 dB (such as for station data,
where measurements are repeatedly collected and stacked) and the distribution is
very smooth, it suffices to carry out the expansion to the eigenvectors corresponding
to the dominant eigenvalues only. As long as the noise level is fairly low, the resulting
solutions are numerically stable since the high-frequency components have been ex-
cluded. When higher noise levels are introduced, however, as in continuous log data,
stability becomes a very real issue. Wild oscillations due to noise artifacts are part
of the formal solution. The stability issue is addressed via Tikhonov regularization.
Regularization behaves as a filter on the unstable solutions and smooth out oscilla-
tory behavior. Many types of regularization are possible; we chose the simplest form,
the L, norm, for our application. We next addressed a method for choosing an “op-
timal” regularization constant. We studied one criterion, the Butler-Reeds-Dawson
function, which seeks to minimize the fit error between a hypothetical noise-free so-
lution and the solution dictated by varying choices of y. When the BRD function
was plotted against +, it become clear the actual value of the regularization con-

stant was not critical. Although regularization is crucial in stabilizing the solutions,
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a range of values will perform equally well. The regularization term is chosen in a
data-dependent manner: the higher the leve! of noise present in the data, the higher
the value of 7,5 chosen.

As 7 is reduced, the solutions tend to become more “wavy.” One of the real
difficulties in inversion work is to decipher when these fluctuations are real and when
they are simply artifacts due to noise amplification. Conversely, as v is increased,
the solution becomes over-regularized and no longer depends substantively on the
data. Although the variance or uncertainty in the estimates is smaller, a large bias is
introduced. This tradeoff between numerical stability and bias in the solution frames
the bounds of 4 which can be successfully used in the inversion.

We ran a wide variety of simulations to test the robustness of our algorithm
and obtained good results. Bimodal and unimodal input distribution were used.
We found that broad distributions are easiest to invert, since those exponentizls
affect all window sums. Distributions with short decay times (mostly bound-fluid
porosity), though, are encapsulated mostly in the first few windows and are not as
easily recoverable.

The final answer products are weighted integrals of the derived relaxation time
distribution. While the exact distribution may not be recoverable when ncise levels
are high, the answer products need to be dependable. We have demonstrated, through
Monte Carlo simulations, that the porosity and mean relaxation time estimates are
accurate even when the actual distributions achieved do not match the input distri-
bution very closely. This is of significance when actual log data is processed.

While inversion algorithms exist (7] [17] to process pulsed NMR data from down-
hole measurements, we approached the problem from a different perspective, namely
eigenanalysis. Our solutions agreed closely with those obtained from existing algo-
rithms. The study was useful primarily to learn about the nature of the measurement
kernel and its eigenfunctions, which form the basis for the types of solutions we can

derive.
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