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ABSTRACT

Convenient access to accurate nuclear data, particularly data describing low-energy
neutrons, is crucial to the quality of thermal nuclear reactor simulations. Obtaining the
scattering kernel for thermal neutrons (i.e. neutrons with energy on the order of 1 eV or
less) can be a difficult problem, since the neutron energy is not enough to break
molecular bonds, and thus the neutrons must often interact with a molecule or lattice
structure. The "scattering law" S(a, 3), which is a function of unitless momentum and
energy transfer, is used to relate the frequency distribution (also called "vibrational
density of states") of the scattering media, to the scattering kernel. Currently, the most
popular method of calculating S(z, /) involves running the LEAPR module of the
NJOY nuclear data processing code. Several antiquated approximations are used in
LEAPR, such as the Einstein-crystal approximation (i.e. discrete oscillator
approximation), which represents peaks in the frequency distribution as 6-functions.
This project identifies insufficiencies in current thermal scattering data preparation:
redundant numerical operations, arbitrary summation cutoffs, the discrete oscillator
approximation, and the requirement that input frequency distributions be provided on a
uniform energy mesh. Solutions to these shortcomings are identified and discussed.
Additionally, a recently developed method of sampling energies and angles of the
scattered neutrons is implemented into the OpenMC Monte Carlo neutron transport
code to facilitate the testing of better phonon representations and maintain the
continuous representation of the scattering kernel in energy and angle.
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Chapter 1

Introduction

1.1 Motivation

The accuracy of a nuclear system simulation is heavily dependent on the quality of the
input nuclear data. Nuclear data (such as cross sections, particle emissions, etc.) is often
complicated and highly energy dependent, which poses a challenge for those interested
in efficiently simulating the behavior of a nuclear system. Nuclear data is released in
"evaluations", which are prepared by statistically combining experimentally measured
data with theoretical predictions. The most widely used format for these evaluations
is called the Evaluated Nuclear Data File (ENDF) [1]. ENDF files in general are not
directly used by nuclear simulations, but are pre-processed to account for simulation-
specific conditions and needs such as temperature or specific data format. In Monte
Carlo simulations, the ENDF file is most often converted into a more usable form, called
"A Compact ENDF" (ACE) [2].

Currently, the most widely trusted code used for nuclear data pre-processing is NJOY,
which has been developed and maintained at Los Alamos National Laboratory (LANL)
since the early 1970's [3]. It has a large user base and is versatile for many nuclear data
related tasks, including resonance reconstruction, Doppler-Broadening, multi-group cross
section generation, and the preparation of thermal neutron scattering data. NJOY's ca-
pabilities are spread across 24 modules, two of which (LEAPR and THERMR) handle
the calculation and representation of thermal scattering from bound moderators. The
accuracy of thermal neutron scattering data can greatly dictate the quality of thermal
reactor analysis and safety margin calculations, and ensuring said accuracy remains a dif-
ficult problem due to effects (molecular structure, neutron wavelength, described below)
that are not apparent for higher neutron energies.

Both thermal neutron scattering and resonant neutron scattering are highly dependent
on incoming neutron energy. However, thermal neutron scattering cross sections must
also account for molecular structure, since the energy of the incoming neutron is gener-
ally on the order of the molecules' excitation modes (i.e. on the order of 1 eV or less).
Excitation of these modes can result in vibration, translation, or rotation of the target.
Vibrational modes (also called phonons, in the case of a crystal), are of primary concern
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when describing neutron scattering in a solid. In addition to the molecular excitation,
description of the scattering of thermal neutrons is further complicated by the neutron's
long de Broglie wavelength. When a neutron has energy in the thermal region, its wave-
length can be on the order of the inter-atomic spacing, which allows for the possibility
for it to interact with multiple nuclei, as opposed to a single atom [4].

Despite the above complications, a thermal scattering relationship S(OZ, /, T) is con-
structed to relate unitless neutron momentum and energy exchange (a and /, respec-
tively) with the double differential inelastic incoherent scattering cross section 7 (E + E', f).
Once S(z, /, T), also called the "scattering law", is obtained, the cross section can be eas-
ily calculated using

c-(E - E',AI) =kbT -S(a ,/,T), (1.1)
2kbT E

where o, is the characteristic bound scattering cross section of the target isotope, kb is
Boltzmann's constant, and T is the temperature. Thus, the quality of thermal nuclear
system modeling is directly tied to the preparation of the scattering law.

1.2 Description of Thermal Neutron Scattering

Before further discussing LEAPR's method of calculating the scattering law S(a, /, T),
it is worthwhile to introduce the various types of scattering (i.e. elastic vs. inelas-
tic, coherent vs. incoherent), as well as describe the scattering law in terms of other
commonly-discussed functions (e.g. the pair distribution function G(r, t), the intermedi-
ate scattering function x(r., t), and the structure factor S(i,, w)) 1 .

1.2.1 Types of Thermal Neutron Scattering

As mentioned in Sec. 1.1, the most widely used code for nuclear data processing is NJOY,
which through two of its modules (LEAPR and THERMR) has the ability to prepare
thermal scattering data. Generally, LEAPR creates an S(a, 3, T) table, while THERMR
converts this scattering law and converts it to cross sections, then writes them to output
files that are convenient to read in from simulations. Since LEAPR primarily calculates
S(a, /, T), it will be of primary focus for the remainder of this section.

Thermal neutron scattering can be elastic or inelastic, both of which have a coherent
and incoherent contribution. Elastic scattering implies no change in kinetic energy, while
inelastic scattering does not. If the neutron elastically scatters off of a much larger target2 ,
the neutron itself will experience virtually no energy change, due to the scatterer's high
effective mass. Inelastic thermal scattering can result in a change to neutron energy that
corresponds with an excitation/de-excitation of the target.

'Note that for the remainder of this paper, bolded variables represent vectors.
2Here, "much larger target" here refers to a crystalline structure or a molecule. These examples are

important to the current discussion because unlike higher energy neutrons, thermal neutrons interact
with molecular structures as a whole, and not just the constituent atoms.
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Excitations can correspond to creation of vibrational modes (phonons), as well as the
creation of translational or rotational modes. For a system of particles with randomly
distributed spins, coherent scattering consists of interacting wave effects, whereas inco-
herent scattering consists solely of a sum of non-interacting waves3

For materials with randomly distributed crystallites, the form of coherent inelastic scat-
tering is approximately equal to that of incoherent inelastic scattering. This allows the
coherent and incoherent inelastic components to be combined into one inelastic contribu-
tion, an approximation known as the "incoherent approximation", which will be further
introduced in Sec. 1.2.5 [3, 5].

LEAPR separates the scattering calculation into inelastic, coherent elastic, and inco-
herent elastic. This project primarily focuses on inelastic scattering, due to its role in
representing neutron energy change in a thermal scattering interaction.

1.2.2 Pair Distribution Function

The scattering kernel as(E -+ E', Q -+ Q') is typically separated into a coherent and an
incoherent contribution3 , both of which can be defined in terms of so-called "van Hove
pair distribution function" G(r, t), which contains information regarding the scattering
material. The pair distribution function is split into two terms

G(r, t) = G,(r, t) + Gd(r, t) (1.2)

which represent a "self' term and a "distinct" term, respectively. In a classical system,
G(r, t) can be interpreted as the probability that an atom will be at location r at time t,
given that an atom existed at the origin at time t = 0. The first term, G,(r, t), represents
the probability the particle originally at the origin would later exist at position r. The
latter term Gd(r, t) assumes that the two particles observed were not the same [7, 8].

Using these definitions of the pair distribution functions, the coherent and incoherent
scattering kernels for a homogeneous system consisting of bound scatterers of a single
nuclide can be described as

coh (E~ E'coh E' 1 )=dt I dr ei(-r-et/h)G(r, t) (1.3)

Oinc(E- E', Q -+ Q') - ainc dt dr ei'(-r-t/h)G,(r, t) (1.4)

where hn is the change in neutron momentum, c is the change in energy, and 0
coh and

c'in are the bound coherent and incoherent scattering cross sections, respectively [8].
These bound cross sections can be defined in terms of the first and second moments of
the scattering length a,

Ocoh = 47 (a) 2  (1.5)
3Note that in separating the coherent and incoherent contributions, one ignores spin-correlation ef-

fects. These effects are of little to no importance for most applications, except for instances like thermal
scattering in liquid hydrogen, which has correlated spins {61. Such materials are considered apart from
this simple coherent/incoherent discussion.
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a-ic = 47 ((a2 ) - (a)2 ) (1.6)

where (...) denotes the average [9]. These definitions assume that the spins of adjacent
nuclei are randomly oriented. For reactor purposes this is a very good approximation,
since the spins of neighboring nuclei are typically uncorrelated except at very low tem-
peratures.

1.2.3 Intermediate Scattering Function

The intermediate scattering function x('., t) serves as an intermediate step between the
pair distribution function G(r, t) and the scattering law S(oz, /) that we aim to describe.
Note that in Eqs. 1.3, 1.4, the time-dependent term in the exponential can be moved
outside the spatial integral, allowing us to define

O-coh(E E', Q -Q') =coh dt e-it/hXcoh(, t) (1-7)
4w7F 27 j

O-inc(E E', Q Q') [= i e- it/Xinc(), t) (1.8)
47r E 2w7J

where

xcoh( ,t) J erG(r, t) dr (1.9)

Xinc J7 ) e'.r Gs(r, t) dr. (1.10)

1.2.4 Structure Factor

The structure factor S(r,, c) is the space and time Fourier transform of the correlation
function G(r, t) (i.e. the time Fourier transform of the intermediate scattering function

X (r, W),

S(,, c) = ei(K'r-t/h) G(r, t) dr dt (1.11)

S8 (K, E) = - j J -/h) G,(r, t) dr dt. (1.12)

By applying the principle of detailed balance' to Eqs. 1.11, 1.12, we find that the structure
factor is seen to be symmetric [8]. Recalling that

=my - v'1 (1.13)
= m(v) 2 + m(v') 2 - 2pvv' (1.14)

= 2E + 2E' - 4p/EE', (1.15)
4Detailed balance asserts that for a system at thermodynamic equilibrium, any microscopic processes

must be equilibrated by the corresponding reverse process. For this discussion on scattering, detailed
balance requires that the rate at which neutrons that scatter out of energy E must equal the rate at
which neutrons scatter into energy E (assuming thermal equilibrium).
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the dimensionless version of which is defined as

h_2_2 E' + E - 2/ EE'(1
a AkbT (1.16)

2AmkbT Ay

where 1- is the cosine of the scattering angle in the lab frame (all azimuthal angles
are considered equally likely), A is the target mass number, and kbT is the scatterer
temperature in energy (kb is the Boltzmann constant). Similarly, the dimensionless energy
transfer is defined as

SE' - E
= E= -E (1.17)

kbT kbT

Using these dimensionless versions of r, and E, the structure factor S(K, E) can be rewritten
as

$Suym(a, #)=kbTeo/2 S(K, E) (.8

where the "sym" subscript indicates that the symmetric nature of the structure factor
has carried over to the scattering law. Note that for the duration of this paper, the
non-symmetric form of the scattering law will be of primary interest, and will be further
discussed in Sec. 1.3.1.

+coh(E - E', Q Q Q') = dt J dr ei(Kr-ct/h)G(r, t) (1.19)

coh S(, E) (1.20)

=4wkT s ym(&, )e-/ 2 . (1.21)

(1.22)

By assuming that scattering is isotropic in the azimuthal direction, we can integrate across
the azimuthal angle and make this cross section instead a function of the scattering cosine

Ucoh(E -- E', p) =c Sym(a, 0)e-/ 2 . (1.23)

1.2.5 Incoherent Approximation

As mentioned in Sec. 1.2.2, the total scattering cross section has both a coherent and
an incoherent contribution. The coherent component is defined using a bound coherent
scattering cross section Ecoh, along with a scattering law related to the full pair correlation
function G(r, t). Similarly, the incoherent scattering cross section is defined using a
bound incoherent scattering cross section ainc and a scattering law related to the "self"
pair correlation function G,(r, t).
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Often, the "incoherent approximation" is applied, which simply assumes that G(r, t)
G,(r, t), meaning that the total scattering cross section is defined as

-(E - E', P) = " f dt I dr e(eKrt/h) Gs(r, t). (1.24)
2 F 2w J

In terms of the scattering law, this approximation allows the cross section to be written
as

a(E -+ E', p) = "2 T nc e -/2 SSYm(a, (1.25)
2kbT E '

For a brief discussion on the validity of this approximation, specifically regarding hy-
drogenous materials, see Appendix A.1.

1.3 Current Methods of Preparing S(ac, 3, T)

With a general picture of what the scattering law S(a,/) means and where it comes
from, we can begin to explore how it is typically calculated (following the methodology
used in NJOY's LEAPR module [3]).

1.3.1 Inelastic Thermal Neutron Scattering

Recall from Sec. 1.1 that the double differential inelastic cross section for a given tem-
perature T is defined as

a (E - E', p) 2kT Sn.sym(a, /, T) (1.1)

which describes a neutron with incoming energy E scattering with cosine P into energy
E', where ao is the target's characteristic bound scattering cross section, and kb is Boltz-
mann's constant. Note that Sn.sym(a, /, T) is the non-symmetric form of the scattering
law, which is related to the symmetric form by

Ssym(a, /, T) = e 3/ 2 Sn.sym(a, /, T). (1.26)

Recall that dimensionless momentum and energy transfer, a and 3 respectively, between
a neutron and a target of mass number A, are defined as

E' + E - 2pVE'E (-6E'E-= 'E(1.16)
AkbT

E' - E
kb= T (1.17)kbT

The minimum value that / can have occurs when E'= 0, meaning that / -E/kT. /
can be arbitrarily high, but is often cutoff to some reasonably high value (e.g. =m = 20.0
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in 1101). For a each 3 value, there exists a valid range of a values, which will be further
discussed in Sec. 1.2.

The non-symmetric scattering law Sn.sym(a, /) can be written as an integral across unit-
less time5 ,

Sn.sym(a, 3, T) = ete--(') d (1.27)

where [3]

) 
a P(#) [1 -e-13t1 e-82 d# (1.28)

and
_ p(#3)

P(/) - ) (1.29)
2# sinh(0/2)'

Here, p(#3) is the frequency spectrum (also called the "vibrational density of states" or
"phonon distribution" for a crystal) that is characteristic to the material, such that p(o) do
describes the probability that the lattice will experience normal modes of vibration be-
tween # and / + d/3 [8]. The frequency spectrum normalizes to unity,

p(#)d# = 1. (1.30)

Eq. 1.27 uses the Gaussian approximation6 , as well as the incoherent approximation,
which neglects interference effects [11]. The forms of Eqs. 1.27, 1.28 were obtained as-
suming that the scattering material has a simple cubic crystal structure [8]. Further
assumptions include that there exists only one type of atom, and that atoms are bound
by harmonic interatomic forces in a structure with cubic symmetry. Despite these re-
strictive assumptions, Eqs. 1.27, 1.28 tend to return relatively accurate inelastic cross
sections for many materials that do not adhere to the aforementioned assumptions (e.g.
materials that lack cubic structure) [8].

To facilitate the calculation of Eq. 1.27, LEAPR decomposes the frequency spectrum

p(O),

# osc.
p() = wj8(#3 - 0j) + Ps() + Pt() (1.31)

j=1

into a sum of discrete oscillators (represented by weighted delta-functions Wj6(/ -/3j)), a
solid-type spectrum p,(/), and a translational spectrum pt(/). The solid-type spectrum

5Note that this "time" parameter is related to the time t that was used in Sec. 1.2.2-1.2.5. The
values defined in preceding sections, E and t, are replaced with corresponding unitless values, 0 and i. If
A = et/h where / = kbTc, then i = t kbT/h.

'In general, the intermediate scattering function is such that ln(Xisc(r, t))= -0-Y(t) + ,'K 2 (t) +...

where ln(Xinc(n, t)) ~ -- y(t) corresponds to the Gaussian approximation. This approximation is exact
for systems such as the isotropic Einstein oscillator with harmonic lattice vibrations, and is relatively
valid for anisotropic vibrations as long as 2 is small [6]. The remainder of this project assumes the
Gaussian approximation to be valid for all cases considered.
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and translational spectrum integrate to w, and wt, respectively, such that

# osc.

)7S + + w W1. (1.32)
j=1

LEAPR uses each component of this decomposed frequency distribution to create a cor-
responding scattering law, then convolves these individual scattering laws to retrieve the
true scattering relation Sn.sym(a, 3, T).

Solid-Type Continuous Spectra

The solid-type continuous contribution, denoted as Snym (a, 3, T), can be simplified by
representing Eq. 1.27 as an infinite sum, and using a finite number of terms of that sum
to approximate a contribution value. The solid-type continuous spectra depends on the
frequency distribution p(3). Eq. 1.28 can be rewritten as

-(i) = aAs - a j P(#3)e/2e-iM d3, (1.33)

where As, known as the Debye-Waller coefficient for the solid-type spectra, is defined as

A = P(f')e-3'/2 d#' (1.34)

The exponential of -y(t) is approximated as

e- ' = (e~-s 1 [ j P(')e-3'/2 -'O d#3'1 ) (1.35)

where the exponential of Eq. 1.33's latter term has been represented using a Taylor series.
Eq. 1.35 is used in Eq. 1.27 to yield [3, 8]

S$-ym (a, 3, T) = j e't ( s [a P(o')e-O'/2e-' d] d (1.36)
-7r n= n! . -o

= e-f ed P(#')e- '/ 2 e-',3 do' dt (1.37)
n=O - -o

aA,00 . n 0

-e - [aAs]" (#) (1.38)
n=O

where
1n

A" () =[j P() 3/2-,-3" d#' di . (1.39)
27r _ . -o0

This definition of the scattering law is referred to as the "phonon expansion", since the
nth term corresponds to the excitation of n modes in the scatterer (i.e. creation of n
phonons in the material) [8].
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Note that

T() =(#) (1.40)
and

T() f j e , P(/')e-0/2e-','8 d3' d (1.41)
27As

= 2irA8 jP( -)e-'/2 j egA di d3' (1.42)

P(')e-'/26(o - 3') d/' (1.43)

P(#)e- 3/2 (.4(1.44)
As

As shown in Appendix A.2, T-(,3) can be attained by convolving the previous function
Tn_1(#) with T1 (3),

Tn(/3) j 71 (#') T1 (/ - /') d3'. (1.45)

Approximating the solid-type, continuous contribution to Sn.sym(a, /3, T) can be done by
computing R(#) for i from 1 to a sufficiently large value of n. These 7() values are
then provided to the sum in Eq. 1.38.

Discrete Oscillator

The phonon distribution for H in H2 0 according to the CAB model [12], which is based off
of experimental measurements and molecular dynamics simulations, is shown in Fig. 1.1.
Often, vibrational modes appear as sharp peaks in the frequency distribution, which are
commonly approximated in LEAPR as weighted Dirac-6 functions, p(/3) = wio3(/ - #3).
The contribution to the scattering law from oscillator i is

S$nym((, /3) = e- 3o (/3 - ri/) In [j3 e-n,/ 2  (1.46)
n_-o _j in h (0j/2)]_

where the corresponding Debye-Waller coefficient is

Ai = wi (1.47)

and In(x) is the modified Bessel function of the first kind. Note that while Eqs. 1.46, 1.47
seem to differ significantly from their continuous-spectrum counterparts, they are actu-
ally equivalent to the solid type scattering law contribution, with the only additional
assumption being that p(/) = wi 6(/ - /3), as shown in Appendix C.2.

When combining a continuous, solid-type spectrum with N discrete oscillators, the total
Debye-Waller coefficient is simply the sum of each contributions' Debye-Waller coefficient,

N

A - A+ZAi. (1.48)
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Figure 1.1: Phonon distribution for H in H2 0 [12]. The red points
and the arrows represent measured data against which to compare
the calculated spectrum. Of particular interest are the two peaks
near 200 and 400 meV, which in typical NJOY LEAPR inputs are
approximated as discrete oscillators.

By collecting the Bessel function and exponentials in Eq. 1.46, the
contribution to the scattering law can be rewritten as

00

~sm(a,#) = Ai,(a)J (P - n0i)
n=-oc

discrete oscillator

(1.49)

where Aj,n(a) is defined as

e i smh(#/2)] (1.50)

Using Eq. 1.49, the contribution that an individual oscillator has to the total scattering
law is rather simple to compute. However, once computed, it must be convolved with
the other contribution(s) to the scattering law. To illustrate this process, consider an
example where two discrete oscillators contributions, Snlsym and S.2)ym, are combined
with a solid-type contribution SLS1ym. To begin, the first oscillator is combined with the
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solid-type spectrum,

f00
Sl); (a, #)=_ SQym (a, /3') S$lym (a, / - /') d/' (1.51)

00J0E A1,n ~~ ( ol-) Sn(9)ym (e, 0 -- no') do' (1.52)

= Ai(a)S$(9ym (a,0 - no) (1.53)
fl-o

and the second oscillator can then be combined to the other two contributions,

Sn";'i (a,3) =JS2ym (a, /') S}"i (a,3 - ') d/' (1.54)
f-00 050Y 

1.4

1 A 2,m(a)3 (/' - m/23) S's;m (a, / -/3') d/' (1.55)

00

= A 2,m(a)Sn; (a, 3 -- m32) (1.56)
M=-00

cc 010

= A 2 ,m(Ce) E Ai,n(a)Sn(lym (a, / - n#, - m32) (1.57)
M=-00 fl=-00

Depending on the size of the a, / grids, and the number of 6 functions considered, con-
volving the oscillator contributions with the continuous, solid-type spectrum can be a
tedious calculation, and will be further discussed in Sec. 2.

Translational Spectra

For some materials (e.g. gases, liquids), thermal neutron scattering can be modeled by
combining a diffusive term Snsym to a solid-type continuous contribution. Two options
exist for this translational/diffusive term: the "effective width model" and the "free gas
model", which are generally used for liquid moderators and gaseous moderators, respec-
tively [13, 31. Both formulations allow for analytic expressions of the scattering law which,
once calculated, is convolved with other contributions to obtain the total Sn.sym(a, /).

1.3.2 Compatible a, # Values

Recalling the definitions of a and / that were introduced in Eqs. 1.16-1.17, respectively,
it is apparent that not all (a, /) pairs are physically compatible. For a given / value, the
minimum a value corresponds to no change in angle (p = 1), and the maximum a value
corresponds to back scattering (p = -1). Thus, setting p = 1 gives the minimum and
maximum a values, respectively,

E'+ E 2v/E'E (158)
aminmax = AkbT
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Using the definition of / in Eq. 1.17 to eliminate E', the bounding a values are represented
as

amin,max
(kbT + E) + E ( 2( 7kb T +E )E

AkbT

(!3kbTET IE) 2

AkbT

(1.59)

(1.60)

Thus for a given
a range is

, temperature T, initial neutron energy E, and mass ratio A, the valid

OkbT + E - v/E 

AkbT - -<

This relationship in Eq. 1.61 is plotted in Fig.
E = 0.0255 eV scatters off of H in H2 0 at T

-- 40

(V/kbT + E + E 2

AkbT (1-61)

1.2, where a neutron with initial energy
= 296 K. In all subsequent discussions,

alpha

Id (alpha, beta
pairs

* 9'

I
I

I -
U

beta

9'

j151P

Figure 1.2: Valid (a, ,3) combinations, given a 0.0255 eV neutron
scattering from H in H20. This illustrates the requirement presented
in Eq. 1.61.

only a and / values that satisfy the requirement in Eq. 1.61 for the given temperature,
initial energy, and mass number, will be presented, so as to restrict the conclusions to
only include physically meaningful values.
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1.4 Current Methods of Sampling from S(ac, 3, T)

Computing the scattering law, as described in Sec. 1.3, requires making many choices
regarding approximations and assumptions about the moderator. Once the scattering
law is obtained, further care is required to enable efficient and accurate sampling. Since
S(a, /, T) requires sufficiently fine a, / grids, in addition to having a temperature depen-
dence, there exists the risk of prohibitively large memory usage. To combat this potential
restriction, a fitting approach in temperature has been introduced, which uses probability
distributions to facilitate sampling a and # values for the simulation [10]. This fitting
approach will be introduced in Sec. 1.4.2. First, however, a quick introduction to how
the cross section values are written to the ENDF-style output is provided.

1.4.1 Generation of Pointwise ENDF

Recall Eq. 1.1, which shows that once the scattering law is obtained, the incoherent
scattering cross section can be easily calculated,

inc. (E a ', , T) = 2T Sn.sym(a,, , T). (1.1)

Generally, the LEAPR module of NJOY prepares the scattering law Sn.sym(a, /, T) and
provides it to THERMR, which then generates pointwise cross sections and E -- E'
scattering matrices for every desired temperature T. This act of reproducing tables for
each temperatures is what prompted the development of the sampling technique that
will be described in Sec. 1.4.2. THERMR writes the scattering data to a pointwise-
ENDF (PENDF), which can later be used by other modules for further processing and/or
plotting. When the cross sections are written to the PENDF file, two possible orderings
are allowed: E-E'-p and E-p-E'. The former is significantly more popular, while the
latter is primarily used for comparing against experiments.

Thermal neutron scattering data is prepared by the LEAPR and THERMR modules of
NJOY, where LEAPR typically uses a frequency distribution to generate the scattering
law and THERMR produces point-wise scattering cross sections [3].

Inelastic scattering cross sections, outgoing energies, and equiprobable angles are typically
provided to nuclear calculations. If a neutron initially has energy E, the interpolation
factor f is defined as

f = - (1.62)
Ej+1 - Ej

where the E lies between E and E+1 [14]. This interpolation factor is used to sample
outgoing energy E',

E' = Ejj + f (Ei+1,j - Ej (1.63)

Incoming and outgoing energy bins are represented with i and j, respectively. The
outgoing scattering cosines are sampled are sampled in a similar way

p = Pij,k + f (pi+1,j,k - -ij,k) (1.64)
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where k designates the scattering cosine bins [14].

1.4.2 Generation of S(a, 3, T) Probability Distribution

Joint Probability Distribution

To avoid prohibitively large memory usage and provide a rigorous continuous energy
and angle representation, a fitting approach in a and # space 115] as well as a fitting
approach in temperature 110] have been developed, so as to ease the burden of storing
vast amounts of data. The fitting approach in temperature is of primary focus here, and

requires construction of the scattering cross sections' probability density functions (PDF)
and cumulative distribution functions (CDF), as functions of a and 3. The cross section
ainc(E -+ E', p, T) defined in Eq. 1.1 is converted to a and 3 dependence,

ainc.(a,3T) - AIT b Sn.sym (a, , T) (1.65)

Once Eq. 1.65 is normalized to integrate to 1, it is interpreted as a joint probability
distribution,

f(a, #IE, T) inc. T) (1.66)
mrax f &max inc. 3

,a r -min -(a, T da' d1'

where initial neutron energy E is held fixed. Constant factors cancel out, leaving

f(a, /3jE, T) = 3 Sn-ym(c, , ) T) .(1.67)

f"min f ""in Sn.sym (a', ', T) da' d/'

Minimum and Maximum a, / Values

As stated in Eq. 1.61, the bounding a range, for given values of /, T, and A, is defined
by

_________ + EbT2E V0Q~kT E- E QkbT + E + _\E)
AkbT ) a AkbT (1.61)

These bounding a values serve as the integration bounds amin, amax, in Eq. 1.67, and are
a function of incoming energy E and /'. The minimum / value occurs when E' = 0,
leaving a 3min = -E/kbT. The maximum / value, however, is less well-defined, since
theoretically a neutron can be up-scattered to an arbitrarily high energy. But for the
purposes of this discussion, the convention used by [10] is adopted, and the maximum
energy transfer is set to a reasonably high value 3max = 20.

Probability Distribution Functions

Following the notation in [10], two conditional probability distributions are constructed
(PDF in / given E, and PDF of a given 3). The former is obtained by integrating
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Eq. 1.67 across a',

fmax Sn.sym(a', 3, T) da'
g(#|E, T) = """ . (1.68)g(/aE fT ""max Sn.YM (',3', T )da' dT) ' (1.6f/3min fminS

where the latter is obtained by removing the integration across 3' from Eq. 1.67,

h(aI, E, T) = Sn.sym(a, 3, T) (1.69)
fc,"7 Sn.sym(a', /, T)da'

The PDFs, g(3#1E, T) and h(a I , E, T), can be integrated to obtain their respective CDFs,
G(,31E, T) and H(a13, E, T),

G(/IE, T) = g ('lE, T) d#' (1.70)

H(a3, E, T) j h (a'I/, E, T) da'. (1.71)

Note that Eq. 1.71 has dependence on /, E, and T, meaning that storing the CDF for
a given / would be quite costly. The dependence on incoming neutron energy E can be
eliminated, however, by refusing to account for the a bounds (which are the only terms
with E dependence). This of course will result in non-physical (a, /) pairs (i.e. they will
not comply with Eq. 1.61), but such conflicts can be readily resolved. Eqs. 1.69 and 1.71
are rewritten to be energy independent,

S(a, /, T)
h(a|O, T) = (1.72)

f S (a', 0, T)da'

H(aj/,T) = h (a'#, T)da'. (1.73)

As seen in Sec. B.2, Eq. 1.73 can be amended so that the k CDF values with non-physical
a, / values are removed [10],used to enforce the a restrictions that were dropped when
removing incoming neutron energy dependence [10],

H~aI3,E,) = (aj3, T) - H(amin|3, T)
H(oz|o,E E (z1, T) - .Cmn ,T (1.74)

H(amaj/3 T) - H(aminl3, T)

Thus, during the preprocessing step, H(a|/, T) and G(/3E, T) are calculated and stored.
Due to its relative simplicity, G(#fE, T) can be directly sampled. Using the resulting /3
value from G(/3|E, T), H(a13, T) is sampled and Eq. 1.74 is used to remove non-physical

(a, 3) combinations, which eliminates the need to tabulate the a CDF against incoming
neutron energy E.
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1.4.3 Sampling from S(a, /3, T) Probability Distribution

In this section, the method for sampling a, / values is presented, by using the CDFs that
were constructed in Sec. 1.4.2, where the initial neutron energy E and the temperature
of the material T are known.

1. / value is sampled [10]

(a) The 3 range is set to be [-E/kbT, 20 eV].

(b) For each # value, its corresponding cmin, 0 1max values are calculated using
Eq. 1.61.

(c) These a values are then used to construct the / PDF g(#3E, T) as well as the
/ CDF G(#3E, T) defined in Eqs. 1.68,1.70.

(d) A pseudo-random number 1 is sampled between [0,1], and is equated to the
CDF G(/IE,T).

(e) A search of the CDF table is performed to locate the value of /3 such that

G(31 E, T) = ,1.

2. a value is sampled [10]

(a) For the / value that was just sampled, calculate its amin and ama.

(b) The a CDF H(a/, T) is calculated from Eq. 1.73.

(c) f(amin, ,T) and f(ama/1, T) are calculated.

(d) A pseudo-random number 2 is sampled between [0,1], and is equated to the
a CDF H(aI/, E, T).

(e) With 2 = H(aj/, E, T), Eq. 1.73 is used to solve for H(aI3, T).

H(a|/3, T) = 2 [ft (amaj/, T) - H (aminl13, T)] + H (aminl13, T) = (1.75)

(f) A search on the CDF H(a/, T) table is performed to find some a such that
Eq. 1.75 is valid.

27



Chapter 2

Thesis Objectives

The process of preparing thermal neutron scattering data for simulations involves a num-
ber of outdated methods and approximations, that were introduced in Sec. 1.3. This
section is dedicated to further identifying specific inadequacies in current thermal data
processing methods. Some of these inadequacies are simple to fix (e.g. checking for
convergence instead of setting fixed summation limits). However, others are more foun-
dational, and thus require discussion and potentially removal from the nuclear data pro-
cessing code (e.g. the approximation made in Eq. 1.31 which separates the frequency
spectrum into a set of discrete oscillators, a solid-type contribution, and a diffusive term).
Perhaps the most severe limitation currently employed in the NJOY LEAPR code is the
restriction of the input phonon distribution to be on a uniform grid (this will be further
discussed in Sec. 2.2.1).

The objectives of this project are to

1. Provide analysis into the effects of the discrete oscillator approximation

2. Discuss specific instances where calculation methods are deprecated

3. Motivate and discuss the development of a nonuniform phonon distribution energy
grid

4. Implement the PDF/CDF sampling method developed by [10] into the OpenMC
Python API [161.

2.1 Input Phonon Distribution Approximations

When the frequency distribution is decomposed in Eq. 1.31, it is broken into a solid-type
continuous part, translational/diffusive part, and a series of discrete oscillators. The
solid-type, continuous representation involved directly solving Eq. 1.45. The translation-
al/diffusive part is approximated by either convolving a diffusive term to the existing
solid-type spectrum, or by using a free-gas approximation. The discrete oscillators rep-
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resent vibrational modes in polyatomic molecules, and are approximated as 3 functions
in the phonon distribution [3].

The choice to approximate vibrational modes as discrete oscillators was made as an
attempt to reduce the computational toll that may otherwise exist. Approximating a
peak in the frequency distribution as an oscillator allows for analytic forms of both
S(')(n.sym)(a,3, T) and the phonon distribution p(o). This benefit is counteracted,
however, by the need to convolve the separately calculated scattering laws (one for solid-
type continuous, and perhaps one for translational/diffusive, and perhaps one or more
for discrete oscillator), as is demonstrated in Eq. 1.51-1.57.

Furthermore, in order to use LEAPR's discrete oscillator approximation, the user must
either create or otherwise obtain a partial phonon spectrum, which omits key peaks (since
those peaks will be represented using 6 functions). The user would place a 3 function
at the center of each peak, and must define the 3 function's corresponding weight such
that it adequately represents the area under the original peak. In practice, this results in
users simply copying and pasting existing input files from one source to the next, since
generating a file from scratch requires so much additional effort. This dependency on pre-
existing input files makes LEAPR less accessible to users who need to process thermal
scattering data for materials other than those typically documented' and less adaptable
to more accurate phonon distributions.

Since the discrete oscillator approximation (1) is not conducive to newer materials and
incentivizes relying on decades-old input files, and (2) negates some of its appeal by re-

quiring convolution of S.sym(a, 3, T) with other Sn.sym(a, 3, T) contributions, we propose
phasing out this antiquated approximation.

2.2 Improved Numerical Operations

Recall that calculation of the scattering law given a continuous, solid-type spectra requires
solving

Snaym(, , T) = e-OA E - [aA]"(. ) (1.38)
n=O n

where

7n() j Tj (/') T (/ - /') d3'. (1.45)

These two equations are effective in illustrating how insufficient numerical methods can
affect the final output Sn.sym(a, /, T) value. For example, NJOY's LEAPR module ap-
proximates the infinite sum in Eq. 1.38 as a sum from n = I...N, where N is either
specified by the user, or set to a default value of 100. Regardless of whether N is selected
by the user or left to its default, this value stays constant for all a, /, and tempera-
ture values. Thus, to eliminate this arbitrarily chosen cutoff, the predefined summation

Currently there are 34 files for thermal neutron scattering data inputs released in the ENDF/B-VIII
library [17], and a handful of alternate inputs provided with NJOY documentation [3].
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bound N is replaced with a tolerance-defined exit case (e.g. end summation when con-
secutive Sn,,,y (a, #) values are within r% of each other). Further discussion regarding
the summation limit and rate of convergence is provided in Sec. 5.2.

2.2.1 Nonuniform Phonon Distribution Energy Grid

Currently, LEAPR requires that the input phonon distribution be provided on a constant
energy grid. A benefit to this restriction is that it facilitates the calculation of the
convolution integral in Eq. 1.45 because 0 - 3' is ensured to be on the same grid as
0. A non-uniform input frequency distribution grid is favorable, however, because it
would allow increased precision on crucial parts (e.g. peaks) of the phonon distribution,
without forcing prohibitively many points in flatter regions. Recall Fig. 1.1, which is a
good example of the limitations of uniform phonon distribution spacing. In order to avoid
the deprecated discrete oscillator approximation, the two higher energy peaks would need
to be defined in the continuous phonon spectrum. So a fine grid would be required for the
area surrounding those peaks, but a coarse grid would be preferred for the flat plateaus
in the surrounding areas.

0.01

1M6
I.

0.004

0.002

0 100 200 g (~V 300 400 500

Figure 1.1: Phonon Distribution for H in H 20 [12]. The red points
and the arrows represent measured data against which to compare
the calculated spectrum. Of particular interest are the two peaks
near 200 and 400 meV which, in typical NJOY LEAPR inputs, are
approximated as discrete oscillators.
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2.3 Implementation of S(a, /) Sampling into OpenMC

The sampling method developed by [10] is implemented into the OpenMC Monte Carlo

neutron transport simulation code [161, both for validation purposes as well as to allow

OpenMC users to make use of this improved scheme through the Python API. The API

serves as a convenient interface with which to interact with OpenMC and to further

facilitate neutron criticality calculations. Implementation of the sampling technique is

used to compare the obtained energy and angle distributions with those generated using
conventional methods (i.e. the THERMR module of NJOY).
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Chapter 3

Accurate Representation of Phonon
Distributions

3.1 Discrete Oscillator Approximation

The LEAPR module of NJOY, which prepares thermal scattering data via the scattering
law, S(a, #, T), often approximates peaks in the phonon spectra as discrete oscillators
and models them as weighted 6 functions. This approximation, also known as the "Ein-
stein crystal" approximation, is not a physically accurate representation of water. For
instance, recall the phonon distribution for H in H20 from Fig. 1.1, which was obtained
using a molecular dynamics calculation. The peaks near 0.2 eV and 0.4 eV are quite
unlike 6-functions, and a comparison between the 6-function distribution and the "true"
distribution will be explored in Sec. 3.6. However, first we will consider how to repli-
cate the discrete oscillator model. In the event that a user would want to avoid this
approximation and instead apply the continuous phonon distribution treatment to those
selected areas, it is crucial to verify agreement between these two methods. To test this,
a simplified model for H in H20 is used, which is modeled after Test Problem #9 in the
NJOY 2016 release [3].

3.1.1 Problem Specifications

The test case used for this discrete oscillator discussion depicts a simplified H in H20
model. The water is comprised of H-1 and 0-16, and is held at T = 296 K. An input
phonon spectrum is used for the solid-type continuous model, and two discrete oscilla-
tors are used to represent higher energy peaks. The phonon distribution and discrete
oscillators, which are taken from Test #9 in NJOY 2016, are plotted in Fig. 3.1 [3].
The continuous phonon spectrum is defined as p(#) = p(AE/kbT) for AE spanning
from 0-0.16575 eV, where the energy grid is uniformly spaced in increments of 0.00255
eV. Unlike the original Test #9, no translational/diffusive contribution is considered
(t = 0). The continuous weighting w, is set to 0.5, and the discrete oscillator energies and
weights are provided in Table 3.1. Note that the listed weights satisfy the normalization
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Figure 3.1: The phonon distribution for NJOY 2016 Test Problem 9
is shown above. It contains a continuous contribution, shown in the
lower energy region, and two J functions to approximate the higher
energy peaks. Note that the 6 functions are of arbitrary height rela-
tive to the continuous spectrum.

requirement stated in Eq. 1.32.

Energy (eV) Weighting
0.205 0.166667
0.480 0.333333

Table 3.1: Energies and Weights for 6 functions used in NJOY 2016
Test Problem 9

3.2 Representing Discrete Oscillators as Continuous Points

In order to allow users to avoid the J function approximation that is commonly used
in NJOY's LEAPR module, it is crucial to demonstrate similar behavior between how
the solid-type continuous treatment vs. discrete oscillator treatment processes sharp
peaks. The problem specifications detailed in Sec. 3.1.1 are considered, and the discrete
oscillators are represented as thin triangles in the continuous spectrum. To allow for
more flexible analysis, LEAPR's source code was translated from Fortran to C++. After
presenting the frequency distributions that will approximate the peaks as triangles, the
features of S(a, /) will be discussed, and the then the effect of the "triangle approxima-
tion" will be studied. The agreement between the translated C++ LEAPR and Fortran
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.1

LEAPR is described in Appendix C.1.

3.2.1 Replacing Discrete Oscillator 6 Functions as Triangles

To verify that discrete oscillator treatment can be replicated by using increasingly thin
triangles, each triangle must integrate to the weight of its corresponding 6 function. Tri-
angles of various widths (2,4,6,8, and 10 grid spaces) are used to replace both 6 functions,
and are plotted in Fig. 3.2. Additionally, a close-up of the 0.204 eV oscillator region is
provided to illustrate a discrepancy between the triangle and oscillator locations.
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Figure 3.2: Phonon Distribution for H in H20, with oscillators re-
placed with phonon distribution triangles of various widths. The
area under each triangle integrates to its corresponding 6 function
weight wi, and the lower energy continuous component integrates to
the solid-type weight w,. A close-up of the 0.204 eV oscillator is
provided. Note that due to the continuous spectrum being defined
on a uniform grid, the triangles are not perfectly aligned with the 6
function.

NJOY requires any continuous phonon distribution to be provided with respect to a
uniformly-spaced energy grid. Thus, in Fig. 3.2, the centers of the triangles are not
necessarily equal to the exact location of the 6 functions that are specified in Table. 3.1.
As a result of the discrepancy between discrete oscillator location and triangle center
location, the oscillators energies are shifted slightly to align better with the AE = 0.00255
eV grid to which NJOY is restricted. The 6 function parameters presented in Table. 3.1
are amended to those in Table. 3.2. By slightly shifting the locations of the oscillators so
that they are aligned with the triangles' grids, Fig. 3.2 becomes Fig. 3.3. The oscillator

'Note that the continuous component of the frequency spectrum in Fig. 3.2 looks significantly less
pronounced than that shown in Fig. 3.1; this discrepancy is due to fact that Fig. 3.1 has arbitrary
normalization (so as to show the continuous spectrum in full detail), whereas Fig. 3.2 represents the
peaks such that their area integrates to their corresponding oscillator weights.
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Energy (eV) Weighting
0.204 0.166667

0.4794 0.333333

Table 3.2: Energies and
with Energy Grid

energies detailed
this discussion.

Weights for 6 functions, Amended to Align

in Table 3.2 are the problem specifications used for the remainder of

2
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60-

s0-

40-

0-

0-

0-

0.17 0.18 0.19 0.20 0.21 0.22
Energy (e)

0.23 0.24

Figure 3.3: Phonon distribution for H in H20, with triangles approx-
imating the oscillators. The oscillator locations are shifted to the
locations listed in Table 3.2, so as to account for the offset due to
restrictions in the p(E) grid.

3.2.2 Features of S(a, /)

Before proper analysis of the effect that different representations of the frequency distri-
bution can have on Sn.sym(a, /), the scattering law and its features must first be briefly
discussed. Fig. 3.4 shows the scattering law for H in H20, for a temperature of 296 K
and an initial neutron energy of 1 eV. Only valid (a, /) combinations are plotted (given
the aforementioned conditions of neutron energy and temperature).
Fig. 3.4 contains many sharp peaks, at specific / values. Using the material temperature
T = 296 K and the definition of # from Eq. 1.17, these peaks are converted to eV. The
peak locations, both / and eV values, are presented in Table 3.3, as well as the physical
reasons for each peak.

Recall Eq. 1.57,

Sy (a,3)
M=-00

0C

>7m~) Ai,n (a) Sn~ym (a, /3- /i - m032)
n=-oo
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Figure 3.4: Sn.sym(a, /) for H in H20 is shown. Both the a and # grids
extend from 0.0 to 30, the temperature is set at 296 K, and the initial
neutron energy is 1 eV. Note that only valid (a, /) combinations are
plotted, which results in discontinuities of the lines.

# Locations of Peaks AE Value (eV) Origin
7.99 0.204 El

10.79 0.275 E2 - El
15.99 0.407 E1 + E1

18.79 0.479 E2
26.79 0.683 E1 + E2

Table 3.3: Locations of S(a, /) peaks from 3.4 that arise from discrete
oscillators. Note that E1 and E 2 correspond to the first and second
discrete oscillator energy that were introduced in Table 3.2.

which illustrates the form of the non-symmetric scattering law, when the results of a
continuous spectrum is combined with those of two oscillators, located at /31 and /2.
This indicates the importance of / values that are integer linear combinations of oscillator
locations /1 and /2.
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3.3 S(a, 3) Response to Continuous vs. Discrete Oscil-
lator Representation

3.3.1 S(a, /) Response to Thin Triangle vs. Oscillator

This section is dedicated to exploring how well a thin triangle in the frequency spectrum
mimics the behavior of a discrete oscillator, for the H in H20 problem specifications
previously defined. As mentioned in Sec. 3.1.1, the phonon grid is defined with a uniform
energy spacing of AE = 0.00255 eV, meaning that the thinnest triangle available has a
total width of 2 x AE = 0.0051 eV. For the remainder of Sec. 3.3.1, this minimum-width
triangle will be the only triangle of focus, and the effects of changing triangle width will
be explored in Sec. 3.3.2.

Fig. 3.5 shows the Sn.sym(a, #) grids generated by LEAPR, using both the discrete oscilla-
tor and the thin triangle phonon representation. The Sn.,,m(a, /) grid is plotted against
/3 for various a values. Note that the peaks near 16, 18, and 26 eV are significantly
more pronounced in the triangle representation than they are in the discrete oscillator
representation.

10-1 10-1
27

10-2 10- 24

10-3 10- 21

104 104 18

>05 10- 15
10-6. 20-6 12 C..

10-' 10-7

610-8 10-s

310-' 10-9

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0
beta beta

Figure 3.5: Two Sn.sym(a, /) tables are plotted above, the left grid
assumes a 6 function representation for the frequency distribution
peaks, while the right plot represents said peaks as thin triangles.
Note that representing peaks in the frequency spectrum as thin tri-
angles as opposed to 6 functions results in more pronounced peaks at
higher /.

The absolute error and percent error between the discrete-oscillator scattering law and
the triangle-approximated scattering law are plotted in Fig. 3.6. Note the significant
errors that occur at the / values that are multiples of the oscillator energies (listed in
Table 3.3).
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beta

10-1 -
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beta

20 25 30

Figure 3.6: Absolute and percent error between discrete oscillator
generated Sn.sym(Oa, /) and the thin triangle generated S/.3y)(a,#)
are presented above.

Fig. 3.7 shows Sn.sym(a,/) zoomed in comparisons for the discrete oscillator represen-
tation (solid line) against the thin-triangle representation (dotted line), assuming an a
value of 10.0. By contrasting these close-ups of the two outputs, it is apparent that
the continuous representation of the peak has a wider spread than that of the discrete
oscillator. This is to be expected, since the triangle needs three points in the frequency
distribution to define its shape, while the 6 function is defined at one particular point.
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Figure 3.7: Close-up view of Sn.y,,,(a, #) is plotted above, where the
discrete oscillator and thin triangle representations are shown using
solid and dotted lines, respectively. This serves as an additional way
of contrasting the two plots from Fig. 3.5. An a value of 10.0 is used
here, since it is valid (i.e. in compliance with Eq. 1.61 for the entire
# range considered).
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3.3.2 S(a, 3) Response to Changes in Triangle Size

Comparison of S(a, 3) Values

Sec. 3.3.1 illustrates how substituting a thin triangle in for a discrete oscillator affects the
Sn.sym(a, 3) distribution for a large range of a and 3 values. The triangle in the phonon
distribution has a width of two grid spaces, for a total of 2xAE = 2x0.00255 = 0.0051 eV.
Now we look to how the scattering law changes in response to triangles of various widths.
These widths, in both number of grid spaces and eV, are displayed in Table 3.4.

Table 3.4: Widths of triangles used to study Sn.sym(a, /) response to
triangle aize. Note that these triangles, which were originally pre-
sented in Fig. 3.3, have heights defined so as to ensure that their area
integrates to the correct oscillator weight (weights listed in Table 3.2).

In a study conducted by [12], the vibrational frequency spectrum of H in H2 0 was cal-
culated using a molecular dynamics simulation, and the resultant scattering properties
were contrasted against those obtained using the simple spectrum discussed here. The
calculated frequency spectrum was originally introduced in Fig. 1.1, and the two higher
energy peaks near 0.2 eV and 0.48 eV had base widths of approximately 0.03 eV and
0.07 eV, respectively. Thus, the triangles used to approximate the frequency distribution
defined in Table 3.4 are thinner than those that would appropriately approximate the
peaks obtained in the [121 study. This is of interest to note but will not be discussed
further, since the current discussion is focused on mimicking discrete-oscillator behavior.

The triangles described in Table 3.4 are used in the H in H2 0 input and, for a given a,
the resultant scattering laws can be compared against the output generated using the
discrete oscillator approximation. This comparison is shown in Fig. 3.8, assuming an a
value of 0.5, and a # range centered about the / 7.99 region, so as to highlight the
effects of the peak introduced in Fig. 3.4.

Comparison of S(a, /) Differences

A comparison of how the scattering law Sn.sym(a, /) responds to changes in triangle
width is presented in Fig. 3.8. Here, we look at the total difference between the triangle-
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Width Width Height for Height for
(# grid points) (eV) 0.204 eV Peak 0.4794 eV Peak

2 0.0051 65.35960 130.71882
4 0.0102 32.67980 65.35941
6 0.0153 21.78653 43.57294
8 0.0204 16.33990 32.67970
10 0.0255 13.07192 26.14376
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Figure 3.8: Response of Sn.sym(a, /) to triangles of various size, for
a = 8.1. The / range is focused on # = 7.99. Note that as the trian-
gles decrease in width, the resultant scattering laws better resemble
that of the discrete oscillator.

generated outputs and the discrete oscillator output, Atotai,i, which is defined as

Atotal,i = SI.sym(a, /3) - S?.sym(a, /) d# d&. (3.1)

St.sym(a,3) and S,.sym(a, /) are the scattering laws generated using a discrete oscillator
and a triangle of width i, respectively. Atotal,i is computed for each triangle described in
Table 3.4, the values of which are then plotted in Fig. 3.9. As was the case for Fig. 3.8,
the # grid is centered about the / = 7.99 peak.

41



le-6

2.9-

2.8-

2.7-

- 2.6-

2.5-

2.4--
0.0051 0.0102 0.0153 0.0204 0.0255

Triangle WIdth (eV)

Figure 3.9: Total Sn.sym(a,#) difference between triangles of vari-
ous widths and discrete oscillator approximation. The error is com-
puted using the Sn.sym(a, /) values from Fig. 3.8, summed across all
a values. Note that as triangle width decreases, so does the total
accumulated error.
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3.4 Comparison of Resultant Cross Section

It was shown in Sec. 3.3 that different representations of the vibrational spectrum affect
the scattering law S(a, 3). However, proper analysis requires a closer look into a more
physically meaningful value, such as the cross section. Thus, in this section, we continue
the discussion to now include the incoherent inelastic cross section, which we recall is
related to the scattering law by

o- (E -+ E',u) = 2Sn.m(a, I, T).(

3.4.1 Features of the Cross Section

First, we look at the cross section for a 1 eV neutron colliding with H in H20 at 296 K.
E' varies from 0 - 1.5 eV, and the scattering cosine p is allowed to vary from -1 -+ 1.
The bound cross section 9-b has a value of 20.449 b, the continuous frequency distribution
is taken from NJOY's Test #9 (shown in Fig. 3.1), and the discrete oscillator represen-
tation detailed in Table 3.2 is used to represent the higher energy peaks in the frequency
distribution. The resultant cross section is shown in the top left plot of Fig. 3.10. Note
that the large peak at 0.796 eV is a result of the 0.204 eV discrete oscillator (in that the
1 eV neutron lost 0.204 eV of energy, bringing it to a E' = 0.796 eV). A zoomed-in view
of this 0.796 eV peak is provided on the top right of Fig. 3.10, which illustrates that the
cosine values most affected by this 0.204 eV oscillator are P values greater than 0.6. In
fact, observing the plot in the lower left corner of Fig. 3.10 shows the unlikely nature of
backscattering, as the cross sections decrease significantly as p -+ -1.

To better see the other peaks, a zoomed in view is also provided in Fig. 3.10. In this
close-up view, we can clearly see the peak at E' = E = 1 eV, where neutron energy is
conserved. A less sharp, but still well defined peak exists centered about E' = 0.93 eV.
This duller peak is due to the continuous frequency distribution that was introduced in
Fig. 3.1, which has a rounded peak near 0.07 - 0.08 eV. Finally, we see the effects of the
second 6 function (which has a location in energy at 0.4794 eV). This second oscillator
causes the subdued peak at E' = 0.52 eV. The latter J function has a muffled effect, since
in Eq. 1.1, the v'El factor favors higher values of E'.

3.4.2 Effect of Triangle Width on Cross Section

The cross sections shown in Fig. 3.10 were calculated using the discrete oscillator approxi-
mation. Now, the cross sections are calculated using triangles of various sizes to represent
the peaks, similar to the analysis performed in Sec. 3.3.2. For triangles of 2-10 grid spaces
in width, the Sn.,,s(a, 0) grids are computed and used to calculate the incoherent scat-
tering cross section. The percent difference between these triangle representations and
the discrete oscillator representation, along with their respective cross sections, are plot-
ted in Figs. 3.11-3.12, assuming p = 0.5 and - = 0.9, respectively. A very prominent
peak appears in Fig. 3.12 at E'= 0.796 eV, which as previously mentioned is due to the
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Figure 3.10: The incoherent cross section for H in H2 0 is shown for
various outgoing energies and angles, as calculated using the discrete
oscillator approximation. Incoming neutron energy is 1 eV.

0.204 eV oscillator (since the incoming neutron energy has 1 eV). A closer view of this
peak is provided in Fig. 3.13.

There are many sharp peaks in the percent difference between the discrete oscillator
treatment and the triangular peak treatment, as shown in Fig. 3.11. These differences
appear near the integer multiples of the discrete oscillator locations that were first iden-
tified in Table 3.3. These discrepancies between the two treatments was first introduced
in Sec. 3.3.1, and will be further explored in Sec. 3.5.

While Figs. 3.11-3.12 show that thinner triangles tend to have larger peaks of error when
compared to the J function treatment, the thinner triangles actually tend to approach the
6 function behavior. To see this, we look at Fig. 3.14, which plots the absolute difference
integrated across all outgoing energies E' (for various angles p and triangle widths). We
see that while thin triangles experienced larger peaks of error when compared to the
discrete oscillators, the wider triangles had more accumulated error in total, and that for
all cosines, thinner triangles better mimic the discrete oscillator behavior overall.
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Figure 3.11: The cross sections, as generated by the 6-function ap-
proximation as well as by various triangle representations, are shown
on the left, with the relative differences shown on the right. Both
plots assume a scattering cosine 1t = 0.5. Five triangles of widths
equal to. 2-10 grid spaces (width = # Grid Spaces x 0.00255 eV) are
considered, and compared to the discrete oscillator representation.
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Figure 3.12: The cross sections, as generated by the 6-function ap-
proximation as well as by various triangle representations, are shown
on the left, with the relative differences shown on the right. Both
plots assume a scattering cosine p = 0.9. The percent difference plot
includes labels for each major peak, indicating which combination of
the discrete oscillators prompted its existence.
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Figure 3.13: The cross sections, as generated by the 6-function ap-
proximation as well as by various triangle representations, are shown
to the left. Percent difference between the cross sections generated
using the discrete oscillator representation vs. triangular peaks in the
frequency distribution are shown on the right. Both plots assume a
scattering cosine p = 0.9, and are centered about the peak caused by
the 0.204 eV oscillator (E' = 0.796 eV).
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3.5 Discrepancy Between Continuous and Discrete Os-
cillator Treatment

The discrepancy between the discrete oscillator treatment and the thin triangle treatment
first appeared when comparing Sn.sm(a, 3) in Figs. 3.5-3.7, and was again apparent
when comparing the generated cross sections, such as those shown in Fig. 3.12. However,
since all cases thus far have compared inherently different models (a thin triangle vs.
a 3 function), it is not yet apparent whether the observed discrepancies are due to the
methodology used to evaluate the scattering law, or whether they are rather the result
of the triangles' finite size.

As shown in Sec. C.2, the equations representing the discrete oscillator treatment are a
direct simplification of the those representing the generic, continuous distribution case,
with the only additional simplification being that the frequency distribution is equal to
a 3 function, p() = 6(3 - #3 ). Thus, it is expected that the two methods are equivalent
when the phonon expansion is performed. To see this, recall both the original definition
of the 7(t) function,

7(i) = aAs - a j P(/)e- / 2 -i/3 t d#, (1.33)

the negative exponential of which is

e-W = exp [-aAs - a j P(3)e-3/2e-i81 d1 . (3.2)

This differs from the exponential of -- I(t) as defined by the phonon expansion,

Ce4 = 00e-a. , 1' p(')e-o'/2 e-'O" d#' n (1.35)

which expands the exponential of the the integral as an infinite sum. If the aforementioned
frequency spectrum, p( 3 ) = 6(f - #j) is provided to both Eq. 1.33 and Eq. 1.35 for given
a and fi values, the results are identical. To see their shape, the exponential is plotted
against time in Fig. 3.15, assuming a = 3.0 and a single discrete oscillator located at
A = 0.5.
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Figure 3.15: The exponential of -7(t) is plotted against unitless time
i, assuming p( 3 ) = 6(o - 0.5) and a = 3.0.

We now aim to characterize how well the -- y(t) exponential in Fig. 3.15 is approximated
by thin triangles in the input frequency spectrum p(/). To accomplish this, Eq. 1.35 is
numerically solved using phonon distributions that approximate the /i = 0.5 oscillator
by triangular peaks of various widths (A = 5 x 10 4 to 5 x 10-2). The corresponding
exponentials of -- y(t) are plotted in Fig. 3.16. Note that as the width of the triangles de-
crease, the resultant exponential increasingly resembles the form of the discrete oscillator
results from Fig. 3.15.

To further observe the effect that triangle size has on the resultant -- I(t)) exponential,
the absolute difference between the discrete oscillator frequency distribution (Fig. 3.15)
and the triangle frequency distribution (Fig. 3.16) is shown in the first plot of Fig. 3.17.
The second plot in Fig. 3.17 shows how the absolute error changes in response to triangle
widths, for a given value of i. The t values chosen are the peaks near t=12, 25, and
37. Note that Fig. 3.17 shows that for all three peaks considered, the decreasing triangle
width steadily and significantly improves accuracy, thus supporting the prediction that
the discrete oscillator behaviour can be replicated by using increasingly thin triangular
peaks in the input frequency distribution.

The inability of the thin triangles to appropriately replicate discrete oscillator behavior in
previous sections (e.g. when considering the scattering law in Sec. 3.3 or the cross section
in Sec. 3.4) is likely due to the limitation on triangle thickness imposed by LEAPR. Note
that in Fig. 3.17, close representation of the discrete oscillator -- y(t) exponential was first
obtained when the triangle width was near 0 = 5 x 10-3, which at room temperature
corresponds to an energy difference of 10-4 eV. As mentioned in Sec. 3.1.1, the uniformly
spaced input frequency distribution had a set energy difference of 0.00255 eV, which is
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over 25 times larger than the adequate value of 10-. Thus, we find that a thin triangle
can appropriately mimic the behavior of a 6-function in the input frequency distribution,
but this is not feasible unless a non-uniform grid is allowed. Concluding remarks will
be provided in Sec. 3.7, where the merit of the discrete oscillator approximation will be
further discussed.
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Figure 3.16: The exponential of -7(i) is plotted against unitless
time t, for a frequency spectrum where the discrete oscillators are
represented as thin triangles of various widths. The latter plot is a
zoomed-in view of the peak near the t = 12.5 region.
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3.6 Effects of The Discrete Oscillator Approximation

To understand the effects of the discrete oscillator approximation, we compare the full
H in H20 model against its discrete oscillator counterpart, both of which were published
by [12] (note that this reduced model differs from the NJOY Test #9 example). The full
model was originally introduced in Fig. 1.1.

Data from [121 was collected using the digitization tool WebPlotDigitizer [18]. The resul-
tant phonon distributions were converted to a uniform grid, as is required by LEAPR,
and are shown in Fig. 3.18. The 6-functions of the reduced model (which take the place
of the higher energy peaks) are also included in Fig. 3.18, but note that the heights of
the 6-functions are arbitrary. The apparent discrepancy between the full and reduced

8 -- Full Model
Reduced Model

6.4-

0-
0.0 0.1 0.2 0.3 0.4 0.5

Energy (ev)

Figure 3.18: Phonon distributions comparing the full and simplified
CAB models are shown above [12]. The full CAB model is normal-
ized to unity and has no diffusion or translation. For the reduced
model, the continuous component is normalized to 0.522421, with a
translational weight of 0.008605 and diffusion coefficient of 4.060575.
The discrete oscillators of the reduced model are also shown (heights
are arbitrary).

models in the low energy region (near 0.01 eV) is due to the fact that the reduced model
has a diffusive/translation component which is not represented in the peak, whereas the
full model does not have a diffusive component 2.

The phonon distributions in Fig. 3.18 were provided to LEAPR, which processed and
returned the negative side of the non-symmetric scattering laws, Sn.sym(&, -). Both

2LEAPR gives the option for a diffusive component to be considered while processing a liquid mod-
erator. This diffusive component has a translational weighting Wt and a diffusion coefficient c, and was
briefly introduced in Sec. 1.3.1
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of these cases assumed a temperature of 296 K and used identical a and / grids. The
resultant Sn.sym(a, -) curves are plotted in Fig. 3.19 against #, for various a values.
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Figure 3.19: The negative side of the non-symmetric scattering laws
Sn.sym(a, -) are plotted above, as generated using the Test #9 and
CAB phonon distributions.

Note that the shape and magnitudes of scattering law peaks are significantly different
between the two models, as well as the overall trends. Prominent disagreement between
the two models appears near # = 8 and 17, which occur due to the peaks/S-functions in
the phonon distribution. The two oscillator locations are at 0.205 eV and 0.43 eV, which
at room temperature correspond to / =8.2 and 17.2, respectively. Note that the reduced
model also significantly overestimates the near-elastic scattering.

These scattering laws are used to calculate the cross sections for various scattering cosines
p, shown in Fig. 3.20. The cross section plots were generated assuming an incoming
neutron energy of 0.5 eV and, as before, a room temperature scattering material at
T = 296 K. The top plot in Fig. 3.20 shows the scattering cross section, where the
bottom plot shows the absolute difference (reduced model minus full model).
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The absolute difference in the bottom plot is reduced model minus
full model.
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Note that in Fig. 3.19, the discrete oscillator model follows the forward scattering distri-
butions rather well, but begins to significantly overestimate the scattering cross section
for p < 0.2. To better see the discrepancy between the two models, the percent error is
plotted in Fig. 3.21.
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Figure 3.21: The percent difference between the scattering cross sec-
tions from the full and reduced H in H20 models are plotted against
outgoing energy E' for various scattering cosines p. An incoming
energy of 0.5 eV is assumed.
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3.7 Validity of Abandoning Discrete Oscillator Approx-
imation

The LEAPR module allows for peaks in the input frequency spectrum to be approximated
as weighted 6 functions, in what is called the discrete oscillator approximation. This
approximation does not represent physics and its computational benefits are severely
limited by the requirement that the discrete oscillator contribution to the scattering law
must be convolved with preexisting contributions. These disadvantages serve as incentives
to abandon the discrete oscillator approximation. However, if a user wanted to replicate
the results of a system that was approximated using the discrete oscillator approximation,
it is important to show that they could arrive at a similar result by using triangular peaks
in the frequency spectrum. This chapter aimed to show that such replication was possible.

Replacing a discrete oscillator by a thin triangle in the vibrational spectrum results in
similar scattering laws, as shown in Figs. 3.5-3.6. There are key disagreements, however,
near linear combinations of the discrete oscillator locations, as shown in Fig. 3.7. These
disagreements propagated to the sampled cross sections, which were shown in Figs. 3.11-
3.12.

After further analysis using a simplified model of a single discrete oscillator, the behavior
of the scattering system with increasingly thin triangles was found to approach that
of a discrete oscillator, which was shown in Figs. 3.16-3.17. This agreement is to be
expected since, as shown in Sec. C.2, the equation of the discrete oscillator approximation
is a direct simplification of the continuous phonon expansion representation. Adequate
replication of the discrete oscillator approximation, however, required that the triangle
used to approximate the discrete oscillator be very thin. The only way such detail could
be feasible is if the input frequency spectrum were be provided on a non-uniform grid.

In these concluding remarks, it is crucial to reiterate that the discrete oscillator represen-
tation is an approximation of the continuous treatment. The purpose of this discussion
is, again, to illustrate that if the discrete oscillator option were to be abandoned, its
behavior could still be adequately reproduced using triangles in the phonon distribution.
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Chapter 4

Sampling of S(a,/)

4.1 PDFs and CDFs for H in H2 0

Use of the sampling technique detailed in Sec. 1.4.3 requires construction of probabil-
ity density functions and cumulative density functions for a and /. Secs. 4.1.1-4.1.2
introduces the PDFs and CDFs for H in H20, while Sec. 4.1.3 delves further into their
dependence on temperature. All S .,y (a, #) grids shown and used here were calculated
assuming the discrete oscillator approximation but the methodology would remain the
same regardless of the selected representation.

4.1.1 PDF and CDF in a

Due to the low energy inherent to thermal neutrons, their scattering behavior is highly
dependent on the target's temperature. The fitting approach developed by [10] would
prove useful in reducing the burden of preprocessing thermal scattering data for many
different temperatures. Thus, to obtain the PDFs and CDFs for H in H20, an equally
spaced a grid that spans 0.01 < a < 60.0 with Aa ~ 0.12 is provided to LEAPR with a
specified # value of 10.1. The resultant Sn.sym(a, #) values are used in Eq. 1.69 to obtain
the probability density function,

h(aj, E, T) Ssym(a, #, T) (1.69)
f 'Seym (a',#, T)da'

which can then be used in Eq. 1.71,

H(aj/, E, T) = j h (a'/1, E, T) da' (1.71)

to obtain the CDF. The PDF and CDF for various temperatures are shown in Figs. 4.1-
4.2, and were generated using the methods outlined in Algorithm 1.

Figs. 4.1,4.2 are for the specific case of / = 10 and replicate the results originally from [10].
To see the effect that changing / has on the a PDF and CDF curves, Fig. 4.3 plots the
H in H20 a PDFs and CDFs at 650 K, for various values of /.

59



Algorithm 1 Calculate a CDF while restricting oz grid

Given: Defined avec, fec, E, T, Sn.sym(a,/3 )
for T in Temperatures do

avec = [amin, . . . ,ama
Area = Integrate Sn.sym(a, 3, T) from amin -+ amax
for a in aec do

h(cjo, E, T) Sn.sym(a, 3, T))/Area
H(acj, E, T) H(a - 11, E, T) + h(aj/, E, T)

end for
end for
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The methods described in Algorithm 1 require construction of the a CDF to be specific
to a given incoming neutron energy E, as it dictates the values of amin and amax. As
discussed in Sec. 1.4.3, this would be undesirable as it would greatly increase the required
memory. So the latter method discussed in Sec. 1.4.3 is used, which does not discriminate
against non-physical a values during CDF construction,

h(a|1, T) aSn.sym(a,,T) (1.72)
fo7 Sn.sym(a', , T)da'

H(aB, T) = h (a'#, T) da' (1.73)

and later compensates for the non-physical values,

H(a|3, T) - H(amin|3, T)

H(amaI|#, T) - H(amin|1, T)

Algorithm 2 Calculate a CDF while considering full a grid

Given: Defined avec, Ovec, E, T, Sn.sym(a, 1)
for T in Temperatures do

Area = Integrate Sn.sym(a, #, T) from a0 -+ a,,
for a in avec do

h(ajf, T) Sn.sym(a,/ , T))/Area

H(a|1, T) = H(a - 1|1, T) + h(aj1, T)
end for
H(a1, E, T) (ft(a|3, T) - H(aminl, T)) / (ft(amaxl3, T) - f(aminl1, T))

end for

Employing Algorithm 2 results in an identical CDF to that presented in Fig. 4.2, and is
thus not plotted.

4.1.2 PDF and CDF in 3

In addition to the a PDFs and CDFs, the 3 PDFs and CDFs are also constructed, using
Eqs. 1.68,1.70,

fmx Sn.sym(a',#1, T) da'

f3ma Q " Sn.sym(a', 1', T)da' do'

G(13E, T) = g (#'jE, T) d#'. (1.70)
Omin

PDFs and CDFs in 1 are shown in Figs. 4.4-4.5, respectively, where an a spanning
0.01 < a 60.0 with equal spacing Aa ~ 0.12 is used, along with a 1 mesh spanning
0.0 < 1 < 40.0 with equal spacing A3 0.404.
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Figure 4.4: PDF in # for H in H20, given E = 10.0 eV, for various
temperatures. The scattering laws used to plot these distributions
were generated using the translated version of LEAPR.

4.1.3 Effect of Temperature on PDFs and CDFs

As can be seen in Figs. 4.1-4.5, the PDFs and CDFs in a and 0 are very sensitive to
changes in material temperature. This dependence is further explored and presented
in this section. Fig. 4.6 shows the effect of temperature on a CDFs, for 20 different a
values. As was the case for Figs. 4.1-4.2, a / value of 10.1 is used to generate the CDFs.
Note that in the a regions where the CDF values are the most temperature dependent
(20 < a < 30), an increase in temperature returns a steady increase in CDF.

The temperature dependence of the / CDF is shown in Fig. 4.7. As was the case in
Figs. 4.4-4.5, an initial value E = 10.0 eV is assumed. Note that for many negative
values of /, the CDF plot does not extend to higher temperatures - this is because the
minimum realistic / value is -E/kbT, since that corresponds with a neutron losing all
its energy.
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4.2 Example of Sampling # from CDF

The a and / PDFs and CDFs for H in H20 were presented in Sec. 4.1, and can be used
to sample a and 3 values, using the process described in Sec. 1.4. In this section, the
process of sampling a 3 value is detailed.

For this discussion, we consider room temperature (T 0.0255 eV) water, and an incident
neutron with energy E = 0.0255 eV. The smallest / value possible is -E/kbT = -1,
which corresponds to complete loss of neutron energy (E' = 0). The maximum / value
is considered to be cut off at / = 20.0 (following the convention used in [10]), which
corresponds to the neutron leaving the collision with a final energy E' = 0.5355 eV. This
is the / range that will be used in the remainder of this example.

These three key / values are listed in Table 4.1, along with their bounding a values. The
minimum a value is amin = 0, which occurs when / = 0, while the maximum a value is
amax = 31.1910, which occurs for a /3 = 20.0. Thus, for the / range of -1 < /3 < 20, an
a range of 0 < a < 32 will suffice. For this example, very fine a, / grids were used, with
100 and 1000 points used in their grids, respectively.

/min = -1.0 # = 0 /max = 20.0

amin 1.0008 0.000 12.8455
amax 1.0008 4.003 31.1910

Table 4.1: Bounding a values for the chosen / range. The minimum
and maximum a values for a given / value are defined by Eq. 1.61.

NJOY's LEAPR module stores the - side of the non-symmetric scattering law, Sn.sym(a, -),
because its values tend to be of more reasonable size, and thus are easier to accurately
store. This output is plotted in Fig. 4.8 against /, for various a values. Note that the
/ grid extends from 0 -+ 20, meaning that Sn.sym(a,/3 = 0) - Sn.sym(a, /= -20) is
plotted. Although /min -1 for this example (and thus / = -20 will not be used in
calculations), a / value of -20.0 is still required so as to retrieve the / 20.0 value,
which will be used in calculations.

Eq. 1.26 can be used to relate positive and negative sides of the non-symmetric scattering
law,

Ssym(a, /, T) = e/ 2 Sn.sym(a, /, T), (1.26)

by starting with the symmetric form of the scattering law, and converting it to the non-
symmetric form

SSym(a, T) = Ssym(a, -, T) (4.1)

e / 2 Sn.sym(a,/ , T) = e-0/2 Sn.sym(a, -3, T) (4.2)

Sn.sym(a, /, T) = e--3 Sn.sym(a, -, T). (4.3)

Thus, the + side of the non-symmetric scattering law obtained by multiplying the --3
side by an exponential in /. Note that this will result in extremely small values of
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Figure 4.8: The - side of the non-symmetric form of the scattering
law, Sn.sym (a, -) is shown above. This was generated using an input
based off of NJOY's Test #9 input [3].

Sn.sym (a, #) (and illustrates why storing the -# side is the preferred method). The full
non-symmetric scattering law is plotted in Fig. 4.9.

Using the scattering law from Fig. 4.9, the 3 PDF can be constructed using Eq. 1.68,

f( 'a"x Sn.sym(a', TT) da'
g(OIE, T) = , m"i" (1.68)g ,- rl3max Pama~.)

Im fam- Sn.sym(a', /', T)da' d('

as was done in Sec. 4.2. The resultant PDF and CDF are shown in Fig. 4.10. Notice that
unlike Fig. 4.9, the minimum / value shown is the physically meaningful value of -1 that
was discussed in the beginning of this section. The most obvious feature of Fig. 4.10 is
that large values of / (i.e. / > 5) are extremely unlikely, according to the PDF. This is
in agreement with the scattering law plotted in Fig. 4.9, which shows that for / > 5, the
scattering law is on the order of 10 5 or below, despite being on the order of 0.1 when

3 = 0. This supports the notion that / = 20.0 is a reasonable cutoff, since large gains in
neutron energy are so unlikely.

The / CDF is sampled using the sampling technique detailed in Sec. 1.4 [10], and the
scattering kernel (for a neutron of incoming energy E = 0.0255 eV) is plotted in Fig. 4.11.
Note that the edge of the plateau near E' = 0.02 eV is indicative of no energy change.
The increased probability on the low E' region (near E' = 4 x 105 eV) corresponds to a
/ = -0.998, which is very near the minimum / value.

This example can be extended to include sampling in a, but for the sake of brevity is not
included here.
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obtained by using Eq. 4.3 to convert the Sn.sym(a, -) from Fig. 4.8
to Sn.sym(Ce, 0). Note that while this shows 0 values extending to -20,
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Figure 4.10: The 3 PDF and CDF for water at room temperature are
shown above, having been constructed using the Sn.sym( a, /) plotted
in Fig. 4.9. Note that 3 values quite near to zero are most likely (i.e.
extreme cases of upscattering are very unlikely).

68

- 29.18

- 26.05

-22.92

-19.79

- 16.66 j

- 13.53

-10.39

-7.26

-4.13

. 1.00

C0

0.8-

0.7-

0.6-

0.5

0.4 -

0.31

0.2 -

0.1-

0.0-

15 20



.g 10-1

10-3

104 10- 3  
10-2 10-1 1&

E' ev]

Figure 4.11: The scattering kernel for H in H 20, which is obtained
by using the / CDF sampling technique detailed in Sec. 1.4, is shown
above. An initial energy of E = 0.0255 eV is assumed.

69

]L031



Chapter 5

Improvements to Numerical Methods

The LEAPR module of NJOY is a popular and trusted tool for preparing thermal neutron
scattering data. It includes, however, a significant number of unnecessary approximations
and antiquated numerical methods. Perhaps the most striking approximation is the
discrete oscillator approximation, which has already been discussed at length in Sec. 3.
This section aims to address two less major (but still certainly significant) shortcomings
in the NJOY LEAPR code, and both pertain to the phonon expansion. The first is the
existence of redundant operations, and the second is the arbitrary summation limits.

A brief reminder of the phonon expansion is provided, since both shortcomings pertain
to this calculation. Recall that in Sec. 1.3, the phonon expansion was introduced,

S ym(a, /, T) = e-"s - [aA8]"T (#) (1.38)
n=o

where 'Tn(/) is obtained by convolving the previous function with Ti(/),

7 (0) j 'T (/3') T_ 1 (/ - 0') do' (1.45)

'T( P P= e (1.44)As

Here, P() is a function of / and of the frequency distribution p(#), and the Debye-Waller
coeffiecient As is defined as

A, j P(')e-o'/2 d#'. (1.34)

5.1 Redundant Operations in Phonon Expansion

The current approach in NJOY's LEAPR module is to calculate 'Ti(), add the n = 1
contribution, convolve 'Ti(#) with itself to obtain 'T2 (), add the n = 2 contribution, etc.
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(note that the n = 0 term is later accounted for). With a closer look, however, it becomes
apparent that some of the operations in this calculation are not strictly necessary.

To best illustrate this, consider the calculation of7 2(o), which requires 'T (/) be convolved
with itself,

T2() =j ') (') 71 (--') d/'

J(P(#')e-O'/2  (P( - /)e-( 3-/8')/2 d#3

e -3 / 2 P ( o ') P ( # 0 - o ') d o ' .

(5.1)

(5.2)

(5.3)

Here, we find that the Debye-Waller coefficients, as well as the exponential factor, can
be removed from the integral, leaving 72(o) in a simpler form. Continuing with the
calculation of 73 (o), we convolve 7 (o) with 72 (o),

T (o) = -0 'i (o')T2 (o - 0') d#'

-0 (0' / 2 ) ( e ,6 -')/2 i: P(/")P((/ - 0') - /") d/") d/'

e-3/2 j P-0/ 3

A3 P(#') J0 P(#")P(# - #' - #"/) do" do',

(5.4)

(5.5)

(5.6)

a pattern becomes apparent. Instead of convolving 71(o) with 'T_ 1 (),
new set of functions

Wn() = P(')Wn-1(o - /') d/'

where

W1(/) = P(),
such that these W,(/) functions are related to the standard 7-,(0) by

e- /2

K (#) =W,(/).
7n A~~s W(

we can define a

(5.7)

(5.8)

(5.9)

This new representation using W,(/) makes it clear that, when Tn(/) is used in the
Eq. 1.38, the number of operations necessary can be significantly reduced. This is because
the A, terms cancel out, and the exponential in / needs to be solved for only once, as
shown in Eq. 5.11.

S(ym(a, /, T) = e- 1 [aAs]" e-0/2 Wn(/)]
n=0 I -

Sns)YM (a, 0, T) = e-O' - /2 Wn(O)
n=-O

(5.10)

(5.11)
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5.2 Summation Limits for Phonon Expansion

When LEAPR calculates Eq. 1.38, it approximates the infinite sum to an arbitrary num-
ber of terms (specified by user, with a default value of n = 100). This cutoff is an
arbitrary choice, and in this section we discuss potential consequences of using default
limits for this sum.

Recall again the primary equation of the phonon expansion,

Sny y(a, 4, T) = e- E [aAs]" ' (3) (1.38)
n=O

where it is immediately clear that the sum's convergence will depend on a. To investigate
this dependence, consider a 4 grid that extends from 0.0 to 20.0 (with a spacing of 0.01),
along with the phonon grid from NJOY's Test #9 (which was introduced in Sec. 3.1.1).
The total contribution to Skym(c(a,4) from the nth term for a given a is defined as

C(a, n) = e oA. I [aAs]" T(#) (5.12)

for a fixed temperature. These contributions are calculated and plotted against n for
various values of a in Fig. 5.1, for a temperature of 293 K (0.025 eV). Note that for small
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Figure 5.1: The convergence of S(a, 3) acrose terms of the phonon ex-
pansion is shown. The total contribution C(a, n) defined in Eq. 5.12
is plotted against summation number n for various a values. All plots
are normalized so as to facilitate comparison of convergence.

a (e.g. a = 0.1) the contributions to the phonon expansion are negligibly small by the
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2 nd term, whereas for larger a values (e.g. a = 15.0) meaningful contributions are made
up to the 1 0 th term.

Temperature is found to have an impact on the convergence of the phonon expansion
contributionsi, so this effect is further explored in Fig. 5.2, for an a value of 10.0.
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e i a : e : " 293.0
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Figure 5.2: The convergence of S(a, #) across terms of the phonon
expansion is shown, for a fixed a value of 10.0. The effect of temper-
ature on convergence is explored by using ten temperatures between
293 K and 1000 K. As before, the total contribution C(a, n) defined
in Eq. 5.12 is plotted against summation number n, and all plots are
normalized so as to facilitate comparison of convergence.

As temperature increases the number of terms necessary to reach convergence increases.
However, the number of terms necessary tends to be relatively small (i.e. less than 20).

Clearly, different temperatures and values of a heavily influence the convergence behavior
of the phonon expansion sum, suggesting that a uniform, predefined cutoff is not an
appropriate approximation to computing Eq. 1.38. The most important terms in the
summation (i.e. the values of n that have the largest total contribution, as defined in
Eq. 5.12) increase with increasing values of a, but in this limited exploration do not
seem to require 100 terms or more, for reasonable temperatures. This suggests that for
a vast many applications, the nmax cutoff is unnecessarily high, and thus the calculation
of Eq. 1.38 could be significantly sped up. Incorporation of a convergence criteria is thus
suggested, and will be imposed in future development of LEAPR.

'The frequency distribution is provided as a function of energy change in eV, and so to use this distri-
bution in the phonon expansion, its grid has to be converted to a # grid (where # = (E - E')/kbT). This
imposes a temperature dependence on the frequency distribution, which further affects the contributions
to the scattering law.
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Chapter 6

Conclusions and Further Work

Efficient access to accurate nuclear data is crucial to simulations of nuclear systems.
Characterization of thermal neutrons (i.e. those with energy on the order of 1 eV or less) is
particularly important, due to the role that low energy neutrons play in thermal reactors.
While characterizing the way in which slow neutrons interact with molecules can be a
daunting task, it is made easier by use of the scattering law S(a, 0, T), which is dependent
only on temperature, energy exchange, and momentum exchange. The scattering law
is obtained by use of either restrictive approximations (e.g. free gas approximation)
or by providing a phonon frequency spectrum. The current methods for calculating
S(a, /) given a frequency spectrum are outdated and require a number of approximations
and restrictions, such as the discrete oscillator approximation, the restriction to using a
uniform input phonon distribution grid, and various numerical inefficiencies detailed in
Sec. 2 and Sec. 5.

The most thoroughly considered approximation studied in this project was the discrete
oscillator approximation, which was discussed in Sec. 3. Since the discrete approxima-
tion is a non-physical representation of the vibrational spectrum, and does not result
in significant computational benefits (due to the requirement that any discrete oscilla-
tor contributions be convolved with the existing S(a, /3, T)), it is recommended that the
discrete oscillator approximation be abandoned. There are situations, however, in which
users may want to replicate scattering kernels that were generated using the discrete os-
cillator approximation (e.g. replication of previously acquired thermal scattering data).
To support this, it was shown in Sec. 3.7 that the discrete oscillator behavior can be
approached by using increasingly thin triangles in the input frequency distribution.

Representing a discrete oscillator as an extremely thin triangle in the frequency distri-
bution could result in a prohibitively costly computation, due to the restriction that the
input frequency spectrum be provided on a uniformly spaced grid. This is because the
requirement that a frequency distribution be provided on a uniformly spaced grid forces
that the level of detail used to describe a thin triangle be used in all other regions of
the frequency distribution. This highlights another shortcoming of the current thermal
scattering data preparation methods, which will be made available in future work.

Once the scattering law S(a, 3, T) is constructed using a code like NJOY's LEAPR
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module, it is typically used to calculate the thermal scattering kernel and written to

an output file (using, for example, the THERMR NJOY module). Since the scattering

cross sections are dependent on the initial neutron energy E, final neutron energy E',
material temperature T, and scattering cosine p, these output files can be extremely

large. To combat prohibitively large memory usage, a fitting approach in temperature
has been developed by 1101, so as to eliminate the need for storing the scattering data for

many different temperatures. This fitting approach in temperature has been replicated

in Sec. 4.1 and is implemented in the OpenMC Monte Carlo transport code for further

validation [16].

Future work will include continued improvement of LEAPR, transition to non-uniform

input frequency distributions, and analysis into obtaining accurate frequency distribu-
tions (e.g. distributions that are temperature dependent, have fully resolved peaks as

opposed to discrete oscillators, etc.). Additionally, analysis into other approximations

used by LEAPR and THERMR, such as the diffusive model for liquids and gasses, the

free gas approximation, and the short collision time approximation, would be beneficial

to the nuclear data community.
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Appendix A

Background

A.1 Incoherent Approximation

As mention in Sec. 1.2.1, the differential scattering cross section is comprised of a co-
herent and an incoherent part. Coherent scattering accounts for interference between
scattered waves, while incoherent scattering consists as a sum of non-interacting waves.
The coherent contribution to the cross section is crucial to describing elastic scattering, as
well as inelastic scattering for single-crystal materials. For polycrystalline solids and for
liquids, however, interference effects are often neglected in what is called the "incoherent
approximation" [5]. The validity of this approximation is now explored, for the simple
case of a predominantly hydrogenous material.

A.1.1 Relating Scattering Lengths to Cross Sections

The bound scattering cross sections ocoh and uinc must account for the total spin of the
nucleus-neutron system. Since the neutron has spin i, the total spin is either I + - or

I -- , given the nucleus has spin I. Thus, the bound incoherent and coherent scattering
cross sections are defined as

2 = 2 + I (at) 2 + I (a;- - a2, (A.1)
inc[21 _T + 21i + I a ao

and
2 N -j+I 2

a oh = 211 + 1 1+ , a;- (A.2)

for a system consisting of N isotopes with abundance pi, where the bound scattering
amplitudes a correspond to total spins of I, j [5]. The I, j spin states occur with
probability (I+1)/(21+1) and I/(21+1), respectively. Thus, Eq. A.2 can be interpreted
as the first central moment of the scattering amplitude (a).

acoh =(a) (A.3)
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Similarly, the incoherent scattering length can be seen as the second central moment of
the scattering length [81

ainc = (a2) - (a) 2 . (A.4)

A.1.2 Bound Scattering Cross Sections for Hydrogen

Consider a material whose dominant element is H-1, which has a nuclear spin of }. If
the proton is hit by a neutron, the proton-neutron system can form either a singlet state
or a triplet state, which have total spin S- = 0 and S+ = 1, respectively. The singlet
state occurs with multiplicity 1 and has a scattering length a- = -23.748 fin, while the
triplet state occurs with multiplicity 3 and has a scattering length a+ = 5.424 fm [19].
As seen in Eqs. A.1, A.2, the coherent and incoherent bound cross sections depend on
the average values of a and a 2 . Computing these values simply requires weighting a- and
a+ by their multiplicities.

(a) = ( a+ + a) --1.869 fm (A.5)

(a2 ) = (a+)2 + (a- )2 163.1 fM2  (A.6)

So the coherent and incoherent bound scattering cross sections are thus

0-coh = 47(a)2 = 0.439 b (A.7)

and

-inc= 47r ((a 2 ) - (a) 2 ) = 20.05 b. (A.8)

The relative sizes of the coherent and incoherent bound scattering cross sections indicate
that, due to the singlet state's negative scattering length, incoherent scattering in hy-
drogen has a significantly larger impact than coherent scattering in hydrogen. Thus, for
hydrogenous systems, the incoherent approximation is considered acceptable.

A.2 T(0) Representation as a Convolution Integral

In the phonon expansion described in Sec. 1.3.1, the T,() equations are stated to be the
result of an iterative calculation, where the nth function is the convolution between the
first term and the (n - 1)th term. This section serves to illustrate the validity of that
statement.

Eqs. 1.37,1.38 define 'T(3) to be defined as

1 1 f0 ~
( 2 ei P( I)efl'/2e- 3 " d' dt. (A.9)

27w An j-O [-0

The 3 integral that is raised to the nth power can be separated into two pieces: a single
integral, and an integral raised to the (n - 1)th power,
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d/3"] n-i d

(A.10)

n ( ) = ordr of i eeg'a/2ie-o8 dc P (b s")e-wi"/2t-heid s

and the order of integration can be switched so that,

P (/3/)e-O/"/2e-i o/"' d #"] n-I
di do'.

(A.11)
Additionally, the terms without t dependence can be removed from the time integral,

00
d/3"] n-1 di] do3

(A.12)
and bringing the outside factors into the 0' integral, we find that

Tn(o) 0 P(o')e ' 2  2r 1 -1 j ' P( /I)e-o"/2e-O" d/" d] d/'

(A.13)
where the bracketed term can be readily seen to equal n-1 (o - '), in accordance with
Eq. A.9. The equation for T(#) thus simplifies to

f P(o')e8' / 2

T(n = 0 As 1T- (o -,3') do' (A. 14)

(o - 0') do' (1.45)

which is the familiar representation presented in Sec. 1.3.1.
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Appendix B

Improved Sampling of S(a,3)

B.1 Formulating jflC.(a #, T) from uanc.(E -+ E', y, T)

This method involves construction of PDFs and CDFs of the scattering cross section, as
a function of a and # [10]. To do this, a formulation of o-(a, #, T) is required. This can
be achieved using a Jacobian transformation,

0 -inc. (E -* E', y, T) -et &a/&ip &a/OE (B. 1)
ainc. (a, #, T) & /p 01 0/E

O a E a E . (B .2)

Recalling the definitions of a and / from Eqs. 1.16-1.17, the components of the above
matrix can be readily found,

Oa 2v'E (B.3)
AkbT

09a 1 -p v P B4
OE AkbT AkbTIE (B.4)

0/3 (B.5)

__ - . (B.6)
OF kbT'

which, when used in Eq. B.2 yield

a-inc. (E E', ,T) _ 2 'E

ainc.(a,/T) A(kbT) 2

which shows that

a inc.(a, I,/T) = A(kbT) 2 
Jfinc. (E -+ E', p, T). (B.8)

2 vE'/E
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By using the definition of the cross section in Eq. 1.1, the scattering law can be incorpo-
rated into ainc(a, , T),

ainc.(a3, , T) = A(kT) 2  Sn.sm (a, /, T) (B.9)
2 /E'E 2kbT E y

which further simplifies to

ai"c. (a, #, T) = AkbT e-3/2Sn.8ym(a, 0, T). (1.65)
4E

B.2 Sampling Appropriate Region of Energy-Independent
a CDF

The energy-independent PDF and CDF for a are shown in Eqs. 1.72-1.73, respectively.

h(a3, T) = Sn.sym (a, ' T)
fa Sn.sym(o', /3, T)da' (1.72)

H(a/, T) = h (a'|/3, T) da' (1.73)

By omitting the incoming neutron energy dependence, the physically meaningful bounds
for a integration, amin and amax, are replaced with 0 and ao. This allows for invalid
a, # pairs (i.e. pairs that do not comply with the restrictions stated in Eq. 1.61). To
counteract this, the energy-dependent CDF in Eq. 1.71 will be rewritten in terms of the
energy-independent CDF in Eq. 1.73.

h(aI/, E, T) - Sn.sm(', , T) (1.69)
f 2x Sn.sym (a' , 3, T) d

H(a/, E, T) = h (a'/#, E, T) da' (1.71)

Inserting Eq. 1.69 into Eq. 1.71, we get

H(a13, E, T) = maxSn.sym (',/3 T) da'. (B.10)
fami Omi Sn.sym (a// ,, T) daf

Note that the denominator has no a' dependence, thus it is moved from the integral

0('c Sn.,,y,(a', 0, T)da'
H(aI/, E, T) = ,m"Sn"sym" W,3,,T)da (B.11)

f:: Sn.sym (a",/3,T)jd
and, by manipulating the bounds of the integral, turned into

H(a13, E,T) 0f Sn.sym(a', /, T)da' - f0"n" Sn.sym(a', /, T)da' (B12)

f 0 "a Sn.sym(a", /, T)da" - f 0 """ Sn.sm(a", 3, T)da"'

Note that the integrals in Eq. B.12 resemble the form of Eq. 1.73, allowing it to be
rewritten as

H(a13, T) - H (amin 13, T)
H(a|,3, E, T) = - (1.74)

H (amax 1,3, T) - H (omin 10, T)
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Appendix C

Accurate Representation of Phonon
Distribution

C.1 Equivalence of Revised-LEAPR to Legacy-LEAPR

NJOY's LEAPR module was translated from Fortran to C++, so as to provide flexibility
in later analysis. To use the translated code for analysis requires confidence that it
adequately replicates the behavior of the legacy code. Fig. 3.4 shows the Sn.sym(a, ) as
calculated by the original LEAPR code (the translated code mimics the original code's
output quite well, and thus the individual plots cannot be visually differentiated from
each other).

Fig. C.2 shows the percent error and the absolute error between the Sn.sym(a, 3) val-
ues produced by the translated and original LEAPR. Notice that the percent error is
significantly lower in the # regions where Sn.sym(a, 3) is of reasonable size. Thus, the
translated version of LEAPR is considered an adequate tool for processing thermal data
for the following discussion. Note that the translated LEAPR was also tested against
legacy LEAPR with other cases considered, and any conclusions drawn using the trans-
lated LEAPR will be verified alongside those drawn from the legacy LEAPR.
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Figure 3.4: The legacy LEAPR and translated LEAPR are visu-
ally indistinguishable for the simple H in H20 model introduced
in Sec. 3.1.1, so only the former is shown. Note the sharp peak
t Translated and legacy LEAPR are represented using dotted and
dashed lines, respectively. Note the sharp peaks that characterize
the Sn.sym(1a,3) spectrum, which correspond to the summation val-
ues in Eq. 1.57, and are identified in Table 3.3.
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#9, with the percent error plotted on the left side, and the absolute
error plotted on the right. Note that the very large (~ 10%) errors
are a direct result of the small Sn.ym(c, ) values, and not due to
significant discrepancy between the codes' output.
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C.2 Derivation of Discrete Oscillator Formulation

Recall the definition of the non-symmetric scattering law,

where

Sn.sy, (a, j, T) = 1 ej e--' d3

7(t) = a ICoP(#) 11 - e-3 I e-0/2 do

and

P(#) = .
23 sinh(3/2)

Eq. 1.28 can be expanded to

(t) = j P(o')e-3'/2 df - a j P(o')e-i'e- '/2 do'.

Since P(13) is symmetric in /, the integral in the first term can be halved to extend from
0 - oo,

+ e-'/2] d3 - a j P(/')e-i'e-<'/2 d/', (C.2)

and by using the definition of P(O) from Eq. 1.29, this simplifies to

() a P) coth(/'/2) do' - (C.3)

Similarly, the latter term can be expanded,

j P(13')e-if'i-'/2 d3' . P(0') [ei/'le )'/2 + e-i3' e-)3'/2] d/'

j P(') [cos(/'t)e 3'/2 + i sin('s)e 3'/2+

cos(#'i)e-3'/ 2 - i sin(o't)e-f'/2] d3'

=j P(#')2 [cos(o't) cosh Q) + i sin(/'i) sinh

(C.4)

(C.5)

(C.6)

d/3',

(C.7)

and further simplified by using the facts that cosh(x) = cos(ix) and sinh(x) =-i sin(ix),
as well as the fact that cos(a+b) = cos(a) cos(b) -sin(a) sin(b). Applying these definitions
allows the bracketed part of the integrand to be rewritten as

cos(#'i) cosh ( +i sin(#'t) sinh 0

= cos(/'i) cos (#'i/2) + i sin('t)(-i) sin (/'i/2)

= cos(/'i) cos (/'i/2) + sin('i) sin (#'i/2)

= cos(o'(i - i/2)).

(C.8)

(C.9)

(C.10)

(C.11)
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(1.28)

(1.29)

(C.1)

J000P(#')e-'e-3' /2 do'

-Y(i) = a 0 P(#') le )'/2



Inserting this simplification into Eq. C.7 shows that

P(O')e-i'-'/2 d3' = P(0')2 cos(3'(i - i/2)) d/' (C.12)

which creates a simple expression for 'y(i),

)= a coth(#'/2) d/' - 'sinh( '/2) cos(#'( -- i/2)) d3' ] (C.13)

Thus far, no approximations have been made to the frequency distribution p(#). However,
now we assume that that is consists of a single discrete oscillator located at 3 = #i (i.e.
p(#) = 6(# - #3)). This removes the integrals over 0',

a coth(oi/2) a cos(#3(f -- i/2))
Ai #; sinh( j/2)

which, when plugged into Eq. 1.27, yields the non-symmetric scattering law

Sn.sy(, , T) = 1 [00 eiOexp [ a coth(#3 /2) a cos(0i3(i - i/2)) A (C.15)
27S _00 A i sinh(3/2)

= e-aAi 1 j0 e ,3exp [acos(/3i-i/2))] di (C.16)
27 _00 Oi sinh(#i/2)

- - j eI f (3 E In C ) eni(3j-ii//2) di (C.17)
2vr _0' n=oo sinh(oi/2)

00 /1
= e-~I In a ( i 5s/) e- 2 ] e-li die t (C.18)

n=-o -000

= e-A (n cs e-n'3 / 26(p - ni). (1.46)
__-oo #j sinh(oi/2)

Note that by representing the first term in Eq. C.14 as the Debye-Waller coefficient i

(which was originally defined in Eq. 1.47), and by introducing the modified Bessel function
of the first kind In(x) in place of the large exponential in Eq. C.16, the scattering law is
equal to the discrete oscillator formulation presented in Eq. 1.46 (for a single oscillator).
In replacing the exponential with the Bessel function, the definition

00

ex cos(O) E 1(x) e-ino (C.19)
n--oo

is used [20].
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