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ABSTRACT

Neuroscience is limited by the difficulty of recording neural activity, identifying cell types, and

mapping connectivity in high throughput. In this thesis, I present several scalable technologies

aimed at improving our ability to characterize the activity, composition, and connectivity of

neural circuits. My primary contributions include the design for a nanofabricated electrical

recording device and a new approach to nanofabrication within swellable hydrogels; a high-

throughput method for mapping the locations of cell types in tissue; an approach to direct

sequencing of proteins at the single molecule level; an approach to directly recording neural

activity into the sequence of RNA, enabling it to be detected by DNA sequencing; and a method

for molecular barcoding of neurons, with the goal of enabling a high-throughput approach to

neural circuit mapping. I conclude with a consideration of the limitations of the academic

incentive structure as concerns the development and deployment of new technologies, and propose

a structure for basic science research, complementary to the academic structure, based on the

systematic establishment of well-funded, highly focused research projects with clear goals, an

incentive to rapidly disseminate information, and limited lifetimes.
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Chapter 1

Tool Development for Neuroscience

Biological systems are comprised of many components. In the other branches of science,

systems consisting of multiple components are tractable when the components are

identical and weakly interacting, lending themselves to statistical techniques. Practically

all biological systems are statistical ensembles of non-identical, strongly-interacting components,

and thus do not submit themselves to statistical analysis. Individual components can be studied in

isolation, but knowledge of the function of a component in vitro rarely informs its function in

vivo. The problem is exacerbated in the brain, where there are many more different kinds of cells

than in other tissues (1, 2), interactions are highly non-local (3, 4), and the time-scales involved

are much faster.

Given the failing of statistical techniques, many researchers believe that our ability to model and

predict biological systems will be improved if we develop better tools to observe more components

of the system simultaneously (5'-7). Examples include increasingly multiplexed tools for measuring

the distribution of RNA in space (8-11), for measuring the distributions of proteins in space (12-

15), for measuring the projections of neurons (16-19), and for mapping neural activity (20-23).

Through this work, progress has been made towards achieving "complete" descriptions of

biological systems. Particularly in genomics, modern droplet-based approaches now enable the

expression levels of every gene in the genome to be quantified in individual cells (24, 25). In

neuroscience, however, technologies for observing the activity of neurons are still 5 to 6 orders of

magnitude away from a whole-brain recording system for the mouse brain; methods for measuring

connections between neurons are likewise -3-4 orders of magnitude away from being able to map

the entire mouse brain; and measures for observing the spatial organization of gene expression in

tissues are still limited to -1% of the genome.

In this dissertation, I present designs or implementations of six new tools, each of which aims at

increasing our ability to model, measure, or perturb biological systems (and especially neural

systems) in a different way. Chapters 2 through 5 appear in print already, as described below. All

of the work I describe here was performed with extensive assistance from many coauthors and

collaborators. Detailed acknowledgements are included at the beginning of each chapter, in a

foreword.

The first technology I describe concerns the measurement of the activity of neurons in the brain.

Neuronal activity can be measured using electrical recording devices, such as electrodes (26).
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However, electrode arrays suffer from a tradeoff between the number of channels on the array and

the cross-sectional area. Recording electrodes can be made as narrow as 10 microns in diameter,

but typically only have a single recording site, whereas electrode arrays with -100 micron

diameter can have hundreds of recording sites, but implantation into brain tissue leads to tissue

damage up to and including hemorrhage (27, 28). Indeed, as I later demonstrated in the course of

my Slide-seq work, traumatic brain injury leads to sustained perturbations in neural activity, so

activity recorded from traditional recording electrodes might not even be a reasonable reflection of

ordinary activity (29). Moreover, because of the risk of tissue damage, recording electrodes cannot

generally be applied in human brain tissue, and the number of electrodes that would need to be

implanted into the brain in order to record from a large majority of the neurons in the brain is

excessive (30). The field would benefit substantially from improved recording devices that fit more

recording sites into a smaller frame. In Chapter 2, which appears in print as (31), I lay out a

design for a new recording device for electrophysiology that breaks the tradeoff between the

number of recording sites and the cross-sectional area of the electrode array by using an optical

readout, rather than an electrical readout. The device directly converts electric fields from neurons

into changes in the refractive index of a semiconductor waveguide, and then uses optical

reflectometry to detect the refractive index as a function of position along the waveguide, packing

1000 recording sites into a 100 rnp2 device, greatly surpassing current designs (32-35).

In the process of considering the fabrication of electrical recording devices, it rapidly became clear

to me that existing, 2D fabrication technologies may be insufficient for fabricating the kinds of

complex nanotechnologies that will be necessary to study brain function. Moreover, althou In

Chapter 3, which appears in print as (36), I present a method to reverse the process of Expansion

Microscopy, a super-resolution technique that had been invented in the lab previously (37), in

order to shrink structures for nanofabrication purposes. Uniquely among all nanofabrication

technologies, Implosion Fabrication allows for direct 3D laser writing of metal structures with

nanoscale feature sizes. Moreover, it uses a 3D molecular scaffold to position materials in space,

allowing for the fabrication of structures with arbitrary 3D geometries. Implosion Fabrication is

unlike any other existing nanofabrication technologies, and points the way to new and improved

3D nanofabrication tools.

Beyond the measurement of neural activity, a major challenge in neuroscience concerns mapping

the many kinds of cells in the brain. In contrast to many other tissues, the brain consists of

strictly organized structures consisting of thousands of cell types (24, 25, 38). Existing methods for

mapping cell types in space rely on imaging, either using antibodies to characterize the protein

content of cells or using in-situ hybridization to characterize the RNA content. However, all such

techniques typically require special optimization for each sample or tissue type. Given the rapidly

decreasing cost of RNA sequencing, a technique that can directly infer the spatial organization of

tissue from RNA sequencing data would greatly reduce the barrier to accessing spatial gene
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expression data. In Chapter 4, I present Slide-seq (29), a high-throughput tool for mapping the

spatial distribution of cell types in tissue. Slide-seq enables direct capture of RNA from tissue onto

a barcoded surface, allowing the positions of the RNAs to be reconstructed. From Slide-seq data,
using new algorithms that we developed, one can infer the positions of different know cell types in

space, and discover new patterns of spatial gene expression. Slide-seq leverages the throughput

advantages of single-cell RNA sequencing technologies, and combines them with spatial resolution

more typical to in-situ hybridization techniques, to provide a fundamentally new kind of data in

the genomics toolkit.

Ultimately, however, a full description of the spatial organization of tissue will include a

description of the spatial distribution of proteins, as well as RNA. More to the point, most of the

functions in cells are performed by proteins, so understanding the protein composition of a cell is

crucial to understand its behavior. RNA sequencing methods such as Slide-seq are often used to

study the protein composition of cells by proxy, under the assumption that the RNA composition

of a cell and its protein composition are highly correlated. However, this assumption is not true in

general (39), necessitating equally powerful methods for visualizing the protein composition of

cells. Although antibodies have been applied for this purpose (40-42), antibodies are also thought

to be a major source of the reproducibility crisis in biology (43). In Chapter 5, I present a

theoretical analysis of an approach for direct protein sequencing (44), which would provide an

alternative, antibody-free method for highly multiplexed protein detection.

Returning to the question of neural activity recording, and inspired by the power of RNA

sequencing methods, in Chapter 6 I present a method for recording transcriptional activity into

the sequence of RNA with temporal resolution, allowing the history of RNA transcription in a cell

to be inferred by RNA sequencing. The goal of the project, inspired by earlier work DNA

tickertapes (45), was to allow for the activity of neurons to be encoded into the sequence of RNA,
enabling neural activity to be measured in high throughput using RNA sequencers. This method

was motivated in a similar way to the method presented in Chapter 2: although new methods

allow measurement of activity from tens of thousands of neurons simultaneously, with theoretical

access to hundreds of thousands (46), this still amounts only to 0.01%-0.1% of the neurons in the

brain, and detection of activity in deep neural populations in freely behaving mice remains

challenging (47-49). Using the RNA recorder presented in Chapter 6, one could in principle record

from tens or hundreds of millions of neurons simultaneously for costs on the order of $10,000 using

currently available sequencing technology. Chapter 6 does not yet appear in print, but we expect

it to come out before the end of 2019.

Beyond mapping the activity and cell types of the brain, a major challenge in neuroscience is to

map the structure of the brain. The brain consists of neurons connected by chemical and electrical

synapses and molecular signaling pathways, and the set of all synaptic connections between

neurons in the brain is typically referred to as the "connectome." The impact of the mammalian
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connectome is difficult to estimate, but will likely be far-reaching: both the connectome and the

lineage of C. Elegans have become widely used and cited resources for generating hypotheses

about the interactions between neurons in those circuits (50-52). Moreover, the discovery of new

cell populations defined by their connectivity regularly upends neuroscience research and prevents

a holistic analysis of brain circuits (53-55), and the connectome would provide a systematic way

to catalog all such populations. Stereotyped motifs of connectivity between different cell types

may support generalized computations or transformations of information, with potential impact on

Al. Finally, many brain disorders, such as schizophrenia, autism, and Alzheimer's disease, are

known to involve changes in synaptic frequency and structure (56-58), and a tool for capturing

the connectome would enable those phenomena to be studied systematically, potentially opening

the door to new therapeutics.

At the same time, as we have come to better appreciate the diversity of cell types and synaptic

mechanisms in the brain (24), it has become increasingly apparent that molecular annotation (i.e.,

a description of the molecules present in cells and synapses) will be a vital part of any

connectomic effort. Indeed, this has also been the lesson from the C. Elegans connectome, where a

lack of molecular annotation impeded our understanding of electrical synapses for more than three

decades after the synaptic connectome was originally published (59). Ion channels govern how

neurons generate their electrical pulses, and synaptic transmitters and receptors govern how

neurons exchange information and transform presynaptic electrical pulses into postsynaptic ones;

other proteins that generate or receive other messages are also known to be important for neural

computation.

Up until now, the connections between neurons have been mapped using electron microscopy, but

the scale and detail of the brain circuits that have been mapped using electron microscopy has not

increased significantly since the first EM connectome was published in 1986 (60, 61). Progress in

this area has been fundamentally limited by the fact that electron microscopy cannot be utilized

to visualize biomolecules such as proteins, DNA, or RNA. This limitation has two consequences:

firstly, the proteins and nucleic acids present in a neuron can be used to distinguish that neuron

from its neighbors, but because electron microscopy cannot visualize these molecules, neurons in

an EM dataset must be reconstructed using machine vision algorithms (62), which have

unacceptably high error rates and require hundreds of millions of hours of work by human

annotators per cubic millimeter (61, 63-72). Secondly, although electron microscopy can be used

to visualize synapses, the function of the synapses, and of neurons, is defined by their molecular

composition. By discarding molecular information, EM connectomics is fundamentally incapable of

inferring the computational function of a neural circuit.

In Chapter 7, I lay out strategies for an optical approach to connectomics using molecular

barcodes, which would enable the synaptic organization and the molecular composition of neural

circuits to be mapped simultaneously. Using molecular barcodes provides a potential path to
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circumvent the computational reconstruction challenge, while the optical readout allows the

method to be combined with antibody staining techniques to reveal cell types and the

distributions of proteins in the tissue. Because it is capable of using molecular information to

distinguish neurons, our technology could map an entire mouse brain with molecular and

connectivity information in only 3 years for $60M. It could ultimately be used to map large parts

of the brains of primates, and perhaps even humans.

However, realizing the full impact of any of the technologies described here will require them to be

scaled up. In the case of technologies like Slide-seq, they must be made broadly available to the

academic community to realize their full impact, whereas in the case of connectomic barcoding

technologies, they must be scaled up to the whole brain level. In both cases, the incentive

structure in academia is insufficient to support the necessary scalable research efforts. In Chapter

8, which does not appear in print, I reflect on the phenomenon that the vast majority of tools

developed in biology achieve extremely limited impact, and connect this phenomenon back to

limitations on the system of incentives present in academia. I propose the creation of new focused

research organizations (FROs) that would pursue research that requires more resources and focus

that one can achieve in academia, but that is not yet ready for a for-profit venture.

The remaining chapters, 9 through 13, are appendices and supplementary information.
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Chapter 2

Optical Reflectometry for Recording Neural Activity

The damage that implanted electrodes cause to neural tissue is one of the greatest

challenges facing neural activity recording today. To overcome the challenge of

implantation, Lowell Wood proposed to Adam Marblestone that recording electrodes

could be delivered to the brain through the vasculature, navigated to locations of interest similarly

to catheters. To record neural activity, however, it would be necessary to navigate the fiber into

narrow blood vessels on the order of -10 microns in diameter. No one had ever packed multiple

recording sites onto a fiber of only 10 microns in diameter (33), so in order to put many recording

sites onto our fiber, we would need to find alternative fabrication strategies, or an alternative

method for detecting neural activity along the length of the fiber. Lowell suggested that optical

reflectometry could be used to detect changes in the refractive index along the length of the fiber.

If electrical activity could be transduced to detectable changes in the refractive index, then a fiber

reflectometer would enable the electric field to be read out in 10 to 20 micron intervals along 10

centimeters of fiber, without any of the complications of wiring, parasitic capacitance, or thermal

noise that one encounters in electrical systems. Adam worked on the project, but couldn't identify

a method for transducing the electrical activity to a change in the refractive index with high

enough sensitivity to be detected using an optical reflectometer.

In my first week after entering the Boyden Lab, in August 2014, Adam pitched me on the project.

I identified the various electro-optic effects as candidates, including the Pockels, Kerr, and free-

carrier dispersion effects. The free-carrier dispersion effect benefits from relying on the amount of

charge present in the material, rather than the electric field; thus, it can be amplified for a given

voltage using a very high capacitance. Adam and I did the primary analysis together, and the

manuscript was submitted in early 2015, although it took us a year to complete revisions. The

remainder of this chapter now appears as Ref. (31).

On its face, the device, if fabricated, would be extremely impactful for neuroscience. Compared to

existing, highly multiplexed electrophysiology devices (32, 73, 74), the device proposed here would

have an immensely simplified electrical backend (requiring only a single amplifier, rather than

many amplifiers and a signal multiplexing scheme), and a -10x reduced cross-section, at the cost

of lower sensitivity and time resolution, a tradeoff that would prove useful in many applications.

However, we lacked experience in the necessary fabrication methods, in materials, and in the

reflectometry readout, and never pursued it beyond the design stage.
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Summary

We introduce the design and theoretical analysis of a fiber-optic architecture for neural recording

without contrast agents, which transduces neural electrical signals into a multiplexed optical

readout. Our sensor design is inspired by electro-optic modulators, which modulate the refractive

index of a waveguide by applying a voltage across an electro-optic core material. We estimate that

this design would allow recording of the activities of individual neurons located at points along a

10-cm length of optical fiber with 40 pm axial resolution and sensitivity down to 100 iV using

commercially available optical reflectometers as readout devices. Neural recording sites detect a

potential difference against a reference and apply this potential to a capacitor. The waveguide

serves as one of the plates of the capacitor, so charge accumulation across the capacitor results in

an optical effect. A key concept of the design is that the sensitivity can be improved by increasing

the capacitance. To maximize the capacitance, we utilize a microscopic layer of material with high

relative permittivity. If suitable materials can be found-possessing high capacitance per unit area

as well as favorable properties with respect to toxicity, optical attenuation, ohmic junctions, and

surface capacitance-then such sensing fibers could, in principle, be scaled down to few-micron

cross-sections for minimally invasive neural interfacing. We study these material requirements and

propose potential material choices. Custom-designed multimaterial optical fibers, probed using a

reflectometric readout, may, therefore, provide a powerful platform for neural sensing.

Introduction

The extracellular electrode is a classic neural recording technology. The electrode is essentially a

conductive wire, insulated except at its tip, placed in the extracellular medium as close as possible

to a neuron of interest, where it samples the local voltage relative to a common reference in the

brain (75, 76). This extracellular voltage differential is typically on the order of 100 pV in

response to an action potential from a nearby neuron (30) and decays over a distance on the order

of 100 pm. Note that the "transmembrane" voltage during an action potential is much larger, on

the order of 100 mV.

The virtues of the electrode are twofold. First, the technique can reach single neuron precision by

virtue of the electrode being inserted close to the measured neuron. Second, compared to optical

methods, no exogenous contrast agents (i.e., genetically encoded fluorescent proteins, voltage

sensitive nanoparticles, chemical dyes) are necessary: the endogenously generated electric currents

in the brain are sensed directly in the form of a voltage. Ideally, for a neurotechnology to be

medically valuable for a large number of human patients, it should not require modification of the

neuron.

Yet, while multielectrode arrays allow the insertion of many electrodes into a brain, electrodes

have limitations (30) in scaling to the simultaneous observation of large numbers of neurons. The
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bandwidth of an electrical wire is limited by the cross-sectional area of the wire, due to the

increase in RC time constant with increased resistance. Large numbers of high-speed electrical

signals cannot be effectively multiplexed into a single electrical wire, hence, large numbers of wires

must be routed out of the brain. Typically, in high-density multielectrode recording systems, one

lithographically defined electrical trace is used per recording site. Creating such complex electrical

wiring becomes increasingly difficult for long probe lengths, e.g., with lengths of centimeters.

In order to maintain the advantages of electrodes, single neuron precision based on endogenous

neural signals while enabling improved scaling performance, we turn to photonics.

Telecommunications has moved from electrical to optical data transmission because of the high

bandwidths and low power losses enabled by optics in comparison to electrical conductors (7?);

the same may be helpful for neural readout technologies. Because optical radiation heats brain

tissue and scatters off tissue inhomogeneities, a wired (i.e., fiber or waveguide based) optical

solution may be desirable, i.e., using optical fibers to guide light so that it need not travel through

the tissue itself. Second, to minimize volume displacement, signals from many neurons should be

multiplexed into each optical fiber. Third, ideally, the sensing mechanism would rely only on

endogenous signals, e.g., electrical or magnetic fields from the firing neurons, rather than imposing

a need for exogenously introduced protein or nanoparticle contrast agents. With -100,000 neurons

per mm 3 in the cortex, or a median spacing of roughly one neuron per cube of size (21.5 um) 3 , we

require an axial resolution of sensing in the range of tens of micrometers. The system should be

compatible with a variety of form factors, e.g., thin flexible fibers suitable for minimally invasive

endovascular delivery (78, 79), or rigid pillars suitable for direct penetration of the brain

parenchyma (80).

Our proposed architecture is based on two powerful technologies developed by the photonics

industry: fiber optic reflectometry, which enables optical fibers to act as distributed sensors (81-

84), and electro-optic modulators based on the plasma dispersion effect, which generate large

changes in the index of refraction of a waveguide in response to relatively small applied voltages

(85-89). By combining reflectometry with electrooptic modulation, we propose that it would be

possible to do spatially multiplexed neural recording in a single optical fiber.

Design Principles:

Reflectometers are capable of measuring changes in the index of refraction along the length of an

optical fiber by sending optical pulses down the length of the fiber and recording the times and

magnitudes of returning reflections (82). We propose to use reflectometry to sense neural activity

at many points along the length of an optical fiber, as shown in Figure 2-1(a). The goal is to send

a pulse of light into the fiber and to measure the reflections and their timing to determine the one-

dimensional profile of neural activity along the length of the fiber. The local voltage at a given

position along the fiber will modulate its local index of refraction via the free carrier dispersion
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effect, giving rise to reflections. A reflectometer located outside the brain would then determine, at

each time, the spatial profile of extracellular voltage along the length of the fiber.

Fiber-Optic Reflectometry

To determine the magnitude of the reflections generated by a change in local refractive index

inside a fiber, note that when an electromagnetic planewave propagates in a material with

refractive index nj and is normally incident on a material with refractive index n2 the power

reflected is given by the Fresnel equation:

(1
R (n - n2) 2

R j = n )
The waveguide under consideration will be divided into alternating segments of refractive indices

nj and n2 , respectively [Figure 2-1(c)]. We define R = (n, + n2)/2 and An = n2 - n1 . At every

interface between the two segments, a reflection is generated of magnitude:

R= AnO 2 (2

2f(

FDTD simulations (90) of the waveguide structure using the MEEP (91) software package [Figure

2-1(e)] confirm that the baseline reflections are of the predicted order of magnitude per this simple

model. Assuming now that an event (i.e., local neural activity) causes n2 to increase by a small

amount An « Ano, the resulting reflections generated by the interface are given by

'Ano + An 2 = AnAno + O(An2)2n1 2ft 2

The change in the reflections generated at the interface due to an event is thus

AR = 2i1
2ji2

(3

(4

)

)

Reflection intensity sensing. Reflectometers are limited both in the minimum value of R that they

can sense (termed the sensitivity) and in the minimum value of AR that they can sense (termed

the resolution). In our device, the baseline power reflected at the boundaries between nj and n2

will be much greater than the sensitivity of the reflectometer. Thus, the ability of the

reflectometer to measure a change in the index of refraction is limited by its resolution, which is in

turn fundamentally limited by photon shot noise. For the simple case of a time domain

reflectometer, the number of photons registered at the detector due to a reflector of magnitude RO

is given by

P1
Nreflected = QE h -c/RO - (5)
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Figure 2-1 (a) High-level architecture. An optical fiber inserted into the brain acts as a distributed

sensor for neuronal activity, which is read out by an optical reflectometer. (b) Axidl cross-section of the

probe. When a voltage is applied across the capacitor layer, free-charge carriers in the inner conductor

and core build up on the surface of the capacitor layer and alter the refractive index in the core. A high

capacitance is desired to improve sensitivity. (c) Longitudinal cross-section of the reflectometric probe.

Alternating segments of higher and lower refractive index create baseline reflections at their interfaces,

the intensities of which are modulated by the local extracellular voltage. The difference between n1 and

n2 is generated by a thin layer of nonconductive material with a different index of refraction, which also

serves to localize voltage-dependent refractive index changes to alternating segments. On the surface of

the fiber, there are alternating sections of metal contact pads and oxide, to separate sensing and

nonsensing regions. Caption continues on next page.

where P is the power entering the fiber, QE is the detector quantum efficiency, and BW is the

sensing bandwidth. With a signal-to-noise ratio of N/vN due to photon shot noise, the resolution
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of the detector is given in decibels (dB) by

dBshot noise limit =10log 1  + = 10 log1 o ( + (6

(1 + TN)QE -h-c/ Ro -

In all that follows, we will assume a bandwidth of 1 kHz, a quantum efficiency of 1, and a free-

space wavelength A = 1550 nm. Note that a higher bandwidth would be required to see the

detailed shapes of individual action potentials, as may be required for spike sorting. For P = 100

mW, QE = 1, BW = 1 kHz, and Ano = 10-, corresponding to Ro = 2.16 x 10-1 (-96.6 dB), we

then have a shot noise limited resolution of 0.01 dB, similar to existing reflectometers. More

generally, for a signal AR to be sensed on top of a signal R 0 , we must have

(10 lo 1 + AR + BW (7
R0  QE -h-c Ro

As we describe below, the device will be sensitive to changes in the index of refraction on the

order of An ~ 10- to 10-6. Thus, because Ano >> An, the device operates in the linear regime of

(d) Equivalent circuit diagram of the device. The equivalent circuit of the device consists of a resistor

representing each of the material layers between the neuron and the metal reference line, and three

capacitors, one of which (Cext) represents the interfacial capacitance, one of which (Ci,,) represents the

capacitance of the capacitor layer, and one of which (CQ) represents the capacitance due to the non-

negligible charge centroid in the semiconducting core. The effective series resistance RESR of the

insulating region capacitor can be neglected provided the capacitor has high quality factor Q at 1000 Hz,
and the parallel resistance of the insulating capacitor layer Rin, can be neglected provided it is much

larger than Rref. Rref is the resistance of the metallic reference line, Rinner is the resistance of the weak

inner conductor layer and Rext is the resistance of the brain-electrode interface. If, in addition, Rref is

chosen to be larger than the other resistances in the circuit, the capacitances Cins, CQ, and Cext may be

treated as series capacitances. (e) Optical simulation: We used the MIT Electromagnetic Equation

Propagation (MEEP) package to simulate a waveguide with a silicon core divided into two regions. We

used Si rather than InP as the simulated core material, because of the availability of well-validated tools

for Si electrostatics simulation. In the first region, the core consisted of a 500 nm layer of silicon (n =

3.410). In the second region, the core consisted of a 460 nm-wide layer of silicon with two 20 nm layers

of a material with n = 3.40 both above and below. The effective refractive index in the second region

was thus 3.409, corresponding to An = 10-. The electric field profiles are shown on a logarithmic scale

for the waves transmitted (right) and reflected (left) from the boundary between the regions, shortly

after the reflection event. The left and right images have been normalized separately. The maximum

value in the left image is ~ 104 times smaller than the maximum value in the right image, consistent

with a value of R on the order of 108 for An = 10-3.

Eq. (3), so Eq. (7) may be conveniently re-expressed as
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With the choices of the bandwidth, quantum efficiency, and wavelength given above, the

resolution limit is strictly a function of power. The minimum resolvable An is shown as a function

(8

of P in Figure 2-2. Notably, Eq. (8) is independent of Ano in the

shows a schematic example of the expected output.
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So far, we have discussed the
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modulation of reflectivity at

each interface. An alternative

strategy to detecting changes in

the refractive index that

accompany voltage signals is to

measure the phase of the

reflected light. This phase

measurement can be performed

with the identical Fourier-

domain reflectometry scheme as

for the amplitude-based

measurement.

Spatial resolution. Other noise
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P (Watts) resolution in a realistic case,

including laser power or phase

is the noise and
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is noise. In particular, optical
index phase noise associated with the
1i, shot laser is limiting in current
power optical frequency-domain

reflectometry (OFDR) systems

(92); Littman-Metcalf external

cavity tunable lasers, with

narrow linewidths and low phase noise, can be swept at 1 kHz repetition rates over an optical
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frequency range of several THz, leading to an OFDR "spatial" resolution of roughly 20 pm, which

conveniently aligns with the average spacing between neurons in the cortex.

Repetition rate. Current commercial reflectometers achieve roughly 12 Hz repetition rates over 8.5

m. This corresponds to a measurement time of 1 ms for any given 10 cm segment of fiber, so using

a similar device we anticipate that it would be possible to sense reflections along the length of a 10

cm fiber with a repetition rate of 1 kHz using frequency-domain reflectometers. In an OFDR

system, the scan rate is limited by the frequency of laser wavelength scanning, the range of the

scan determines the resolution, and the wavelength resolution of the scan and of the detector

determines the scan range. Swept-source OCT constitutes demonstration of swept-source

interferometry at a bandwidth of many kHz (93).

Electrooptic Modulation

Silicon electro-optic modulators are widely used in photonics to alter the propagation of light

through a material in response to an applied voltage (88, 94). Typical applications of electro-optic

modulators take the form of electrically controlled optical switches: signals of roughly 5 V are used

to drive optical phase shifts on the order of ir. These devices are optimized for GHz bandwidths,

with the goal of providing high speed, low power microchip interconnects (87), with bandwidths

up to 30 GHz possible (95). Here, however, we are interested in the application of similar device

physics to a very different problem: sensing extracellular neuronal voltages on the order of 100 pV

at 1 kHz rates. Thus, our required switching rate is 1 millionfold slower, yet our required electrical

sensitivity is on the order of 1 millionfold better. We are thus concerned with the design of

electro-optic modulators optimized for sensitivity rather than bandwidth.

Free Carrier Dispersion Effect. The design shown in Fig. 1(b) consists of an extended multilayer

semiconductor waveguide on a biased metal substrate, surrounded on three sides by insulation and

on the fourth side by brain tissue or extracellular fluid. The "inner conductor" and "core" layers

are weak, transparent conductors which function as resistive layers between the brain and the

biased reference line. Throughout, we will assume that the core is made of n-doped InP, due to its

large free-carrier dispersion effect (96), although other core materials are possible (see "Material

Selection for the Capacitor Layer," below). Both above and below the core, there are -5 nm thick

layers [Figure 2-1(c)] in which the material alternates along the length of the fiber between the

core material and a nonconductive material. The nonconductive material is chosen to have a

refractive index that differs from that of the InP core by 0.01. At the boundaries between the

alternating regions, there is an effective change in the index of refraction of Ano = 10- 4 , giving

rise to a reflection to Ro = 2.16 x 10-10 as per Eq. (2). This value of Ro is chosen to avoid

significant attenuation over the length of the fiber. Note that the sensitivity is independent of Ano

as long as we remain in the linear regime of Eq. (3). The alternating regions are 20 pm in length,

with randomness introduced on the order of 1 pim to avoid the formation of strong peaks in the

reflectivity with wavelength due to interference. The effective spatial resolution in this design is
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then limited by the linear density of sensing sites, which are spaced at 40 pm from center to

center, rather than by the underlying 20-pm spatial resolution of the reflectometer.

Above the core, there is an insulating layer that serves both as cladding, and as a capacitor over

which most of the voltage will drop. The capacitor layer must be thick enough to serve as effective

optical cladding, while also having a high capacitance. To satisfy these constraints, a material like

barium titanate, strontium titanate, or calcium copper titanate may be preferred. We set this

layer's thickness to -1 pm. Clearly, the titanate layer must have lower refractive index than the

core to act as a cladding. Although the optical properties of the titanate layer depend on its

preparation, the band gap of a single crystal of barium titanate occurs at 3.2 eV (9k), and the

refractive index of barium titanate is -2.4 for A = 600 nm (98), so it is safe to assume n < 2.4 for

A = 1.5 [rm. Above the capacitor layer, there are alternating regions of metal and insulator, with

the insulating regions coinciding with the alternating layers in the waveguide core. The metal

regions provide the electrical interface to the brain and serve to define the sensing locations.

The InP core and inner conductor are doped and biased appropriately to allow most of the voltage

to drop over the capacitor layer while maintaining low levels of optical attenuation, for example,

1017 cm- 3 . Other major materials requirements on the inner conductor are that it should ideally

form an ohmic contact with both the InP core and the metal reference layer, and that its

refractive index needs to be smaller than that of the n-doped InP, which is around 3.17 at A = 1.5

pm. Potential materials candidates then include type III-V semiconductors with lower refractive

indices, such as GaP, or II-VI semiconductors, such as ZnSe or CdS. These have lower refractive

indices at 3.05, 2.45, and 2.30, respectively. These can be expitaxially grown on InP or vice versa

due to the small lattice mismatch (99), and their conductivities can be tuned by doping. On the

other hand, it would be important to prevent the formation of a rectifying junction at the

semiconductor-semiconductor interface, the existence of which would depend on the band

mismatch and doping levels. It might be possible to lower the junction barrier by, for example,

minimizing the band gap difference between the two adjacent semiconductors. In the below

analysis, we will assume that all junctions can be made ohmic. Note that the inner conductor is

chosen to be thick enough to prevent optical attenuation due to the metal substrate (although

there are other possible methods to reduce attenuation due to the metal, e.g., by removing the

metal from the region directly under the waveguide, as in Ref. (85), and the metal substrate is

chosen thick enough to provide a high-fidelity biased reference throughout the fiber.

The design relies on the free-carrier dispersion effect (also known as the plasma dispersion effect):

the index of refraction within the InP core changes due to the accumulation of charge carriers in

the InP when a voltage is applied across the capacitor layer (85, 96, 100). Many current integrated

semiconductor electrooptic modulators are based on the free-carrier dispersion effect (85, 86). In

addition to the free-carrier effect, there exist other modalities of electro-optic modulation, such as

the linear electro-optic (Pockels) effect (101), the quadratic electro-optic effect (Kerr) (102) and
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the Stark effect (103). All of these effects would benefit from reducing the thickness d of the

insulator layer to create a large electric field V/d (104). However, the free-carrier effect uniquely

depends on the "charge," rather than the field, and can thus be amplified further by increasing the

relative permittivity of the capacitor layer. In short, we need a large capacitor, which can be

achieved by reducing the thickness and increasing the relative permittivity. For a material with a

suitably large value of E./d, the change in refractive index due to the free-carrier effect will be

much larger than the changes that can be obtained via the other electro-optic effects. Although we

focus on the free-carrier effect here, it should be noted that novel electro-optic materials, such as

potassium tantalate niobate (105), with extremely high electrooptic coefficients compared to

standard electrooptic materials like lithium niobate, could also potentially make possible designs

based on the Pockels or Kerr effects.

An appropriate bias voltage will be applied through the reference conductor to ensure that the

InP core layer operates in accumulation. This is necessary in order to avoid depletion (106), which

would reduce the charge recruited to the surface of the capacitor for a given change in

extracellular voltage, and thus reduce the sensitivity. Thus, we use the reference potential in the

brain plus some fixed bias to achieve accumulation in the InP core along the waveguide. If needed,

this bias could be achieved locally, but as long as the brain has no large voltage differences

(e.g., >1 V), one global bias may be sufficient to allow the entire InP core to operate in

accumulation.

Changes in the index of refraction in the free-carrier modulated region of the InP may be modeled

as changes in the overall effective index of refraction of the fiber (107). The magnitude of this

effective change is given by weighting the magnitude of the change in the free-carrier modulated

layer by the percentage of power contained in that layer, i.e.,

Aneff = (1 - i)Anactive (9

where nactive is the index of refraction in the free-carrier modulated layer and 1 - 7 is the fraction

of the power in the beam contained in the active region. We will denote by d the thickness of the

capacitor layer, by b the thickness of the layer of injected charge carriers in the InP, and by a the

remaining thickness of the InP layer. An order-of magnitude approximation for 17 is then given by

a (10

a~b )
and we have

Aeff - Aactive (11

For this reason, the InP waveguide is chosen to be thin to maximize the percentage of the optical

wave contained in the layer containing the injected charges. Because of the deep subwavelength
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thickness of the active layer, a precise calculation of Aneff could be done using a full-vectorial

Maxwell simulation of the waveguide modes (85), but for our purposes, the approximation of Eq.

(11) suffices to illustrate the basic scaling. Upon applying a voltage across the capacitor layer, the

density of charge carriers injected into the active layer inside the InP core, denoted by AQ, is

simply given by the equation for a parallel plate capacitor:

AQ = CisAVins(1
eAb

where Cin,/A is the capacitance per unit area of the insulator, e is the electron charge, b is the

thickness of the layer of injected charge carriers in the InP, and AVins is the voltage dropped over

the insulating region. Equation (12) may be recast in terms of the total voltage AV applied over

the device by introducing an effective capacitance Ceff, such that

Cis (13
eAb

In practice, Ceff will only deviate significantly from Cins when the capacitance of the brain-fiber

interface is significant (discussed below). The change in refractive index in the region with the

injected charge is related to the change in the carrier concentration by a power law (96). When

the injected carriers are electrons, the magnitude of the electro-optic effect in InP is greatest. The

relation for the change in refractive index in the injected charge region is then

Anactive,h = Ce 
(14

eAbL~

where Ce is an empirically defined constant. For InP, the value of Ce is given for 1.55 Pm light by

(108)

Ce = -5.6 x 10-21 cm 3

This wavelength is chosen because the waveguide is made of InP, and InP is transparent at these

telecom wavelengths. Telecom windows are around 1.3 and 1.5 Pm due to local minima of the

absorption of water, a hard-to-avoid contaminant in silica fibers. The exact choice of wavelength

is not critical to the sensing mechanism itself; according to the Drude model of the free-carrier

dispersion effect (108), the coefficient in Eq. (12) is quadratic in the wavelength.

Similar values are obtained for other semiconductors and other wavelengths (96, 108). To find the

effective refractive index within the InP waveguide, we multiply Eq. (14) by the volume factor 1 -

71 from Eq. (10). Assuming b «a (i.e., that the injected charge layer is deeply subwavelength

while the waveguide core thickness is on the same order as the wavelength), we find

1 [Ceff] (16
a+b eA
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Note that for a given waveguide thickness (i.e., a + b constant), the result is independent of the

thickness of the charged layer b. We will henceforth take a + b ~ 500 nm. For a value of Ceiff/A

on the order of 10 1, justified below, we find Aneff ~ 2 x 10-7 for AV ~ 100pV.

Effects of Other Capacitances. The brain-electrode interface also has a capacitance Cext of

-100-11 (109, 110), which arises due to the presence of an electrical double-layer [see Figure

2-1(d)]. In addition, there is a capacitance CQ due to the finite length scale of the charge

distribution inside the semiconductor. This latter capacitance is given by CQ = EcoreEOA/dQ, where

Ecore is the relative permittivity of the core material, E0 is the permittivity of free space, A is the

area of the sensing region, and de is the charge centroid. The core can be one of many

semiconductor materials (e.g., Si, InP), leading to similar fundamental electrostatics. We

performed semiconductor simulations using the Sentaurus TCAD device simulator (version K-

2015.06, June 2015) to evaluate CQ. We used Si as the simulated core material, because of the

availability of accurate and readily available tools for Si electrostatics simulation. To calculate the

charge centroid dQ, we simulated the electrostatics of an interface between silicon n-doped to a

level 1017 cm- 3 and a layer of oxide with relative permittivity of Er = 5 and thickness of d =

1 nm. When the silicon was in accumulation, the charge centroid was found to be 2.4 nm. The

charge centroid is expected to be similar for our setup provided the value of g is similar for the
d

capacitor layer, which it would be for a layer of barium titanate with Er = 5000 and d = 1000 nm

(see below). It is more difficult to do these simulations for less common materials like InP, but we

anticipate that the charge centroid for InP will be similar. Thus, in all following calculations, we

will assume a capacitance of 4.5 F2 for the interface between the core and capacitor layer.

The electrostatics simulations also showed that, although the total charge AQ recruited to the

capacitor layer surface upon application of a voltage is greater for higher doping levels, the

relative change in charge (AQ/Q) is greater for lower doping levels. However, for AQ « Q, the

sensitivity condition in Eq. (8) depends to a good approximation only on AQ, not on AQ/Q, so the

sensitivity of the device is increased for higher doping levels.

Figure 2-1(d) shows an equivalent circuit diagram of the device, which includes the interfacial

capacitance and the capacitance associated with the charge distribution. At < 1000 Hz, and

subject to appropriate materials choices (see Sec. 2.2.3), the impedance of the circuit is dominated

by these three capacitors rather than by purely resistive elements of the circuit. For this reason,

we may ignore the purely resistive elements and treat the capacitances as though they were in

series. To a good approximation, therefore, the charge that accumulates on the surface of the

insulating region in response to a voltage AV across the entire device is given by

Q = CefLV (17)

where the effective capacitance Ceff of the surface and insulating region capacitors in series is
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Ceff = (18

ins ext C + CQ

The capacitance of the insulating region is given by

Er (19
Cins = E0A )

d)

where d is the thickness of the insulating region, Er is the relative permittivity, A is the area of

the sensing region, and c0 is the permittivity of free space. Along with the laser power discussed

above, the capacitance per unit area of the capacitor layer, Cins/A, will be the primary figure of

merit for determining the sensitivity and noise characteristics of the device. The effective

capacitance Ceff is shown in Figure 2-3(a) as a function of the capacitance Cins of the capacitor

layer, assuming a surface capacitance per unit area (109, 110) of 100 -1 and a sensing length of

20 [rm. Note that the effective capacitance ceases to increase for values of Cins/A >> 4.5 ,

because for these values, the capacitance is dominated by the core-capacitor interface.
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Noise Sources. A primary electrical

constraint on the device is that

the impedance at 1 kHz must be

dominated by the capacitor layer.

If the effective capacitance per

unit area of the capacitor is Ceff =

5 , corresponding to a value

ins = cm2' then the capacitance

of a region with width 4 /tm and

length 20 prm is 4 pF.

corresponding to an impedance of

40 Mfl at 1 kHz.

Assuming that the metal layer has

__ __ -a resistivity no greater than
- ------ - - ---------- 100 nflm (10x that of silver), if

C ./A (F/cm2] the metal layer is made at least

500 nm thick, it will have a
Properties of the design parametrized by Cin,/A. resistance of 10,000 fl along the

fective capacitance Ceff/A given in Eq. (18) is shown entire length of the fiber. The
on of Ci1 /A, assuming a capacitance of 100 F/cm2  re lengt of the ier te
ace of the device and a capacitance of 4.5 RF/cm 2 at resistance of the inner conductor

ce between the core and capacitor layers. (b) The and core will be negligible

letectable change in voltage [obtained from Eqs. (8) compared to the huge capacitive
s shown as a function of Cin,/A for systems with impedance, provided they are
o bottom) a 100 mW laser (blue), a 30 mW laser chosen to be semiconductors.
nd a 100 mW laser (green). The black dashed lines

to 50 and 100 IV. To sense signals at the 50 pV Finally, we must consider the

a 100-mW laser, a capacitance on the order of voltage noise on the recording site

is necessary. itself, i.e., the metal contact pad

interfacing directly with the brain.

The recording site is often modeled as a constant phase element (111) and noise contributions

come from the real part of its impedance (75), and are frequency dependent. We choose to write it

in terms of parameters G and m, with an impedance of Ze = 1/G(jw)-m. The parameter G

reflects the conductivity of the material, and the parameter m is often related to surface roughness

and transport to the metal-electrolyte interface (112), with typical parameters ranging from 0.5 to

0.9. We will assume m = 0.5 for representing a rough surface, and a 1 kHz impedance magnitude

of 0.1 Mfl. Thus, the resistance of the device is dominated by the recording site, as opposed to the

ground lead or other elements, and the above parameters amount to a total RMS noise over a
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1 kHz band, found by integrating 4kBTRe(Ze)df from f = 0 Hz to f = 1000 Hz, of -1 pV. This

model agrees with what is found experimentally for similar sized electrode pads (112).

Efforts to reduce the recording site impedance are only needed for adjusting the noise influence of

the recording site itself. Even an unplated gold surface will be sufficient here, because instead of

0.1 Mf1 for an electroplated surface, we will have Re(Z) = 1Mfl, with a resulting noise of ~ 4PV

RMS instead of the 1 pV RMS calculated above. Only if Ceff were increased dramatically (e.g., to

the equivalent impedance of ~ 1 Mf1 at 1 kHz), would efforts be needed to reduce the recording

site impedance to prevent attenuation of the signal via the voltage divider. In any case, the

voltage drops primarily over the capacitor layer and is not attenuated by resistors prior to the

capacitor, and these electronic noise voltages are lower than the sensitivity of the device, which is

limited by optical shot noise, and so can be neglected. Note that the impedances given here are

also large enough for the input impedance of an implanted recording device (113).

Other forms of exogenous noise include mechanical bending of the fiber and thermo-optic effects,

which may be particularly significant given the small width of the waveguide. However, these

effects are expected to occur at a much lower frequency than the ~ 1 kHz frequency content of

spikes, and thus can be filtered out. Likewise, static or slowly changing bends (e.g., due to the

heart beat) in the fiber can be subtracted off.

Dynamic Range. Local field potentials in the brain may vary by up to hundreds of millivolts,

generating fields on the order of 1 kV/cm across a 1 gm capacitor layer. By contrast, the

dielectric breakdown strength of barium titanate is roughly 10 kV/cm, so dielectric breakdown is

unlikely to be an issue (114). On the other hand, the dynamic range of the device may be limited

by the density of states in the core, and thus it will be necessary to adjust the bias of the device

(using the conductive reference layer) in order to ensure that the device can function in

accumulation. If the device is allowed to function in depletion, CQ will be much smaller than Cin,,

thus reducing the sensitivity. Similarly, operation in inversion will suffer from deep depletion

effects.

Tissue Heating. When we send light down the fiber, some light power may dissipate into the

tissue. Depending on the level of round-trip light attenuation in the waveguide, each probe will

dissipate a fraction f of the applied light power P. We next evaluate the acceptable level of such

dissipation and how this constrains the device properties.

The human brain endogenously dissipates 25 W or 19 mW/mL. The blood perfusion rate of

human brain gray matter and white matter is roughly rperfusion = 35000 Wm-30C- 1 (115). To

avoid > 2*C brain temperature rise, per the requirements laid out in Ref. (30) and elsewhere, we
fPthen require that each probe is surrounded by a perfusion volume of Vperfusion rperfusion 20C
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For a sense of scale, assuming that a 100 mW laser is used for the reflectometer, if f ~ 50% of

this light power is dissipated into the tissue on a round-trip reflection, we then require a 250 PL

perfusion volume, or a cylinder of radius 1.5 mm around each probe, assuming a 10 cm probe

length. An attenuation of 50% over 20 cm corresponds to ~ 3 dB over the length of the fiber, or ~

0.15 dB/cm, on the order of the intrinsic optical attenuation of silicon (116) or indium phosphide

(117). An additional potential source of tissue heating arises from transverse scattering of light at

the interfaces between the successive waveguide segments of different refractive index. Using

MEEP simulations to quantify the amount of light scattered out of the waveguide core, for

adjacent segments with refractive indices of 3.409 and 3.41, we estimate that there will be a

3 x 10-s% loss per boundary. With 500 boundaries per centimeter, this means a 0.015% loss per

centimeter or 0.3% loss over a round trip in a 10 cm fiber. However, if Ano is ~ 10-4 instead, as

discussed above, the amount of scattering generated this way is expected to be substantially

reduced.

Attenuation due to bending is expected to be insignificant, with silicon-on-insulator waveguides

reported to experience attenuation of only ~ 0.1 dB per 90* turn at a radius of curvature of 1 pm.

Finally, to avoid transmitting any light into the brain tissue itself, a strong reflector can be placed

at the end of the probe. Because the reflectometer has high spatial resolution, a large reflection

from the end of the probe is not expected to interfere with the measurements.

Material Selection for the Capacitor Layer

The key figure of merit determining the properties of the device is the capacitance per unit area of

the capacitor layer, Cin,/A. Along with the laser power, the figure of merit determines the

sensitivity via Eq. (16). In Figure 2-3(b), the sensitivity of the device is shown as a function of

Cin,/A. The vertical axis shows the minimum voltage signal that can be resolved using a shot

noise-limited reflectometer, as calculated using Eqs. (8) and (16). The power law region (a straight

line on the log-log plot) corresponds to the region in which Ceff z Cins, so that the reflection

coefficient R 0c CinsAV/A. For values of Cins/A much greater than 4.5 we have Ceff CQ, 50

the sensitivity does not improve with increasing Cins/A.

Materials such as barium titanate, strontium titanate, and calcium copper titanate would likely be

able to achieve a sufficiently large value of CinS/A while also separating the core from the metal

sensing pads. The chosen material must be able to maintain its high relative permittivity while

film thickness is scaled down sufficiently to enable a high capacitance. Since dielectric properties

often arise from grain boundaries within the material, the achievable grain size sets an

approximate lower bound on the film thickness that can be utilized. Barium titanate films have

been demonstrated with relative permittivities of roughly 5000 with grain sizes around 1 Im (118),

r with relative permittivities of 2500 with grain sizes of 100 nm (119). Likewise, calcium copper

titanate ceramics have been fabricated with relative permittivities between 1000 and 10,000 and
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grain sizes from hundreds of nanometers to micrometers (120). Finally, relative permittivities on

the order of 105 seem to be possible with larger grain sizes (121, 122).

We are not aware, however, of direct measurements of the dielectric properties of high-dielectric

ceramics in films of < 1 pm thickness grown in InP substrates, thus verification of these properties

should be a key question for early experimental studies of voltage probes like the one proposed

here. A further potential concern with using dielectrics, such as barium titanate, is the presence of

hysteresis in such materials (123). Since the neuronal signals involve potential changes on the

order of 100 pV, the hysteresis is expected to be small, but a detailed experimental

characterization would be required.

We will assume that it is possible to fabricate a dielectric film with thickness d ~ 1 Pm, d ~ hpm,

and with ! ~ 1010, for example, a 1 pm-thick film of calcium copper titanate with Er 104,d

corresponding to a value of Cin,/A of 10 . With such a capacitor, the device with a 30 mW
cm2~

laser would be capable of measuring signals at the 100 V level and the device with a 100 mW

laser would be capable of measuring signals at the 50 # level.

Discussion

Ultra-large-scale neural recording is highly constrained both by physics and by the biology of the

brain (30). Here, we have argued that an architecture for scalable neural recording could combine

1) the use of optical rather than electronic signal transmission to maximize

bandwidth,

2) confined rather than free-space optics to reduce the effects of light scattering and

absorption in the

3) spatial or wavelength multiplexing within each optical fiber in order to minimize

total tissue volume displacement,

4) a thin form factor to enable potential deployment of fibers via the cerebral

vasculature, and

5) direct electrical sensing to remove the need for exogenous dyes or for genetically

encoded contrast agents.

Traditional electrode-based recording systems require a separate electrical connection for every

recording site. They are limited in the depth they can access, because the magnitude of the

thermal noise increases with the length of the probe. Furthermore, each connection must be

accessed separately by the acquisition system (124). By contrast, the architecture proposed here

offers several benefits, including the ability to read out neural activity over many centimeters with

high sensitivity, the ability to multiplex tens of thousands of recordings into a single fiber with a

simplified acquisition system, and the ability to scale the physical dimensions of the fiber without

sacrificing performance.

35



In our proposed design, the 100 piV scale extracellular voltage resulting from a neuronal spike is

applied across a thin, high-dielectric capacitor. Charging of the capacitor results in modulating the

accumulation layer in the neighboring InP waveguide core, altering the local refractive index of

the InP and causing a detectable optical reflection. Reflectometry then enables multiplexed

readout of these spike-induced reflections. Notably, the entire design fits into a package with a

cross section that is in principle < 5 pim on a side (although additional material could of course be

added for mechanical support if desired).

Every neuron in a mammalian brain is within a few tens of microns of the nearest capillary (125),
well within the distance necessary for direct electrical sensing of the action potential (30), thus, in

principle, the fine microvessels of the cerebral vasculature could serve as a delivery route for

neural activity sensors, if the fibers could be made sufficiently thin (79), i.e, well below 10 pLm for

the smallest capillaries. Thus, multiplexing thousands of neural signals into a single optical "wire"

of < 10 [rm thickness could potentially be enabling for novel endovascular approaches to neural

interfacing.

It is worthwhile to contrast the proposed system to both microelectrode-based recording and

optical imaging solutions. In our design, signals are captured electrically, similar to the recording

mechanism of a microelectrode, and then are transduced to an optical communication channel for

extracting the data from the brain. By contrast, in imaging approaches, the neuronal signal is

transduced into the photochemical state of an indicator dye or protein inside the neuron itself, and

then the signal is extracted by irradiating the brain and then capturing emitted fluorescent

photons on a camera. Consequently, imaging approaches flood the brain tissue itself with light

power and transduce signals via chemicals delivered to the neurons themselves. Our proposed

method, in contrast, does not require flooding the brain tissue itself with light: the electrical

pickup of the signal does not require power nor exogenous chemical probes, and the data collection

is photon-efficient since, to the greatest extent possible, our design confines all light to the inside

of the waveguide itself.

A key challenge in implementing such a design is to achieve a figure of merit Cin,/A for the

capacitor sufficiently large to allow sensitivity to the neural signals of interest. We think that it

would be possible using barium titanate or calcium copper titanate to achieve a figure of merit on

the order of 10 -- , which would allow the device presented here to sense signals of approximately

50 MV with a 100 mW laser.

In addition, supercapacitors with submicrometer thickness can be fabricated that achieve specific

capacitances on the order of 1 mF/cm2 (126), which would allow for the detection of 30 pV

signals with a 100 pW laser, if they could be made compatible with our device. The sensitivity

would also be improved substantially if a core material could be found with a smaller charge
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centroid. Early experimental studies building on our theoretical estimates should seek to verify

that a sufficiently high capacitance can be achieved in the desired form factor.

Several alternative strategies exist for improving the sensitivity of the device. The device senses

the voltage in each sensing region twice, at the front and back ends of each sensing region, which

could be factored into the analysis to improve SNR. If tissue-heating concerns can be overcome,

the sensitivity of the device can be improved by increasing the strength of the laser. The

sensitivity can also be increased by using a different core material with a stronger free-carrier

dispersion effect. For example, at A = 1.3 im, there is a maximum in the free-carrier dispersion

effect of InP at a doping concentration around 3 x 10 1 7 cm 3 (108). By using a core material with

a higher bandgap, such as GaP, it would be possible to perform reflectometry using visible light,

for example, around 600 nm, which would increase the sensitivity of the device by increasing the

overlap of the optical electric field with the charge-containing region of the core. Alternatively,

silicon is also possible as a core material, for simplicity of fabrication. However, it would be

necessary for the chosen core material also to have acceptable levels of field-induced birefringence

and nonlinear response, effects which could cause frequency conversion or interfere with the

reflectometry process. These processes should be evaluated empirically for a given power level,

materials choice, and waveguide configuration. Finally, the sensitivity of the proposed device is

dependent on the signal to noise ratio of the reflectometer. Although we have applied a

conservative estimate of the shot-noise-limited resolution, other sources of noise will have to be

minimized to achieve sufficient sensitivity for neural recording.

Finally, a major challenge will be the achievement of an attenuation level low enough to avoid

excessive heating of the tissue. The heat dissipation can be reduced by reducing the laser power or

using a core material with lower optical attenuation. For this reason, GaP is also an appealing

option for the waveguide core, as it has been reported to have intrinsic optical attenuation much

less than 0.1 dB/cm at 600 nm (127; 128). Additionally, heat dissipation into the tissue could be

reduced by the addition of an active heat transport system (such as a microchannel heat sink) to

the device architecture (129, 130).

The cost of the device will depend on the final choice of materials, the fabrication processes

required, and the extent to which existing semiconductor fabrication pipelines are capable of

meeting the requirements. Broadly, these devices can be fabricated with methods widely used in

the nanofabrication field, but not all of these methods are industrialized at the scale of modern

microchip manufacturing. Ultimately, such a device could be packaged together with optical or

electrical stimulation channels for bidirectional neural interfacing.

If appropriate materials combinations can be fabricated, we have shown that the device could

achieve the requisite sensitivity, noise level, and response time for recording both neural spikes
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and local field potentials. More broadly, our results suggest that integrated photonics could enable

highly multiplexed readout of neuronal electrical signals via purely optical channels.
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Chapter 3

Implosion Fabrication

n late 2014, Expansion Microscopy became a major focus of the Boyden lab. Fei Chen and

Paul Tillberg presented expansion microscopy to the lab at a lab meeting in November 2014,

and I asked at the end whether the process was invertible (the answer was yes). Adam

Marblestone realized that the idea had promise for the purpose of positioning DNA origami in 3D,

and encouraged me to work on it. We met with Mark Skylar-Scott, who had done related work

previously (131-133), and he helped us to get set up with the fluorescein patterning chemistry.

After several months of experiments, Dan Oran joined the project in early 2015. Dan has an

undergraduate degree in photography, and brought with him extensive knowledge of old

photographic chemistries. Dan succeeded in getting the basic patterning setup working, and I

worked out the system for shrinking and dehydrating the gel in acid. Working with Ruixuan Gao,

Dan, Rui and I validated the resolution of the patterning method using gold nanoparticles

conjugated to the gel on the patterns.

A key breakthrough came in the spring of 2016, when Dan had the idea to leverage an old

photographic chemistry to deposit silver onto the surface of gold nanoparticles anchored into the

gel. This allowed us to create nearly solid silver nanostructures. Dan and I tried several different

methods for sintering them, and I eventually discovered the laser sintering approach. Shortly after

the silver methods were developed, I became more involved in other projects and we agreed that

Dan would finish the remaining experiments, since I had done more work originally. Dan

continued working on the project for over a year, making significant process improvements,

preparing the samples for the final conductivity demonstrations in Figure 3 and the ring

resonators in Figure 4, while I remained involved in a planning, mentoring, and analysis capacity.

Once we completed the conductivity data in Figure 3, I wrote most of the manuscript, and we

divided the work of making the figures. To Dan's credit, I advocated for submitting to Nature

Nanotechnology rather than Science, but Dan prevailed on me that it was worth a shot at Science.

The reviews were positive, and Dan finished revisions in 8 days.

Implosion Fabrication is unique among my projects for having been developed in a "working

forwards" fashion, i.e., starting with the idea for the technology (reversing ExM) rather than an

idea for the problem. The initial idea of using it to position DNA origami seemed unworkably

complex, and we discovered in the process of the technology that high resolution is secondary in

most nanofabrication applications to material control. Luckily, Implosion Fabrication gives both

material control and resolution. But even at the time of the first paper, the application was

unclear. We now believe that the key feature of ImpFab that other methods lack is the ability to
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pattern materials with a density gradient. By patterning materials with high refractive-index

contrast in a gradient pattern, we can make flat optical elements. It is an exciting success story

that we ended up (unintentionally) with a technology capable in principle of achieving that goal.

However, if we had started with that goal in mind, we might have taken a more direct route to

the goal.
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Summary

Lithographic nanofabrication is often limited to successive fabrication of two-dimensional layers.

We present a strategy for the direct assembly of three-dimensional nanomaterials consisting of

metals, semiconductors, and biomolecules arranged in virtually any three-dimensional geometry.

We use hydrogels as scaffolds for volumetric deposition of materials at defined points in space. We

then optically pattern these scaffolds in three dimensions, attach one or more functional materials,

and then shrink and dehydrate them in a controlled way to achieve nanoscale feature sizes in a

solid substrate. We demonstrate this process, Implosion Fabrication (ImpFab), by directly writing

highly conductive, 3D silver nanostructures within an acrylic scaffold using a volumetric silver

deposition process, achieving resolutions in the tens of nanometers and complex, non-self-

supporting 3D geometries of interest for optical metamaterials.

Introduction

Most nanofabrication techniques currently rely on 2- and 2.5-dimensional patterning strategies.

Although popular direct laser writing methods allow for the single-step fabrication of self-

supporting, polymeric 3D nanostructures (134-141), arbitrary 3-D nanostructures (e.g., solid

spheres of metal, or metallic wires arranged in discontinuous patterns) are not possible (142, 143).

This raises the question of whether a versatile 3D nanofabrication strategy could be developed

that would allow independent control over the geometry, feature size, and chemical composition of

the final material.

A hallmark of 2D nanofabrication strategies is that materials are deposited in a planar fashion

onto a patterned surface. By analogy, we reasoned that a general 3D nanofabrication strategy

could involve deposition of materials in a volumetric fashion into a patterned scaffold. However,

such scaffolds face a fundamental tension: they should be porous and solvated, to allow for

introduction of reagents to their interior, while also being dense, to allow material placement with

nanoscale precision. To resolve this contradiction, we reasoned that an ideal scaffold could be

patterned in a solvated state, and then collapsed and desiccated in a controlled way, densifying

the patterned materials to obtain nanoscale feature sizes. Although several groups have previously

experimented with shrinking materials, the shrinking process typically requires harsh conditions

and chemical changes that may destroy functional materials (144-146). We use

polyacrylate/polyacrylamide hydrogels for the scaffold material, as they have pore sizes in the

range of 10nm to 100nm (147), are known for their ability to expand and shrink up to -10-fold in

linear dimension (37, 148-150), and methods for optically patterning hydrogels are well-established

(131-133, 151, 152).

Results

Our implementation takes place in three phases (see Methods). It has previously been found that

two-photon excitation of fluorescein within acrylate hydrogels causes the fluorescein to react to
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Figure 3-1: Implosion fabrication (ImpFab) process. (A) Schematic of the patterning process,

showing the expanded polyelectrolyte gel (black lines and dots, top insets), and fluorescein (green star,

bottom inset) binding covalently to the polymer matrix upon multi-photon excitation (red volume). Not

to scale. Fluorescein bears a reactive group, R. (B) Residual fluorescence of patterned fluorescein

immediately following patterning. (C) Schematic of functionalization of patterned gel by attaching small

molecules, proteins, DNA or nanoparticles to reactive R groups from (A). Red outline indicates

patterned volume in (A). (D) Image of fluorescent streptavidin nanogold conjugates attached to the

pattern in (B). (E) Schematic of the volumetric deposition process, showing growth of silver (blue) on

top of gold nanoparticles within the hydrogel matrix. (F) Image of silver deposited onto the pattern in

(D) by transmission optical microscopy. Following silver growth, the pattern has high optical density.

(G) Schematic of the shrinking and dehydration process. (H) SEM image of the silverized pattern from

(F) following shrinking and dehydration. (I) Fluorescent patterns created with different laser powers

(see Methods). (J) Image of a gel patterned with both metal nanoparticles (yellow) and CdTe quantum

dots (blue) in different locations. (K) Images of fluorescent patterns before shrinking (left, 10x gel),
after shrinking and dehydration in a 10x gel (top right), and after shrinking and dehydration in a 20x

gel (bottom right). (L) The mean lateral (blue) and axial (red) shrink factors (initial size/final size) for

10x gels (n = 6), including dehydration. (M) The mean lateral shrink factor for 20x gels (yellow, n = 3).

Error bars show s.d.

the hydrogel (131-133). We take advantage of this phenomenon to attach fluorescein molecules

carrying reactive groups to the expanded gel in defined three-dimensional patterns (Figure
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3-1A,B). In the second phase, following removal of the fluorescein patterning solution, the gel is

functionalized by depositing materials onto the patterned reactive groups (Figure 3-1C,D), using
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Figure 3-2: Resolution of implosion fabrication. (A) Design of the resolution test pattern including

pairs of single-voxel-thick lines (bottom right). (B) Fluorescence image of the patterns from (A). (C)

Fluorescence image of the pattern (from B) after shrinking. (D) Measures of isotropy in lateral and axial

dimensions. Yellow and blue bars represent lateral isotropy for 1Ox gels and 20x gels, respectively, and

the red bar represents axial isotropy for 10x gels. (E) Fluorescence images of single-voxel lines before

shrinking. (F) Scanning electron microscopy (SEM) images of single-voxel lines after 1Ox shrinking. The

gel was functionalized with gold nanoparticles for contrast. (G) Cross-sectional intensity profiles of the

lines imaged by SEM (dashed lines in (F)), showing how full-width half-maxima (FWHM) of single

voxel lines were measured. (H) Linewidths, measured in G, for five different gel samples. Dots are

measurements for individual lines; bars indicate mean + s.d. across individual lines within a single gel.

one of several available conjugation chemistries. This volumetric deposition step defines the

composition of the material, and may be followed by additional deposition chemistries
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("intensification") to boost the functionality of the deposited molecules or nanomaterials (Figure

3-1E,F). Importantly, the functional molecules or nanoparticles are not present during the

patterning process, so the specific physical properties of the molecules or nanoparticles used will

not affect the patterning. In the final phase, the patterned and functionalized scaffold is shrunken

by a factor of 10 to 20 in each dimension with acid or divalent cations over a period of hours, and

dehydrated to achieve the desired nanoscale resolution (Figure 3-1G,H). The scaffold is not

removed, as it supports the nanofabricated material and allows for the creation of disconnected or

high-aspect-ratio structures that would otherwise collapse outside of the gel.

We found the polyacrylate gel to be a suitable substrate for patterning and deposition. The gel

readily accommodates a wide variety of hydrophilic reagents, including small molecules,

biomolecules, semiconductor nanoparticles or metal nanoparticles (Figure 9-lA-C). For laser

powers below a critical threshold, the density of the deposited functional material is controllable

(Figure 3-1I, Figure 9-2). We estimated based on the maximum pattern fluorescence in Figure

9-2A that binding sites are patterned into the gel at concentrations of at least 79.2pM in the

expanded state, leading to a final concentration in the shrunken state of greater than 272.0mM or

1.64 x 1020 sites per cubic centimeter for a 10x gel (see below). By repeating our patterning and

deposition process, we were able to deposit multiple materials in different patterns in the same

substrate, such as gold nanoparticles and cadmium telluride nanoparticles (Figure 3-1J). We

observed by fluorescence that the deposition of the second material onto the first pattern was at

most 18.5% of the deposition of the second material onto the second pattern, confirming that

multiple materials may be independently patterned and deposited using this process (Figure 9-3).

The shrinking process is performed either by exposing the expanded gel to hydrochloric acid or to

divalent cations (e.g. magnesium chloride, Figure 9-1A-C). The latter may be useful if the

patterned materials are sensitive to acid, although we found that both streptavidin and DNA

remain functionally intact following acid shrinking (Figure 9-1D). Gels that are shrunken in

hydrochloric acid can subsequently be dehydrated, resulting in additional shrinking, and this

process preserves the patterned geometry (Figure 3-1K). The final dehydrated gel is transparent

(Figure 9-4A), and atomic force microscopy (AFM) characterization measured the surface

roughness over a 1 x 1 pm2 window to be -0.19 nm (root-mean square; Figure 9-4B). Except

where stated otherwise, all samples described as "shrunken" hereafter are shrunken and

dehydrated. We tested two different gel formulations that differ only in cross-linker concentration:

"10x" (0.075% cross-linker) and "20x" (0.0172% cross-linker) (see Methods). The 10x gels, and

the patterns within, shrink consistently by a linear factor of 10.6 + 0.8 in the lateral dimension

(mean s.d., n=5 gels) and 34.8 1.8 in the axial dimension (n=6 gels, Figure 3-1L), with the

disproportionate axial shrink occurring during dehydration, possibly due to surface interactions

between the shrinking polymer and the surface of the glass container. For the 20x gels, we

observed 20.1 2.9-fold shrink in the lateral dimension (n=4 gels, Figure 3-1M). The 20x gel
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formulation is challenging to handle manually due to its delicacy, so the axial shrink factor was

not measured, and they were not used further, except for distortion measurements.

To validate the minimum feature size of ImpFab, we designed a test pattern containing pairs of

single-voxel-wide lines (Figure 3-2A-D). Since such post-shrink features are necessarily below the

optical diffraction limit, we deposited gold nanoparticles and employed scanning electron

microscopy (SEM) to assess the resolution after shrinking. We estimated the resolution by

measuring the line width (full width at half maximum, FWHM) (Figure 3-2E-G), and obtained a

value of 59.6 3.8 nm (mean s.d. across samples; n = 5; Fig. 2H) for lOx gels. The mean

within-sample standard deviation of the line width was 8.3 nm. We estimated the isotropy of the
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Figure 3-3: Characterization of silver conductivity. (A) SEM overview of a shrunken silver wire

between two landing pads, prior to sintering. (B) SEM image of wires before and (C) after sintering.

(D) Resistance of three separate conductive pads, of dimension 35x35 pm, measured before and after

sintering. Each color represents a single conductive pad. Error bars show standard error in a four-point

conductivity measurement. (E) Resistance of individual sintered wires (black dots), their mean (blue),

and standard deviation, as compared to the theoretical conductivity of a similar structure made of bulk

silver (green).

shrinking process by calculating the ratio of the longest diameter of the patterned circle to the

orthogonal diameter (Figure 3-2C, D). The percent distortion thus calculated was 6.8 6.9% for

1Ox gels (mean s.d., n=6 gels), and 8.2 4.3% for 20x gels (n=4 gels). We found that the ratio

of axial to lateral shrink was on average within 3.1 2.5% of the mean of this ratio (n=6 lOx

gels), indicating that the disproportionate axial shrink is highly reproducible. Thus, it is possible

to account for the disproportionate axial shrink in the design of the pattern. To illustrate this

point with the fabrication of a cube, we patterned a rectangular prism and imaged it before and

after dehydration (Figure 9-5). As expected, the rectangular prism contracts in the axial

dimension during the dehydration step and turns into a cube.
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Since nanoscale metal structures are broadly important in fields such as nanophotonics,

metamaterials, and plasmonics, we applied ImpFab to create conductive silver structures. We

anchored gold nanoparticles to patterned amines via a biotin-streptavidin linkage (see Methods).

We were initially unable to deposit gold nanoparticles at high enough concentrations to form

conductive structures. We thus developed an intensification process based on photographic

intensification chemistries, in which silver is deposited onto the surface of gel-anchored gold

nanoparticles in aqueous phase while the gel is in the expanded state (Figure 3-1E, F). Finally,

the gel is treated with a chelating agent to remove any remaining dissolved silver, and is then

shrunken via exposure to hydrochloric acid and subsequent dehydration.
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Even with the silver intensification process, wire structures fabricated using the method above

(Figure 3-3A) were not reliably conductive, or had resistances on the order of hundreds of ohms.

We tested several different methods of sintering, including treatment with oxygen plasma,

electrical discharge, and heating the sample to -500 degrees in an oven. However, none of these

methods resulted in well-preserved and evenly sintered silver structures. Instead, we found that

the silver patterns could be sintered effectively using the same 2-photon setup used for the initial
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F

Figure 3-4: Fabrication of 3D metal nanostructures. (A) Two-dimensional structures fabricated with

ImpFab with micron-scale resolution, before and (B) after sintering, visualized using SEM. (C) Similar

structures fabricated with hundred-nanometer feature size, after shrinking and dehydration but before

sintering. (D) Maximum intensity projection of fluorescence image of a 3D structure prior to shrinking

(135, 351). (E) Maximum intensity projection of a reflected light image from the same structure

following volumetric silver deposition, prior to shrinking. (F) Maximum intensity projection of a

fluorescence image of the same structure, shrunken but not dehydrated.

photopatterning step. We found that samples irradiated at relatively low power levels (see

Methods, chapter 9) showed a distinct change in the morphology of the embedded silver
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nanoparticles consistent with sintering (Figure 3-3B,C). We measured the conductivity of three

patterned silver squares both before and after sintering, and found that the resistance of each

square decreased by 20-200 fold (Figure 3-3D). Sintered wires were measured in a 4-point probe

system, and were found to have linear IV curves (Figure 9-6). Wires sintered in this way had an

average resistance of 2.85 + 1.68Q (mean standard deviation; n = 10), with the resistance

depending on the density of the patterned silver (Figure 9-6B). By contrast, an ideal silver wire

with the same geometry would have a resistance of 0.38Q, suggesting that our sintered structures

achieved a mean conductivity 13.3% that of bulk silver, with individual samples obtaining

conductivities as high as 30% that of bulk silver (Figure 3-3E).

To verify that our method is compatible with a wide range of 3D geometries, we fabricated

structures with dimensions ranging from hundreds of nanometers to several microns (Figure 3-4A-

C). We found that these structures retain their morphology following sintering (Figure 3-4B). We

fabricated a non-layered, non-connected three-dimensional structure comprised of many 2D

substructures arranged at different angles relative to each other in space, which would not lend

itself to fabrication by other means (Figure 3-4D). Whereas our previous experiments had only

observed the fabrication of two-dimensional silver structures, we used confocal reflection

microscopy to confirm that silver was deposited throughout the volume of the 3D pattern (Figure

3-4E). Finally, using confocal microscopy, we were able to validate that the structure retained its

shape following shrinking (Figure 3-4F). Due to the modular nature of ImpFab, the extension of

the ImpFab strategy to other kinds of materials, such as other semiconductors or metals, only

requires the development of an aqueous deposition chemistry that is compatible with the gel

substrate. Future iterations may use alternative chemistries, such as dendrimeric complexes for

direct deposition of metals or semiconductors within the hydrogel (153, 154), or DNA-addressed

material deposition (155). Finally, we note that although we used a conventional microscope that

is not optimized for patterning, and that was limited to a 4cm/s scan speed (in post-shrink

dimensions), we were able to create objects spanning hundreds of microns to millimeters (Figure

9-7). Using faster patterning systems (131), ImpFab could ultimately enable the creation of

centimeter-scale nanomaterials.
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Chapter 4

Slide-seq

My understanding is that Slide-seq began as an idea that Evan Macosko proposed to Fei

Chen, although Bob also claims to have thought of it before he met Evan. Fei

presented it to me in spring of 2017, and I was drawn to it by the promise that we

could use it for high-throughput projectomics, for example by combining it with methods for

barcoding RNA (16). I am still interested in that application, although the application to create

comprehensive 3D maps of gene expression is equally compelling.

At the beginning of the project, it was determined that Bob would work out the library

preparation protocol, while I would work out how to make and sequence the pucks. Sequencing

the pucks and developing the algorithms for reconstructing the images turned out to be relatively

straightforward, but the library preparation was challenging. Bob came up with two innovations

that each improved our RNA yield by an order of magnitude: firstly, he discovered in November

2017 that using liquid tape, rather than acrylamide, as a bind surface resulted in a -5X-1OX

improvement in RNA yield. Then, although the hybridization step was initially performed dry,

Bob had the idea to do the hybridization in 6X SSC, which gave a further -5X improvement in

yield. For whatever reason, the RT buffer itself was insufficient to enable RNA to bind to the

beads.

As the project progressed, I specialized more in the data analysis, and Bob specialized more on the

wet lab protocol and sample processing. Josh Welch had the idea to apply Liger (now in press) in

order to determine the cell-type composition of each bead. After experimenting with Liger, I

realized that Liger assigns beads to consensus cell types derived from both datasets together. This

led to the cell types on each Slide-seq puck being slightly different, depending on the composition

of the puck. However, what we really wanted was to map the cell types from the Slide-seq dataset

onto fixed cell types derived from the single cell RNA sequencing data. Modifying the Liger

algorithm to hold the cell types in the scRNAseq dataset constant resulted in a regression problem

in the lower dimensional space provided by the NMF decomposition in Liger. I proposed this idea

to Aleksandrina Goeva, and she developed and implemented it, resulting in the NMFReg

algorithm that allows cell types from scRNAseq to be mapped onto the puck.

One key insight I had was that because Slide-seq data is intrinsically mixed, i.e. because many

beads have RNA contributions from multiple cell types, Slide-seq is much more powerful when one

uses genes as the primitive analysis object, rather than cell types. For example, Slide-seq is not

useful for cell-type discovery or for differential expression between cell types: if one examines the

differential expression between astrocytes in one location and astrocytes in another location, for
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example, the genes one finds are typically contaminating genes from adjacent cell types. Moreover,

because Slide-seq data is relatively sparse, most beads of a given cell type will fail to display most

of the key markers for that cell type. However, Slide-seq has high statistical power for detecting

spatial patterns of gene expression in a cell-agnostic way de novo. For example, if there are only 4

occurrences of a particular gene, but all 4 occurrences are immediately adjacent to each other on

the puck, that is an extremely strong statistical signal, regardless of the cell-types of the beads on

which they occur. This realization led me to develop the other two core analysis algorithms

(besides NMFReg) that appear in the paper: the spatially significant gene calling algorithm, which

detects spatially non-random distributions of gene expression, and the gene overlap algorithm,

which determines when two genes are spatially correlated. These two algorithms served in turn as

the basis for the analysis in Figures 3 and 4.
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Summary

Spatial positions of cells in tissues strongly influence function, yet a high-throughput, genome-wide

readout of gene expression with cellular resolution is lacking. We developed Slide-seq, a method

for transferring RNA from tissue sections onto a surface covered in DNA-barcoded beads with

known positions, allowing the locations of the RNA to be inferred by sequencing. Using Slide-seq,

we localized cell types identified by scRNA-seq datasets within the cerebellum and hippocampus,

characterized spatial gene expression patterns in the Purkinje layer of mouse cerebellum, and

defined the temporal evolution of cell-type-specific responses in a mouse model of traumatic brain

injury. These studies highlight how Slide-seq provides a scalable method for obtaining spatially

resolved gene expression data at resolutions comparable to the sizes of individual cells.

Introduction

The functions of complex tissues are fundamentally tied to the organization of their resident cell

types. Multiplexed in situ hybridization and sequencing-based approaches can measure gene

expression with subcellular spatial resolution (9, 10), but require specialized knowledge and

equipment, as well as the upfront selection of gene sets for measurement. By contrast, technologies

for spatially encoded RNA-sequencing with barcoded oligonucleotide capture arrays are limited to

resolutions in the hundreds of microns (156), which is insufficient to detect important tissue

features.

Results

To develop Slide-seq for high-resolution genome-wide expression analysis, we first packed uniquely

DNA-barcoded 10 pm microparticles ('beads') -similar to those used in the Drop-seq approach to

scRNA-seq (25)-onto a rubber-coated glass coverslip forming a monolayer we termed a "puck"

(Figure 10-1). We found that each bead barcode sequence could be uniquely determined via

SOLiD sequencing-by-ligation chemistry (Figure 4-1A, Figure 10-1) (157; 158) (see Methods). We

next developed a protocol wherein 10 pm fresh-frozen tissue sections were transferred onto the

dried bead surface via cryosectioning (see Methods, Chapter 10). mRNA released from the tissue

was captured onto the beads for preparation of 3'-end, barcoded RNA-seq libraries (25) (Figure

4-1B). Clustering of individual bead profiles from a coronal section of mouse hippocampus (see

Methods, Chapter 10) yielded assignments reflecting known positions of cell types in the tissue

(Figure 4-1C). Very fine spatial features were resolved, including the single-cell ependymal cell

layer between the central ventricle and the habenula in the mouse brain (Figure 4-1C, inset).

Moreover, Slide-seq could be applied to a range of tissues, including the cerebellum and olfactory

bulb, where layered tissue architectures were immediately detectable (Figure 4-1D, Figure 10-2),

as well as liver and kidney, where the identified clusters revealed hepatocyte zonation patterns

(159) and the cellular constituents of the nephron, respectively. Slide-seq on postmortem human

cerebellum was also successful in capturing the same architectural features observed in the cognate

mouse tissue (Figure 10-3). Expression measurements by Slide-seq agreed with those from bulk
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mRNA-seq and scRNA-seq, and average mRNA transcript capture per cell was consistent across

tissues and experiments (Figure 10-4). Finally, we found no detectable difference in the dimensions

of brain structures observed in Slide-seq and in FISH (Figure 10-5), implying that mRNA is

transferred from the tissue to the beads with minimal lateral diffusion.
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Figure 4-1: High-resolution RNA capture from tissue by Slide-seq. (A) Left: Schematic of array
generation. A monolayer of randomly deposited, DNA barcoded beads (termed a "puck") is spatially
indexed by SOLiD sequencing. Top Right: A representative puck with sequenced barcodes shown in
black. Bottom Right: A composite image of the same puck colored by the base calls for a single base of
SOLiD sequencing. (B) Schematic of the sample preparation procedure developed for Slide-seq. (C) Top
left: tSNE representation of Slide-seq beads from a coronal mouse hippocampus slice with colors
indicating clusters. Right: the spatial position of each bead is shown, colored by the cluster assignments
shown in the tSNE. Bottom left: Inset indicating the position of a single-cell-thickness ependymal cell
layer (black arrow). (D) As in (C), but for the indicated tissue type (see Figure 10-2 for clustering and
cluster identities). All scale bars 500 pm.

To map scRNA-seq cell types onto Slide-seq data, we developed a computational approach called

Non-negative Matrix Factorization Regression (NMFreg) that reconstructs expression of each

Slide-seq bead as a weighted combination of cell-type signatures defined by scRNA-seq (Figure

4-2A). Application of NMFreg to a coronal mouse cerebellar puck recapitulated the spatial

distributions of classical neuronal and non-neuronal cell types (24), such as granule cells, Golgi

interneurons, unipolar brush cells, Purkinje cells, and oligodendrocytes (Figure 4-2B, Figure

10-6A). The mapping by NMFreg was found to be reliable across a range of factor numbers and
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Figure 4-2: Localization of cell types in cerebellum and hippocampus using Slide-seq. (A)

Schematic for assigning cell types from scRNA-seq datasets to Slide-seq beads using NMF and NNLS

regression (NMFreg). (B) Loadings of individual cell types, defined by scRNA-seq cerebellum (24) on

each bead of one 3 mm-diameter coronal cerebellar puck (red, cell type location, gray, Purkinje loadings

plotted as a counterstain). Other cell types are in Figure 10-6. (C) Left: Number of cell types assigned

per bead (Figure 10-7). Right: The number of beads called as each scRNAseq-defined cell type for

cerebellar pucks (mean std. N=7 pucks). (D) Projections of hippocampal volume with NMFreg cell

type calls for CAI (green), CA2/3 (blue) and dentate gyrus (Red). Top left: Sagittal projection. Top

right: Coronal projection. Bottom left: Horizontal projection. Bottom right: axis orientations for each of

the projections. (E) Composite image of metagenes for six different cell types. All scale bars 250 pm.

All metagenes are listed in Table 10-2.

random restarts (Figure 10-6B,C). We found that 65.8% +/- 1.4% of beads could be identified

with a single cell type (see Methods, Chapter 10), whereas 32.6% +/- 1.2% showed mRNA from

two cell types (mean std, N=7 cerebellar pucks) (Figs. 2C, S7). The high spatial resolution of

Slide-seq was key to mapping cell types: when data were aggregated into larger feature sizes, cell

types in heterogeneous regions of tissue could not be resolved (Fig. S8). Slide-seq collects a 2D

spatial sample of 3D tissue volumes, thus caution should be taken when making absolute counting

measurements throughout the 3D volume in the absence of proper stereological controls and

sampling methods (160).

We first sequenced pucks capturing 66 sagittal tissue sections from a single dorsal mouse

hippocampus (20 billion paired-end reads over 1.5 million barcoded beads), covering a volume of

39 cubic millimeters, with roughly 10 pm resolution in the dorsal-ventral and anterior-posterior

axes, and -20 pm resolution (alternate 10 pm sections) in medial-lateral axis (Figure 10-9A-D).
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Using NMFreg, 770,000 beads in the volume could be associated with a single scRNA-seq-defined

cell type. We computationally co-registered pucks along the medial-lateral axis, allowing for

visualization of the cell types and gene expression in the hippocampus in three dimensions (Figure

4-2D, Figure 10-9E,F). We plotted metagenes comprised of previously defined markers (24) for the

dentate gyrus, CA2, CA3, a subiculum subpopulation, an anteriorly localized CA1 subset

(exemplified by the marker Tenm3) and cells undergoing mitosis and neurogenesis. The

metagenes were highly expressed and specific for the expected regions (Figure 4-2E), confirming

the ability of Slide-seq to localize both common cell-types as well as finer cellular subpopulations.

The entire experimental processing of these 66 pucks (excluding puck generation) required -40

person-hours (see Methods, Chapter 10), and only standard experimental apparatus.

We then developed a nonparametric, kernel-free algorithm to identify genes with spatially non-

random distribution across the puck (Figure 10-10) (see Methods, Chapter 10). Application of this

algorithm to coronally sliced cerebellum identified Ogfrll, Prkcd and Atp2bl as highly localized to

a region just inferior to the cerebellum (Fig. SIA). We found Ogfrll in particular to be a specific

and novel marker for PV interneurons in the molecular and fusiform layers of the dorsal cochlear

nucleus (Figure 10-11B), likely the cartwheel cells of the dorsal cochlear nucleus (161, 162). Our

algorithm also identified Rasgrfl as expressed only in granule cells anterior to the primary fissure

(Figure 10-11C, cyan, Figure 10-11D, left) (38), and further analysis revealed four previously

uncharacterized genes expressed only posterior to the primary fissure (see Methods, Chapter 10)

(Table 10-2, Figure 10-11C, yellow, Figure 10-11D, right).
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Figure 4-3: Identification of novel variation in cerebellar gene expression by Slide-seq. (A)
Heatmap illustrating the separation of Purkinje-expressed genes into two clusters by spatial gene

correlation. The ifth entry is the number of genes found to overlap with both gene i and j in the

Purkinje cluster (see Methods, Chapter 10). (B) For genes with significant expression (p<0.001, Fisher

exact test) in the nodulus-uvula region (see Methods, Chapter 10), the fraction of reads localized to the

nodulus/uvula and to the VI/VII boundary is shown. Pcp4, a ubiquitous marker for Purkinje cells, is in

gray. (C) An Aldoc metagene in cyan. A Cck metagene in red. (D) A H2-D1 metagene in yellow. A

Hspbl metagene in blue. All scale bars show 250 pm. All metagenes are listed in Table 10-2.

The cerebellum is marked by parasagittal bands of gene expression in the Purkinje layer that

correlate with heterogeneity in Purkinje cell physiology and projection targets (163-166). Several

genes, including Aldoc (also known as the antigen of the Zebrin II antibody) show similar or
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complementary parasagittal expression (165, 167; 168) but the extent of this form of expression

variation is unknown, and these patterns have not previously been identified in single-cell

sequencing studies. Using the spatial information afforded by Slide-seq, we identified 669 spatially

non-random genes in the Purkinje layer (Table 10-2), of which 126 appeared either correlated or

anticorrelated with the Zebrin pattern, using Aldoc and Plcb4 as markers of Zebrin II(+) or

Zebrin II(-) bands, respectively (Figure 4-3A). Among the anticorrelated genes were four ATPases

and four potassium channels, including some which may explain differences in electrophysiology

between Zebrin II(+) and Zebrin 1I(-) Purkinje neurons (Table 10-2). Moreover, we identified

several other patterns of spatial gene expression, besides the Zebrin pattern. While most genes

identified displayed a pattern consistent with Zebrin II staining (Figure 4-3B,C), several were

exclusively expressed in or excluded from the vestibulocerebellar region (lobules IX and X) (169,

170) (Figure 4-3D, Table 10-2), confirming that lobules IX and X have a distinct program of gene

expression. Still other genes showed either exclusive expression in (e.g. B3gait5 (171)) or exclusion

from (e.g. Gnail) lobules IX/X and VI/VII (Figure 10-11E,F), suggesting that these regions might

share a pattern of gene expression, despite the disparate cognitive roles associated with them

(172). Finally, although only Purkinje cells have previously been associated with the Aldoc

pattern, we found that Mybpcl, a Bergmann cell marker previously only studied in the context of

muscle, appears in both Slide-seq (Figure 10-11G) and in situ data (Figure 10-11H) to have a

Zebrin pattern of expression. We thus conclude that the banded gene expression patterns divide

many cerebellar cell types, including Purkinje cells, Bergmann glia, and granule cells, into

spatially defined subpopulations, which was not indicated in previous single-cell sequencing studies

(24, 173).
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Figure 4-4: Slide-seq identifies local transcriptional responses to injury. (A) Top: All mapped beads

for a coronal hippocampal slice from a mouse sacrificed 2 hours after injury, with circle radius

proportional to transcripts. Bottom: genes marking the injury. (B) As in (A), for a mouse sacrificed 3
days after injury. Top and middle right: DAPI image of an adjacent slice. Panels with black

backgrounds show NMFreg cell types as density plots. Scale bar: 250 pm (see Methods, Chapter 10).
(C) As in (B), for a mouse sacrificed 2 weeks following injury. Bottom scale bar: 500 pm. (D) Spatial

density profiles for the puck in (B) (see Methods, Chapter 10). (E) Spatial density profiles for the puck

in (C). Lyz2 is plotted as a marker of macrophages. The vertical axis in (D) and (E) represents cell-type

density in arbitrary units (see Methods, Chapter 10). (F) The thickness of the features in (D) and (E)

(mean std., N=6 for scar, N=6 for penetration, N=3 for mitosis layer). (G-J) Gene ontology-derived
metagenes for the puck in (B) (top) or (C) (bottom). Warmer colors correspond to greater metagene

counts. (K) The IEG metagene (Table S2) for two 2-week pucks. Circular images in (A-C) refer to the

scale bar in (A). All scale bars for images with blue backgrounds 500 pm. Red arrows indicate the

injury.
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Cortical injuries were visualized in Slide-seq data by the presence of hemoglobin transcripts 2

hours after the injury (Figure 4-4A), or by transcripts of Vim, Gfap, and Ctsd at 3 days and 2

weeks after the injury (Figure 4-4B,C). Vim, Gfap, and Ctsd were chosen because they are known

markers of the astrocytic (Vim and Gfap) or microglial (Vim and Ctsd) responses that were found

to be highly upregulated at the injury in the Slide-seq data (Figure 10-13). We applied an

algorithm to identify all genes that correlate spatially with those transcripts. At the 2-hour

timepoint, only Fos and rRNA (174) were found to correlate spatially with the injury (Figure

4-4A, Figure 10-14). By contrast, at the 3-day timepoint, we found microglia/macrophages-

assigned beads localized to the injury, bordered by a distinct layer of cells (thickness: 92.4 pm

11.3 pm, mean sterr, N=3) expressing mitosis-associated factors, followed by a layer of

astrocyte-assigned beads (Figure 4-4D). Finally, at the 2-week timepoint, we observed

microglia/macrophage-assigned beads filling the injury, surrounded by an astrocytic scar

(thickness: 36.6 pm 13.4 pm, mean sterr, N=6), with evidence of microglia (but not

miacrophages) penetrating 39 pm 17.8 pm (mean sterr, N=6) through the astrocytic scar and

into neuron-rich regions (Figure 4-4E,F). Macrophages were visualized using Lyz2, a specific

marker for macrophages and granulocytes, however, we interpret this as a marker of macrophages,

because other granulocyte-specific markers were not found to colocalize with Gfap, Ctsd, and Vim.

In order to investigate other changes in gene expression between the 3-day and 2-week timepoints,

we identified genes that correlated spatially with Vim, Gfap, and Ctsd at the 3-day timepoint or

the 2-week timepoint (see Methods, Chapter 10). Applying gene ontology analysis to these gene

sets revealed enrichment of annotations relating to chromatid segregation, mitosis, and cell

division at the 3-day timepoint (Figure 4-4G), and relating to the immune response (Figure 4-4H),

gliogenesis (Figure 4-41) and oligodendrocyte development (Figure 4-4J) at the 2-week timepoint.

This suggests that cell proliferation occurs in the first few days following injury, and transitions to

differentiation on the order of weeks. For example, although the degree to which oligodendrocyte

progenitor cells (OPCs) differentiate into oligodendrocytes following a focal gray matter injury is

controversial (175), we confirmed that both Sox4 and Sox10 localize to the region surrounding the

injury at the 2 week timepoint, indicating the presence of immature oligodendrocytes (Figure

10-15). We also discovered evidence that several immediate early genes, including highly neuron-

specific genes such as Npas4 (Table 10-2), are upregulated in a region of width 0.72 mm t 0.19

mm (mean sterr, N=4 measurements) around the injury at both the 3-day and the 2-week

timepoints (176-178) (Figure 4-4K, Table 10-2), suggesting persistent effects of the injury on

neural activity in a large area around the injury.

Here we demonstrate that Slide-seq enables the spatial analysis of gene expression in

frozen tissue with high spatial resolution and scalability to large tissue volumes. Slide-seq is easily

integrated with large-scale scRNA-seq datasets and enables discovery of spatially defined gene

expression patterns in normal and diseased tissues. The primary cost of Slide-seq is the cost of
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short read sequencing, which is -$200-$500 for the pucks presented here. As the cost of sequencing

drops further, we expect to be able to scale Slide-seq to entire organs or even entire organisms.

We anticipate that Slide-seq will play important roles in positioning molecularly defined cell types

in complex tissues, and defining new molecular pathways involved in neuropathological states.
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Chapter 5

Protein Sequencing

n the winter of 2015, inspired by a series of meetings with Adam Marblestone, Ed Boyden,

and others, I took up the question of how one could directly infer the sequence of proteins at

the single molecule level. Although mass spectrometry could in principle be applied to single

molecules (179), the most sensitive protein sequencing methods to date require tens or hundreds of

thousands of copies. This approach, which I formulated with inspiration from Adam Marblestone,

takes advantage of a set of N-terminal amino acid binders identified by Jim Havranek and Ben

Borgo at WUSTL (180). My key realization was that although the binders were mostly not

specific for any particular N terminal amino acid, their binding spectra were sufficiently different

from each other that, by observing the kinetics of each binder for a given peptide, one could likely

infer the identity of the N terminal amino acid.

This research was conducted entirely from January 2015 to March 2015. After the initial

theoretical research, Andrew Payne, Dan Oran and I tried to implement our ideas experimentally.

Our efforts failed, primarily due to lack of experience (I was in my first year, and Andrew and

Dan were not even graduate students yet). We were afraid of being scooped on the experiments,

so the theoretical work was not published until March 2019. As of the publication of this thesis,

there has still been practically no movement in this field, despite numerous theoretical proposals

(181-183), one major experimental report (184), and a company (Encodia Inc.) that appears to

have been working in this space for more than 5 years. It is very challenging to distinguish the

amino acids from each other on any chemical basis - it is remarkable that cells have evolved

enzymes to do it -, and the standard challenges of single-molecule experiments (e.g. nonspecific

binding and photobleaching) must likewise be overcome. Nonetheless, I believe that the method

laid out here could be made to work, either using the published NAABs or using a dedicated,

evolved or engineered set.

That this research was published is entirely due to Adam Marblestone, who unearthed the

manuscript in early 2018 and proposed to me and Ed that we submit it. Without Adam's

proposal, it would have remained buried.
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Summary

We propose and theoretically study an approach to massively parallel single molecule peptide

sequencing, based on single molecule measurement of the kinetics of probe binding to the N-

termini of immobilized peptides (180). Unlike previous proposals, this method is robust to both

weak and non-specific probe-target affinities, which we demonstrate by applying the method to a

range of randomized affinity matrices consisting of relatively low-quality binders. This suggests a

novel principle for proteomic measurement whereby highly non-optimized sets of low-affinity

binders could be applicable for protein sequencing, thus shifting the burden of amino acid

identification from biomolecular design to readout. Measurement of probe occupancy times, or of

time-averaged fluorescence, should allow high-accuracy determination of N-terminal amino acid

identity for realistic probe sets. The time-averaged fluorescence method scales well to weakly-

binding probes with dissociation constants of tens or hundreds of micromolar, and bypasses

photobleaching limitations associated with other fluorescence-based approaches to protein

sequencing. We argue that this method could lead to an approach with single amino acid

resolution and the ability to distinguish many canonical and modified amino acids, even using

highly non-optimized probe sets. This readout method should expand the design space for single

molecule peptide sequencing by removing constraints on the properties of the fluorescent binding

probes.

Introduction:

Massively parallel DNA sequencing has revolutionized the biological sciences (185, 186), but no

comparable technology exists for massively parallel sequencing of proteins. The most widely used

DNA sequencing methods rely critically on the ability to locally amplify (i.e., copy) single DNA

molecules-whether on a surface (187), attached to a bead (188), or anchored inside a hydrogel

matrix (189)-to create a localized population of copies of the parent single DNA molecule. The

copies can be probed in unison to achieve a strong, yet localized, fluorescent signal for readout via

simple optics and standard cameras. For protein sequencing, on the other hand, there is no protein

'copy machine' analogous to a DNA polymerase, which could perform such localized signal

amplification. Thus, protein sequencing remains truly a single molecule problem. While true single

molecule DNA sequencing approaches exist (190-192), these often also rely on polymerase-based

DNA copying, although direct reading of single nucleic acid molecules is beginning to become

possible with nanopore approaches (193) that may be extensible to protein readout (194-196)

Thus, the development of a massively parallel protein sequencing technology may benefit from

novel concepts for the readout of sequence information from single molecules.

Previously proposed approaches to massively parallel single molecule protein sequencing (181, 182,

197) utilize designs that rely on covalent chemical modification of specific amino acids along the

chain. Such chain-internal tagging reactions are currently available only for a small subset of the
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20 amino acids, and they have finite efficiency. Thus, such approaches would likely not be able to

read the identity of every amino acid along the chain.

An alternative approach to protein sequencing (180, 198-200) is to use successive rounds of

probing with N-terminal-specific amino-acid binders (NAABs) (180). Recent studies have proposed

that proteins derived from N-terminal-specific enzymes such as aminopeptidases (201), or from

antibodies against the PITC-modified N-termini arising during Edman degradation (202), could be

used as NAABs for protein sequencing. Yet designing or evolving highly specific, strong N-

terminal binders to all 20 amino acids (and more if post-translational modifications, e.g.,

phosphorylation, are considered) is a challenge. Rather than attempting to improve the properties

of the NAABs themselves, we will introduce a strategy-which we term "spectral sequencing"-to

work around the limitations of existing NAABs and enable single molecule protein sequencing

without the need to develop novel binding reagents.

Spectral sequencing measures the affinities of many low-affinity, relatively non-specific NAABs,

collectively determining a "spectrum" or "profile" of affinity across binders, for each of the N-

terminal amino acids. This profile is sufficient to determine the identity of the N-terminal amino

acid. Thus, rather than requiring individual binders to be specific in and of themselves, we will

infer a specific profile by combining measurements of many non-specific interactions. The spectral

sequencing approach measures the single molecule binding kinetics in a massively parallel fashion,

using a generalization of Points Accumulation for Imaging in Nanoscale Topography (PAINT)

techniques (203, 204) to N-terminal amino acid binders. A key advantage of this technique is that

it overcomes photobleaching limitations previously observed with fluorescence-based single-

molecule protein sequencing methods (184).

In what follows, we first derive the capabilities of single-molecule fluorescence based measurement

of probe binding kinetics as a function of probe properties and noise sources. We then apply this

analysis to the problem of sequencing proteins by measuring profiles of NAAB binding kinetics.
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from the existing measured NAAB kinetics (180), we estimate via simulation that the kinetic

measurement scheme presented here could achieve 97.5% percent accuracy in amino acid

identification over a total observation period of 35 minutes, even in the presence of errors arising

from instrument calibration or variation in the underlying kinetics of the binders due to the effects

of non-terminal amino acids.

Problem Overview

We consider the problem in which a set of peptides is immobilized on a surface and imaged using

total internal reflection fluorescence (TIRF) microscopy. The surface must be appropriately

passivated to minimize nonspecific binding (183, 200, 205-210). Moreover, an appropriate method

must be selected for anchoring peptides to the surface. We assume that the reactive thiol group of

cysteine is used to anchor peptides to the surface, but alternative methods, such as anchoring the

C-terminal carboxylic acid to the surface, are also possible (184). In all that follows, we will

assume that cysteine is used to anchor the peptides to the surface, in which case the sequencing

ends at the anchored cysteine.

(A) Example affinity matrix for a set of NAABs. The affinities of each of the 17 NAABs are shown for

all 19 amino acids excluding cysteine, which is used to anchor the peptides to the surface. Reproduced

from (180). (B) In the proposed measurement scheme, the target (green disk) is attached to a glass slide

and is observed using TIRF microscopy. NAAB binders (brown clefts) bearing fluorophores (red dots)

are excited by a TIRF beam (purple) and generate fluorescent photon emissions (red waves). (C) When

a fluorophore is bound, there is an increase in fluorescence in the spot containing the target.
Photobleaching of the fluorophore is indistinguishable from unbinding events, so it is important to use a
dye that is robust against photobleaching. Plot shows an illustrative stochastic kinetics simulation
incorporating Poisson shot noise of photon emission. A relatively strong binder is shown solely for
purposes of illustration. In practice, the method relies on many measurements performed on weak

binders. (D) The plot shows the result of a proposed kinetic measurement on an N-terminal amino acid
using only two NAABs. The affinity of each N-terminal amino acid (black Xs, excluding cysteine) for

the methionine-targeting and tryptophan-targeting NAABs are shown as a scatterplot, with the affinity

for the met-targeting NAAB on the x axis and the affinity for the Trp-targeting NAAB on the y axis.

Upon measuring the affinities for these NAABs against an unknown target undergoing sequencing, the

unknown target can be identified with the amino acid with expected vector of affinities closest in the

two-dimensional Euclidean space (higher-dimensional in a full experiment) to the measured affinity. The

colored regions correspond to the regions within which a measured multi-NAAB affinity vector would be

assigned to a given amino acid. As an example, a pair of measurements yielding the white star in D
would identify the target as glycine. (E) The affinities of the glutamine and lysine targeting NAABs are

shown for each of the amino acids. Some amino acids that are practically indistinguishable using the

Met and Trp NAABs are easily distinguished using the Gln and Lys NAABs. As an example, if the

same target amino acid described in D were measured with only the Gln and Lys NAABs, yielding the

white star, we would identify the target as proline. However, combining these measurements with those

for the white star in D with Met and Trp NAABs, we see that the true identity of the target is serine.

Thus, the higher dimensional measurement of the amino acid using many different NAABs allows

disambiguation of the amino acid identity.
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The limited vertical extent of the evanescent excitation field of the TIRF microscope allows

differential sensitivity to fluorescent molecules which are near the microscope slide surface, which

allows us to detect NAABs that have bound to peptides on the surface. Existing sets of NAABS

(e.g. (180)), derived from aminopeptidases or tRNA synthetases with affinities biased towards

specific amino acids, have low affinity or specificity (Figure 5-1A), so one cannot deduce the

identity of an N-terminal amino acid from the binding of a single NAAB. Instead, we propose to

deduce the identity of the N terminal amino acid of a particular peptide by measuring optically

the kinetics of a set of NAABs against the peptide. After observing the binding of each NAAB

against the peptide, we will carry out a cycle of Edman degradation (211, 212), revealing the next

amino acid along the chain as the new N-terminus, and then repeat the process. The process of

observing binding kinetics with TIRF microscopy (Figure 5-1B,C) is similar to that used in Points

Accumulation for Imaging of Nanoscale Topography (PAINT (203)), e.g., DNA PAINT (204).

This process produces a high-dimensional vector of kinetically-measured affinities at each cycle

(Figure 5-1D,E) that can be used to infer the N-terminal amino acid.

This method, while powerful and potentially applicable for current NAABs, ultimately breaks

down for probes with off-rates faster than the imaging frame rate, or for which the bound time is

so short that only a small number of photons (e.g. less than 100, corresponding to 10% shot noise)

is released while the probe is bound. While fast camera frame rates can be used, the system

ultimately becomes limited in the achievable fluorescent signal to noise ratio, unless the

measurements are averaged over long experiment times. To extend these concepts into the ultra-

weak binding regime, therefore, we propose not to measure the precise binding and unbinding

kinetics but rather the time-averaged luminosity of each spot, which indicates the fraction of time

a probe was bound. We find that this luminosity-based measurement scheme is highly robust and

compatible with short run times.

Results

Our results are divided into three sections. We first consider the regimes of binder concentration

and illumination intensity within which one would expect the proposed method to operate. We

then discuss two possible methods for analyzing single molecule kinetic data. Finally, we perform

simulations using the derived parameters and data analysis methods in order to estimate the

sensitivity of the proposed sequencing method.

Distinguishability of amino acids based on their NAAB binding profiles

A set of binders (NAABs) is characterized by their affinities for their targets (e.g., the 20 amino

acids), which can be expressed in the form of an affinity matrix. The affinity matrix A is defined

such that the i,jth entry of A is the negative log affinity of the ith binder for the jth target:

ai; = - log(kD) (20)
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where kD is the dissociation constant (we define TD as the dissociation time).

Throughout this paper, the values of the affinities encoded in the affinity matrix will be referred

to as the reference values, to distinguish them from the measured values obtained in the

experiment and from the true values, which may depend on environmental conditions but which

are not known by the experimenter; the reference values are known and will be used in our

computational process of identifying amino acids. As shown in Appendix A (Chapter 11), we

estimate that it would be possible to determine the identities of the N terminal amino acids from

affinity measurements with 99% accuracy, provided that the affinity measurements occur

according to a distribution centered on the reference value with standard deviation no greater

than 64% of the mean.

Model Parameters

In order to evaluate the feasibility of the kinetic measurement strategy, we designed a model to

simulate the observation of NAAB binding and unbinding from a peptide target, using TIRF

microscopy. In evaluating the kinetic measurement strategy, we must make assumptions about the

relevant photophysical parameters.

1. The rate R of photons from a single fluorophore captured by the detector, per second. This

is a product of numerous parameters specific to the experimental implementation,

including the collection efficiency of the optical setup, the illumination intensity, the

quantum efficiency of the fluorophore, and the quantum efficiency of the detector. We use

realistic values in the range of 10,000 photons per second (204, 213-215).

2. The mean number Nq of photons that a fluorophore can emit before it photobleaches.

Realistic numbers on the order of Nq ~ 107 have been reported for Atto647N (204).

3. The pixel size. We will assume that peptides are anchored to the surface sparsely enough

so that there is at most one peptide per pixel. We will further assume that each pixel

collects light from a cylindrical region 300 nm in diameter and 100 nm in depth,

corresponding to visible TIRF illumination. It is useful to bear in mind that a free

fluorophore occupation number of nfree ~ 1 in every cylinder with diameter 300 nm and

height 100 nm corresponds to a molar density of 235 nM.

4. The background level. Each pixel collects some amount of background light. We draw a

distinction between transient emission sources (such as diffusing fluorophores) and

constant sources of background photons, such as autofluorescence and excitation of

fluorophores in the bulk by first- and higher-order beams. Transient emission sources are

modeled, but we decline to model autofluorescence and bulk excitation, because previous

studies have shown that the contribution of those sources are small compared to the

fluorescence of fluorophores excited by the zeroth order beam (204).
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5. The free NAAB concentration, nfree. The choice of nfree is up to the experimenter and

may be chosen differently for different NAABs. It will need to be optimized to maximize

the dynamic range of the kD readout experiment.
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Figure 5-2 Two types of affinity measurements using TIRF microscopy. (A) A measurement
performed using the proposed scheme yields a fluorescence intensity trace where periods of high intensity
correspond to the target being bound and periods of low intensity correspond to the target being free.

The affinity of a binder against the target may then be determined in two ways, either via occupancy

measurements or via luminosity measurements. (B) An occupancy measurement is performed "along the

time axis," by calculating k., from the average time between binding events, and koff from the average

length of binding events. (C) On the other hand, a luminosity measurement is performed "along the

brightness axis," by calculating kD directly from the average luminosity of the target over the whole

observation period. (D) We validated our simulation by applying occupancy measurements to determine

kon and koff from simulated data. The parameters used here were identical to those used in the

production of Fig 2a in (204). See text for symbol definitions.

Methods of Data Analysis

A single-molecule experiment using TIRF yields a time series such as that shown in Figure 5-2A.

We now discuss the two primary options for extracting the kinetics from this data and the

experimental conditions that are optimal for each scheme, given the constraints discussed above.

OccupanCy Measurements
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The first measurement, used commonly in the field of single molecule kinetics (204, 216), relies on

detecting changes in the occupancy state of the target. The measurement scheme is depicted

schematically in Figure 5-2B. This measurement is performed "along the time axis," in the sense

that it relies on temporal information-when probes bind and unbind-and is relatively insensitive

to analog luminosity information beyond that needed to make these digital determinations.

In this method, the parameters of interest are the free NAAB concentration nfree and the frame

rate, f = 1/Tobs. The upper limit on the dynamic range of this method is set by the frame rate,

i.e.,

-obs < 1/koff (21)

On the other hand, the lower bound on the dynamic range is set by the duration of the

experiment Texp, via the requirement that

Texp >> 1/koff (22)

so that unbinding events can also be observed, and also that

Texp >> 1/(konc) (23)

so binding events can be observed. For a value of kon between 10 5M-ls-1 and 10 6 M-s'-1 (e.g.

(204, 217)) and a concentration on the order of 100 nM, this requirement implies that an

experiment time of at least 100 seconds is necessary in order to see several binding events with

high probability. In addition, we will choose f = 100 Hz for this measurement modality, which

then implies a dynamic range of roughly 5 orders of magnitude in kff. The values of koff that can

be discerned are also constrained by photobleaching and by the background. Specifically, if R is

the rate of photon detection, Nq is the mean number of detected photons emitted by the

fluorophore before bleaching, and B is the mean rate of background photon detection (due to

camera noise, autofluorescence, etc.), then we also have

R R
B>> kof >> (24)
B Nq

The value of kD is determined in this modality as follows. If the binding and unbinding events

may be identified, then one may determine the average binding time Tb and the average time

between binding events Ti, which we will refer to as the inter-event time. If photobleaching may

be neglected, then we have

_1

koff - (25)
Tb

and
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1
koff = (26)

where c is the free binder concentration. Thus,

kD T (27)
Tb

Additionally, if the on-rate ko, is known, then it is possible to determine koff even in the presence

of photobleaching. (See Appendix C, Chapter 11, for details.)

Luminosity Measurements

An alternative to the occupancy-time measurements described above involves deducing kD directly

from the fraction fB of time that the target is bound by a probe. This quantity may in turn be

deduced from the average luminosity of the spot containing the free binder over the period of

observation, as depicted in Figure 5-2C. Whereas occupancy measurements are performed "along

the time axis," neglecting luminosity information, luminosity measurements are performed "along

the luminosity axis," neglecting temporal information about the series of binding and unbinding

events. Because it does not attempt to track individual binding and unbinding events, this method

is particularly suited to measurements of weak binders performed at high background

concentrations, where binding and unbinding events may occur faster than the camera frame rate.

Moreover, this method relies on each NAAB of a given type having approximately the same

brightness, which could be achieved using a high-efficiency method for monovalently labeling the

NAAB N- or C-terminus (218, 219).

If the target is bound a fraction fB of the time, then the dissociation constant is given by

_1 - fB
kD = c (28)

fB

where c is the background binder concentration. We denote by S the average brightness of the

spot when a fluorescent binder is attached to the target, and by N the average brightness of the

spot when the target is free. Neglecting photobleaching, the average brightness of the spot over

the whole experiment is given by

M = fBS + (1 - fB)N (29)

If S and N are known, then fB may thus be deduced directly from the measured photon rate M

averaged over the entire experiment, via

fB = M-N (30)
S-N

S and N can be measured directly for example by anchoring NAABs sparsely to a surface and

measuring the brightness of the resulting puncta (to deduce S), or puncta-free regions (to measure

N).
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One significant advantage of this method is that the observation period Tobs can be chosen to be

arbitrarily long by averaging the photon counts of many successive frames (i.e., we have Tobs =

Texp. In practice, we will use Tobs = 100 s. With this value, we can use a relatively high

concentration of 2 [tM (corresponding to nfree >> 1) and a relatively low emission rate of R =

10 3 s- 1 . The choice of a high NAAB concentration and low illumination intensity increases the

dynamic range of the measurement scheme, by increasing the sensitivity both to small values of

kD, where photobleaching might be an issue, and to high values of kD, where observation of

binding events may be an issue. However, unlike in the case of occupancy measurements, there is

no way to account for photobleaching, if it occurs. Nonetheless, we do not expect photobleaching

to have a significant impact on our results, since most of the NAABs have fairly high off-rates

(180, 201).

Simulations

In order to determine whether the TIRF measurement scheme described above can be used to

identify single amino acids on the N-termini of surface-anchored peptides, we simulated N

terminal amino acid identification experiments.

We first used a specific NAAB affinity matrix given in (180). Importantly, random affinity

matrices (see Appendix E, Chapter 11) generated by permuting the values of the NAAB affinity

matrix perform similarly well in residue-calling simulations. To generate the random affinity

matrices with statistics matching the statistics of the NAAB affinity matrix, each matrix element

was chosen by randomly sampling values from the NAAB affinity matrix of (180), without

replacement. The simulations described here can therefore be assumed to apply to general

ensembles of N-terminal binders with affinity value statistics similar to those displayed by these

existing NAABs.

In the simulations, there is assumed to be one free target in the volume analyzed, which is a

cylinder of diameter 300 nm and height 100 nm as discussed above. Thus, we assume that

peptides are arrayed sparsely enough on the surface that there is at most one peptide per

diffraction-limited spot. The simulation considers each frame of the camera in succession, and

models the number of photons registered at the camera. At the start of the simulation, or as soon

as the target becomes free, a time Tfree is drawn from an exponential distribution with mean

1/konc, where c is the concentration of binders. Once a time equal to Tfree has passed, the binder

is considered occupied, and a time Tbound is drawn from an exponential distribution with mean

1/koff. In addition, upon binding, a time Tphotobleach is drawn from an exponential distribution

with mean Nq/R, where Nq is the number of photons seen by the detector on average before the

fluorophore bleaches and R is the number of photons seen at the detector by a single fluorophore

per second. For a dye like Atto 647N, we use Nq = 1.2 x 10' (204). If the time Tphotobleach is less

than the time Tbound, the fluorophore ceases to emit photons after time Tphotobleach. Within a

given frame, the simulation tracks binding, unbinding, and photobleaching events, and computes
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the number of signal photons detected by the camera by drawing from a Poisson distribution with

mean RT0 n, where R is the single fluorophore photon rate and To, is the amount of time during

the frame in which an unbleached fluorophore was attached to the target.

In addition to background photons, the dominant contribution to noise in the simulation is

expected to come from fluorophores attached to free binders that enter and leave the observation

field (216). At the end of each frame, the simulation draws the number of free binders that enter

the observation field during the frame from a Poisson distribution with mean nfree/f, where f is

the frame rate and nfree is the free binder occupation number of the frame. For each binder that

enters the observation field, we draw a dwell time t from an exponential distribution with mean

Tdwell as calculated in Eq. (46) from diffusion theory (see Appendix B, Chapter 11), and a total

photon contribution from a Poisson distribution with mean Rt. Finally, we calculate the detector

shot noise from a Gaussian distribution with mean p and standard deviation equal to 0.1p.

Validation of the Simulation Pipeline

To validate the simulations, we reproduced the DNA PAINT kinetics data collected by (204)

using the parameters reported in that paper. There, values of k., ~ 2.2 x 106 M-1s- 1 and koff ~

1.8 s- 1 were reported. Although the photon rate was not directly reported in that paper, other

papers using similar laser intensities and fluorophores reported photon rates on the order of R ~

10000 s-1 (213-215), so we used this value. From our simulated data, we were able to reproduce

the measured off- and on-rates, as shown in Figure 5-2D.

Measurements of kn

We next compared the ability of occupancy and luminosity measurements to determine the

dissociation constant kD of binders for the target.

Occupancy Measurements

We performed 100 simulations of occupancy measurements for each of five different values of k.,
between 104 M-1s- 1 and 106 M- 1 s-1, which is consistent with standard values observed for

antibodies (217), and for each of five different values of kD between 100 [IM and 10 nM. We

assumed a frame-rate of 100 Hz, detector read noise of 1 e-, and a single-fluorophore detection

rate of 10s s-1. The NAAB concentration was 300 nM, and the observation time was Texp -
100s.

In order to analyze the data, we ran a control simulation in which kon was set to 0, so that no

NAABs bound to the target. In practice, this calibration could be performed by observing a spot

that does not have a target. From this, we calculated the mean and standard deviation of the

noise on a per-frame basis. We then identified binding and unbinding events as follows. First, we

identified all frames in which the photon count was more than 2 standard deviations above the

noise mean. These frames will be referred to as "on" frames, whereas all other frames will be

referred to as "off" frames. If three such "on" frames occurred in a row, the event was identified as
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Figure 5-3: Two types of affinity measurements using TIRF microscopy. (A) The accuracies of

occupation measurements of kD are shown as a function of kD and k.. for the simulation described in

the text, with Texp = 100 s. These measurements achieve high accuracy for k., 0  104 M1s-' and

koff 100 s-1. For values of koff on the order of 100 s- 1 (upper right-hand corner), the accuracy

deteriorates significantly. (B) The accuracies of luminosity measurements of kD are shown as a function

of kD and ko,. These measurements achieve high accuracy for ko. 0  105 M-1s-1 and kD 100 nM.

The heat map shown gives the fractional errors as a function of kD and k.. for the simulation described

in the text, with Texp = 100 s. In contrast to occupation measurements, the accuracy of luminosity

measurements does not deteriorate for very high values of koff. (C) For luminosity measurements only,
the mean fractional error in the measured value of kD is plotted as a function of the observation time for

five different values of kD. The line y = 1/x is plotted as a guide to the eye. For kD = 10 nM and kD =

100 nM, the effects of photobleaching are evident at longer runtimes. (D) Also, for luminosity

measurements only, the measured value of kD is plotted as a function of the actual value of kD for 8

different values of the runtime. The performance of the algorithm improves dramatically for Tobs > 25 s.

The line y = x is plotted as a guide to the eye. Error bars in C, D denote standard error over 100 trials.

a binding event. The binding event was considered to continue until at least two "off"-frames in a

row were observed. Once all the binding and unbinding events were identified, the average inter-

event time and the average binding time were calculated, and from these the kinetics were

deduced (Fig 2A).

The accuracy of the kD measurements was found to improve with increasing k.n, and to improve

with increasing kD for values of koff below 10 s- 1 (Figure 5-3A). For values of koff significantly

above 10 s- 1 , it was no longer possible to distinguish individual binding and unbinding events
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from noise (Figure 5-3A, upper right-hand corner). Moreover, for values of k., below 10s M--1,

the condition Texp >> 1/k0 nc was no longer satisfied. Finally, for very small values of kD,

photobleaching limited the accuracy of the analysis. For k,, > 10s M-1s' and koff ~ 10 s-1, it

was possible to obtain the correct value of kD to within approximately 5 - 10%. However, the

accuracy deteriorated sharply for combinations of k., and koff deviating from these ideal

conditions.

Luminosity Measurements

We then simulated luminosity measurements of kD using comparable parameters. Because these

measurements depend only on the average luminosity over the entire experiment, the entire

experiment was lumped into a single camera frame. In practice, however, the same results can be

obtained by averaging over the photon counts of multiple frames. The photon detection rate was

set to R = 1000 s-1, and the free binder concentration was set to 2 ptM. The photon rate of the

off-state was determined first by running the simulation with the value of kon set to 0. The

photon rate in the on-state was then determined by running the simulation with the value of ko"

set to 1010 M's-1, and the value of kD set to 1020 M. Because the exposure time used in this

experiment is very long compared to the dwell time of free binders in the observation field, it was

assumed that all free binders that enter the observation field emit a number of photons equal to

R rwell (i.e., the noise was taken to be approximately Poissonian), which substantially reduces

the computational complexity of the algorithm. Once the average luminosity over the experiment

was determined, the value of fB was deduced.

For observation times shorter than 50 s, the analysis sometimes returns values of fB arbitrarily

close to or greater than 1 or arbitrarily close to or less than 0. This can happen as a consequence

of statistical error in the luminosity measurements, even in the absence of systematic error. For

this reason, in order to avoid negative or outlandishly large values of kD from compromising the

analysis, we chose the maximum value of fB to be equal to the value expected when kD = 1 nM,

and we chose the minimum value of fB to be equal to the value obtained when kD = 10 mM. Any

values of fB outside of this range were adjusted to the maximum or minimum value,

appropriately.

In order to enable comparison to the occupancy measurements, the simulation was run 100 times

for each of five values of k0 n between 10' M's-1 and 106 M 1 s-1 and for each of five values of

kD between 100 [M and 10 nM. The accuracy was found to be comparable to that obtained in the

occupancy experiments (Figure 5-3A), except that the accuracy did not deteriorate for very high

values of koff (Figure 5-3B, upper right-hand corner). For values of k0 n on the order of (or greater

than) 10s M-1s-1 and values of kD greater than 1 [tM, kD could easily be determined to within the

accuracy condition required by Eq (37).
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To ascertain the effect of Tobs on the accuracy, the simulation was run 100 times for each of the

same 25 combinations of kon and koff, with 8 different values of Tobs between 1 s and 1000 s and

a free binder population of 2 [tM (Figure 5-3C). As expected, the accuracy was found to undergo a

sharp transition when Tobs was on the order of 25 s, corresponding to 1/konc << Tobs. For values

of Tobs > 25 s and values of kD greater than 1 ptM, the error in the measurement of kD decreased

like 1/Tobs (Figure 5-3C). For observation times greater than 25 s, the value of kD could be

calculated with standard deviation less than 64% of the mean for values of kD on the order of or

greater than 1 pM, although photobleaching leads to saturation and significant losses of accuracy

for smaller values of kD (Figure 5-3D).

Separately, to ascertain the effect of the free binder concentration on the accuracy, the simulation

was run 1000 times on each of the same 25 combinations of kon and kD, with Tobs = 50 s at seven

different values of the concentration between 10 nM and 5 pM. For values of kon such that Tobs >>
1/(konc), the effect of increasing kon was found to be similar to the effect of increasing Tobs

(data not shown).

Identifying Amino Acids

Because standard deviations in kD below 64% of the mean could consistently be achieved in the

luminosity measurements across a broad range of values of k0 n and kD, it is reasonable to expect

that luminosity measurements of NAAB binding kinetics with the affinity matrix in Figure 5-1A

could allow for the identification of amino acids at the single molecule level. We thus simulated an

experiment, using the luminosity measurement paradigm, in which a peptide with an unknown

amino acid is attached to a surface, and is observed successively in multiple baths, each containing

a single kind of fluorescent NAAB.

Simulation of systematic errors.

Two kinds of systematic error may confound identification of amino acids. The first kind of error,

which we refer to as kinetic error, refers to the case in which the actual dissociation constant for a

particular NAAB-amino acid pair is different from the expected value. This may arise due to

issues such as the secondary structure or the identities of non-terminal amino acids. To simulate

this, for each NAAB, the effective dissociation constant kD for the NAAB-amino acid pair was

drawn from a normal distribution centered on the reference value kD, with standard deviation

equal to c-KkD, where qK parametrizes the effect of non-terminal amino acids and other

environmental factors on the dissociation constant.

In addition, luminosity measurements are also sensitive to error in the calibration of the

measurement apparatus, for example if the brightness of the bright and dark states is not known

exactly. We refer to this kind of error as calibration error. The bright and dark states S and N

could likely be calibrated by doping in labeled reference peptides to the sample to be sequenced.

Still, there may be some error in the measurements of S and N. To simulate this kind of error, the
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true calibration levels S and N were first determined as the luminosity of the bound and unbound

states. The measured calibration levels 9 and N were then determined by drawing from a normal

distribution with mean equal to S and N and with standard deviation equal to UcS and acN,

respectively. The values of qK and ac will be given below in percentages. For a discussion of

computational strategies for coping with calibration error, see Appendix D, Chapter 11.

Amino acid identification.

In this simulation, amino acids were randomly chosen from a uniform distribution. Binders were

added to the solution at a concentration of 1 RM and the photon detection rate was set to

1000 s 1 . For each NAAB, effective values of the dissociation constant kD, the on-rate k., the

effective brightness R, and the calibration levels S and R were determined for the NAAB-amino

acid pair. The spot containing the NAAB was then observed over a period of time Tobs, which

ranged from 50 to 500 seconds, and the total number of photons observed was stored. This process

was repeated for each NAAB, generating a vector M of observed photon counts.

Analysis was performed by comparing the measured photon counts to the photon counts that

would have been expected for each amino acid, as described above. For each NAAB-amino acid

pair, the expected photon count was calculated from the NAAB concentration c, the reference

value of kD and the measured calibration level S and N, via

E= - 5+ 1 - C ) (31)C + kDS C +kD

The resulting expected photon counts were then assembled into a matrix W, such that the (i,j)th

element of W is the photon count that one would have expected on the measurement of the ith

NAAB if the target were the ]th amino acid, given the calibration levels S and N. Finally, the

amino acid identity Iaa was determined by minimizing the norm between the vector of observed

photon counts M and the columns of W, i.e.,

Iaa = argmink |M -Wk (32)

where Wk is the kth column of W. In Figure 5-4A-C, the accuracy with which amino acids can be

identified is shown as a function of the observation time and the systematic error, for a 1 pM free

binder concentration. In the absence of systematic error, amino acids could be identified with

greater than 99% accuracy after a 50 s observation. Moreover, the experiment also showed

robustness against kinetic error up to the 25% level, with progressive deterioration in the

measurement accuracy observed for values of 0 K above 25%. Calibration error was found to have

the most substantial effect on the accuracy, with calibration errors on the order of 10% reducing

the achievable accuracy below 90% even for an observation time of 250 s. The effects of

calibration error on the accuracy could be substantially reduced by reducing the concentration of

free binders (Figure 5-4D), which has the effect of increasing the gap between the S and N.

However, in order to preserve the requirement that Texp >> 1/(k0 nc), it is necessary to increase
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the experiment length by a similar factor. (For this reason, a free NAAB concentration of 1 IM

was used, rather than 2 pM as used above.) Moreover, this improvement comes at the cost of

+-'

0

0

U

Observation Time (s)
50 100 200 500

0E
0A Kinetic Error B C D0.2 % 25% 50%100%

0j 25%
1 c=uM ,... -C=1M m c=1 uM c=100nM

True Target Identity

Fractional Error
103 102 10-1

L

P

E
100

Figure 5-4: Identification of amino acids is robust against systematic error. The fraction of amino
acids incorrectly identified is plotted as a function of Tos, for four different values of the systematic

calibration error ac and four different values of the systematic kinetic error OK (as described in the

text). (A) In the absence of systematic error, measurements with Tobs = 50 s result in correct amino
acid identification more than 98% of the time. For 25% error in kD, the accuracy drops to 97.5%, and if

5% calibration error is added, it drops further to 92%. More than 5% systematic error in the calibration

leads to very significant numbers of mistakes in amino acid identification. (B) With Tobs = 100 s, an

accuracy of 97.5% was obtained for 25% error in kD and 5% error in the calibration. Axes for B, C, and

D are the same as in A. (C) Increasing Tobs beyond 100 s at the same binder concentration leads to

diminishing improvements in the accuracy. (D) The sensitivity to calibration error could be substantially

reduced by decreasing the concentration of free binders to 100 nM. However, this decreased
concentration necessitates a longer runtime. E For Tobs = 100 s, plots are shown for each value of oc
and OK, depicting the probability that a given target amino acid (on the horizontal axis) was assigned a

particular identity (on the vertical axis). Off-diagonal elements correspond to errors.
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increased sensitivity to systematic error in kD- If the calibration error can be kept below 5%, and

if the systematic error in the kinetics can be kept below 25%, then our simulations indicate that it

would be possible to identify amino acids with greater than 97.5% accuracy over an observation

window of 100 s.

Application to Randomized Affinity Matrices

In order to determine whether the protein sequencing method proposed here is limited to the

specific affinity matrix given in (180), we generated affinity matrices with comparable binding

statistics by randomly shuffling the kD values in the NAAB affinity matrix. For 100 such random

affinity matrices, we then performed

2S identical simulations as in Figure 5-4E,

assuming 5% calibration error and 25%

20 ~~ kinetic error. To calculate the overall error

rate for a given matrix, we summed the
U

frequencies of incorrect residue calls (the off-
:E 15
E diagonal elements of the matrices in Figure

5-4E). The overall error rate for the NAAB

0 1affinity matrix, calculated in this way, is

0.0124, and the distribution of error rates

Z S across the random matrices is shown in

Figure 5-5. Only one randomly generated

0 0.01 0.03 0.0S 0 0.09 affinity matrix had an error rate lower than

Error Rate the NAAB error rate. Nonetheless, it is clear

Figure 5-5: Overall error rates for 100 random that most affinity matrices with affinity

affinity matrices. A histogram of the overall error statistics similar to the NAABs (180) would

rate, calculated as the sum of incorrect residue calls yield errors in the range of 1%-4%, and thus

divided by the total number of residue calls over the sequencing method described here is

10000 trials, is plotted for 100 random affinity generalizable to a range of similar N-
matrices. terminal amino acid binders.

Discussion

The calculations and simulations discussed above indicate that if the measurement apparatus can

be calibrated with an accuracy of 5%, and if the reference values of kD can be kept within 25% of

the true values, it is theoretically possible to determine the identity of an N-terminal amino acid

with greater than 97.5% accuracy by measuring the kinetics of the NAABs against the target

amino acid. Crucially, kD can be inferred just from the time-averaged local concentration of

NAABs within the observation field, and thus the measurement can be performed at relatively

high background binder concentrations, because it does not rely on being able to distinguish

individual binding and unbinding events.
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Primary Uncertainties

Three primary uncertainties exist regarding the validity of the simulations performed here. Firstly,

our simulation did not incorporate the effects of non-specific binding of NAABs to the surface.

However, non-specific binding will simply increase the level of background fluorescence, and

numerous recent single-molecule imaging studies have demonstrated surface passivation techniques

that minimize nonspecific background (204, 220).

Secondly, the sequencing will take place in non-denaturing buffers, as is necessary for the NAABs.

We anticipate that small, surface-anchored peptides derived by cleaving proteins will be accessible

for NAAB binding, as has been shown previously, for example in the case of biolayer

interferometry (180). However, some peptides may not be sequenceable in this method due to

secondary structures or other idiosyncrasies. In addition, some uncertainty exists surrounding the

value of Nq for the organic dyes of interest to us, with values between 10s and 107 being reported

(204, 221). However, we expect our method to be relatively robust to photobleaching due to the

relatively low affinity and high off-rates of most of the NAABs. Moreover, it is possible that more

photostable indicators such as quantum dots could be used in place of organic dyes. Note that

with any labeling scheme, there will be some concentration of "dark NAABs" that are not labeled.

We do not expect this to be a major issue for the detection scheme provided the total NAAB

concentration is less than the dissociation constant (i.e., as long as the target is free most of the

time). However, if this is an issue, several other strategies are available to ensure high-efficiency

labeling of NAABs, for example expressing the NAABs as fusions to a fluorescent protein, or to a

peptide tag or protein (e.g. the SNAP tag) that can be used to link the NAABs to small molecule

fluorophores with high efficiency. Moreover, a high concentration of dark NAABs can always be

compensated for by reducing the total NAAB concentration and increasing the measurement

duration. Nonetheless, the concentrations reported for the simulations above should be regarded as

the concentrations of successfully labeled "bright NAABs."

Calibration Error

The luminosity measurement scheme is particularly sensitive to calibration error. This is because

the brightness of puncta in the luminosity measurement scheme is used to infer the fraction fB of

the time that the NAAB is bound, and when that fraction is close to 1 or close to 0, then small

systematic errors in estimating fB can contribute to large errors in estimating kD. A more robust

scheme might be to use the relative luminosity of different NAABs, which would then account for

effects due to the structure of the peptide (e.g. aromatic residues such as tryptophan might

contribute to quenching) and due to local variations in surface passivation. One straightforward

way to do this would be to normalize the luminosities to the luminosity of a particular high-

affinity NAAB.

77



Parallelization

We anticipate that the approaches discussed here could be parallelized in a way reminiscent of

next-generation nucleic acid sequencing technologies, allowing for massively parallel protein

sequencing with single-molecule resolution. In the ideal case, if a 64 megapixel camera were used

with one target per pixel, we would have the ability to observe the binding kinetics of NAABs

against approximately 107 protein fragments simultaneously. With an observation time of 100

seconds per amino acid-NAAB pair, this corresponds to approximately 35 minutes of observation

time per amino acid, or 5 days to identify a protein fragment of 200 amino acids in length. As the

method is scaled up, the imaging time will come to dominate over the time needed for the fluidic

and chemical steps. For example, one flow cell could be imaged while Edman degradation proceeds

on a different flowcell. More generally, because imaging requires photon collection through a

magnification system, and data transfer to a computer, it is likely to be largely serial, or parallel

only up to the number of parallel cameras, whereas fluidic wash and reaction steps can occur in

parallel over an entire large surface. Thus in the limit of acquiring data from large flow cells the

chemical cycle time of the Edman degradation steps is negligible compared to the imaging time.

On average, therefore, the sequencing method as a whole would have a throughput of

approximately 20 proteins per second per 64-megapixel camera and its associated imaging setup.

However, the throughput of the device could be improved dramatically if the readout mechanism

were electrical, rather than optical. CMOS-compatible field-effect transistors have been developed

as sensors for biological molecules (222-225). Moreover, electrical sequencing of DNA has been

accomplished using ion semiconductor sequencing (226). Most recently, CMOS-compatible carbon

nanotube FETs have been shown to detect DNA hybridization kinetics with better than 10 ms

time resolution (227 228). Similar CMOS-compatible devices have been adapted to the detection

of protein concentrations via immunodetection (229). These systems have the added benefit that

they sense from a much smaller volume than TIRF does (sometimes as small as -10 cubic

nanometers (228)), substantially reducing the impact of noise on the measurement. A single 5-inch

silicon wafer covered in transistor sensors at a density of 16 transistors per square micron would

be capable of sequencing 1012 proteins simultaneously, corresponding to an average throughput of

2,000,000 proteins per second on a single wafer, or one mammalian cell every 7 minutes. Such an

approach could make use of dedicated integration circuitry to compute the average NAAB

occupancy at the hardware level, greatly simplifying data acquisition and processing. Moreover, if

the devices were made CMOS-compatible, they could be produced in bulk, greatly improving

scalability. If the intrinsic contrast provided by the NAABs is insufficient for measurements with

FETs, the NAABs can be further engineered to have greater electrical contrast, for example by

conjugating them on the C-terminus to an electrically salient protein such as ferritin. A

combination of electrical and optical readouts may also be desirable. Recently, CMOS-compatible

single-photon avalanche diode imaging systems have been developed that are capable of detecting

the presence of fluorophores on a surface without optics (230).
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Finally, although the use of TIRF microscopy in the case studied here restricts the proposed

approach to operate close to a reflecting surface, the use of thin sections or alternative

microscopies could potentially allow such protein sequencing methods to operate in-situ inside

intact cells or tissues.

Conclusion

We have shown that single molecule protein sequencing is possible using low-affinity, low-

specificity binding reagents and single molecule fluorescent detection. Achieving a high-quality

single molecule surface chemistry and TIRF measurement setup will be a challenge, but if this can

be achieved, our results show that a wide range of binding reagent families should be adaptable to

single molecule protein sequencing.
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Chapter 6

Tickertape

s observed most prominently by Adam Marblestone (30), there are numerous physical

limitations that need to be overcome to enable a brain activity recording approach to

scale to the whole brain. In 2011, Konrad Kording proposed that neural activity

recording could be scaled to the whole brain level by engineering neurons to record their own

activity, for example into some kind of a molecular recording device that he termed a "tickertape"

(231). In the original scheme, it was thought that such a tickertape would operate using an error-

prone DNA polymerase with an error rate that was modulated by calcium, allowing the history of

calcium in a cell to be inferred by DNA sequencing. However, experiments by Bradley Zamft and

Adam Marblestone (232), as well as Keith Tyo's lab (e.g. (233)), have indicated that it is

challenging to endow polymerases with exquisite sensitivity to calcium ions. Moreover, all systems

for DNA-based recording of cellular activity operate on timescales of days, which are too slow for

recording any activity that would be relevant to neuroscience (232, 234-243).

This project began with an idea by Fei Chen and Asmamaw Wassie, inspired by a paper showing

the possibility of polyuridinylating RNAs to record protein-protein interactions (244). Fei and Oz

had the idea to record neural activity into the poly(A) tail of mRNAs using poly(U) and poly(A)

polymerases, which constitutively add Us and As to the 3' ends of RNAs. The idea was that the

poly(U) activity would be made calcium-dependent by modulating binding of the poly(U) protein

to the RNA, while the poly(A) activity would be constitutive. I began work on the project, but we

found it challenging to validate that the proteins were acting as desired. Moreover, we never

detected RNAs with more than -15 Us on their 3' side, despite the fact that poly(U) proteins were

known to add hundreds of Us to the poly(A) tail in vitro (245-251). We hypothesized that this

was because polyuridinylation is a marker for RNA degradation in mammalian cells (252).

In September 2017, Fei and I sat down to try to figure out how to accelerate our path to a

tickertape paper. Fei was convinced that the way forward was to use the ADAR base editing

protein, which had worked well for Jonathan Gootenberg and Omar Abudayyeh (253), but I

insisted it would not be enough simply to make an integrator, and we didn't know how to make a

tickertape from the single base editor on its own. Together, we realized that it would be possible

to create a tickertape by using the fact that there are many RNAs in each cell, and

(counterintuitively) having the integrator integrate the constant function, i.e. time. If each RNA

integrated the time since its own creation, we would be able to infer the timing of promoter

activity from the ensemble of RNA integrators. Through work with Linlin Chen, this concept

became the tickertape described below, which I expect will appear in print before the end of 2019.
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Summary:

Time varying transcriptional programs and cellular dynamics are often transient, and are difficult

to monitor in their native context. Synthetic cellular memory devices which record biological

signals in nucleic acid substrates would allow longitudinal study of cellular dynamics to be derived

from a single endpoint measurement. Several recently published methods have succeeded in

recording cell-state information into the sequence of DNA in living cells, but all such methods

operate on timescales greater than the generation time of the cell (days to years, for mammalian

cells), and are thus insufficient for recording transcriptional responses to perturbations, which

typically place over hours. Here, we describe a molecular recorder (an "RNA Tickertape") that

encodes the absolute timings of transcriptional events in mammalian cells into the sequences of

reporter RNA molecules. Whereas DNA recorders rely on relatively slow DNA repair mechanisms,

our reporter relies on the fast RNA editing reaction of Adenosine Deaminase Acting on RNA

(ADAR), and thus enables the timings and amplitudes of transcriptional events in single cells to

be inferred from endpoint measurements with single-hour accuracy. We demonstrate the ability to

decode arbitrary temporal patterns of transcriptional activity reaching up to 12 hours prior to cell

lysis. Finally, by coupling the tickertape to immediate early genes in neurons, we achieve the first

sequencing-based readout of neural activity, which may ultimately enable the study of deep and

otherwise inaccessible populations of neurons in the brain. RNA tickertapes thus open up

possibilities for the high-throughput, multiplexed interrogation of the temporal dimension of

cellular behavior.

Introduction

The introduction of green fluorescent protein to the biological toolkit was transformative

for many areas of biology. In particular, the application of fluorescent proteins as reporter genes

has allowed longitudinal temporal dynamics in individual cells to be inferred by imaging, with

applications ranging from neural activity to gene expression (254, 255). Today, several new

sequencing technologies have attempted to add a temporal dimension to RNA-seq, for example by

metabolically labeling newly synthesized RNAs (256-258), or by inferring the instantaneous

change in cell state from the abundance of unspliced transcripts (259). However, all existing tools

for inferring temporal information from RNA sequencing only provide an instantaneous snapshot

of the temporal activity of a cell: metabolic labeling only identifies RNA made within one specific
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Figure 6-1: Encoding of temporal information through RNA edits. (A) Schematic of the RNA
tickertape concept. The temporal history of promoter activity is determined by examination of the
distribution of the number of A to I edits per RNA. Prior to promoter activity, the distribution is at
steady state (left). A burst of promoter activity generates a population of new, unedited RNAs
(distribution of edits per RNA shifts to lower values (center)). These RNAs are then gradually edited
(distribution of edits per RNA shifts to higher values over time (right)). (B) Reporter RNAs (repRNAs)
consist of editing arrays of adenosines (blue dots) and several MS2 step loops in the 3' UTR of an
mRNA. In the presence of an MCP-ADAR fusion (MCP, blue ellipses, ADAR, yellow hexagon),
repRNAs are edited over time by catalytic conversion of adenosine to inosine (red dots). (C) The
structure of a portion of one repRNA, showing MS2 stem loops and the repetitive, double-stranded RNA
motif that serves as the editing substrate. (D) Schematic representation of the Tet-responsive tickertape
system and experimental timeline. (E) Transcription by the TRE promoter was induced by doxycycline,
and was stopped by actinomycin D one hour later and sequenced as in the schematic of (D).
Doxycycline induction shifts the editing distribution towards lower values as new RNAs are generated.
After promoter activity ceases, the repRNAs accumulate edits and the distribution moves to higher
values. All histograms are normalized so the sum of all values is 1. (F) Mean edits per transcript for
TRE induction as a function of time for the TRE tickertape system. Error bars show standard deviation

(s.d), N=3 biological replicates.
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state. We asked whether it would be possible to design a reporter gene that would report the

longitudinal temporal dynamics of gene expression in an RNA sequencing assay.

The ability to record temporal information about cell state into the sequence of nucleic

acids would enable the interrogation of gene expression and cellular activity in cell populations or

over timescales that do not lend themselves to imaging. For example, it has previously been

proposed that a nucleic acid reporter for neural activity would allow for the interrogation of deep

and otherwise-inaccessible populations of neurons, which would be transformation for neuroscience

(231). In pursuit of similar goals, several labs have recently demonstrated the ability to record

temporal information about cell state into the sequence of DNA (232, 234-243). However, DNA is

intrinsically a low-temporal-resolution recording device: DNA repair processes operate on

timescales comparable to the generation time of the organism, whereas transcriptional programs

are much faster, typically operating over timescales of hours in mammalian cells. Unlike DNA,
RNA is regularly used by cells to store dynamic information about cell state with high temporal

resolution over relatively short times, for example during progression through the cell cycle, or in

the circadian rhythm (260, 261). However, there is currently no known mechanism by which

temporal information can be directly encoded, without a DNA intermediate, into the sequence of

RNA. We here demonstrate, using RNA editing enzymes, the ability to encode temporal

information about cell state into the sequence of RNA for subsequent inference via RNA

sequencing.

Our goal was to design a system capable of estimating the magnitude of gene expression in

one hour intervals stretching back for at least 12 hours. To build an RNA recorder, we reasoned

that the history of the activity of a given promoter could be inferred from the distribution of ages

of the RNAs generated by that promoter (Figure 6-1A). Conceptually, if reporters accumulate 1

edit per hour, then a population of 50 RNAs with 10 edits each corresponds to an event 10 hours

ago, and a population of 10 RNAs with 5 edits each corresponds to an event 5 hours ago, with one

fifth the magnitude. We designed reporter RNAs (repRNAs) that are capable of reporting their

age via the gradual accumulation of A to I edits caused by an engineered version of the human

Adenosine Deaminase Acting on RNA 2 catalytic domain (ADAR2cd, Figure 6-1B). The repRNAs

consist of adenosine-rich editing arrays, in the 3' UTR of a mRNA encoding a fluorescent

protein(262), that are designed to be favored substrates of the ADAR enzyme(263-265) (Figure

6-1C). Edits in this region can subsequently be identified as A to G mutations in high throughput

sequencing of the repRNAs. ADAR2cd is specifically targeted to MS2 binding sites in the editing

region of the repRNA through a fusion with the MS2 Capsid Protein (MCP)(266). We screened

multiple repRNA and ADAR variants, and settled on a pair for which the editing in HEK239T

cells occurs over hours, a timescale relevant for most endogenous transcriptional activity (Figure

12-1). We confirmed that the majority of edits observed is due to the MCP-ADAR fusion, rather

than endogenous ADAR (Figure 12-2A). Furthermore, repRNAs do not degrade over the 12 hour

observation time (Figure 12-2B), so information encoded into the repRNAs is not lost due to

RNA degradation. We refer to the combination of a repRNA with the MCP-ADAR E488QT490A
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Figure 6-2: Inference of the timing of promoter activity using RNA
tickertape. All editing histograms are normalized to sum to 1. (A) The fraction
of A>I edits as a function of time is shown for three different bases on the
repRNA, data from one replicate of 1E. Best exponential fits are shown. The
black dotted line indicates the addition of actinomycin D. (B) For the same
replicate as in (A), the R 2 value of the exponential fit is shown for each base on
the transcript. The black dotted line indicates the R2 > 0.9 cutoff used for the
exponential model. (C) The masked editing histograms for four timepoints from
the same replicate are shown (only the bases with R 2 > 0.9 are included). In
green, the Poisson binomial distribution for each timepoint including all the
bases with R2 > 0.9 (see Methods). (D) In orange, the masked (R2 > 0.9 in all
3 replicates from 1E, see Methods) editing histogram for a single 2.5 hour
replicate along with Poisson binomial distribution for 2.5 hours (red line), and
the Poisson binomial distribution with least KL divergence from the empirical
distribution (blue line). The time. estimate is mean s.d. (N=3 technical
replicates). (E) As in (D), but for the 4.5 hour timepoint. (F) The mean
absolute error is shown for the (D) and (E). Error bars show standard

deviation.

amount of time for repRNA sequencing (Figure 12-1D). As anticipated, we

population of unedited RNAs was generated following doxycycline induction, and that these RNAs

became gradually more edited over time (Figure 12-1E,F). The low variance (std=12 min +/- 8.25
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min, N=15 timepoints) observed in the mean of the editing distribution between biological

replicates suggested that the tickertape could be used for temporal inference.

In order to determine whether the system is in principle capable of inferring the timing of

transcriptional events, we designed a statistical model to predict the RNA age distribution

associated with a single transcriptional pulse as a function of time since doxycycline induction. If

the adenosines on the repRNA template are edited independently and uniformly in time, then for

each adenosine on the repRNA, the fraction of RNAs with adenosines at that site should decrease

exponentially with the time since transcription, with a site-specific rate constant that depends on

the local sequence context. For each adenosine on the repRNA, we fitted an exponential

cumulative distribution function (CDF) to the editing fraction over time at that base (Figure

6-2A). We found 24 bases which fit well to the model (i.e., for which the value of R 2 was greater

than 0.9 across all replicates) (Figure 6-2B). Analyzing only those bases, the distribution of edits

per RNAs was well-approximated by a Poisson binomial distribution with a single parameter, t,
which represents time since doxycycline was added to the medium (see Methods, Chapter 12),
with the weights in the Poisson binomial distribution given by the exponential CDFs (Figure

6-2C). We used this Poisson binomial distribution to infer the times of cells induced at 2.5 and 4.5

hours prior to lysis, timepoints that had not been included in the dataset used to fit the

exponential CDFs (Figure 6-2D,E). By minimizing the Kullback-Leibler divergence (which is

equivalent to maximizing the likelihood) between the test distributions and the Poisson binomial

distribution over t, we inferred that timing of those events to be 2.35hr t 0.09hr and 4.45hr

0.03hr (mean s.d., N=3 technical replicates), respectively, implying that tickertape can localize

individual transcriptional events with resolution less than 1 hour, as required.

The Poisson binomial approach is the preferred approach for estimation because it

accounts for the exponential nonlinearity inherent in Poisson processes. However, we also found

that a simple linear interpolation of the mean yields accurate estimations in many cases. In the

case of the TRE tickertape, the mean interpolation estimated the 2.5hr and 4.5hr timepoints as

2.53hr 0.08hr and 4.38hr t 0.02hr (mean s.d., N=3 replicates), with errors of 5min 0.3min

and 7.5min 1.1min (mean s.d., N=3 replicates), respectively. To confirm that this accuracy is

not limited to the TRE tickertape or to HEK cells, we performed similar experiments in 3T3 cells

using repRNAs expressed under a light-inducible Vivid promoter, induced with blue light for one

hour (268, 269). We estimated the timing of light induction by interpolation of the mean number

of edits per RNA, and yielded a temporal resolution of 17.7 7.5 minutes (Figure 12-3, mean

s.d., N=9 samples total across three timepoints). The fact that tickertape works with multiple

promoters raises the possibility of recording the activity of multiple promoters simultaneously in a

single cell population, and we validated that this is possible using barcoded repRNAs responsive to

the Tet and Vivid promoters (Figure 12-4).

RNA Tickertape Infers the Timing and Magnitude of Complex Transcriptional Programs

Although the Poisson-Binomial model above achieves high accuracy for isolated

transcriptional pulses, it is not applicable to more complicated transcriptional programs. In
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transcriptional events in the distribution of the number of edits per reporter RNA in the cell. In

order to recover the timecourse of activity from the distribution, we built a general purpose

decoder that estimates the transcriptional activity as a function of time in one-hour intervals

stretching 12 hours into the past. Because the RNAs are edited independently, we reasoned that

arbitrary transcriptional programs could be represented as convex weighted sums of the single-

hour editing distributions (i.e., our one-hour "basis distributions") as measured with the TRE

tickertape. Thus, for example, the editing distribution associated with two single-hour pulses could

be represented as a weighted sum of the editing distributions for each of the single-induction

pulses individually. We built a gradient descent algorithm to minimize the L2 norm between

observed editing distributions and convex sums of these basis distribution (Figure 6-3A). As a first

test, we applied the algorithm to the single-induction editing distributions themselves (Figure

6-3B, left). In all cases, to avoid overfitting, we averaged the editing distributions from two of the

biological replicates in Figure 6-1E, and used the resulting averages as the basis functions for

decoding the third replicate. The resulting estimates closely matched the expected single-hour

profiles, and corresponded to a temporal resolution of 1.27h +/- 0.33h (mean +/- s.d. over all

replicates and timepoints, N=36, see Methods, Chapter 12. Note that a temporal resolution of 1h

would correspond to perfect estimation). Remarkably, the temporal resolution did not appear to

depend on the length of time elapsed between induction and lysis (Figure 6-3C).

We next asked whether the tickertape is capable of identifying the presence of multiple

transcriptional pulses. Since most complex transcriptional programs cannot easily be generated in

cells, we generated simulated editing distributions as convex weighted sums of the single-induction

editing distributions measured in our TRE experiments, and compared the weights obtained using

the decoder to the ground truth weights used to simulate the data. To avoid overfitting, the data

used as 'basis' functions in the decoder were distinct biological replicates from the data used to

generate the simulated distributions. We simulated distributions consisting of a pulse at 2 hours

and a second pulse of equal magnitude at subsequent times, which we refer to as a double

induction condition (Figure 6-3B, center left). The decoder successfully identified the presence of

two transcriptional pulses in every case, and estimated the timing of the second pulse with 1.5h

(B) Various transcriptional programs can be decoded using a general purpose tickertape decoder. Each

panel shows the ground truth transcriptional program (top); the inferred programs (middle, predictions

of 3- biological replicates), and the editing histogram and inferred weights for a randomly chosen

example (bottom). From left: single-induction conditions; double-induction conditions, with two 1 hr

pulses separated by a gap in time; double induction conditions with unequal amplitudes on each

induction; three-hour continuous inductions; six-hour continuous inductions. (C) The temporal

resolution of the predictions on the single-induction conditions as a function of time since induction. (D)

The temporal resolution of predictions on the second induction in a double-induction condition as a

function of time since induction. (E) The amplitude assigned by the decoder to timepoints 8 hours

(orange) or :3 hours (blue) for each condition in the variable amplitude double induction tests. (F) The

decoder applied to experimental three-hour induction conditions, with empirical editing histogram (top),
putative ground-truth weight distribution (bottom left), and inferred weight distribution (bottom right)
shown. (G) Same as F, for experimental six-hour inductions.
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+/- 0.32h time resolution (N=27 timepoints), again independent of the delay between the lysis

and the first pulse (Figure 6-3D). To determine whether the decoder is sensitive to the relative

magnitudes of different transcriptional events, we mixed the 2 hour timepoint with the 9 hour

timepoint with various coefficients of mixing (Figure 6-3B, center). We then calculated the total

weight assigned to timepoints above 8 hours or below 3 hours (inclusive), respectively, and found

that the decoder is sensitive to the amplitude of transcriptional events (Figure 6-3E). The decoder

estimated the amplitude above 8 hours to within 5.3% +/- 3.8% of the true value; and estimated

the weight below 3 hours to within 2% t 2.5% of the true value. Thus, we conclude that the

decoder is sensitive to both the relative timing and relative magnitudes of transcriptional pulses.

To determine whether this sensitivity extends to more complex transcriptional programs,
we first applied the decoder to extended temporal square waves (i.e. pulses longer than 1 hour).

For this case, the temporal resolution of the decoder is not well-defined, so we instead measure the

percentage of the weight assigned by the decoder to the correct timepoints (see Chapter 12). For

comparison, we note that the decoder correctly assigned 77.9% +/- 25.2% of the weight in the

case of the single-induction estimates, corresponding to a time resolution of 1.27h. Applying the

decoder to simulated pulses of 3 hours (Figure 6-3B, center right), the decoder correctly assigned

77.7% 12.2% of weight (mean s.d., N=3 replicates for each of 10 conditions, see Chapter 12).

Applied to simulated pulses of 6 hours (Figure 6-3B, right), the decoder correctly assigned 83.3%

5.7% of the weight (N=3 replicates for each of 7 conditions). Thus, the accuracy of the decoder

as applied to extended transcriptional programs is similar to the accuracy obtained for the single-

induction timepoints. In order to evaluate the decoder on the most challenging case, in which the

transcription rate may increase or decrease rapidly, we simulated random transcriptional functions

by sampling the basis function weights from a 12-dimensional Dirichlet distribution. In this case,
the decoder correctly assigned 71.9% 9.2% of the weight (mean+/-std, N=1000) (Figure 12-5).

Although this represents a reduction in accuracy compared to the single-hour timepoints, it

implies that the tickertape is still able to estimate arbitrary transcriptional programs with high

accuracy. To evaluate the reasonableness of this accuracy on experimental data, we generated 3-

hour and 6-hour pulses using the doxycycline-actinomycin setup described above (Figure 6-3F,G).

In line with the expected accuracies from the simulations, the algorithm successfully assigned

66.7% of the weight for the 3 hour square wave (N=3 biological replicates. The value was exactly

66.7% for all three replicates.), or 64% 1.6% for the 6 hour square wave (N=3 biological

replicates). Thus, the accuracy of the tickertape on experimental data is expected to be similar to

the accuracy obtained on our simulated datasets.

RNA Tickertape Operates in Single Mammalian Cells

The accuracy of RNA tickertape depends on observing enough repRNAs that the empirical

distribution of edits per repRNA accurately approximates the true distribution. One particularly

interesting application of the RNA tickertape involves determining the relative timing of events in

a population of single cells. We transfected HEK cells with barcoded TRE tickertapes, induced

with doxycycline, and then followed one of three protocols: cells in condition 1 were left in

doxycycline for 3 hours prior to lysis; cells in condition 2 were silenced with actinomycin D after 1
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are normalized to sum to 1. (A) Editing histograms for bulk conditions 1 through 3 (top) and

randomly chosen single cells (bottom). (B) Predicted induction times for all single cells in the

experiment, calculated as the center of mass of the inferred weight distributions (N=24 for condition 1,

N=27 for condition 2, N=19 for condition 3). (C) The predicted induction time for each single cell,

ranked from least to greatest. Green dots correspond to condition 1; red dots correspond to condition 2;

blue dots correspond to condition 3. (D) Predictions performed on double-induction editing distributions

after subsampling to 300 reads. Top: ground truth transcriptional programs. Middle: mean prediction

over 100 such samples. Bottom: One randomly chosen sample from the indicated condition, and its

inferred editing distribution. (E) The resolution with which the second timepoint in the double-

induction conditions can be inferred is shown as a function of time. All error bars show s.d., N=3

biological replicates at each of 10 timepoints.

hour, and then left for 3 hours, and cells in condition 3 were silenced with actinomycin D after 1

hour and then left for 7 hours. Individual cells were then sorted into wells of a 96 well plate, and

we subsequently performed single-cell repRNA sequencing (Figure 6-4A). Applying our decoder to

the resulting editing histograms yielded faithful estimates of the induction time: the absolute

deviation between the temporal estimate for the single cells in condition 2 and a bulk of 100,000

cells in condition 2 was 1.2hr +/- 0.8hr (mean +/- std, N=27), while for condition 3 it was 1.5hr

+/- 1.0hr (mean +/- std, N=19), which is similar to the temporal resolutions obtained for the

bulk single-induction conditions above (Figure 6-4B, see Chapter 12). Thus, the tickertape is

capable of recording the transcriptional activity of single cells.

The ability to order single cells according to the timing of transcriptional events would

have great utility for studying the diversity of responses to cellular perturbations (270, 271). To

that end, we asked whether the tickertape can be used to order the individual cells from our single

cell experiment, according to when the perturbation arrived. Ordering the cells according to their

estimated times, we found that there were a total of 5 transpositions (i.e., 10 cells out of order)
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All systems for temporally

resolved detection of neural

activity in single cells today rely

on optical detection, or on the

detection of electric or magnetic

fields, and, as such, it is

challenging to record from many

neurons simultaneously, or from

deep neural populations. We

hypothesized that tickertape could

be used to perform a sequencing-

based readout of the

transcriptional history of

immediate early genes, which are

often used for detection of neurons

recently active in a neural network, but are mostly used to perform such measurements at single

time points(27). We placed the repRNA expression under the control of a c-fos promoter, and
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transfected the tickertape system into primary mouse hippocampal neuron culture at 6 days in

vitro (DIV), which is used as a model for the study of coupling between excitation and

transcription in neurons (273, 274). At 14-15 DIV, we subsequently induced neural activity by

adding a potassium-based depolarization medium to the culture (see Chapter 12) (Figure 6-5A).

There was a clear shift in the repRNA editing histogram towards lower values following one hour

of induction (Figure 6-5B), indicating that new repRNAs were being produced in a depolarization-

dependent manner.

In order to estimate the temporal history of neural activity, we generated standards by

inducing neurons for one hour with the depolarization medium, washing them back into normal

(non-depolarizating) medium, and then lysing them at one hour intervals. For up to 7 hours after

induction, a population of new repRNAs could be seen to gradually accumulate edits. Even in the

presence of a large population of background repRNAs generated by constitutively fos+ neurons,
the mean number of edits per RNA increased linearly over time (Figure 6-5C), at a rate of

approximately 0.5 edits per hour. The linearity of the editing mean suggests that the editing mean

should be a good predictor of the time since depolarization. We estimated the times of each

replicate for the 2hr, 3hr, 4hr, 5hr, and 6hr timepoints by linear interpolation (see Chapter 12).

We found that these replicates could be predicted from the standards with an average accuracy of

37 23 minutes (Figure 6-5D,E, mean s.d.), which is comparable to the -1hr temporal

resolution intrinsic to immediate early gene transcription. Then, in addition, we stimulated

neurons at 3.5 and 5.5 hour timepoints, and found that these could be predicted with an average

accuracy of 72 55 and 35 22 minutes, respectively. Thus, RNA tickertape accurately reports

the timing of immediate early gene transcription in neurons.

Discussion:

RNA tickertape is a novel molecular recording device that enables the recording of the

temporal history of transcription into the sequence of RNA. It is likely that, using the same

concept, alternative systems could be designed that record other kinds of signals, besides

transcription. For example, by using alternative dimerization systems (275, 276) to link ADAR to

constitutively expressed repRNAs in a stimulus-specific manner, it may be possible to construct

tickertapes that report on the timing of other kinds of cellular events, such as calcium or other

signaling molecules. Together, these observations suggest that RNA tickertape is a scalable and

extensible approach for recording the temporal activity of cells.
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Chapter 7

Molecular Barcoding for Connectomics

Throughout my graduate school career, I thought extensively about strategies for

molecular barcoding of neurons, with an eye towards connectomics. Fundamentally,

optical barcoding approaches involve labeling neurons in some way that allows for the

identity of the neuron to be inferred by imaging them in some number of color channels with an

optical microscope. In the simplest approach, each channel is either present or absent in a cell,

providing 2 N combinations, where N is the number of channels. As discussed below, if it is

possible to label individual molecules with multiple channels, and if it is possible to distinguish

those molecules optically, so that each cell can contain multiple combinations of channels, the

combinatorial diversity could be much higher. This is the case for RNA barcoding approaches, in

which the RNAs are typically relatively sparse in the cell, or for protein-based approaches with

sufficiently strong superresolution microscopy to enable single-molecule imaging.

From February to October 2015, I worked with Noah Jakimo on a strategy called

Brainbar, inspired by a strategy conceived by Adam Marblestone (277), for delivering barcoded

RNAs to the processes of neurons. These barcodes were designed to be read out using multiplexed

FISH techniques, rather than direct in-situ sequencing techniques as originally proposed, because I

was convinced that in-situ sequencing protocols were too challenging and took too long to achieve

widespread adoption. Leveraging the ability to image RNAs at the single molecule level, the

Brainbar barcodes were designed in a way so that sufficiently high combinatorial diversity could

be obtained in a single round of imaging, rather than in many successive rounds of imaging as is

necessary for in-situ sequencing. However, the method failed at the first hurdle: Noah and I found

that RNA barcodes expressed off of the U6 Pol III promoter never left the nucleus in neurons, and

RNAs expressed off of a Pol II promoter (such as CAG) are not produced at high enough

concentrations, and do not traffic in the processes, despite our best efforts to improve the

trafficking, for example using RNA degradation resistance elements (278, 279). In October 2015, I

became convinced that protein-based barcodes, rather than RNA barcodes, were the correct path

forward, because they avoided the RNA trafficking, stability, and expression issues. (GFP

expressed in a neuron will fill the cell without any engineering.) The remainder of this chapter

proposes a similar barcoding approach, in which proteins would be labeled with many different

epitopes. The proteins would be imaged at the single molecule level, allowing each protein to be

imaged in multiple optical channels, thus constructing the barcode.

Nonetheless, I became discouraged by the difficulty of the 20x expansion protocols that would be

necessary to resolve individual protein molecules, and did not begin working on these ideas

experimentally until April 2017. At that point, I realized in a conversation with Nick Barry that
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the simple 2 N scaling obtainable with non-single-molecule protein barcoding would be sufficient

for connectomics if we could image in -20 to 30 channels. However, imaging a cell in 20 to 30

channels would require a system for multiplexed imaging, since one can typically only image 4-5

channels at a single time in a standard optical microscope. Nick proposed that we could use MIBI

to read out a many-color Brainbow, but MIBI and related hyperspectral systems are generally

point-scanning systems, and are thus too slow for most applications (42, 280). At the time, high-

quality protocols for multiplexed antibody staining in expansion microscopy (which we assumed

would be essential to achieve high enough resolution to visualize spines) did not exist. We

considered antibody-oligo conjugates as a way to attach oligonucleotides to the barcode proteins,

but good antibody-oligo conjugate protocols also did not exist.

We also considered whether we could conjugate antibodies to DNA binding proteins, like TAL

effectors, as a way to attach oligonucleotides to the antibodies after staining. In May 2017, I

wondered in a conversation with Adam Marblestone whether we might be able to simply to

express the TAL effectors in the cells as a way of generating barcode proteins that could be

stained with oligonucleotides. The key question was whether the TALEs would retain their ability

to bind DNA after fixation. In a one-day experiment, I expressed two TALEs in HEK cells, and

showed that they retained their binding activity and specificity when the cells were fixed in

methanol, but not PFA. Nick and I then performed a number of experiments over the following

year. Remarkably, both TALEs and zinc fingers have this property, and zinc fingers are even

somewhat robust to formaldehyde fixation. The method worked extremely well in culture, but

staining in vivo was weak.

However, the landscape has changed dramatically since we first began this project, and we

reevaluated the landscape in late 2018 and determined that the time was ripe for direct barcoding

via direct antibody staining. Several factors informed this decision: firstly the publication of

spaghetti-monster fluorescent proteins provided us with a method for delivering epitopes on a

fluorescent protein scaffold (281); recombinases had been shown to be ineffective for the

application described in this chapter (282), but a new family of blood-brain-barrier-crossing

viruses provided an alternative way to generate combinatorial diversity (283-285). The MARCI

mouse demonstrated that it is in principle possible to generate a mouse line with 30 or more

transgenes, so a 30-color protein barcode would be compatible with a transgenic ultimately (286).

Finally, a number of new ExM-compatible antibody-multiplexing approaches had been published

(14, 15), as well as new oligo-conjugated antibody methods (28). Bobae An joined our team at

that time, and has been instrumental in spearheading the new protein barcoding method. As of

the publication of this dissertation, the work is still ongoing.
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Summary:

We suggest a simple protein-based multicolor optical strategy for uniquely barcoding large

numbers of neurons, based on tractable genetic methods and enabled by Expansion Microscopy

(ExM) (37). The diversity generated scales super-exponentially with the number of available

colors. We discuss the application of this strategy to barcoding entire Drosophila or larval

Zebrafish brains using only off-the-shelf recombinase-based cassettes and 6-color microscopes, as

well as its extension to mammals.

Introduction

Scalable arbitrary-color optical super-resolution

We recently developed Expansion Microscopy (ExM) (37): rather than using lenses to create

optical magnification in a microscope, we recently found that physical magnification of the

specimen itself is possible. Polymerizing electrolyte monomers directly within a sample to form an

electrically charged polymer network, followed by solvent exchange, results in specimen expansion.

By covalently anchoring specific molecules within the specimen to this polymer network and

proteolytically digesting away unwanted endogenous biological structure, we found that samples

could be expanded isotropically 4.5-fold in linear dimension. We discovered that this isotropic

expansion applies to nanoscale structures, and thus this method can effectively separate molecules

located within a diffraction limited volume, to distances great enough to be resolved with

conventional microscopes. As a side effect, this process renders the sample transparent.

In the first paper [2], we expanded tissue by 4:5linearly (> 100volumetrically). Crucially, in recent

work using novel expansion polymer strategies (288), we can expand tissue by up to roughly 20

linearly, implying that a diffraction-limited microscope with 300 nm optical resolution can achieve

an effective resolution post-expansion of 15 nm. This works with an arbitrary color-palette of

fluorescent dyes.

The power of multiple colors:

Our main question here is: given this new capability in scalable, fast, multicolor, fully 3D, super-

resolution optical imaging, can we devise a multicolor optical labeling strategy which would

robustly enable connectome extraction? Ideally, the use of multiple colors would allow us to

extract connectomes from optical imaging data without the need for complex machine learning or

human annotation. Specifically, the use of multiple colors could serve to disambiguate neuronal

identities in cases where the pure membrane geometry appears ambiguous. Furthermore, multiple

colors could be used to error-correct one another: where one color or label fails or exhibits an

ambiguity at a given position in the neural geometry, another color could potentially "fill in the

gap." Here we propose to take this approach to the extreme, endowing each neuron in a brain

with a unique "color code" that identifies it on the basis of its color contents, over and above the

information that can be gleaned by tracing its morphology.
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We will show that multicolor labeling could enable unique neuronal barcoding with only moderate

requirements on fluorophores, epitopes, recombination sites, and other biotechnological primitives.

Moreover, we explain how the available barcode diversity can be made to scale super-

exponentially with the number of available colors. In what follows, we first remind the reader of

prior approaches for unique cell barcoding, then describe schemes for increasing the label diversity

super-exponentially, and then illustrate examples for labeling animal brains of various sizes.

Prior approaches for optically barcoding neurons

Nucleic acid-based barcoding

Recently, researchers have proposed to endow neurons with unique genetically-encoded molecular

barcodes in the form of RNA strings, which can be read out through bulk sequencing (289), or

through in-situ RNA sequencing in an optical microscope (277; 290), or through multiplexed in-

situ hybridization (9, 10). Such unique RNA labels can be read out from any point in a cell,

regardless of distance from the parent soma, removing the need for complete image-based

morphological tracing of the cell's geometry. These methods, however, as currently conceived,

require a large amount of sequence diversity to be encoded into a single RNA strand and then to

be read out over multiple cycles of chemical interrogation of the RNA. Thus, an in-situ barcoding

technique that achieves high label diversity with more facile genetic and readout techniques would

be desirable. We will show below that this can be achieved by splitting the barcode information

over multiple molecules.

Brainbow Barcoding

Researchers have endowed neurons with random cell-specific combinations of fluorescent protein

expression levels, giving neurons distinct fluorescent colors under the confocal microscope, a so-

called "Brainbow" method (291, 292). The cell can manufacture enough of the Brainbow label

proteins to enable almost complete coverage of the cell membrane. It is anticipated that such

protein-based labeling will have an advantage over RNA-based barcoding methods which, due to

the sparser number of RNAs per cell, may not be able to completely tile a neuron with cell-

identifying barcodes. Unfortunately, the number of distinguishable colors generated by Brainbow

has been limited to a few hundred, which is not sufficient to disambiguate densely-labeled neural

circuitry over long distances. Thus, a protein-based optical barcoding technique which achieves

greater effective color diversity would be desirable. We will show that this can be achieved by

splitting the barcode information over multiple proteins or subcellular structures each of which

can be interrogated individually rather than as mixtures.

Concepts:

Criteria for an optimal barcoding strategy

With the emergence of scalable, arbitrary-color super-resolution optical microscopies comes an

opportunity to invent new labeling strategies. We will rely on a generalized Brainbow-type
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approach, in which recombinases stochastically diversify genomic cassettes, leading to a

stochastically chosen set of proteins that serves as a unique barcode for a given neuron. These

proteins will then be imaged via ExM using antibodies conjugated to fluorescent dyes. Our

strategy aims to combine several attributes:

1) Combinatorial genetic diversity: labels sufficient to uniquely label every cell in a brain

must be encoded into the genome. The diversity of labels that can be generated is limited

at the genotypic level by the number of orthogonal recombinase sites that can be used

simultaneously in a single organism: 10 in current practice. For example, in Drosophila we

are aware of 4 orthogonal recombinases (293), one of which (Flp) is already known to

possess 3 orthogonal sites (292), for a total of a least 6 orthogonal sites. If we add three

known orthogonal Cre sites and a $C31 site (although $C31 is irreversible, restricting the

number of values that a single cassette can generate), we expect to be able achieve at least

10 sites in Drosophila. It may be possible to increase this number further, e.g., via

generating additional orthogonal LoxP sites for Cre. In addition, up to 7 putatively

orthogonal sites have been reported elsewhere for Flp (294), and up to 6 orthogonal pairs

of attP/attB sites have been reported for pC31 (295). More speculatively, Appendix 2

(Chapter 13) discusses potential means to engineer greater genotypic diversity including

temporal multiplexing of recombination sites by using inactivated Cas9 to block specific

sites at specific times. The maximum genetic diversity is also limited by the number of

possible values that can be generated by each cassette, which has been limited to 4 in prior

BrainBow systems, although below we will discuss extensions to > 7 values per cassette.

2) Protein-based barcodes: to enable high copy-numbers of labels and hence complete filling

of the cell. Our proposed readout scheme is based on antibody staining of epitopes

attached to scaffolding proteins (281). The primary limitation here is the number of

epitopes/antibodies that can be probed simultaneously via immuno-histochemistryl: the

number of primary and secondary antibodies that must be used simultaneously will be

assumed ; 10 initially, with the possibility of adding a few more via additional efforts in

some cases.

3) Spatial resolution: we will assume next-generation 20x ExM enabling roughly

15 nm spatial resolution, i.e., that we can resolve multiple discrete molecules or distinct

When a large number of orthogonal epitopes are required to be labeled in a single wash, and secondary

antibodies are to be used (rather than just labeled primaries), we will need a sufficiently large set of

orthogonal secondary antibodies, e.g., to achieve a set of size 12 we may need to target distinct primary

antibody isotypes in addition to the host species of the primary antibody. It may also be possible to use pre-

adsorbed secondaries. Spectral multiplexing of up to 10 simultaneously applied fluorescent antibodies has

been demonstrated, and more for mass-spec-based readout of primary antibody identity (350).
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sub-cellular structures (actin filaments, microtubules, membrane, mitochondria) even

inside a single thin axon.

4) Protein expression level: supposing that we can generate at most 107 genetically encoded

label protein molecules per cell, then a 1 mm long axon of 300 nm diameter would exhibit

an expressed protein density of at most 1 protein per 20 nm cube if proteins were

randomly distributed in 3D the cytosol, or 1 protein per 10 nm square if proteins were

randomly distributed in 2D on the membrane. In other words, operating at 15 nm

resolution voxel size, we have roughly one protein per resolution voxel. Thus, imaging

expressed proteins at this level becomes a single-molecule problem.

5) Digital rather than analog encoding: for noise-robustness with respect to color

intensities. Specifically, we prefer encoding of information in the discrete subunit

composition of individual molecules, rather than in molecular densities, for robustness to

expression-level noise, although we will also consider digital control of protein expression

level as a useful primitive in certain cases. With digital encoding, the primary limitation is

the number of orthogonal fluorescent channels available, < 10in standard practice,

although it should be possible to extend beyond 10 channels with additional efforts.

6) Ability to read out the labels in a single cycle of imaging , without the need for many

successive fluidic wash steps as in FISSEQ-BOINC (277). We will assume that only one

round of imaging and labeling is possible, although multi-wash labeling and imaging has

been demonstrated in array tomography (296), serial FISH (297), FISSEQ (290) and

similar methods.

7) No need for novel genetic diversification methods: adaptations on existing

recombination-based methods should suffice.

Genotype/Phenotype Diversification

Consider a system using C orthogonal recombinase sites, generating v possible stochastic values

per cassette. C genome-integrated cassettes are distinguished by their use of orthogonal

recombination sites, which prevents inter-cassette recombination. For example, in a system using 3

orthogonal Cre/Lox sites and 3 orthogonal Flp/Frt sites we would have C = 6. Cre recombinase

is capable both of excising the region between similarly-oriented LoxP sites, and of reversing the

region between oppositely-oriented (inverted) LoxP sites. Between every pair of inverted LoxP

sites, a region can be inserted which codes either for a transcript A in the forward state, or a

different transcript B in the reverse state. We will call such a region an "inversion unit." With

two such inversion units in tandem, it is possible to encode v = 4 distinct transcripts onto a

single cassette, each chosen stochastically upon recombination with roughly '/ probability, as was

used in the original BrainBow system (291).

With more than two inversion units in tandem the distribution over the possible recombination

states of the cassette may not be uniform (see Appendix 1, Chapter 13), by virtue of the
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possibility of internal excisions, which bias the system away from the "middle" states. To evaluate

this possibility, we performed simulations of the recombination process. In simulations of a 4-value

cassette (i.e., two inversion units in tandem), it was found that all 4 values are achieved with

equal probability, which is to be expected since there are an equal number of recombination

pathways to each value. In the simulations of an 8-value cassette (i.e., four inversion units in

tandem), the Shannon entropy of the resulting distributions over recombination sites was

approximately 2.9 bits (as compared with log 2 8 = 3 bits for a perfectly uniform distribution) if

we allow a sufficient amount of recombination for each cassette to approach equilibrium. This

corresponds to 22.9 = 7.46 effective values per cassette. When only a few recombinations occur per

cassette, the entropy can drop below 2.8 bits. This behavior is shown in Appendix 1 (Chapter 13).

The above scheme can generate vc distinct genotypes. Using cassettes with two inversion units,

hence v = 4, and 9 orthogonal recombinases, hence C = 9, we have vc = (22)9 = 262144, or 18

bits, sufficient to barcode the Drosophila brain or larval Zebrafish brain. More generally, in order

to be able to assign a unique genotype to each of N neurons, we must have

C log 2 V >> log 2 N

The term log2 N is the total number of bits needed to assign a unique genomic ID to every neuron

20 30

in the system in question. In Figure 7-1,

the necessary number of bits needed is

shown for some model organisms. It is

then up to the experiment designer to

design a system in which all of those

genotypes translate into optically-

distinguishable cellular phenotypes that

can be read out from small regions of

interest at arbitrary positions along the
Bits

length of the axon.

Figure 7-1: Number of Bits Needed for Uniquely

Barcoding Animal Brains. The number of neurons

that can be orthogonally labeled by a genotyping

strategy is shown as a function of the number of bits

encoded by the genotyping strategy.

that it must have a bit capacity at least as large as t

Peptide Epitopes

Our phenotyping strategy will rely on the expression

Readout

Once neurons have been assigned unique

genotypes, the corresponding phenotype

must be read out optically. The key

requirement on the readout strategy is

he bit capacity of the genotyping method.

of peptide epitopes displayed on scaffolding

proteins (281) (see Appendix 5, Chapter 13, for a discussion of RNA labels). These epitopes can

then be detected either using fluorescently labeled primary antibodies, or using primary antibodies
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followed by fluorescently labeled secondary antibodies for signal amplification. In the absence of

an additional mechanism of multiplexing, a strategy with E epitopes can encode only E bits, i.e.,

2 E possible phenotypic states, where we assume that an epitope is either present or absent but

that we cannot readily distinguish analog levels of epitope. We seek to design a system that

requires as few orthogonal epitopes as possible, especially if signal amplification using secondary

antibodies is required2 .

Number of Colors

We will denote the number of spectrally orthogonal fluorophores by F. In preliminary

experiments, we have been able to perform single-molecule imaging of 6 orthogonal fluorophores

on a microscope with 4 lasers. Illumination systems are available from Coherent with up to 8

lasers. Using such a system, we expect that we could easily perform amplified single-molecule or

bulk imaging of 9 orthogonal fluorophores. In Appendix 3 (Chapter 13), we illustrate a possible

strategy for achieving up to 12 orthogonal fluorescence channels, without the need for spectral

demixing.

Readout Multiplexing

In general, the genotypes and phenotypes assigned to cells in the barcoding strategies we propose

will contain more information than F ~ 12 bits of information, i.e., a pure digital Brainbow

strategy with 212 = 4096 color combinations would have insufficient readout diversity. Even with

3 distinguishable intensity levels and 12 fluorescence channels, we have only 312 = 531441

possible readouts which is insufficient for barcoding whole mammal brains. Moreover, we wish to

use a limited number E of epitopes/antibodies. Thus, an additional multiplexing strategy will be

required to read out the phenotype, beyond just a digital Brainbow approach, i.e., a bulk per-cell

expression level for each of F ; 12 fluorophores. There are several options for the mode of

multiplexing:

Temporal Multiplexing

Temporally multiplexed readout strategies can increase the number of bits that can be read out

per fluorophore. In particular, if one has F fluorophores and performs w reagent washes, one can

read out wF bits, e.g., for temporal multiplexing via sequential immuno-histochemical wash cycles

(296), or sequential hybridization (10, 29?) to antibody-identifying DNA barcodes. However,

because it is assumed that the epitopes are distributed throughout the cell prior to imaging,

temporal multiplexing does not increase the number of bits that can be read out per epitope, and

is thus only useful given more epitopes E than fluorophores F. In line with the criteria outlined

2 Again, up to 10 orthogonal secondary antibodies and fluorescent color channels have been demonstrated in

immune histochemistry (350), to our knowledge.
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above, we will limit ourselves to only a single wash, w = 1. We will thus assume that we have at

least as many fluorophores as epitopes.
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Figure 7-2 Address-Value Connectomic Phenotyping Strategy. Illustration for the case of 4 cassettes,
each of which encodes 4 possible proteins, for a total of 44 or 256 labels, which can be read out with 5

epitope-fluorophore pairs (represented here by brown, green, red, blue and purple dots). The initial

genome-integrated cassettes (top) undergo recombination, producing a randomized genotype within each

cell. The corresponding phenotype consists of four generalized spaghetti-monster fluorescent proteins

(smFPs) - designed for efficient immuno-staining - each of which is labeled with a subset of the 5

available epitopes. Two fluorophores (red and green) indicate which cassette gave rise to the protein

(the address bits), while two fluorophores (blue and purple) indicate the outcome of recombination (the

value bits). The fifth fluorophore is always present. The barcode is given by the value bits, ordered

according to the addresses. Readout is performed by antibody staining against the epitopes. The

proteins are allowed to remain in the cytosol, and expression must be controlled such that following

expansion, there is at most one protein per diffraction-limited spot (or more generally per microscope

resolution voxel). This method achieves higher diversity than the structural labeling method for the

same number of epitope-fluorophore pairs, because more than 3 fluorophores are used by each cassette.

While the protein-epitope readout case is emphasized here, RNA FISH-based or FISSEQ-based readout

of address-value barcodes is also possible. pA denotes a polyadenylation sequence that terminates

transcription.
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An alternative approach to multiplexing involves reusing the same set of peptide epitopes on

multiple different protein labels, and then spatially separating these labels in a way that allows

them to be distinguished from one another. Then, a labeling scheme with E epitopes and s

spatially-separated labels could in principle encode sE bits of information. Unlike in the case of

temporal multiplexing, spatial multiplexing strategies increase the amount of information obtained

per epitope, as well as per fluorophore.

In an exemplary such scheme, "address-value" multiplexing (Figure 7-2), protein labels generated

by different cassettes are allowed to diffuse through the cytosol or along the membrane, and are

imaged at the single-molecule level with physical amplification of signal from each single molecule.

Spatial multiplexing is achieved by having multiple cytosolic label proteins, each with multiple

fluorophores, and expressing these proteins at a low enough density that there is at most one

protein per diffraction-limited spot in the post-expansion sample, yet high enough density that a

given small region of interest (ROI) contains at least one of each of the multiple distinct labels.

The combination of fluorophores present or absent on a protein label then indicates both a) which

cassette the protein came from, and also b) the result of recombination.

In order to obtain the maximum amount of genetic diversity, the proteins generated by each

cassette must be distinguishable from each other. In the address-value approach, each cassette

uses the same epitope/fluorophore pairs to encode the result of recombination, and cassette

identity is indicated by a separate, dedicated register of "address" epitope/fluorophore pairs,

which are displayed by the corresponding label protein regardless of the result of recombination.

Alternative spatial multiplexing methods might rely on targeting label molecules to distinct

cellular structures (Appendix 6, Chapter 13).

Expansion microscopy can be used to ensure at most one label protein per diffraction-limited spot.

For example, using a 10-fold linear expansion factor and expressing labels at a density of one per

cube of 20 nm20nm on a side in the pre-expansion space, and then imaging with a microscope

capable of 200 nm 3D resolution, we could fit (' = 125 label molecules within an (100 nm)3
\20 )

ROL. This should be more than enough to sample at least one of 10-20 distinct species of label

molecule. Moreover, after ExM expansion, amplification of label brightness is possible, since each

label molecule now has on the order of 200nm of physical space around it that can be occupied

with bulky groups such as primary and secondary antibodies, hybridization probes, quantum dots

and so forth. For example, with smFP-based antigens (298), since each smFP could carry many

epitopes, and each primary and/or secondary antibody can carry many fluorophores, one can

easily imagine upwards of 100 fluorophores being recruited to each molecular label.

Spatial grouping of label molecules

One challenge with the optical readout strategy presented here is that it depends on being able to

find all of the C different label molecules in a local region of interest that manifestly corresponds
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to a single cell, i.e., single contiguous local patch of a single neuron. We have chosen peptide-based

barcodes because peptides can be expressed to high levels, enabling high densities of label

molecules. However, we still require a means to determine if a cluster of nearby label molecules

belong to the same neuron, or are split across two or more neighboring neurons. We anticipate

that, using high expansion factors to ensure high spatial resolution, and ExM-compatible chemical

lipid stains to delineate cell boundaries, such local grouping of label molecules should be possible

in many, but probably not all, regions of a neuron. Note that chemical lipid stains can tile the

membrane with high density, approaching that of the osmium stains used to label lipids for

electron microscopy. In any ROI where this is possible, we will have identified the neuron to

which that ROI belongs. This should enable a form of error-correction that would allow

morphology-based connectome mapping to bridge across otherwise un-traceable gaps, such as in

long-range axon fascicles. In an exemplary scheme, labels could be positioned directly on the inside

(i.e., cytosolic rather than extracellular side) of the membrane via an appropriate fusion to a

membrane-anchored protein, with the membrane itself marked by a chemical lipid stain.

If we sample more labels per ROI than is strictly necessary, we can detect and correct labeling

failures due to, e.g., failure to observe a given fluorophore on a given label molecule due to failure

of antibody binding, fluorophore bleaching, or other causes that become relevant at the amplified-

single-molecule level. For example, to collect all 18 labels in an 18-cassette scheme, the well-known

solution of the Coupon Collector Problem shows that we require 63 samples on average, whereas

we have 125 samples if we observe an ROI of (100 nm) 3 with label molecules packed at a density

of one per 20 nm cube.

Optimal distribution between address and value bits

In the address-value barcoding scheme, [log 2 C] epitopes are needed to encode the identity of the

cassette, and it follows that the rest of the epitopes can be dedicated to labeling the possible

values that can be assumed by the cassettes upon recombination. With K orthogonal epitopes and

corresponding spectrally orthogonal fluorophores available, it follows that the number of possible

distinguishable phenotypes is

P = ( 2 K-[1og 2 Cl)C (2)

It is interesting to note that, ignoring the ceiling operation (i.e., allowing fractional fluorophores),

P achieves its maximum for fixed K when C = 2K/e, where e denotes the base of the natural

logarithm. Alternatively, denoting by fc the number of fluorophores used to label cassettes, we

find that

fc = K - log 2 e (3)

Perhaps counter-intuitively, the information obtained from an address-value barcoding system is

maximized when nearly all fluorophores are used for address bits. Therefore the optimal strategy
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with 8 fluorophores would use 27 = 128 cassettes, each encoding only two possible values, thus

generating 2128 = 3.4 x 1038 possible barcodes. A barcoding scheme with 128 cassettes is

impractical, but fortunately even distributions with far fewer cassettes are capable of generating

huge diversities, see Figure 7-3B.
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Figure 7-3: Scaling of the Address-Value Barcoding System (A) The number of distinguishable

phenotypes P that can be read out in a single wash is plotted as a function of the number of fluorophore-

epitope pairs K for the p >> 1/V strategy with 2 K cell colors derived from bulk mixing (i.e., digital
BrainBow), and for the p « 1/V address-value barcoding strategy with the optimal number of cassettes

C = 2K/e at any given value of K, where p is the density of proteins and Vis the resolution voxel size.

The address-value barcoding system is exponential in log space. (B) The total number of distinguishable

phenotypes that can be generated using 8 fluorophores is shown as a function of the number of cassettes

that are used. Evidently, the labeling strategy achieves its maximum value for a large number of

cassettes, yet the absolute number of barcodes generated is enormous even for many fewer cassettes.

Practical implementations of the address-value barcodes

In practice, given 4-value cassettes (two inversion units), it would be possible to barcode the

entire brain of any animal with at most 32 cassettes. With 8-value cassettes, at most 16 cassettes

would be necessary. Hence, in the case either of 4-value or 8-value cassettes, 7 fluorophores should

be sufficient to barcode the brain of any animal, with either 2 fluorophores dedicated to values

and 5 dedicated to cassettes (for 4-value cassettes), or 3 fluorophores dedicated to values and 4

dedicated to cassettes (for 8-value cassettes).

In some cases, it may be useful to have an additional "constant" fluorophore to indicate the

presence of the label proteins, irrespective of particular addresses or values. It could also be useful

to reserve one or more fluorescent colors for dense chemical (non-genetically-encoded) staining of

the cell membrane. In any case, K < 10 orthogonal fluorophores should suffice for most

applications, and we will quickly become limited by the available orthogonal recombinase sites for

achieving a sufficient number C of cassettes, as well as by the ability of each cassette to generate

a sufficiently uniform distribution (see Appendix 1, Chapter 13) over a large number of possible

values.
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Address-Value Barcoding for the Zebrafish Connectome

Overview
We now present two address-value barcoding strategies for the larval Zebrafish connectome which

can be implemented using only K = 6 fluorescent colors and epitope/antibody pairs (which is

readily achievable). The strategies differ in the tradeoff they make between the number of

orthogonal recombination sites and the number of values encoded per cassette. If 4-value cassettes

are used (e.g., Figure 7-2), 9 such cassettes would achieve 262000 labels, resulting in 68% of

neurons having unique labels and an expected degeneracy of (M) = 1.38 (see Appendix 4, Chapter

13). Alternatively, with 10 cassettes, one could generate > 106 barcodes, resulting in 91% of

neurons being uniquely labeled and an expected degeneracy of (M) = 1.1. On the other hand, if 8-

value cassettes are used, only 6 such cassettes are necessary (e.g., 3 orthogonal Cre/Lox sites and

3 orthogonal Flp/Frt), although this would yield only 118000 effective barcodes under the

assumption of 2.8 bits of entropy per cassette, resulting in 43% of neurons being uniquely labeled

with an expected degeneracy of (M) = 1.85. Under the assumption of 100 [im axons and one axon

per neuron, we crudely estimate (Appendix 4, Chapter 13) that even a degeneracy of (M) = 2

would only lead to on the order of 10 axon-tracing errors in the Zebrafish brain using tracing

algorithms similar to today's automated EM segmentation algorithms (299), as compared with

tens of thousands of errors in the absence of barcoding 3.

Cassettes

The proteins produced by the cassettes could either be single scaffolds displaying multiple epitopes

(e.g. (281)), or fusions of multiple scaffolds, each encoding a single epitope. In one possible design,

the address epitopes could be displayed on one scaffold coded for by the region directly following

the cassette. This scaffold could be connected by a floppy linker to a second scaffold displaying

the value epitopes, coded for by the inversion units.

Readout

Regardless of whether one uses 4-value cassettes or 8-value cassettes, 6 fluorophores and

epitope/antibody pairs are sufficient to read out the barcode in this approach. Following

recombination, the cassettes produce protein scaffolds displaying some combination of the six

epitopes. In the case of 4-value cassettes (Figure 7-2), 2 epitopes would indicate the result of

recombination while 4 epitopes would indicate the cassette identity; in the case of 8-value

3 The automated algorithm of (299) makes roughly 1 error in every 29 micron segment (see Appendix 4,

Chapter 13). So, assuming 100 pm long axons, only roughly 5% of axons would be traced correctly in the

absence of barcode-based error-correction (2 standard deviations, assuming 3 v3 errors per axon), i.e., >

95000 errors. Put another way, with no barcoding, 95% of axons would be traced incorrectly, whereas with

the proposed barcoding scheme only 0.01% of axons would be traced incorrectly, assuming the underlying

morphological tracing error rate was equivalent, even with (M) = 2 barcode degeneracy.
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cassettes, 3 epitopes would indicate the result of recombination while 3 epitopes would indicate

cassette identity. Imaging would be performed with confocal microscopy following primary and

secondary antibody stains against these epitopes, with a different fluorophore corresponding to

each epitope.

Roadmap

Zebrafish/Drosophila

In order to implement the Zebrafish barcoding scheme discussed here, it would be necessary to

insert either nine 4-value cassettes or six 8-value cassettes into the Zebrafish and demonstrate

orthogonal recombination. This would require the use of 6 fluorophores, which is readily

achievable. In addition, the barcoding scheme discussed here would require the demonstration of

protein scaffolds that can display up to 6 orthogonal epitopes, all of which can be simultaneously

imaged using antibody staining. We believe that these demonstrations should be possible with

modest modifications of existing technology. In Appendix 6, we propose an alternative strategy

that can be implemented with fewer modifications of existing technology.

Neither of these cases is likely to generate absolutely unique barcodes across all 100k Drosophila

or Zebrafish neurons: some barcodes will be found twice in the brain. Appendix 4 (Chapter 13)

discusses how even such imperfect barcoding can be used to substantially error-correct automated

morphological tracing algorithms.

Mouse

For barcoding at the level of the 108 neurons in the mouse brain, an address-value scheme with 6

fluorophores, 14 orthogonal recombination sites and 4 values per cassette would yield 262 million

barcodes, sufficient for tracing in the mouse brain. Alternatively, a system with 7 fluorophores, 10

orthogonal recombination sites and 8 values per cassette would yield 282 million barcodes (under

the assumption of 2.8 bits per cassette).

Primate

Extending the address-value scheme for the mouse to 14 orthogonal recombination cassettes

should be sufficient to barcode primate brains. We discuss in Appendix 2 (Chapter 13) some

potential schemes by which 16 effectively orthogonal recombination sites could be achieved

through rational design.

Conclusion

We proposed to harness the multicolor nature and high spatial resolution (up to 20smaller than

the diffraction limit) of expansion microscopy to permit high-density labeling of neurons with cell-

identifying sets of barcode-encoding peptides. We have described how the combination of powerful

emerging optical and genetic technologies - multiple orthogonal recombinases, multiple useful

epitopes and orthogonal color channels, and amplification of fluorescent signals from single label
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protein molecules - could be used to generate a huge diversity of "color codes" for individual

neurons.

If all neurons in a brain can be labeled uniquely, as is possible in many of the proposed schemes,

then we have converted connectomics from a pure morphological tracing problem (with error rates

growing exponentially with tracing length) into a distance-independent barcoding problem, much

as would be the case in proposed in-situ nucleic acid barcoding strategies (27). Even if the

barcode diversity is only comparable to, or even slightly less than, the number of neurons in a

brain, we still enable a powerful form of error-correction that is not possible in greyscale electron

microscopy, with the potential to hugely reduce the error rates of automated tracing algorithms

(Appendix 4, Chapter 13).

Notably, unlike in in-situ sequencing or sequential FISH barcoding approaches, only one round of

labeling and imaging is required, so long as we can achieve roughly 7-10 orthogonal color channels.

If fewer orthogonal optical channels can be achieved, we can resort to sequential readout

approaches to implement the same ideas. This could be done with sequential immuno-staining if

enough epitopes are available, and we have also suggested how RNA FISH or RNA FISSEQ could

implement similar notions of splitting barcode information over multiple molecules or structures in

a region of interest. The RNA FISH case could also be used in a single-wash setting if there are

enough orthogonal color channels, effectively using the RNA as a hybridization scaffold rather

than its derived protein as an epitope scaffold.

Optical connectomics, of the type described here, appears to require significant yet not prohibitive

resources. Following 20x expansion, a 1 mm3 piece of brain would be expanded to 8000 mm3

8 x 1012 im3 . A confocal microscope with a 60x objective and a detector with an area of 1 cm 2

has a field of view corresponding to 166 prn x 166 gm x 0.7 prm = 20000 um3 . Assuming 200 ms

per field of view when imaging in ~ 10 color channels, we find that 2.54 microscope-years would

be required per cubic millimeter of pre-expansion brain. Amortizing $1M microscopes over a three-

year project, the raw connectomic data acquisition for even the smallest whole mammal brains

would thus cost on the order of $10M to $20M using this scheme.

Notably, with unique or near-unique multicolor labeling of neurons, it is likely that the image

analysis problem for axon tracing could become accessible to simple automated algorithms, with

multicolor error correction potentially enabling extremely high accuracy. Multicolor optical

approaches could enable error-resilient automated tracing approaches through

fluorescent barcoding and spatial multiplexing, as well as extensions to molecularly annotated

connectomics [17] through temporal multiplexing.
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Chapter 8

A New Structure for Scalable Research

Foreword
The ideas contained in this chapter are derived in large part from conversations held in the first 4

months of 2019 with Ed Boyden, Joi Ito, Louis Kang, Jessica Traynor, Daniel Oran, and Laura

Deming, with additional feedback from Karl Ruping and Robert Hughes. I also acknowledge

Adam Marblestone for reviewing the final essay and offering useful feedback.

Summary
The ordinary lifecycle of a technology begins with the inception of an idea, runs through the

creation of a proof of concept, and ends with creation of a product, usually in a for-profit venture.

However, there are some projects that could have widespread impact if they were scaled up, but

that are not ripe for traditional for-profit investment. Examples include the early development of

the integrated circuit and the human genome project, neither of which had clear commercial

applications at the time of their inception, but both of which required substantial, focused

research and development over -10 years to generate a commercializable technology. Projects such

as these cannot be pursued efficiently either in academia or in a for-profit setting. For these

projects, a new research structure is required that funds hyper-focused projects at a high level for

a strictly limited period of time, and that emphasizes specific metrics, collaboration, and scale. I

lay out the case for this kind of research non-profit, termed a focused research organization

(FRO), and propose a systematic program to identify promising targets for and to fund FROs.
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Introduction

Academia excels at producing new discoveries and novel ideas, but the vast majority ofnew ideas and technologies are never reproduced or achieve large-scale impact. In part,

this is because academic culture prizes individual recognition (as articulated most clearly

by (300)): projects that require larger coalitions of researchers are typically unpalatable to

academics. However, larger coalitions are vital for the development of scientific ideas (301), and it

has been noted by the draft roadmap for the second phase of the BRAIN initiative that

"dissemination [of new technologies] to the research community will be critical to the BRAIN

Initiative's success" (302). The question of how to incentivize researchers to participate in larger

coalitions and work towards long-term goals is still open.

Traditional for-profit companies can scale scientific or technological approaches and achieve

widespread societal and technological impact when the impact is profitable. However, there is a

large class of basic research projects, such as the Human Genome Project or the early development

of integrated circuits, that likewise need to be scaled in order to achieve impact, but that will only

realize their value on timescales beyond the horizons of typical venture investment, or that depend

for their impact on the results being public. The Human Genome Project was funded publicly and

the data was made available publicly, while the development of semiconductor technology was

funded in large part by industrial labs, such as Bell Labs. Modern examples include the mapping

of the mammalian connectome (61, 303, 304), or several other recently proposed neurotechnology-

oriented projects (6); the translation of nanofabrication technologies from basic materials research

to commercial applications (305); and the development of approaches for carbon capture or

geoengineering (306). These projects require large amounts of funding, a focused and specific

approach, and the contributions of many individuals with diverse skill sets, but do not lend

themselves to funding through traditional academic or for-profit mechanisms.

Here, I argue that in order to support these projects efficiently, a new structure for basic research

and development is necessary. I propose that these projects could be pursued in a dedicated

structure, termed a focused research organization (FRO), in which the incentives are specifically

aligned to enable highly-powered individuals to work together towards to achievement of specific

technological goals. These organizations would develop the key IP necessary for company

formation and then spin out for-profit companies, recouping the cost of development through the

revenues or equity thus generated.

An Example: Scaling Connectomics

As an example of a problem that cannot be scaled either in an academic or a traditional for-profit

setting, I will focus on connectomics. As discussed in Chapter 7, the connectome is the set of all

connections between neurons in the brain. The cost of the microscopes alone that would be

necessary to gather the raw data for the mouse connectome would likely be $5M-$50M, depending

on the method used, so the funding scale is beyond what can be mustered in academia. Collecting
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the connectome will require applying a single approach to a very large volume, so it will require a

specific and focused approach. Moreover, regardless of the method one uses to gather the data,

mapping the connectome will require a full-stack approach including basic biology and animal

handling, tissue processing, and computation, so it will be necessary to coordinate the efforts of

many individuals with disparate skill sets. Finally, the value of the connectome will likely only be

realized once the connectome is mapped, so it is not yet possible to lay out a business model or

propose a specific therapeutic target as would likely be necessary to establish a for-profit business.

Thus, the connectome seems to fit well into the category of projects I define above, which do not

lend themselves naturally either to the academic or for-profit models. Indeed, it has previously

been recognized that connectomics cannot be scaled within the context of academia, and an

ambitious IARPA-funded project termed MICrONS was established in 2016 with the goal of

mapping 1 mm 3 (0.2%) of the mouse brain (e.g. (307)). The MICrONS project achieved some but

not all of the objectives I lay out here, and I will discuss below its successes and failures.

Academia Incentivizes Novelty, not Focus
Academics are funded primarily by federal grants, on the basis of work published in academic

journals through a process of peer review. Innovation is one of the key criteria by which grant

applications and academic publications are judged. To fulfill the innovation criterion, academics

are incentivized to distinguish themselves from others and to pursue novel research. In the

academic sciences, novelty comes in the form of new discoveries, whereas in academic engineering

it comes in the form of proofs of concept.

This emphasis on novelty leads to a constant stream of new ideas coming out of academia. In

addition, the freedom to pursue novel ideas and achieve recognition for creativity is used to

incentivize academic researchers to work for low salaries. However, at the same time, the emphasis

on novelty and the incentive to distinguish oneself from others discourages collaboration and

sustained development of ideas once those ideas are published. In particular, this incentive

structure leads to three major limitations 4:

1) Accountability: There is little incentive in academia to produce work of higher quality

than what is necessary for publication in a journal, which is typically much lower than the

quality that is necessary to achieve impact. This is a fundamental source of the

reproducibility crisis: results do not need to be reproducible and techniques do not need to

be widely adoptable in order to be published, de-emphasizing quality.

4 I wish to distinguish the critiques I level here from prior critiques, including critiques of the inability of
academic funders to fund high risk/high reward research, or the general failings of the academic publishing
system. Although the conservative nature of funding organizations is certainly a challenge, I will critique a
different aspect of academia, which is the inability of academic labs to achieve goals that require a coherent
dedication of large amounts of resources.
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2) Transparency: Because the currency in academia is recognition, academia is plagued by

large first-mover effects, and as a result, academics are incentivized not to share their

progress with others. This leads to enormous inefficiencies as many labs often pursue the

same work in parallel. Moreover, researchers are unable to learn from the failures of others'

experiments.

3) Collaboration: Because of the strong emphasis on novelty and individual achievement, it

is very challenging to incentivize graduate students to collaborate with each other within a

lab, and it is challenging to incentivize labs to work together. Having many authors on a

paper dilutes individual recognition, which can be fatal for young and unestablished

scientists.

Together, the pursuit of novelty prevents academics from focusing their resources on specific

problems in the way that would be necessary to accomplish large-scale research objectives. For

example, in the case of the connectome, one could imagine that a project would start as a

collaboration between three labs, one doing tissue handling, one focusing on microscopy, and one

focusing on computation. However, the tissue handling group could quickly conclude that it would

be able to publish a first paper on their barcoding method without the other labs, and would

spend a year studying schizophrenia in order to collect the scientific discoveries necessary for that

paper. Their paper, a promising technological advance with a great example of a scientific

application, might come out in Science two years after the project began. Meanwhile, the

microscopy lab would likely dedicate their resources to inventing a new kind of microscope rather

than optimizing existing microscopes for the purpose, even if the existing microscopes would be

technically superior. Their efforts would be rewarded with a paper in Nature Methods. Finally, the

graduate student in the computational lab working on image processing might lose confidence that

she would ultimately get first-authorship credit for her contribution, and switch to a different

project analyzing cryo-EM data of the autophagosome. The project would lose institutional

knowledge and expertise, but she would rapidly gain two or three papers at ICML. In this

scenario, each lab does extremely well, but after two years, they are no further towards the

connectome than they were at the start of the funding cycle.

The problem was well-articulated in a recent article about the need for a national network of

neurotechnology centers to scale methods like brain activity mapping and connectomics. The

authors wrote, "Many of these essential operations [e.g. microscopy, computation] may not be

perceived, in isolation, as sufficiently cutting-edge to be fundable. Further, many will also be

inappropriate for graduate or post- doctoral researchers; instead, to ensure their reliable execution,

these activities could be better carried out by professional scientists and engineers. Yet it is

generally impossible to sustain skilled and experienced technical personnel through short-term

single-investigator funding" (6).
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Academia occupies a critical point in the innovation cycle, as the primary source of new ideas, but

it is unreasonable to expect that it can align the incentives of multiple disparate researchers and

labs to pursue complex, highly-coordinated objectives over an extended time period.

Focused Research Organizations
For these projects, that lie between academia and traditional for-profit ventures, I propose the

establishment of focused research organizations (FROs). These FROs would be small, well-funded

teams, incorporated with specific research objectives in mind. They would have dedicated space

and full-time scientific staff, and would be funded at a high level compared to typical academic

projects. They would be led by one or more principal investigators, who would be specific to the

project: to prevent dilution of attention and to avoid the funds being diverted to fund traditional

academic projects, the leaders of the projects would be prohibited from having active academic

appointments (although faculty could serve in an advisory role). The operation of these FROs

would have three defining characteristics:

Metric-driven: Impact depends more on quality than it depends on novelty. For that reason,
FROs should be driven by metrics: the amount of brain tissue that can be processed in a given

amount of time, for example, or the number of assays that reproducibly confirm the same

hypothesis. These metrics would be determined at the outset of the project (e.g. included in the

proposal to form the FRO), and would be used by a board of directors to monitor the progress of

the FRO over the funding period. Depending on the formal structure of the FRO, the metrics

would be used to insulate the FRO from traditional academic incentives or from market forces,
and bonuses could conceivably be tied to the attainment of metrics.

A corollary of being metric-driven, rather than novelty-driven, is that the FRO will be able to

align its incentives with academics easily. Collaboration with academics will lead to the

introduction of new ideas and insights into the FRO's pipeline, allowing it to improve its progress

towards its metrics, while the academics can leverage the data generated by the entity to publish

novel scientific findings. The FRO has no incentive to keep its progress secret except as necessary

to protect IP: once IP is filed, the FRO should communicate (and indeed, might be required to

communicate) with for-profits and academics as much as possible to solicit feedback or insight.

For example, whereas getting scooped can be fatal in an academic setting, just as being second to

market can be fatal for a for-profit, the FRO has no competitors since any progress towards the

final metric goals is considered success.

Team-oriented: Scaling projects requires alignment of the efforts of many talented individuals.

This is not possible in an academic setting, because academics are driven by authorship status on

papers, and are intrinsically disincentivized from collaborating in large groups. For this reason, it

is important that the incentive structure for individuals be closer to the structure found in a

company than to that found in academia. Individuals should receive monetary compensation
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comparable to that of for-profit companies. In addition, in lieu of the equity they would receive at

a for-profit, they should receive equity in the for-profit companies that spin out. Finally, they

should have opportunities to move into for-profit spin-outs as a way of affording them career

advancement opportunities.

Limited in scope: Tenured academic labs and for-profit companies are both unlimited in their

scopes - they can continue to operate as long as they are productive or profitable, respectively. By

contrast, the goal of the FRO is to achieve some key metrics necessary to transfer technology to a

for-profit. For that reason, it should be strictly limited in scope to avoid mission creep. If the

metrics were not met (or at least reasonably approached) at the end of a well-defined period, the

project and technology should be reevaluated. On the other hand, if the metrics were achieved,

the expertise obtained in the process should transfer into the for-profit companies that spin out.

As an example, a reasonable FRO in the biotech space might require $15M in direct costs over 3

years, sufficient to hire 10-15 people at an average salary of $150,000/yr, with sufficient reagents

and capital equipment expenditures.

Comparable Efforts

Non-Profit Research Organizations

Large, highly-focused basic research projects have historically been funded on an individual basis.

Very large-scale, highly-coordinated efforts are commonplace in the experimental physical sciences.

The LIGO gravitational wave observatory was constructed with a total cost of $620M, and the

Large Hadron Collider had a total cost of $13.25bn as of the discovery of the Higgs Boson, with an

operating budget of roughly $1bn/yr (308, 309). In the biological sciences, large-scale efforts are

much less common, although the Human Genome project was funded with an initial investment of

$3.8bn (6), and more recently, the ARMI regenerative medicine initiative (also a non-profit) has

raised more than $270M.

However, not every effort needs to be funded at such a large scale, and there is ample evidence

(especially in biology) that projects funded in the range of $5M-$20M can also achieve

transformative results. Several research institutes, such as the Allen Institute for Brain Research,
the Howard Hughes Medical Institute, and the Broad Institute, have made outsized contributions

to the fields of biology and neuroscience through the establishment of small, highly focused

research efforts. The Allen institute provided the neuroscience community with a compendium of

in-situ hybridization assays for the great majority of genes in the genome, which has proven to be

transformative for research, for a total cost on the order of $50M (38, 310, 311). It is now focused

on obtaining the first cubic millimeter of densely mapped connectome. Janelia has deliberately

established project teams with the goal of transforming proofs of concept into workable tools, and

has produced the Neuropixels electrophysiology device for a cost of -$5-10M (32), and the gCaMP

molecular calcium indicator for an unknown total cost (312), both of which are proving
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revolutionary for neuroscience. In the area of genomics, the Broad Institute has established several

cell atlasing efforts, which are likewise possible due to its relatively corporate structure (with a

high ratio of career to academic staff) and provision of core flow sorting and sequencing facilities.

These projects have mostly shared the criteria outlined above: strictly limited scope, a focus on

the team rather than on individual attainment, and a focus on metrics rather than on novelty.

And, notably, most of these projects likely could not have been accomplished in a traditional

academic or for-profit setting: as noted by the BRAIN 2.0 Working Group's draft report in 2019,
"making 1,000 units [of Neuropixels] exceeds $2 million, well out of the reach of most academic

labs," and "highlights a necessary departure from standard business models for dissemination of

lab-use neuroscience tools."

Despite these major successes, however, most institutes (including the Broad and Janelia) remain

dominated by the academic research model. As noted in a retrospective, Janelia has found that

"without an opposing force provided by management, there is a slow, steady drift toward a more

conventional environment increasingly focused on maintaining successful programs and

documenting individual achievement at the expense of risk taking and collaborative,

interdisciplinary work" (313). Systematically counteracting this drift and maintaining a culture of

high-impact, goal-driven, risk-taking work may require regular disassembly of the research

apparatus,

For-Profit Research Organizations

Many industrial labs exist that could also establish the kinds of projects described here.

Historically, Bell Labs and Xerox-Parc are the most famous examples, but modern examples

include Google X and DeepMind, both owned by Alphabet. However, development of technology

within an industrial lab can stymie innovation on the whole, since the IP may not be made readily

available for further development, which was the case with Bell Labs before the 1956 consent

decree (314). Moreover, most industrial research labs have become more focused in the past two

decades, working primarily on core product development (315).

In addition, for-profit companies (or investors) face challenges associated with the limited lifetime

of patents and the time-value of money. Patents in the US are limited to 20 years: even if the

genome had been deemed patentable, the patents would now be nearly expired, just as genetic

medicine is beginning to come of age. On the other hand, the time-value of money (i.e., the

opportunity cost of investing one's money in a research project that is unlikely to generate

substantial returns in the short term) was identified in the BRAIN 2.0 whitepaper as one of the

major factors working against for-profit development of neurotechnologies (302), since it inflates

the opportunity cost of projects with long development cycles relative to similarly-priced, shorter

projects. This makes it particularly hard for for-profit companies to justify investing in the kinds

of projects described here.
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Government Programs

DARPA and IARPA have attempted to achieve the goals outlined here by issuing grants (or

contracts) focused on deliverables, rather than on papers or novelty. The MICrONS project, for

example, is a connectomic initiative funded by IARPA in 2016, with $100M divided across three

teams for 5 years, and its results support the hypothesis that a dedicated research support

structure is necessary for scaling academia effectively. Of the projects, a $18.7M grant to the Allen

Institute appears to have succeeded in scaling a connectomic imaging technology to the level

needed to achieve the 1 mm 3 reconstruction goal. By contrast, a similarly-sized grant to a

collaboration between Carnegie Mellon, Cold Spring Harbor, Harvard, and MIT, has resulted in

multiple publications, but the publications from different institutions are largely unrelated to each

other (e.g. (286, 316) and a forthcoming publication from the Boyden lab) and generally include

authors from only one of the participating institutions, suggesting a failure to establish a highly

focused, team-oriented research culture. After 3 years of research, the progress of a third, $28M

project at Harvard is unclear. I conclude from this that an existing, non-academic structure for

research is likely necessary for large grants to be successful.

Moreover, I propose that although the focus on deliverables is preferable to a focus on novelty, a

focus on metrics (such as the rate of reconstruction, rather than the total reconstructed volume)

would have been even more preferable. For example, IARPA would certainly prefer that the Allen

Institute project work for 5 years on systems and technology improvements and finally produce a

tenth of a cubic millimeter in one day's work, implying the ability to scale to the whole brain in

5000 days (or fewer), than it would for the Allen Institute to apply an existing technology over 5

years to produce a single cubic millimeter, implying the ability to scale to the whole brain in 2,500

years.

Implementation

Implementing the program described here has two challenges: finding a sustainable structure for

the research organization, and finding a sustainable funding mechanism.

Structure

Non-profit or for-profit

The specific charter according to which FROs are established will determine their incentive

structure and susceptibility to corrupting forces, such as market forces or recognition incentives.

As described above, I am specifically interested here in the set of projects for which a traditional

for-profit funding model will not work, either because the time needed is beyond the time horizon

of a typical venture fund, or because there are is no clear profit model. Nonetheless, the question

remains as to whether FROs could be established within a for-profit setting.

If the FRO is established with a for-profit charter, then the charter must be established in a way

that will allow the FRO to pursue its founding objectives (i.e. the metrics) without being
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distracted by market forces or the whims of investors in the short term. The question, when

leveraging a for-profit model for basic science research, is the degree to which the basic research

objectives can be aligned with the profit-making incentives of the investors. If they cannot be

aligned, the for-profit will find itself under pressure to pivot to more easily achievable goals with

clear, marketable products, much in the same way that academics would find themselves under

pressure to pivot to lower-hanging paper opportunities. In the specific case of the connectome, one

could easily imagine that a for-profit would develop the automated microscopy and tissue handling

systems necessary to map the mouse brain at scale, but would then get distracted marketing those

systems or selling connectomes of small volumes as a service, rather than mapping the entire brain

of a single mouse, which is necessary to construct the complete connectome.

In rare cases, it may be possible to align basic research incentives with the incentives of for-

profits. Celera was founded in with the goal of sequencing and then patenting the genome. It

received $300M in funding and succeeded in completing a draft of the genome at the same time as

the publicly funded, $3bn genome project (although direct comparisons are unfair, since Celera

relied on much of the technology developed by the publicly funded project) (6, 317-320). Indeed,
if the connectome could be patented, there is no doubt we would be able to raise substantial

private funding to acquire it, and likewise for many other large-scale scientific endeavors.

Unfortunately, it was announced in March 2000 by Bill Clinton and Tony Blair that the sequences

of human genes would not be patentable, and the Supreme Court affirmed in 2013 that products

of nature, such as gene sequences, are not patentable, ruling out a Celera model for funding FROs.

Several intermediates between for- and non-profits exist, such as low-profit LLCs, which are for-

profit companies structured in a way that allows charitable foundations to donate money to them

while also receiving a return (321). The directors of social purpose corporations have a fiduciary

responsibility to a social purpose set forth in the articles of incorporation. Nonetheless, in both

cases, these models are intended for organizations that do not otherwise qualify as non-profits, for

example because they are in direct competition with for-profits (322). Neither option circumvents

the fundamental issue that the FROs by assumption lack a clear plan for making money in the

short term, before the metrics are achieved.

By contrast, the non-profit model provides several concrete advantages. Chief among these is the

ability to collaborate directly with academics; collaboration between for-profits and academic

institutions is often fraught with conflict-of-interest due to restrictions on for-profits benefiting

from public grant funding. In addition, non-profits are free and encouraged to share information

about their approach, and have more flexibility than for-profits in defining their overarching

incentives. Not surprisingly, most existing examples of FRO-like projects (see "Comparable

Efforts," above) took place in a non-profit context.
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More creative intermediates also exist. For example (see also "Value Capture," below): 25% of the

shares of Novo Nordisk and 75% of its voting shares are owned by the Novo Nordisk Foundation,

a non-profit that is funded through the profits of the Novo Nordisk for-profit pharmaceutical

company. In this way, Novo Nordisk is still able to attract private investment through the 75% of

shares that are owned by other shareholders, but a large percentage of its profits are reinvested in

biomedical research through the foundation (323). In a case in which a non-profit FRO would spin

off for-profit companies that it would partially own (see "Value Capture," below), for-profit

investors could be induced to invest in the non-profit by a guarantee to be able to invest in the

for-profits down the line, perhaps at a predetermined valuation.

Similar tradeoffs are on show in the case of OpenAl. OpenAl began as a non-profit corporation,

inspired by the goal of achieving full transparency. However, it switched to a "capped-profit"

corporation in 2019 as a way of attracting capital. Investors may now make money off of it, up to

a 100x return, after which any remaining returns will go to an overarching non-profit (324).

However, this model is unlikely to apply directly to the FRO case, because it is predicated on a

clear, existing business model.

Umbrella Organizations

One of the core concepts advocated here is that these focused research organizations should be

limited in scope, being completely disassembled at the end of a predetermined time. Assembly and

disassembly of a research apparatus incurs immense overhead, so it is not possible for endowed

institutions like the Broad Institute or Janelia to completely disassemble and reassemble

themselves on a regular basis. However, institutes such as these could serve as hosts for FROs,

providing them with lab space and administrative support, to reduce the costs of initiating the

projects. Alternatively, one could imagine the creation of a dedicated umbrella organization or a

government program with the specific goal of initiating and supporting FROs. The umbrella

organization would not conduct research itself, but would provide space, administrative support,

and possibly funding for FROs, allowing for the systematic renewal of the research mission

without the overhead associated with starting a new institute. Within the structure provided by

the umbrella organization, projects could remain focused on big ideas with measurable outcomes,

and would be free to fail fast.

Funding

Funding through gifts

Unless an existing institution wants to commit itself to trialing the program described here, initial

funding will need to come from philanthropists or donations from for-profits that believe in the

necessity of changing the academic research model. Donations from companies or venture funds

could be in exchange for a guarantee to be able to license (non-exclusively) the intellectual

property generated by the effort, similarly to the funding structure for the MIT Media Lab.
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Eventually, I hope that the federal government would recognize that in order to derive maximum

value from the academic work it invests in, it should invest in maturing the most promising

projects to the level of commercialization. The government could start a project to initiate e.g. 100

projects per year, each at a funding level of $5M/yr for 3 years with no (or strictly limited)

options for renewal. This would only require an annual budget of $1.5bn, a small fraction of the

total federal research budget. Federal grants to these projects would be clearly differentiated from

academic grants: for example, the presence of a clear, quantitative, and ambitious final metric

would replace innovation as a central criterion for evaluation of proposals, and in contrast to

many large federal grants, all participating researchers would be required to be primarily

employed by the same research organization to ensure opportunities for close coordination.

Projects that required additional funding to achieve maximum impact could subsequently seek out

philanthropic funding on the basis of their achievements. There is a clear interest in funding these

projects among federal agencies. The ARMI institute, a non-profit, raised $80M in defense funding

for work on regenerative medicine (325).

Value Capture

There is ample evidence that academia fails to capture the value it creates. For example,

companies funded by MIT graduates have $1.9tn in annual revenues; but revenues attributable to

MIT IP are only roughly $2bn/yr, and MIT only captures roughly 1%-2% of that value (326, 327).

There may be many reasons for this disparity, such as the limited lifetime of patents (328).

Regardless, only 0.2% of the revenues of companies founded by MIT graduates would suffice to

completely fund MIT's operating budget, including replacing tuition and federal research funding.

Non-profit FROs could actively seek to found for-profit companies, taking either a small

percentage (e.g. 0.5%) of the revenues of the for-profit or a large percentage of its shares. These

returns would almost certainly be realized long after the FRO has disbanded, but they could be

returned to the umbrella organization to fund the creation of future FROs. A similar model has

been adopted by Novo Nordisk, as described above. This conclusion mirrors a recent conclusion

from the Brookings Institution that most university technology transfer offices consume more

resources than they produce, and that universities should focus less on licensing technology and

more on founding startups (329).

Conclusion:

Given the considerations above, I propose the creation of a new, non-profit organization with the

specific goal of establishing the research facilities and the funding pipelines necessary to initiate

and support metric-driven, team-oriented FROs. The FROs should be funded at a total level of

$5M/year for 3 or 4 years, after which they should terminate, to allow for a ground-up

reevaluation of their approach and goals. In addition to the board of directors of the overarching

organization, each FRO should have its own board of directors, responsible for monitoring

progress towards the metrics and disbursing funding. The FROs should each have their own COO
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with experience from industry, to ensure that they function more as focused research efforts than

as open-ended academic ventures. The umbrella organization should take responsibility for

initiating FROs, and should focus on spinning off companies based on the research of the FROs. It

should maintain a large stake in companies spun off in this way, as a way of ensuring its future

existence and tying its future growth to the growth of its spinoffs. Along with capturing more of

the potential value in academic research, this system would have additional beneficial effects for

scientific culture. It would open a new pathway into basic science research for graduate students,

postdoctoral researchers, or researchers from the private sector with good ideas and management

experience but few high-impact publications.
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Chapter 9

Supplementary Information to Chapter 3

Materials and Methods

Overview

Our standard workflow, elaborated upon below, consists of gel synthesis, followed by incubation in

a patterning solution, typically a solution of fluorescein and a hydroxide in water. Subsequently,

the gel was patterned using 780nm excitation on a 2-photon microscope. Following patterning, the

patterning solution was removed, and different reagents (depending on the experiment) were

deposited in the patterned locations. In the case of the silver patterning, gold nanoparticles thus

anchored to the gel could then be grown by aqueous silver intensification, using the LI silver

chemistry. Finally, the gels were shrunken by exposure to solutions of HCl or divalent cations and

possibly dehydrated. For some experiments, different patterning reagents, deposition reagents, or

shrinking processes were used, as described below. The experimental procedure for each figure is

summarized in Table 9-3.

Throughout, all washes were performed on an orbital shaker at 80RPM except during the

shrinking and dehydration steps.

Gel Synthesis

Gels were synthesized as described elsewhere (37). In short, the monomer solutions are mixed from

stock solutions of 10x PBS, 5M NaCl, 38% (w/w) sodium acrylate, 50% (w/w) acrylamide, and

2% (w/w) N,N'-methylenebisacrylamide in concentrations given in Table 9-1 and Table 9-2, for

the 10x gel and 20x gel monomer solutions respectively. Solutions were aliquoted and stored at -

20 C. Prior to casting, the monomer solutions were kept at to 4 C to prevent premature

gelation. Concentrated stocks of ammonium persulfate (10% w/w) and

tetramethylethylenediamine (TEMED) (10% v/v) were diluted 50x into the monomer solutions.

The resulting gelation solution was then mixed thoroughly and added to a gel mold that was

-0.17 mm tall and -1 cm wide. Molds consisted of a glass slide for the bottom and a No. 1.5

coverslip for the top, using two additional coverslips as spacers. The mold was placed at 37 C for

1.5 hours to allow for gelation. Following gel synthesis, the gel was washed twice in -2-3 million

times its initial volume in water for 30 minutes to ensure full expansion.

Preparation for Patterning:

Following expansion, expanded gels were cut into 2cm squares and transferred into a glass-bottom

dish (Mattek, P50G-1.5-30-F) and incubated in 2ml patterning solution (below) twice for 30

minutes each time. Except where otherwise indicated (Figure 3-1M,Figure 3-2D,Figure 9-4A), we

used the 10x gel solution. Following incubation, a 40mm diameter coverslip (Fisher Scientific 22-

038-999) was placed over the well of the glass-bottom plate with the gels inside and excess
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patterning solution was withdrawn, in this configuration the coverslip pressed the gel against the

bottom of the plate helping to reduce sample drift and slowing evaporation.

For direct deposition of streptavidin into the gel, as in Figure 3-1J, Figure 9-1D, and Figure 9-3,

the patterning solution consisted of 333pM biotin-4-fluorescein (Biotium Cat. 90062) and 1.25mM

rubidium hydroxide (Sigma, 402393-25G).

For depositing NHS-activated fluorophores or reagents, such as biotin-NHS (Sigma, H1759), as in

Figure 3-1B,D,F,H,I,K,L, Figure 9-2D (red bar), Figure 3-3, Figure 3-4, Figure 9-lA-C, Figure 9-2,

Figure 9-5 and Figure 9-6, the patterning solution consisted of 500 pM 5-aminomethyl fluorescein

hydrochloride (Life Technologies, A-1353) and 2mM sodium hydroxide in water.

For depositing with maleimide-activated fluorophores and nanoparticles into the gel, as in Figure

3-2B-H and Figure 9-7, the patterning solution was made by reacting fluorescein-NHS (Life

Technologies, 46409) to cysteamine (Sigma, M9768-5G) at 1mM concentration in water for at

least 30 minutes prior to incubation.

Patterning:

Gels were patterned using an inverted Zeiss LSM 710 confocal microscope with a Chameleon Ultra

II femtosecond pulsed IR laser set to 780nm, using a 40x 1.1NA water immersion objective.

Within the Zen software, custom ROIs were defined for acquisition. The surface of the gel was

identified by a decrease in fluorescence relative to the external patterning solution. Standard

patterning conditions were 0.79ps pixel dwell time and a pixel size of 350nm, amounting to a

patterning speed of 44cm/s, in pre-shrink dimensions. Unless stated otherwise, all patterns were

generated using 2x line scanning. For Z-stacks, a 2pm step size was used.

Laser power varied depending on the intensity of patterning desired. The optimal laser power for

patterning depends strongly on the laser collimation, objective, gel composition and patterning

solution composition. However, because fluorescein retains some of its fluorescence upon

attachment to the gel, it is possible to optimize the patterning power quickly, by patterning

rectangular prisms with different powers (as in Figure 9-2B,D). In this case, the patterns will

begin to bulge outwards as the power increases, and one typically wants to choose the highest

power at which bulging is not evident. It is important that this calibration be performed using

patterns with similar depth to those that will ultimately be patterned, because the degree of

patterning when patterning several adjacent layers in the axial dimension will in general be

greater than the degree of patterning when patterning a single layer, because the patterning voxels
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from successive layers may overlap. Unless stated otherwise, we used 128mW laser power, as

measured using a power sensor (Thor Labs, S170C) in the image plane.

For patterns in Figure 3-1B,D,F,H,K,M, Figure 3-2B-H except D (red bar), Figure 3-3, and Figure

3-4A-C a Z-stack exposure was taken starting 10pm below the gel interface continuing 50p1m

inside of the gel to ensure that the patterns were at the surface of the gel for SEM visualization

performed at the end of the process.

For patterns in Figure 3-1I,J,L, Figure 3-2D (red bar), Figure 3-4D-F, Figure 9-lA-C, Figure 9-2,
and Figure 9-5, Z-stacks were performed starting 50pm inside the gel. Figure 3-1I,J,L, Figure 3-2D

(red bar), Figure 9-1A-C, Figure 9-2 and Figure 9-5 were done using Z-stacks that extend 50pm

further into the gel.

For the patterns in Figure 3-1I and Figure 9-2B,D, the laser powers are as follows, from left to

right, in mW. Top row: 52, 60, 68, 76. Second row: 84, 91, 99, 107. Third row: 114, 121, 128, 136.

Fourth row: 143, 149, 155, 161.

For the patterns in Figure 3-2B-D except Figure 3-2D (red bar), each line was scanned either once

or twice using the 40x objective, with variable laser power. The condition was indicated by tick

marks above and to the left of the triangles, as follows: 1 tick mark, 12.5% laser power with lx

line scanning. 2 tick marks, 12.5% laser power with 2x line scanning. 3 tick marks, 17.7% laser

power with 1x line scanning. 4 tick marks, 17.7% laser power with 2x line scanning. 5 tick marks,
25% laser power with 1x line scanning. For patterns in Figure 3-2E-H, we used 17.7% laser power

with 2x line scanning. To ensure that the patterns were at the surface of the gel for SEM

visualization, patterns in Figure 3-2 except Figure 3-2D (red bar) were generated as Z stacks with

2pm step size beginning below the surface of the gel and extending 50Pm into the gel.

For Figure 9-7, we used 25% laser power with 0.39pis pixel dwell time, with a 25x glycerol

immersion objective.

Deposition:

We applied a specific and complementary chemistry for deposition depending on the reactive

group patterned into the gel. Following patterning, the gels were washed four times in water for

fifteen minutes each time to remove excess patterning solution.

For depositing fluoronanogold-streptavidin (nanoprobes #7416, hereafter referred to as

fluoronanogold) onto patterns of 5-aminomethyl fluorescein as in Figure 3-1D,F,H,I,L, Figure 3-3,
Figure 3-4, Figure 9-2A-D, Figure 9-5, and Figure 9-6 the gel patterns were first stained with

biotin-NHS (Sigma, H1759). To do this the gels were washed in 1x PBS for 15 minutes before
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performing the conjugation with 10011M biotin-NHS in 1x PBS for three hours. Subsequently,

biotin-NHS was washed out three times in water for 30 minutes. Then, gels were washed once in

1xPBS and positioned in the middle of the Mattek glass well, to prevent the gel or the

fluoronanogold solution from coming into contact with the plastic rim of the dish. Fluoronanogold

was diluted 30x to 2.7pg/ml into 300pL of Ix PBS and placed on top of gel. The samples were

then left to stain for twelve hours on a shaker at room temperature in the dark. Fluoronanogold

was then washed out four times in 0.1x PBS for an hour each time before two additional 10

minute washes in water.

For depositing Atto 647N-NHS onto patterns of 5-aminomethyl fluorescein, as in Figure 3-1K,M,

gels were washed twice in Ix PBS for 15 minutes each time. Subsequently, Atto 647N-NHS

(Sigma,18373-1mg-F) was diluted to 50pM concentration in Ix PBS and washed onto the gel for

at least 4 hours. Because Atto 647N is positively charged and tends to partition into the

negatively charged gel, gels were then washed twice in 200mM NaOH for at least 30 minutes each

time, followed by three washes in Ix PBS for 30 minutes each time, followed by three washes in

water for 15 minutes. By contrast, after staining aminomethyl fluorescein with a negatively

charged dye, excess dye could simply be washed out in water.

For depositing DNA onto patterns of 5-aminomethyl fluorescein, as in Figure 9-lA-C, gels were

functionalized with biotin NHS at 1mM concentration in lx PBS overnight, followed by three

washes in water and two more washes in 1xPBS to remove excess reagent and prepare for the

streptavidin deposition. Atto 647N-labeled streptavidin (Sigma, 94149-1mg) was then washed onto

the gel at 40pg/ml in 1x PBS with 3% Bovine Serum Albumin overnight. The gel was then

washed in 2.5mM Tris-HCl, pH 8, three times for at least 1 hour each time to remove excess

streptavidin. DNA could then be deposited within streptavidin-functionalized gels by washing the

gels in a solution with 10pg/mL biotinylated DNA in Ix PBS for 3 hours. DNA was subsequently

removed by washing in water 3 times, for at least 15 minutes each time.

For depositing maleimide-activated gold nanoparticles into patterns of fluorescein-cysteamine, as

in Figure 3-2E,F,G,H, gels were washed twice in 1x PBS for 15 minutes each time. Subsequently,

maleimide-functionalized 1.4nm gold nanoparticles (Nanoprobes, 2020A) were diluted to 5pM

concentration in lx PBS and washed onto the gel overnight. Gels were then washed twice in water

for at least 30 minutes each time, transferred to a new container, and washed in water three more

times for at least 30 minutes each time to remove excess gold.

For depositing maleimide-conjugated fluorophores onto patterns of fluorescein-cysteamine, as in

Figure 9-7, gels were washed twice in Ix PBS for 15 minutes each time. Subsequently, maleimide-

functionalized dyes were washed into the gel in PBS at 100pM concentration, and left to stain

overnight. Gels were then washed three times in water, for at least 30 minutes each time.
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Intensification:

Following deposition of fluoronanogold, gels were transferred to a 35mm diameter petri dish

(Corning 353001). The gels were then washed in 50mM EDTA pH 5.5 for 30 minutes. Gels were

then immersed in 2mL LI silver solution (Nanoprobes #2013) and placed in a shaking incubator

at 20 C and 80 rpm for a variable amount of time, as described below. To halt intensification,

gels were washed briefly in water once -1-2 minutes and then three more times for 10 minutes.

Remaining silver ions in the gel were removed prior to shrinking by washing in 50mM sodium

citrate for one hour. Subsequently, the gel was washed four times in water for 10 minutes each

time.

For a given batch of samples, we determined the intensification time necessary to achieve the

optimal density of silver by performing intensification on test samples for each of 40, 45, 50, 55,
and 60 minutes. These test samples were then shrunken according to the protocols below,

dehydrated, and imaged on a Zeiss Ultra Plus or Supra55 FESEM. Samples that were grown for

too long would show bulging at the edges of the patterns as a result of steric hindrance during the

shrinking process. Thus, the optimal intensification time for the batch was determined as the

maximum growth time that did not lead to visible distortion in the SEM images. The remaining

samples in the batch were then intensified for the optimal amount of time. Although there was

significant batch-to-batch variability in the amount of intensification time necessary to achieve

high-quality metallized patterns, the within-batch variability was found to be small, and this

process robustly generated well-metallized patterns without distortion.

Following intensification of the remaining samples for the optimal growth time, samples could be

imaged as in Fig. 1F on a Nikon TI microscope with brightfield illumination, using an Orca Flash

4.2 camera set to 16 bit gain 1/4, a 0.5NA condenser, and a Nikon Plan Fluor 20x objective.

Shrinking:

For Figure 3-1K,M, Figure 3-2, with the exception of Figure 3-2D (red bar), and Figure 9-4, gels

were shrunken by washing first in 2mM HCl, followed by 20mM HCl and 200mM HCl, all in a

glass chamber. Subsequent experiments determined that the 20mM and 200mM HCl washes were

unnecessary to achieve full shrinking.

For gels in Figure 3-1L,H, Figure 3-3, Figure 3-4A-C, Figure 9-2E, Figure 9-3, Figure 9-5B, and

Figure 9-6, gels were shrunken using acid by transferring to a glass container and washing in 2mM

HCl with 0.05% Tween-20 for 6 hours and again for another hour. Finally, gels were washed in

2mM HCl for 30 minutes to remove residual Tween-20. Liquid was then removed and gels were

left out in open air until completely dry, typically for 2 hours.
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For Figure 3-4F and Figure 9-5A, the gel was shrunken, but not dehydrated, by washing in 2mM

HCl with 0.05% Tween-20 before imaging.

For Figure 9-1A-C and Figure 9-7 the gel was shrunken by washing 3x in 10x PBS for 15 minutes

followed by washing in IM MgCl2 3x for 15 min, and these gels were not dehydrated prior to

imaging.

Sintering:

To ensure conductivity of the silver structures, sintering was performed using the same

microscope, laser, and objective used for patterning. First, dehydrated samples were mounted on

carbon tape, such that only the edge of the substrate was attached to the tape, and placed face

down on a Mattek dish. This allowed patterns to be located on the microscope using transmission

illumination. The samples were then imaged and brought into focus using 1.5mW 2-photon

illumination intensity, with excitation at 780nm.

For samples in Figure 3-3 and Figure 3-4B, sintering was then performed by capturing a single

image of the field of view containing the pattern with a power of 15mW, using the same objective,

pixel size and dwell time as used for patterning. The data in Figure 9-6B represents a mixture of

samples for which sintering was performed with 15mW or 20mW exposures. As the difference

between the two groups was not found to be statistically significant, the data from the two groups

was lumped to improve the utility of the regression.

Imaging:

For Figure 3-lD,I,K, Figure 3-4D,E,F, and Figure 9-2C,D, samples were imaged on a Zeiss

LSM710 with a 32x 0.8NA water immersion objective in either fluorescence confocal mode, or

reflection confocal mode in the case of Figure 3-4E. The image in Figure 9-5A was obtained on the

same microscope with a 40x 1.iNA water immersion objective.

The post-shrink measurements of samples in Figure 3-iL and Figure 3-2D (red bar) were obtained

using the LSM710 with a 63x 1.4NA oil immersion objective with the sample immersed in oil, to

minimize optical aberrations.

The post-shrink image in Figure 9-5B was obtained using the LSM710 with a 40x 1.3NA oil

immersion objective with the sample immersed in oil to minimize optical aberrations.

For Figure 3-1B, Figure 3-2E, and Figure 9-2A,B multi-photon imaging at 780nm was performed

on the Zeiss LSM710, typically while the gels were still in the patterning solution. This imaging

was performed using much lower laser power than the power needed for patterning.

For Figure 3-1M and Figure 3-2B-D fluorescence imaging was performed using a Perkin Elmer

spinning disk (CSU-10 Yokogawa) confocal microscope. We used a Hamamatsu Orca-ER cooled
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CCD camera, and either a 10x 0.5NA objective or a 40x 1.15NA Plan Apo long working distance

water-immersion objective (Nikon).

Transmission optical images, including Figure 3-1F and images used for analysis in Figure 9-6B,
were taken on a Nikon TI microscope with Koehler illumination, using an Orca Flash 4.2 camera

set to 16 bit gain 1/4, a 0.5NA condenser, and a Nikon Plan Fluor 20x objective.

Images for Figure 9-1 and Figure 9-7 were taken on a Nikon TI widefield microscope, using an

Orca Flash 4.2 camera and a variety of objectives.

Scanning electron microscope images of the AuNP patterns (Figure 3-2F-H) were taken using a

FE-SEM (UltraPlus, Zeiss) with an Energy selective Backscatter (EsB) detector. Images from

Figure 3-1H, Figure 3-3B,C, and Figure 3-4A,B were taken using the same FE-SEM (UltraPlus,
Zeiss) with the SE2 detector. The atomic force microscopy (AFM) of the gel surface in Fig. S3B

was taken with tapping mode in air (Cypher ES, Asylum Research) with a silicon probe

(AC240TS, Olympus). Images for Figure 3-3A and Figure 3-4C were taken on a Zeiss FE-SEM

(Supra), with an SE2 detector.

Analysis:

Figure 3-1L,M: Data for the lateral shrink measurements in Figure 3-1L,M was obtained by

comparing the feature sizes of patterns as specified on the patterning microscope to the size of

patterns after shrinking and dehydration. Samples were chosen on the basis of the availability of

high-resolution optical or SEM images of the shrunken state, and came from a variety of different

experiments. The axial shrink amount for 10x gel was deduced by patterning a cross consisting of

354pm long lines of 14pm thickness and 300pm depth. The height of the shrunken pattern was

then measured on a confocal microscope and compared with the patterning dimensions to

determine the amount of shrink in the axial dimension.

The calculation of estimated binding sites patterned using our process was done using data from

Figure 9-2A as follows. The concentration of 5-aminomethyl fluorescein used to incubate the gels

is known to be 5001iM. We measured the fluorescence both inside and outside and used this ratio

to deduce that the internal concentration is 300pM. Then using what was known to be the

brightest pattern in Fig. S2A and S2B we calculated based on the difference in fluorescence in the

pattern from the background that the concentration must be greater than 79.2pM. We say greater

than because the patterning process bleaches an unknown fraction of the fluorescein molecules.

Thus, any measurement we make is likely lower than the actual values for sites patterned. To

calculate the final concentration of 277.2mM after shrinking we simply multiplied by the

volumetric shrink factor demonstrated in Figure 3-1L.

Figure 3-2D: Isotropy was measured for samples into which circles had been patterned. Yellow and

blue bars: bar graphs of the lateral isotropy of shrink for six 10x gels, and four 20x gels. Lateral
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isotropy was defined as the ratio of the longest axis of patterned circles (C, inset) to the shortest

axis, in the shrunken and dehydrated state. The isotropy was measured by visually determining

the longest axis of the circle, and comparing the diameter on that axis to the diameter on the

orthogonal axis. A mixture of gels patterned with aminomethyl fluorescein and fluorescein-

cysteamine were used. Gels were chosen for inclusion in the dataset on the basis of the availability

of images for analysis, prior to measuring the isotropy. No gels were excluded. Dots are

measurements for individual circles within a single gel; bars indicate mean + standard deviation

across individual circles within a single gel. Bars are rank ordered from left to right by degree of

anisotropy, for each shrink factor. Red bar: The axial isotropy for six 10x gels is shown in red. For

axial isotropy, we a produced a pattern with a "+" cross-section extending 300pm axially.

Analogously to the lateral isotropy measurements, then, the axial isotropy for a given pattern was

then defined as max(S/S', S'/S), where S is the ratio of the axial to lateral shrink factors, and S'

is the ratio of the mean axial to mean lateral shrink factors. For the axial isotropy data, dots

represent single measurements made on six different gels, and bar indicate mean + standard

deviation across gels.

Figure 3-2G,H: The widths of lines visualized with SEM were measured by using ImageJ to rotate

the image so that the lines were oriented vertically, and then taking the mean pixel value over the

vertical dimension for a clean segment of line. The average was performed over the longest clean

segment of line available in the image, usually several hundred pixels. The full width at half

maximum (FWHM) was then measured in pixels, and converted into a distance using the scale

bar provided by the SEM imaging software. The baseline used in the FWHM measurement was

found by linear interpolation between the baseline levels immediately on either side of the line

profile (Figure 3-2G). A vertical line was drawn between the highest point in the profile and the

interpolated baseline, and the midpoint of this line was chosen as the half-maximum. Lines were

excluded from our analysis when the magnitude of the background (for example due to charging)

prevented a determination of the FWHM. In addition, a subset of the lines in the resolution

pattern were excluded in every gel due to a consistent and reproducible error in the Zen software

that caused an extra line to be patterned directly below those lines, leading to a larger FWHM.

We reasoned that these lines could be excluded, because they represent a limitation of the

software rather than a limitation of the patterning and shrinking process.

Figure 3-3D,E, Figure 9-6A: For all conductive samples, conductivity was measured using a four-

point probe setup with a semiconductor parameter analyzer. The parameter analyzer was set to

measure the voltage and current at an electrode (V1, I1) placed on one side of the sample, and to

measure the voltage at two other electrodes, one (V2) placed adjacent to the first electrode, and

the other (V3) placed adjacent to a ground electrode. Voltage measurements were performed for

many different values of V1, typically spanning a range between 1mV and 1OOmV. The

measurements were occasionally noisy due to poor vibrational isolation. For this reason, in all
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cases, we calculated the conductivity as follows. The total resistance Rtot was determined by

linear regression of V1 against Ii. In addition, we regressed V3 against V1 to obtain RO/Rtot, and

V2 against VI to obtain (RO + Rsample)/Rtot, where Rsample is the resistance of the sample,

and RO is the contact resistance at the ground electrode. We then obtained the resistance Rsample

algebraically. For samples on which the measurements were clean, the values of Rsample

calculated in this way aligned closely to the values obtained simply by regressing V4-V2 against

I1. However, we found that our method was also capable of calculating the resistance in the

presence of significant vibrations.

Figure 9-6B: We measured the opacity of silverized patterns in the expanded state following silver

intensification using a transmission light microscope with Koehler illumination. Intensified silver

patterns appeared dark on the transmission microscope due to absorption by the silver patterns.

We calculated the opacity by measuring the average intensity 0 outside the pattern and the

average intensity I inside the pattern, and then defined the opacity as 1 - I/O, where I is the light

intensity passing through the metallized region and 0 is the light passing outside the metallized

region.

Multimaterial Patterning:

For multimaterial patterning as in Figure 3-1J and Figure 9-3 the patterning solution consisted of

33311M biotin-4-fluorescein (Biotium Cat. 90062) and 1.25mM rubidium hydroxide (Sigma,

402393-25G). The solution was washed into a fully expanded 10x gel for 30min prior to each

round of patterning.

To pattern the gel with biotin-4-fluorescein we used 255mW laser power, with a 40x 1.1NA

objective, and 1x line scanning. Patterns were generated as Z stacks with 2pm step size beginning

below the surface of the gel and extending 100ptm into the gel. Gels were then washed four times

in water for 20 minutes each time following patterning to remove excess patterning solution.

Then, gels were washed once in 1x PBS for 20 minutes, after which Alexa 488-labeled streptavidin

(for Figure 9-3) (Thermofisher, S11223), was diluted to a concentration of 33pg/ml in ixPBS,

added to the gel and left to stain for 12 hours; or fluoronanogold (for Figure 3-1J) was diluted into

PBS, added to the gel and left to stain for 12 hours. The gel was then washed in 0.1x PBS three

times for two hours each time and then twice in water for 20 minutes, to remove excess

streptavidin conjugates.

Subsequently, the gels were immersed again in the biotin-4-fluorescein solution, and patterned for

a second time as above. Excess fluorescein was removed by washing and streptavidin conjugation

proceeded identically to the first round. For Figure 3-1J, the second round of deposition used

33pg/ml Qdot655 Streptavidin (Thermofisher, Q10151MP), while for Figure 9-3 the second round

of patterning used Atto 647N-labeled streptavidin (Sigma, 94149-1mg). After washout the gels for

128

11,11 111 111 IN I III mill "M m"Ip" IF111 - I.-IMMMIMM Y- iq I .- 11 "1 1- - .. 1,1 1 1 . 11 1111.1111 . I I



both Figure 3-1J and Figure 9-3 were shrunken but not dehydrated in 1xPBS by washing once for

30min before imaging with a Zeiss LSM710 and a 40x 1.1NA objective.

In a multimaterial experiment of this type, some reagent from the second round of staining may

be deposited on reactive groups patterned during the first round of patterning. To determine the

magnitude of this "cross-talk," we relied on the data collected in Figure 9-3A. The magnitude of

the background-subtracted Atto 647N fluorescence signal at the first patterning location was

found to be 18.5% of the magnitude at the second patterning location. Because some of that signal

may be due to spectral overlap of the B4F or Alexa 488 fluorophores with the Atto 647N

fluorophore, this places an upper bound on the amount of cross-talk associated with this

multimaterial protocol at 18.5%. A similar measurement in which the two regions were

overlapping (Figure 9-3B) yielded 21% cross-talk.

Rehydration and hybridization to DNA gels:

For the experiment in Figure 9-1D, samples were treated identically to those in Figure 9-3, up

through the Alexa 488-streptavidin stain. Subsequently, gels were washed in 1x PBS and

incubated for 3 hours with biotinylated DNA carrying an Atto 565 dye at 10pg/ml. The sequence

of the DNA target was GATTATCCGTGACACAGTAGACTA, and the fluorophore was on the

3' side. Subsequently, the gel was washed in water three times, for 20 minutes each time. It was

then placed in 50mM sodium citrate. The gel was then transferred to a solution of 5mM citric

acid, and washed twice with this solution, for 30 minutes each time. It was then put in 2mM HCl

and 0.05% tween for 1 hour, rinsed in 2mM HCl without tween, and then dehydrated. The gel was

then imaged on a widefield epifluorescence microscope with a 20x objective. Imaging confirmed the

presence of the DNA in the gel at this point.

The gel was then rehydrated by washing in PBS twice for 30 minutes each time. Subsequently,

the gel was incubated in a solution of a probe DNA oligo carrying an Atto 647N dye at 10pg/ml.

The sequence of the probe DNA was CTACTGTGTCACGGATAATT, and the fluorophore was

on the 5' side. The gel was then washed twice in PBS for 30 minutes each time, and was then

imaged. Imaging at this step confirmed that the 647-labeled probe DNA oligo was in the gel at the

same location as the target. Moreover, we observed a substantial reduction in the fluorescence of

the 565-labeled target oligo, which we attribute to quenching of the Atto 565 fluorophore by the

probe DNA oligo, possibly by FRET.

To confirm that the probe oligo was attached to the target oligo by DNA hybridization, we

subsequently immersed the gel in 200mM NaOH for 2 hours. We then washed once in PBS and
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imaged again. We observed a large reduction in signal in the 647 channel, and a recovery of signal

in the 565 channel, consistent with a loss of the probe DNA oligo.
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A Fluorescein B Streptavidin

D
Hydrated and

Hybridized

03

100pm

Hydrated and
Denatured

03
Streptavidin 488

DNA Target 565

DNA Probe 647

100pm

Figure 9-1: Material conjugations of various kinds, shown after shrink but not dehydration, and imaged

with epifluorescent microscopy. (A) Image of fluorescein patterned into the gel in a defined, "microarray"-

type pattern. Scale bar on (B). (B) Image of fluorescently labeled streptavidin deposited in the same

sample. (C) Image of fluorescently labeled DNA deposited in the same sample. Scale bar on (B). (D) To

test whether DNA and streptavidin survive the HCl shrinking and dehydration protocol, a DNA oligo

functionalized with biotin and Atto 565 was attached to Alexa 488-labeled streptavidin. Subsequently, the

gel was shrunken with HC1, dehydrated, and imaged (left panel, showing DNA present in the dehydrated

state). It was then rehydrated, and a complimentary "probe" oligo labeled with Atto 647N was washed into

the gel (center). We attributed the decrease in the fluorescence of the Atto 565 signal at this stage to

quenching of the Atto 565 fluorophore by the probe DNA oligo, possibly by FRET. The gel was

subsequently washed in 200mM NaOH to denature the hybridized DNA and imaged (right), confirming a

loss of the 647 signal and a recovery of the 565 signal.

131

Figures

C DNA

Dehydrated

30pm



-4

i

A

0.9

0.8

80.7

00.6

LL 0.5

0.4

0.3

o0.2
z

0.1

0
50

B

Patterned Fluorescein Gradient

.. 9

... 4 y 7E-05x2 -0.0079x +
R

2
=0 9722

90 110 130 150
Laser Intensity (mW)

100 pm i auem

C Fluoronanogold Streptavidin Functionalized Gradient

0.9

' 0.8

0.7
0.6

LL0.5

0.3

0.2
0.2679 0. y 0.0002x2 -0.0228x + 0.6067

S .. R
2 

=0.9836

170 50 70 90 110 130 150 170
Laser Intensity (mW)

d Functionalized
100 pm

E

2 pm

Figure 9-2 Sixteen squares were patterned into a single gel, with each square being patterned with a

different laser power. Gels were imaged immediately after patterning, prior to washing the patterning

solution out of the gel, and were subsequently functionalized with fluorescent streptavidin. For laser powers

below a critical threshold, the density of the deposited material is approximately quadratic in the laser

power used. At higher powers, the density of deposited material shows an inversion and the patterns bulge
inwards, coinciding with ablation of the gel substrate, although other processes such changes in the

solubility of the gel or the fluorescein due to laser heating may play a role. (A) The average intensity of

bound fluorescein at each square is shown as a function of the laser power used in patterning. A quadratic
fit is shown for powers less than 110mW. A quadratic dependence of the fluorescence of bound fluorescein

on laser power is expected, because the rate of two-photon excitation depends quadratically on the laser

intensity. (B) The raw two-photon image of the squares is shown, powers increase from left to right and top
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to bottom (see Methods). Note that bulging of the squares while they are in the patterning solution appears
to correspond to the regime in which the patterned intensity no longer increases with increasing power. Also
note that the intensity of fluorescein in the patterned region does not decrease with increasing laser power,
unlike in the case of the deposited material (D). If the inversion phenomenon is due to gel ablation, the lack
of inversion in the fluorescein signal could be explained by fluorescein partitioning out of the gel, into the
void left by the ablation. (C) The average intensity of conjugated streptavidin is shown as a function of the
laser power used in patterning. A quadratic fit is shown for powers less than 110mW. (D) The raw confocal
image of the squares is shown, powers increase from left to right and top to bottom. Note that contraction
of the squares following deposition appears to correspond to the inversion region. (E) SEM image of 20x
shrunken and dehydrated gel, showing ablation of the gel substrate corresponding to a patterned square and
circle upon the use of excessive laser powers. In the course of developing the current manuscript, we found
that gel ablation in this way could be used to generate complex three-dimensional structures, but those
structures would not typically survive the dehydration process.
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A B

50pm 50pm

Figure 9-3: (A) Image of fluorescent streptavidin patterned in the second round of a multimaterial

patterning experiment. Only the fluorescence associated with the second round deposition is shown. The

square (top right) was patterned in the first round, and the circle (bottom left) was patterned in the second

round. The intensity of the square pattern is 18.5% of the intensity of the non-overlapping circle pattern,

indicating that the crosstalk between patterning rounds is at most 18.5%. (B) A similar pattern, showing

the channels associated with both the first (green) and second (red) patterning rounds at once. In this case,

the cross-talk was measured to be 21%.
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Figure 9-4: (A) Photographic images of a gel before (left) and after (right) shrinking and dehydration (20x

gel). (B) Atomic force microscopy (AFM) smoothness measurement performed on a lOx shrunken and

dehydrated gel, unpatterned, showing surface smoothness in the nanometer range across length ranges of -1

micron.
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A B

10pm 10pm
Figure 9-5 (A) Fluorescence image of a rectangular prism, imaged after HCI shrinking but prior to
dehydration. (B) The same pattern imaged after dehydration, showing additional shrinking in the axial

dimension, which causes the rectangular prism to become a cube.
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Figure 9-6: (A) Current-voltage (IV) curve shown for one sintered silver wire, determined by a four-point

probe measurement as shown in the inset. (B) The conductivity of silver wires (N=18, N=8 sintered with

20mW laser power; N=10 sintered with 15mW laser power) as a function of the opacity following

intensification, measured as 1 - I/O, where I is the light intensity passing through the metallized region and

O is the light passing outside the metallized region. The best fit is shown as a dashed red line, with R2=0.36

and F=8.99. The linear relationship is significant at the a=0.01 level.
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Expanded 6 mm

Shrunken 1mm

Figure 9-7: A large-area pattern of circles shown in the expanded (top) and shrunken but not dehydrated

(bottom) states. In total, the pattern in the shrunken state covered an area of roughly 1mm 2; a subset of the

total pattern is shown here since the pattern was repetitive. This sample was shrunken by a linear factor of

6 in a MgCl 2 solution. The differences in brightness observed in the expanded state are due to refraction of

the excitation light off the edges of the gel, and are not significant. The inhomogeneities in the shrunken

image are defects that arose during handling.
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Component Stock Conc. Amount (mL)

Sodium Acrylate 38% (w/w) 2.25

Acrylamide 50% (w/w) 0.5

Bisacrylamide 2% ww) 0.375

NaCI 5M 4

lOx PBS lox 1

Water 1.475

Final 9.6
Table 9-1 Formulation of the 10x gel mix. To this monomer solution, we would add 200uL of 10% (w/w)

APS and 200uL of 10% (v/v) TEMED to initiate polymerization, or 2uL of both APS and TEMED into

96uL of the monomer solution.
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Component Stock Conc. Amount (mL)

Sodium Acrylate 38% (w/w) 2.25

Acrylamide 50% (w/w) 0.5

Bisacrylamide 2% (w/w) 0.075

NaCI 5M 4

lOx PBS lox 1

Water 0.9

Final 8.725
Table 9-2: Formulation of 20x gel monomer solution. To this monomer solution, we would add 182uL of
10% (w/w) APS and 182uL of 10% TEMED to initiate polymerization, or 2uL of both APS and TEMED
into 96uL of the monomer solution. Note that this monomer solution was concocted by accident, so the
volume does not sum to 9.6mL as for the lOx gel mix.
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Sample Gel Patterning Patterning Deposition Intensificatio Shrinking Dehydrated Imaging

Stock Solution Parameters n

1B,D,F, lox 500pM 5- 128mW, 2x 30x dilution of Yes 2mM HCl 0.05% Yes B: LSM710, 40x LINA water immersion

H aminomethyl line scanning fluoronanogold to Tween-20 for 6 objective, visualizing fluorescein fluorescence

fluorescein and 2.7pig/ml in lx PBS hours; 2mM HCl with two-photon excitation at 780nm

2mM NaOH in 0.05% Tween-20 immediately after patterning, while gel is still in

water. for 1 hour; 2mM patterning solution. D: LSM710, 32x 0.8NA
HCl without objective, single-photon excitation, imaging

tween for 30 fluoronanogold following deposition, while gel is

minutes. expanded. F: Transmission optical microscopy

on a widefield microscope following

intensification, while gel is expanded. H: SEM
image of gel following shrinking and

dehydration.

I lox Varies, see 30x dilution of None None No Imaging fluoronanogold in expanded state. LSM

methods. fluoronanogold to 710 single photon excitation; 32x 0.8NA

2.7pg/ml in Ix PBS objective.

J lox 333pM biotin-4- 255mW, lx First Round: 30x None Ix PBS No Imaged after shrinking in PBS. LSM 710 single

fluorescein and line scanning dilution of photon excitation; 40x LINA water immersion

1.25mM fluoronanogold to objective. Two channels superimposed.

rubidium 2.7pg/ml in lx

hydroxide in PBS.

water

Second round:

33pg/ml Qdot655-

streptavidin in lx

PBS.

K lox, 500pM 5- 128mW, 2x 50pM Atto 647N in None 2mM HCl, No LSM710, 32x O.NA objective, single-photon

20x aminomethyl line scanning PBS followed by excitation, imaging Atto 647N, while gel is

(inset fluorescein and 20mM HCl, expanded or shrunken and dehydrated (insets).

only) 2mM NaOH in followed by

water. 200mM HCl.

L lox 128mW, 2x 30x dilution of None 2mM HCl 0.05% Yes Images of nanogold fluorescence were taken

line scanning fluoronanogold to Tween-20 for 6 using a LSM710 with a 63x 1.4NA oil immersion

2.7pg/ml in Ix hours; 2mM HCl objective with the sample immersed in oil to

PBS. 0.05% Tween-20 minimize optical aberrations, with single-photon

for 1 hour; 2mM excitation.

HCl without

141



tween for 30
minutes.

M 20x 128mW, 2x None None 2mM HCl, Yes Images of fluorescein fluorescence were taken

line scanning followed by using a spinning-disc confocal following

20mM HCl, shrinking and dehydration.

followed by
200mM HCl.

2B-H lox, 1mM Varies, see 5pM Maleimide- None 2mM HCl, Yes B,C: Imaging fluorescein fluorescence using a

20x Fluorescein- methods. activated gold followed by spinning-disc confocal either in the expanded

(2D, NHS, 1mM nanoparticles in 20mM HCl, state, or following shrinking and dehydration. E:

blue cysteamine, in PBS. followed by LSM710, 40x l.NA water immersion objective,
bars water, prepared 200mM HCL. visualizing fluorescein fluorescence with two-

only) 30 minutes photon excitation at 780nm immediately after

prior to use. patterning, while gel is still in patterning

solution. F: Imaging gold nanoparticles

deposited in the gel using an FE-SEM.

2D (red lox 500pM 5- 128mW, 2x 30x dilution of None 2mM HCl 0.05% Yes Images of nanogold fluorescence were taken

bar) aminomethyl line scanning fluoronanogold to Tween-20 for 6 using a LSM710 with a 63x 1.4NA oil immersion

fluorescein and 2.7pg/ml in lx hours; 2mM HCl objective with the sample immersed in oil to

2mM NaOH in PBS. 0.05% Tween-20 minimize optical aberrations, with single-photon

water. for 1 hour; 2mM excitation.

HCl without

tween for 30
minutes.

3, 4A-C lox 500pM 5- 128mW, 2x 30x dilution of Yes 2mM HCI 0.05% Yes 3A,B, 4A,C: SEM with an SE2 detector, prior

aminomethyl line scanning fluoronanogold in Tween-20 for 6 to sintering. 3C, 4B: SEM with an SE2 detector,

fluorescein and lx PBS hours; 2mM HCl following sintering.

2mM NaOH in 0.05% Tween-20

water. for 1 hour; 2mM

HCI without

tween for 30

minutes.

142



4D-F lox 500pM 5- 128mW, 2x 30x dilution of Yes 2mM HCl with No D: LSM710, 32x 0.8NA objective, single-photon
aminomethyl line scanning fluoronanogold in 0.05% Tween-20 excitation, imaging fluoronanogold following
fluorescein and lx PBS deposition, while gel is expanded. E: LSM710,
2mM NaOH in 32x 0.8NA objective, single-photon excitation,
water. imaging reflected light following intensification,

while gel is expanded. F: LSM710, 32x 0.8NA
objective, single-photon excitation, imaging

fluoronanogold shrinking but not dehydration.

S1A-C lox 500pM 5- 128mW, 2x 40pg/mL Atto None Three washes in No Imaged on a widefield fluorescence microscope.

aminomethyl line scanning 647N-labeled 1xPBS, followed

fluorescein and streptavidin in by a wash in 1M
2mM NaOH in PBS, followed by MgCl 2.

water. biotinylated DNA.
See methods.

SlD lox 333pM biotin-4- 255mW, 40x 33pg/ml fluorescent None Citric acid, Yes, Fluorescent streptavidin and fluorescent DNA
fluorescein and 1.iNA water streptavidin followed by 2mM followed by were imaged with an epifluorescence microscope

1.25mM immersion conjugates in lx HCl with 0.05% rehydration, and 20x magnification in the dehydrated state,
rubidium objective. lx PBS, followed by tween. see and then in PBS.

hydroxide in line scanning biotinylated DNA, methods.

water see methods.

S2B,D lox 500pM 5- Varies, see 30x dilution of None None None B: LSM710, 40x l.NA water immersion

aminomethyl methods. fluoronanogold in objective, visualizing fluorescein fluorescence

fluorescein and lx PBS with two-photon excitation at 780nm

2mM NaOH in immediately after patterning, while gel is still in

water. patterning solution. D: Imaging fluoronanogold

in expanded state. LSM 710 single photon

excitation; 32x 0.8NA objective.

2E 20x 1mM Exact power N/A None 2mM HCl, Yes SEM with an SE2 detector

Fluorescein- is unknown, followed by

NHS, 1mM but it was 20mM HCl,
cysteamine, in within the followed by

water, prepared inversion 200mM HCl

30 minutes region of

prior to use. S2C.

S3 lox 333pM biotin-4- 255mW, 40x 33pg/ml fluorescent None lx PBS No Imaged after shrinking in PBS. LSM 710 single

fluorescein and 1.1NA water streptavidin photon excitation; 40x lNA objective.

1.25mM immersion conjugates in Ix

rubidium objective. lx PBS.

line scanning
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hydroxide in

water

S4A 20x None None None None 2mM HCl, Yes Photographic images before (left) and after

followed by (right) shrinking.

20mM HCl,
followed by
200mM HCl

S4B lox None None None None 2mM HCl, Yes AFM image

followed by
20mM HCI,
followed by
200mM HCl

S5 lox 500pM 5- 128niW, 2x 30x dilution of None 2mM HCI 0.05% Yes A: LSM710, 40x 1.lNA water immersion

aminomethyl line scanning fluoronanogold to Tween-20 for 6 objective, visualizing fluoronanogold with single

fluorescein and 2.7pg/ml in lx PBS hours; 2mM HCl photon excitation after shrinking but before

2mM NaOH in 0.05% Tween-20 dehydration. B: Images of nanogold fluorescence

water. for 1 hour; 2mM were taken using a LSM710 with a 40x 1.3NA
HCl without oil immersion objective with the sample

tween for 30 immersed in oil to minimize optical aberrations,
minutes. with single-photon excitation.

S7 lox 1mM 25% laser 100pM Alexa-488 None IM MgC2 No Widefield fluorescence images in expanded or

Fluorescein- power, 0.39ps maleimide in PBS. shrunken states.

NHS, 1mM pixel dwell

cysteamine, in time, glycerol

water, prepared immersion

30 minutes objective.

prior to use._IIIIII

Table 9-3: Summary of experimental procedures used to generate each figure. Figures labeled with "S" refer to chapter 9, while those without "S"

refer to chapter 3.
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Chapter 10

Supplementary Information to Chapter 4

Materials and Methods:

Beads:

Bead barcodes were synthesized by the ChemGenes Corporation on one of two polystyrene

supports (Agilent PLRP-S-1000A 10 prm particles or 10 pm custom polystyrene from AMBiotech).

Oligonucleotide synthesis was performed as described for Drop-seq (25). Beads were used with

one of the two following sequences:

Sequence 1:

5'- PEG Linker- TTTT-PC-

GCCGGTAATACGACTCACTATAGGGCTACACGACGCTCTTCCGATCTJJJJJJTCTTCAG

CGTTCCCGAGAJJJJJJJNNNNNNNNT30

Sequence 2:

5'- Linker-

TTTTTTTTCTACACGACGCTCTTCCGATCTJJJJJJJJTCTTCAGCGTTCCCGAGAJJJJJJJ

NNNNNNNNT30

"PC" designates a photocleavable linker; "J" represents bases generated by split-pool barcoding,

such that every oligo on a given bead has the same J bases; "N" represents bases generated by

mixing, so every oligo on a given bead has different N bases; and "T30" represents a sequence of

30 thymidines.

Puck Preparation:

Pucks were prepared in batches of 20 to 30, which were then stored dehydrated at 4C. Glass

coverslips (Bioptechs, 40-1313-0319) were attached to a miniature centrifuge (USA

Scientific 2621-0016) using double sided tape. Subsequently, the coverslip was cleaned by

spraying with 70% ethanol and wiping with lens paper (VWR 52846-007). A spray-on silicone

(Techspray 2102-12S) formulation was then applied to the coverslip, the cover to

the minifuge was closed, and the minifuge was turned on for 10 seconds to spin coat the silicone

onto the glass. The minifuge was then turned off and the cover opened, and liquid tape

(Performix 24122000) was sprayed onto the coverslip. The minifuge was again closed and turned

on for 10 seconds. The coverslip was then carefully removed from the minifuge, and a gasket (3

mm diameter holes from Grace Biolabs, CW-50R-1.0) was placed on top of the coverslip and

pressed down. Beads were pelleted and washed twice in 500ul ultrapure water (Thermofisher,

10977015), and resuspended to a final concentration of 100,000 beads/uL. 10 pl of bead solution
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was pipetted into each position on the gasket. The coverslip-gasket filled with beads centrifuged at

40C, 850g for at least 30 minutes until the surface was dry.

The gasket was carefully removed from the dried coverslip. Gentle pipetting of water directly onto

the pelleted beads removed all beads except for those directly in contact with the liquid tape

layer. The resulting bead monolayer was allowed to dry, generating the final puck. Beads removed

in this way could be stored at 4C for later use. As much water was removed from the resulting

pucks as possible, and the pucks were left to dry.

Puck Sequencing:

Puck sequencing was performed using SOLiD chemistry in a Bioptechs FCS2 flow cell using a

RP-1 peristaltic pump (Rainin), and a modular valve positioner (Hamilton MVP). Flow rates

between 1mL/min and 3mL/min were used during sequencing. Imaging was performed using a

Nikon Eclipse Ti microscope with a Yokogawa CSU-W1 confocal scanner unit and

an Andor Zyla 4.2 Plus camera. Images were acquired using a Nikon Plan Apo 10x/0.45

objective. After each ligation, images were acquired in the following channels: 488nm excitation

with a 525/36 emission filter (MVI, 77074803); 561nm excitation with a 582/15 emission filter

(MVI, FFO1-582/15-25); 561nm excitation with a 624/40 emission filter (MVI, FFO1-624/40-25);

and 647nm excitation with a 705/72 emission filter (MVI, 77074329). The final stitched images

were 6030 pixels by 6030 pixels.

Sequencing consisted of three steps: (1) primer hybridization; (2) ligation; and (3) stripping.

During primer hybridization, a primer was flowed into the flow cell at 5 PM concentration in 4x

SSC for 20 minutes. Subsequently, the flow cell was washed in 3 mL of SOLiD buffer F.

Following buffer F wash, ligation mix (recipe below) was flowed into the chamber and allowed to

sit for 20 minutes, before being flowed back into its original reservoir. Ligation mix was reused for

-10 ligations before being replenished. Following ligation, the flowcell was washed again in buffer

F. Then, to cleave the fluorophore off the ligated SOLiD oligo, we flowed 1.5 mL of SOLiD buffer

C into the chamber, followed by 1.5 mL of SOLiD buffer B, and repeated this cleave step once

again. We then washed the flowcell in buffer F and repeated the ligation step. After the second

ligation step, 10 mL of 80% formamide in water was flowed into the flowcell and left for 10

minutes. The flowcell was then washed in instrument buffer, and the process repeated with the

next primer.

In order to sequence bead barcodes, we performed 2 ligations on each of 10 primers (Table 10-1),

of which 6 were "constant" bases (i.e., the first ligation on a primer recessed by 2 or more
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nucleotides, which only sequence the primer and thus contain no information about the barcode

sequence). The final bead barcodes were 14 bases long.

Each 3mm puck presented in this manuscript consists of roughly 70,000 beads, with a total cost of

less than $0.10. Moreover, roughly 250uL of SOLiD SR-75 sequencing oligo is required to

sequence a batch of 30 pucks. With other necessary reagents, each 3 mm puck requires roughly

$10 of SOLiD sequencing reagents. However, each 3mm puck also requires roughly 300 million

reads, or -$200-$500 worth of sequencing using the Illumina Novaseq platform. Thus, the

dominating cost of Slide-seq is the cost of short-read sequencing.

Ligation mix:

1x T4 DNA Ligase Buffer (Enzymatics)

6 U/uL T4 DNA Ligase (Rapid) (Enzymatics)

40x dilution of SOLiD SR-75 sequencing oligo (Life Technologies).

Image Processing and Basecalling:

All image processing was performed using a custom-built processing suite in Matlab. Briefly, we

acquired one image per puck after each ligation, and each image contained four color channels.

First, color channels were co-registered to each other by thresholding the images and maximizing

the cross-correlation between the thresholded images. Subsequently, for each puck, the images of

each ligation were registered to the image of the first ligation using a SIFT-RANSAC image

registration algorithm based on the VLFeat SIFT package in Matlab (330). Registered images

were then base-called on a pixel-wise basis, as follows. First, the intensities in the Cy3 channel

were multiplied by a factor of 0.5 and subtracted from the intensities in the TxR channel, which

accounts for crosstalk between the channels resulting from the excitation of TxR using the

561nm laser. Furthermore, for even-numbered ligations, the image of the previous ligation was

multiplied by a factor of 0.4 and then subtracted on a channel-by-channel basis from the image of

the even ligation. Each pixel was then called by intensity. For pucks made using the 180402 bead

batch, we further enforced the expected base balance by including an additional step in which the

intensities of the dimmest channels were progressively increased until each channel accounted for

between 20% and 30% of the pixels in the center of the image.

Beads were subsequently identified from the base-called images as follows. Each pixel was

assigned a number, the base 5 representation of which corresponds to the bases that were called at
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that pixel on each ligation. Every such number that occurred on at least 50 connected pixels in

the image was determined to be a bead, represented by the centroid of the connected cluster.

SOLiD barcodes were then mapped to Illumina barcodes using a custom-built Matlab application

that identifies the pairwise distance between all members of the two sets of barcodes. Pairs

of SOLiD and Illumina barcodes were saved for further analysis if: (1) the two barcodes were

separated by at most two Levenshtein distance units; (2) there were at least 10 transcripts

identified in Illumina sequencing with that barcode; and (3) the mapping between the barcodes

was unique, i.e. if there were no other barcodes at equal or lower edit distance to either barcode.

Tissue Handling:

Fresh frozen tissue was warmed to -20 C in a cryostat (Leica CM3050S) for 20 minutes prior to

handling. Tissue was then mounted onto a cutting block with OCT and sliced at a 50 cutting

angle at 10 pm thickness. Pucks were then placed on the cutting stage and tissue was maneuvered

onto the pucks. The tissue was then melted onto the puck by moving the puck off the stage and

placing a finger on the bottom side of the glass. The puck was then removed from the cryostat

and placed into a 1.5 mL eppendorf tube. The sample library was then prepared as below. The

remaining tissue was re-deposited at -80 C and stored for processing at a later date.

Library preparation:

RNA Hybridization:

Pucks in 1.5 mL tubes were immersed in 200 11L of hybridization buffer (6x SSC with 2 U/p1 L

Lucigen NxGen RNAse inhibitor) for 15 minutes at room temperature to allow for binding of the

RNA to the oligos on the beads.

First Strand Synthesis

Subsequently, first strand synthesis was performed by incubating the pucks in RT solution for 1

hour at 42 C.

RT solution:

75 pL H20

40 pL Maxima 5x RT Buffer (Thermofisher, EP0751)

40 pL 20% Ficoll PM-400 (Sigma, F4375-10G)
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20 11L 10 mM dNTPs (NEB N0477L)

5 pL RNase Inhibitor (Lucigen 30281)

10 pL 50 pM Template Switch Oligo (Qiagen #339414YCO0076714)

10 pL Maxima H- RTase (Thermofisher, EP0751)

Tissue Digestion:

200 pL of 2x tissue digestion buffer was then added directly to the RT solution and the mixture

was incubated at 37C for 40 minutes.

2x tissue digestion buffer:

200 mM Tris-Cl pH 8

400 mM NaCl

4% SDS

10 mM EDTA

32 U/mL Proteinase K (NEB P8107S)

Library Amplification

The solution was then pipetted up and down vigorously to remove beads from the surface, and the

glass substrate was removed from the tube using forceps and discarded. 200 pL of Wash Buffer

was then added to the 400 pL of tissue clearing and RT solution mix and the tube was then

centrifuged for 3 minutes at 3000 RCF. The supernatant was then removed, the beads were

resuspended in 200 pL of Wash Buffer, and were centrifuged again. After repeating this procedure

an additional 2 times, the beads were moved into a 200 1iL PCR strip tube, pelleted in a minifuge,

and resuspended in 200 pL of water. The beads were then pelleted and resuspended in library

PCR mix and PCR was performed.

Wash Buffer:

10 mM Tris pH 8.0

1 mM EDTA

0.01% Tween-20
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Library PCR mix:

23 pL H20

25 pL of 2x Kapa Hifi Hotstart ready mix (Kapa Biosystems KK2601)

1 pL of 100 pM Truseq PCR handle primer (IDT)

1 pL of 100 pM SMART PCR primer (IDT)

PCR program:

95 C 3 minutes

4 cycles of:

98 C 20 s

65 C 45 s

72 C 3 min

9 cycles of:

98 C 20 s

67 C 20 s

72 C 3 min

Then:

72 C 5 min

4 C forever

PCR cleanup and Nextera Tagmentation

The PCR product was then purified by adding 30 pL of Ampure XP (Beckman Coulter A63880)

beads to 50 pL of PCR product. The samples were cleaned according to manufacturer's

instructions and resuspended into 10 pL of water. 1 1pL of the library was quantified on an Agilent

Bioanalyzer High sensitivity DNA chip (Agilent 5067-4626). Then, 600 pg of PCR product was

taken from the PCR product and prepared into Illumina sequencing libraries through

tagmentation with Nextera XT kit (Illumina FC-131-1096). Tagmentation was performed

according to manufacturer's instructions and the library was amplified with primers Truseq5 and

N700 series barcoded index primers. The PCR program was as follows:
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72'C for 3 minutes

95'C for 30 seconds

12 cycles of:

95'C for 10 seconds

55'C for 30 seconds

72'C for 30 seconds

72'C for 5 minutes

Hold at 100C

Samples were cleaned with AMPURE XP (Beckman Coulter A63880) beads in accordance

with manufacturer's instructions at a 0.6x bead/sample ratio (30 jiL of beads to 50 pL of sample)

and resuspended in lOuL of water. Library quantification was performed using the Bioanalyzer.

Finally, the library concentration was normalized to 4nM for sequencing. Samples were sequenced

on the Illumina NovaSeq S2 flowcell with 12 samples per run (6 samples per lane) with the read

structure 42 bases Read 1, 8 bases i7 index read, 50 bases Read 2. Each puck received

approximately 200-400 million reads, corresponding to 3,000-5,000 reads per bead.

Calculation of Bead Packing:

To estimate the packing fraction of the beads, we imaged 10 pucks with 488 nm light on the same

microscope mentioned above after deposition onto the surface and prior to in situ sequencing. The

signal was normalized to background and the image was binarized. The percent packing was

reported as the fraction of the image occupied by the beads divided by the theoretical packing

fraction of 0.9069 for dense packing of uniform spheres on a 2D surface. The mean and standard

deviation of packing are reported in Figure 10-1D.

Clustering Analysis:

For clustering of the pucks shown in Figure 4-1C,D and Figure 10-2, highly variable genes were

identified by running FindVariableGeneso in the Seurat package in R, using a y.cutoff of 0.7 in

liver, 0.6 in kidney and olfactory bulb, and 0.5 in hippocampus and cerebellum. For the

hippocampus and cerebellum analyses, variable genes identified from the published datasets from

these tissues were also included. Non-negative matrix factorization was performed using the

NNLM package in R, on standardized, log-transformed values, with a k of 8 in liver and kidney, 6
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in olfactory bulb, 13 in cerebellum, and 20 in hippocampus. For each bead, the largest factor

loading from NMF after L2 normalization was used to assign cluster membership.

Diffusion Analysis and Comparison of smFISH, scRNAseq and Slide-seg:

An image of Slide-seq bead signal density was generated through plotting the pixel intensity of

each bead as a linear representation of the number of UMIs captured (180602_17, 180602_20,

1806116). Single molecule FISH was performed on the serial section using HCR v3.0 (Molecular

Technologies) with probes against three strong CAI markers (Slcl7a7, Ociad2, Atp2bl) and co-

stained with DAPI. Images were taken of the tissue sections and profile was taken across a region

of CAl for the Slide-seq image, the DAPI image, as well two of the three genes (Slc17a7; Atp2bl)

used in the FISH data. The full width half maximum (FWHM) of the profile was then calculated

for 10 such profiles across the CAl for both Slide-seq and the serial tissue sections in both DAPI

and FISH (Figure 10-5).

To quantify the efficiency of mRNA capture, we compared the counts of these genes in Slide-seq,

scRNAseq and smFISH. FISH images were taken using a 40x 1.15 Nikon Plan Apo water

immersion objective. Two fields of view (FoV, 652 lim x 652 pm) were imaged across CAl for

each of the genes tested (Slci7a7, Ociad2, Atp2bl) for each of the pucks for a total of six regions.

Transcript counts for smFISH data were obtained by using StarSearch

(rajlab.seas.upenn.edu/StarSearch/). Slide-seq data from the same FoV on the puck corresponding

to the serial section was counted for the same marker genes (Slc]W7a7 Ociad2, A tp2bl). Using the

DAPI image for each of the FoV in CAl, we estimated the number of cells present in the FoV.

Finally, a random sample of CAl neurons from Drop-seq was taken equal to the number of cells

present in the field of view and the sums for the three genes listed were taken across all single cell

barcodes. The result of the total counts is shown as a bar plot (Figure 10-4E) highlighting the

differences in counts between the technologies.

Comparison to Bulk sequencing:

To compare the capture of Slide-seq to bulk RNAseq dat (Figure 10-4C), we used a stranded

mRNA Truseq kit (Illumina #20020594) to prepare stranded PolyA selection libraries from a

dissected sagittal mouse hippocampus. The libraries were sequenced and transcripts per million

(TPM) for each gene were generated using Salmon post alignment with STAR (331). For Slide-seq

data, average transcripts per million (ATPM) was computed by summing counts for each gene,

across all beads on a puck, and dividing by the sum of all UMIs on the puck, and dividing by 1

million (total UMI count/1million). The per-gene distribution for each of these values (bulk TPM

and Slide-seq ATPM) was plotted and linear regression was performed giving an R = 0.89.
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Comparison to scRNAseq:

To compare the capture of Slide-seq to scRNAseq, as in Figure 10-4A,B,D, we extracted cells

assigned to the CAI cluster from hippocampal atlas data (24). For five hippocampal pucks

(180531_13, 180531_17, 180531_22, 180602_20, and 1806204) we isolated beads in CAI by

hand cropping. We then plotted the distributions of the number of transcripts per bead for each of

the three genes considered (Sic17a7; Atp2bl, and Ociad2), and the total number of transcripts per

bead, for the atlas (Figure 10-4A) and Slide-seq (Figure 10-4B) data. Figure 10-4D was likewise

generated by plotting the mean expression per bead in the atlas CAI data against the mean

expression per bead in the Slide-seq CAI region for every gene in both the atlas and Slide-seq

datasets. Note that for Figure 10-4A,B,D, expression levels for Slide-seq are averaged over the 5

pucks listed above.

Calculation of UMI per cell estimates:

For calculation of the total UMIs captured normalized to total cells in Figure 10-3D and Figure

10-4F, we used DAPI images of serial stained tissue sections to estimate the total number of cells

within a puck. Segmentation was performed in ImageJ by first scaling signal to background and

binarizing the image followed by applying a 1.5 lim Gaussian Blur and a watershed transform.

Nuclei were counted only if they had a diameter greater than 2 pm and less than 12 pm. The total

number of UMIs from the puck was then divided by the number of nuclei obtained to generate the

statistic total transcripts/total cells.

Cell Type Deconvolution (NMFreg):

For each bead, the contribution of each cell type to the RNA on that bead was computed using a

custom method, implemented in Python, termed NMFreg (Non-Negative Matrix Factorization

Regression). The method consisted of two main steps: first, single-cell atlas data previously

annotated with cell type identities (24) was used to derive a basis in reduced gene space (via

NMF), and second, non-negative least squares (NNLS) regression was used to compute the

loadings for each bead in that basis.

To perform NMF on the single-cell data, highly variable genes were first selected as in (24), and

NMF was performed using a specified number of factors (see below). Each factor was then

assigned to the cell type whose cells from (24) most frequently had their largest loading on that

factor. Next, for each Slide-seq bead, we first computed the bead loadings in the basis using

NNLS. The resulting matrix of factor loadings (with dimensions of the number of beads by the

number of factors) was scaled so each factor had unit variance. Finally, the cell type of the bead

was assigned based on the identity of the maximum factor loading.
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For the implementation of NMFreg in Figure 4-2B,C, an adult mouse single-cell cerebellum

dataset (24) was used to define the NMF basis, using a k (factor number) of 25. The published

cluster identities from this tissue were modified to remove clusters of cells outside of the Slide-seq-

assayed anatomical region (e.g., cells from midbrain not seen on the puck) and to reduce the

number of subpopulations. Specifically, all endothelial populations were merged together into one

population, as were non-Bergmann astrocytes and oligodendrocytes. Interneurons not annotated

as unipolar brush or Golgi (clusters 3-1, 3-2, 3-3, and 3-4)-which could not be assigned to a

specific type in the published dataset-were also grouped together. Only Slide-seq beads with

more than 15 unique genes were used in NNLS regression. For the implementation of NMFreg in

Figure 2D, an adult hippocampus scRNA-seq dataset (24) was used in NMF setting k to 30 with 5

variable gene cutoff for bead inclusion. The first-level published cluster identities were used for

bead assignment to cell types.

For the implementation of NMFreg in Figure 4-2D, Figure 4-3 and Figure 4-4, the data were

processed using published cerebellum (Figure 4-3) or hippocampus 24) (Figure 4-2D, Figure 4-4)

datasets. In Figure 4-2D, Figure 4-3, and Figure 4-4, Slide-seq beads were used for NNLS

regression if they had at least 5 variable genes. For Figure 4-4, hippocampus cluster 13 was

interpreted as marking mitosis.

Often, multiple cell types may be present on a bead. Thus, for the purpose of calculating the

number of cells of each type appearing on the puck, as in Figure 4-2C and Figure 10-7, we

determined that a cell type was present on a bead if the L2 norm of the vector of factor loadings

for that cell type was at least half of the L2 norm of the vector of all factor loadings for that bead.

Figure 10-7 shows the numbers plotted in Figure 4-2C as a function of this cutoff.

Confidence Thresholding:

The bead factor loadings returned by NMFreg are in general less pure than the factor loadings

obtained for single-cell sequencing data, possibly reflecting both the sparsity of the Slide-seq data

and RNA contributions of other adjacent cell types. In Figure 10-8, in order to determine whether

a given bead could be confidently assigned to its highest contributing cell type, we computed a

cell-type-specific, single-cell-derived threshold. The threshold for a given cell type was the

maximum loading of this cell type among all single cells not assigned to this cell type in single cell

atlas data. A bead was said to be confidently assigned if the L2 norm of the vector of factors

corresponding to that cell type exceeded the threshold. This comparison was made after

normalizing so that the sum of the L2 norms of the vector of factors for each cell type would be

equal to 1.
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For Figure 10-8A-E, we first performed NMFreg using only beads with at least 100 total

transcripts. This decreases the number of beads called by 72.6% +/- 13.7% (mean+/-std over 7

cerebellar pucks). Interestingly, there was no relationship between the number of UMIs per bead

and the confidence score of the bead (Figure 10-8F). Note that for the computation in Figure

10-8F, NMFreg was performed on all bijectively mapped beads, which must have at least 10

transcripts.

The diameter of Slide-seq beads is 10 pm (original feature size). For the analysis in Figure 10-8A-

D, in an attempt to investigate the importance of the size of the features, we generated larger

beads in silico, selecting artificial feature sizes of 20, 40, and 100 pm. Aggregate array features

were performed by taking bead centroid locations obtained through SOLiD sequencing and

forming a grid of defined size over the locations of the beads and aggregating beads within each

region of the grid and treating the resulting data as a single bead.

Robustness of NMFreg:

To evaluate the robustness of the NMFreg cell type assignments, we calculated a consistency

metric (Figure 10-6B,C) by running NMFreg for 30 values of k (the number of factors) between 18

and 48, or for 30 different random seeds. For each Slide-seq bead, the consistency was then

defined as the fraction of NMFreg runs on which the bead was assigned to the most common cell

type across conditions tested. These results were plotted as a cumulative distribution function of

the consistency score per bead.

3D volume reconstruction of hippocampus:

For Figure 4-2D, beads assigned to hippocampus scRNA-seq clusters 4, 5, and 6 (CA fields and

DG) (24) from serial hippocampal Slide-seq sections were plotted in space. Sequential slices were

roughly aligned by the density and shape of beads localized to hippocampal morphology.

Alignments were refined with the ImageJ plugin TurboReg (332). Volumes were reconstructed in

3D by generating a 3D image stack with a sphere of diameter 12.5 pm with intensity proportional

to number of UMIs centered on each bead centroid.

Hippocampal Subtype Images:

Metagenes for Figure 4-2E were identified from cell type specific atlas expression. The metagenes

are listed in Table 10-2.

Metagenes were plotted via density plots (see below) on their corresponding Atlas clusters. Beads

corresponding to hippocampal atlas clusters 4, 5, and 6 (CAl, CA2/3, and DG) were displayed in

light gray as a counterstain.
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Density Plots:

For the density plot images in Figure 4-2E, Figure 4-3 (black backgrounds), Figure 4-4 (black

backgrounds), Figure 10-9E,F, Figure 10-11A,C,F,G and Figure 10-12, we formed an image as

follows. Each point P in the 6030 x 6030 images was assigned an intensity equal to the sum of the

intensities of all beads with centroids lying within 44-pixel square centered on P. For Figure

4-4B,C, each bead assigned to the indicated NMFreg cluster was assigned a unit intensity, while

the intensity for each bead in Figure 4-3C,D,F,G was taken as the total number of transcripts

belonging to genes in the indicated metagene. Finally, the images were passed through Gaussian

filters with a standard deviation of 12 pixels.

For the images with blue backgrounds in Figure 4-4, each bead was represented by a square of

length 70 pixels on each side, with intensity equal to the total number of transcripts belonging to

the set of genes indicated in the legend. Overlapping squares summed their intensities in the

overlap region. For Figure 4-4G-K, all the images within a given panel are normalized to the same

values (i.e., the same colors represent the same values in all four images).

Significant Gene Calling:

To determine whether a transcript had a significantly non-random spatial distribution within a

particular set of beads (for example, within the set of beads called as Purkinje neurons

by NMFreg), we first calculated the matrix of pairwise Euclidean distances between all beads in

the set. We then compared the distribution of pairwise distances between the beads expressing at

least one count of that transcript (Figure 10-10A) to the distribution of pairwise distances

between an identical number of beads, sampled randomly from all mapped beads within the set

with probability proportional to the total number of transcripts on the bead (Figure 10-10B).

(Rigorously, therefore, the spatial significance gene algorithm determines whether the spatial

distribution of a particular transcript differs significantly from the spatial distribution of all

transcripts.) Specifically, we generated 1000 such random samples, and for each sample calculated

the distribution of pairwise distances. We then calculated the average distribution of pairwise

distances, averaged across all 1000 samples (Figure 10-10B, bottom). Finally, we calculated the LI

norm between the distribution of pairwise distances for the true sample of beads and the average

distribution (Figure 10-10C), and the LI norm between the distribution of pairwise distances for

each of the 1000 random samples and the average distribution (Figure 10-10D). We defined p to

be the fraction of random samples having distributions closer to the average distribution (under

the LI norm) than the true sample, and considered any genes with values p0.005 (Figure

10-10E). Often, as many as 4000 genes would pass the filters described above, leading to a high

false-positive rate. For this reason, various methods were used to enrich for true positives

(described in detail below), for example by using multiple biological replicates, or by identifying

clusters of correlated genes within the set of spatially significant genes.
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Genes were identified as spatially non-random using a custom Matlab application (see Figure

10-10). In regions in which cells are densely packed, one often finds markers from multiple

different cell types on a single bead. In some instances, when seeking to identify spatially

patterned genes within a cell type, our algorithm identified markers of cell types in spatial

proximity. For example, in cerebellum, granule cell markers were sometimes identified as spatially

non-random within a set of oligodendrocytes due to the proximity of the granular layer and the

cerebellar white matter. For this reason, genes were identified as candidates for the statistical

significance analysis within a particular cluster if they had an average expression of at least 0.1

transcripts per bead within that cluster in the atlas reference dataset, or if the variance within

that cluster in the atlas reference dataset was at least 0.01 transcripts squared and the ratio of the

variance to the squared expression was at least 7.5 (an empirically determined value). Moreover,

candidate genes for the statistical significance analysis were required to have at least one

transcript on at least 15 beads in Slide-seq.

Overlap Analysis:

To identify genes that are significantly correlated or anticorrelated with other genes, we applied a

custom Matlab algorithm. For simplicity of description, we consider the case of determining the

genes that are correlated or anticorrelated with a particular gene, gene A. For each gene in the

genome, we generated a "true" image in which each bead with at least one transcript of the gene

was represented by a square of side length 100 pixels (-64 microns). Images were then binarized,

so overlapping squares did not sum. Then, for each gene, we additionally generated 50 "random"

images in which the same number of transcripts were redistributed across all beads with

probability proportional to the number of reads per bead. We then calculated the pixel-wise inner

product between the image of gene A and the 50 random images every other gene, and calculated

the mean and standard deviation of the inner products. We then compared the mean and

standard deviation to the inner products of the image for gene A with the true image of every

other gene, obtaining a Z score for each gene. All genes with Z scores greater than 3 were deemed

correlated, while those with Z scores less than 3 were deemed anticorrelated.

Regional Significance Analysis:

For several of the analyses in Figure 4-3 and Figure 10-11, we used the following procedure to

determine whether the expression of a gene within a given region of the puck was significantly

enriched or depleted. We divided Puck 180819_12 into 5 regions (Figure 10-12): a dorsal region, a

ventral region, a nodulus region, a nodulus-uvula region (consisting of the nodulus and the

anterior uvula), and a VI-VII region, corresponding to the posterior side of lobule VI and the

anterior side of lobule VII. The significance of a gene was then determined by a Fisher exact test
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performed on the contingency matrix [A, N-A; B, M-B], where A is the number of counts of the

gene in the designated region, B is the number of counts outside of the designated region, N is the

total number of counts of any gene in the designated region, and M is the total number of counts

of any gene outside of the designated region. As in the case of the significant gene-calling

algorithm, this analysis could be performed on a subset of the beads on the puck. This procedure

provides a list of genes with a significantly different pattern of expression within the designated

region than outside of the designated region, regardless of whether the expression is elevated or

depressed.

In Figure 4-3B, Kctd12 and Car7 did not pass the p-value cutoff, but are displayed as squares to

demonstrate their location relative to Aldoc.

Identification of spatially variable genes in the cerebellar granular layer:

We identified Gprin3 by finding all of the genes with significant expression (p<0.001, Fisher exact

test) in the ventral part of puck 180819_12 compared to the dorsal part of the puck, for which

more than 80% of the transcripts were in the ventral portion. This yielded three hemoglobin

genes, Th, Cemip, Gprin3, Mab2112, and Syndigll. The three hemoglobin genes and Th were

discarded because they were not expressed in granule cells.

Identification of Aldoc- and Plcb4-associated genes in the cerebellar Purkinje layer:

To identify the Aldoc and Plcb4-associated genes, we ran the significant gene calling algorithm on

14 cerebellar pucks (3 coronal, 11 sagittal), restricted to beads called as cluster 2 (Purkinje cells),

cluster 7 (Bergmann glia), or the union of cluster 2 and 7 together. In this way, we identified 669

genes that were significant on at least one of pucks. This method presumably included many false

positives, due to the high false discovery rate of the spatial significance algorithm. For that

reason, we came up with the following procedure to restrict the set of spatially significant genes to

those that correlated more with Aldoc than with Plcb4, or more with Plcb4 than with Aldoc, on

the grounds that false positives or genes unrelated to the Zebrin staining pattern would not

correlate more with one than with the other. To identify genes correlating preferentially with

Aldoc or Plcb4, we used the significance overlap algorithm to identify, for each of the 669 genes,

the other genes in the set that correlate spatially with that gene on at least one puck. We then

calculated, for each pair of genes in the set of 669, the magnitude of the intersection of the sets of

correlating genes. To construct the matrix in Figure 4-3A, we restricted that overlap matrix to the

set of genes that have a larger intersection with Aldoc by at least 3 genes, or a larger intersection

with Plcb4 by at least 3 genes.

For the purposes of displaying the matrix thus obtained in Figure 4-3A, we first normalized the

i,jth entry of the matrix by dividing as follows:
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Pi - Pij

We then divided each column of the resulting matrix by the sum of the column. Finally, because

the resulting matrix was asymmetric, we summed the matrix and its transpose. For purposes of

display, we then performed Ward clustering in Matlab and ordered them by cluster.

Identification of Hspbl pattern:

To generate Figure 4-3B, we included genes if they had significant expression in the nodulus-uvula

region at p<0.001 (Fisher exact test). We excluded Ttr, which was not expressed in Purkinje cells.

For purposes of display, Kctdl2 and Car7were added to the graph as squares to help illustrate

the clustering of Aldoc-like genes and Cck-like genes.

Identification of B3galt5 pattern:

To generate Figure 10-11E, we included genes if they had significant expression in the nodulus at

p<0.05 (Fisher exact test) and significant expression in the VI-VII region at p<0.05 (Fisher exact

test).

Identification of injury-correlated genes:

To identify all genes that correlated spatially with Hba-al, Hba-a2, and Hbb-bs, we ran the

overlap analysis on pucks 180819 1, 180819_2, 1808193, 180819_4, 180819_13, 180819 14, and

180728_15. The first four pucks were taken from a single mouse in the coronal orientation, while

the last three pucks were taken from a second mouse in the sagittal orientation. We considered all

genes that correlated with at least one of those three genes on at least 2 pucks. The only genes

identified in this way, besides hemoglobin, were Lars2 (a marker of rRNA, see Identification of

rRNA below) and Fos.

To identify genes correlating with Vim, Ctsd, or Gfap at the 3-hour timepoint (pucks 180819_ 16,

180819_18, 180819_19, and 180821_3) or the 2-week timepoint (pucks 1808195, 180819_6,

180819_7, and 1808198) (Table 10-2), we ran the overlap algorithm. All four pucks for each

timepoint were taken from a single mouse in the sagittal orientation. The corresponding list in

Table 10-2 is the set of all genes that correlate with at least one of Vim, Ctsd, or Gfap on at least

two of the pucks.

Distance Measurements for Injury Site:

The distance measurements in Figure 4-4D,E were performed by plotting beads in each of cluster

of interest with radius linearly proportional to the number of transcripts per bead, with one
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transcript corresponding to a 25 pixel diameter and 500 transcripts corresponding to a 125 pixel

diameter. Beads with more than 500 transcripts were plotted with a 125 pixel diameter. This was

done to ensure that beads with more transcripts were weighted more heavily when calculating the

spatial profile of the cell types. We then drew boxes around the injury and took line profiles (i.e.,
summed along one axis) across the injury site, to generate the profiles in Figure 4-4D,E.

For measurements of the mitosis layer thickness, we took two measurements from one puck

(Puck _180821__3, both sides of the injury site) and one measurement from a second puck

(Puck 180819_19, the bottom side of the injury site). For measurements of the astrocyte scar

thickness and the microglial penetration thickness, we took six measurements: two on each side of
the scar from each of three pucks (Puck_180819_5, Puck_180819_6, and Puck_180819_7).

For the distance measurements in Figure 4-4K, we plotted grayscale versions of the images in

Figure 4-4K using the IEG metagene listed in Table 10-2, and took line profiles similar to those

taken for the measurements in Figure 4-4D,E. We took measurements from each side of the injury

for puck 1808197 (Figure 4-4G, bottom). We additionally took measurements from one side of

the injury on pucks 180819__5 and 180819_6. We only used one side from those pucks on the

grounds that the injury site was very close to the edge of the puck on one side.

Two of the three-day injury pucks (180819_16 and 180819_18) were excluded from all distance

measurements on the grounds that the tissue damage was not readily identifiable on the puck.

One two-week injury puck (1808198) was excluded from all distance measurements on the

grounds that the tissue slice was more lateral than the other tissue slices. It showed neither

enrichment of the immediate early genes around the injury site, nor a dip in astrocyte density in

the middle of the scar, leading us to suspect that it was at the edge of the wound.

Identification of rRNA in pucks:

During analysis of the 2-hour injury pucks, we observed many counts of the Lars2 gene correlating

with hemoglobins and Fos at the injury site (Figure 10-14). Upon investigation of the Lars2

gene, we found using RepeatMasker (http://www.repeatmasker.org/) that it has a rRNA-derived

repeat in its 3' UTR, leading us to hypothesize that the counts we observed of Lars2 might in fact

be misaligned rRNA reads (333). Moreover, we found that the spatial distribution of Lars2counts

across the puck is highly correlated to the counts of rRNA, supporting this hypothesis. We thus

used Lars2 as a proxy for rRNA expression in Figure 4-4A.
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Staining and Validation of the Cortical Injury protocol:

To validate the cortical injury procedure in Figure 10-13, we stained with (Abcam ab53554)

against Glial Fibrillary Acidic Protein (Gfap), a marker of activated astrocytes and microglia that

should be enriched near the site of injury. To further validate our finding of Vim as a gene

strongly upregulated at the site of injury we also stained with (Abcam ab20346) against Vim

showing that it is expressed precisely at the injury. Sections were sectioned at 10 Pm and post

fixed in 4% PFA for 10 minutes. Post fixation they were washed three times in PBS before being

co-stained with the antibodies listed above for two hours at 37C. Post primary antibody

incubation sections were washed three times for five minutes in 10 mL of 1x PBS. Sections were

then stained with the appropriate secondary antibodies (Abcam ab150135 and ab175700) for one

hour in 1XPBS. Sections were then washed three times for five minutes in 1X PBS and co-stained

with DAPI and imaged using a 20x 0.75 Nikon Plan Apo objective.

Gene Ontology Analysis:

For Figure 4-4G-J, we first identified (using the tool at http://geneontology.org/) gene ontology

annotations that were significantly enriched within the set of genes that correlated with the

injection site only at the 2 week timepoint or only at the 3 day timepoint (see "Identification of

injury-correlated genes," above). Each image in Figure 4-4G-J is a heatmap showing the total gene

counts summed over all genes in each annotation. For each of Figure 4-4G-J, both heatmaps were

normalized to the maximum value in either the top or bottom heatmap. Thus, the values shown

for the 2-week and 3-day pucks are on the same scale, and the units are arbitrary.

The annotation used for Figure 4-4G was "mitotic cell cycle." Figure 4-4H was "antigen processing

and presentation via MHC class Ib." The annotation used for Figure 4-41 was "gliogenesis." The

annotation used for Figure 4-4J was "oligodendrocyte development."

Animal Handling:

Animals were group housed with a 12-hour light-dark schedule. All procedures involving animals

at MIT were conducted in accordance with the US National Institutes of Health Guide for the

Care and Use of Laboratory Animals under protocol number 1115-111-18 and approved by the

Massachusetts Institute of Technology Committee on Animal Care. All procedures involving

animals at the Broad Institute were conducted in accordance with the US National Institutes of

Health Guide for the Care and Use of Laboratory Animals under protocol number 0120-09-16.

Traumatic Brain Injury Model:

Animals for the TBI model were anesthetized and processed according to a standard intracranial

injection protocol as a model for injury. Specifically, mice were anesthetized using isofluorane and

stereotactically restrained. Subsequently, an incision was made in the scalp and a hole was made
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in the skull using a dental drill. A Hamilton needle (32 gauge, 7803-04) was lowered to 2 mm

below the surface of the skull, and was then promptly retracted. The wound was closed using

Vetbond, and the animal was allowed to recover. Mice were treated with Buprenorphine-SR and

Meloxicam for analgesia. Mice were sacrificed by cardiac perfusion 2 hours, 3 days, or 2 weeks

following the injury.

Transcardial Perfusion:

Animals were anesthetized by administration of isoflurane in a gas chamber flowing 3% isoflurane

for 1 minute. Anesthesia was confirmed by checking for a negative tail pinch response. Animals

were moved to a dissection tray and anesthesia was prolonged via a nose cone flowing 3%
isoflurane for the duration of the procedure. Transcardial perfusions were performed with ice cold

pH 7.4 HEPES buffer containing 110 mM NaCl, 10 mM HEPES, 25 mM glucose, 75 mM sucrose,
7.5 mM MgCl2, and 2.5 mM KCl to remove blood from brain and other organs sampled. The

appropriate organs were removed and frozen for 3 minutes in liquid nitrogen vapor and moved to -
80C for long term storage.

Human Sample Information:

Human cerebellum tissue assayed in Figure 10-3 was obtained from the Sepulveda Research

Corporation through the NIH NeuroBioBank. The tissue was received without identifiable

information, and did not meet the definition of human subjects research (project # NHSR-4235).

Figures
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Figure 10-1 (A) Top: schematic of the in situ sequencing and base-calling system established for generation

of barcoded surfaces ("pucks"). Bottom: schema for mapping of Illumina barcodes to SOLiD barcodes. (B)

Minimum hamming distance between Illumina colorspace-converted barcodes and barcodes from a puck

sequenced in situ using SOLiD chemistry (Blue, puck barcodes, Orange, shuffled puck barcodes). (C)

Structure of the library at each stage of the preparation. (D) Barcode mapping across the puck. Beads

colored green have a barcode bijectively matched between Illumina and SOLiD sequencing. Red beads are

SOLiD-called barcodes not detected by Illumina sequencing. (E) Beanplot shows the packing fraction of the

beads on the surface, as a fraction of the maximum theoretical density. The average packing fraction is 85%,

which is 93% of the theoretical maximum.
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Figure 10-2 Paired tSNE from Slide-seq data for various tissue types: Shown are tSNE embeddings of the

tissues assayed in Fig 1C. Coloring of clusters is consistent with Fig 1C. Cluster identities were annotated as

follows: Cerebellum: (1) Choroid plexus (2) Ependymal (3) cerebellar nucleus neurons (4) Cochlear nucleus

(5) Oligodendrocyte (6) Purkinje cells (7) Bergmann glia. Hippocampus: (1) Fibroblast-like (2) ependymal

(3) choroid (4) habenula (5) oligodendrocyte (6) CA1 neurons (7) dentate gyrusneurons. Olfactory bulb: (1)
Glomerular layer (2) mitral layer (3) external plexiform layer (4) granule cell layer. Kidney: (1) Collecting

tube (2) podocytes (3) Distal convoluted tubule (4) Proximal convoluted tubule. Liver: (1) Pericentral

lobule layers (2) periportal lobule layers
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Figure 10-3 (A) Top: DAPI image of 10um section of a human cerebellum (scale bar 2 mm). Bottom:

Region of the tissue placed onto a puck (white boxed region in top image, scale bar 2 mm). (B) Left: Slide-

seq reconstruction of tissue with each bead colored by a cluster label. Right: NMF clustering of beads

plotted by tSNE. Cluster identities shown: 4: Oligodendrocytes, 5: Purkinje Neurons, 6: Bergmann Glia, 7:

Granular Cells, 8: Granular Cells (C) Left: Image in B recolored to highlight the striping pattern of

Purkinje Neurons and Bergmann Glia. Right: Magnified image highlighting the alternation between beads

called as Bergmann glia (purple) and Purkinje neurons (green), boxed region on left image. (D) Comparison

of UMI counts per cell between mouse cerebellum (N = 3, 301 88 UMIs, mean std), and human

cerebellum (N = 2, 115 21 UMIs, mean std ).
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Figure 10-4: (A) Histograms of counts of three CAI marker genes (left and center) and total counts (right)

in Drop-seq profiles assigned to a CAI cell identity using data from Saunders et al. (24) (B) Gene count
distributions on Slide-seq beads in Fig. 2D (mean number of transcripts, averaged over five pucks from

Figure 4-2D). (C) Comparison of Slide-seq expression data to bulk RNAseq. X axis represents

loglO(1+TPM) of bulk sagittal hippocampus RNA seq data. Y axis represents loglO(1+ATPM) of Slide-seq

data, see methods (R = 0.89). (D) For -20,000 genes, the mean counts per cell in CAl-assigned Drop-seq

beads is plotted against the mean counts per bead in CAl Slide-seq beads. Note that although the

scatterplot is displayed in log space, the fit was performed in linear space to estimate the efficiency of Slide-

seq in comparison to Drop-seq. (I.e. we fit the model y-ax+b, rather than y-a x-b as is standard). A fit

performed on log-adjusted transcript counts yielded an R value of 0.68. The slope of 0.0268 in the linear fit

suggests that Slide-seq has 2.7% the capture of Drop-seq. (E) Comparison of transcript counts of three

genes (Atp2bl. Ociad2. Sic]7a7) across smFISH, scRNAseq, and Slide-seq across a field of view of CAI (for

smFISH and Slide-seq) and for the equivalent number of cells in scRNAseq. (F) Quantification of the

number of transcripts per cell in Slide-seq data across five different tissues including hippocampus (N = 4,

427 79, mean std), cerebellum (N = 3, 302 88, mean std), kidney (N = 2, 641 64, mean std), liver

(N = 3, 942 255, mean std), and olfactory bulb (N = 6, 718 359, mean std).
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Figure 10-5: (A) Left: Slide-seq reconstruction of mouse hippocampus, shaded by the number of transcripts

captured per bead. Middle left: DAPI image of a tissue section adjacent to the Slide-seq puck. Middle right

and right: Images of smFISH staining for Slc]7a7and Atp2bl from adjacent section. Box on each image

represents a region taken for diffusion analysis. (B) Representative plots of the full width at half maximum

(FWHM) for the samples above. Red dots represent the half-maximum (see Methods). (C) Beanplot of

independent FWHM measurements of the CAl for DAPI, Slide-seq and smFISH. Two CAI markers were

used for smFISH quantification (Atp2bl and Slcl7a7). Dotted line represents mean. Scale bars: 500pm

167



AAstrocyte

-V ~ V

Golgi

Oligodendrocyte

Bergmann

Granule

111ki1j-

Purkinje

Choroid

/

Microglia

Unipolar Brush

B
1.0

0.8

0.

8 0.4

Change in cell type calls across number of factors

Hippocampus
Kidney
Cerebellum

0.00 0.25 0.50 0.75
Cumulative fraction of beads

1.00

C Changes in cell type calls across random seed

1.0

, 0.8

0.6
'A-.;.. . t 4" /4

0.4

0.00 0.25 0.50 0.75 1.00
-. Cumulative fraction of beads

Figure 10-6: (A) Loadings of individual cell types, defined by scRNA-seq cerebellum (24) on each bead, as

in Figure 4-2B, but for additional cell types. (B) Cumulative distribution plot showing the consistency in

the bead identities assigned from NMFreg. The consistency is calculated by running NMFreg for 30 values

of k (the number of factors) between 18 and 48. For each bead, the consistency is then defined as the

fraction of NMFreg runs on which the bead was assigned to the modal cell type across all factors tested.

Data is shown across three different tissue types. (C) As in B, but here the consistency is calculated by

running NMFreg with 30 different random seeds.
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Figure 10-7: (A) A plot of the fraction of beads from cerebellar pucks analyzed in Figure 4-2C, with zero

cell types (blue), one cell type (red), two cell types (yellow), or three cell types (purple) as a function of the

cutoff C. A cell type is defined to be present on a bead if the L2 norm of the vector of factor loadings

mapping to that cell type is greater than or equal to C times the L2 norm of the vector of all factor loadings

for that bead. For Figure 4-2C, a cutoff of 0.5 was used. The plot shows mean across seven cerebellar pucks.

(B) The mean number of beads representing granule cells (blue), Purkinje cells (red), other inhibitory

neurons (yellow), and unipolar brush cells (purple) as a function of the cutoff C The decrease in the

number of each kind of cell is roughly linear for C>0.7, but is nonlinear for values of C<0.7, for which

multiplets are possible.
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Figure 10-8: Analysis of larger feature sizes, aggregated in silico. (A) All beads were aggregated into 20

pm-diameter features and the resulting features were assigned cell types by NMFreg. Beads are colored

according to the cluster to which they were assigned. Legend: G=Granule cells, Purk=Purkinje,
PV+=Parvalbumin-positive interneuron, PV-=Parvalbumin-negative interneuron, Mg=Microglia,
Olig=Oligodendrocytes, BG=Bergmann Glia, Ast=Astrocytes, CP=Choroid Plexus, End=Endothelium,
Fib=Fibroblasts. (B) As in (A), but for 100 pm diameter aggregated features. (C) Same as (A), but all

features that fail to pass the confidence threshold are colored in gray. (D) As in (C), but for 100 pm

features. Upon aggregating features into 100 pm diameter features, we retain the ability to identify choroid

plexus, white matter, and granule cells, but no other cell types with confidence. (E) The distributions of Li

norms between the factor loading distributions and the uniform distribution are shown for atlas cells, the

original Slide-Seq data (10 pm), 20 pm aggregated features, 40 pm aggregated features, and 100 pm

aggregated features, showing the decrease in cell type purity as the feature size increases. (F) The number

of UMIs (natural log) versus the confidence, defined as the L2 norm of the vector of factors mapping to the

cell type as which the bead was called, after normalizing so that the sum of the L2 norms for all cell types is

1. There is no relationship between the number of UMIs and the bead confidence.
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Figure 10-9: (A) The number of raw reads, high-quality reads, and exonic reads per puck for 10 randomly

selected pucks from the 66 hippocampal pucks in Figure 4-2D. (B) The total number of transcripts per puck

for the 66 hippocampal pucks in Figure 4-2D. (C) For the 66 hippocampal pucks in Fig. 2D, from left to

right, all reported on a per puck basis: the number of beads identified by SOLiD basecalling; the number of

SOLiD bead barcodes mapped to Illumina bead barcodes (see "Image Processing and Basecalling", above);

the number of bijectively mapped barcodes that were processed by NMFreg (i.e., that had at least 5

variable genes); the total number of cell types passing the 0.5 L2 norm cutoff following NMFreg (Figure

10-7); the number of beads with a single cell type passing the 0.5 L2 norm cutoff. (D) A probability density

plot (i.e. normalized histogram) of the number of transcripts per bead, averaged over all 66 pucks. All error

bars show standard deviation. (E) Cell type calls of three representative sections from the dataset with the

position on the mediolateral axis denoted at the bottom of the image. (F) Metagene profiles on a sagittal

hippocampus section representing cell subtypes.
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Figure 10-10: Schematic of the algorithm for identifying spatially non-random genes. The algorithm can be

run on any specified subset of beads to identify genes with significant nonrandom distribution within that

subset. All histograms displayed here are calculated beads defined as granule cells on a coronal cerebellar

puck (Figure 4-3A). (A) For each gene of interest, we calculate the distribution of the Euclidean distances

between all beads in the specified subset expressing at least one transcript of the gene, shown here for

Rasgrfl. (B) We then randomly sample an equivalent number of beads from the subset with probability

proportional to the number of reads per bead, without replacement. We perform this sampling 1000 times,

and for each sample, calculate the distribution of pairwise Euclidean distances between the beads thus

chosen. We take the elementwise mean of all 1000 samples to obtain the average distribution of pairwise
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distances across random samples. (C) We then take the elementwise difference between the distance
distribution for the gene of interest and the average distribution, (D) as well as between the distance
distribution for each of the random samples and the average distribution. (E) A histogram of the sum
absolute values of the distributions shown in in (D), i.e., the Li norm between distance distributions of the
random samples and of the average sample. The LI norm serves as our test statistic: if the gene of interest
is distributed proportionally to the number of transcripts per bead, the Li norm will be uniformly
distributed. For Rasgrfl, the Li norm of the true distribution is greater than the Li norms of any of the
random samples, so p<0.001 (permutation test, see Methods). (Because there are only 1000 samples for
reasons of computational complexity, the smallest observable p value is p<0.001).
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Figure 10-11: (A) A coronal cerebellar puck is shown, with Purkinje-assigned beads in white, choroid-

assigned beads in green, and beads expressing Ogfr1 in magenta. Red arrow indicates cluster of Ogfrll-

positive beads. (B) An Allen Atlas (38) in situ hybridization atlas image of Ogfrl1, from a similar brain

region. Red arrow indicates Ogfrll expression in the cochlear nucleus. (C) A sagittal cerebellar puck

showing counts of Pcp4 (gray), Rasgrfl (blue), and a metagene consisting of Gprin3, Cemip, Mab2112, and

Syndigi] (yellow). (D) Allen atlas images of Rasgrfl (left) and Gprin3 (right). Arrows indicate point of

boundary of expression within the granular layer for each gene. (E) As in Figure 4-3B, but for genes with

significant expression both in the nodulus (p<0.05, Fisher exact test) and the VI/VII boundary (p<0.05 ,

Fisher exact test). (F) A Gnail metagene in green, and a B3galt5 metagene in magenta. (G) Mybpcl in

orange. (H) An Allen atlas image for Mybpc] (38). All scale bars show 250 Pm; Pcp4, a ubiquitous marker

for Purkinje cells, is in gray in (A), (C), (F), and (G). All metagenes are listed in Table 10-2.
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D E

Figure 10-12: Regions chosen for analysis in Figure 4-3. Yellow indicates beads included in the region

designation, while white indicates beads excluded from the region. A metagene consisting of Pcp4 and Pcp2

is plotted. (A) The dorsal region. (B) The nodulus region. (C) The nodulus-uvula region. (D) The ventral

region. (E) The VI/VII region.
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A B

Figure 10-13: (A) Section of sagittal hippocampus at the site of cortical injury 3 days post injury stained

with DAPI to stain nuclei (blue), Gfap (green), and Vim (magenta) revealing the precise location of the

injury (white box). (B) Magnified image of boxed region in (A). (Scale bars: 500 pm)
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Figure 10-14: (A) Plot showing the percentage of reads at each bead mapping to ribosomal RNA, prior to

alignment, for the 180819_3 puck (same as in Figure 4-4) (B) Plot showing beads expressing hemoglobins.

All beads expressing at least one transcript of Hba-a], Hba-a2, Hbb-bs, or Hbb-bt are shown in blue, with

radius proportional to the total number of hemoglobin transcripts. All other genes are shown in green. (C)

As in B, but for Lars2 transcripts, which are believed to represent rRNA. (See "Identification of rRNA in

pucks" in Methods.) (D) Three cerebellar (non-injected) pucks, showing hemoglobin transcripts (left) and

La-s2 transcripts (right). The correlation between hemoglobin and Lars2 in B and C is in great excess over

the correlations observed in D.
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Figure 10-15: Beads expressing Sox4 and SoxlO are shown in blue for four pucks from the 2-week injury

timepoint. The radius of blue beads is proportional to the total counts of Sox4 and Sox10. The injury site is

indicated with a red arrow.

Supplementary Video 1:

A 3D volume rendering of CAI, CA2/3 and dentate gyrus as shown in Figure 4-2. Scale bars: 500 pm.

Table 10-1: Oligonucleotides used in this study. Note r prior to base indicates RNA. + indicates LNA.

Name Sequence

Truseq5 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCC
GATCT

Smart PCR primer AAGCAGTGGTATCAACGCAGAGT

Truseq_PCR hand CTACACGACGCTCTTCCGATCT
le

Template Switch AAGCTGGTATCAACGCAGAGTGAATrG+GrG
Oligo (TSO)
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Truseq /5Phos/AGATCGGAAGAGCGTCGTGTAG

Truseq -1 /5Phos/GATCGGAAGAGCGTCGTCTAG

Truseq -2 /5Phos/ATCGGAAGAGCGTCGTGTAG

TruSeq-3 /5Phos/TCGGAAGAGCGTCGTGTAG

TruSeq-4 /5Phos/CGGAAGAGCGTCGTGTAG

UP /5Phos/TCTCGGGAACGCTGAAGA

UP-1 /5Phos/CTCGGGAACGCTGAAGA

U P-2 /5Phos/TCGGGAACGCTGAAGA

U P-3 /5Phos/CGGGAACGCTGAAGA

U P-4 /5Phos/GGGAACGCTGAAGA



Table 10-2: Gene lists referenced throughout the paper, by figure. All figures without "S" refer to Chapter
4, whereas all figures with "S" refer to this chapter.

Fig. S11C
Genes enriched posterior of the primary fissure in the Gprin3, Cemip, Syndigll, Mab2112
cerebellum
Fig. 2
Fig. 2E CA3/Hilum (plotted restricted to beads Satbi, Scg2, Nap 115, Fxyd6, C 1q13, Necab, Slc3 5fl,
assigned by NMFreg to atlas cluster 6) Nrsn 1, Calb2
Fig. 2E CA2 (plotted restricted to beads assigned by Adcyl, Pcp4, Rgs14
NMFreg to atlas cluster 6)
Fig. 2E Subiculum (plotted on all beads) Rxfpl, Fnl, Lxn, Nr4a2
Fig. 2E CAl (plotted restricted to beads assigned by Tenm3, Lypdl
NMFreg to atlas cluster 5)
Fig. 2E DG (plotted restricted to beads assigned by Mef2c
NMFreg to atlas cluster 4)
Fig. 2E Neurogenesis All beads assigned to atlas cluster 13.
Fig. 3
Fig. 3C Aldoc metagene Aldoc, Kctd12, and Car7
Fig. 3C Cck metagene Cck, Stmn4, Kcng4, and Atp6ap 11
Fig. 3D H2-DI metagene H2-D1, Cops7a, and Kmt2c
Fig. 3D Hspbl metagene Prkci and Hspbl
Fig. S IIF Gnail metagene Gnail, Neth, Plcb4, Rgs8, Homer3, Scg2, Scn4b, and

Gm14033
Fig. S IIF B3Galt5 metagene B3galt5, Gdfl0, Tmem248, Mpped2, and Dpf3
Plcb4-associated ATPases and sodium channels Atpla3, AtpIbl, Atp2b2, Atp6apll, Kcnabl, Kcnc3,

Kcng4, Kcnmal.

Note that Kcng4 is associated with increased firing rate
in fast motor neurons (334), suggesting that its
expression contributes to the faster spiking measured in
Zebrin II-negative Purkinje neurons (164, 335), while
the calcium-dependent channel Kcnmal is known to
regulate the timing of dendritic calcium burst spiking
in Purkinje cells (336), suggesting that it contributes to
differences in bursting activity previously observed
between lobules III-V and X (337).

Example genes expressed only in lobule X Prkci, Prkcd, Hpsb 1
Example genes that are expressed everywhere except in H2-D 1, Cops7a, Kmt2c
lobule X
669 Candidate Significant Genes 11 1000 J03Rik 1700020114Rik 1810037117Rik

2210016L21Rik 2900093K20Rik AW047730 Abr
AcinI Actb Actri a Actr3 Actr3b Acyp 1 Adam II
Adam23 Add3 Aigl Akap6 Akap9 Aldh5al Aldoc
Alkbh7 Ank2 Ankrd12 Ankslb ApIsI Ap2a2 AplpI
Apod Apoe App Appbp2 Ar Araf Arap2 Arfip2
Arhgap20 Arhgap5 Arl2 Arl4a Arpc4 Ascc 1 Atp,1 a2
Atpla3 Atplbl Atpib2 Atp2bl Atp2b2 Atp5cl Atp5d
Atp5h Atp5l Atp5o Atp6apll Atpifl Atxn2 Atxn7l3b
B230118HO7Rik B2m Bagi Baiap2 Bex2 Bhlhe4l
Bloc Is6 Bola3 Brd7 Brd8 Brwdl Bst2 Btbd17 Bzwl
Bzw2 Cacng2 Calbl Calm2 Camk4 Capza2 Car2 Car7
Car8 Cbri Cbx6 Ccarl Ccdcl 15 Ccdc50 Ccdc85b
Ccdc88a Cck Cct6a Cd47 Cd63 Cd8l Cdc371I
Cdc42ep4 Cdk5 Cdkall Cds2 Celf4 Cep126 CeptI
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Cerk Cers4 Cggbpl Chd9 Chga Chnl Cisd3 Cit Ckap5
Clasp2 Cmtm5 Cnbp Cnot6l Cnp Col I8aI Commd7
Comt Copa Cops3 Cops4 Cops7a Cox14 Cox7a2l
Cox8a Cpne2 Cpne9 Cr11 Cregl Cript Cryab Csnk2al
Cspg5 Cst3 Ctr9 Cttn Cttnbp2 Cux2 Cystml Cyth3
DIOJhu8Ie DabI Dagla Dap Dars Dbi Dclkl Dcunld5
Ddxl Ddx42 Dgcr6 Dgkz Dnajal Dnajb2 Dner Dpm3
Dpp10 Dpysl2 Dstn Dtna Dync2lil Ebfl Echsl Eci2
Ednrb Eiflax Eif3a Eif3d Eif3f Eif4al Elmodi
Epb4. 111 Epcl Epha5 Ergic2 Erh Ermn Erp29 Etfa Evi
Fabp3 Fabp5 Fabp7 FamI07a FamI74a Fam2l
Fam98b Fbx1l5 Fbxo3 Fbxo9 Fdps FdxI FemIc Fgfr3
Fkbpla Fkbp3 Fkbp8 Fthl Fxyd7 Gabral Galnt 1I
Garnl3 Gas5 Gatm Gcsh Ggt7 Glul Gml 4033
Gm27199 Gm5083 Gnal3 Gnail Gnaol Gnb2 Gng13
Gnl31 Golga4 Golph3 GotI Gpatchl 1 Gpbp 1 Gpm6b
Gpr371 Grial Gria2 Gria4 Grid2 Griki Gsk3b Gstml
Gtf2b Gtf2i Gucylb3 Guki H2-DI Hccs Hefclrl Hdgf
Hdlbp Hexa Hgsnat Higd2a Hinti Hlf Hnrnpc Homer3
Hopx Hpcall Hprt Hsbpl HsdI7bl2 Hsfl Hspal2a
Hspal4 Hspa4l Hspel Hsphl Hypk Icmt Id4 Ide Ifi27
Ifit3 Ifit3b Ifitm3 Ift57 Ilf2 Iltifb Ina Inpp5a Iscal
Itm2b Itm2c Itprl Jkamp Jrkl Kat6a Kcnabl KcncI
Kcnc3 Kcnd2 Kcng4 Kcnmal Kcnmb4 Kctd12 Khsrp
Kif2l a Kif3c Kif5c Kitl Klc I Klhdc2 Kmt2c Krt25
Lamtor5 Lap3 Lars2 Ldha Lgals3bp Lhx1 Lhxlos
Lin7a Lpcat4 Lpgatl Lrrc49 Lsamp Luc713 Luzp2
LztflI Macfl Macrod 1 Magoh MalatI Map 1 a Map2kl
Map3kl2 Mapk8ip2 Mapre2 Mapt March6 Mbnl2
Mbp Med8 Mef2a Meg3 Megf9 Mgst3 Mif Mipep
Mir6236 MkrnI Mlec Mllt6 Mobp Morf412 Morn2
Mplkip Mrpl16 Mrpl35 Mrpl45 Mrps2 Mrps31 Msil
Msi2 Msl3 Mtl Mt2 Mt3 Mtdh Mtfmt Mtssl Myo5a
N6amt2 Nae I Napg Nat8l Ncoa7 Ncor2 Ndufal 1
Ndufa13 Ndufa2 Ndufa3 Ndufa4 Ndufa9 Ndufb2
Ndufb3 Ndufb4 Ndufb5 Ndufb8 Ndufb9 Ndufc 1
Ndufc2 NdufvI Neth Nefi Nefm Nnat Nomol Nop10
Npas3 Npc2 Npepps NptxI Npy Nr2c2 Nrsnl Nrxnl
Nrxn2 Nsgl Nt5c Ntrk2 Ntsr2 Nucksl Oazl Oaz2
Ogfrll Olfml Omg Opal Opcml Opn3 Osbpl6 Ostc
Pabpcl Paipi Paki Park7 Patzl Pax6 Pbrml Pbxl
Pcdhl7 Pcmtl Pcp2 Pcp4 Pdcl Pde5a Pdhb Pdia3
Pdlim2 Pex13 Phip Pi4k2a Picalm Pigk Pigs Pisd
Pitpncl Pja2 Plcb4 Plekhbl Plekhb2 Plekhdl Plpi Pltp
Pmml Pnn Pnol Polb Polr2b Ppal Ppmll Ppplr 1
PpplrI2b PppIr17 Ppp2r2b PrdxI Prdx3 Prdx5 Prdx6
PrexI Prex2 Prkcd Prkcg Prkgl Prkrir Prpf6 Psd2
Psma2 Psma3 Psmbl0 Psmd8 Ptgds Ptpmtl Ptpn 1I
Ptpn4 Ptprr Puf6O Pura Purb Pvalb Pxmp2 Qdpr Qk
Rab24 RabepI Rabgapll Rad23a Rad23b Rampl Ran
Rasa2 Rasa3 Rbm5 ReepI Rftn2 Rgs7bp Rgs8 Rims4
Riok2 Rit2 RnI8s-rs5 Rnfl3 Rnfl67 Rora RpIl4
Rpll8 Rp134 Rp138 Rpl41 Rpsl5a Rps2l Rps28 Rragc
RrpI Rtfdcl Rtn4 SI00b Sac3dl Saraf ScaflI Sccpdh
Scg2 Scn2al Scn4b Sdc3 Sdc4 Sdhc Senp2 Sep15
SeppI Sept11 Sept4 Sept7 Serbpl SerincI Setd7 Sfxn4
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Sigmari SIcl3a5 Slcla2 Slcla3 Slcla6 Slc24a2
Slc25a18 Slc25a39 Slc25a5 Slc33al Slc35a5 Slc38al
Slc4a3 Slc4a4 Slc5al Smarca4 Smarccl Smpdl
Snap25 Snap47 Snapc3 Sncb Snhg 1I Snrk Snrpn
Snx24 Socs7 Sox9 Sparc Sparcll Spcs2 Sphkap
Spocki Spock2 Spredi Srp9 Srsf2 Steap2 Stipi Stkl7b
Stmnl Stmn2 Stmn3 Stmn4 Strn3 Stt3b Stubl Suclgi
Supt6 Sycpl Syt2 Syt4 Syt7 Tardbp Tbc Idi 5 Tceb3
Tcf25 Tex261 Thyl Thyni TimmiOb Timml7b Tinf2
Tiprl TlnI Tmed3 Tmed7 Tmeff2 Tmem 1 Tmem158
Tmem 167 Tmem 1 84c Tmem255a Tmem47 Tmem50a
Tmem50b Tmem64 Tmfl Tmsb4x Tnik Tnrc6b
Tomm22 Tomm40l Tpil Trf Trim2 Trp53bpl Trpc3
Tsfm Tshz2 Tspan13 Tspyl4 Tst Ttc14 Ttc3 Ttl Ttyhl
Tubala Tubb2a Tubb2b Tubb4a Tubb5 Tulp4 U2af2
Ubap2l Ubb Ube2ql Ube3a UbfdI Ubl5 Ubl7 UblcpI
Uchl3 Ufc l Upf2 Uqcr 1 Uqcrb Uqcrh Usp14 Usp3
Usp33 Vcpip 1 Vimp Vps26b Vps41 Wbp5 Wbscr22
Wdr33 Wdr7 Wwpl Xrcc4 Ylpml Ywhah Zbtb20
Zcrbl Zfc3hl Zfp512 Zfp608 Zfp87 Zfr Zic l Zmat2

Plcb4-Associated Genes Ankslb Atpla3 Atplbl Atp2b2 Atp6apll Baiap2 Car8
Cck Cerk Chnl Cops7a Garnl3 Gm14033 Gnail
Golga4 Gria2 Grid2 H2-D1 Hdlbp Hnrnpc Homer3
Hpcal 1 Hspal 2a Icmt Ina Kcnabl Kcnc3 Kcng4
Kcnmal Kitl Kmt2c Lpgatl Macfl Mbnl2 Mef2a Msl3
Ndufb8 Nefh Nefm Nptxl Pde5a Pja2 Plcb4 Pnol
Prdx5 Prkrir Qdpr Rabep 1 Rgs7bp Rgs8 Riok2 Scg2
Scn4b Snhg 1 Spock2 Stmn2 Stmn4 Strn3 Supt6 Thyl
Tmem50b Tmem64 Trim2 Tspanl3 Ttc3 Vps26b
Wdr7 Wwp 1 Zbtb20

Aldoc-Associated genes Actb Aldoc Apoe Atpla2 AtpIb2 Atp5l Atpifl
B230118HO7Rik B2m Car7 Cd63 Cd81 Cdc42ep4
Cox14 Cpne9 Cst3 Dbi Dpm3 Dtna Ednrb FamI07a
Fam98b Fthl Glul Gpm6b Gpr3711 Grial Gstml Hinti
Hopx Kctdl2 Kif5c Mtl Mt2 Mt3 Ndufa3 Ndufb4
Nomol Park7 Pigs Prdx6 Rpl34 Rpl38 Rpl41 SI00b
SeppI Sept4 Slcla3 Sox9 Sparc Sparcll Suclgi
Tmem47 Tmsb4x Trf Tubal a Zcrbl

Genes with p<0.00I (Fisher exact test)in the ventral Th Cemip Gprin3 Mab2112 Syndig 1 Hbb
part of puck 180819_12 compared to the dorsal part,
and with greater than 80% of their counts in the ventral
region.
Genes with p<O.001 (Fisher exact test) in the nodulus- Aldoc Cacng4 Calmi Calm2 Car8 Ccdc23 Cck Cregi
uvula region of puck 180819_12 (i.e. all genes Cst3 Fabp7 Homer3 Hspbl Idh3b Irs2 Malatl Ngdn
appearing in Fig. S3B, except Kctd 12 and Car7) Plcb4 Prkcd Prkci Prpf31 Pvalb Rgs8 Slc 1 a6 Slc25a4

Sparc Stmn4 Ttr Uchll mt-Cytb mt-Rnrl mt-Rnr2
Genes with p<0.05 (Fisher exact test) in the nodulus Actb Aldoc B3galt5 Calmi Car8 Cck Cdk5rap2
and p<0.05 (Fisher exact test) in the VI/VII region of Chmp4b Cops3 Dbi Dpf3 Efr3a Eif5a Etfa Gadl
puck 180819_12 (i.e., all genes appearing in Fig. Gdfl0 Gnail Gstml Homer3 Idh3g Itm2c Mpped2
SI1E). Mybpc 1 Nefh Nsgl Plcb4 PppIr17 Pvalb Rabep 1 Rgs8

Rims2 RpI13 Sfxnl Slcla3 Sox9 Spock2 Timp4
Tmem248 Ttr Ufcl Wbp2 Ywhah mt-Cytb mt-Rnrl
mt-Rnr2

Fig. 4
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Genes correlating with Vim, Ctsd, and Gfap at the 3
day timepoint.

Genes correlating with Vim, Ctsd, and Gfap at the 2
week timepoint.

Camk2nl Ctsd H2-T22 Hexb Lcn2 Lgalsl Mthfd l
Slc16all Pvrl3 Ttr Ctss Dbi Dhrsl Fabp7 Gfap
Mgp Mrps6 Mt2 Nupri Peal5a Pold4 Sdc4 Smc4
Trim30a Tspo Vim Vip B2m Clqc Faml24a Fthl
Gcnt2 Gzfl Ifi2712a Ifitm3 Myo6 Rp122 Serpina3n
Tnfaip8 Uimcl Usp12 Vamp8 Xafl Ccdcl15
Igfbp2 Igfbp7 Ubap2 Eif2ak2 2010111IRik
Ccndl Cnot61 Efcabl4 Gbp7 Maged2 Med17
Nfkbia Pabpcl Rgs8 RpllOa Smc2 Ugt8a Dclk3
Rnase4 Wnt7b Plp1 Trf Irf9 Rhoc SOOal 6
S100a6 Srgn Actb Apod Arpclb Bcasl Car2
Cldn 1 Cnp Cplx3 Enpp2 Ermn Fam46a Gjc3
Grbl4 Idl Id3 Ifi27 Ifiti Ifit3 Igfbp5 Irgml Isgl5
Itgam Itm2b Lrp4 Lta4h Mag Mal Malatl Mbp
Mgstl Mobp Mtl Nipbl Psmb8 PvrlI Rhog
Siglech Tppp3 Traf7 Fgfbp3 Creld2 Kcnip2 Ms1312
Nfkbl Nkdl Stat3 Abcal Aifl Apbblip Clqa
Clqb Calbl Clic Cpne6 Cripi Ctsb Cx3crl Cyba
Dcps Fcerlg Ftll Fyb Gm14295 Gm H2-D1 H2-
KI Hba-al Hba-a2 Hbb-bs Hbb-bt Hegl Hpgd
Lcorl Lgals9 Ly86 Mpegl Msn Myl12a Myolc
Ncfl Nes Nfe212 Nptxr Pknl Plek Ptbp3 Pycard
Rnl8s-rs5 S100all Slc44a2 Sparc Tlel Tubalc
Tyrobp Uaca Vcan Xpnpep3 Igfn1 Lars2 Pdlim4
Prdx6 S100al3 Sept11 Sorbsl Sytl7 Tmeml76b
Acol Agtrap Bst2 Caldi Cd63 Cd81 Chdli Ctdspi
Gbp3 Npas3 Ptpnl3 Cd52 Ilk Pou2f2 Statl Ybxl
Ccnd2 Ctsz Nek6
150001501ORik 1700017BO5Rik 1700047M ilRik
1810058124Rik 2610015P09Rik 2810474019Rik
3830403N18Rik 4632428N05Rik A2m AF251705
AW112010 Abca9 Abcbla Abcdl Abhdl2 Abhd4
Abi3 Acads Acer3 Adam10 Adam17 Adamtsl
Adamtsi4 Adap2 Add3 Adgrel Aebpl Afap1 Affl
Agps Ahnak Ahr Aim2 Akapl2 Akapl3 Aldhl6al
Aldhlal Aldh2 Anapc7 Ang Angptl Ankrdl3a
Anxa2 Anxa3 Anxa4 Anxa5 Aplp1 Apobecl
Apobec3 Apoc1 Apoe Aqp4 Arapi Arhgapl7
Arhgap29 Arhgap30 Arhgdib Arrdc4 Arvcf As3mt
Ascc2 Aspa Atf3 Atpla2 Atp1b3 Atp6v0e AxI
Bachi Bcl2alb Bfsp2 Bgn Bhlhe41 Bini Bin2
Blvrb Bmp2k Brd7 Bri3 Btgl C3arl C4b Calr
Capg Capnsl Carf Carhspl Casp8 Cav2 Ccdcl3
Ccdc50 Ccdc74a Ccl3 Ccl4 Ccl5 Cci6 Ccl9
Ccpglos Cd14 Cdl51 Cd164 Cdl8O Cd302 Cd37
Cd44 Cd48 Cd53 Cd68 Cd74 Cd82 Cd83 Cd84
Cd86 Cd9 Cdc42ep4 Cdc42sel Cdknlc Cebpa
Cebpg Celal Cenpb Cfh Cflar Cgnl1 Ch25h Chd4
Chst2 Clec5a Clec7a Clic4 Clmp Clu Cnn3 Cntrl
Coll2al Collal Colla2 Co127al Col3al Col4a2
Col5al Col6al Col9a3 Colec12 Colgaltl Commdl0
CoroIb Cotll Cpe Cpedl Cpne3 Cpq Cptla
Cpxml Cregl Crlf2 Crot Cryab Cryba4 Csfl Csflr
Csf2rb Csrpl Cst3 Cst7 Cstb Ctdsp2 Ctnnal
Ctnnb 1 Ctsa Ctsc Ctsh Ctsk Ctsl Cttnbp2ni Cxcl 14
Cxcl16 Cyb5r3 Cybb Cyfipi Cyp4fl4 Cyth3 Cyth4
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Dab2 Dcn Ddah2 Ddrl Diap2 Dio2 Dnase2a
Dnm2 Dockl DocklO Dpp7 Dtx3l E130114P18Rik
Edeml Edn3 Ednrb Eeflal Eefld Eef2 Ehd4 Eif3a
Elfi Elk3 Emid1 Eml4 Emp3 Endodi Entpd1
Epasi Epb4.112 Erbb2ip Erp44 Eya3 Ezr FlIr
Fabp5 FamI07a Famll4al Famli4a2 Fam46c
Fbliml Fblnl Fbnl Fcgrl Fcgr2b Fcgr3 Fcho2
Fcrls Fermt3 Fgfri Fkbp7 Flil Fltl Fmnl2 Fnl
Fnbpl Fnip2 Foxcl Foxo4 Frmd4a FstlI Fucal
Fxydl Fxyd5 Gabarap Galnti0 Gatm Gbp2 Gcnl 1
Ghdc Gjb2 Gltp Glul Gm13139 Gm2a Gm973
Gnal2 Gnai2 Gnb2l1 Gng12 Gng5 Gngt2 Gns
Golim4 Golml Gpm6b Gpnmb Gpr183 Gpr34
Gpr37 Gpt Gpt2 Gpxl Gsap Gsn Gstml Gstpl
Guedl Gusb Gyg H2-Aa H2-Abl H2-DMa H2-Ebl
H2-T23 H3f3b Hbegf Hdlbp Hes6 Hexa Histihlc
Histlh2bc Hk2 Hmhal Hmoxl Hpgds Hrsp12
Hsdl7bl1 Hsd3b7 Hsp90bl Hspb6 Hspb8 Hvcnl
1fi30 1fi35 Ifihl Ifit2 Ifit3b Ifitm2 Ifnarl Ifnar2
Ifngri Igbpl Igfl Igf2 Igfbp3 Ikbkb IllOrb 121r
1133 Il6st Inpp5d Inppll Ipo8 Iqce Iqgapl Irf8 IsIr
Itga6 Itgav Itgbl Itgb3bp Itgb5 Itih5 Kcnjl0
Kctdi2 Kctd5 Kdm5a Kif5b Klf2 Klhl36 Klhl5
Klk6 Krccl Lactb Lactb2 Lairl Lamb1 Lamb2
Lamcl Lampl Lamp2 Lap3 Laptm4a Laptm5 Lat2
Lats2 Lcpl Lgals3 Lgals3bp Lgmn Lhfpl2 Lilrb4
Limal Limchl Lipa Lmo2 Lparl Lpcatl Lpl
Lrp10 Lspl Lsr Ltbr Ly6e Lyn Lyz2 Maf Mafb
Magoh Magtl Mam12 Man2bl Map4k4 Marcks
Matn4 Mcli Mdk Metap2 Mfaplb Mlcl Mmp14
Mobla Mob3b Mob3c Mog Mrpl52 Ms4a6c Msxl
Mt3 Mtdh Myh9 Mylip Myol8a Myolf Myo9b
Myoc Myof Naglu Nagpa Nbll Ncf2 Nckapll Ndl
Ndrgl Neatl Nek7 Nek9 Nfe213 Nfia Nhlrc3 Npc2
Npml Nrpi Nrp2 Ntpcr Oardl Oat Olfmll Olfml3
Oligi Opalin P2rx4 P2ryi2 P2ryi3 P4hb Pacsin3
Padi2 Palld Parp3 Pbrm I Pbx3 Pbxipl Pdcl Pde3b
Pdgfra Pdia3 Pdlim2 Pdlim5 Pdpn Pex19 Pfnil
Phkgl Phldbl Phldb2 Pla2gi5 Pla2gl6 Pla2g7
Pld4 Plekhbl Plekhf2 Plgrkt Plin2 Plup Plod3 Pltp
Plvap Plxdc2 Plxnb2 Pmp22 Ppap2b Ppfibp2
PppIrl4b Ppplri8 Prdxi Prexi Prex2 Prkcd Psap
Psen1 Psme2b Ptgds Ptma Ptn Ptp4a2 Ptpnl
Ptpn18 Ptpn6 Ptprb Ptprc Ptprzl Ptrf Ptrhl Qdpr
Qk Rab3ill Rac2 Rad9a Ramp2 Rarres2 Rasgrp3
Rassf2 Rassf4 Rbmsl Rcan3 Rcn3 Reep3 Rel
Renbp Rest Rgl2 RgsiO Rgs5 Rhoa Rhoj Rhoq
Rlbpl Rnaset2a Rnaset2b Rnfl30 Rnfl4i Rnf213
Rockl Rpll3a Rpli8 Rpll8a Rpl23 Rp126 Rp132
Rp135a Rp137 Rpl37a Rp139 RplpO Rplpi Rplp2
RpsIO Rpsii Rps14 Rpsi5a Rps20 Rps24 Rps26
Rps271 Rps3 Rps5 Rps9 Rras Rrbpl Rtp4 Rufyl
Runxi S100al S100aiO S100a4 S100b Sall
Samd9l Samhdi Samsnl Satl Scamp2 Scara3
Scarb2 Scdl Scd2 Scpepi Scrgl Sdc3 Selpig
Seppi Sept10 Serinc3 Serpinb9 Serpine2 Serpinfl
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Serpinhl Sfrp4 Sgkl Sgpll Sh3bp2 Sh3di9
Sh3glbl Sh3pxd2a Sirpa Sirt2 Slain2 Slclilal
Slcl2a2 Sic14al Slcl5a3 Slcl6al Slc16a2 Slcla2
Slcla3 Slc25alO Slc25a15 Slc25a18 S1c26a2
Slc29a3 Slc38a6 Slc39al Slc44al Slco2bl Slfn5
Smarca5 Smg8 Smim3 Snhgl8 Snxi8 Snx5 Soatl
Sowahc SoxlO Sox12 Sox4 Spi SplOO Sparcil
Spatal3 Spil Sppl Spsbl Sspn St3gal6 Stat2 Stat6
Stx2 Sulfl Sultlal Susd6 Svil Tab2 TagIn2 Tap2
Tapbp Tcirgi Teadi Tec Tep1 Tgfbl Tgfb2 Tgfb3
Tgfbrl Tgfbr2 Tgifl Thbd Thbs2 Thbs4 Timpi
Timp2 Timp3 Tlr3 Tm4sfl TmedlO Tmed3 Tmed5
Tmeml19 Tmeml23 Tmem150a Tmeml70b
Tmeml76a Tmem18 Tmem47 Tmem86a Tmsb4x
Tmtc2 Tnfaip8l2 Tnfrsfla Tnnil Toporsos Tpm2
Tpm3 Tpm4 TppI Tpr Trem2 Trexi Trim12a
Trim25 Trim56 Tripi1 Trp53il3 Tsc22d4 Tspan2
Tspan4 Ttc28 Ubald2 Ucp2 Unc93b1 Usp25 Ust
Vamp5 Vasp Vatl Vgil4 Vkorcl Vps54 Vtn
Wapal Wasf2 Wfdc17 Wipfl Wls Wnkl Wnt5a
Wrn Wsbl Wwtrl Xlr Ybx3 Zbtb20 Zc3havl
Zeb2 Zfhx3 Zfp3611 Zfp703 Zicl Zmizl Znfx1
Abcal Actb Agtrap AifM Apbblip Apod Arpelb
B2m Bcasl Bst2 Clqa Clqb Clqc Caldi Car2
Ccndl Ccnd2 Cd52 Cd63 Cd81 Cldnll Clicl Cnp
Cripi Ctsb Ctsd Ctss Ctsz Cx3crl Cyba Dbi
Dhrsl Eif2ak2 Enpp2 Ermn Fabp7 Fam46a Fcerlg
Fthl Ftll Fyb Gbp3 Gcnt2 Gfap Grbl4 Gm 112-
DI H2-Kl Hexb Idl Id3 Ifi27 Ifi2712a Ifitl Ifit3
Ifitm3 Igfbp2 Igfbp5 Igfbp7 Itgam Itm2b Lcn2
Lgalsl Lgals9 Ly86 Mag Mal Malatl Mbp Mgp
Mgstl Mobp Mpegl Mrps6 Msn Mtl Mt2 Myll2a
Myo6 Ncfl Nek6 Nfe212 Nfkbl Nfkbia Nupri
Pabpcl Pdlim4 Peal5a Plek Plp1 Pold4 Pou2f2
Prdx6 Psmb8 Ptbp3 Pycard Rhoc Rhog Rnase4
Rpl22 S100all SlOOal3 SlOOal6 S100a6 Sdc4
Serpina3n Siglech Sparc Statl Stat3 Tmeml76b
Trf Trim30a Tspo Ttr Tyrobp Uaca Vamp8 Vcan
Vim Ybxl

Immediate early genes that were observed to be Fos, Arc, Npas4, Junb
upregulated around the injury site at 3 days and 2
weeks
Genes that correlate with Fos, Arc, Npas4, and Junb in Egr1, Egr4, Lmo4, Nr4al, Sic 16a13, Rgs4, Grin2b,
the overlap analysis at the 2 week timepoint Cl 13
Fig. 4K metagene Fos, Arc, Npas4, Junb, Egri, Egr4, Lmo4, Nr4al,

SlcI6a13, Rgs4, Grin2b, Cqlq3
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Table 10-3: All figures without "S" refer to Chapter 4, whereas all figures with "S" refer to this chapter.

Figure Pucks used
1C 180413 7 (coronal hippocampus)
ID 180430_1(coronal cerebellum), 18052823 (kidney), 180803_8 (liver),

180430 3(coronal olfactory bulb)
2B 180430 6 (coronal cerebellum)
2C 180819_9 (sagittal cerebellum), 180819_10 (sagittal cerebellum), 180819_11

(sagittal cerebellum), 180819_12 (sagittal cerebellum), 180430_1 (coronal
cerebellum), 180430 5 (coronal cerebellum), 180430 6 (coronal cerebellum)

2D 180528_20, 180528_22, 180531_13, 180531_16, 180531_17, 180531_18,
180531_19, 180531_22, 180531_23, 180602_15, 180602_16,
180602_17, 180602_18, 180602_20, 180602_21, 180602_22, 180602_23,

180602 24, 180611 1, 180611 2 (sagittal hippocampus)
3A sagittal cerebellum: 180819_ 9 180819_10, 180819 11, 180819_12,

180819_24, 180819_26 180819_30, 180821_8, 180821_9, 180821_12.
coronal cerebellum: 180430 1, 180430 5, 180430 6

3B-D 180819 12 (sagittal cerebellum)
4A 180819 3 (coronal cortex)
4B 180819 19 (sagittal cortex)
4C 180819 6 (sagittal cortex)
4D 180819 19 (sagittal cortex)
4E 180819 6 (sagittal cortex)
4F All sagittal cortex: 180819_5, 180819_6, 180819_7 (AS, MP, MM);

180819 19, 180821 3 (ML)
4G-J All sagittal cortex: 180819_19 (top), 180819_6 (bottom). See Methods for a

list of pucks used to determine the list of genes used for GO analysis in Fig.
4G-J.

4K All sagittal cortex: 180819 5 (top), 180819 6 (bottom)
Si D (left) 180413_7 (coronal hippocampus)

SID (right) 180819_3, 180819_4, 180819_5, 180819_6, 1808197, 180819_8, 180819_9,
180819 10, 180819 11, 180819 12 (NA, beads counted on surface)

Si E 180611 6 (sagittal hippocampus)
S2 180430_1 (coronal cerebellum), 180413_7(coronal hippocampus), 180528_23

(kidney), 180803 8(liver), 180430 3(olfactory bulb)
S3BC 180821 27 (coronal human cerebellum)
S3D 180430_1 (coronal cerebellum), 180430_5 (coronal cerebellum), 180430_6

(coronal cerebellum), 180821_27 (human cerebellum coronal), 180821_28
(human cerebellum coronal)

S4B 180620_4, 180531_17, 180602_20, 180531_13, 180531_22 (sagittal
hippocampus)

S4C 180620_4 180531_17, 180602_20, 180531_13, 180531_22 (sagittal
hippocampus)

S4D 180602 17,180602 20,180611 6 (sagittal hippocampus)
S5A 180602 20 (sagittal hippocampus)
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S6A 180430 6 (coronal cerebellum)
S6B 1804306 (coronal cerebellum), 180413_7 (coronal hippocampus),180528_23

(Kidney)
S7 180819_9 (sagittal cerebellum), 18081910 (sagittal cerebellum), 180819_11

(sagittal cerebellum), 18081912 (sagittal cerebellum), 180430_1 (coronal
cerebellum), 180430 5 (coronal cerebellum), 180430 6 (coronal cerebellum)

S8A-D 180430 6 (coronal cerebellum)
S8E 180430 6 (coronal cerebellum)
S8F 180430 6 (coronal cerebellum)
S9AB 180602_16, 180602_17, 180602_18, 180602_20, 180618_4 180618_7,

180618_12, 180618_13, 180618_14, 180618_15 (sagittal hippocampus)

S9C,D 180528_20, 180528_22, 180531_13, 180531_16, 180531_17, 180531_18,
180531_19, 180531_22, 180531_23, 180602_15, 180602_16,
180602_17 180602_18, 180602_20, 180602_21, 180602_22, 180602_23,
180602_24, 180611_1, 180611_2, 180611_3, 180611_4, 180611_5,
180611_6, 180611_7, 1806118, 180611_9, 180611_10,180611_11,
180611_12,180611 13 180611_14, 180611_16 180615_1 180615_3,
180615_4 180615_5, 180615_6, 180615_7, 180615_8, 180615_10,
180615_11,180615_12,180615_14,180615_16,180615 17 180615_18,
180615_20, 180615_21, 180615_22, 180618_3, 180618_4, 180618_7,
180618_12, 180618_13, 180618_14, 180618_15, 180618_16, 180618_18,
180618_20, 180618_21, 180618_24, 180620_1, 180620_3, 180620_4,
180620_5
(sagittal hippocampus)

Si0 180430 6 (coronal cerebellum)
Si1A 180430 6 (coronal cerebellum)
Si1C,E-G 180819 12 (sagittal cerebellum)
S12 180819 12 (sagittal cerebellum)
Si 4A-C 180819 3 (coronal hippocampus)
S14D 180430_1, 180430 5, 1804306 (sagittal cerebellum)

S15 180819_5 (top left), 1808196 (bottom left), 180819_7 (top right), 180819_8
(bottom right)
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Chapter 11

Appendices to Chapter 5

Appendix A
Due to stochasticity, noise, and context-dependence (e.g. sequence-dependence) of the NAAB-

amino acid interactions, a measurement performed on the kth target will yield an approximation

w to the reference affinity vector 'k. If we assume that the distribution according to which these

measurements occur is Gaussian, then we can obtain a simple criterion for determining whether

two N terminal amino acids will be distinguishable on the basis of affinity measurements made

using a particular set of NAABs. We denote by aojfj the standard deviation of the measurements

made with NAAB i against amino acid j. For each amino acid, we may define a sphere of radius

pj, centered on the vector 'j, which surrounds that amino acid in affinity space. Here,

Pj = 3 max- 1- (33)
I

where KM is the dissociation constant for the binding of the ith NAAB to the jth amino acid.
i

N-terminal amino acids will be identifiable with 99.9% certainty provided that there is no

overlap in affinity-space between the j spheres of radius pj. To determine whether there is such an

overlap, we must consider the distance metric.

D- mill (34)
ij*i vi

where the division is applied element-wise. In order to assign affinity measurements to the correct

reference affinity 99.9% of the time, it is sufficient (but not necessary) to have

max(pi + pj) 5 D (35)

Using Eq. (33), it is then sufficient to have

6 max ( < D (36)
i,ki 

-

For the specific case of the NAAB affinity matrix, we find that D = 3.84. Thus, in order to ensure

that the amino acids can be correctly identified 99.9% of the time, we must have

max k < 0.64 (37)
i,kti (Kk

or, equivalently, the standard deviation of the kD measurements must be no greater than 64% of

the mean.

189



Appendix B

Under the assumption of Poissonian noise, the photon rates in the bound and unbound states are

given by

Af = RTobsnfree (38)

and

Ab = RTobs(nfree + 1) (39)

respectively. In order to be able to distinguish the bound state from the unbound state, it is clear

that it is sufficient to have

Af + 3 5 Ab - 3 (40)

Because ab > Af, we may replace the standard deviation fly on the left-hand side by the

standard deviation jA, obtaining

f 5 Ab - 6./vi- (41)

Hence,

RTobs 6 VR Tobs(free + 1) (42)

We find the final requirement:

n Rre e R4obs3)
36

Rephrased as a condition on the concentration of the binder, we find

R Tobs _ 1
C < 36 (44)

~1000 N AV
or

RTobs 36 (1 + nfree) (45)

If nfree 5 1, then the assumption of Poissonian noise is invalidated because the emission of

successive photons is not independent (it depends on the presence of fluorophores in the

observation field). The assumption of Poissonian noise may also be invalidated if the frame rate is

comparable to the rate at which fluorophores enter and leave the observation field. In either case,

to correctly simulate the noise, one must draw the number of free binders that enter the

observation field during a given frame from a Poisson distribution with mean nfreeTobs/Tdwell,
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where T dwell is the amount of time each binder spends in the observation field on average. The

average dwell time of free binders in a region of thickness Ax may be calculated as

(Ax)2

Tdwell & (46)
D

where D is the diffusion constant (204). For a small protein in water, we have D-101 0 m 2 s-1.

Taking Ax = 100 nm, we find that free binders will dwell on average rdwell = 100 ps within the

imaging plane.

Once the number of binders entering the observation field during the frame has been

determined, one must draw the length of time t that each binder remains in the frame from an

exponential distribution with mean Tdwell. Finally, for each binder, one must draw the number of

photons emitted by that binder from a Poisson distribution with mean Rt. When the number of

free binders is small, the resulting noise will differ significantly from Poisson noise due to the

exponential distribution over dwell times. In our simulations, the long tail of the exponential

distribution tends to significantly increase the difficulty of distinguishing transient binding and

unbinding events, compared to simple Poisson noise (data not shown).

Appendix C
One advantage of occupancy measurements is that if k0 n is known, then koff may be determined

even in the presence of photobleaching. To do so, we note that T and Tb are independent

variables that depend on koff, k0 n, and Nq. In the above analysis, we assumed that Nq was

infinite, so that quenching could be neglected. If Nq is finite, however, then the true expressions

for T and Tb are given by

1

Tb = koff + RINq (47)

and

Tb + konc (48)
target occupied target unoccupied

The first term in Eq. (48) is the average time the target spends occupied by a quenched

fluorophore, while the second term is the average time the target spends unoccupied between

unbinding and binding events. Hence, if k0 n is known, then koff and Nq may be determined from

Tb and Ti.

Appendix D

In contrast to occupancy measurements, luminosity measurements are sensitive to error in the

calibration of the measurement apparatus. Calibration error arises from a combination of

systematic differences in the brightness of the on- and off-states, which may result if different

NAABs have different numbers of fluorophores on average, and from systematic error in the
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measurement of the brightnesses of the on- and off-states. Systematic variation in the brightnesses

of the fluorophores can be overcome by calibrating the device prior to each measurement (as

discussed below). In general, however, systematic error in the measurement of S and N

significantly disrupts attempts to determine the absolute value of kD due to divergences in the

derivative of kD as M approaches N. Hence, for weak binders in particular, infinitesimal changes in

the calibration level can lead to divergent changes in the measured value of kD. For this reason, if

the goal of the measurement is to determine the absolute value of kD, it is essential that the

concentration be chosen such that the value of M to be measured lies close to S, i.e., such that the

concentration c is close to or greater than kD- If kD is large or unknown, however, this

requirement may not be achievable.

In our case, however, we are interested not in determining the absolute value of kD, but rather

in determining the identity of a target (N-terminal amino acid) from the binding affinities of many

binders (NAABs). In this case, one may significantly reduce the effects of calibration error by

using the reference values of kD to calculate the expected photon rate E from the brightnesses of

the on- and off-states, for each of the possible target identities. After having performed the

measurement with all 17 binders, one is left with a vector M of the photon rates measured for

each binder, and a set of vectors Ek, the kth of which is the vector of photon rates that one would

have expected to measure if the target were of type k. The identity of the target is then

determined by minimizing the norm of M - Ek over k. The key difference here is that because one

compares the expected photon rates to the measured photon rates, one avoids the nonlinearities

inherent in calculating the measured dissociation constant from the measured photon rate.

Appendix E

Figure 11-1 shows the full set of accuracy matrices determined by simulation for 100 random

affinity matrices.
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Figure 11-1: Accuracies for amino acid calling obtained for 100 random affinity matrices in

simulations. 100 random affinity matrices were generated by randomly shuffling the entries of the NAAB

affinity matrix. For each resulting matrix, we simulated 10000 amino acid calls, with 5% calibration error

and 0.25% kinetic error. The resulting accuracy matrices are presented here. The scale and axes for each

matrix are identical to those in Figure 5-4E.
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Chapter 12

Supplementary Information to Chapter 6

Methods:

Cloning:

All plasmids were constructed either using restriction cloning using restriction enzymes from New

England Biosciences and the NEB Quick Ligation kit (M2200L), or using the In-Fusion HD

cloning enzyme mix (Clontech, 638911). Plasmids were grown in E.Cloni lOG Chemically

Competent Cells (Lucigen, 60107-1) and were verified by Sanger sequencing (Eton biosciences).

All plasmids are deposited on Addgene.

Due to high repetition present in the RNA editing templates, inserts for plasmids 76, 147, 148,
149, and 187 (see Table 12-2) were ordered as sense and antisense ultramer oligonucleotides, which

were annealed to each other prior to cloning. Plasmid 76 was cloned by inserting RNA templates

(AShort, BShort, C, D, E) into the 3' UTR of an iRFP transcript expressed under a UbC

promoter in a second generation lentivirus backbone using SphI and Clal. Subsequently, this

plasmid was modified by the addition of a flavivirus xrRNA in the 5' UTR. Templates A__Short

and BShort were then extended by inserting another pair of annealed ultramers on the 5' side of

AShort and BShort using SphI and MluI. The resulting templates are designated A and B. To

generate plasmids 147, 148, 149, and 183 (as used in the paper), templates A and B were then

moved into different backbones and different promoters by restriction cloning, or by Gibson

assembly with PCR amplification of the repRNA template region. Template A is used throughout

the paper, and Template B is shown in Figure 12-1 for comparison.

RNA Purification, Library Preparation, and Sequencing

All cell cultures were lysed with 600uL of buffer RLT Plus from the Qiagen RNEasy Plus Mini

Kit (Qiagen, 74136), and were pipetted up and down vigorously to homogenize. RNA was then

purified using the Qiagen RNEasy Plus Mini kit, following the instructions from the manufacturer.

Subsequently, 11uL of purified RNA was reverse transcribed using Superscript IV (Thermofisher,

18090050) and a barcoded version of SGR-174 (see Table 12-2), following the protocol from the

manufacturer. Reverse transcription reactions were then purified using Agencourt Ampure XP

beads at a 1:1 dilution (Beckman-Coulter, A63881). Some portion of the eluent, typically 25%,
was then PCRed using P5 and a barcoded version of SGR-176 (see Table 12-2) the Q5 Hot Start

High Fidelity 2x Master Mix (NEB, M0492L) with the following settings: 30s of 98C denaturation;
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then 25-30 cycles of 10s denaturation at 98C, 20s annealing at 70C, and then 25s extension at

72C. Neuron lysates were typically PCRed for 30 cycles, while HEK cell lysates were typically

PCRed for 25 cycles. PCR reactions were then pooled and run on a gel, and a 400bp band was

extracted using the NucleoSpin PCR Cleanup Kit (Macherey-Nagel, 740609.250). The

concentration of DNA in the resulting eluent was determined via a Qubit 2 fluorometer

(Thermofisher), and was then adjusted to 4nM for sequencing. The read structure is shown in

Figure 12-6.

Sequencing was performed using NextSeq Mid Output 300 cycle kit (Illumina, FC-404-2004),

Miseq 300 cycle v2 kits (MS-102-2002), or Miseq 600 cycle v3 kits (MS-102-3003), with at least

80bp read 1 and 185bp read 2, with 8bp index 1 and 15bp index 2.

HEK and 3T3 cell culture:

Except in the case of the single cell experiments, HEK293FT and 3T3 cells were plated in 24 well

plates. Cells were grown in DMEM (Thermofisher, 10566016), supplemented with

Pennicillin/Streptomycin (Thermofisher, 15140122) and 10% certified Tet-system approved FBS

(Clontech, 631101). Transfections were performed using the TransIT-X2 system (Mirus, MIR

6000), following the manufacturer's instructions.

For doxycycline experiments, HEK and 3T3 cells in 24 well plates were transfected with 300ng of

plasmid 147 or 148, 100ng of pCMV Tet3G from the Tet-on 3G system (Clontech, 631168), and

100ng of plasmids 116v1, 116v5, or 116v6. In the experiments for Figures 1, 2, 3, and S1, they

were transfected with both 147 and 148, and received 150ng of each plasmid. At least 12 hours

after transfection, cells were stimulated by adding doxycycline to a final concentration of lug/mL,

followed by gentle mixing or swirling of the plate. Subsequently, transcription was halted by

adding Actinomycin D to a final concentration of lug/mL in the same medium. After waiting for

the experimental time period, cells were lysed using Buffer RLT Plus and libraries were prepared

as described above.

For experiments using the Vivid promoter, 3T3s were transfected with 300ng of plasmid 149,

100ng of pCMV Tet3G, and 100ng of plasmid 116v5. For conditions in which cells were

transfected with both plasmid 147 and plasmid 149, they received 150ng of each plasmid. For the

experiments in Figure 12-3, cells were stimulated with a blue LED (Thor Labs, M455L2) with a

total power of 200uW/cm2 . The LED was turned on for 1 hour, and was subsequently turned off.

After the LED was turned off, the cells were wrapped in foil to prevent accidental light exposure.

Cells were then lysed after the experimental time period.
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HEK Cell Doxycycline Experiment

For the experiment in Figure 6-1E,F, cells were stimulated as above and were lysed at the

following timepoints: 0 hours (i.e., immediately before adding dox), 0.5 hours after adding dox, 1

hour after adding dox (i.e., immediately before adding ActD), 2 hours after adding dox, 3 hours

after adding dox, 4 hours after adding dox, 5 hours after adding dox, 6 hours after adding dox, 7
hours after adding dox, 8 hours after adding dox, 9 hours after adding dox, 10 hours after adding

dox, 11 hours after adding dox, and 12 hours after adding dox. Each timepoint consisted of three

replicates. On a separate occasion, we collected three replicates at 2.5 hours after adding dox and

4.5 hours after adding dox, and these timepoints functioned as our test timepoints in Fig. 2D,E.

Vivid Experiments:

For the experiment in Figure 12-3, we collected three replicates for each of the following

timepoints: immediately prior to turning on the LED, 1 hour after turning on the LED (i.e.,
immediately prior to turning off the LED), 2 hours after turning on the LED, 3 hours after

turning on the LED, 4 hours after turning on the LED, and 5 hours after turning on the LED.

Single Cell Experiments:

For all experiments involving single cells, HEK cell cultures were prepared, transfected with 100ng

of pAAV-CAG-GFP (Addgene 37825), 200ng of plasmid 147, 100ng of plasmid 116v5, and 100ng

of pCMV Tet3G, stimulated with doxycycline, and then silenced with actinomycin D as described

above. Subsequently, at the designated timepoint (e.g., 8 hours or 4 hours after doxycycline was

added to the culture medium), cells were treated with trypsin (Life Technologies, 25300054).

Following trypsinization, cells were centrifuged at 850g, washed in cold PBS, and then

resuspended in cold PBS. 96 well plates were prepared, with each well containing a solution of

0.2% Triton-X with 2U/uL RNAse inhibitor. Individual cells were sorted into the wells of this

wellplate using a Moflo Astrios EQ flow cytometer. Following sorting, the wellplate was sealed,
centrifuged, and then placed at -80C overnight.

For the analysis in Figure 6-4, cells in condition 2 received plasmid 147B1, while cells in condition

3 received plasmid 147B3. The two populations of cells were mixed following trypsinization and

sorted together. By contrast, cells in condition 1 received plasmid 147B1, and were sorted

separately from the others.

The single cell analysis was nominally conducted with cells from 4hr and 8hr timepoints. However,
following trypsinization, cells remained in cold PBS for up to an hour and a half due to latencies

in the sorting process. For this reason, we compared the estimates from the single cells to the

estimates for populations of -100,000 of the same cells (i.e., stored in cold PBS for the same

amount of time) lysed immediately after sorting.
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Library preparation for the single cells proceeded as follows. Plates containing single cells were

thawed, and 7uL of nuclease free water was added to the single cells to bring the total volume up

to 11uL. Subsequently, reverse transcription was performed using Superscript IV and the SGR-174

RT primers, as in the case of the bulk samples, with the following modifications. RT primers were

distributed so that each cell at a given timepoint received an RT primer with a different barcode.

In addition, for each timepoint, we performed two no-template RT reactions. Finally, after the

50C step in the Superscript IV protocol, we cooled the samples to 37C and added 20U of

Exonuclease 1 (NEB, M0293S) to the reaction to remove excess primers. Samples then remained

at 37C for 10 minutes, before proceeding to the 80C heat inactivation step. Following reverse

transcription, the RT reactions for all cells and the two no-template controls at a given timepoint

were pooled, cleaned with Ampure XP beads at a 1:1 dilution, and were then PCRed using the

same protocol as for the bulk samples. Cells were pooled prior to PCR as a way of reducing the

number of cycles necessary to achieve amplification. We excluded cells if they received fewer than

150 reads, or if the most common RNA barcode represented fewer than 80% of the total

deduplicated reads, which would indicate index swapping between cells.

Neuron Culture Preparation and Transfection:

All procedures involving animals at MIT were conducted in accordance with the US National

Institutes of Health Guide for the Care and Use of Laboratory Animals and approved by the

Massachusetts Institute of Technology Committee on Animal Care. Primary hippocampal neuron

culture was prepared as previously described. Neuron cultures were transfected at 6-7 DIV using a

commercial calcium-phosphate kit (Thermofisher, K278001), as previously described. Briefly,

neurons were transfected with 600ng of pUC19, 200ng of plasmid 116v5, and 200ng of plasmid

187. Neurons were then incubated with calcium-phosphate precipitates for 30-60 minutes, followed

by washing with MEM buffer at pH 6.7-6.8 to remove residual precipitates.

Neuron Culture Stimulation:

Neurons were stimulated at 14-15DIV. Neurons were placed in 1mL of plating medium (500mL

MEM, 2.5g glucose, 50mg transferrin, 1.1g HEPES, 5mL 200mM L-Glutamine, 12.5mg insulin,

50mL HI FBS, 10mL B27 supplement). To stimulate the neurons, we added 250uL of 5x

depolarization medium and agitated gently. Neurons were then left for one hour in an incubator.

Subsequently, the medium was aspirated and neurons were washed twice in plating medium. They

were then left in plating medium for a variable amount of time, before being lysed in 600uL of

buffer RLT Plus.

Plating Medium:

1. 500mL MEM (Thermofisher, 51200-038)
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2. 2.5g glucose (Sigma Aldrich, G7528-1KG)
3. 50mg transferrin (Sigma Aldrich, T1283-500mg)
4. 1.Lg HEPES (Sigma Aldrich, H3375-500G)
5. 5mL 200mM L-Glutamine (Thermofisher, 25030-081)
6. 12.5mg insulin (Millipore, 407709)
7. 50mL HI FBS (VWR, 45000-736)
8. 10mL B27 Supplement (Thermofisher, 17504-044)

5x Depolarization Medium

1. 170mM KCl

2. 10mM HEPES pH 7.4

3. 1mM MgCl2
4. 2mM CaCl2

Neuron Inference Experiment:

Due to the limited availability of neuron culture at any given time, the data for Figure 6-5 was

conducted in two separate experiments, which can be considered to be biological replicates. We

collected the following timepoints: prior to stimulation (i.e., immediately before adding

depolarization medium); 1 hour after stimulation (i.e., immediately before washing the neurons in

fresh medium); 2 hours after stimulation; 3 hours after stimulation; 3.5 hours after stimulation; 4

hours after stimulation; 5 hours after stimulation; 5.5 hours after stimulation; 6 hours after

stimulation; 7 hours after stimulation.

The breakdown of the data in Figure 6-5 by experiment is as follows. In the first experiment, we

collected two samples prior to stimulation; three samples at 1 hour; three samples at 2 hours;

three samples at 3 hours; three samples at 4 hours; and two samples at 5 hours. In the second

experiment, we collected one sample at 2 hours, two samples at 3 hours, three samples at 3.5

hours, two samples at 4 hours, two samples at 5 hours, three samples at 5.5 hours, two samples at

6 hours, and two samples at seven hours.

Multiplexing:

Experiments for Figure 9-4 were conducted as follows. Three wells of 3T3 cells were transfected as

described above with 100ng each of pCMV Tet3G, plasmid 133, plasmid 147B1, plasmid 149B3,

and plasmid 116v5. Three wells were transfected with 100ng of pCMV Tet3G, 100ng of plasmid

116v5, and 100ng of plasmid 147B1, and 200ng of pAAV-CAG-GFP. Finally, three wells were

transfected with 100ng of plasmid 133, 100ng of plasmid 149B3, 100ng of plasmid 116v5, and

200ng of pAAV-CAG-GFP. Subsequently, all 9 wells were irradiated with blue light as described

above for 1 hour, and were the placed in darkness. 7 hours after placing the cells in darkness, cells
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were stimulated with doxycycline as described above. After one hour in doxycycline, cells were

lysed.

Alignment and Edit Counting:

The alignment and analysis pipeline for sequencing data is summarized in Figure 12-6. Analysis of

sequencing data was performed using custom Matlab code. Briefly, in the case of single cell data,

we first performed deduplication using a 9bp UMI on the RT primer (oligo SGR-174). Other

datasets were not deduplicated. Reads were then filtered to ensure that they had the minimum

necessary read length (67 bases on Read 1, and 184 bases on Read 2). Note that Read 1 was on

the RT primer, so Read 1 reads the reverse complement of the RNA sequence. Thus, the expected

mutation was A to G on Read 2, and T to C on Read 1. Alignment was performed using all bases

that were not As on Read 2, or that were not Ts on Read 1. Reads were considered to be aligned

to the template if 95% of the non-A (for Read 2) or non-T (for Read 1) bases matched the

template. Furthermore, we required 90% of the bases that were expected to be As on Read 2 or

Ts on Read 1 have Q scores greater than 27 (Figure 12-6); reads that failed to achieve this

threshold were discarded.

Finally, except as stated in Figure 12-2, we required that all reads have at least one edit in Read 1

and at least one edit in Read 2 for analysis (Figure 12-6D). We implemented this requirement

because it appeared to eliminate a number of artifacts that we occasionally observed in our data:

for example, each well would sometimes have different (large) numbers of RNAs with zero edits or

one edit, which would confound attempts to infer timing from the mean editing rate, as in Figures

5 and Figure 12-3. As a consequence of this requirement, all of the histograms of edits per RNA

presented in this paper appear not to show any RNAs with fewer than -12 edits. There are -12

bases in template A, all of which are on Read 2, that are edited much more quickly than any

bases on Read 1. These are of the form UAG, and all form bulges in the RNA secondary

structure, which is thought to encourage editing by ADAR. Exclusion of RNAs with zero edits on

Read 1 or Read 2 limits the analysis to RNAs that are already fully edited at all 12 of those As,

thus causing all RNAs to have at least 12 edits.

Linear Interpolation:

In Figure 6-5 and Figure 12-3, the timepoints associated with the c-fos neural activity and with

the vivid promoter were determined by linear interpolation, as follows. We first calculated the

mean number of edits per RNA for all replicates, and determined the mean across replicates for

each timepoint (plotted in Figure 6-5B and Figure 12-3B, designated M,). Then, to perform the

estimate, for each replicate R from timepoint t we identified the two timepoints ti and t2 such
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that t != ti,t2 and such that the mean mR of replicate R obeyed Mti < mR < M1 2. The time

estimate for replicate R is then determined as

mR ~-t
tR = - Mtl 4 2 - t1 ) + t1

Mtz - MU1

Exponential Model:

The exponential model in Figure 6-2 was implemented using custom code in Python, as follows.

For each editable position i on the template, we assume the likelihood of base i being edited

follows an exponential distribution with parameter A1, to be estimated from the data. Assuming an

instantaneous pulse of transcriptional activity at time t=0, the fraction of edited bases for position

, yj, can be modelled as the CDF of the exponential distribution:

yi(t) = 1 - e-it

To more accurately capture the experimental setup, we model y as an underlying process which is

exponential, but with start time uniformly distributed in [0, ts,], where t=0 represents when

doxycycline is added to the cells and tto, is the time at which actinomycin D was added to the

cells. Specifically, we fit a function of the form

S1 - e-ait

1 y-A t if t ; tstop

e - itt-tstop) - e-ai t

Aitstop if t > tstop

where t,o, was 1hr and Ai was fit to the data using non-linear least squares. This function was fit

for times t 1.5hr, since the editing distributions for earlier timepoints are strongly affected by

populations of RNA present prior to doxycycline addition (for example, the mean editing rate in

Fig. IF decreases from t=0 to t=1). For the analysis in Fig. 3, analysis was then performed using

only those adenosines for which the R2 of the resulting fit was greater than 0.9. We model the

total number of edits to the RNA with a Poisson binomial distribution with N trials where N is

the total number of editable positions and success probabilities given by y(t) for each position i.

The probability of having n edits at time t is given by

p(n, t)= y Z J7 (t) J 1 - y(t)
A: sum(A)=n k: Ak=1 j: A =0
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Here, A is a binary vector with each entry corresponding to a specific adenosine in the repRNA

editing region. Ak=1 if adenosine k has been edited to inosine, and sum(A) counts the total

number of edits in A. Time estimates using the exponential model were then made by minimizing

the Kullback-Leibler divergence between p(n,t) and the empirical distribution q(n) over t. p(n,t)

was calculated in practice via a dynamic programming approach.

For Figure 12-2A-C, the exponential model was calculated using the data from a single replicate of

the HEK doxycycline experiment. The distributions in Figure 6-2C show the number of edits per

RNA calculated across all bases with R2 greater than 0.9 for that replicate, and the Poisson

binomial model in Figure 6-2C likewise included the same bases. By contrast, for Figure 12-2D-E,

bases were only retained if they had R2 greater than 0.9 in all three replicates from the HEK

doxycycline experiment. For this reason, the apparent numbers of edits per RNA are lower in

Figure 9-2D-E than in Figure 12-2C.

Gradient Descent:

The gradient descent in Figure 6-3 and Figure 6-4 was implemented using custom code in Matlab.

Briefly, the gradient descent algorithm was given an RNA editing distribution, which could either

be an empirical distribution (Figure 6-3B single induction timepoints; Figure 6-3F,G; Figure 6-4A-

C) or a simulated distribution (Figure 6-3B except single-induction; Figure 6-3C-E; Figure

6-4D,E). Simulated distributions were convex combinations of the editing histograms for a single

replicate from the HEK doxycycline experiment. The gradient descent algorithm was also given a

set of "basis vector" histograms, which were obtained by combining the data at each timepoint

from all three replicates from the HEK doxycycline experiment. The gradient descent was then

initialized by drawing a set of weights from a Dirichlet distribution with all parameters set to

unity. The gradient descent minimized the mean squared error (L2 norm) between the input

distribution and the convex combination of the basis vectors given by the weights. For each

simulated distribution, we performed the gradient descent 1000 times and took the solution that

minimized the L2 norm. For the analysis in Figure 12-6, we generated 1000 simulated

distributions from a Dirichlet distribution with all parameters set to unity.

Accuracy Metrics:

For the single- and double-induction samples in Figure 6-3B and Figure 6-4D, temporal resolution

is calculated by multiplying the distance of each timepoint away from the expected timepoint by

the weight assigned to that timepoint, and summing. Thus, for the 3-hour single-induction pulse,

if the decoder assigned weights of 0.5 to the 3-hour timepoint and 0.5 to the 5-hour timepoint, the

resulting resolution would be 0.5*1 + 0.5*3=2 hours. The accuracy of the decoder is measured in
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three ways throughout the manuscript. For the double-induction timepoints, we summed over all

timepoints greater than 3 hours, after renormalizing the weights so that the sum of the weights

assigned to timepoints above 3 hours equaled 1.

For the square waves in Figure 6-3B,F,G, and for the arbitrary transcriptional program

experiments in Figure 12-5, we calculated the accuracy as the sum of the absolute values of the

differences between the assigned and expected weights, divided by 2 to avoid double-counting.

Thus, if we expected one timepoint to get 100% of the total weight, and that timepoint instead

got 80% of the total weight, then the resulting accuracy would be 80%.

In Figure 6-4B, the accuracy is calculated as the mean absolute difference between the single cell

estimates and the estimate for the bulk distribution. We calculate the accuracy in this way for the

single cells because the ground truth transcriptional program is not known. The single cells stay

on ice for up to an hour during processing, and we have not measured the editing kinetics during

that time.

202



A Template A
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Figure 12-1: (A) Five editing templates that were tested are shown. Of these, only templates A and B

showed robust temporal editing that seemed appropriate for the construction of the tickertape system. Notes

on the templates are in Table 12-3. (B) The mean number of edits per RNA for several different timepoints

is shown for three different ADAR variants, and for templates A and B. The protocol used here is identical

to that in Figure 6-1E. Some combinations, such as dmE488Q with template A, may show greater temporal

resolution at short timescales. (C) Example editing histograms are shown for three different timepoints, for

each combination of the three enzymes and two templates in (B).
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Figure 12-2: (A) Cells were induced with doxycycline, followed by actinomycin D 1 hour later, and then

lysis 7 hours after actinomycin D. All editing histograms are normalized to sum to 1. Top left: the editing

histogram for cells that were not transfected with ADAR, without removing RNAs with no edits on read 1
or read 2 (i.e., "with zeros"). Top right: The editing histogram for cells that were transfected with ADAR,

without removing RNAs with no edits on read 1 or read 2. Bottom: Same as top, but only considering

RNAs with at least one edit on both Read 1 and Read 2 (i.e., "without zeros," see Methods). (B) The

qPCR for the iRFP transcript, normalized to GAPDH, is shown as a function of time during the experiment
in Figure 6-1E. Values are normalized to the pre-doxycycline timepoint. Error bars show standard deviation

(N=3).
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Figure 12-3: The Poisson binomial approach is the preferred approach for this form of estimation because it

accounts for the exponential nonlinearity inherent in Poisson processes. However, we also found that a

simple linear interpolation of the mean yields accurate estimations in many cases. In the case of the TRE

tickertape, the mean interpolation estimated the 2.5hr and 4.5hr timepoints as 2.53hr 0.08hr and 4.38hr

0.02hr (mean s.d., N=3 replicates), with errors of 5min 0.3min and 7.5min 1.1min (mean s.d.,

N=3 replicates), respectively. We performed similar experiments in 3T3 cells using repRNAs expressed

under a light-inducible Vivid promoter (268), induced with blue light for one hour. We estimated the timing

of light induction by interpolation of the mean number of edits per RNA, and yielded an accuracy of 17.7

7.5 minutes (mean s.d., N=9 samples total across three timepoints). (A) Editing histograms are shown for

3T3 cells transfected with repRNAs expressed under the Vivid promoter, and stimulated for 1 hour (see

Methods). In blue is the editing histogram for cells lysed one hour after stimulation began (i.e., immediately

after it ended), and in orange is the histogram for cells lysed 6 hours after stimulation began. All editing

histograms are normalized to sum to 1. (B) The mean number of edits per RNA is shown for the timepoints

generated. Time indicates number of hours since the beginning of stimulation (the first timepoint is pre-

stimulation). Error bars are standard deviation (N=3). (C) The absolute prediction error, in minutes, is

shown, averaged over all replicates for the 2hr, 3hr, and 4hr timepoints. The prediction was performed by

mean interpolation, analogously to Figure 6-5D. Error bar is standard deviation (N=9, 3 replicates at each

of 3 timepoints).
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Figure 12-4: The fact that tickertape works with multiple promoters raises the possibility of recording the

activity of multiple promoters simultaneously in a single cell population, and we validated that this is

possible using barcoded repRNAs responsive to the Tet and Vivid promoters. All editing histograms are

normalized to sum to 1. (A) For cells transfected with a barcoded TRE-responsive repRNA construct, a

barcoded Vivid-responsive repRNA construct, or both, the number of reads for the TRE-responsive
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repRNA, Vivid-responsive repRNA, or both are shown. When only one repRNA is transfected, only one

barcode is detected in significant numbers, confirming that there is minimal crossover between repRNA

barcodes. Note that the third column is not the sum of the first and second columns, because it includes

barcodes that did not perfectly align to either the Tet or Vivid repRNA barcodes. (B) To further confirm

the possibility of multiplexing using barcoded repRNAs, we analyzed the editing histograms for cells that

were transfected with a barcoded TRE-responsive repRNA construct, a barcoded Vivid-responsive repRNA

construct, or both. The editing histograms for the Vivid-responsive and TRE-responsive repRNAs do not

seem to change when the other repRNA is also present, again suggesting that there is minimal cross-talk

between barcoded repRNA constructs. All editing histograms are normalized to sum to 1.
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Figure 12-5: For 1000 randomly generated weight vectors ("simulated vectors"), we used gradient descent

to find the approximation ("approximated vectors") that minimized the L2 norm ("inner product") between
the RNA editing distribution corresponding to the simulated vectors ("simulated distributions") and the

RNA editing distribution corresponding to the approximated vectors ("approximated distributions"). We

refer to the L2 norm between the distributions as the inner product to distinguish it from the L2 norm

between the vectors, which we refer to as the mean squared error (MSE). (A) The inner product between

simulated distributions and approximated distributions is shown in blue. By contrast, the inner product

between simulated distributions and other random distributions is shown in orange. (B) The mean squared

error between the simulated vectors and approximated vectors is shown in blue. By contrast, the inner

product between the simulated distributions and other random distributions is shown in orange. Note that a

substantial number of random weight vectors have lower mean squared error than the approximated

vectors. This is possible because the noise in the basis distribution set used to generate the approximated

distributions from the approximated vectors is different from the noise in the basis distribution set used to

generate the simulated distributions from the simulated vectors, so the minimum of inner product between

the simulated and approximated distributions is not always the same as the minimum of the MSE between

the simulated and approximated vectors. (C) Another visualization of (B). For each simulated vector, we

calculated both an approximated vector and a random vector. The difference in MSE between the

approximated and random vectors is shown. Negative values correspond to test vectors for which the

associated random vector was a better approximation to the simulated vector than the approximated vector.

(D) Blue and orange bars are the same as in (B). Yellow bars correspond to the minimum MSE among all

of the solutions found by gradient descent for a given test vector, indicating that the inner product minima

found by the gradient descent are not in general minima of the MSE. (E) The difference in the inner

product between the solutions with the minimum MSE found by gradient descent, and the solutions with

the minimum inner product, as a fraction of the minimum inner product. The solutions with the minimum

MSE discovered by gradient descent often have inner products several fold higher than the solution with the

minimum inner product.
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Figure 12-6: (A) The read structure of the repRNA is shown. (B) A schematic of the analysis pipeline is

shown. See Methods. (C) For one replicate from the experiment in Figure 6-1E a histogram of the number

of reads with a given percentage of As with Q score >27 is shown. This includes all sites that are As on the

repRNA template, i.e., it also counts Gs that are read at positions that are A on the template. The black

line indicates the 90% cutoff, which was applied to all analysis. (D) For one replicate from the experiment

in Figure 6-1E, the percentage of reads having no edits in either R1 or R2 is shown as a function of time.

These reads were excluded from analysis, except where otherwise stated in Figure 12-2.
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Table 12-1: List of plasmids used

commercially from Clontech.
in this study. This list excludes pCMV Tet3G, which is available

210

Num Name Description Used in

116vl pAAV-Efla-MCP- Fusion of MS2 coat protein to Drosophila ADAR Supp. Fig 1B,C
dmADARE488Q E488Q, under Efl a promoter, with WPRE

1 16v5 pAAV-Efla-MCP- As with 116vl, but Human ADAR2 E488QT490A All Figures
huADARE488QT490A

1 16v6 pAAV-Efla-MCP- As with 116vI, but Human ADAR2 T490A Supp. Fig. 1B,C
huADART490A

133 pcDNA3.1-GAVPO GAVPO (VIVID transactivator) expressed under the Supp. Fig. 3,4
CMV promoter in the pcDNA3.1 backbone.

147B1 pTRE3G-iRFP-B1- repRNA Template A inserted into the 3' UTR of Fig.1,2,3,4,Supp.
repRNAA iRFP between a bActin Zipcode element and a Fig. 1,2,4.

WPRE element, in the pTRE3G backbone, with RNA
barcode TGC. Also includes a xrRNA element in the
5' UTR.

148B1 pTRE3G-iRFP-B1- Same as 147B1, but with RNA Template B. Supp. Fig. I
repRNA_B

149B1 pLenti-5xUASG-iRFP- repRNA Template A inserted into the 3' UTR of Supp. Fig. 3
B1-repRNA-A iRFP between a bActin Zipcode element and a

WPRE element, in a second generation lentiviral
backbone with the Vivid promoter, with RNA
barcode TGC. Also includes a xrRNA element in the
5' UTR.

149B3 pLenti-5xUASG-iRFP- Same as 149B1, but with RNA barcode CTG. Supp. Fig.4.
B3-repRNA-A

187 pTRE3G-c-fos-iRFP-B3- Same as 147B1, with the TRE promoter removed and Fig.5
repRNA-A replaced with a c-Fos promoter from pAAV-cFos-

EYFP (Addgene 47907), and with RNA barcode
CTG.



Table 12-2: List of oligos used in this study.

Name Description 'Sequence

SGR- Barcoded RT Primer AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNNNN CCT
174B-1 with 3bp barcode IGCG AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG

SGR- AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNNNN GAG
174B-2 "" GCG AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG

SGR- AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNNNN TTA
174B-3 "" GCG AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG

SGR- AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNNNN AGC
174B-4 "" GCG AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG

SGR- AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNNNN AAT
174B-5 "" GCG AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG

SGR- AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNNNN CAA
174B-6 "" GCG AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG

SGR- Barcoded RT primer AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNAGTGTCGCG
174B-7 with 6 base barcode AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG

SGR- AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNTATCCGGCG
174B-8 "" AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG

SGR- AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNCATTTGGCG
174B-9 "" AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG

SGR- AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNATGCTAGCG
174B-10 "" AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG

SGR- AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNCCGTGGGCG
174B- II "" AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG

SGR- AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNATGAGTGCG
174B- 12 "" AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG

SGR- AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNCGAGCAGCG
174B-13 "" AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG

SGR- AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNCGCGGCGCG
174B- 14 "" AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG

SGR- AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNACTTATGCG
174B- 15 "" AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG

SGR- AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNTGCATGGCG
174B- 16 "" AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG

SGR- AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNAGTAGGGCG
174B-17 "" AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG

SGR- AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNGTTGACGCG
174B-18 "" AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG

SGR- AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNTATCACGCG
174B-19 "" AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG

SGR- AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNCCCTAGGCG
174B-20 "" AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG

SGR- AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNGCCCGTGCG
174B-21 "" AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG
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SGR- AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNTTCCCGGCG
174B-22 "" AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG

SGR- AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNCATATAGCG
174B-23 "" AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG

SGR- AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNAACGCCGCG
174B-24 "" AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG

SGR- AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNAGGTTGGCG
174B-25 "" AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG

SGR- AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNTCAATAGCG
174B-26 "" AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG

SGR- 175 Custom Read 1 GCG AGG CCC GCA TCT TTC ACA AAT TTT GTA ATC CAG AGG

SGR-
175-RC Custom Index 2 CCTCTGGATTACAAAATTTGTGAAAGATGCGGGCCTCGC

Barcoded PCR CAAGCAGAAGACGGCATACGAGAT ACTGGTCA AAG TTA CTA TCG
SGR- 176 primer AAATGCCCTGAGTCCACCCCGG

SGR- CAAGCAGAAGACGGCATACGAGAT GTGTTCGT AAG TTA CTA TCG
176-2 "" AAATGCCCTGAGTCCACCCCGG

SGR- CAAGCAGAAGACGGCATACGAGAT TAACTGTT AAG TTA CTA TCG
176-3 "" AAATGCCCTGAGTCCACCCCGG

SGR- CAAGCAGAAGACGGCATACGAGAT GATTGGTG AAG TTA CTA TCG
176-4 "" AAATGCCCTGAGTCCACCCCGG

SGR- CAAGCAGAAGACGGCATACGAGAT GGAGAGAG AAG TTA CTA TCG
176-5 "" AAATGCCCTGAGTCCACCCCGG

SGR- 'CAAGCAGAAGACGGCATACGAGAT TGAGCGAT AAG TTA CTA TCG
176-6 "" AAATGCCCTGAGTCCACCCCGG

SGR- CAAGCAGAAGACGGCATACGAGAT CCTCCGTT AAG TTA CTA TCG
176-7 "" AAATGCCCTGAGTCCACCCCGG

SGR- CAAGCAGAAGACGGCATACGAGAT AACATATT AAG TTA CTA TCG
176-8 "" AAATGCCCTGAGTCCACCCCGG

SGR- CAAGCAGAAGACGGCATACGAGAT CTTACGTA AAG TTA CTA TCG
176-9 "" AAATGCCCTGAGTCCACCCCGG

SGR- CAAGCAGAAGACGGCATACGAGAT TGACGTAG AAG TTA CTA TCG
176-10 "" AAATGCCCTGAGTCCACCCCGG

SGR- CAAGCAGAAGACGGCATACGAGAT CTATGTAT AAG TTA CTA TCG
176-11 "" AAATGCCCTGAGTCCACCCCGG

SGR- CAAGCAGAAGACGGCATACGAGAT TTTGCAGA AAG TTA CTA TCG
176-12 "" AAATGCCCTGAGTCCACCCCGG

SGR- CAAGCAGAAGACGGCATACGAGAT GGTAGCGA AAG TTA CTA TCG
176-13 "" AAATGCCCTGAGTCCACCCCGG

SGR- CAAGCAGAAGACGGCATACGAGAT ACGGGTTT AAG TTA CTA TCG
176-14 "" AAATGCCCTGAGTCCACCCCGG

SGR- CAAGCAGAAGACGGCATACGAGAT TAAACCTC AAG TTA CTA TCG
176-15 "" AAATGCCCTGAGTCCACCCCGG

SGR- CAAGCAGAAGACGGCATACGAGAT GAGAACTG AAG TTA CTA TCG
176-16 "" AAATGCCCTGAGTCCACCCCGG
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SGR-
176-15

SGR-
176-18 "".

SGR-
176-19

SGR-
176-20 "".

SGR-177 Custom Read 2

SGR-
177-RC Custom Index 1

CAAGCAGAAGACGGCATACGAGAT GGTTTGAT AAG TTA CTA TCG
AAATGCCCTGAGTCCACCCCGG

CAAGCAGAAGACGGCATACGAGAT TAGATTAT AAG TTA CTA TCG
AAATGCCCTGAGTCCACCCCGG

CAAGCAGAAGACGGCATACGAGAT AAGGTTAG AAG TTA CTA TCG
AAATGCCCTGAGTCCACCCCGG

CAAGCAGAAGACGGCATACGAGAT CCGAAAAT AAG TTA CTA TCG
AAATGCCCTGAGTCCACCCCGG

AAG TTA CTA TCG AAA TGC CCT GAG TCC ACC CCG G

CCGGGGTGGACTCAGGGCATTTCGATAGTAACTT
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Table 12-3: List of RNA editing templates used in this study. The following sequences are the sequences
that were analyzed for RNA editing. Notes are supplied as a courtesy to follow-on studies, and no
representations are made as to their accuracy or reproducibility.

Sequence Notes

A_Short AGTACGCGTTAGATTAGATTAGATTAGATTAGAT
TAGATTAGAAAAATTAATACGTACACCATCAGG
GTACGTCTCAGACACCATCAGGGTCTGTCTGGTA
CAGCATCAGCGTACCATATATTTTTTCCAATCCA
ATCCAATCCAATCCAATCCAATCCAAATAGATCC
TAATCA

A TTAGATTAGATTAGATTAGATTAGATTAGATTAG
AAAAATTAATATACGTACACCATCAGGGTACGTC
ATATATTTTTTCCAATCCAATCCAATCCAATCCA
ATCCAATCCAATACGCGTTAGATTAGATTAGATT
AGATTAGATTAGATTAGAAAAATTAATACGTAC
ACCATCAGGGTACGTCTCAGACACCATCAGGGTC
TGTCTGGTACAGCATCAGCGTACCATATATTTTT
TCCAATCCAATCCAATCCAATCCAATCCAATCCA
AATAGATCCTAATCA

B_Short AGTACGCGTTAGATTAGATTAGATTAGATTAGAT
TAGATTAGAAAAATTAATACGTACACCATCAGG
GTACGTCTCAGACACCATCAGGGTCTGTCTGGTA
CAGCATCAGCGTACCATATATTTTTTCTAATCTA
ATCTAATCTAATCTAATCTAATCTAAATAGATCC
TAATCA

B TTAGATTAGATTAGATTAGATTAGATTAGATTAG
AAAAATTAATATACGTACACCATCAGGGTACGTC
ATATATTTTTTCTAATCTAATCTAATCTAATCTAA
TCTAATCTAAACGCGTTAGATTAGATTAGATTAG
ATTAGATTAGATTAGAAAAATTAATACGTACACC
ATCAGGGTACGTCTCAGACACCATCAGGGTCTGT
CTGGTACAGCATCAGCGTACCATATATTTTTTCT
AATCTAATCTAATCTAATCTAATCTAATCTAAAT
AGATCCTAATCA

C AGTACGCGTTAAATTATATTAACTAAATTATAGA This template shows significant
TTAACAAGAATATTAAATACGTACACCATCAGG background editing by endogenous
GTACGTCTCAGACACCATCAGGGTCTGTCTGGTA ADAR enzymes, even in the
CAGCATCAGCGTACCTATTTAATATTCTTGTTAA absence of trans-expression of
TCTATAATTTAGTTAATATAATTTAAATAGATCC ADAR. It also showed extremely
TAATCA rapid editing on a timescale of

single minutes in the presence of
blue light, when MCP-Cry2 and
CIBN-dmADARE488Q were co-
expressed.

D AGTACGCGATTGGTTAATCCCATTGGTTAATCCC Editing on this template showed
ATTGGTTAATCCCTTAATACGTACACCATCAGGG significant sensitivity to the identity
TACGTCTCAGACACCATCAGGGTCTGTCTGGTAC of the N-terminal fusion. MCP-
AGCATCAGCGTACCATATATGGGTTAAACTGATG ADAR was able to edit this
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GGTTAAACTGATGGGTTAAACTGATATAGATCCT template, whereas other ADAR
AATCA enzymes, like a CIBN-ADAR

fusion, were unable.

E AGTACGCGAAAAAAAAAAAAAAAAAAAAAAAA This template was always severely
AAAAAAAAAAAAAAAAAAAAACGTACACCATC underrepresented in sequencing,
AGGGTACGTCTCAGACACCATCAGGGTCTGTCTG either due to difficulties with
GTACAGCATCAGCGTACCTTTTTTTTTTTTTTTTT expression, amplification, or
TTTTTTTTTTTTTTTTTTTTTTTTTTTTATAGATCCT alignment.
AATCA



Chapter 13

Appendices to Chapter 7

Appendix 1: Simulations of recombination cassette diversity
For 4-value cassettes (two inversion units) we expect to obtain each possible recombination

outcome with equal probability in the limit of many recombination operations, since both units

have an equal probability of excision. For 8-value cassettes (four inversion units), this is no longer

the case, because there are more ways to excise the internal cassettes. In Figure 13-1, we

simulated 106 independent 8-value cassettes each undergoing a number of recombinations chosen

from a Poisson distribution with mean 3, 4, 5, 6, 7 or 20. For > 10 recombinations per cassette we

see convergence to the equilibrium distribution (infinite recombinations per cassette) with a

Shannon entropy of 2.9 bits, as compared to 3 bits for a uniform distribution. (Similar simulations

show that for a 4-value, 2-inversion-unit cassette, we achieve a nearly uniform distribution of

values once > 4 recombinations occur per cassette.)

Other factors (such as the distance between recombination sites) may also introduce bias into the

recombination process, which may decrease the entropy provided by recombination. For this

reason, we have assumed that 8-value cassettes generate 2.8 bits of information, even in the long-

time limit. However, it is important to emphasize that the Shannon entropy is relatively robust

against deviations from uniformity, and that the expected error rate increases only linearly with

the barcode degeneracy, so significant deviations from uniformity would be required to affect the

error rate in a major way.

The appropriateness of the Shannon entropy for evaluating the number of effective barcodes

derives from its interpretation as a measure of compressibility. If a probability distribution over B

bits has a Shannon entropy of D bits, then any sufficiently-long sequence of values drawn from the

B-bit non-uniform distribution over barcodes can be mapped without loss of information onto a

sequence of values drawn from a uniform D-bit probability distribution of the same length. The

axon tracing problem encountered here for an 8-value cassette involves disambiguating a neuron of

interest from a sequence of neurons with barcodes drawn from a non-uniform probability

distribution over 3C bits, with 2.8C bits of entropy. Thus, for the purpose of the average barcode

degeneracy (discussed further in Appendix 4 of this chapter), we may equivalently behave as

though the barcodes encountered during axon tracing were drawn from a uniform probability

distribution over 2.8C bits.

Appendix 2: Possible methods for increasing the achievable genetic diversity
In order to increase the amount of achievable genetic diversity for a given number of orthogonal

recombination sites, it is necessary either to increase the number of values per cassette or to
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implement a system that allows for the same recombination site to be used on multiple different

cassettes. We consider one strategy in each category.

Exponential scaling by eliminating excisions

In the standard strategy, a cassette coding for m values can produce one of m proteins (via m

RNAs), but if a system with exponential scaling could be found, a cassette coding for m values

could produce 2m proteins. One approach to achieve exponential scaling would be to eliminate the

excision events altogether, for example by using Rci recombinase (289, 338), a recombinase which

inverts but only very rarely excises, as proposed by Zador. If the only available operation were

flipping, then a cassette with 4 flippable value registers (requiring 4 epitopes) would be capable of

producing 24 = 16 possible molecular strings of those epitopes. If a cassette could be produced

with 8 flippable value registers (requiring 8 epitopes), it would be capable of producing 28 = 256

possible strings of epitopes. In this case, dedicating all available epitope/fluorophore pairs to

values, C cassettes could produce (2sC) phenotypes, in which case 6 cassettes would be sufficient

to barcode any animal.

Temporal Multiplexing

Rather than limiting the multiplexing of cassettes to the number of orthogonal recombination sites

available, one possibility is to use temporal multiplexing, re-using recombination sites across

successive temporal cycles.

For example, to double the effective number of sites, one could use inducible DNA binding

proteins (339-345), such as CRISPRs - i.e., programmable gRNAs + nuclease-deficient Cas9

(dCas9) - first blocking recombination at a first copy of each site and then blocking recombination

at a second copy. For any given LoxP site, two cassettes using that site could be inserted into the

genome, including LoxP-overlapping gRNA binding sites containing unique flanking sequences

shared by all sites that are to recombine in a given temporal cycle. Initially, the gRNA

corresponding to the first of the two cassettes would be expressed, blocking access to this first

cassette by Cre recombinase. Upon induction of Cre, Cre would access the second of the two

cassettes, permitting recombination there. Next, production of the second gRNA would be

induced, blocking access of Cre to the second cassette. After a sufficient delay, induction of the

first gRNA would be removed, allowing Cre to access the first cassette. This would prevent

crosstalk between the two cassettes, while allowing recombination to occur at each one

individually. Alternatively, these systems could also be made to progress autonomously by

triggering the production of the gRNAs for the Nth phase only after recombination in the (N -

1)th phase is completed.
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Conservatively, at least six underlying orthogonal cassettes could be achieved using only published

LoxP and Frt sites, although more may be available (184). Twelve cassettes could be achieved

using 3 Cre sites, 3 Flp sites sites and a manually-induced dCas9 temporal multiplexing strategy

to double the number of effective sites from 6 to 12. Finally, 18 cassettes could be achieved using

a total of 9 underlying LoxP, Frt and other orthogonal sites, plus a two-step temporal

multiplexing approach.

Note that it may also be possible to re-use identical recombination sites across multiple cassettes

(i.e., to give up orthogonality between cassettes), although at the risk of inter-cassette crosstalk.

For example, BrainBow has often used multiple genome-integrated copies of the same cassette to

drive analog color addition, e.g., roughly 16 copies of the same BrainBow cassette (291).
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Figure 13-1: Diversity generation from an 8-value cassette for different amounts of

recombinase activity. Simulations of 106 cassettes undergoing recombination are shown for

the cases in which the number of recombinations performed is drawn from a Poisson distribution with an

average of 3 (top left), 4 (top right), 5 (middle left), 6 (middle right), 7 (bottom left), and 20 (bottom

right). After determining the number of recombinations to be performed, the actual recombination events

were determined by randomly choosing an available pair of recombination sites and performing the

corresponding operation. In the limit of many recombination events, the resulting distribution has 2.9 bits of

entropy; in the most pessimistic case of 3 recombination events, the distribution has 2.6 bits of entropy.
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Appendix 3: Possible fluorescent imaging scheme with >10 spectrally orthogonal

colors

Based on Figure 13-2, we anticipate that it would be possible to perform multicolor imaging with

up to 12 channels on a customized microscope with 8 Coherent lasers and a Zeiss 34-channel

QUASAR detection unit. The 12 fluorophores depicted in Figure 13-2 have been chosen for

minimal spectral overlap, although some optimization may be required, especially in the range of

the 405nm laser line4. Likewise, we anticipate that 10-color imaging would be possible on a 6-laser

system, although this would require a relatively unusual laser line at 350nm (such as the Obis

LG). Alternatively, it would be possible to achieve 10 color fluorescent imaging on a more

standard 6 laser system with laser lines at 405 nm, 445 nm, 505 nm, 561 nm, 647 nm, and 685 nm,

if a long Stokes-shift dye could be found with an excitation maximum at 560 nm.

Note that in order to have cross-talk between two fluorophores, they must overlap in both their

excitation spectra and in their emission spectra. Thus, although Atto 430LS is excited significantly

by the Obis LG, Obis 405LX, and Obis 445LX, it can be spectrally distinguished from all other

fluorophores excited by those lasers by virtue of its long emission wavelength.
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Figure 13-2: An example 12-color strategy with 8 lasers. Using an 8-laser system from Coherent and a

Zeiss QUASAR detection unit, we anticipate that it would be possible to detect up to 12 orthogonal colors

at the single molecule level. A set of 12 prospective fluorophores are shown along with the laser lines that

would be used. In the present system, we would expect significant cross-talk between BV605 and Atto

430LS and between Atto 390 and Atto 425 due to the excitation of Atto 425 and Atto 430LS by the Obis

405LX laser. This problem could be resolved if a laser were available with a line at 390nm rather than 405

nm. There also appears to be overlap between Atto 490LS and BV605 due to non-negligible absorption of

Atto 490LS at 400 nm, but in preliminary experiments we were able to distinguish between these two dyes

at the single molecule level. Depending on the severity of the overlap, we expect that this system would

allow imaging in at least 9 orthogonal channels, and potentially in 12 orthogonal channels.
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Appendix 4: Axon tracing vs. unique barcoding
In the ideal case, the number of barcodes generated by a phenotyping scheme is large enough that

every cell in the brain receives a unique barcode with high probability (a generalized instance of

the "birthday problem") (346). In order for this to occur with high likelihood, we need P(m,n) =

n! x Binomial(m, n)/m', the probability of no two identical barcodes chosen from a barcode pool

of size m when sampling n neurons, to be close to 1. In this case, assuming the readout can be

done faithfully, there is no chance of making errors in morphological tracing of neural projections,

since the color code can be used to error-correct any tracing error.

However, if color-based barcoding is combined with automated segmentation algorithms, it may

be possible to achieve acceptably low error rates even if multiple neurons share the same barcode.

Based on the performance of automated segmentation algorithms as currently applied to EM

connectomics, we can crudely estimate the tracing error rate as a function of the barcode

degeneracy.

The probability of making an error in tracing is a function of the degeneracy of the barcode

attached to the neuron, i.e., the total number of neurons in the brain that share the barcode. For

a neuron with degeneracy M - i.e., that neuron's barcode appears in a total of M neurons across a

brain of size N neurons - the probability that any given neuron it encounters has the same

barcode can be estimated as (M - 1)/N. Thus, for each tracing error that a given automated

tracing algorithm would make in a grayscale image, we can reasonably expect that the probability

that the same algorithm would make the same error in a color-coded image is (M - 1)/N.

If the number of errors made per unit length in a grayscale image is e, then as a function of the

degeneracy M, the probability that an error is made at least once in tracing a projection of length

L is

( M - L EL CL(M - 1)

PE(ML) = 1 - (1 - N (49)

The approximation holds assuming that M « N. Thus, if there are R projections per neuron, the

expected number of incorrectly traced projections (i.e., projections with at least one error) in the

entire brain is given by

(E) = E(L)R((M) - 1) (50)

In a recent EM connectomics study in mouse cortex (299), the authors found that there were on

average 200 profiles per cubic micron, and that currently available automated tracing algorithms

made an average of 7 errors per cubic micron. Given this, we can take E to be on the order of 7

errors per 200 microns of axonal length, or 35 errors per millimeter of axonal length (1 error per

29 pm), for current automated tracing algorithms as per (299). For axons, we take (L) ~ 1 mm
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and R - 1, in which case we find that the expected number of axon tracing errors across a brain

is, very roughly,

(E)axon = 35((M) - 1) (51)

On the other hand, if we take R ~ 100 for dendrites and L ~ 100 [rm, we have, in the entire brain,

a rough estimate of

(E)axon = 350((M) - 1) (52)

Remarkably, these numbers are independent of the number of neurons in the brain, which can be

understood by the fact that, as the number of neurons increases, the probability that neurons with

the same barcode encounter each other decreases for fixed projection number and length, in our

crude error model.

Appendix 5: Peptide vs. RNA implementations

We have chosen to use peptide epitopes here to achieve high labeling densities, since peptides can

be expressed to high levels. However, RNA implementations of similar address-value barcoding

schemes are also possible, and RNA readout is simplified by the ability to use hybridization probes

- which can be made extremely specific (34?) and orthogonal (348) - and/or direct in-situ

sequencing (290).

FISH-based RNA ColorCodes: Instead of probing protein epitopes with antibodies, we can use the

identical genetic diversification strategy (top of Figure 7-2) but probe the resulting RNAs with

FISH probes. This can be done using a single round of FISH probing with K spectrally distinct

fluorescently tagged hybridization probes, much as proposed for immuno-labeling of peptide

epitopes above, or alternatively it can be done across multiple wash cycles of sequential FISH (10,

297) using a smaller number of colors (e.g., only 2 or 4 fluorescent colors imaged per wash cycle).

FISSEQ-based RNA ColorCodes: Fluorescent in-situ sequencing (FISSEQ) can also be employed

to read out such RNA barcodes. The address will then become a FISSEQ-sequencable short RNA

string, unique for each cassette, while the possible values will be short RNA strings shared across

cassettes with a given value stochastically chosen for each cassette upon recombination. The main

constraint here is that the currently-demonstrated FISSEQ read length is roughly 30 base-pairs,

whereas individual LoxP sites themselves take up 34 base-pairs. We can solve this using a design

like the following: (PanNeuronal Promoter) (Primer Binding Site 1) (Address) (First LoxP site)

(Values), where the possible values resulting from recombination are (Primer Binding Site

2)(SeqA) and (Primer Binding Site 2)(SeqB), i.e., all possible RNAs contain (Primer Binding Site

2) directly adjacent to the chosen value (either SeqA or SeqB). The proposal is to run FISSEQ

with two targeted sequencing primers, first one and then the other. Primer 1 sequences from

(Primer Binding Site 1) into the (Address). Primer 2 sequences from (Primer Binding Site 2) into
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one of (SeqA) or (SeqB) depending on which recombination event occurred in the genome-

integrated cassette. Note that we can readily achieve a huge address space here, since sequencing

even 3 address bases gives 43 = 64 addresses, and therefore the number of values per cassette can

be very limited, e.g., there are only two possible values in the above design. An alternative

approach would be to leverage the single-base resolution of FISSEQ by making the Value strings

also encode an Address for their parent cassettes. Then FISSEQ from only one primer would be

needed.

Appendix 6: Directed vs. random spatial separation

It may be possible to increase the effective number of "addresses" for a fixed number of

fluorophores by directing certain labels to certain sub-cellular compartments which can be

spatially resolved from one another at the high spatial resolutions considered here. Compartments

such as the membrane, microtubules, actin filaments, spectrin structures (349), mitochondria or

simply the intracellular space (cytosol) are worth considering as potential independent domains to

enhance multiplexing capacity. The phenotype is read out by observing the presence or absence of

each of the labels from each of the structures. In this way, with s structures and a labeling scheme

that would generate b bits of information in the absence of structure-based spatial multiplexing,
we can raise the number of bits per ROI to s x b. The 15 nm resolution of next-generation ExM

should have sufficient spatial resolution to resolve such distinct subcellular structures and

attribute the presence or absence of each label from each structure. Note that many of these

components form precise intracellular geometric structures in the axon and in dendrites, e.g., actin

rings (349), which could be useful in identifying and spatially resolving them. Moreover, there are

well-known mouse lines with e.g. GFP-labeled actin filaments and microtubules, not to mention

genetically encoded membrane and cytosolic labels. Of course, increasing the effective address

space in this way requires an increase in the generated genotypic diversity, e.g., more orthogonal

recombination sites.

Application of directed spatial multiplexing to Drosophila/Zebrafish: A particularly interesting

limiting case of this approach for Drosophila or larval Zebrafish uses just two resolvable spatial

compartments, e.g., membrane vs. microtubules, and devotes all fluorophores to values rather

than addresses, as shown in Figure 13-3. This scheme requires 10 epitope-fluorophore pairs and 10

orthogonal recombinase sites applied to 4-value cassettes, and should thus be realizable with

existing technologies. Because 4-value cassettes are expected to yield 2 bits of information per

cassette, this approach yields 220 = 1,048,576 effective cell labels. Using this strategy, we would

expect that in a Zebrafish or Drosophila brain with roughly 100k neurons, approximately 9% of

available barcodes will be used, with 91% of neurons receiving a unique barcode, and 8.6% of

neurons receiving a barcode that appears twice. See Appendix 4 of this chapter for a discussion of

error rates in the scenario where not all neurons receive unique barcodes.
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Figure 13-3: Structural Barcoding for Whole Drosophila or Zebrafish Brains. This method uses 10

orthogonal recombination sites, 10 orthogonal fluorophores, 10 epitopes/antibodies and two spatially

resolvable cellular compartments (e.g., membrane and cytosol or membrane and microtubules) to uniquely

barcode the Zebrafish or Drosophila brain. Each recombination site can generate four equi-probable epitope

displays by producing either a scaffold without any epitopes, a scaffold with one of two epitopes, or a fusion

of two scaffolds, each with an epitope. Cassettes differ only in the protein's target (e.g., membrane or

cytosol/microtubules) and in the epitopes displayed on the protein. The membrane and

cytosol/microtubules both receive 5 proteins, leading to a readout diversity of (4s)2 = 1048576 barcodes.

This is sufficient to uniquely label 90% of neurons in the Zebrafish or Drosophila brains. If this strategy

were expanded to have 12 orthogonal fluorophores and 12 epitopes/antibodies, it would produce 16.8 million

barcodes.
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The cassette design follows a standard BrainBow design with two successive inversion units. Five

cassettes each produce one of four proteins that are directed to the membrane, while the

remaining five cassettes each produce one of four proteins that are targeted to some other

spatially-resolvable non-membrane compartment such as the microtubule cytoskeleton. The

proteins produced are either scaffolding proteins labeled with a single epitope (when the

corresponding bit string is 01 or 10); scaffolding proteins without epitopes (when the

corresponding bit string is 00); or a fusion of two scaffolding proteins, each with a single epitope,

connected by a flexible linker (when the corresponding bit string is 11). Each protein produced in

this way thus encodes 2 bits of information. Readout is performed by primary antibody staining

against the epitopes, followed by staining with fluorescently labeled secondary antibodies. The

sample can be imaged using confocal microscopy with 20x expansion. We anticipate that it would

be possible to achieve 10 color fluorescent imaging on a 6 laser system (see Appendix 3, Chapter

13).
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