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ABSTRACT

We present progress in trying to verify a long-standing conjecture by Mark Mahowald on the v1-

periodic component of the classical Adams spectral sequence for a Moore space M. The approach

we follow was proposed by John Palmieri in his work on the stable category of A-comodules. We

improve on Palmieri's work by working with the endomorphism ring of M - End(M), thus resolving

some of the initial difficulties of his approach and formulating a conjecture of our own that would

lead to Mahowald's formulation. We further improve upon a method for calculating differentials

via double filtration first used by Miller and apply it to our problem.
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1 Introduction

1.1 Motivation and background

Homotopy groups have been one of the cornerstone objects of study in algebraic topology and

indeed gave birth to the subject itself. The Freudenthal Suspension theorem gives rise to a stability

phenomenon for those groups. More precisely, for an n-connected pointed space X, the suspension

map 7rk(X) - irk+1(EX) is an isomorphism for k < 2n. This generalizes to an isomorphism

[X, Y] -> [EX, EY] given dim X < 2n - 1 and Y is n - 1-connected, and allows us to study

homotopy theory in this stable context. We move from working in the category of spaces and

homotopy classes of maps to its stable version - the category of spectra.

In this category we have a generalized Adams Spectral Sequence that under some certain condi-

tions converges to a localiztion of 7r,(X). This spectral sequence is constructed via a ring spectrum

E that needs to satisfy a number of conditions to make sure E2 = EXtE. (E) (E., E. (X)) and to guar-

antee convergence. Most common candidates for E are the mod p Eilenberg-MacLane spectrum H

or the Brown-Peterson spectrum BP. We get the classical Adams spectral sequence and the Adams

Novikov spectral sequence respectively. The latter spectral sequence has a striking connection to

the theory of formal group laws.

A formal group law over a ring R is a power series of two variables with coefficients in that ring

that satisfies certain group-like properties. We can talk about morphisms of group laws in terms of

a change-of-base map over R or as arising from a ring map R -+ T. It's natural to look for universal

objects in this setting and (working p-locally) the pair (BPBP, BP) is one such object. BP,

corepresents p-typical formal group laws over a Z(p)-algebra, while BPBP correspresents strict

isomorphisms between them. Thus, the pair correpresents objects and morphisms in a groupoid

and as such is called a Hopf algebroid. The structure of this Hopf algebroid is present in the world

of formal group laws and so we conclude this world "knows" exactly what the E2 page of the Adams

Novikov spectral sequence looks like. One manifestation of this relation is chromatic homotopy

theory.

Given BP. = Z() [Vi, v2 , ...], our interpretation of a formal group law over a ring R as a map

f : BP, -+ R allows us to define the concept of height associated to the formal group law. The

height is the smallest integer n for which f(v,) z 0. This "filtration" of formal group laws by height
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translates to the chromatic filtration in homotopy theory and leads us to talk about vo-periodicity.

Informally speaking, if J, is the complete information that formal group laws of height n or lower

"see" in stable homotopy, then the va-periodic phenomena are given by Jn+1 /Jn. The objects that

detect periodicity on the level of spectra are the Morava K-theories K(n). Given a fixed p-local

finite spectrum X, let n be the smallest integer such that K(n).(X) # 0. Then we say X is of type n

and 7r.(X) has a non-trivial Vn-periodic part. Furthermore, one can isolate v,-periodicity by virtue

of the Periodicity theorem [4]. The theorem tells us there is an (asymptotically) unique self-map

/ : EWIIX -+ X which induces an isomorphism on K(n).. Hence the fiber of this map has type higher

than n and so the Vn-periodic homotopy of X is exactly what (powers of) # detect. The telescope

0-1 X is the geometric manifestation of the Vn-periodic part of X i.e. 7r.(/-X) =/ 1 7r*(X). It's an

interesting question how # works on the level of the Adams Novikov spectral sequence, which is the

statement of the telescope conjecture, for instance. More precisely, the telescope conjecture claims

that the Vn-localized Adams Novikov spectral sequence of X converges to 3-'7r*(X). Alternatively,

it says there is no v,-periodic element in 7r*(X) with unbounded Novikov filtration as higher powers

of 3 are applied (there are enough vn-towers) and there is no Vn-periodic element in the unlocalized

spectral sequence that kills off non-periodic elements as higher powers of / are applied (there are

not too many v.-towers).

The connection of BP to formal groups makes it into a computationally effective tool in the

study of stable homotopy. However, at least in theory, one can try to play the same game with

other spectra and in particular with ordinary mod p homology H. An immediate issue that arises

is that homology itself doesn't detect self maps as effectively and we are limited as to what we can

construct geometrically. That is to say we don't have an equivalent to the Periodicity theorem or

Morava K-theory or at least we don't know what they are supposed to be. For example, the mod

2 Moore space M has a v1 -self map a : E8M -+ M and clearly H(a) = 0, so ordinary homology

doesn't detect a as well as BP. This has to do with the fact that BP (unlike H) detects periodicity

at filtration 0 (this is related to the Nilpotence theorem). So what can we do? Can we change our

framework so ordinary homology "sees more"?

Before we give an answer we would need to know a bit about the structure theory of A and

(co)modules over it. Those were extensively studied by Margolis [6], among others. He introduced

elements P E A*dual to c E A. At p = 2 we know that (Pts) 2 = 0 for s < t, so one can define
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H(N, Pt) for a given A-comodule N. The significance of these homology groups becomes apparent

by the following results

Theorem 1.1: Let N be a bounded below comodule N such that H(N, Pt) = 0 for all s < t.

Then N is cofree.

Theorem 1.2: Given an integer d, if H(N, P) = 0 for all IPtSl < d then ExtA(F2 , N) has a

vanishing line of slope 1.

Theorem 1.2 leads us to define the type of a bounded below comodule N to be the smallest

n = |P'j such that H(N, P) = 0. Naively, following the BP analogy we want to construct a

(unique) self map 3 : N',3 -* N which induces an isomorphism on H(-, Pt). To do that we

need to work in the derived category of A-comodules - Stable(A). This is enough to deal with

the limitations of H mentioned earlier as compared to BP. To see how, consider again the v,

self-map a : E8M - M for the mod 2 Moore space. H(a) = 0, but a has to be detected

by Ext(St)(H.(M), H,(M)) and so it is present in Stable(A). More generally, a type n = |Pt l

comodule N = H.(X) has a self-map 3 with a geometric realization (also called 0). If Y is the

fiber of /, we get that H,(Y) is of type higher than n and so ExtA(F2, H"(Y)) has a vanishing line

of slope A for m > n. Hence / induces an isomorphism on EXtA (F2 , H,(X)) above a line of slope

As a result /-'ExtA(F 2 , H*(X)) completely detects ExtA(F2 , H,(X)) above a line of slope .

We refer to this as the Pt-periodic part of X.

The author is finally in a position to present the problem he will try to tackle. Let N be the

stable comodule corresponding to H,(M). It is a stable comodule of type |P20| and the self-map

is induced precisely from the map a : E8M -+ M. By the above discussion a-1 Ext4 t(F 2 , H,(M))

detects completely E2't (H, M) above a line of slope . This leads to the central problem

of this thesis:

Problem: What is a-Extst (F2, H,(M))?

An explicit answer was claimed by Mahowald [5], but it was never verified. According to him it

is built out of a number of copies of two pieces. Those pieces are a-1Ext"(F 2 , H.(bo A M)) and

a~-Extl(IFH, H*(bu A M)) where bo and bu are connective real and complex K-theory respectively.

It is worth noting that both of these pieces are easily computed by a change of rings isomorphism.
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To present the answer in an explicit form, we define a polynomial algebra P = F2 [xl, X2, ...] with

derivation d(xi) = x1x? 1 . P is bigraded with lxil = (2,2i+2 + 1). If H(d) and B(d) are the

homology and image of d resepectively, then the conjecture takes the following form

Conjecture: a-lExts"(F2 , H,(M)) = E~al a Extt(F 2, H(bo A M))
aEH(d)

e 0 EIblExt(F 2 , H*(bu A M))
bEB(d)

We proceed to describe an approach to this conjecture proposed by Palmieri in his book [101. He

first notes the analogy between Stable(A) and the category of spectra allows us to build a generalized

Adams Spectral sequence in precisely the same way. Furthermore, there are spectra Q, (playing

the role of Morava K-theories) that detect PnO+ 1-periodicity. Recalling N was the stable comodule

corresponding to H,(M) we get a spectral sequence with E2 = ExtQ1 Q, (Qi*, Q1 (N)) converging to

a-Exts(F2, H*(M)). This spectral sequence converges to v 1 E2(M; H) and computations seem

promising due to the simplicity of E2 = F2 [V 1 , h 1 , h2 1, , hni,- ] and the fact that E3 = E2

as for degree reasons nontrivial differentials can only occur at odd pages. It is important to note

that since M is not a ring spectrum, E, is not an algebra and d, is not a derivation and so what

we really mean by the above equality is that E2 is a F2-vector space with basis the monomials

in F2 [VJ 1 , hii, h2 1 ,. -, hni,- ]. Palmieri then conjectured what the values of d3 (hni) are and

proposed one should be able to extend them in some way to the entire E3. Moreover he conjectured

that the spectral sequence collapses at E4 and claimed this would imply Mahowald's conjecture.

Note it is not immediately obvious how Palmieri's formulation relates to Mahowald's and it is

something we address in more detail at a later section of the paper.

Thus our problem is three-fold: how does one compute d3 (hni), how does one extend it to the

rest of E3, and why are there no higher degree differentials. We solely address the first two questions,

fully answering the second one. We do this by working with the endomorphism ring spectrum of

M - End(M). It is the 4 cell complex M A DM. The advantage of End(M) is that its spectral

sequence is multiplicative and so d3 is a derivation. At the same time the action End(M) A M -- M

makes Er(M) into a module over Er(End(M)). We will also show Palmieri's originally conjectured

values for d3 (hni) can't be true and so we propose a revised conjecture of what those values are.
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We verify that conjecture modulo knowing that the elements v7'h.i don't survive to E4 for n > 3,

m E Z.

1.2 The square

Computing d3 on the above elements seems to be significantly harder. An example of a similar

computation in the literature can be found in a paper due to Miller [8]. He manages to compute

aci r,(M) in the case of an odd p by analyzing d2 in the Adams Spectral sequence. This is done

by considering the Cartan-Eilenberg spectral sequence arising from the reduced powers in A. This

spectral sequence collapses, but its second page coincides with the second page of the Algebraic

Novikov spectral sequence which converges to Ext (BP , BP,(M)). Miller is able to relate

d2 to the differential in the Algebraic Novikov spectral sequence, which is more computationally

accessible . This relation determines d2 modulo higher Cartan-Eilenberg filtration, which is enough

to compute a--1 7r*(M).

We will present an attempt to follow the same strategy refered to as the "square" since one obtains

4 spectral sequnces that form a square diagram. In fact, we will generalize the square construction

to any triangulated category (rather than the category of spectra) and obtain information about

any d, (rather than just d 2). Even though this won't be enough to verify Mahowald's conjecture,

the authot believes it could be a useful technique to attack similar problems.

1.3 Organization

This thesis is informally divided into two main parts. In the first part (sections 2 - 5) we present

the progress regarding the conjecture, while sections 6 - 7 are dedicated to the development of the

square method as an independant tool and its use regarding our conjecture.

In section 2 we provide the necessary background about Stable(A) - the stable category of

comodules over the Steenrod algebra A, and explicitly write Palmieri's original conjecture and our

revised version of it. In section 3 we work out the corresponding spectral sequence for End(M)

and its action on the the one for M. Section 4 consists of the meat of the thesis as we proceed to

show that Mahowald's conjecture would follow as long as a family of elements vanishes at E4 . We

conclude the first part with section 5 where we introduce the original conjecture by Mahowald and

show explicitly how it follows from our revised conjecture.
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We switch gears in section 6 as we introduce the terminology and basic setting of the square

construction. Then in Section 7 we discuss how the square construction fits into the setting of our

original problem.

2 The category Stable(A)

In this chapter we give a brief description of Stable(A) and any related results of immediate use to

us. For more detail the reader is directed to Palmieri's book [10].

Objects in Stable(A) are unbounded cochain complexes of (left) A-comodules. We will identify

a comodule L with its injective resolution over A. For two such objects L, N the set of morphisms

is [L, N,,t = Exts't (L, N). Then L8,, = 7r,,t(L) = Ext" (F2 , L). For the sake of clarity we observe

L itself is bigraded and one should make a distinction between the elements of degree (s, t) in L

and L,,t. Note also the sphere spectrum S E Stable(A) is the injective resolution of F2 , which is in

line with our notation of ir,,t(L) = [S, LI,,t above. Stable(A) is now a triangulated category and for

a ring spectrum X E Stable(A) we can build a generalaized Adams spectral sequence in the usual

way. Then assuming certain conditions hold we can identify E2 (L; X) = Extx,,x(X**, X**L) and

further conditions would guarantee convergence to 7r**L.

We are interested in the case where the spectrum Q, plays the role of X. To define Q1, we first

define qi to be the injective resolution of ADF2 ( 2 )/( 2)F2- Q, is now obtained from qi after working

out how to extend the qi-resolution into the negative dimensions. Then one can check qi*, = F21],

Qi** = F 2 [vjl] [10,p.44] and Qi**Qi = F2[V , , ) [10, p.101].

The trigraded spectral sequence of interest is

E2 (M; Qi) = ExtQ,*Ql (Q1,**, Qi**(M)) = F2 [Vl , h11, h2 1 , - - , hn,-. .]

and it converges to vi-lE2 (M; H) [10, p.81, 101]. Note the abuse of notation above as what we

really mean by E2 (M; Q1) is E2 (L; Q1) where L is an injective resolution for H,(M). Elsewhere

M will always refer to the topological Moore spectrum. For degree reasons the only potential non-

zero differentials in E,(M; Qi) happen at odd pages, so E2 = E3. Palmieri then conjectured the

following differentials:
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d (v-) =

d3 (hni) =v - 2 hiih2 ih2_ ,1 for n > 3

As we will see later, the conjecture in its current form is incorrect, so we make the following

revised conjecture:

d3 (v2) = h31

d3(hi) = v- 2 hihi + vj-2hih2 1h2_ for n > 3

Though this isn't enough to fully determine d3 , Palmieri goes on to propose that d3 "looks" as though

as E2(M; Qi) is an algebra. One reason for this proposal that he notes is we can also compute the

E2 page of the corresponding spectral sequence for the sphere

E2 (S; Qi) = ExtQQ (Q,,,, Qli) = F2[oV 1, hio, hi, h21, , hn, -..

and use the map S -+ M to induce a surjection E2 (S; Q1) -- E2 (M; Qi) with hni -+ hn1 , hio -+ 0

and vi -a vI. Then the identity map S A M - M turns E2 (M; Q1) into a cyclic module over

E2 (S; Q1). Now identifying E2 (M; Q1) with F2 [Vi 1, hi , h21, .. , h.i,- ] becomes justified as both

coincide as E2(S; Q1)-modules:

E2((M; Qi) 2' E2 (S; QI)/(hio) = F2 [V 1, h1 i, h2 1 ,- , hni,

Then information about differentials in E. (S; Q1) could directly produce differentials in Er(M; Q1)

and since S is a ring spectrum, E,(S; Qi) is a spectral sequence of algebras, so the differentials in

Er(S; Q1) are derivations. The problem is differentials in E2 (S; Q1) are difficult to compute and

so we don't know what E3 (S; Q1) looks like. This is where End(M) enters the picture - it is a

ring spectrum that acts on M just as S does, but differentials in E2 (End(M); Qi) are much more

manageable to compute.

13



3 The Qi E2 term for End(M)

We begin by computing H,(End(M)) as a comodule over A. Let xo and x1 denote the two cells of

M and y_1 and yo denote the two cells of DM = E- 1 M. Then End(M) = M A DM has four cells

of the form xiyj with Ixiyj I= i + j. As DM is the dual of M we have maps 77: S -+ M A DM and

E : DM A M -+ S that specify the ring structure of End(M). More precisely, q is the unit, while

multiplication is given by

MADMAMADM l^*^ M ADM

and the action of End(M) on M is then given by the map 1A E : M A DM A M - M. If t C H,(S) is

the generator, then n,(t) = x1y_1 + xoyo and E,(ylx_1) = E,(yoxo) = t. This allows us to compute

the multiplicative structure of H,(End(M))

xiyl ifj+k=0
(xiys )(xk yl) =

1 0 otherwise

Setting a = xoy_ 1 and -y = x1yo we get that H.(End(M)) = F2[a,-y/(a 2 , 2 , ay + ya+ 1).

Note this is a 4-dimensional non-commutative F2-algebra with basis (1, a, Y, ay) where lal = -1

and 1-|i = 1. To understand the coaction of A we just need to understand the coaction on a and -y.

Since $(xo) = 1 0 xo and O(x1) = 10 x, + 61 9 xo we conclude that

O(a) = b(xoy- 1 ) = O()M(y_ 1) = (1 0 xo)(1 0 Y-i) = 1 0 xoy_ 1 = 1 0 a

and

(_)= b(xlyo) = (X1)(yo)= 1 0 XyO + 61 ® (x1y_1 + XOyO) + 2 0 Xoy1

= 10 + 01 + 0 a

Recall we are interested in computing d3 in E2(M; Q1). Since M lacks multiplicative structure,

we will work with End(M) and try to understand E,(End(M); Q1). We proceed with a direct

14
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computation

E2 (End(M); Qi) = Ext(Qi,)**Q((Qi),,, (Qi).*(End(M)))

F 2 [V 1 ] 0 ExtF2 [(, - (F2 , F 2 (1, a, -y, ay))

= F2 [VI 1] ®F2 [h 21 , h3 , ...] ® ExtF2 [(]/)(F 2 , F2 (1, a, y, ay))

Here we used that the coaction of 6? on F2(1, a, -y, a-y) is trivial for i > 2. The conormal

extension F2 ( )/(() -+ F2 ( ,)/( 4) -* F2 ( )/( 2) produces a Cartan-Eilenberg spectral sequence

that collapses since H,(End(M)) = F2 (1, a, y, ay) is cofree over F 2 ()/( 2). Thus, we get

ExtF 2[ 1]/( 4)(F2, F2 (1, a, y, ay)) = ExtF 2[ 2]/( 4)(F2, Ext F2 [ ,]/(2) (F2, F2 (1, a, y, ay)))

= ExtF2 [2]/( 4)(F2, F2 (1, a))

We conclude that ExtF2 [ 1]/( )(F2 ,F 2 (1,a,-y,a-y)) =F2(1,a) ®F 2 [h1 1 ] and so

E2(End(M); Q1)= F2[fi, Ce, hi, h21, h31,.-1/(CC2)

which (expectedly so) is two copies of E2 (M; Qi). The degrees of the generators are given by Ivi =

(0, 2, 1), lal = (0, -1, 0), |hn1| = (1, 2n+' -2,0). It is worth noting that even though H,(End(M)) is

not commutative, the spectral sequence above ends up with a commutative multiplicative structure.

3.1 E2 (M; Qi) as a differential module over E2(End(M); Qi)

The action of End(M) on M extends to an action E,(End(M); Qi) 0 E,(M; Qi) -+ E,(M; Qi)

and so E,(M; Qi) is a differential module over E,(End(M); Qi). The commutative diagram

M A DM A M > M

S A M
SAM

implies the action of E2 (S; Qi) on E2 (M; Qi) factors through the action of E2 (End(M); Qi) via

15



the algebra map 7, : Er(S, Q1) -> E, (End(M); Qi), which is just

T/* F2[41:] 0 F2[hio, hi, h21 , h31 ,...] - F2 [Vj 1] 0 F2 [hl, h21, h3 , -- ®F2(1, a)

with i,(vi) = vi and 77.(hni) = hn1 . Furthermore we claim r,(hio) = ah1 . Indeed, since ?() =

1 y+ 1 +(D C0a it follows that (1 1+ a vanishes in the homology of the cobar complex

of End(M) and so ahl, = ca = 1I1, which is the cobar representative of h1 o in E2 (S; Q).

Hence E2 (M; Qi) is a cyclic module over E2 (End(M); Q1). Furthermore, we have an isomor-

phism of E2 (End(M); Q 1)-modules:

E2 (Al; Q 1) 2'E2(End(M); Ql)/(a) = F2 [Vi , hil, h21,-- hni --

Before we move on to the next section we note that all of the elements h11 , vi, h21v 1, h21v2 survive

to Eo,(M; Q1) as shown by the diagram of E2 (M; H) below. Observe this doesn't guarantee the

same is true in E.(End(M); Qi), but we will still be able to extract some of the information back

to Er(End(M); Qi) using the action above.

to -

0, 4......

a S It)

/

15
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4 Calculating d2 and d3 of E2(End(M); Q1)

4.1 Low-degree calculations

We begin by calculating d2 and d3 on the low-degree elements in Er(End(M); Qi) and then proceed

to formulating a conjecture for d2 and d3 on the remaining elements.

Theorem 4.1.1: The elements a, h1 1 , via, vih21 survive to E4 (End(M); Qi). Furthermore,

d2 (v=) =ah

d3 (V 
2 )= h

Proof:

Since we will need to distinguish between differentials in Er(End(M); Qi) and Er(M; Q1), we

will denote them by d, and d' respectively.

In Er(M; Qi), h31 must be a coboundary at some point and for degree reasons dM (v2) = h 1 .

Indeed, if dr (x) = h31 for some r > 3 and x E Er(M; Qi) then since Ih3i = (3, 6, 0) and d changes

degrees by (r, r - 1, 1 - r) we conclude that Jxi = (3 - r, 7 - r, r - 1). Recall lvil = (0, 2, 1), ial =

(0, -1, 0), Ihnii = (1, 2n+1 - 2, 0). Then 3 - r > 0, so r = 3 and lxI = (0, 4, 2). The only option

now is x = v . Note if v, was to survive to E3 (End(M); Qi) then d3 (v2) = 0, which would force

dMj(v2) = 0. Hence d 2 (v1 ) $ 0 and so for degree reasons d 2 (v1 ) = ah21 . Given the action of

E2 (End(M); Q1) we must also have d2 (vi) = ahl1 . Either of those differentials could be also seen

since d2 (v1 ) = h1ohn1 in E2 (S; Q1) which follows from the same differential in the Cartan-Eilenberg

spectral sequence computing H*(A(1)).

Next we claim d2 (h21 ) # 0. Indeed, assume that d2 (h 21 ) = 0. Then d2 (V h21) = 0 and since

v h21 survives in Er(M; Qi) it must be that d3 (V h21)= 0 in E3 (End(M); Q1). By multiplicativity

we conclude d3 (h21 ) = V- 2 h 3h 21. But now considering the action E3 (End(M); Q1) 9E3 (M; Q1) -+

E3 (M; Qi) we have

d (h21 - vi) = d3 (h21 ) - v 1 + h21 - dM'(vi) = v-T1h 3ih21 $ 0

which can't happen since h21V1 survives in Er(M; Qi). Note we have to consider the action since

h21 v1 would not be present in E3 (End(M); Q1). Hence our assumption was wrong and d2 (h21) 0,

which by degree reasons means d 2 (h21 ) = v- 1-ah 2h 2 1-

17



Finally both h1I and v1 h21 survive d3m in E3 (M; QI), so they must also survive d3 in E3 (End(M); QI)

i.e. d 3 (hu) = d3(vih21) = 0. At the same time, for degree reasons d,(a) = d,(avi) = 0 for

r = 2,3 and neither elements can be a coboundary, which means both a and av, are present in

E4 (End(M); Q1).

4.2 Conjectures on E,(End(M); QI)

Given the theorem above, in order to compute d2 completely we just need to know the values on

the remaining generators i.e. d2 (hai) for n > 3. Thus we make the following conjecture:

(Main) Conjecture part 1: d2 (hai) v-ahlihi for n > 3

Observe then xn = vihn+i,1 is a cycle, and that

E2 (End (M); Qi1) = F2 ,12 .] 2o i , a]/(a 2)

where the first factor has zero differential and the second factor has only d2v 1 = ahil. The homology

is thus

E3 (End(M); Q1) = F2 [xi, x2, ... 0 F2 [Vo 2 , hil, a, a']/(a2 , ahi1 , aa', a'2 )

where a' is the class of va. Again Theorem 1 tells us d3 (x1) = d3 (a) = d3(a') = 0 and d3 (v ) = h 3

and so in order to compute d3 completely we just need to know the values on the remaining

generators i.e. d3 (Xn) for n > 2. Thus we further conjecture:

(Main) Conjecture part 2: d3 (Xn) = v1 4 hixix_1 for n 2

We can prove this conjecture modulo the following assumption

(Smaller) conjecture: v'lXn does not survive to E4 (End(M); Q1) for n, m E Z, n > 2.
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Theorem 4.2.1: The smaller conjecture above implies the main one.

Before proving the Theorem observe the converse statement that the main conjecture implies the

smaller one also holds. In fact, the main conjecture even specifies what d,(v'xn) is, which is what

justifies the naming convention of the two conjectures. Thus, the Theorem can be reformulated by

saying that the smaller and main conjectures above are equivalent.

Proof:

For n > 3 d2 (hni) is a linear combination of v- 1ahhihi and vT1-ah 21h2 1- for degree reasons,

but the later is not in the image of E2 (S; Q). Hence d2 (hni) = v 1 ahiihni or 0. Assume that

for some n > 3 d2 (hni) = 0. For degree reasons, d3 (hni) is a linear combination of v-2h 3hni and

Vh-21h21 h_, 1n22 but v- 2hiih2 ih 2_ doesn't survive to E3 (End(M); Qi) since

d2 (v- 2 hnh2 1hn_1 ,1 ) = d2(h 2 )vj2 hiihn_1,1 =v=- 3ah1 h2 in 1, 1

By our smaller conjecture, d3 (hni) f 0 and so d3 (hni) = VT-2 hjih.i. Then

d3(Vh ni) = d3(flhni+ d3 (hni) = hlihni + hlihni = 0

which again contradicts the (smaller) conjecture. We conclude d2 (h. 1) = v- 1 ah2ihni for all n > 2,

which is also equivalent to d2 (vihni) = 0 for all n > 2. Hence the elements Xn = vlhn+1,1 survive,

which justifies their presence in E3. This completes the d2 calculation in E2 (End(M); Q1).

Next for n > 2 d3 (xn) is a linear combination of v- 4hiixiX2_1 and v- 2 h ixn, which leaves us

with 4 possibilities. d3 (Xn) = V- 2h 1Xn would imply d3 (v2xn) = 0 and so d3 (Xn) = 0 or v-2 are

both ruled out as possibilities due to the (smaller) conjecture. Then either d3 (Xn) = vi- 4h1i n_ 1

or d3 (Xn) = v-4hiixiX_ 1 + v- 2 h 1X. However, the latter case would imply

d3(vlxn) = d3(V )Xn +v d3(Xn) = hi Xn + hir +X v- 2 hixxn_ 1 = VI 2 h in_1

and so

0 = d2(V2x") = d3(V- 2hiiXIX_ 1) = d3(v-2)h1iXX_ 1 = v- 4 h iix _

which is false as v- 4hixil_1 is present in E3 (End(M); Q1). We conclude d3 (Xn) = vi- 4 hiixi_1
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for n > 2 as desired.

l

It is worth mentioning that Palmieri's original conjecture would imply that dm(v'"hni) # 0

for n > 3, which would guarantee the (smaller) conjecture. However, the smaller conjecture itself

is enough to arrive at a different answer than what Palmieri suggested. This proves his original

formulation is incorrect, but as we will see in the next section it is close to what we arrive at based

on the (smaller) conjecture.

4.3 Completing the calculation of d3 in E3 (M; Q1)

Now that we have learnt a fair bit about the structure of E,(End(M); Q1) we will see how the

information about its differentials can translate to information about the differentials in E,(M; Q1).

Recall for degree reasons E2 (M; Q1) = E3 (M; Q1). Observe E3 (M; Q1) is now generated by {1, v1 }

as a E3 (End(M); Qi)-module. Since v, survives to E..(M; Q1) we get dM (vi) = dM(1) = 0 and so

d3 now completely determines dM.

For example, to compute df"(hnl) for n > 3 note that hi vj- 2 x_1 vi and so we get

dm(hni) = d3(v- 2 x1) vi = v 2 hhi + 2hh21h

We conclude that assuming the (smaller) conjecture holds, the differentials in E3 (M; Q1) are

dM (v2) =

d (h21) = v-2h2 1 M

dM (hni) = V- 2hIhi + v- 2hilh2lhi_ for n 3

which is what we conjectured in Section 2.

5 Relation between Palmieri's and Mahowald's notations

In this section we will see how the conjectured differentials for E3 (M; Q1) imply Mahowald's conjec-

ture assuming there are no higher degree differentials. We begin by stating Mahowald's conjecture

explicitly following the original description in [5]. Let P = F2 [X1, X2, - - ] be a polynomial algebra,
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which is bigraded with |x = (2, 2+2 + 1). Set a derivation d on P by d(xi) = x1 x_ 1 for i > 1. Let

H(d) be the resulting homology and B(d) the image of d. Then assuming a and b run through an

F2-basis for H(d) and B(d) Mahowald conjectured that

v-lExt-5t(F2 ,H*(M)) = El"a vilExts(F2 , H,(bo A M))
aEH(d)

E E v-b|v-Extst(F2 , H.(bu A M))
bCB(d)

Here bo and bu are connective real and complex K-theory respectively and we have explicit

computations:

vil Ext-9t(F2, H, (bo A M)) =- F2 [V141 2 F(hi , vi) /(hii

v71 Ext'(J F2, H.(bu A M)) = F2[V1

In other words, the conjecture reads that vlE 2 (M; H) consists of IH(d)I copies of F 2 [Vj 4] ®

F2 (h1, vi)/(h01 , v2) and |B(d)| copies of F2 [V 1 ]. To clarify, by |H(d)| we mean the number of

basis elements of any given degree in H(d) and even though H(d) is infinite, it is of finite type and

so for every basis element a E H(d) the copy is suspended by the degree of a. The same holds for

B(d).

Recall E3 = E3(M; Q1) = F 2 [Vo ] 0 F2 [h1 1 , h21 , h31 , ...] with proposed differentials d3 (v2) = h3

and d3 (hai) = v72hiihn1+vT2hih2 1 , for n > 2. We will express E4 in such a way that it takes

the form Mahowald suggested. Rewrite E3 =F2 [V, hii] 0 F2 [X1, X2...] where xn = vlhn+1, and

0 ifi 0, 1(4)
introduce a grading on E3 so that Jvf| { 2 , |h1 | = 1 and |xn|= 0. Extend this

2 i 2, 3(4)

grading to monomials in the obvious fashion. Then E3 = @,;>oE3, . The reason we are interested

in this grading is that now d3 increases it by 1. But then E4 is just the homology of the graded

chain complex i.e. E4 = n>o ker(d3)/im(d' 1 )-

d-1 dO d' d2
0 - ) E3,0 3 E3,1 3 E3,2 -* >--

We claim that
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(1) ker(da)/im(d- 1 ) = ker(d0 ) = Z(d) 0 F2 [V14 ] 0 F2 [vi]/(v2)

(2) ker(dl)/im(do) = H(d) 0 F2 [ 4] 9 F2[vi]/(v2) 0 {hil}

( ker(d2)/im(d?)) /H(d) 0F2 [j4] 9 F2 [vi]/(V2) 0 {hI}

a B(d) 0 F2 [ 1] 0 F2[vij/(v1 ) 0 {v }

(4) ker(d3n)/im(d'4 1 ) = 0 for n > 3

Given the proof of (1) - (4) is not particularly insightful, we leave it for the end of this section.

We are left with the task of identifying the expressions above with Mahowald's formulation. The

key here is to observe that given (2) and (3) we would need to identify Z(d) 0 F2 [V 4] F2 v1]/(v)

in (1) with (H(d) ( B(d)) 0 F2 [Vo 4] 0 F2 [vi]/(v ). Then from (1), (2), (3) we would get the IH(d)I

copies of F2 [Vl 4 ] 0 F2(hu,vi)/(hi ,1o). What is left over is B(d) 0 F2[vf4] 0 F2 [v1]/(v ) from

(1) and B(d) 0 0 F2 [vu]/( &) 0 {v1 } from (3), which combine to produce IB(d)I copies of

F2 [v1 1]. Thus each of (1), (2) and (3) corresponds to a third of the "lightning flash" sequence, while

the remainder of (1) and (3) each represent half of the vi-line.

Below we can see exactly how the elements of H(d) and B(d) correspond to lightning flashes

and vi-lines in E2 (M; H). The first few elements of H(d) appearing are 1, x1, x , X and x2x 3 + x3

and we can see the lightning falshes for each one. Similarly, the first few elements of B(d) appearing

are x3 through x and XXi each corresponding to a copy of F 2 [Vjo 1 . The colors used have no

underlying meaning outside of grouping together the different elements in E2 (M; H) and relating

each group to its representing element of H(d) or B(d).
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We are left to prove (1) - (4). It is an immediate check to verify they follow from (i) and (ii)

below, which is what we set out to show.

ker(d') = Z(d) (9 F2 [v"] 9 0F2[vi]/(v2) 0 {h 1}

() ker(dn)/Z(d) 0 F2 [vt4] 0 F2 [vlJ/(v2) 0 {hy1} 

2 B(d) 0 F2[vt4I 0 F2 [vi]/(v2) 0 {v} 0 {hgW- 2}

B(d)O (9Fv] [/(v) {hi+1}
(ii) im(ker(d 1 )

if n = 0,1

if n > 2

if n=0,1

if n > 2

Note that that E = P F2[Vt4] 0 F2[v]/(v2), E3 = P 9 IF2 [Vo 4 ] 0 F2 [vl]/(v ) 0 {h11 } and
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dg(y) = d(y)vj-4hii for every y E P c E3. Hence ker(d3) and im(do) take the desired form and the

same argument holds for ker(dl) and im(dl). We proceed to calculate ker(d3) and the calculation

of ker(d') for n > 2 is analogous. Every element of E3 takes the form E'_1 v"myi + Ej_ va zjh>

where m, < m 2 < . < ms, mi 2, 3(4), 11 < 12 < .t, 1j = 0, 1(4) and yi, zj C P. We also

assume yi, zj 7 0. Then

s t s t

di of~j + 1v7ahf ) ( vs 2y hf + vmi -d(yi)hi 1) + EVijd(zj)hi
i=1 j=1 j=1

Setting this equal to 0 we observe two cases. First if s = 0 then d(zj) = 0 for all j and we get

the same component as in ker(do), namely Z(d) 0 F2 [V 14 ] & F2 [v]/(v2) 0 {h2 1} c ker(d2). If s > 0

then we obtain d(yi) = 0 for all i and we are left with

S t

ViZ -2Yi + Zv> 4 d(zj) = 0
i=1 j=1

which given the degrees of v, can only happen if s = t, mi - 2 = 1i - 4 and yi = d(zi). Note

yi = d(zi) already implies d(yi) = 0. Furthermore, for every yi E B(d) we have a unique zi E P

with yi = d(zi) modulo Z(d) 9 F2 [V14 ] 9 F2 [v1]/( ) O {h 1 } c ker(d2). Hence

ker(d2)/Z(d) 0 F2[Vo 4] 0 F2 [v1]/(oV2) 0 {hf 1} B(d) 0 F20[4j 9 F2 [v1]/(V2) 0 {v }

as desired. In fact, ker(d3) P 0 F2 [V1 4] 0 F2 [v1]/(v ), but stated this way it does not relate well

with Mahowald's conjecture.

Next we show im(d2) = ker(d3 ) and the result for im(d') follows analogically. As we saw above

elements of ker(d3) are sums of elements of the form vjrtyh +v"-2 zh31 for m = 2, 3(4) and y, z E P

such that d(z) = y. But then dj(v"z) = vm yh1 i +v 2-2zhh1 and so ker(di) c im(dj) and since the

reverse inclusion holds as well the two must coincide. This completes the proof of (i) and (ii) and

thus we have successfully identified Mahowald's and Palmieri's formulations of the problem.
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6 Introducing the "square" of spectral sequences

In this section we will improve upon a technique originally used by Miller [8] and further refined by

Andrews and Miller [1] to obtain information about differentials in a spectral sequence. An informal

discussion to the approach below was first presented by Novikov [9]. Most of this section is based

on [1] and follows the approach there closely. We will try to set up the machinery of the "square"

in a great generality where we are working in any triangulated category, but the reader should keep

in mind the goal is to ultimatly use our setup in the category of stable comodules over the dual

Steenrod algebra.

Consider resolving a spectrum X by another spectrum B thus obtaining a spectral sequence

E2 (X; B) -==> 7r,(X). How can we go about computing the differentials? One approach is to pick

a spectrum A and consider the resolutions of X by A and B simultaniously. We can resolve by A

first and then by B or vice versa. This would give us 4 different spectral sequences organized as in

the figure below - hence a "square" of spectral sequences. Note both A and B are taken to be ring

spectra.

* MahoE4 E2 (X; B)

}May B-Adams

E2 (X; A) A-Ada r*(X)

Explaining why would such a diagram make sense and how is it organized is the goal of this

section. There are a number of conditions that need to be satisfied by A and B, but perhaps the

most vital one - central to the approach - is requiring the existence of a ring map A -+ B. This

guarantees that every element in 7r, (X) has A-filtration s and B-filtration s + t for some s, t > 0.

Then the diagram gives us two different ways to resolve elements of 7r*(X) - first by finding s + t

and then finding out s or first finding out s and then s + t. This condition is at the heart of the

construction as will become apparent. The rest of the conditions on A, B are more technical and

it is conceivable that one would be able to perform similar (albeit more difficult and less complete)

analysis without them. So we make our first assumption:

(C. 1) There exists a ring map 6: A -+ B
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6.1 Setting up the A, B- Adams spectral sequence

We set up the A-Adams spectral sequence for X by considering the canonical A-resolution of S and

smashing it on the left with X. Via the unit map of A we obtain a cofiber sequence S -- A -- A.

Smashing it with powers of A we obtain an A-resolution for S

-As -A(s 1)

A01 Al] AN] A[s+1]

where the top maps are of degree 1 and we use the notation AS = A A A. Smashing the above

diagram with X on the left and taking the LES of homotopy groups for each cofiber sequence results

in an exact couple, which is the A-Adams spectral sequence for X.

We perform the exact same construction for B except that BIl] = B A A and we smash the

canonical B-resolution with X on the right instead of on the left. It is crucial to observe that the

reason we can simultaniously resolve X by both A and B is precisely because we have a freedom

to resolve either on the left or on the right. This will be an important point when we end up

performing calculations as the cobar complexes for computing E2 (X, A) and E2 (X; B) would be set

up via coaction maps for right and left comodules respectively. An interesting observation is that

resolving by more than 2 spectra simultaniously can't be done in that context as we have no more

degrees of freedom available (not to mention that it is not clear why one would like to deal with

such a beast in the first place).

6.2 Setting up the May and Mahowald spectral sequences

We begin by defining the May spectral sequence in our square diagram. Note

E2 (X; A) = H(El(X; A), dA) = H(ir.(X A A Is), dA)

so if we consider the B-filtration of r, (X A A[H]) we will obtain a spectral sequence converging to

E2 (X; A) - the May spectral sequence in our diagram. To be able to perform computations we need

the following assumption:
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(C.2) E,(X A Alsl; B) = ir,(X A A s]) collapses at E2

This implies that ElIY = E2 (X A As]; B). Another way to express the above condition is by

saying that X is a (A, B)-primary spectrum.

To define the Mahowald spectral sequence note that (C.1) implies that B is A-injective and

so A-exact sequences are B-exact. Hence, applying E2 (-; B) to the A-resolution of X produces a

family of LES's that link together to produce an exact couple. The resulting spectral sequence is

the Mahowald spectral sequence. It converges to E2 (X; B). Note Evah = E2 (X A As]; B) = EAMay

which completes our square of spectral sequences.

We will need a final condition stating that the following diagram commutes (C3):

1 AiA
R A 1A6 IfB AB

For simplicity, we introduce the notation X[I'l]i = B[t] A X A Als], XW[s] B R A X A AN,

X[t(s) = B[tI A X A i^A, X(t)(i) _ gt AX A A^s We also set iA, JA, kA and iB, jB, kB to be the

maps in the exact couple for the A and B Adams Spectral Sequences respectively. For example,

E,(X A As]; B) is obtained via the exact couple

(Dt,7r,(~t)11) i > (t,,7ru(X(t)[SI)

(Dt,u7rs(X~tj1Sl)

with maps

i :ru(X(t+1)[s]) 47r_(X )

kB : 7rn(X [t][s]) X(t+1))
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6.3 Main result

Theorem 6.3.1: If an element x C E +s(X; B) survives to E4 then any choice of a representative

a E EIay of x survives to Eay More precisely dBx = 0 implies dMaya = 0 and dBx = 0 implies

d aya = 0.

It is worth noting the representative a above might not be unique and the result holds for any

such choice. Indeed, the element a is obtained uniquely from a representative z' E E'(X A BIAs; B)

of x and the proof below works for any such z'.

Theorem 6.3.1 could be seen as equivalent to [1, Theorem 9.3.3] except that we work in a greater

generality with higher differentials while sacrificing precision. More specifically, we don't claim d3x

is represented by dMaya, but only that the nontriviality of the latter implies the same for the former.

An integral part of the proof is a lemma due to May [7] following from observations in [2]. We

will use a slightly stronger version stated below.

Lemma 6.3.2: Let D -> E -* F and X -+ Y -+ Z be cofiber sequences. Smash them together

to get the following commutative diagram of cofiber sequences.

DAX - DAY - DAZ

t t I
EAX > EAY > EAZ

I tII
FAX - FAY - FAZ

Take e E 7rn(E A Y) that maps to 0 in irs(F A Z) and d E 7rn(D A Z) that maps to the image of e

in 7r,(E A Z) . Then there exists an f E 7nr(P A X) that maps to the image of e in 7r,(F A Y) and

has the same image as d (up to a sign) in 7rn-1 (D A X) under the boundary maps associated to the

cofiber sequences along the top and left edge of the diagram.

Proof of Lemma 6.3.2: The original lemma by May [7] only proves that a pair of elements (d', f')

with the desired relations exists. To see how the stronger version follows from this, note that for

any d C 7rs(D A Z) that maps to the image of e in 7rn(E A Z) we have that d - d' maps to 0 in

7rn (E A Z) and so there is g C 7rn+1(F A Z) that maps to d - d'. But then we can pick fE 7r,(F A X)

so that g maps to f - f' in 7rn(F A Z). Now d and f would have the same image (up to a sign) in

7rn1 (D A X) as desired. Also note since we are working mod 2, we don't have to worry about signs.

28



Proof of Theorem 6.3.1: Let x has A-filtration s i.e. it can be lifted to an element z E Et(X A

As ; B). Clearly z survives to E4 as well. Pick z' E Et(X A AAS; B) = 7r,(X[ItIs]) that represents z.

Since z' survives to E4 , there must exist y"' E 7r*(X(t+4)(s)) such that kBz' = 43 y"' and JBY"' will be

represented by df z' in E4 (X A AAS; B). A central point will be to show we can choose y' so that it

lifts to E1 (X A A s+1; B) via the map 6. With that in mind, note a' = jA(Z) survives to an element

a c E2(X A AAs; B) and so must survive to E, by (C2). Hence there exists b' E 7r,(X()fs]) with

jb'= a' and so ka' = 0. Consider JAt 2 y'. We know applying either iB or jB to this element

produces 0. But note 'Bjaisy' 0 implies we can pull back jAi2y'" to an element w C 7r,(X[t+1ll[s])

while jBjAi2 y'" = 0 implies d w = 0 and so w survives to E, and as above jAi2 y"'= 0. By the

exact same reason since both iB and JB yield 0 on jAiBY"' we conclude jAZBY"' = 0. Hence there

exists Y2 E Ir*(X(t+3)(s+1)) such that ZAY2 =By'", but iAY2 = iBJY2 by (C3) and so we can pick

y'" = 6Y2. As a side note, observe JBY. = 3 3BY2 and so d Br has A-filtration s + 1.

Recall we want to show d Maya = 0 and dMaya = 0. dMaya is obtained by the top of the following

diagram.

X [t] [s] XIt][s+11 X[t+1][s+1I

kAI d A ZBT JAX ()I]X(t)[s+1] iB( X(t+1)[8+1]

X(t)(s+1) X(t+1)(s+1)
B

Set yo = 2 BY1 = i2 Y 2 . Then May's lemma applied to the diagram below guarantees the existence

of b' such that iBYO = kAb'. But then d, 4a is represented by jBjAYo = 0 as desired.

kA

{JB IjB I/B

XBt)(s+1) A X() JA XIt)[s

kB kB {kB

X(t+1)(s+1) tA X(t+1)(s) ]A X(t+1)[s]
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Mayto7"X12I'1)adapyBSimilarly to get d 2  a we need to lift jAYo via iB to lr*(X(t+2)[s+1I) and apply JB, but yo lifts

via iB to yi and jBY1 = 0. Hence JBJAY1 = 0 represents d2Maya. This concludes the proof.

~X t][s] " >X[t][s+1] 2 ~+]s1

X(t)[s] 1 X(t)[s+ 1I i X(t+2)[s+1]

B
kAT d A iBTA

X(t)(s+1) X(t+2)(s+1)
2

It is easy to see that the same argument we applied to d2Maya works for higher differentials and

we end up with the following generalization:

Theorem 6.3.3 (Generalization): If an element x E E +s(X; B) survives to E,+i then any

Maya
choice of a representative a E ElMay of x survives to E'Ia.

7 An approach to the Smaller Conjecture

7.1 Choice of spectra in the context of the square construction

We will begin this section with an informal discussion that would hopefully shed some light on the

reason why the above construction of the square could be useful to our problem as well as problems

of that type. For simplicity, we will work with M instead of End(M) although any calculations with

the former are easily extendable to the latter. Let's recall our goal is to show that a d3 differential is

non-zero on a family of elements of an Adams spectral sequence. We can reformulate this by saying

we want to show the family of elements does not survive to E4. Theorem 4.2.1 tells us it is then

sufficient to find a spectrum T that together with Q, fits into the setting of the square defined above

and for which the representatives of the family of elements we are interested in does not survive to

E3MaY. At first sight this might seem like it introduces an unnecessary level of complexity. It is also

not clear how one might go about finding such a T. The advantage we have here is that we know

Mayexactly what d3 should look like. Note all elements h. 1 have an (s + t)-filtration of 1, while d. "'

increases s-filtration by 1. Hence we want h.i to have s-filtration 1 less than the s-filtration of

v1 hilh2 1hi,_ for every n > 2. For every h, 1 we have 2 possibilities for the corresponding values
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of (s, t) as both are non-negative and they sum to 1. Note also the (s + t)-filtration of v, is 0. Now

pick the smallest n > 2 (if it exists) such that the s-filtration of hni is 1 (rather than 0). Then

the s-filtration of v- 2huh 2ih 2 would be at least 2 and the s-filtration of h,+1,1 is at most 1,

but we want the difference between the two to be exactly 1 and so h1 l and h21 are forced to have

an s-filtration of 0. However, then the s-filtration of v- 2 hnih2 ih2 _1,1 is 0, which is not 1 more

than the s-filtration of hnl. Hence we can assume for n > 2 hi has s-filtration 0. This forces

h11 to have s-filtration 1 and h21 to have s-filtration 0. What this means is that the elements

hni for n > 1 are represented by elements in T,,M in the cobar complex that is the E, page of the

T-Adams spectral sequence for M. At the same time h1 l should not be present in TM, but rather

be represented in T,,M 0 TT.

Recall that the May spectral sequence is obtained by applying a Qi-filtration to the T-cobar

complex. Then the calculation of dj comes down to calculating the coaction map T,,M -

T-,M 0 T,-T for the Hopf Algebroid (T., T,,T). For that reason we will choose T = HC for some

conormal quotient coalgebra C of the dual Steenrod algebra. Then (T., T,,T) is in fact a split

Hopf algebra with T,T a AOCF2 0 T, and T, = ExtC(F2 ,F 2 ) [10, prop. 1.4.6] i.e. the map of

interest is just the coaction map of Extc(F2 , F2 ( )/( 2)) as a ALcF2 -comodule.

As noted above, for n > 1 hnl must be represented in Extc(F2 , F2), while h 1 shouldn't be. This

means we can choose any conormal quotient coalgebraC of the dual Steenrod algebra locked between

Co and C1 i.e. both C -+ CO and C1 -- C are quotients, where Co = F2 ( 1 , (2, - )/(, 2,

and C1 = F2( 1, 2,--. )/((). In other words Co and C1 are the largest and smallest quotients that

satisfy the restrictions on hni listed above.

As we proceed with the formal application of the square construction in our setup, observe there

is a bit of care we need to exercise when translating the statements. Specifically, maps in Stable(A)

are bigraded and our construction will essentially ignore the second grading. Also as a matter of

convention, cofiber sequences in Stable(A) have the form E -+ R -+ F -a E-'0 E and so while the

general arguments remain unchanged, C.3 takes the following slightly different form:

Q1 A HC A ~ QAQ

lAH C J ,
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7.2 Condition C.1

In the next sections we will address what choice of C would fit in the setup of the square so

that the pair (HC, Qi) would satisfy conditions C.1 - C.3. Condition C.1 is in fact trivial as

Q, = HF2 ( 2 )/((2) = A F2 ( 2 )/( 2)F2 and so the quotient map C -+ F2 [ 2 ]/( 2) produces a ring

map HC -+ Q1. So far this imposes no further restrictions on our choice of C.

7.3 Condition C.2

Condition C.2 is essential for the construction of the May spectral sequence. More precisely we have

that E2 (M; HC) = H(7r,*(M A HC[s]), dHC) and we would like to filter this complex via Qi. This

would produce a filtration spectral sequence which is the May spectral sequence. Condition C.2 now

allows us to identify E May E 2 (M A HC[s]; Q1). An important point is that E 2 (M A HC[s; Q)

converges to vilr**(M A HC1sI) = 7r*(vi-1M A HCHsI), where the equality is just the Telescope

conjecture in the setting of Stable(A), which is known to hold [10, Prop.3.1.10]. Hence in order to

construct the May spectral sequence we should be working with v-i7M instead of M.

Proposition 7.3.1: The Qi-Adams spectral sequences converging to vi- 7r**(M A HCo) and

V11 7r (M A HC 1) collapse.

Proof: Note vj1 7r**(M A HC1 ) is know to be F 2 [Vl', h30 , h 21 , h31, h41 ,-. -] due to a computation

by Eisen [3]. Palmieri further computes it via the Q1-Adams spectral sequence in the category of

stable comodules over A/( 1 ) = F 2[(2 , 3,- ] by showing the spectral sequence must collapse [10,

p.102-103]. We directly compute

E2 (M A HCi;Qi) = Ext(Q,)**Q,((Q1)*, (Q1 )*(M A HC1 ))

F2[V 1 ] 0 ExtF2 ,- 2...]/( 4)(F2, F2[ 1])

=F2[V1 ] @ F2[h21, h31, ... ] @ F2 1f

and so for degree reasons E2 (M A HC1 ; Q1) collapses and h30 E V 1 7r**(M A HC1 ) is represented

by v1 4 E E2 (M A HCI; Q 1).
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Similarly we compute that 7r.(M A HCo) = Extco (F2 , F2[1

7r*(M A HCo) = Extco(F2 , F2 [1/(( )

= 22F2 [hno, hn1]

and so vi-7r**(M A HCo) = F 2 [Vj 1 , h21 ] On>3 F2 [hno, hnfl. Furthermore

E2 (M A HCo; Qi) = Ext(Q1 )*,Q,((Q)**, (Q1)*(M A HCo))

= F2 [v1:] 9 ExtF2 (2,... ]/( 4)(F2 , ]F2[(I, ',* -)

=F2 [Vl'] 1 F2 [h21, h31, ..]0 F2[, 1i -2

and again for degree reasons E2 (M A HCo; Q1) collapses and hnO E Vi I7r* (M A HCo) is represented

by v14- 2 E E 2 (M A HCo; Qi) for n > 3.

Proposition 7.3.2: The Q1-Adams spectral sequences converging to vi-17r**(M A HC s) and

v 1 i7r*(M A HCi51) collapse.

Proof: In fact this proposition holds for any conormal C as long as Prop.7.3.1 holds. Indeed,

since C is conormal

v1 -r7r*(M A HC[s]) - v,- 7r**(M A HO) 0 A1cF2 O

Furthermore

E2 (M A HCH'; Qi) = E2 (M A HC; Qi) 0 AD 0 IF2

and so the result follows from the previous proposition.

F1

7.4 Condition C.3

Recall condition C.3 states that the following diagram commutes:
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Q1 A HC Q13 A Q1
lHC

e-iQ1 AlI

E-1,oQ

This would follow from the stronger statement that Q 1 '0 (qi A HO) = 0 as observed by Andrews

and Miller in [1}. More precisely, if we compose either of the two maps Q, A HC E- '0Q 1 in the

diagram with iQ, : E-1'0 1 E2 we will obtain iQi A iHC : Q A HO -- 2 ,OS. Hence the

difference between the two maps lifts to the fiber of iQ1 , which is just E--1'Q 1 , so to prove condition

C.3 it suffices to show [Q1 A HC, E-' 0Qi] =Q "(a A HC) vanishes.

IA

E-1 O 1lAiHC - 2 Q
lA~ 2 1 iQ1 Al

LkQ

E-1 0Q

Li Q1

E-2,Os

To prove Q1'( A HC) = 0 first note we have a duality statement relating the Qi-homology

and cohomology. This follows since Q1* = F2 [VjLl] is a field and so Q"" = Hom',bQl** (Qi**, Q1")

(Ql).b. Furthermore HomQ1 .. (-, Qi..) is exact and so inductively we get that for every finite type

stable comodule N over the dual Steenrod algebra it holds that Q"' (N) 2 (Ql)a,b(N). Thus it

suffices to show (Q1)_1,o(Q1 A HC) = 0. Indeed, we claim that for a suitable choice of C that

(Qi)-1,o(Q1 A HC) is an F2-vector space of dimension 2 with elements coming from (Q1)-io(Q1)

and (Q 1)_1 ,o(HC) each of dimension 1. In other words smashing the two spectra produces no

further homology and so (Q1)I,o(Q1 A HC) is trivial. Note this is exactly the same reasoning one

uses in the ordinary category of stable cell complexes.

We directly compute Q 1 ,(HC) = H(AcF2 , Qi) 0 Ql,*. Note H(ADCF 2 , Q1) has bidegree

(0, *). Hence as long as E ALICF 2 we have that

(Q1 )_1,o(HC) = H2(A[cF2, Q1) ® {vi-1} = F2 (( ® v-1 )
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Similarly

(Qi)-I,o(Ql) = H2(A F2((2)/( 2)F2 , QI) 0 {vI} = F2 (2 g v- 1 )

and

(Qi)-1,o(Qi A HC) = H2 (ADF2( 2 )/( 2)]F2 3 AEcF2 , Q0) 0{vT-} = F2 ((10() 0v71 (® 1) 1i7)

as desired.

7.5 Calculating d2"'

Now that we have shown all the conditions hold we are finally in a position to apply the square

construction for the pair (HC, Qi). For now, let us choose to work with C = Co. Following

Theorem 6.3.1 our goal is to show that d2 is non-zero on a family of elements in Eay Recall

the May spectral sequence is simply the Qi-filtration spectral sequence for the complex

(vj-7F,* (HC A HIC5 A M), diH0 )

Specifically for s = 0, dHC is exactly the coaction map for vi'7r**(HCAM) as a ALcF 2-comodule.

It is important to note this coaction map is one for a right comodule i.e. we are interested in

7r**(HC A M) -+ 7r**(HC A M) 0 ALICF2 . Recall also

r*(H C A M) ExtF2 [(2 -- ]/((i)(F2, F2) _ ,>2F2[hno, hn1]

So what is d HC(hni)? Well, the representative in the cobar complex for F2 [ 2 , W - -]/((4) is just

(f I1. We have that A = -io 0 and so we are interested in those indices 0 < i < n for

which E IF2 [2, - -]/( 4) and 2 E ADCF2 , but this can't happen and so dHC(hni) = 0 and

hi is primitive. But then all May differentials for hnl vanish, which unfortunately is not what

we needed. Furthermore, the same issue will appear if we try to work with C = C1 or any other

feasible conormal C that fits into our square construction.
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