Analysis and Simulation ¢f Elasticae under Friction and Buckling
Forces for the Design of a New Type of Bill-Handling Machine

by

Aris G. Constantinides

B. Eng. Mechanical Engineering
Imperial College of Science, Technology and Medicine, 1991

Submitted to the Department of Mechanical Engineering in
partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering
at the
Massachusetts Institute of Techrology
June 1993

© Massachusetts Institute of Technology 1993

All rights reserved
Signature of Author
7 Department of Mechanical Engineering
May 7, 1993
Certified by i}
' S Harry West
Thesis Supervisor
Accepted by e -
Ain A. Sonin

Chairman, Departmental Graduate Committee

ARCHIVES

MASSACHUSETTS INSTITUTE

ne """‘?”f“',ﬂEY

AUG 10 1393

LIBRARIES

Analysis and Simulation of Elasticae under Friction and Buckling
Forces for the Design of a New Type of Bill-Handling Machine

by

Aris G. Constaniinides

Submitted to the Department of Mechanical Engineering on May 7, 1993
in partial fulfillment of the requirements for the degree of
Master of Science in Mechanical Engineering

Abstract

Mathematical models of the behavior of paper currency in a novel bill handling machine
were developed and the relizoility of the machine was analyzed in terms of two problems:
double-buckling and slip. Double-buckling was analyzed by considering the mechanics of
layers of notes under friction forces in their plane. Slip was analyzed by comparing the
coefficient of friction to the ratio of the tangential to the normal force at the point of
contact with the buckled bill. To calculate the forces, an elastica model of the bill was
developed and solved using Runge-Kutta integratiun combined with the shooting method.
The results were in the form of a 2-dimensional map of possible slip regions in the
operating space of the bill handling machine. The mathematical models were found to
compare well with an experimental prototype. The analysis has yielded insights and
design rules to improve the speed and reliability of the machine. In a more general
context it has served as a template for modeling and simulating flexible material handlers.

Thesis Supervisor: Harry West
Tite: Associate Professor of Mechanical Engineering

ZT0Vs YOVELS LoV, 1 1wpYo kot Een,
KoL TNV AdEAPOVAL LoV Acpvn

To my parents, Ray and Effie,
and to my sister Daphne

Acknowledgements

I would like to thank my advisor, Prof. Harry West, for his help, encouragement
and inspiration on this project. I will always remember our weekly brainstorming
meetings as intellectually stimulating. I am also grateful to the OMRON Corporation for
the funding of this project.

A number of people helped me with this work, generously providing technical or
non-technical advice. Among them I would like to thank:

< All the OMRON engineers in what used to be the EMB division: Nishikoji Tomikazu,
Kubo Ichiro, Onomoto Ryuichi, Morimoto Masaru and Sugitate Yoshimasa. My working
in Japan has been an outstanding experience in my life.

» My friends at the Mechatronics Laboratory: Nathan Delson, Mohamed Khemira, Ross
Levinsky, James Pinkney, Anjay Skoskiewicz. The late-night food scene, the 2.70
packing times, the high-school contest days, the fighting over the MACs and other great
debates will always remain vivid.

o My teachers at Imperial College, but especially Professor Jim Whitelaw, Dr. Alex
Taylor, Dr. Ramsey Gohar and Dr. Barry Hill.

» My great friends since the Athens College days, George Alexopoulos, Haralambos
Eleftheriadis, Konstantinos Janetos; retired "General" Thanos Siapas for being a great
room mate; Giannis Daskalantonakis, Chris Konstantarakis for the fiery debates, Emmy
Korodima, Dimitri Panagiotou (the "gross hacker") for his friendship and UNIX help,
Katerina Panagiotou, Thanos Papadimitriou, George Varsamis and Duke Xanthopoulos.

But most of all, I would like to thank my family: my parents Ray and Effie and
my sister Daphne; for standing by me with their love, support and affection through all
these years.

Ceontents

Nemenclature c o cas o s s s e e s aee 8
LInfroduction« ¢t o v v o ot o v oo oo o oo o o ooeeeoeos 10
I.1Background. 10
12TheBillFeeder 11
1.3 Objectiveof thisWork. 14
2. Initial Buckling.0ttt ittt i et 16
2.1 Materiai Properdesof Yen. 16
2.2 Mechanical Analysis of the Buckling Stage 19
23 Design Alternatives ¢ ¢ v v vt v e e e e e e e e e 21
3. Numerical Solution of theElastica c e 25
3.1 Mathematical Model of the Elastica. 25
3.2 Numerical Solution of the ElasticsModel 28
33 TheShootingMethod, 29
3.4 Application to the Buckling Feeder. 32
4. Modeling of Buckling with LargeDeflection 37
4.1 Objectivesof the Analysis. 37
42 Analysisof Stage 1 o 0 .. 41
43 Analysisof Stage 2 o o e e, 44
44 Analysisof Stage3 L L o oL oo 49
45 ADifferentDesign L. 00 e e 56
4.6 Modelingof ImperfectBills 60

4.7 Problems in the Calculation of the Shape of the Elastica. ., 64

5. Results of the Analysis. o e e s s e e s e s e e e 67

6.Dynamicsc000... D K
7.Comclusionttt ittt eees 79
Referenceso vt vt ittt v nneeeoenoeesos .. 8
Appendix I: Characteristicsof Yeno e e o 83
Appendix II: Finite Element Analysis of the Buckling Feeder. 84

Appendix III: Computer Program Listings 87

List of Figures

1.1 Schematic diagram of the roller
1 The stiffness test
2 The friction test
3 Schematic representation of the forces acting on the top three bills.

Static equilibrium of an element of the elastica
Discretization of the elastica into 34 elements
Schematic representation of the shooting method.
The three stages of buckling

W N -

Detail of contact of roller and bill
Dimensions of computational domain
Sweep technique

Shape of bill (Stage 1 buckling)
Transition between Stage 2 and Stage 3
Penetration of floor

Transition between Stage 1 and Stage 2
Flow chart for estimating contact point
Shape of bill (Stage 2 buckling)

Shape of bill (Stage 2 buckling)

Shape of bill (Stage 2 buckling)

Shape of bill (Stage 2 buckling)

Flow chart for roll

Shape of bill (Stage 3 buckling)
Operation of new roller design

Shape of bill (Stage 3 buckling - folded)
Shape of bill (Stage 3 buckling - curved)
Modeling of curved bills

Shape of bill (Wrong solution)

pd b pumd ph facd b b b et et \D) OO ~J O\ N DU DD

CONANEWNI=O

Contour plot

Ending angles of bill
Minimum slip trajectory
Experimental results

HWN -

Calculation of velocities and accelerations
Flow chart of dynamic analysis

N w—

Finite element model for ADINA
Variation of ratio with angle of rotation

HR 9 bbb hAbhbhbhbbbhbhRhARRARRRA LLWW NN

[SR

Nomenclature

FTLRUEUGREOODIEL L

acceleration in x direction
acceleration in y direction
angular acceleration

damping coefficient (aecrodyanmics)
damping coefficient (internal)
trial contact point

vertical displacement
element length

element length in x direction
element length in y direction
bend_..g stiffness

force in x direction

force in y direction

force

buckling force

frictional force

normal force

tangential force

discrepancy vector

second moment of area
length of bill

length at which angle is zero
length of left elast ca

length of right elastica

initial contact length

length fed by roller

bending moment

mass per unit element

added moment for curved bills
moment from left elastica
moment from right elastica
curvature

ratio of tangential to normal forces
arc length

actual contact length

smallest period of the elastica
trial vector for shooting
velocity in x direction
velocity in x direction
angular velocity

w weight per unit length

x X position

y y position

Greek Symbols

[a] Jacobian matrix

A9 angular step for roller rotation
At time step for dynamics
Ater critical time step

Sv increment to trial vector
ov* clipped increment

0 angle with horizontal

61 angle for curved bills
Oseg angle of segmented roller's arc
p coefficient of friction

Q angular velocity of roller
Subscripts

1 top bill

2 second bill

3 third bill

c contact

new new bills

old old bills

r center of roller

t current time-step

t-At previous time-step

t+At next time-step
Superscripts

k, old previous iteration

k+1, new new iteration

1. Introduction

1.1 Background

Automated flexible-material handling machines have become increasingly
important in many applications: from bill-counters and automated teller machines
(ATMs) used for paper currency processing, to paper-feeders in copier machines, to
fabric-handling devices used in automated garment assembly lines. Technologically,
these devices are complex, due to the particular way in which the material is processed:
high flexibility and large deformations. These two features make analysis and design of
the automated flexible-material handling machines difficult.

An example of such a device is the automatic bill in-out (ABIO) machine,
designed by OMRON Corporation of Japan, and is used in their line of ATM machines.
Its purpose is to count bills from a stack and feed them to the next stage of processing.
OMRON has been producing machines in this market since 1969; they currently have
20% of the ATM market and more than 20 years experience in the design of ATMs. Until
recently the design of their bill handlers has been based mostly on their experience and
experiment (prototype testing). It has become clear, however, that to increase the
efficiency of their machines and to reduce the design time, they needed to enhance their
knowledge on the analytical aspect of bill-handling and develop simulation techniques for
testing their new machines.

As such devices became more widely used and complex, research on flexible

materials has developed. The motivation has been the need to model the flexible medium
analytically in order to, first, understand its behavior under the effect of various forces

10

and deformations and, second, develop computational simulations to avoid prototype
building.

The traditional approach for designing devices for handling flexible materials has
been to use intuition, experience and a large number of prototype iterations; an inefficient
and slow process. The lack of general purpose computational packages, such as finite
element programs, capable of analyzing bill handling machines has precluded any other
approach to design. Our research has been aimed at establishing methods for analytical
modeling and simulation through the design of bill-handling equipment. This goal has
been met by the development of a computational template for designers.

1.2 The Bill Feeder

The bill feeding devices used by OMRON for its ATM machines have been based
on two feeding methods: pinch-friction and gap-friction methods with several
modifications. The failure rate of these devices is low (highest rate has been 3 errors per
1500 transactions, 20 notes per transaction, or 0.01 % error) and the highest speeds
attainable during operation are 10 notes per second. The most frequent problems
encountered in these types of feeders are skew and jamming, the latter depending on the
condition of bills. Previous work on these feeders has been done by MIT, mainly in
developing a self-correcting desxewing mechanism to correct the skew problem
[Levinsky, 1992, Kotovsky, 1990]. The deskewing mechanism is connected in series with
the bill feeder and corrects the skew of the bills leaving the feeder.

OMRON is interested in developing completely new concepts for bill handling.
The motivation is the need to radically improve the ATM design in terms of reliability,
speed and size in order to have a lead in the next generation of ATM machines. To
achieve this, a team of MIT and OMRON engineers brainstormed new ideas for the
development of a new device, with the potential for improvement over the existing
technology. The objective of the new design was to increase the speed from 10 notes/sec
to as high as 20 notes/sec, while improving the reliability of the processing.

The result of the brainstorming session was a radically new method in bill
feeding. A prototype of the new bill feeder was developed and available for testing. This

11

device can be described as a 'buckling feeder', since its principal action is to buckle the
bills from a stack and to separate them for processing. The simple design of the feeder
consists of a main roller, to which three smaller rollers are attached. The smaller rollers
rotate independently of the main roller, at a constant angular velocity. The bills are placed
in a stack, under the roller and are firmly clamped at one end by a stabilizer. Combined
rotation and vertical pressure on the stack results in buckling of the top bill.
Consequently, the top bill is lifted from the stack by the roller, by virtue of contact forces
that arise from frictional contact between the rubber-coated roller and the bill. Hence, the
device's main characteristics are frictional contact and buckling. Figure 1.1 shows a
schematic diagram of the machine's end-effector (roller).

The bili feeding process is separated into three stages to facilitate understanding
and modeling of its operation. The initial stage, termed Stage 1, is defined when both the
roller and the bill are in contact with the stack. This is the stage of pure buckling. Stage 2
is defined when the roller is in contact with the bill at some point (and not in contact with
the stack), while the bill still is in contact with the stack at some other point. Stage 3 is
considered the lifting stage, since the roller is in contact with the bill but neither is in
contact with the stack. The lifted bill is then grasped by a mechanical arm which keeps it
from falling back on the roller or the stack. The counting function is done during the
lifting stage, as the lifted bill passes through an infra-red beam, triggering a counter.

The reliability of this feeder is limited by a number of problems that arise during
its operation, particularly when bills of different conditions are processed. The main
problems are: double-buckling and slipping. Double-buckling occurs in Stage 1 when the
roller buckles more than just the top bill of the stack. This results in two bills being lifted
(in Stages 2 and 3) and, hence, double-counting. The problem of slip arises during the
lifting stage, when the bill slides from the roller and falls back to the stack.

Initial work on this device can be found in [Dotterer, 1991], which initially
explored the problems of double-buckling and slip. Dotterer assumed that the shape of
the buckled bill represented a sine curve and solved the model equations analytically. As
a result of this preliminary work it was decided that a more detailed numerical analysis
was needed.

12

13 Objective of this Work

Computational analysis of the design of mechatronic devices is becoming
increasingly important. The present work on the buckling feeder is two-fold; first, in a
design context, to determine the causes of the various problems mentioned above and the
design modifications necessary to eliminate them. Second, to develop a computational
simulation of the device's operation and, in extension, a generally-applicable
computational methodology and framework for approaching similar problems in the
future.

Three tasks were undertaken. The first involved developing a finite element model
of the feeder on a commercially available package, testing the operating performance of
the model. The second was to analyze the prototype from a general design perspective,
identifying possible modifications and improvements. The third was to develop a
numerically solvable analytical model of the feeder and computationally simulate its
operation. Based on the computational results, a modified design of the buckling feeder
was produced. The computational model was altered to accommodate the particularities
of the new design. In this work, the three tasks and the results obtained from each will be
presented in the following order.

Chapter 2 discusses the initial-buckling stage, with the objective of eliminating
the problem of double-buckling. The approach towards this problem is in terms of
analyzing the process of the initial buckling stage: the material properties of Yen paper-
currency is considered and the mechanics of pure buckling are described. Conclusions are
drawn regarding the success of this stage and design modifications are proposed.

Chapters 3 and 4 present the numerical models of the bill-feeding process, which
serve as the underlying framework for the computational simulation discussed above.
Chapter 3 emphasizes on the theoretical standpoint of these models, while Chapter 4
stresses on their application to the buckling feeder. The theoretical background includes
discussion of the numerical methods employed for the analysis, reasons for choosing the
particular methods as well as the presentation of the boundary conditions applicable to
the different stages of the operation. The discussion of the application of these models to
the buckling feeder focuses on each of the operating stages separately, justifying the

14

boundary conditions applicable to each. Chapter 4 also elaborates on the problems
involved with modeling as well as the simulation of curved and folded bills.

Chapter 5 presents and discusses the results obtained from the solution of the
models of Chapters 3 and 4. The results are initially presented for Stages 2 and 3
separately, for different bill conditions, then for combined Stages 2 and 3 and are finally
compared ‘o the experimental results obtained from the prototype.

Appendix I presents the material characteristics of Yen. The last two appendices
contain information regarding the finite element medeling and computational modeling
of the operation respectively. Appendix II briefly describes the finite element approach,
the model and the results obtained. Appendix III includes a listing of the codes developed
that simulate the operation of the prototype device.

15

2. Initial Buckling

This chapter presents and discusses the analysis of the initial buckling stage,
defined earlier as Stage 1 buckling, during which, both the roller and the bill are in
contact with the floor. In this context the term 'floor' designates the top of the stack, on
which rests the roller and the processed bill. The primary problem of this stage, is the
problem of double-buckling (or double-feeding) defined when two (or more) bills are
simultaneously buckled and are not separated during the lifting operation (Stages 2 and
3). The analysis of this stage has been developed by taking into account the varying
material characteristics of the bills and the manner in which they affect the fundamential
mechanics of the buckling operation. Initially, the various types of bills are defined and
categorized depending on their conditions. Secondly, the buckling mechanics are
formulated and compared for different bills. Finally, alternative designs eliminating the
double-buckiing problem are briefly discussed.

2.1 Material Properties of Yen

Reliable operation of the buckling feeder has to be guaranteed for bills of different
conditions, such as those found in circulation. There are several parameters which
characterize the condition of a bill and, hence, the performance of the buckling operation.
These parameters are:

a. Bending stiffness (E), for buckling in the longitudinal direction of the bill.

b. Coefficient of friction, determined by the surface characteristics of the biil (roughness).
c. Permanent deformations in the bill, as in the case of folded, creased or crumpled bills.

16

weight/length: w

Figure 2.1 : The stiffness test, used for the calculation of the bending stiffness of bills.

For analysis of initial buckling, only the first two parameters were taken into
account quantitatively; the third was included in the calculation of the stiffness of the bill
in stage 2 & 3 analysis (see Section 4.6). The bills were grouped, for modeling purposes,
under two main categories: new (crisp) bills and old (used) bills. There is, of course, a
continuum of bill conditions, but only the two extreme cases of new and old need to be
considered. If reliable operation is possible for these two extremes, it will also be

guaranteed for groups in between.

The experimental tests to determine the properties of new bills were carried-out
on 'dummy’ Yen notes, provided by OMRON, while for old bills, worn dollars were used.
The reason for using dummy Yen notes is that they are used by OMRON for their own
tests and that they share the same properties as real Yen. Worn-out dollars were used to
simulate the old bills since, on average, the condition of used Yen bills is better than the
condition of 'old bill' extreme.

A sriffness test was used to measure the bending stiffness (E) for a particular bill
and a friction test was carried out to measure its coefficient of friction (). The first test
involves clamping the bill at ore end, allowing the other end to droop (cantilevered), and
measuring the resulting deformation characteristics (horizontal spread and vertical drop).
The bending stiffness of the bill is then given by:

17

_W L4
E=3gd1
(2-1)

where w is the weight per unit length (taken as 0.00785 kg/m), I is the second moment of
area (for the particular geometry calculated as 6.33 x 10-12 m#), d the vertical
displacement of the free end and L the horizontal spread of the bill.

Figure 2.1 shows the stiffness test for measurement of the bending stiffness of a bill. This
measurement was done for both old and new bills and the values of L and d were found
by experiment. It was found that the stiffness for new and old bills was:

old: Eolg = 4.13 106 N/m
and
new: Epew = 4.1 109 N/m

The ratio of the stiffness of new bills to old bills is about 3 orders of magnitude.

The second test for measuring the coefficient of friction of the bill is illustrated in
Figure 2.2. The bill was placed on an inclined surface, with frictional coefficient
corresponding to the condition of the second bill, and a mass of known weight was placed
on the bill, to simulate realistic contact conditions. The coefficient of friction describes
the frictional characteristics of one surface against another. It must be noted that the
coefficient of friction for a pair of bills of different conditions is independent of the order
of the two bills. Hence,

pn(new,old) = p(old,new)
Three trials were held for different bill conditions: one for new against new, a second for
new against old and a third for old against old. For each of these combinations the
coefficient of friction of the pair was calculated and found to be:

p(new,new) = 0.231 p(old,old) =0.662 p(new,old) =0.43

Thc' coefficient of friction also varied depending on the two surfaces. The lowest value
was found for new bills against new bills, whereas the highest was found for old against

18

Figure 2.2 : The friction test, used for the calculation of the coefficient of friction
between bills of different quality.

old. This can be explained from the fact the surfaces of old bills are rougher than new
bills'. However, brand new bills (bills that have not yet been circulated) were not
considered in this test. The coefficient of friction between these types can reach as high as
unity, due to the stickiness of the ink, which is still fresh on the bill's surface.

2.2 Mechanical Analysis of the Buckling Stage

The main cause of error for Stage 1 is double-buckling which occurs at the
beginning of the stage, when both the roller and the bill are still in contact with the floor.
It is not necessary to model this process by developing a numerical model; the bills can
be represented as flexible beams which are buckled in the longitudinal direction in a
simple 2D model [Timosheiko, 1961].

Consider the top three bills in the stack (Figure 2.3). The top bill is buckied by a

horizontal frictional force applied by the roller, due to the vertical pressure from the roller
on to the stack of bills. This force is given by:

19

Bill 1

Bill 2

Bill 3

Figure 2.3 : Schematic representation of the forces acting on the top three bills. Note that
the reactions are also included in the figure.

Fi=Fnli
(2-2)

where F is the horizontal frictional force, Fy the normal force from the roller and pig the
coefficient of friction between the roller and the top bill. The horizontal forces between
the top and second bills and between the second and third bills are termed F3 and F3
respectively. The corresponding friction coefficients are termed pj and p2. Similarly,
these forces are given by:

Fo=Fap2
(2-3)

and

F3=Fnpu3
(2-4)

where Fy, is the same normal force as in (2-2). This is an approximation neglecting the
lateral stiffness of the flat bills.

The horizontal buckling forces for bills 1 and 2 are analytically given by:

472E, 1
Fbvl = L2 .
(2-5)
and
472E,1
Fop=—77"
(2-6)

where E is the stiffness of each bill, I the second moment of area and L is the length of
the bill. Hence, in order to buckle the top bill, the following relation must be satisfied:

F1-F2> K,
27
Similarly, to avoid buckling the second bill, the following must hold:
F2 - F3 < Fb 2
(2-8)
Therefore,
K, Fpa
. F
(TRRTPy Rk N (TPTSS)
(2-9)

Hence, the normal force Fy applied from the roller to the bills must be between these two
values if double-buckling is to be avoided.

21

TableI - Values of the normal force for combinations of new/old conditions for the
top three bills in stack: 'N' = New, 'O' = Old.

Bill 1 N N N N
Bill 2 N N O 0
Bill 3 N o o N
Min. Fn_(N) 0.153 0.153 0.218 0.218
Max. Fn (N) - - - - - - -~
Bill 1 (0 O o 0
Bill O 0 N N
Bil 3 o) N N 0O
Min. Fn (N) | 0.000157 0.000157 0.00008 0.00008
Max. Fn (N) - - 0.000162 0.514867 - -

To include the effect of bills of different characteristics in the analysis, all
possible combinations of bill conditions were considered for the three top bills. There are
8 possible combinations for new and old bills. These are shown in Table 1. Below each
combination, the maximum and minimum value of the normal force is given, as
calculated from the above equations. The cells containing no entry indicate that there is
no maximum value (ceiling) for the normal force according to the analysis. This arises
when L1 = g or when H2 >y . In these cases the value of F must only be greater than a
minimum value to achieve buckling, and consequently, double-buckling is impossible.

The following conclusions can be drawn from the analysis. First, when a stack
consists of bills of the same quality (all old, or all new), the double-buckling problem can
be completely avoided if the normal force is close to, but higher than the minimum value
shown in Table I. In some combinations, when mixed bills are present in a stack, two
extreme values of the normal force are given. These dictate the range of normal forces to
avoid double-buckling. Since this range of forces is small for cases such as the OON (old-
old-new) combination, it can be inferred that the problem of double-buckling will be
significant under such bill combinations and that the normal force applied has to be

22

precisely controlled. Second, considering all combinations, it is clear that there exists no
common value of the normal force which can be used to avoid double-buckling. This
leads to the conclusion that when bills of different conditions are present, it is likely that
two bills will be buckled simultaneously.

In reality, however, the problem of double-buckling is not as unavoidable as may
be inferred from the previous observations, for two reasons. Experiments done on the
prototype indicated that, even if two bills are buckled initially, such as in the OON case
above, once the roller moves into the lifting stage, the second bill may drop back onto the
stack and only the first will remain fixed to the roller. Secondly, there are alternative
metihods that can be used for initial buckling (discussed in Section 2.3) which can
guarantee that only one bill will be picked by the roller at a time.

This analysis has simplified the modeling of double-buckling in the following
ways: first, the twe extreme cases were examined quantitatively, those of new bills and
those of very old bills. Second, the quantitative analysis was done by taking the two most
important parameters (stiffness and coefficient of friction) into account. The permanent
deformations of the bill were only qualitatively included into the above parameters.
Third, the effects of other parameters, such as the flexibility of the stack or the width-
wise deformation of the bills were not considered.

2.3 Design Alternatives

To overcome double-buckling in the case of multiple bill types, several
modifications to the original design were proposed. Each of these alternative ideas has
originated from the analysis presented in the previous section. The same principle of
roller/bill interaction has been kept in all the alternative solutions.

1. Suction roller
Using a roller with airflow, would significantly decrease the possibility of slip, while at
the same time separate only the top bill from the stack, due to the upwards force caused

by the airflow. Therefore, the problem of double-buckling would be negligibie. This
method is advantageous in that it would reduce slip and double-buckling problems

23

greatly while allowing very high speeds of operation. The major drawback, however, is
that it would require an air-pump which would increase cost, increase noise levels and
increase the size of the machine.

2. Buckling in different direction

In order to avoid the creases in the bills, which are usually directed in the width direction,
the roller can buckle the bill at an angle of 45° or 90° to the longitudinal direction. This
method would solve the problem of very old bills which have small stiffness in the length
direction. A serious disadvantage of this method is that old bills that have been buckled at

an angle can be easily torn, especially at high speeds.
3. Eliminate creases by pressure

Another method to eliminate the effect of the creases on successful buckling is to apply
some pressure on the center of the bills (at the position of the creases) which would imply
shortening the buckling length by a factor of two. Once the half-bili has been buckled, the
pressure would be removed and the normal operation would resume. A disadvantage of
this alternative is that it would require an additional component to the end-effector (apart
from the basic roller) which would reduce the speed of operation.

4. Two-stage buckling

As an intermediate stage between buckling and lifting, a weight test could be applied to
see if one or more bills have been lifted by buckling. Including however this intermediate
stage would imply loss of operating speed and impose an additional probiem of handling
the second bill, assuming it has been lifted accidentally by double-buckling.

5. Non-constant normal force

By adjusting the trajectory of the roller in such a way so as to provide a non-constant
normal force on the bills (eg. starting from a ‘just-touch’ position to a position of
‘jamming' relative to the stack), the whole range of necessary normal forces (as described
in Section 2.2) could be covered. However, this method would be dependent, not only on
the size of a particular stack, but alsc on its compliance. It would be difficult to provide a
controllable normal force.

3. Numerical Solution of the Elastica

The following chapters concentrate on the lifting operation (Stages 2 and 3) and
the problems of roll and slip. It was necessary to analyze these stages by developing a
numerical solution to the mathematical models describing them. This chapter develops
these models, while Chapter 4 emphasizes their application to the feeder's operation. Both
chapters consider a quasi-static analysis, while Chapter 6 introduces a dynamic model.

3.1 Mathematical Model of the Elastica (Governing Equations)

An elastica is a mathematical model of a thin sheet or a slender elastic rod. The
basic theory of the elastica has been established by Euler, who defined the elastica as
being a beam whose deformation is only due tc bending, such that the local curvature is
proportional to the local moment experienced. Heavy elasticas, defined as having non-
negligible density, have many engineering applications, ranging from textiles and paper
to metal sheets and plastics. A review of many applications is given in [Wang 1986].

The elastica is discretized into elements, each being subject to the governi .g
diffrrential equations that characterize the elastica. For each node, seven variables are
defined:

X position
y position
angle

curvature

force in the x-coordinate direction

R g

25

Figure 3.1: Static Equilibrium of an element of the elastica

fy: force in the y-coordinate direction
m bending moment

The purpose of the analysis is to calculate the values of each of these variables for all the
nodes of the elastica. Then, the shape of the elastica can be completely defined.

The conditions of static equilibrium for a single element of the elastica are shown
below and refer to Figure 3.1.

Equation (3-1) represents the static equilibrium of the elastica with respect to the x
coordinate.

—fx+fx+%fxs—ds=0 = %—fxs—=0

(3-1)

The next equation is obtained by considering the y coordinate static equilibrium.

26 S -

A
JEN

—fy+fy+%fys—ds—wds=0 => I%fys-=w|
(3-2)

Equation (3-3) is an expression of the rotational equilibrium of the element.

—m+m+%%ds—wds%+fydx—fxdy=0 =

omg .Y codx _
s IS =hgs-frgs =

90 45 = fxsing fycosd

(3-3)

Finally, theory of elastic beams under bending stresses relates the bending moment, m, to
the curvature of the beam, r, through

|
]
o]

(34

where EI is the beam's flexural rigidity. Mathematically, the inverse curvature can be
written as
oy
2
2.2
a+ ()

1.
T

(3-5)

where the numerator and denominator contain the second and first derivative of y with
respect to x respectively. Equating and re-writing (3-4) and (3-5):

W m
ds _EI

(3-6)

which is the large deflection form of the Be:noulli-Euler beam equatior:.

27

3.2 Numerical Solution of the Elastica Mode!

The solution to the governing equations of the elastica is not completely defined
by these equations alone. What remains to be established is the nature of its boundary
conditions, which are algebraic conditions imposed on these equations at specific values
in the solution domain. The computational domain for this particular problem is
discretized into thirty-four elements, as shown in Figure 3.2. This number was chosen as
a compromise between speed of solution and simulation accuracy. The equations derived
previously are solved numerically. The type of boundary conditions specifies the type of
numerical problem and determines which numerical methods should be used.

There are two main types of numerical problems, characterized by the nature of
boundary conditions: boundary value problems (BVP) and initial value problems (IVP).
In the first type of problems, bouncary conditions are specified at two (or more) different
points in the solution domain, with different conditions specified at each point. Therefore,
these problems are often termed two-point boundary value problems. In the second class
of problems, all the conditions are given at the start of the solution. Techniques for
solving BVPs include relaxation methods (finite-difference techniques) or finite eiement
methods. For IVPs, popular methods include several integrators, such as the Runge-Kutta
integrator or predictor-corrector methods.

Element

-4 2
1 2 /3 Niode 3 34 35

Figure 3.2: Discretization of the elastica into 34 elements

This particular problem can be classified as a two-point boundary value problem.
However, instead of using one of the BVP methods mentioned above, an IVP method,
known as the shooting method using fourth-order Runge-Kutta integration was used. This
was chosen for two reasons: first, it is simpler to use and provides more flexibility to
alterations of the boundary conditions of the problem and, second it is considerably more
accurate with a small number of iterations. Since this is a BVP, not all the boundary
conditions are specified at the start of the solution domain, which is one of the
requirements of an IVP method. Therefore, the Runge-Kutta integrator was combined
with the shooting method, which is discussed in more detail in the next section.

3.3 The Shooting Method

The shooting method is based on a simple principle: if the boundary conditions at
one end of the elastica are unknown, guess them! So, the shooting method, as illustrated
in Figure 3.3, consists of a basic strategy: guess - integrate - compare. Once the initial
guesses are made, an initial value method is used to march throughout the solution
domain, with some conditions at the start known and some guessed. By integrating, the
conditions at the other end are determined. The calculated conditions at the end of the
solution domain are then compared to the desired solutions at that end, and the difference
is used to provide new, better, guesses at the start. This iterative loop is repeated until the
difference between actual and desired conditions reaches the required level of accuracy.
At this point, the elastica has been completely solved and all its characteristic variables
have been determined. The theory of the shooting method is described in detail by [Press,
1988] and is discussed briefly below.

At the start of the solution xj, the unknown boundary conditions are placed in a
vector v, whose components are guessed before each integration, while the vector y
contains the values of all the elastica variables at each point in the domain. The
aimension of v is, therefore, the number of unknown boundary conditions at X1, while the
dimension of y is the total number of boundary conditions at x;. By integrating the
governing equations from X to x2, the end of the solution domain, using the boundary
conditions in y(x1), the values of y(x2) are determined. The difference between these
values and the desired boundary conditions at x2 are placed in a discrepancy vector F, of
dimension equal to the number of unknown conditions at xj.

29

y(x)

- o~ 15t shot
desired
|__condition

2nd shot
Solution domain x2

Figure 3.3: Schematic representation of the shooting method. The trial shots are
compared to the desired condition and an improved guess is tried.

The shooting method is a multi-dimensional Newton-Raphson method that seeks
to find a vector v that will reduce F to zero. This is done by iteratively solving the set of
equations

[a] &v=-F
3-7

and

view = yold 4 §y
(3-8)

where V™V is the new guess vector, based on the old vector (of the previous iteration)
vold | and the difference Sv. This difference is calculated from (3-7) by inverting the
matrix o] and multiplying it to the discrepancy vector F. The elements of [a] are given
by:

j
(39
which is approximated by
aFi - Fi(Vl, cony VJ + AVJ, ...) - Fi(Vl, coey Vj, ...)
aV; 8
(3-10)

The matrix [at] is essentially the stiffness matrix of the elastica, containing elements
proportional to the difference of the discrepancy vectors for two consecutive iterations.
The solution, therefore, converges when the vector F becomes smaller after each
iteration. Crucial to the convergence of the solution is the choice of a;'s, whose maximum
value is limited by the accuracy and minimum by the stability of the solution. It was
empirically determined that the best values of the a;'s should be:

j=1,2,..n 3j=05 10

In order to make the soluticn more stable, the increments v of (3-8) are adjusted
so that only half of the calculated increment is added back to the trial vector. By this way,
the increments are much smoother. Hence,

vhew = yold 4 y*
(3-11)

where,
ov* =0.5 dv

(3-12)

A drawback of the shooting method, however, is the dependency on the initial
(guessed) conditions. For fast convergence, it is required that the initial guesses are very
close to the actual conditions. Otherwise, the solution may converge to the wrong value
(Section 4.7).

31

3.4 Application to the Buckling Feeder (Boundary Conditions)

The purpose of this section is to elaborate on the formulation of the numerical
methods (Runge-Kutta and shooting method) as applied to the buckling feeder. Initially,
the particular features of the problem are presented and, then, a strategy is developed.

The three functional steps of the buckling feeder have been discussed in the first
chapter; they are: Stage 1, initial buckling of the bill; Stage 2, start of lifting stage and
Stage 3, lifting of the bill by the roller. These three steps completely define an operating
cycle of the device.

The separation into functional stages is both necessary and meaningful for the
modeling of the buckling process. It seems reasonable, therefore, to separate the stages of
the simulation in terms of boundary conditions.

Recall that the left side of the bill is "clamped” by a support which remains firm
throughout the operation. This implies that the boundary conditions at the left end (Start
of the solution) will remain constant at all times. It therefore remains to determine the
boundary conditions that apply at the other end of the elastica or at some point in its

length.

Three stages are enough to characterize the whole bill feeding process in terms of
the different boundary conditions that apply to the elastica. The first stage, termed Stage
1, applies when the roller is in contact with the elastica which, in turn, is in contact with
the floor at the point of contact with the roller. This situation is illustrated in Figure 3.4-a.
Stage 2, the intermediate stage, is more difficult to solve and is defined when the roller is
in contact with the elastica at some point, this point not touching the floor, but, unlike
Stage 3, some other point of the elastica is in coniact with the floor. This situation is
depicted in Figure 3.4-b. The final siage, termed Stage 3, becomes effective when the
roller is in contact with the elastica, at some point along its length, but the elastica is no
longer in contact with the floor.

All three stages have different boundary conditions, which necessitates their

separate solution. Initially, the boundary conditions that apply to the start of the elastica
are discussed. Since this end is clamped, the angle of the elastica (0) at this point will be

32

©

Figure 3.4: (a) Stage 1 - pure buckling of the elastica
(b) Stage 2 - the intermediate stage
(c) Stage 3 - buckling and lifting

33

equal to zero. Furthermore, since the origin of the coordinate system has been chosen to
coincide with this point, the values of x and y positions are also zero. Hence:

x(0)=0
y@ =0
600)=0

The boundary conditions that define Stage 1 (at the end of the solution domain, ie. the
contact point between the roller and the elastica) are givea by:

x(sc) =x2
y(sc)=0
8(0)=0

where, s is the contact point on the elastica, or the end of the solution domain, and x2
is a known distance from the origin, in the x-direction, to which the roller has moved.
This is illustrated in Figure 3.4-a.

Stage 2 is essentially a three-point boundary value problem, since there are
boundary conditions specified at three distinct points along the length of the elastica. The
first, at the start, has already been examined. The second boundary point is at the point of
contact of the elastica with the roller and, the third point is the contact between the
elastica and the floor. The boundary conditions at the third point are:

y@L"=0
fx(L*) = pfy(L")
mL*) =0

These conditions are evaluated at s=L* instead of s=s. (as with Stage 1), since the end of
the solution domain now coincides with the first point where the elasiica is in contact
with the floor, before the physical end of the elastica. Referring to Figure 3.4-b, this point
has a zero y coordinate, since it is in contact with the floor, but has a frictional force
applied to it, equal to the magnitude of the normal force fy, adjusted by a factor equal to
 (the fricticnal coefficient between the elastica and the floor).

For the point of contact between the roller and the elastica, the following
boundary conditions apply:

x(sc) = x1
v(sc)=y1

where s¢ is again the contact point along the arc length and xj, y; are the coordinates of
the contact point at a particular time. However, a third boundary condition, necessary for
defining this problem, cannot be found. To overcome this problem, the elastica for Stage
2 will be considered from now on as two distinct elasticae : the first one runs from the
start of the solution (coordinate origin) to the point of contact with the roller, with arc
length sy, and the second from the point of contact with the roller to the physical end of
the elastica, with arc length s2. Geometry continuity implies that the coordinates of the
point of contact (x1, y1) and ending angle are common for both the left and right
elasticae. For shape continuity, the curvature of the elastica at the point of contact has to
be continuous. Therefore, the third, missing boundary condition can be written as:

m(s=sj, left part) = -m(s=0, right part)

where "left part" and "right part" refer to the two elasticae respectively and the arc lengths
are given for each of the two elasticae. Of course, another equivalent condition for this
point would be:

O(s=s, left part) = 8(s=0, right part)
referring to the continuity of the angle, but the first one is used for modeling simplicity.
The boundary conditions applying to Stage 3 refer to Figure 3.4-c:

X(s¢c) = x1

y(sc)=y1

m(sc) = 0
where s is the point of contact of the elastica and the roller, along the arc iength of the
elastica, and x;, y; are the x and y coordinates of the current roller contact point. Finally,

the third boundary condition states that the moment at the point of contact is negligible.
This is an approximation, since the "tail" of the elastica (the length after the contact point)

35

is hanging free and therefore applies a moment to the point of contact. This moment is
small relative to the moment m[s=0], about 0.1%, so it can be neglected.

Once the governing equations for the elasiica have been established and the
appropriate boundary conditions for each operating stage have been introduced, it
remains to apply the numerical method with these conditions to model the buckling
feeder completely. The next chapter discusses this application in more detail and analyzes
the probiems that were encountered during the modeling and the steps taken towards
overcoming them.

36

4. Modeling of Buckling with Large Deflection

In this chapter the mathematical foundation of Chapter 3 is applied to the
particular problem of analyzing the operation of the buckling feeder. The first section
introduces the objective of the analysis, or the parameters that this numerical solution will
simulate. The next sections deal with the cases of Stages 1, 2 and 3 respectively, as
defined in the previous chapter; the solution algorithm is presented and the difficulties
and modeling assumptions are discussed. The last two sections discuss the modeling of
folded and curved bills and the difficulties arising in the numerical solution of the elastica
problem.

4.1 Objectives of the Analysis

The purpose of this project as a whole has been to increase the reliability of the
operation of the buckling feeder and, at the same time, increase the speed in terms of
number of bills counted per second. To achieve this goal, the operation of the buckling
feeder has been simulated with the intention of gaining insight into which particular
trajectories will be the most reliable. This section defines the parameters which are used
as indicators of, not only the device's reliability, but also of the modeling process as a
whole.

First, the conditions for which the operation of the buckling feeder is regarded as
'safe’ are described. One of the problems in the operation of the feeder has been the case
of slipping of the bill from the roller. Figure 4.1 shows a detail of the roller and the bill in
contact. The force that is exerted between the roller and the bill can be separated into two

37

Ft

Fn

Figure 4.1: Detail of the roller and the bill in frictional contact.

components: one that acts tangentially to the surface of the bill and one that acts in the
normal direction at the contact point. Since the question of stick or slip is being
addressed, the horizontal component of the force is compared to the frictional force that
arises between the roller and the bill due to their contacting surfaces with friction
coefficient 1. The frictional force can be written as:

Fr=pFy
(5-1)

where Fr is the frictional force between the roller and the bill, F, the normal force from
the roller to the bill and p the coefficient of friction between the twe surfaces. Slip will
occur when the tangential force acting on the bill, Fy, is greater in absolute value than the
frictional force. Hence, in the case of slip:

[Fyl >IFg => IF| > ulFyl =>'£_t >

n

(5-2)

38

To calculate the ratio at the point of contact, the following relationships are used:
Fy =1 fx[c] cos(B[c]) + fy[c] sin(B[c]) |
Fy =1 fx[c] sin(6[c]) + fy[c] cos(O[c]) |

R=F /Fy
(5-3)
where the symbols have their asual meaning, and are evaluated at the 1od= currently in
contact with the elastica and R is defined as the ratio between the tangential and normal
forces. Hence, by calculating the ratio of the tangential force to the normal force we can
determine if the bill is likely to slip from the roller. Of course, this ratio applies for only
one particular position of the bill and roller, so, in order to determine the overall
reliability, this ratio has to be calculated for every discrete position in the bill's trajectory.

The second test, which gave some insight into the accuracy of the analysis, was
the representation of the bill's shape under varying buckling conditions. The shapes
determined by the numerical solution were compared to the shapes of real bills under
similar deflection conditions; it was found that the shapes matched exactly.

A 2-dimensional 'map’ of the stick/slip regions was produced by calculating the
ratic at all points inside the operating region of the device. For this purpose, a mesh was
generated (Figure 4.2), with mesh spacing 2mm in the x and y directions, and mesh size
140mm in the x direction and 60mm in the y direction. The ratio of quasi static tangential
and normal forces was calculated at each node of the mesh, a node defined as ihe point of
intersection of two mesh lines. Essentially each node in the mesh was tested as if it were
the actual contact point. A contour plot was generated of the value of the ratio at all these
points. The results obtained by numerical solution at multiple points in the operational
area were compared with the experimental output and found to match the very closely.
This comparison is given in Chapter 5.

To produce a typical contour plot, for some particular values of the design

parameters (contact length and bill condition), only one initial condition has to be
determined: the condition at rightmost bottom corner of the plot, ie. the starting point for

39

30 140

Figure 4.2: Dimensions of the computational domain (mesh) and of the spacing size used.
(All dimensions in mm)

the sweep. Once the initial conditions for this point are given, the true conditions are
found by applying the numerical method to solve for that point. These conditions are then
used to calcuiate the point above, which is at a vertical distance of dy=2 mm. The value
of £x[0], fy[0] and m[0] - the guessed variables - at the second point are then used as an
input for the third point etc. Once all the points in a particular column have been solved
for, the values of the three missing conditions are used as guesses for the initial
conditions of the corresponding points of the same y-position and exactly to the left
(Figure 4.3). By using this sweep, the whole domain is covered.

The following sections give an analytical description of the solution method,
accompanied by specific examples for each of the three different stages. ,

Figure 4.3 : Sweep method for calculating the ratio at all nodes in the computational
domain. The initial values for the start of the solution are passcd as shown.

4.2 Analysis of Stage 1

The boundary conditions at the end of the elastica are given by:

x(s¢) = x2
y(sc)=0
0(sc)=0

The position to which the roller moves is given in terms of the distance x2 from the
origin. The contact length s¢ is also known as the distance from the origin at which the
roller initially makes contact. It is reasonable to impose the condition of the angle 6 to be

41

equal to zero at the end of the elastica, since there are no forces acting on the elastica
after the point of contact which would change the angle. It is therefore expected that a
Stage 1 bill will be symmetrical with respect to the line x=(x2)/2, not only in regard to its
shape but also in terms of the forces and moments.

The problem of sticking or slipping is not an issue in Stage 1 analysis, as
explained in Chapter 2, since the roller can always apply a sufficient normal force to the
bill in order to avoid slip. However, the problem of double-buckling may arise, if the
normal force exceeds a certain limit; this has been dealt with previously (Section 2.2).
The focus of this section is, therefore, to produce the bill shapes that correspond to this
stage of the paper-feeding process, through a specific example.

Considering the following example of a bill buckled at x2 = 10 cm, with s¢ = 12
cm, an estimate of the missing initial conditions is required for the unknown quantities at
the s=0 (fx, fy and m). As a first reasonable estimate for these values, the following
approximations could be considered: fx should be greater than the horizontal buckling
force, hence:

2
£[0] >F.,=%=-0.23N

which is calculated with the material values found in Appendix III and a margin of about
10 times. The normal force fy can be found from the weight relationship:

fy[0] = %L = 0.0055 N

Finally, the moment can be estimated by using the relationship relating it io the local
curvature:

m[0] = EI = .0.0047 Nm

by estimating the radius of curvature at s=0 to be about 2 cm. With these initial guesses,
the solution converged to the final shape (Figure 4.4), the number of iterations needed
being 8 and the solution time under 1 second, for an error of 2 x 10-5 with respect to the
end position of the elastica.

42

vL'o

*(3reos o1) 3urpjonq | 23e1g Japun [[iq jo adeyg : 'y amS1y

(w :snun) vonisod - x

210 L0 80°0 900 ¥0'0 20’0 0

— +0°0

— 900

80°0

1sod - £

srun) uon

(m

4.3 Analysis of Stage 2

The methods for solving the governing equations for elasticae under deformations
corresponding to Stage 2 were more difficult. Stage 2 is essentially a three-point
boundary value problem, since there are three points along the length of the elastica
which are in contact with some external boundary: the start, the end and the point of
contact with the roller.

The development of the algorithm which calculates Stage 2 bills was derived from
the concept that Stage 2 is actually an intermediate stage between Stages 1 and 3.
Actually, Stage 1 imposes large restrictions on the shape of the bill by forcing a large
change in curvature near the contact point. Just as the roller is lifted from the floor to a
higher position, the restriction on the shape of the bill is relaxed and the curvature and
moment of the bill decreases.

The transition from Stage 2 to Stage 3 buckling occurs when the end of the bill is
lifted off the floor. The mechanics of the transition (Figure 4.5) show that just as the biil
is lifted off the floor, the moment at the point of contact becomes positive and equal to
the moment of the 'tail', caused by the weight of the hanging section. A positive moment
implies a downwards-concave curvature. On the contrary, a negative moment indicates an
upwards-concave curvature. The limiting case, when the moment is equal to zero
corresponds to a straight elastica. Therefore, the transition from Stage 2 to Stage 3 can be
detected when the moment at the contact point is approximately equal to the positive
moment of the weight.

Stage 2 was solved by separately calculating two distinct elasticae which join at
the peint of contact with the roller. For the left elastica the boundary conditions at the
point of contact are:

x(Le) =x(Co)
y(Le) = y(Go)
(L) =6(Co)

where L is the current contact length of the bill, marking the end o. the left elastica, and
G, the trial contact point whose coordinates and angle of contact have to be determined.

44

m<0

(@ ® ©

Figure 4.5 : Transition between Stages 2 and 3; (a) moment at contact point with roller is
negative, (b) moment at contact with roller is equal to zero (bill just touching floor),
(c) moment at contact is positive (bill is not touching the floor).

To solve for the right elastica, the conditions given above were used as initial known
conditions. Hence,

x(0) = x(Cn)
y(0) =y(Ca)
8(0) = 6(Co)

and, for the end of the right part,

45

yL*)=0
fx(L*) = p fy(L
mlL*)=0

It must be noted that L* corresponds to the arc length of the bill at which the angle is first
equal to zero and not the physical end of the bill, since the no forces are applied to the
resting part of the bill (from L* to L), which can be neglected. The distance of L*,
however, is not known, so the boundary conditions are initially applied to the physical
end of the biii (ie. at s=L). The problem that arises with these ending conditions is that the
bill sometimes ‘goes beiow the floor' (Figure 4.6). This is an acceptable solution
numerically but cannot be possible under real conditions. In order to find the real contact
point at L*, the length of the right elastica is decreased and the solution is tried again until
the bill does not fall below the floor, ie. until the correct length L* is determined. The
subtracted length (L - L*) is added back to the elastica; this is the region that rests on the
floor.

As a first step to calculating Stage 2, the last position in Stage 1 buckling was
considered, with the center of the roller at point A. The effect of an upwards movement of

the roller to a point B was then examined (Figure 4.7). The old contact point is designated
by C}, while the new contact point, which is not known, will lie somewhere in the arc C

L
L* unknown L* added' L
length
__/

(a) (b)

Figure 4.6 : If the elastica goes below the floor - (a), its length is decreased until the
correct shape and the first contact point with the floor is found (L*) - (b).

Figure 4.7 : Analysis of transition from Stage 1 to Stage 2

C3, since this is the area of the roller likely to be touching the eiastica. The exact point of
contact was not known, so several points lying on the arc C C3 were tested, starting from
C», each time adding a constant increment to the angle to obtain the new point. For each
point, the left elastica was solved and the moment at its end (the possible contact point)
was determined (M}). Then, the right elastica was solved and the moment at its start (My)
was calculated. A separate loop in the program checked to see if the right elastica slipped
below the floor and, if so, made the necessary adjustment.

The two moments from the left and right elastica (M) and M;) were compared to
determine if the test point was actually the contact point. Since the two elasticae are
continuous at the point of contact, it follows that position, angle and moment continuity
hold true at that point. If the two moments are not equal, then the angle is updated and the
next point is tested. If, however, Mj and M, are equal at a particular point between C2 C3,
that point will be the contact point. If both moments are negative, the resulting shape of
the bill corresponds to Stage 2 deformation whereas both moments positive indicates
Stage 3 conditions. This is the criterion for transition. Figure 4.8 shows the fiowchart of
the algorithm used to find the contact point.

As an example, the following case is considered, starting at the last point of Stage
1 buckling, with a contact length s¢ = 12 cm and roller position x2 = 10 cm (the example

47

Start solutiocn
atC2

!

Increment
angle by Dth

Y

Find coordinates
x,y of new point

!

Solve for left elastica:
(calculate Mr)

'

Solve for right
elastica

Figure 4.8

: Flow chart of the contact point estimation algorithm

48

of Section 4.2) and moving the roller from (x, y) = (10,2) cm to (x, y) = (4 ,2) cmin 2
cm increments. The resulting shapes of the bill under Stage 2 buckling are presented in
Figures 4.9 t0 4.12.

4.4 Analysis of Stage 3

The boundary conditions at the end of the solution domain are:

x(sc) =xi
y(se)=y1
m(sc) =0

the symbols having been defined in Section 3.4. The coordinates x) and y; are the desired
coordinates for the end of the elastica and the roller is assumed to be contacting the
elastica at this point.

To calculate the exact bill shape under conditions of Stage 3 buckling, several
assumptions were made. First, it was assumed that the coordinates of the contact point
were known. This assumes that the bill has not slipped from the roller, equivalent to
fixing' the contact point to the roller, until it reaches this point. In reality, however, slip
might have occurred at an earlier stage so the contact point would change. But when all
the possible 'slip areas’ in the operational space are considered, they can be avoided by
changing the trajectory of the roller.

Another simplification was that the moment at the contact point was
approximately equal to zero. This is a reasonable assumption, since the moment due to
the hanging part of the elastica is approximately 0.1% of the highest moment in the
elastica. Furthermore, when the boundary condition was altered to compensate for the
moment at the point of contact, the resuiting change in the angle was of the order of 0.1
degrees, which was beyond the required level of accuracy.

Throughout this analysis for Stage 3, it was assumed that there is only one contact

point between the bill and the roller. This may be an approximation for some cases,
nonetheless adequate for modeling purposes, because it introduces an error on the

49

[@TVOS Ol
(810°0 ‘01°0) sp2002 19{0x ‘Surpjonq Z 3e1g 13pun [[iq jo adeys : ¢y am3Ly

(uw :syun) vonisod - x

210 1’0 80°0 90'0 +0'0 200 0
i |— _ i _ 1 — [_ 1 — 1 _ 1 o
:
L 200
«
- 3
=)
Q
L $0'0 \m
X g
8
- 900
80°0

[E1VvOSs Ol
(810°0 ‘90°0) sp1002 13[j01 ‘Surpyonq 7 3erg Japun [qiq Jo adeys :01p amSry

(w :syun) vonsod - x

¥1°0 210 10 80°0 90°0 ¥0°0 200 0
N IR (U IR NI R R
- 200
FA
3
- 00 S
8
- 90°0
80°0

[ATvOS OlLl
(810°0 *90°0) "sp1002 13][01 ‘urpjonq 7 33elg Jopun [1iq jo adeys :]|y amS1g

(w :snun) vonisod - x

Lo 1o 800 900 ¥C'0 200 0

S U NI N SR B SR

— 20°0

- $0'0

r 90°0

80°0

syun) uonisod - £

(m

vLo

4

l

0

(A0

[F1vos oLl
(810°0 ‘¥0°0) SPI002 137101 ‘2UIPjonq T 93e1g J9pun [11q jo adeys : 7i'y amSy

(w :syun) uonisod - x

80°0
M]

200
|

¥0°0 200
| !

800

tun) uonisod - £

(m

conservative side; the larger the contact area the less likely does slip become.
Furthermore the analysis is simplified to a large exient.

One of the final problems in Stage 3 analysis was the problem of roll, during
which the contact point between the bill and the roller changes, without the bill having
slipped from the roller. A three-step algorithm was developed to test if the bill had rolled
and adjust the contact length and contact point once roll had occurred. First, the roller
was moved to a new position; it was hypothesized that the bill did not roll on the roller
and that the contact length remained the same when the roller moved to the new position.
Then, the x, y coordinates of the new contact point were calculated and the numerical

solution was applied with the new boundary conditions, solving for the forces fx and fy
and the ending angle 6. Finally, the new contact point ccordinates were found from:

kel =xk + (k1 - x8)

yit = yk + (yktl - yK)

st =
(5-4)

The equations refer to Figure 4.13. The superscript indicates the iteration step; the
subscripts ¢ and r indicate the contact point and the roller center respectively. The basic
variables have their usual meaning. The angle 6k+1 was compared to the ending angle of
the previous position 6X; roll had occurred when the angles differed. New x, y coordinates

were then established, based on the new ending angie:
xk+2 = xk+1 _r (5in@**! — sin6*)
yk2 = yk+1 _ 1 (cosBX*! - cosok)

slé+2 = sgﬂ -r (ek+l _ Ok)
(5-5)

The superscripts and subscripts have the same meaning as above and r is the radius of the

roller. This scheme is applied iteratively, as shown in the flowchart of Figure 4.13, until
the coordinates of the contact point converge to a steady value. These are the final

54

Move roller to
new position

Assume no
roll

| Establish new contact
points

Y

Solve for fx, fy and
ending angle

Bill must have
rolled
* NO
Convergence
Final contact
k+1

xr(k+1), yr(k+1)

th(k+1) xr(k),yr(k)

th(k)

Figure 4.13 : Flow chart and description of roll algorithm

55

coordinates and new contact length, adjusted for roll. The ratio can be therefore be
calculated for these new coordinates.

To illustrate Stage 3 analysis the following example is given for a bill having an
initial contact length of s¢ = 12 cm. For this example, it was assumed that the end of the
elastica was located at the point with x,y coordinates 8 and 2 cm respectively.

Again, it was necessary to provide guesses to the missing initial conditions. Based
on similar reasoning as with the previous example of Stage 1, it was calculated that:

x[0]=-023 N
fy[0]=wL=0.011 N
m{[0] = -0.0047 Nm

The required number of iterations for the solution this problem was 8, and the solution
time, again, under 1 second for a position error of 2 x 103 with respect to the desired
ending positior.. The resulting shape of the bill for these coordinates is shown in Figure
4.14.

45 A Different Design

To this point, the analysis of the bill feeder has been based on the roller design
introduced in Chapter 1. The model was developed, tested and results were produced
(Chapter 5). Based on these results, suggestions were made regarding the ideal trajectory
of the roller. The design was modified to eliminate the problems the analysis had
discovered. This section discusses the model developed to simulate the operation of the
new roller; the modeling principles are exactly the same as before. Hence, this section
serves as an illustration of the application of our methodology to new designs. The
modeling process becomes very easy when the boundary conditions applicable to each
stage are identified and dealt with accordingly.

The new roller design is similar to the old one. The full roller has been substituted

by a 'segmented’ roller, a section of the old roller, extending to a specific arc length
(Bs¢g). The center of the roller is fixed at a certain point and the roller is only allowed to

rotate clockwise while buckling the top bill (Figure 4.15).

56

14)

[ATvOS O1]
(S0°0 *990°0) SP1009 I3jox ‘Surpjong ¢ 33e1§ Japun [11q Jo adeys : p] 'y amIL]

(ux :syun) vonised - x

rANY L0 80°0 900 ¥0°0 200
1 b 1 — 1 —] — 1 — 1 — 1

— 20°0

— ¥0°0

— 90°0

80°0

situn) uonisod - £

(u

s=Lc+Lf

Lf

s=L1

©)

Figure 4.15: Operation of the new roller design; (a) to (b) feeding,
(b) to (c) lifting.

The motion of the roller can be, once again, separated into two phases: The first is
the 'feeding’ phase, when one part of the arc length of the roller is always touching the

58

floor (Figure 4.15-a to 4.15-b), and the second when only point 'b' of the roller is
touching the bill (Figure 4.15-c).

Inspection of the above statement reveals that for the first part, the relevant
boundary conditions are those applicable to Stage 1 (as defined carlier); for the second
part, the boundary conditions are equivalent to those of Stage 2. Making this formulation
more formal, for the lifting stage first:

x(s=0)=0 x(s=Lc+Lf) =Lc
y(s=0)=0 y(s=Le+L.f) =0
0(s=0)=0 6(s=Lc+Lf) =0

where the left column of B.C.'s refers to the start of the elastica and the right column to
the point at which the roller is touching the floor. The length Lc indicates the initial
contact length of the roller on the bill, while Lf refers to the length of the bill fed by the
roller during the feeding phase. It should now be clear that the bill length to the left of
point ‘b’ (in Figure 4.15-b) is the sum of the two lengths, Lc+Lf.

Figure 4.15-c is reminiscent of Stage 2, as discussed in Section 4.3. Again, it is
useful to separate the bill into two distinct elasticae which have the boundary conditions:

-for the left elastica:
x(s=0)=0 x(s=Lj3) =xc
y(s=0)=0 y(s=L1) =yc
6(s=0)=0

-for the right elastica:
x(s=0) =xc fx(s=L*) = u fy(s=L*)
y(s=0) =yc y(s=L*)=0

m(s=L*)=0

where L* is the arc length corresponding to the first point of the right elastica touching
the floor and xc, yc are the coordinates of the contact point with the roller, given by:

xc =Lc - r sin6
yc=r1(1 +sin(0 - 7/2))

59

where r is the roller radius and 0 is the angular deviation of the segment Ob with the
vertical.

As with Stage 2, only two boundary conditions can be specified at the common
point of the two elasticae. The third condition has to be found iteratively. Contrary to
Stage 2, however, the bill can be considered ‘pinned’ to the roller at the contact point (b).
This means that the elastica will assume the angle that will minimize the moment at the
point of contact. To find the correct angle of the elastica at that point, an iterative scheme
was used: a trial angle was used as the third boundary condition (for the left and right
elasticac) and the numerical solution was sought for that angle. The resulting moments
from the left and right were compared and an updated guess was used, until the moments
converged to the same value.

Using principles and guidelines developed in Chapters 3 and 4, a model was
developed for the simiulation of the modified feeder. The simplicity of the model's
creation suggests that the developed methodology is generally applicable to most
processing operations for flexible materials.

4.6 Modeling of Imperfect Bills

There are many types of bills found in a typical stack, ranging from crisp new
bills to torn and delicate old bills. The modeling should include bills of different
conditions. Predictions of the effect of the varying bill conditions on the double-buckling
problem have been given in Section 2.2. The modeling of bill of various conditions in the
lifting operating step is given below.

Two types of deformed bills, which are the ones most frequently found, are
considered: folded and curved bills. Both types are shown in Figures 4.16 and 4.17
respectively, under conditions of Stage 3 buckling. The first type of bill is creased in the
center of the bill in the direction of the width, such as the crease caused by folding a piece
of paper. The second type is the result of putting the bill in a wallet: it contains a defect in
the same direction as before, but it is not folded as hard.

vLo

[a1vOSs oLl
8uippong ¢ s3mig 1apun [[1q papioj Jo adeys : 91y amByg

(w :s3unj uonisod - x

eLo 1’0 80°0 90’0 ¥00 20’0
|) i L |) | 1 | 2 |

- 20°0

— $0°0

— 90°0

80°0

(m :s3run) wonsod - £

vi'o

[ETVOS OL]
8uipponq ¢ 93®g 10pun [1q paamd jo adeys : L]y am3ry

(uw :snun) uonisod - x

40 (V) 80°0 90°0 v0°0 200 0

I U R RN IR SR

(m :s3run) wonrsod - £

80°0

The characteristics of the first defect is that the bill is very weak at the point
where it is folded, while the two 'flaps’ have the same stiffness as the original bill. To
model this type of bill, the stiffness of the central clement (which contains the crease) was
decreased by a factor of 10 relative to the other elements. The value of 1/10 is an arbitrary
factor, empirically derived, but produces results that match the experimentally measured
behavior of folded bills well.

Modeling of curved bills is a more complicated procedure. The effect of placing
the bills in a wallet is to induce a permanent deformation in the shape of the bill, which
increases the curvature (iocally) close to the center of the bill. This higher curvature
corresponds to an increase in the moment at each of these elements that are in the
deformed section. The question arises, however, as to how to determine the right moment
for these central elements. Figure 4.18 illustrates this procedure: The radius and extent of
curvature are determined by observation of a deformed bill specimen. The curved part of
the bill is then treated separately from the rest of the bill, as a distinct elastica, and is
considered fixed at A. The initial and final conditions are then:

x[0]=0, x[Lc]=AB

y{0]=0, y[Lc]=0
6[0]=91, O[L.]=180-6;

Figure 4.18 : Modeling of curved bills: dimensions taken from a specimen bill

63

where L. is the length of the curved area, 0; the angle with the horizontal, and AB is the
x-direction distance between the ends of the curved section. Solving this particular
problem using the same procedure described above, with guesses for fx[0], fy[0] and
m[0], yields values for the moment at each element of the curved section. These moments
are then added to the moment m of equation (3-6) which becomes:

06 _ m+M[i]
os __El

(5-6)

where the symbols have their usual meaning; M[i] is the added moment of the i'th
element. Elements not belonging to the curved region have M[i]=0.

4.7 Problems in the Calculation of the Shape of the Elastica

In developing numerical methods, amongst the most important problems are the
speed and robustness of convergence. Since the mathematical model is non-linear, the
convergence of the solution depends on the choice of initial conditions. The initial
conditions for this problem, for all three stages, are the values of fx[0], fy[0] and m[0] at
the start of the solution, which are the missing boundary conditions. Guessing these initial
conditions may prove to be a difficult task.

If the guessed initial conditions are not ‘close’ to the actual conditions, where
‘close’ varies from an error of 0.1% to 5% depending on how constrained is the particular
solution, the solution may either converge to the 'wrong' answer or not converge at all.
An example of a 'wrong' solution is given in Figure 4.19. This is a mathematically
acceptable solution; in physical terms, however, it does not make any sense. Therefore,
solutions as such were discarded from the analysis. To overcome solutions which are
meaningless in terms of the model, a rule was used, based on the number of changes of
curvature of the bill's shape. If that number exceed two (in the case of Stage 3 buckling)
or if the number was greater then three (in the case of Stage 1 and 2 buckling) then the
solution was not acceptable.

L0

[ETVOS OlLl
uonn[os Suoim, 3y 0} UIFIAAU0S Jo Jdurexa uy : 6y ANJL]

(ux :syun) uonisod - x

Lo 1’0 800 920°0 ¥0°0 200
| 1 i 1] PR | : | 2]

80°0

(w :s3rum) uvonrsod - £

There is no systematic and reliable method to calculate the initial conditions for
the elastica. A guess is made and, depending on the output (how quickly the solution
converges), the guess is changed so that 'better’ initial conditions are used. However, once
the initial conditions for a single point have been established (for a certain value of the
contact length and bill condition) initial conditions at neighboring points can be
calculated as described in Section 4.1.

5. Results of the Numerical Solution

This chapter presents the results of the numerical simulation of the original design
of the buckling feeder, predicting possible slip regions in the operating space of the
feeder. The results are given in the form of a 2D-contour plot, the two dimensions being
the x and y distance from the support, and the z variable being the ratio of Ft/Fn in the
operating space of the roller. The numerically-calculated results are compared to the
measurements taken from the prototype buckling feeder.

The contour plot is presented in Figure 5.1. The ratio of the forces is denoted by
different colors in the contour plot. The contour piots were drawn from tables of data of
the ratio Ft/Fn, generated by the numerical simulation for a new bill and for a contact
length 1=12 cm. Contour-plotting software was used to interpoiate between the data and
to produce the color contour plots. A custom-written algorithm was developed to allow
the plotting software to read the numerical data.

The downward-sloping black line indicates the transition from Stage 2 buckling to
Stage 3 buckling. The data for each stage was calculated by separate programs (see
Appendix II). The diagonal ‘cut’ in the upper-right part of the contour plot indicates areas
which the bill cannot reach, limited by its length. The calculation of data snded at a
horizontal distance of about x=3 cm, since there is no reason for the roller to advance
further to the left.

Yellow and red regions on the 2D map indicate slip regions, for which

Ft/Fn > 1.0

67

10219131p 10§ yurod 10B1U0D 9y} J€ 9010] [EWION O} [eUITuL) JO OBEl JO UONEURA :]°G AInJLy

[4.LV1d 40T100] *(s1910m ui) aoeds Junerado £x ag3 ur suonisod

000

00

0¥'0

09°0

080

001

0’1

o1

IO 010 600 800 LOO 900 SO0 +00

100

a0

£0°0

00

SO0

900

For a reasonable safety margin, the area where Fy / Fp > 0.8 should also be considered as
a slip region. These regions dominate the upper-right part of the plot. The explanation lies
in the geometry of the bill: if the ending angle is small, the spring force will act almost
tangentially to the circumference of the roller and will tend to separate the contact (Figure
5.2-a). If the ending angle of the bill is large, the spring force on the bill will act normally
to the roller (Figure 5.2-b).

The transition between Stage 2 and 3 is indicated on the contour plot at points
where the moment at the contact, for Stage 2 analysis, became approximately equal to
zero. Points above the transition were calculated using Stage 3 boundary conditions. The
transition is not a straight line since, the more the bill is bnckled in the x-direction the
greater the length of the tail becomes, as the contact point changes. Hence, the transition
height (measured in the y-direction) is greater at small values of x than for larger x.

The best trajectory for the roller to follow, avoiding all the possible slip areas, can
be inferred from the contour plot, This is depicted in Figure 5.3. The bill should be
buckled well away from the slip regions, until about x=5 cm, in Stage 1, before lifting
from the stack. This would minimize the probability of slip. There is a trade-off, however,
between reliability (buckling as far as possible from the slip regions, say to x=2 cm) and
speed. An additional 2 cm of horizontal buckling may add up to 10-20% of operating

(a) (b)

Figure 5.2: (a) Small angle makes slipping of bill highly possible (b) Big ending angle
implies low possibility of slipping

69

Joqjox 943 Jo A10199fen dijs wnwiurp : ¢'¢ amJny

L0 80°0 900 ¥0°0 200 0

— 200

— ¥0°0

— 90°0

80°0

time per cycle, assuming the total trajectory of the roller is 10-20 cm long. Hence, if the
frequency is at 20 notes/second this additional distance might decrease it to 16-18
notes/second.

Figure 5.4 shows the experimental results obtained from the prototype, for a new
bill at initial contact length 1=12 cm. The top pair of lines shows the positions for which
slip occurs during Stage 3 buckling. The bold line is for a coefficient of friction between
bill and roller of 1.0, while the thin line is for a coefficient of friction of 1.4. Compared to
the numerical resuits of Figure 5.1, it can be seen that the shape of these lines closely
match the shape of the contour plots in Stage 3. This leads to the conclusion that the
numerical prediction has been successful in predicting the regions of slip.

The lower pair of lines in Figure 5.4 (at a height of about y=2.5 cm) indicates the
transition from Stage 2 to Stage 3 for the same bill for different values of the coefficient
of friction. Again, the shape of this line the same as the transition line found numerically
(Figure 5.1). Hence, the numerical solution correctly predicted the boundary between the
two stages, confirming the mathematical model used.

The buckling feeder has been tested repeatedly at OMRON with the same bili
type, using the trajectory described above. The success rate has been 100% for new bills,
dropping to 90% when older bills were used. This anzalysis can be also applied to
defective bills, using the models described in Section 4.5, to estabiish a contour plot
indicating regions of safe operation.

71

o_:,

lllllllllllllllll

LT T Y Y P Y Y e P P Y Y L L LT

73 SRR R TR T

wevee

cedecccsccacecnsccactecnacncecass

.Ow L 4

lewscesne

eecscscsvqgreccnce
.
.
1
.
.
.
¢
.
.
.
.
.
[
»
.
.

[
.

ceofdennecn

llllllllllllllllllllllllllllllll

© DT,

esconnbeccnn

sndescsccacl

®esasvegecsssces
.
[
.
3
.
.
[
»
.
3
[
s
s
.
.
.
s

o

09

08

6. Dynamics

This chapter presents the inclusion of dynamic analysis in the modeling of the
buckling feeder. When acceleration-deperndent inertia forces and velocity-dependent
damping forces becoine important, especially at high roller speeds, simple static analysis
cannot any longer be justified. With the dynamic feeder this is often the case, since the
design principle has been to create a high-speed machine. The methodology of including
dynamics is presented and the results of the dynamic effects are examined.

The following variables are introduced for the inertial-force analysis:

vx: velocity in the x direction

vy: velocity in the y direction
vth: angular velocity

ax: acceleration in the x direction
ay: acceleration in the x direction
ath: angular acceleration

These variables are defined at each node of the discretized bill. In addition, all variables
defined at each node (both the ones used in static analysis and the above variables) obtain
a second dimension, in time. The time-dependency of variables will be now denoted as:
xt-At: value of the variable x at time t=t-At

xt: value of the variable x at time t=t

xt+At: value of the variable x at time t=t+At

73

Dynamic analysis was treated essentially as a time-dependent static analysis. The
static equilibrium of the elastica (including the effect of the inertia and damping forces) at
discrete time intervals At was solved for.

Consider a particular element of the discretized bill (Figure 6-1). The element is in
static equilibrium at position (A) and is moved in time At to position (B), another static
equilibrium position, displaced by Ax in the horizontal direction, Ay in the vertical
direction and by an angle A@. The velocities are calculated as:

t_ yt-At
v,“=x A,;

t_ yt-At
g_y—y
Yy =T A
_et_et—At
vh= AL

The accelerations on cach element are then calculated by:

C o VAT VR xUHAL_2xty xtAt
At?

At

P T S Lot A Al
ay - At - Atz

_vh—vEA gtAt _ogty gt
ay= At = Atz

This way of calculating the accelerations and velocities is also called the central
difference method. The acceleration at a position t in time is found by considering the
positions at times t, t - Atand t + At.

74

Figure 6-1: Calculation of velocities and accelerations from element's planar motion.

Once the accelerations and velocities were determmued for time t, the inertia and
damping forces were then calculated and added to the static forces. The new goveming
equations for the elastica, cf. (3-1) to (3-6), take the form:

X — m; 8} ~ b; v} sind
%-sfy-=—w+mia§,—biv§,cose
%fsﬂ=fxsine—fycos9+lia{,-BiV6

20

=-t-l—‘-
9s EI

75

where b; is the damping coefficient due to acrodynamics effects, B; the rotational
damping coefficient due to internal damping, m; the mass per element and I; the rotational
inertia per element. Note that the damping forces are perpendicular to the surface of the
element so the coefficients must be adjusted for that by the appropriate trigonometric
functions.

Inspection of these equations reveals that the inertial-force analysis is simply a
'superposition’ on the static analysis. If the accelerations and velocities are zero, the
resulting equations will be identical to those derived in Chapter 3. The equations were
integrated using the fourth-order Runge-Kutta integrator combined with shooting.

The dynamic algorithm is illustrated in Figure 6-2. Initially, the first static
solution is sought. The velocities and accelerations are determined from the difference of
the last two static positions. The dynamic solution is then calculated. New static and
dynamic solutiocns were calculated for every angular increment of the roller.

The inertial force analysis requires two additional inputs: the time step (At) and
the damping czefficients (b and B;). The time step has to be smalier than a critical time,
At;. This critical time is calculated by considering the highest frequency of the elastica.
Hence,

At << Atgr =Ty

where Ty, is the smallest period of the elastica. The time-step also deiermines the angular
velocity of the roller (£2) since:

Q=A0/At

where A6 is the angular increment used in the static and dynamic calculation and At is the
dynamic time step. Note that a very small time-step may lead to very large values in the
calculated inertial and damping forces; the numerical solution will thus not converge
under these circumstances. For a given roller speed, therefore, both the time-step and
roller angular step-size have to be adjusted so as to meet the above conditions.

76

Calculate first
static position
x(t)

!

Move to next
static position [~
x(t+1)

'

Find velocities,
accelerations

Axt+1)-x(t))

f

Store last static
sition
x(t)=x(t+1)

'

Calculate dynamic
position

Figure 6.2: Schematic flowchart of the dynamic analysis. Bold characters
represent vectors.

The table below shows different values of At for several roller speeds (for an
angular step of 0.174533 rad (10 deg.).

77

Machine Speed Roller Velocity Time-step
(notes/sec) (rad/sec) (sec)

25 157.1 0.001111
20 125.7 0.001389
10 62.8 0.002778
5 314 0.005556
1 6.3 0.027778

It was found that for roller speeds lower than 1 note per second dynamic analysis ceased
tc become important since the inertial and damping terms were small compared to the
static terms. The corresponding dynamic solution did not differ from the static solution in
terms of bill shape and value of the ratio.

The damping factor is caused by the aerodynamic effects on the bill for high roller
speeds. The correct damping coefficient should be determined by an aerodynamic model,
taking intc account the airflow in the vicinity of the bill and roller. Such a model has not
been included in the dynamic program but it can be easily added in the function for the
damping coefficient.

78

7. Conclusions

The objectives of this work, as set out in the introduction, were to analyze and
simulate the operation of a new type of paper-currency feeder, the buckling feeder, in
view of increasing the speed of operation and eliminating the potential causes of
malfunction: double-buckling, roll and slipping. The purpose of the present chapter is to
draw a conclusion to the study and summarize the findings of the previous chapters.

To meet these objectives, a finite element model was initiaily developed. In
extension to that original approach, a numerical model of the operation of the buckling
feeder was solved using the initial value numerical techniques fourth-order Runge-Kutta
and the shooting method. The analytical aspect of these models was to predict the
possibility of slipping, which was quantified by the ratio of the tangential to the normal
forces at the point of contact. The resulis of the analysis were compared to the
experimental results measured from the prototype and were found to match closely. The
operation of the buckling feeder was divided into three stages, in terms of their respective
boundary conditions, to facilitate modeling. Stage 1 was the initial buckling stage, Stage
2 the transitional stage, and Stage 3 the lifting stage.

The problem of double-buckling, which occurred during Stage 1 when two or
more bills were lifted simultaneously, was approached by analyzing the buckling
mechanism at the initial stages of buckling, for bills of different stiffness and coefficient
of friction. It was found that the problem of double-buckling greatly depended on the
value of the normal force applied from the roller to the bill, which had to be between two
limits. The iower limit was dictated from the minimum buckling force required to buckle
the top bill, while the upper limit originated from the possibility of buckling the lower
bills as well. It was concluded that the chances of double-buckling were particularly high

79

when a stack of bills of different conditions were considered and several alternative
designs were proposed.

The problem associated with Stage 2 was mainly the slipping problem. Stage 2
was simulated by considering two separate elasticae (representing the bill), joined at the
point of contact with the roller. The conditions at the joint were position, angle and
moment continuity. The point of contact with the roller, which was unknown, was
determined by testing a number of points on the roller's circumference. The true contact
was established at the point where moment continuity was observed between the two
elasticae.

During Stage 3, it was possible for the bill to slip or roll from the roller. Roll
occurred when the contact point between the bill and the roller changed without the bill
having slipped, but which could lead to slipping of the bill. The boundary conditions fcr
the end of the elastica were formed by assuming that the end point of the elastica was
known and, in addition, was the point of contact. This point then was changed by
adjusting for roll and the ratio was calculated at the new point.

The solution of the feeder model was applied to all the points in the operating
space of the device, by generating a mesh and calculating the ratio at all nodes of the
mesh. This produced a contour lot, with the z-variable being the ratio, which predicted
the areas in which slip was likely to occur. It was found that the contour plots were very
close to the observations of the experimental prototype.

The last aspect of the numerical solution was to simulate the shapes of deformed
bills under conditions of buckling in all three stages. The shapes that were produced were
found to exactly represent real bills (with the same material characteristics) under similar
conditions of deformation.

There are many possible extensions to the modeling of this problem that, if
considered, would provide an interesting area for further study. These extensions range
from simply improving the mathematical model of the device to producing a general
purpose design package, with a graphical user-friendiy interface, that will be allow the
user to analyze and simulate similar problems involving flexible materials.

80

Extensions to the modeling include relaxing certain assumptions that were made,
such as including the effect of the angular velocity of the roller, including airflow in the
analysis and perhaps extending the analysis the 3-dimensions.

Developing a powerful design package for flexible materials, would involve
reproducing much of this work , in particular the simulation aspect, as far as real-time
simulation of the flexible materials is concerned. The requirements for such a project
would be to reduce ihe solution time, particularly for Stage 2 simulation, and the ability
to distinguish between the different boundary conditions at each point in the simulation.

81

References

(1]

[2]

[3]

(4]

(5]

[6]

(7]

[8]

[9]

[10]

[11]

[12]

Bathe K-J., "Finite Element Procedures in Engineering Analysis", Prentice-Hall,
Inc., Englewoaod Ciiffs, N.J., 1982

Briggs J., "Automated Handling of Flexible Materials”, S.M. Thesis, Department
of Mechanical Engineering, MIT, 1988

Clapp T.G. and Peng H., "Buckling of Woven Fabrics, Part I: Effect of Fabric
Weight", Textile Research Journal, 60, pp. 228-234 (1990)

Clapp T.G. and Peng H., "Buckling of Woven Fabrics, Part II: Effect of Weight
and Frictional Couple", Textile Research Journal, 60, pp. 285-292

Crandall S.H., "Engineering Analysis: a Survey of Numerical Procedures",
McGraw Hill, NewYork, N.Y., 1956

Doiterer HJ., "Design and Analysis of a Bulk Note Feeding Device", S.B. Thesis,
Department of Mechanical Engineering, MIT, 1991

Kotovsky J., "Design of a De-Skewing System for Automatic Bill Handling
Machines", S.B. Thesis, Department of Mechanical Engineering, MIT, 1990

Levinsky R. B., "Design, Analysis and Control of a Bill Deskewing Device for
Automated Teller Machines", S.M. Thesis, Department of Mechanical
Engineering, MIT, 1992

Press W. H., "Numerical Recipes: the Art of Scientific Computing”, Cambridge
University Press, 1986

Timoshenko S. and Gere J.M., "Theory of Elastic Stability", McGraw Hill,
NewYork, N.Y., 1961

Wang C.Y., "Large Deformations of a Heavy Cantilever", Quarterly of Applied
Mathematics, 39, pp. 261-273 (1981)

Wang C.Y., "A Critical Review of the Heavy Elastica", International Journal of
Mechanical Science, 28, 8, pp. 549-559 (1986)

82

Appendix I: Characteristics of Yen

There are three types of Yen notes currenily in circulation in Japan, the
denominations of which are ¥1,000, ¥5,000 and ¥10,000. The bills that are considered in
this report are of the latter type. The geometrical and material characteristics of ¥10,000
notes are given below.

Geometry:

Length (L): 165 mm
Width (b): 76 mm
Thickness (h): 0.1 mm

Second moment of area for longitudinal bending (I): 6.33 x 10-12 m?
(It must be noted that the total length of the bills considered in the anlaysis is 140 mm,
since 25 mm are under the support.)

Weight:
Mass: 1.1 gram

Material:
Bending Stiffness: (see Chapter 2, but taken as E=15 x 106 Nm for lifting analysis)

Coefficient of friction: (see Chapter 2)

Coefficient of friction of roller: 1.0

83

Appendix JI: Finite Element Analysis of the Buckling
Feeder

It was proposed initially by OMRON, to use a finite element approach to
analyzing the operation of the buckling feeder, with the same goais of examining slip, roll
and double-buckling and of simulating the bill under conditions of frictional buckling.
This appendix describes the finite element model developed for the buckling feeder, the
results obtained from it, and briefly cominents on the application of the finite element
method to the simulation of paper feeding.

The finite element package ADINA was used for the development of the finite
element model. ADINA was chosen because of its ability of handling contact between
surfaces effectively. It was required to calculate the ratio of the tangential to the normal
forces between the reller and bill for different points along the roller's trajectory.

The finite element model (Figure 1.1) consisted of the bill to be buckled, resting
on a fixed surface. The bill was discretized into 25 beam elements, while the fixed
surface was represented by a single beam element with all the degrees of freedom
deleted. The roller circumference was modeled by a series of 64 beam clements
constrained to move with the center of the circle. The contacts between the bill and the
‘floor' element and between the bill and the roller elements was initially modeled using
frictional contact. The material and geometry characteristics defined in Appendix I were
used in this model.

This model was tried on ADINA without success for two main reasons: the
geometry and the material properties of the bill. The irregular geometry of the bill
implied a very high aspect ratio for the elements (ratio of length of the element to its
thickness), while paper, having a low stiffness, was highly deformable. Numericaliy,

84

fixed at end
top bill

=T X I

fixed \ll%{
\

Figure L1 : The finite element model of the roller and bill in contart

these two problems caused the stiffness matrix of the model to be ill-conditioned. The
iteration method (full-Newton method) was not capable of manipulating the matrix, thus
causing termination of the solution.

In order to overcome the difficulties of buckling the bill using frictional forces, a
simplified model was considered, in which the bill was ‘attached’ to the roller, using a
single beam element. The normal and tangential forces at the point of contact were
calculated by measuring the forces applied on the connecting element (thus this element
acted as a type of strain gauge). The results (the ratio of the tangential to normal forces
against the angle of rotation of the roller) obtained from this model are presented in
Figure 1.2 for different initial contact lengths.

For all contact lengths, the value of the ratio at smaller angles of rotation is
considerably higher that at larger angles, since initial buckling requires a larger tangential
force to be applied. The graph shows the line where the ratio of the forces is equal to one,
so points above the line indicate a large possibility of slip. It can be observed from the
graph that the largest number of points in the 'non-slip’ region belong to initial lengths of
1=0.105 m and 1=0.12 m.

85

1 Ftang / Fnorm |

-2
1 —3— L=0.065m
4 - —— L=0.085m " Ft/Fn=1.0
6- -~ [-0.105m
] —e— L0112 m
_8..
-10 - . .
0 1 2

Angle (rad)

Figure L2 ; Variation of the ratio of the tangential to the normal force with angle
of rotation of the roller for different initial contact lengths.

The difficulty of using frictional contact surfaces in finite element analysis for the
modeling of the buckling operation, lead to the development of the numerical algorithm
described in this work. If the results of the two approaches are compared, significant
differences will arise. However, since the results produced using the numerical methods
of Chapters 3 and 4 agree with the experimental results, it is reasonable to assume that the
finite element model described above is not very realistic.

86

Appendix III: Computer Program Listings

This section contains the computer programs that have been written based on the
models described in the earlicr chapters. These programs were developed for two
purposes: first, to allow editing of the machine's design through the model, without the
need to buiild mechanical prototypes and second, to test the operation of each design and
identify potential problems.

Three programs have been included, all written in ANSI C, in the
UNIX/XWindows environment:

(1) roller.c Simulates the operation of the simple roller (quasi-static).
) segment.c Same as above, but for the segmented reller (quasi-static).
(3) dynamics.c Includes inertial-force analysis in the modeling of (2).

The codes can be compiled under UNIX by issuing the command: make
<program>, where <program> is the name of the code required. To effectively compile
each program the following files are required for each (this is also the order in which the
listings appear in this appendix):

a. An instruction file for compilation ("Makefile")

b. A common header file ("common.h")

c. A "main" function for each program ("main.c" and "main_roller.c")
d. A list of auxiliary functions

87

The program "dynamics.c", which contains the inertial-force analysis, can be compiled
separately. This is listed at the end of the appendix.

Inputs required:

Program Output:

Inputs required:

Program Output:

il 2 et o

Inputs required:

* Starting Position of Roller

(defined from x=0 - units: m)

* Feeding length

(Length of paper to be buckled - units: m)
* Roller Height

(Maximum vertical distance - units: m)

* Graphical simulation of roller movement and paper
deformation
* Printout of ratio at each point of roller trajectory

* Starting Position of Roller

(defined from x=0 - units: m)

* Feeding angle of roller

(Total angle of rotation of roller - units: rad)

* Graphical simulation of roller movement and paper
deformation

* Printout of ratio at each point of roller trajectory

* Graph of ratio vs. angle or roller

* Starting Position of Roller

(defined from x={) - units: m)

* Feeding angle of roller

(Total angle of rotation of roller - units: rad)

88

Program Output: * Graphical simulation of roller movement and paper
deformation
* Printout of ratio at each point of roller trajectory
* Graph of ratio vs. angle or roller

89

List of files:
The following pages contain the files in the following order:

(1.) Makefile

(2.)) common.h

(3.) mainc

(4.) main_rolier.c

(5.) set_initial_conditions.c
(6.) set_boundary_conditions.c
(7.) shoot.c

(8.) calculate_ratio.c

(9.) below_floor.c

(10.) check_shape.c

(11.) Runge_Kutta.c

(12.) derivs.c

(13.) matrix.c

(14.) simulation.c

(15.) simulation_roller.c
(16.) load_font.c

(17.) draw_textc

(18.) graphics_init.c

(19.) graphics_init_roller.c
(20.) dynamics.c

File: Makefile

Makefile for compiling and linking Appendix codes
#
¢4 Kind of gross hack :-

TARGETS = segment roller

SEGMENT_SRCS = main.c Runge_Kutta.c belcw_floor.c calculate_ratio.c
check_shape.c \

derivs.c draw_text.c graphix init.c load_font.c matrix.c
set_boundary conditicns.c set_initial conditioms.c \

shoot.c simulation.c

SEGMENT_ OBJS = main.o Runge_Kutta.o below_floor.o calculate_ratio.o
check_shape.o \

derivs.o draw_text.o graphix init.o load font.o matrix.o
set_boundary_conditions.o set_initial conditions.o \

shoot.o simulation.o

ROLLER_SRCS = main_roller.c Runge_Kutta.c below_floor.c
calculate_ratio.c check_shape.c \

derivs.c draw_text.c graphix init_roller.c locad_font.c matrix.c
set_boundary_conditions.c set_initial conditions.c \

shoot.c simulation roller.c

ROLLER_OBJS = main_roller.o Runge Kutta.o below_floor.o
calculate_ratio.o check_shape.o \

derivs.c draw_text.o graphix init roller.o load_font.o matrix.o
set_boundary_conditions.o set_initial conditions.o \

shoot.o simulation_roller.o

#PROG1_SRCS =
#PROG1_OBJS =

#PROG1_SRCS =
#PROG1_CBJS =

HDRS = common.h
LIBS = -L/usr/X11R5/1ib -1X11 ~-1m

CFLAGS = -I/usr/X11R5/include
CFLAGS = -02 -I/usr/X11R5/include

CC = cc

LINT = lint

SABER = xsaber
DEPEND = makedepend
DEBUG = dbx

INSTALL = install
RM = /bin/rm -f
TAGGER = etags -t
LPR = enscript -2Gqgr

.SUFFIXES: .0 .c

91

.C.0:
$(CC) $(CFLAGS) -c §$<

all: $(TARGETS)

segment: $(SEGMENT_OBJSS) $ (HDRS)
$(CC) $(CFLAGS) -o segment $(SEGMENT OBJS) $ (LIBS)

roller: $(ROLLER_OBJS)
$(CC) $(CFLAGS) =-o roller $(ROLLER OBJS) $(LIBS)

#prog3: $(PROG3_OBJS)
$(CC) $(CFLAGS) =-o prog3 $(PROG3_OBJS) $(LIBS)

clean:
$(RM) *.,0 *~ * bak .#* $(TARGETS)

92

Header: common.h

/* common.h */

/* This is the header file common to all three thesis programs */

/* Written by Aris Constantinides 05/03/93 */

#ifndef _common.h_
#define _common.h_

/* Include all the includes here...

#include <stdio.h>
#include <math.h>
#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <X11/X.h>
#include <X1l1/keysym.h>

/* Include all the defines here...

#define MAX NODES 35
$define NUMBC 3

#define N 2

#define NUMBER OF NODES 35
#define SHAPES 20

#define PI 3.141592654

#define NUM_EQN 5
#define TINY 1.0e-20

/* Properties of the yen notes */

#define L 0.14
#define B 0.076
‘#define t 1.0e~4
#define w 1.1e-3/0.14
#define cof 0.15

#define E 15000000
#define I 6.33e-12

/* Global Variables */

extern double x2 desired[NUMBC];
extern double V[NUMBC];

extern double delv[NUMBC];
extern double fx guess;

extern double fy guess;

extern double m_guess;

extern double old_fx guessl;
extern double old fy guessl;

*/

*/

93

/*
/t

/*
/*
/*

/*
/*

/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/t
!*
/*
/*
/*
/*

Needed for the X-Windows */
environment */

Maximum number of nodes */
Max. number of BC's */
Max. number of BC's */

No. of eqns integrated */
For inverse routine %/

Length of bill */

width of bill */

thickness of bill */

weight per unit length */
coefficient of friction */
between lifted and top bill */
elasticity of bending */
second moment of area */

Desired BC at x2 */

Free BC at x1 */

Change in V for Jacobian */
Guessed force_x at x1 */
Guessed force_y at x1 */
Guessed moment at x1 */

Prev. guessed fx at x1 (lp) */
Prev. guessed fy at xl1 (1lp)*/

extern double old m guessl; /* Prev. guessed m at x1 (1p)*/

extern double old_fx guess2; /* Prev. guessed fx at xi (rp) */

extern double old fy guess2; /* Prev. guessed fy at x1 (zp)*/

extern double old m guess2; /* Prev. guessed m at x1 (rp)*/

extern double ratio; /* Ratio Ft/Fn at contact */

extern double clip:; /* Changes in V[] */

extern double toll; /* Tolerance for left part */

extern double ratio_display,old_ratic;/* Ratio Ft/Fn at contact */

extern double dy_roll; /* y-momvt of roller */

extern double del_th; /* Angular increment for calcs */
/* in radians */

extern double 1; /* Length of yen (metres) */

extern double 11;

extern double 12;

extern double 121;

extern double 122;

extern double 11,12,121,122,1 set; /* Contact length with roller */

extern double 1_rem; /* Length Remaining in tail */
extern double dl; /* Step size for bill length */
extern double xc0; /* Initial x-coord. of contact */
extern double 1lc0; /* Initial contact length */
extern double r_radius; /* Roller radius */

extern double theta,th_roll; /* Current roller angle */

extern double th_seg, thetal; /* some angle */

extern double x_cont; /* x trial contact point */
exterr double y_cont; /* y trial contact point */
extern double left_mom; /* moment from left */

extern double right_mom; /* moment from right */

extern double avg_mom; /* Average of left & right */
extern double wt; /* Total weight */

extern double 1ls; /* Length of segment 1/n) */
extern double th_fin,th_cont; /* Segemented roller arc length */
extern double th trial,th_old; /* To find the equal moments */

/* Variables defined at each node of the elastica */

extern double £x[]; /* force in x-direction */
extern double fyl[l: /* force in y-direction */
extern double ml[]; /* moment in bill */

extern double x_pos(]: /* x-position of nodes */
extern double y posl[]; /* y-position of nodes */
extern double th{]; /* angle of nodes with horiz. */
extern double dthds(]; /* curvature of bill */

extern double add mom{]; /* additional moment in bill */

/* Various flags and integers */

extern int n; /* Number of nodes */

extern int flag; /* Flags set of B.C.'s at end */
/* flag=0: x, y, th */
/* flag=l: fx, y, m */

extern stage3; /* Stage 3 flag */

extern int len_flag; /* Flag for change in bill length
*x/

extern int eq_mom; /* Equal moments flag */

94

/* XWindows variables */

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

extern
extern

#endif

Display *display: /* Pointer to display */
Window sim window, data_window;/* Windows */
Window graph_ window:

int screen; /* Screen ID */

GC gc: /* Graphic Content */

Font £; /* Font for text display */
XSizeHints hint; /* Window specification */
unsigned long foreground,background; /* Pixel values */

XColor DarkSlateGrey,Magenta; /* Color Variables */
XColor White;

Colormap cmap, cmapl; /* Default colormap */
XFontStruct *font_info;

int fail; /* Colors/Black-White */
double factor:; /* Color factor */

95

Function: main.c

#include "common.h"

/* This is the main subroutine for code "segment.c" */
/* The modeling algorithms are mostly contained in this */
/* function. */

/* Global Variables declared in common.h */

double x2_desired[NUMBC]; /* Desired BC at x2 */

double V[NUMBC]; /* Free BC at x1 */

double delv[NUMBC]; /* Change in V for Jacobian */

double fx_guess; /* Guessed force_x at x1 */

double fy guess; /* Guessed force_ y at x1 */

double m_guess; /* Guessed moment at x1 */

double old_fx guessl; /* Prev. guessed fx at x1 (lp) */

double old_fy guessl; /* Prev. guessed fy at xl1 (1lp)*/

double old m guessl; /* Prev. guessed m at x1 (lp)*/

double old_£fx guess2=0.0; /* Prev. guessed fx at x1 (rp) */

double old fy guess2=0.0; /* Prev. guessed fy at x1 (rp)*/

double old_m guess2=0.0; /* Prev. guessed m at x1 (rp)*/

double ratio; /* Ratio of tangential to normal

forces */

double clip; /* Changes in V[] */

double toll = 0.0001; /* Tolerance for left part */

double ratio_display,old_ratio; /* Ratic Ft/Fn at contact */

double dy_roll = 0.002; /* y-momvt of roller */

double del th = 0.2; /* Angular increment for calcs */
/* in radians */

double 1; /* Length of yen (metres) */

double 11;

double 12;

double 121;
double 122;
double 1_set;

double 1_rem; /* Length Remaining in tail */
double dl = 0.005; /* Step size for bill length */
double xc0; /* Initial x-coord. of contact */
double 1cO0; /* Initial contact length */
double r_radius = 0.01; /* Roller radius */

double theta,th_roll; /* Current roller angle */
double th_seg, thetal; /* some angle */

double x_cont; /* x trial contact point */
double y_cont; /* y trial contact point */
double left_mom; /* moment from left */

double right_mom; /* moment from right */

double avg_mom; /* Average of left & right */
double wt; /* Total weight */

double 1s; /* Length of segment 1/n) */
double th_fin,th_cont; /* Segemented roller arc length */
double th_trial,th_old; /* To find the equal moments */

/* Variables defined at each node of the elastica */

96

double fx[MAX NODES];
double fy[MAX NODES];
double m[MAX NODES];
double x_pos[MAX NODES];
double y_pos[MAX NODES];
double th[MAX NODES];
double dthds[MAX NODES];
double add_mom[MAX NODES];

/* Various flags and integers */

int n=35;
int flag:

int len_flag:
*/

int eq_mom=1;

/* XWindows variables */

Display *display:;

Window sim_window, data_window;
window graph_window;

int screen;

GC gc;

Font £;

XSizeHints hint;

unsigned long foreground, background;
XColor DarkSlateGrey,Magenta;
XColor White;

Colormap cmap, cmapl;
XFontStruct *font_info:

int fail;
double factor=257;

FILE *fpo, *fopen():
main (argc,argv)

int argec:
char **argv;

double testval;
double Fx_ left;
double Fy_ left:

double outflag=9%999;

float 4d3,dd4,dd5,dd6,dd7;
int floor_node;

int rept=l;

97

/*
/*
/*
/*
/*

/*

/*
/*

/*
/*
/*
/*
/*
/*

/*

/*
/*

/*
/*

/*
/*
/*
/*

Number of nodes */

Flags set of B.C.'s at end *x/
flag=0: x, y, th */

flag=1: fx, y, m */

Flag for change in bill length

Equal moments flag */

Pointer to display */
Declare windows */

Screen ID */

Graphic Content */

Font for text display */
Window specification */
Pixel values */

Color Variables */

Default colormap */

Colors/Black-White */
Color factor */

Resultant force in x-dir */
Resultant force in y-dir */

Flag for output file */

For keyboard input */

Node where bill passes floor */
scanf variable */

int 1i,3;

int n_iter;

int in;

int ang_count=0;

*/

double
double

be0,bel,be2;
ic0,icl,ic2;

double x_roll,y roll,r_roll;
double x_draw([2] [MAX NODES];
double y_draw[2] [MAX_NODES];

/*
/*
/*
/*

/*
/*

/*

Various counters */

Shoot counter */

Main iteration counter */

for angular increments (graph)

boundary conditions */
initial conditions */

for graphics */

/* Open file for the shape of the elastica (optional) */

/* fpo = fopen("elshapenew","w"); */

r_roll = 0.01;

printf ("\nContact length
scanf ("%$£f",&dd7) ;

lc0 = dd7;
11 = 1c0;
xc0 = 1c0;

x_roll = 1c0;

print€("\nFinal roller angle
scanf ("%$£", &dd7) ;

th_£fin = dd7;

y_roll = r roll;

graphix init (argc,argv);

/* Correction terms for f£x and fy */

delv([0]=0.0000000005;
delv[1]=0.0000000005;
delv([2]=0.0000000005;
clip = 0.5;

")

/*

/*
/*
/*
/*

/* Choose guesses for initial conditions

/* location of the roller */

if (xc0 >=0.07) {
old_fx guessl = -0.5;
old fy guessl = 0.06;
old m guessl = -0.007;
old_fx guess2 = 0.0;
old_fy_ guess2 = 0.0;
old_m guess2 = 0.0;

98

(max. 3.216125 =) ;

Initialize graphics */

Correction for fx */
Correction for fy */
Correction for m */
Clip value */

depending on the */

if (xc0 < 0.07) {
old fx guessl = -0.8;
old fy guessl = 0.09;
old m guessl = -0.008;
old_£fx guess2 = 0.0;
old fy guess2 = 0.0;
old m guess2 = 0.00;

}

ratio_display = 0.0;
flag=0;

th_roll = 0.174533;
th seg = 1.74533;

/*
/t
/*

Set flag for left part first */
Angular step-size of roller */
Roller arc length 100 deg. */

[_—
/* Rotation Stage of Roller */

/* _________________

]
o

theta .
thetal = 0.

while (thetal <= th_seg) {
*/

thetal += th roll:;
11 += r_radius*th_roll;
12 = L - 11;

x_cont = xc0;

y_cont = dy roll;

1ls = 11/(1.0*(n-1.0));
1= 11;

/* Initialize variables */

for (3j=0; j<MAX NODES ; j++) {

m{3]1=0.0;

£x[31=0.0;
fyl[3]1=0.0;
x_pos{j]l=0
y_pos[ji=0
th[j]=0.0;
add_mom([j] = 0.0;

.0;:
.0;

’

/*

/*

/*
/*

/*

Set angles to zero */

Until rotation stage completed

Update angle*/
Update lengths */

Segment length */

/* Length of left part */

/* This is additional moment data representing curved bills */
/* To calculate for straight bills, remove additional moment */

/*

add mom([13) = 0.007319;
add_mom([14] = 0.006592;

add mom[15] 0.006113;

add mom[16] = 0.006000;
add mom[17) = 0.006205;
add mom([18] = 0.006000;
add mom([19] = 0.006113;
add_mom([20] = 0.006592;
add mom([21] = 0.007319;

*/

/* Set initial conditions */
fx guess = old fx guessl;
fy_guess = old fy guessl;
m _guess = old _m_guessl;

set_initial conditions(0.0,0.6,0.0); /* x,y,th at s=0 */

/* Set boundary conditions */
set_boundary conditions(x_cont,0.0,0.0);
/* x—-coord of contact point */
/* y-coord of contact point */
/* ending angle */

y_pos[n-1] = 1.0; /* Trick to pass into loop */

/* Shoot for desired conditions at the end */

n_iter=0; /* check for tolerance */
/* or number of iterations */
while({fabs(fabs(y_pos(n-1]) - x2_desired[1]) > toll) && (n_iter <
30)) {

n_iter++;

£x[0]=V{0];

fy(0)=V[1];

m[0]=V(2];

Runge kutta (fx,fy,m,th,x pos,y pos,1ls,n);

shoot (V,x2_desired,delv,clip, flagj;

} /* Closes while(fabs) */
old_fx guessl = V[0]; /* for next guess, use */
old fy guessl = V[1]; /* solved initial conditions */

old m_guessl = V([2];

check_shape (x_draw,y_draw, flag);

100

simulation(x_roll,y_roll,r_ roll,x draw,y_ draw,ang_count);

}
/* -------------------------------- o s e > O e 3 e o e e 5 */
/* Lifting Stage of Roller */
/* -- */

/* Start with left part first */
flag=0;

theta = 0.0;

l rem = 0.0;
122 = 12;

121 = L - 122;
th_cld = theta;

while (thetal <= th_fin) {

thetal += del_th;
theta += del_th;

/* flag for left part first */

/* set the angle to zero */

/* until the end of lifting */

x_cont = xc0 - r_radius*sin(theta);
y_cont = r radius*(l + sin(theta-1.5708));

th _trial = th_old;

while (eq_mom) {

len_flag=1;
1l rem = 0.0;

while(len_flag) {

flag=0;

ls = 121/(1.0*(n-1.0));
1l = 121;

for (j=0; j<MAX NODES ; j++) {

m[j]=0.0;
£x[3]=0.0;
fy[31=0.0;
x pos[j]=0.0;
y_pos[jl=0.0;
th([j1=0.0;

101

/* First start with the roller */
/* ending angle */

/* loop to check that Mr = M1 */

/* Check if bill below floor */

/* Segment length */
/* Length of left part */

add mom(j] = 0.0;
}

fx _guess = old fx guessi;
fy _guess = old_fy guessl;
m _guess = old m guessl;
set_initial conditions(0.0,0.0,0.0); /* x,y,th at s=0 */
set_boundary_conditions(x_cont,y cont,th_trial);
/* x-coord of contact point */
/* y-roord of contact point */
/* ending moment */
y_pos[n-1] = 1.0; /* Trick to pass into loop */
n_iter=0;
while((fabs(fabs(y_pos[n-1]) - x2_desired[1]) > toll) && (n_iter
< 30)) ¢
n_iter++;
£x[0]=V([0];
fy[0]1=V[1];
m[0]=V([2];
Runge_kuttz= (fx, fy,m,th,x pos,y pos,1ls,n);

shoot (V, x2_desired,delv,clip, flag);

} /* Closes while(fabs) */

left_mom = m[n-1];

old fx guessl = V[0];

old_fy guessl = V[1];
old m guessl = V[2];

check_shape (x_draw,y_draw, flag):

Fx left = £x[n-1);
Fy left = fy[n-1];

/* Now solve for the right part */

flag=1;
1ls = 122/(1.0*(n~1.0)); /* Segment length */
1 =122; /* Length of left part */

102

for (j=0; j<MAX NODES ; j++) {

m[j]1=0.0;
£x[j]1=0.0;
fy[31=0.0;
x_pos[j]=0.0;
y_pos[j}=0.0;
th[3]=0.0;
add mom[j] = 0.0;
}
fx _guess = §.0;
fy _guess = 0.0;
m_guess = 0.0;

set_initial conditions(x_cont,-y cont,th_trial); /* x,y,m at s=0

*/

y_pos([n-1] = 1.0; /* Trick to pass into loop */

/* Shoot loop for right part */
n_iter=0;
while{ (fabs(fabs(y_pos[n-1]) - x2_desired[0]) > toll) && (n_iter
< 30)) {
n_iter++;
£x[C]=V[0];
fy[0]=V([1];
m{0]=v([2];
Runge_kutta(fx,fy,m,th,x_pos,y;pos,ls,n);
set_boundary_conditions(0.0,cof*fabs(fy[n-1]1),0.0);
/* x-coord of contact point */
/* y-coord of contact point */
/* ending angle */
shoot (V,x2_desired,delv,clip,1);
} /* Closes while(fabs) */
right_mom = m[0];
old fx guess2 = V[0];
old fy guess2 = V[1];
old m guess2 = V[2];
below_floor(floor_ncde);

if (floor_node>33) len_flag=0;

check_shape (x_draw,y_draw, flag):

} /* Closes while(len_flag) */

103

/* End this run by drawing the shape and calculating the ratio */
calculate_ratio(Fx_left,Fy left);

XClearWindow(display,data_window) ;
draw_text(data_window,gc,fonp_info,hint.width,hint.height);

XFlush (display) ;

if (left_mom<0.0) th_trial += 10.0* (fabs (fabs (right_mom) -

fabs (left_mom)));
if ((right_mom<0.0) && (fabs(right_mom) > fabs (left_mom) })

th_trial -= 20* (fabs (fabs (right_mom) -fabs (left_mom))) ;

122=12;
if (fabs(fabs(right_mom)-fabs (left_mom))<0..21) eq mom = 0;

}

ratio_display = ratio;
th old = th_trial;
eq_mom=1;

check_shape (x_draw,y_draw, flag);

ang_count++;
simulation(x_roll,y;;oll,r_roll,x_draw,y_draw,ang_count);

old ratio = ratio;
pPrintf ("\n\n ***#*x%x*%x* MOVE TO NEW ANGLE *******x*\n\n");

} /* Closes while(y_roll...) */

/* Clear window */
sleep (5);
XClearWindow(display,sim;yindow);
XFlush(display) ;

/* Termination */
XFreeGC (display,gc):
XDestroyWindow (display, sim_window) ;

XCloseDisplay (display);
exit (0):

} /* Closes MAIN */

104

Function: main_roller.c

#include "common.h"

/* This is the main subroutine for code "segment.c" */
/* The modeling algorithms are mostly contained in this */

/* function. */

/* Global Variables declared in common.h */

double x2_desired[NUMBC];
double V[NUMBC];

double delv[NUMBC];
double fx guess;

double fy_ guess;

double m_guess;

double old_fx_guessl;
double old_fy guessl;
double old m guessl;
double old _fx guess2=0.0;
double old fy guess2=0.0;
double old m guess2=0.0;
double clip:;

double toll = 0.0001;
double ratio,ratio_display;
double dy rcll = 0.002;
double del_th = 0.087266;

double 1;

double 11;

double 12;

double 121;

double 122;

double 1 set;

double y_set;

double 1_rem;

double dl = 0.005;
double xc0;

double 1c0;

double r_ radius = 0.01;
double theta,th_roll;
double x_cont;

double y cont;

double left_mom;
double right_ mom;
double avg_mom;
double wt;

double 1ls;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/=
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
7*
/*
/*
/*
/*

/* variables defined at each node of the

double f£x[MAX NODES];
double fy[MAX NODES];
double m[MAX NODES];
double x pos[MAX NODES];
double y_pos[MAX_NODES];

105

Desired BC at x2 */

Free BC at x1 */

Change in V for Jacobian */
Guessed force x at x1 */
Guessed force_y at x1 */
Guessed moment at xl1 */

Prev. guessed fx at x1 (lp) */
Prev. guessed fy at x1 (lp)*/
Prev. guessed m at x1 (lp)*/
Prev. guessed fx at x1 (rp) */
Prev. guessed fy at x1 (rp)*/
Prev. guessed m at x1 (rp)*/
Changes in V[] */

Tolerance for left part */
Ratio Ft/Fn at contact */
y-momvt of roller */

Angular increment for calcs */
in radians */

Length of yen (meters) */
Contact length with roller */

Length remaining in tail =*/
Step size for bill length */
Initial x-coord. of contact */
Initial contact length */
Roller radius */

Current roller angle */

x trial contact point */

y trial contact point */
moment from left */

moment from right */

Average of left & right */
Total weight */

Length of segment 1/n) */

elastica */

double th[MAX NODES];
double dthds[MAX NODES];
double add_mom({MAX NCDES];

/* Various flags and integers */

int n=35;
int flag,eq _mom;

int len_flag;
*x/
int stage3=0;

/* XWindows varizbles */

Display *display;

Window sim window,data_window;
int screen;

GC gc;

Font £;

XSizeHints hint;

unsigned long foreground,background;
XColor DarkSlateGrey,Magenta;
XColor White;

Colormap cmap,cmapl;
XFontStruct *font_info;

int fail;
double factor=257;

FILE *fpo, *fopen();
main (argc, argv)

int argc:
char **argv;

double testval;
double Fx left;
double Fy left;

double outflag=399;

float dd3,dd4,dds,dd6,dd7;
int floor_node;

int rept=1;

int i,3;

int n_iter;

int in;

double bc0,bcl,bc2;

double ic(,icl,ic2;
double y carry;

106

/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*

/*

/*
/*

/*
/*

/*
/*
/*
/*
/*
/*

/*
/*

Number of nodes */

Left part : flag=0 */

Right part: flag=1l */

Flag for change in bill length

Pointer to display */
Window variables */
Screen ID */

Graphic Content */

Font for text display */
Window specification */
Pixel values */

Color Variables */

Default colormap */

Colors/Black-White */
Color factor */

Resultant force in x-dir */
Resultant force in y-dir */

Flag for output file */

For keyboard input */

Node where bill passes floor */
scanf variable */

Various counters */

Shoot counter */

Main iteration counter */

boundary conditions */
initial conditions */

double x_roll,y_roll,r_roll; /* for graphics */
double x_draw{2) [MAX NODES];
double y_draw[2] [MAX NODES]):;

/* Open file for the shape of the elastica (optional) */
/* £po = fopen("elshapenew","w"); */

r_roll = 0.01;

printf ("\nContact length ") ;
scanf ("%£", &dd7) ;

1c0 = 4d7;

11 = 1c0;

xc0 = 1c0;
x_roll = 1c0;

printf ("\nLength to be fed ")
scanf ("%£",&dd7) ;
1 _set = dd7;

printf ("\nFinal y-position ");
scanf ("%£", &dd7) ;

y_set = dd7;
y_roll = r roll;

graphix init (argc,argv);

/* Correction terms for fx and fy */

delv{0]1=0.0000000005; /* Correction for fx */
delv[13=0.0000000005; /* Correction for fy */
delv[2]=0.0000000005; /* Correction for m */
clip = 0.5; /* Clip value */

/* Choose guesses for initial conditions depending on the */
/* location of the roller */

if (xc0>=0.07) {
old fx guessl = -0.5;
old_fy guessl = 0.06;
old m guessl = -0.007;
old_£fx guess2 = 0.0;
old _fy guess2 = 0.0;
old_m guess2 = 0.0;

}

if (xc0<0.07) {
old fx guessl = -0.8;
old fy guessl = 0.09;
old m guessl = -0.008;
old_fx guess2 = 0.0;
old fy guess2 = 0.0;

107

/*
/*
/*

old m guess2 = 0.0;
}

ratio_display = 0.0;
theta = 0.0;

flag=0;

th_roll = 0.174533;

/* Set for left part first */
/* Angular step size of roller */

*/

Rotation Stage of Roller */

- */

while (11 <= 1_set) {

11 += r_radius*th_roll;
12 = L - 11;

x_cont = xc0;
y_cont = dy_roll;

ls = 11/(1.0*(n-1.0));
1= 11;

for (j=0; j<MAX NODES ; j++)

m[j1=0.0;
£x[31=0.0;
fy[(31=0.0;
x_pos{jl=0.0;
y_pos[j1=0.0;
th[j]1=0.0;

add mom([3j] = 0.0;

{

/* Until rotation is completed */

/* Segment length */
/* Length of left part */

/* This is additional moment data representing curved bills */
/* To calculate for straight bills, remove additional moment */

/*

*x/

add _mom[13] = 0.007319;
add mom[14] = 0.006592;
add mom[15] = 0.006113;
add_mom([16] = 0.006000;
add mom[17] = 0.006205;
add_mom[18] = 0.006000;
add_mom[19] = 0.006113;
add_mom([20] = 0.006592;
add_mom([21]) = 0.007319;

108

/* Set initial and boundary conditions for roller */
fx_guess = old fx guessl:;
fy_guess = old _fy guessl;
m_guess = old m guessl;
set_initial conditions(0.0,0.0,0.0); /* x,y,th at s=0 */
set_boundary_conditions(x_cont,0.0,0.0);
/* x-coord of contact point */
/* y-coord of contact point */

/* ending angle */

y_posin-1] = 1.0; /* Trick to pass into loop */

/* Shoot for desired conditions at the end */

n_iter=0;
while ((fabs (fabs (y_pos[n-1}]) - x2_desired[1]) > toll) && (n_iter <
30)) |
n_iter++;
£x[0])=V([0];
fy[01=V[1];
m[0]=V[2];
Runge_kutta (fx, fy,m,th,x_pos,y pos,1ls,n);

shoot (V, x2_desired,delv,clip, flaqg);

}

old_fx guessl = V[0];
old fy guessl = V[1];
old m guessl = V[2];
check_shape (x_draw,y_draw, flag);

simulation(x_roll,y_roll,r_roll,x_draw,y draw);

/* ——————— - PRpe—— J /
/* Stage 2 Analysis */
/* - -t/

/* Start from left part first */

while (y_roll <= y set) { /* Until limit of y-pos. */

109

eq_mom=1;
y_roll += dy_ roll;
theta = theta/1.5;

while (eq_mom) { /* Loop to check that Mr = M1 */

theta += del_th;

l rem = 0.0;

122 = 12 + r_radius*theta;

121 = L - 122;

x_cont = xc0 - r_radius*sin(theta);

y_cont = (y _roll - r_roll) + (1 - cos(theta))*r_radius;
len_flag=1;

while (len_flag) {

flag=0;
ls = 121/(1.0*(n-1.0)); /* Segment length */
1= 121; /* Length of left part */

for (j=0; j<MAX NODES ; j++) {
m{jl=0.0;
£x[3j)1=0.0;
fy[31=0.0;
x_pos{jl=0.0;
y_pos{jl=0.0;
th[j]=0.0;
add _mom[j] = 0.0;
}

fx_guess = old _fx guessl;

fy_guess = old_fy guessl;

m _guess = old m guessl;

set_initial conditions(0.0,0.0,0.0); /* x,y,th at s=0 */
set_boundary_conditions(x_cont,y cont,theta);

/* x-coord of contact peint */

/* y-coord of contact point */

/* ending angle */

y_pos[n-1] = 1.0; /* Trick to pass into loop */

/* Shoot for known boundary conditions */

n_iter=0;

while((fabs(fabs(y_pos[n-1]) - x2_desired[1]) > toll) && (n_iter
< 30)) {

n_iter++;

110

£x[0]=V[0];

fy[0]=V[1];

m[0]=V[2];
Runge_kutta (£x, fy,m,th,x pos,y pos,ls,n):
shoot (V,x2_desired,delv,clip,flag);

} /* Closes while(fabs) */
left_mom = m(n-1];

old_fx guessl = V[0];

old fy guessl = V[1];

old m _guessl = V[2];

check_shape (x_draw,y_draw, flag);

Fx left = fx[n-1];

Fy left = fy[n-1];

/* Now solve for the right part */

flag=1;
ls = 122/(1.0*(n=1.0)); /* Segment length */
1= 122; /* Length of left part */

for (j=0; j<MAX_NODES ; j++) {

m{j]=0.0;

£x([31=0.0;

£fy[31=0.0;

x pos([j]1=0.0;

y_pos[3)=0.0;

th[j]=0.0;

add mom[j] = 0.0;
}

fx guess = 0.0;

fy_guess = 0.0;

m guess = 0.0;

set_initial conditions(x_cont,-y cent,theta); /* x,y,th at s=0 */

y_posn-1] = 1.0; /* Trick to pass into loop */

/* Shoot for boundary conditions at the right part */

n_iter=0;

while((fabs(fabs(y_pos[n-1]) - x2_desired[0]) > toll) && (n_iter
< 30)) {

n_iter++;

111

£x[0]=V[0];
fy[0])=V{1]:
m[0]=V[2];

Runge_kutta (fx,fy,m, th,x pos,y_pos,1s,n);
set_boundary conditions(0.0,cof*fabs (fy[n-1]),0.0);
/* x-coord of contact point */

/* y-coord of contact point */
/* ending angle */

shoot (V,x2_desired,delv,clip,1);

right_mom = m[0];

old fx guess2 = V[0];
old_fy guess2 = V[1];
old m guess2 = V[2];

below_floor (floor_node) ;
if (floor_node>33) len_flag=0;
check_shape (x_draw,y_draw, flag):

}

/* End this run by drawing the shape and calculating the ratio */
calculate_ratio(Fx_left,Fy_ left);

XClearWindow (display,data_window) ;
draw_text (data_window,gc, font _info,hint.width,hint .height);
XFlush(display) ;

if ((right_mom <=0.0) && (fabs (right_mom) > fabs(lef t_mom))) {
sxmnlatlon(x _roll,y roll,r roll,x ._draw,y_draw) ;
avg_mom = (left mom + right_mom)/2.0;
if (avg_mom >= =0.001000) {
y_carry = y_roll;
y_roll = 999.0;

}
eq_mom=0 ;

printf ("\n Changing to different y - position *);
}

}
ratio_display = ratio;

/* -%/

112

/* Stage 3 Analysis */
/* - -- - - */

£lag = 0; /* flags that Stage 3 starts */
stage3=1;
y_roll = y carry:

while (y_roll <= y set) {

y_roll += dy roll;

x_cont = xc0 -~ r_radius*sin(theta):;

y_cont = (y roll - r_roll) + (1 - cos(theta))*r_radius;

1s = 121/(1.0*(n-1.0)); /* Segment length */

1= 121; /* Length of left part */

for (j=0; j<MAX NODES ; j++) {
m{j]=0.0;
£x[j]1=0.0;
fy(31=0.0;
x pos{jl=0.0;
y_pos[jl=0.0;
th([j]=0.0;
add _mom[j] = 0.0;
}
fx_guess = old_fx_guessl;
fy_guess = old_fy guessl;
m_guess = old m guessl;
set_initial conditions(0.0,0.0,0.0);
set_boundary_conditions(x_cont,y_cont, theta);

y_posin-1] = 1.0; /* Trick to pass into loop */

/* Shoot for boundary conditions at right end */
n_iter=0;
while((fabs(fabs(y_pos[n-1]) - x2_desired[1]) > toll) && (n_iter <
30)) {
n_iter++;
£x[C])=V[0];
fy[0)=V[1];
m[0]=V[2];
Runge_kutta (fx, fy,m,th,x_pos,y pos,ls,n);

shoot (V,x2_desired,delv,clip, flag);

} /* Closes while{(fabs) */

113

old fx guessl = V[0];
old_fy guessl = V{1];
old m guessl = V[2];

check_shape (x_draw,y_draw,0);

ratio = (fabs(fx[n-1]*cos(th{n-1]) + fy[n-1l*sin(th[n-1]))) /
(fabs (fx[n-1]*sin(th[n-1]) +fy[n-1]*cos(th[n-1])));

ratio_display = ratio;

simulation(x roll,y_roll,r_roll,x draw,y_draw);

sleep (5):

XClearWindow (display, sim window) ;
XClearWindow (display,data_window) ;
XFlush(display) ;

/* Termination */
XFreeGC (display,gc):
XDestroyWindow (display,sim window);
XDestroyWindow (display,data_window);
XCloseDispiay (display);
exit (0);

114

Function: set_initial conditions.c

#include "common.h"
/* Enters values for known and unknown initial conditions */
set_initial conditions(ic0,icl,ic2)
double ic0,icl,ic2;
{
/* Known boundary conditions at s=0 for left part*/
x_pos[0]=ic0;
y_pos[0]=icl;
th{0)=ic2;
/* Unknown Boundary Conditions at s=0 (guessed) */
V[0] = fx guess;

V[1l] = fy_guess;
VI[2] = m_guess;

115

Function: set_boundary_conditions.c

#include “common.h"
/* Enters values for the known boundary conditions */
set_boundary conditions(bc0,bcl,bc2)
double bcl,bcl,bc2;
{

/* Generic case */

x2_desired[0])=bc0; /* first bound. condition */
x2_desired[1l]=bcl; /* second bound. condition */
x2_desired[2]=bc2 ; /* third bound. condition */

116

Function: shoot.c

#include "common.h™
/* This is the actual shooting algorithm, described in Chapter 3 */

shoot (V,x2_desired,delv,clip, flag)

double V[NUMBC]: /* Free BC at x1 */

double x2_desired{NUMBC]; /* Desired BC at x2 */

double delv[NUMBC]; /* Change in V for Jacobian */
double clip; /* Changes in V[] */

int flag: /* Distinguish between left and */

/* right part */

double F[NUMBC]; /* Discrepancy vector at x2 */

double s[NUMBC]:; /* Discr. vector */

double dv[NUMBC]: /* Temp. discrepancy vector */

double dxc,dyc; /* Discrepancy terms for x,y_pos*/

double dxcl,dycl; /* Discr. terms for x,y_pos */

double dfdv[NUMBC] [NUMBC] : /* Jacobian matrix */

double a[NUMBC] [NUMBC]; /* Jacobian matrix backup */

double inv_dfdv[NUMBC] [NUMBC] ; /* Inverse Jacobian matrix */

double det_dfdv; /* Determinant of Jacobian matrix
*/

double sav; /* Storage variable */

double mom cal;

int i,3,k,q; /* Various counters */
/* —emmem—e——e———— -— ——— - %/
/* Trial Integration of Equations */
[* e o -—=- */

if(!flaqg) {
F[0)] = x pos[n-1] - x2 desired[0];
F[1] = fabs(y_pos[n-1]) - x2_desired[1]:
F[2] = th[n-1] - x2_ desired[2);

}

if (flag) {
F[0] = fabs(y_pos[n-1]) - x2_desired[0]:
F[1] = £x[n-1] - x2_desired[1];
F[2] = m[n-1] - x2_desired[2];

}

/* --- - -- ~—- - */
/* Vary £x[0] */
/* - */

sav = £x[0];
£x[0] += delv{0]:

117

V[0] = £x[0];
VI1] = £y[0];
Vi2] = m[0];

Runge kutta(fx,fy,m,th,x pos,y_pos,1ls,n);

if(!flag){
dv[0] = x _pos[n-1] - x2_desired[0]:
dv[l] = fabs(y _pos[n-1]1) - x2 _desired[1];
dv[2] = th[n-1] - x2 _desired[2];

}

if (flag) {
dv([0] = fabs(y_pos{n-1]) - x2_desired[0];
dv[l] = fx[n-1] - x2_desired[1];
dv[2] = m[n-1] - x2_desired[2];

}

dfdv([0] [0] = (dv[0] ~ F[0])/delv[0];
dfdv[1] [0] = (dv[1] -~ F[1])/delv[0];
dfdv (2] [0] = (dv[2] - F[2])/delv[0];

£x[0] = sav; /* Return fx to original */
/* value before increment */
ol et SO */
/* Vary fy[0] */
[* ————- - e s *x/
sav = fy[0];
fy[0] += delv[1l];
V[0] = £x[0];
VI1] = £y[0];
V[2] = m[0];
Rungenkutta(fx,fy,m,th,x_pos,y_pos,ls,n);
if(!flag){
dv[0] = x pos[n-1] - x2_desired[0];
dv[1l] = fabs(y_pos[n-1]) - x2 _desired[1];
Av[2] = thin-1] - x2_desired[2];
}
if (flag) {
dv[0] = fabs(y_pos[n-1]) - x2_desired[0];
dv([l] = fx[n-1] - x2 deszred[l].
dv[2] = m[n-1) - x2 _desired[2];
}
afdv (0] [1] = (av[0] - F[0])/delv[1];
dfdv{1] [1] = (dv][1] =~ F[1])/delv[1};
dfdv[2][1] = (dv[2] - F[2])/delv[1];
fy[0]) = sav; /* Return £y to original */

118

/* value before increment */

/* — - e e e e e e e e o e e */
/* Vary m[0] */
/¥ mmmme e —————— e - —_— —— %/

sav = m{0];
m[0] += delv[2]:

V(0] = £x[0];
VI[1] = £fy[0];
V[2] = m[0};

Runge_kutta(fx,fy,m,th,x pos,y pos,1ls,n);

if (!flag) {
dv[0] = x pos[n-1] - x2_desired[0];
dvl] = fabs(y_pos[n-1]) - x2_desired[1];
dv([2] = th[n-1] - x2 desired[2];

}

if (flag) {
dv[0) = fabs(y_pos[n-1]) - x2_desired[0];
dv[l] = f£x[n-1] - x2_desired[1l];
dvi2] = m[n-1] - x%x2_desired([2];

}

dfdv([0][2]) = (&v[0] - F[0])/delv(2];
dfdv[1][2] = (dv([1l] - F[1])/delv[2];
dfdv[2][2] = (dv[2] =~ F[2])/delv][2];
m{0] = sav; /* Return m to original */

/* value before increment */

for (i=0 ; i<3 ; i++) {
for(j=0 ; 3<3 ; j++)
alil[jl=dfav([i]l [3];

calculate_inverse(a, inv_dfdv);

s[0]=F[0];
s[1l]=F[1];
s[2]=F[2];

multiply (inv_dfdv, s,dv);
dv[0] = -dv([0]; "

dv[1l] = -dv[1];
dv([2] = -adv[2];

119

if (fabs(dv([0]) > (clip*fabs(dv([0])) || fabs(dv[1l]) >
(clip*fabs(dv[1]))
Il fabs(dv[2]) > (clip*fabs(dv[2]))) {

dv[0] *= clip;

dv[l] *= clip;

dv(2] *= clip;
}

£x[0] += dv[0];
fy[0) += dv{[1]:
m[0] += dv[2]:;

V[0] = £x[0];
VI1) = £fy[0];
V[2] = m[0];

Runge kutta(fx, fy,m,th,x pos,y pos,1ls,n);
mom cal=0.0;
for (j=1 ; j<n ; j++) {
mom cal += (w*ls) * ((x_pos[j-1]+x _pos[j])/2.0);
}

} /* Closes shoot */

120

Function: calculate_ratio.c

#include "common.h"
/* Calculates the ratio at the point of contact with the roller */
calculate_ratio(Fx_left,Fy_left)

double Fx left,Fy_left:

double Fx res,Fy_res;
double F_tangent,F_normal;
int r_node;

Fx_res = fx[0] + Fx_left; /* Resultant force in x-dir. */
Fy_res = fy[0] + Fy_left; /* Resultant force in y-dir. */

F_tangent = fabs(Fx_res*cos(th[0]) + Fy_res*sin(th([0])
)

):
F_normal = fabs(Fx_res*sin(th[0]) + Fx_res*cos(th[0]));

ratio = F_tangent / F_normal ;

121

Function: below_floor.c

#include "common.h"

/* Checks to see if bill has gone below the floor */

below_floor (floor_node)
int floor_node;
int i;
len_flag = 0;

for (i=0 ; i<34 ; i++) {
if (y_pos[i]>0.0002) len_flag=1;
floor_node = i;

}

if (len_flag) {
122 -= dl1;
1_rem += dl;
printf("\n Bill has gone below floor: new length %f",122);
y_pos[n-1] = 1.0;
}

122

Function: check_shape.c

#include “common.h"

/* Checks calculated shape of bill to see if solution is physically */
/* acceptable. Also prepares drawing subroutine.*/

check_shape (x_draw,y_draw, flag)

double x_draw(2) [MAX NODES];
double y_draw([2] [MAX_NODES];
int flag;

int entl,i;
cntl=0;
if(m[0]<0.0){

for (i=1 ; i<34 ; i++) {
if((m[i)*m[i-1])<0.0) cntl++;
}
/* if (cntl>1l)printf("\nWrong shape !!; %d changes in
curvature\n",cntl); */
}

for (i=0; i<MAX NODES ; i++) {
x_draw([flag] [i]l=x_pos[i];
y_draw([flag) [i]=-y_pos[i];
}
}

123

Function: Runge_Kutta.c

#include "common.h"™

/*
/* Runge-Kutta integrator
/*

Runge_kutta (fx, fy,m, th, x pos,y_pos,1s,n)

double £x[],fy[]l,m[],th[],x pos[],y pos(];
double 1ls;
int n;

double ybeg[NUM EON]; /* Begining of t-step */

double yend[NUM_EQN]; /* End of t-step */

int i,k;

double 11 = 0.0; /* Distance from origimn */
double Total weight; /* Total weight (cerrection) */

k=0;

ybeg[0]=£x[0];
ybeg[1)=£fy([0];
ybeg[2])=m[0];
ybeg[3]=th[0];
ybeg[4]1=0.0;

while (1) {
11 += 1s;
if (11>1+1s8/10.0) break;
integrate_one_step (ybeg,11,1s,yend, k) ;
for (i=0; i<NUM_EQON; i++) {
ybeg[i]=yend[i];

fx[k+1] = yend[0];
fy[k+1] yend([1];
m{k+1l] = yend[2];
th[k+1l] = yend[3];
Total weight = yend[4];

x_pos[k+l] = x pos[k] + ls*cos(th[k]);
y_pos[k+l] = y pos[k] + ls*sin(th(k]);

124

k++;

/* Integrate one time step using Runge-Kutta method... */

integrate_one_step (ybeg, x,h,yend, k)

double ybeg(];
double x;
double h;
double yend([];
int k;

double fcnl[NUM_EQN];
double fcn2[NUM _EQN];
double fcn3[NUM_EQN];
double fcn4 [NUM_EQN];
double xtmp;

double ytmp[NUM_EQON];

int i;

xtmp = x~h;

for (i=0 ; i<NUM_EON ; i++) {
ytmp[i] = ybegli];
derivs (xtmp, ytmp, fcnil, k) ;

}

xtmp = x-h/2.0;

for (i=0 ; i<NUM_EQN s i+d) |
ytmp[i] = ybeg[i] + h * fcnl[i]/2.0;
derivs (xtmp, ytmp, fcn2,k) ;

}

xtmp = x-h/2.0;

for (i=0 ; i<NUM_EQN ; i++) {
ytmp[i] = ybegli] + h * fcn2[i]/2.0;
derivs (xtmp, ytmp, fcn3,k) ;

}

xtmp = x;

for (i=0 ; i<NUM EQN ; i++) {
ytmp[i] = ybeg(i] + h * fen3[i];
derivs (xtmp, ytmp, £cnd, k) ;

}

for (i=0 ; i<NUM_EQN ; i++) {
yend[i] = ybeg[i] + h*(fcnl[i] + 2.0*fcn2([i] + 2.0*fcn3[i] +
fcn4([i])/6.0;
}

125

Function: derivs.c

#include "common.h"™
/* Governing equations of the elastica */
derivs(x,y, fcn, k)

double x;

double yl[];

double fcn(]:;

int k;

/* Four ccupled first-order equations from initial ODE */
/* eg. fcn[0] = dy[0]/ds */

{
fcn[0]=0.0;
/* d(fx)/ds=0.0 */
fen[l]l= ~1.0%*w; /* d(fy)/ds=-w */

fen[2]=y[0]*sin(y([3]) - yl[1l]l*cos(y[3]):
/* d(m)ds=,,, */

fcn[3]=(y([2]+add_mom[k]) / (E*I);

/* d(th) /ds=m/EI */
fen [4]=w*x;

126

Function: mairix.c

#include "common.h"

/* Contains matrix functions used in programs:
/* 1. Inverse of a matrix

/* 2. LU decomposition and LU back-substitution
/* 3. Multiplication of vector and matrix

*/
*/
*/
*/

/% —
/* Calculate inverse of matrix */
/% -—

calculate_inverse(a,r)

double a[N+1] [N+1];
double r[N+1] [N+1]);

double 1([N+1] [N+1],u[N+1][N+1];
int i,3;

int indx[N+1]:;

double b{[N+1];

double d;

double y[N+1] [N+1};

double col[N+1];

double x[N+1];

ludecmp (a, N, indx, &d) ;

/* Decode matrix into upper and lower triangular matrices */

for (i=0 ; i<=N ; i++) {
for (j=0 ; 3j<=N ; j++) {
ulil (jI=alil [33;
: 1[i) [j)=a[il [3];
}

for (i=0 ; i<=N ; i++) {
1[i)[i)=1.0;
for (j=i+l ; j<=N ; j++) 1[il[3)=0.0;
}

for (j=0 ; j<=N-1 ; j++) {
for (i=3j+1 ; i<=N ; i++) u[i][§]=0.0;
}

for(j=0 ; j<=N ; j++) {

for (i=0 ; i<=N ; i++) col[i]=0.0;
col[jl=1.0;

127

lubksb(1,u,N, indx, col, x) ;

for(i=0 ; i<=N ; i++) r[jl[i}=x[i);
}

/* */
/* LU Decompose matrix */
/* -*/
ludcmp (a, n, indx, d)

int n,indx[N+1];

double a[N+1] [N+1],*d;
{

int i,imax, j,k;
float big,dum, sum, temp;
double vv[N+1}];

*d=1.0;
for (i=0;i<=n;i++) {
big=0.0;
for (j=0:3j<=n;j++)
if ((temp=fabs(a[i][j])) > big) big=temp;
if (big == 0.0) printf("SINGULAR\n");
vviil=1.0/big;

for (j=0;3j<=n;j++) {
for (i=0;i<j;i++) |
sum=a[i} [j];
for (k=0;k<i;k++) sum -= a[i][k]*a[k][3F]:
alil [j}=sum;

big=0.0;

for (i=j;i<=n;i++) {
sum=a[i] [3];
for (k=0;k<j:k++)
sum -= a[i] [k]l*a[k][j];
ali] [j)=sum;
if ((dum=vv[i]*fabs{sum)) >= big) {
big=dum;
imax=i;
}

}

if (j '= imax) {
for (k=i;k<=n;k++) {
dum=a [imax] (k] ;
alimax] (ki=a[3j] [k];
aljl [k]=cdum;
}

128

*d = -(*d);
vv[imax]=vv([j];
)
indx[j]=imax;
if (a(jl[3]) == 0.0) a[j][JI=TINY;
if (3 '= n) {
dum=1.0/(al3j]) [3)):
for (i=j+l;i<=n;i++) a[i]l[j] *= dum;
}
}
}

/*
/* LU back-substitution of matrix */

/‘k

lubksb(1l,u,n, indx, b, x)
double 1[N+1]([N+1],u([N+1]([N+1],b(],x[N+1];

int n;

int i,ii=0,jj=0,3;
double sum;
double y[N+1];

for (i=0 ; i<=n ; i++) {
sum=0.0;
if (i==0) ii=0;
if (ii'=0) {
for (j=0 ; j<=i-1 ; j++) sum += y[J]*1[i][3j);
y[il=b[i]~-sum;
}
else {
y{0}=b[0];
ii=1; }
}

for (i=n ; i>=0 ; i--) {
sum=y[i];
if (i==n) j4=0;
if (33!=0) {

for (j=i+l ; j<=n ; j++) sum -= ulil [§1*x[j]);

’

x[i]=sum/u{i}) [i]};

else { x[n]l=sum/uln] [n];
Jj=1; }

}

*/
*/

*x/

/%
/* Multiply matrix to vector */

-*/

/%
multiply(inv_a,s,dv)
double inv_a[N+1] [N+1],s[N+1],dv[N+1];

129

int 4,3
float tempo;
for (i=C ; i<=N ;i++) dv([i]=0.0;
for(i=0 ; i<=N ; i++) {
for(i=0 ; j<=N ; j++)
dv[i]) += (inv_a[jl[i]1*s[3j]):

130

Function: simulation.c

#include "“common.h"

/* Graphically simulates the bill-feeder in window (sim_window) */
/* Graphical output of ratio (graph_window) */

simulation(x_roll,y_roll,r_roll,x draw,y_draw,ang_count)

double x_roll,y roll,r_roll;

/*

roller coords. and radius */

double x_draw[2] [MAX_NODES),y_ draw(2] [MAX_NODICS);

int ang_count;

int xx1,yyl, xx2,yy2;

int xc,yec:

int rr;

int th_deg:;

int gx1,gx2,g5yl,9y2;
*/

int max ang_increments;

int length of_ increment;
increment */

float xf,yf,xrf;

/* Other variables */

int j;

int i,q,q92;
int con_ncde;
float choice;
int remlength;

/*

/*

/*
/*
/*

/*
/*

/t

/*
/'k
/*

Counter for angle (graph) */

X,y coords for graphics */

radius of roller */
angle in degrees */
graphics coordinates for graph

angluar increments for graph */
length (in pixels) of angluar

Data from input */

Contact node number */
Input values */
Remaining length for rot'n */

max_ang_increments = (3.4 - th_seg)/del_th;
length of_ increment = 450/max_ang_increments;

xclearwindow(display,sim_window):

XFlush (displayh ;

XClearWindow (display,data_window) ;

load_font (¢font_info);

draq_;ext(data_yindou,gc,font_info,hint.width,hint.height);

/* Draw Floor Bill */

XDrawLine (display, sim_window, gc, 50,257, 500,257) ;

XFlush(display) ;

/* Draw buckled Bill - left part first

for (j=0 ; 3<2 ; j++) {

for (i=0 ; i<NUMBER_OF NODES-1

(BOTH ROTATION AND STAGE 2) */

s id4) {

131

xx1=3214*x draw[j][i]};

xx2=3214*x_draw(j] [i+1];

yyl=3214*y draw[j][i];

yy2=3214*y draw[j] [i+1);

XDrawLine (display, sim window, gc, 50+xx1, 255-yyl, 50+xx2,
255-yy2) ;

/* ONLY FOR STAGE 2 */
if (flag) {
g2 = 3214*]1 rem;
XDrawLine (display,sim window, gc, 50+xx2, 255-yy2, 50+xx2+q2, 255-yy2) ;

/* Now draw graph of Ratio vs. theta in graph window */

XDrawlLine (display,graph_window,gc,50,110,500,110); /* x-axis (theta)
*/

XDrawLine (display,graph_window, gc, 50,30,50,190) ; /* y-axis (Ratio)
*/

XDrawLine (display,graph_window, gc, 45,70,500,70); /* R=1 line */

gxl = 50 + length_of_ increment*(ang_count-1);
gx2 = 50 + length_of_increment*ang_count;

if (ang_count == 1) gyl = 110; /* If this is the first data of
ratio */

/* use origin for first point */

if (ang_count != 1) gyl = 110 - old_ratio*40;

gy2 = 110 - ratio*40; /* Note: I assume that +y axis
goes up */
/* to a ratio of 2 (maximum) */

XDrawLine (display,graph_window, gc,gxl,gvl,gx2,gy2);
XFlush (display) ;
}
/* ONLY FOR ROTATION */
if (!flag) {
/* Draw Flat Part (tail) */
remlength = 3214%(12 + xc0) + 50;

q = xc0*3214;
XDrawLine(display,sim_window,gc,50+q,255,remlength,255);

/* Draw Roller */

xxl = 3214*x roll; /* Coordinates of centre */
yyl = 3214*y roll;
/* NOTE !! : NOT the coordinates of the centre to be given */

132

xx2 = 3214*r_roll;

XC = xx]1 - xﬁ*ain(theta):
yc = yyl - xx2*cos(theta);

XDrawLine(display,sim_uindow,gc,50+xx1,255-yy1,50+xc,255-yc);

/* thetal is theta plus the angle of the segment of the roller */
xc = xx1 - xx2*sin(thetal);

yc = yyl - xx2*cos(thetal);

th_deg = 1*(theta*180/PI);
XDrawLiae(display,sim_window,gc,50+xx1,255-yy1,50+xc,255-yc):

/* XDrawArc draws the arc between the straight segements of the roller.
The arguments are: */
/¥ » angle from vertical of first clock-wise segment, -{angular
distance of 2nd straight side) */
XDrawArc(display,sim_window,gc,50+xx1—xx2,255-yy1-
xx2,2*xx2,2*xx2, (270-th_deg) *64, - (100) *64) ;
XFlush (display) ;

}
/*closes simulation */

133

Function: simulation_roller.c

#include "common.h"

/* Graphically Simulates the bill-feeder in window {sim window) */

simulation(x_roll,y_rxoll,r roll,x draw,y_draw)
double x_roll,y roll,r_roll; /* roller coords. and radius */
double x draw([2] [MAX NODES],y_draw([2] [MAX_NODES] ;
int xxl1,yyl,xx2,yy2; /* x,y coords for graphics */
int xend,yend;

float xf,yf,rf; /* Data from input */

/* Other variables */

int j;

int i,ql,q2;

int con_node; /* Contact node number */

flecat choice; /* Input values */

int remlength; /* Remaining length for rot'n */

XClearWindow (display, sim_window) ;
XFlush (display);

XClearWindow (display,data_window) ;
load_font (&font_info);
draw_text (data_window,gc, font_info,hint.width, hint.height);

/* Draw Floor Bill */
XDrawLine (display, sim_window, gc,50,257,500,257) ;
XFlush{display);

if (!stage3) {
/* Draw buckled Bill - left part first*/
for (3=0 ; j<2 ; Jj++) {

for (i=0 ; i<NUMBER_OF_NODES-1 2 i4+4) {

xx1=3214*x draw([j][i};

xx2=3214*x draw[j] [i+1];

yy1-3214*x_draw[j][i];

Yy2=3214*y draw([j] [i+1];

XDrawLine(display,sim_window,gc,50+xx1,255-yy1,50+xx2,
255-yy2);

}

}

if Iflag) {

134

g2 = 3214*1 rem;
XDrawLine(diaplay,sim_window,gc,50+xx2,255-yy2,50+xx2+q2,255—yy2);

}

if (!flag) {
/* Draw Flat Part (tail) in case of pure rotation*/

remlength = 3214* (12 + xc0) + 50;
ql = xc0%3214;
xnrawLine(display,sinLyindow,gc,50+q1,255,remlength,255):
}
}

if (stage3) {

for (i=0 ; i<NUMBER_OF_NODES-1 ; i++) |
xx1=3214*x draw(0] [i];
xx2=3214*x_draw[0] [i+1];
yyl=3214*y draw[0][i];
yy2=3214*y draw[0] [i+1];
XDrawLine(display,simeindow,gc,50+xx1,255-yy1,50+xx2,

255-yy2);
}

xend = 3214*122*cos (theta);
vend = 3214*122*gin(theta);

XDrawLine (display, sim_window, gc, 50+xx1,255~yy1, 50+xx1+xend, 255~
yyl+yend) ;

} /* closes if (stage3) */

/* Draw Roller */

xxl = 3214*x roll; /* Coordinates of centre */
yyl = 3214*y roll;

xx2 = 3214*r_roll;

xnrawArc(display,simLﬁindow,gc,50+xxl-xx2,255-yy1—
xx2,2*xx2,2*xx2,0,360%64) ;

XFlush(display);

}
/*closes simulation */

135

Function: load_font.c

finclude "common.h"™
/* Loads font from XWwindows lib. to be used in data window */

load _font (font_info)
XFontStruct **font_info;
{
char *fontname = "9x1%5%;

if ((*font_info = XLoadQueryFont (display, fontname)) == NULL)
{
(void) fprintf(stderr,"Basic: Cannot open 9x15 font \n");

exit (-1);
}

136

Function: draw_text.c

#include "common.h®

/* Writes stuff in the data_window: moment convergence info, ratio */

draq_;ext(data_yindow,gc,font_info,win_yidth,win_height)

Window data_window;

GC gc;

XFontStruct *font_info;

unsigned int win_width, win_height;

int y = 50;

char *stringl = "Ratio of tangential to normal forces at contact™;
char *string2 = "This is another test for the ratio";

int lenl, len2, len3;

char cd_ratio[50], cd_1m[50], cd L rm[50];

int font_height;

int inxtlal_y offset, x offset;

(void) sprintf(cd ratio, "RATIO (Ft/Fn): %f ", ratio_display):
(void) sprintf(cd_lm, "Left-part moment: ¥£",left_mom);
(void) sprintf(cd_rm, "Right-part moment: %£", right_mom) ;

font_height = font_info->max _bounds.ascent + font_info-
>max_bounds.descent;

initial y_offset = win_height/2 - font_height - font_info-
>max_bounds.descent;

x_offset = (int) win_width/4;
lenl = strlen(cd_ratio):

len2 = strlen(cd_lm);
len3 = strlen(cd_rm);

XDrawString(display, data _window,gc, x_offset, (int) initial_y offset,
cd_ratio,lenl);

XDrawString (display, data _window,gs,x_offset, (int) initial_y offset +
S*font_height, cd_lm, len2);

XDrawstring(dlsplay, data_window,gc,x_offset, (int) initial y offset +
6*font_height, cd_rm,len3);

1
:

137

Function: graphix_init.c

#include “common.h"

/* Prepares and initializes screen for window and graphics output. */

graphix_ init(argc,argv)
int argc;
char **argv;

display = XOpenDisplay(""): /* Screen Initialization */
screen = DefaultScreen(display):;
cmap = XDefaultColormap (display, screen);

Magenta.red=255*factor;
Magenta.green=0*factor;
Magenta.blue=255*factor;

if(XAllocColor(display,cmap,gyagenta)==0) fail=1;
DarkSlateGrey.red=47*factor;
DarkSlateGrey.green=79*factor;
DarkSlateGrey.blue=79*factor;
if(XAllocCOIOr(display,cmap,&DarkSlateGrey)==0) fail=1;
White.red=255*factor;

White.green=255*factor;

White.blue=255*factor;

if (XAllocColor (display, cmap, &White)==0) fail=l;

/* Determine if color or black/white to be used */
fail=}1;

if(fail) {

background = WhitePixel (display, screen);
foreground = BlackPixel (display, screen);

}

else{
background = White.pixel;
foreground = Magenta.pixel;
}

/* Specify window position and size for first window {simulation) */

hint.x = 10;

hint.y = 30;

hint.width = XDisplayWidth(display, screen)/2;
hint .height = XDisplayHeight (display, screen)/2;

138

hint.flags = USPosition | USSize;

/* Window creation */
sim window = XCreateSimpleWindow (display, DefaultRootWindow(display),
hint .x,
hint.y, hint.width, hint.height, 0,

foreground,
background) ;

XSetStandardProperties (display, sim window, "simulation","simulation"™, None

r

argv,argc, &hint) ;

/* Specify window position and size for second window (data) */

hint.x = 600;

hint.y = 30;

hint.width = XDisplayWidth (display, screen)/4;
hint.height = XDisplayHeight (display, screen)/4;
hint.flags = USPosition | USSize;

data_window = XCreateSimpleWindow ({display,
DefaultRootWindow(display), hint.x,
hint.y, hint.width, hint.height, O,

foreground,
background) ;

XSetStandardProperties(display,data_window, "data", "data"™, None,
argv,argc, &hint) ;

/* Specify window position and size for third window (graphics) */

hint.x = 10;

hint.y = 550;

hint.width = XDisplayWidth(display,screen)/2;
hint .height = XDisplayHeight (display, screen)/4;
hint.flags = USPosition | USSize;

/* Window creation */
graph_window = XCreateSimpleWindow (display,
DefaultRootWindow{display), hint.x,
hint.y, hint.width, hint.height, 0,
foreground,
background) ;

XSetStandardProperties (display,graph_window,"R / th
Graph", "graph"™, None,
argv,argc, &hint) ;

/* Restore these so that data_window doesn't get screwed-up */

139

hint.width = XDisplayWidth (display, screen)/4;
hint.height = XDisplayHeight (display, screen)/4;

/* GC creation and initialization */

gc = XCreateGC(display,sim window,0,0);
gc = XCreateGC(display,data_window,0,0);
gc = XCreateGC(display,graph_window,0,0);

XSetBackground (display, gc, background) ;
XSetForeground(display, gc, foreground) ;

/* Load and set font */

f = XLoadFont (display, "9x15");

if ('f) {
fprintf("Couldn't load font %s. \n",f);
exit (-1);

}

/* Window mapping */

XMapRaised (display,sim_window);
XMapRaised (display,data_window);
XMapRaised (display,graph_window);

XFlush(display) ;
sleep(2);

140

Function: graphix_ini¢_roller.c

#include "common.h"
/* Prepares and initializes screen for window and graphics output. */
graphix init (argc,argv)

int argc;
char **argv;

display = XOpenDisplay(""); /* Screen Initialization */
screen = DefaultScreen(display);
cmap = XDefaultColormap (display, screen) :

Magenta.red=255*factor;

Magenta.green=0*factor;

Magenta.blue=255*%factor;

if (XAllocColor (display, cmap, éMagenta)==0) fail=1;
DarkSlateGrey.red=47*factor;
DarkSlateGrey.green=79*f.\ctor;
DarkSlateGrey.blue=79*factor;

if (XAllocColor (display, cmap, &DarkSlateGrey)==0) fail=1;
White.red=255*factor;

White.green=255*factor;

White.blue=255*factor;

if (XAllocColor (display, cmap, §White)==0) fail=1;

/* Determine if color or black/white to be used */
fail=1;

if(fail) {

background = WhitePixel (display,screen);
foreground = BlackPixel (display, screen);

}

else{
background = White.pixel;
foreground = Magenta.pixel;
}

/* Specify window position and size */
hint.x = 10;

hint.y = 30;
hint.width = XDisplayWidth(display, screen)/2;

141

hint.height = XDisplayHeight (display, screen)/2;
hint.flags = USPosition | USSize; /* Program sets position */

/* Window creation */
sim window = XCreateSimpleWindow (display, DefaultRootWindow(display),

hint.x,
hint.y, hint.width, hint.height, 0,

foreground,
background) ;

XSetStandardProperties(display,sinLyindow,"simulation",'simulation",None

[4
argv,argc, &hint) ;

/* GC creation and initializatica */

hint.x = 600;

hint.y = 30;

hint.width = XDisplayWidth(display, screen)/4;
hint .height = XDisplayHeight (display, screen)/4;
hint.flags = USPosition | USSize;

data_window = XCreateSimpleWindow (display,
DefaultRootWindow (display), hint.x,
hint.y, hint.width, hint.height, 0,
foreground,
background) ;
XSetStandardProperties (display,data_window, "data"™, "data",None,
argv,argc, &hint) ;

hint.width = XDisplayWidth(display, screen)/4;
hint .height = XDisplayHeight (display, screen)/4;

gc = XCreateGC(display,sim window,0,0);
gc = XCreateGC(display,data_window,0,0);

XSetBackground (display, gc,background) ;
XSetForeground(display, gc, foreground) ;

/* Load and set font */

£ = XLoadFont (display, "9x15%) ;

if ('£) |
fprintf("Couldn't load font %s. \n",f);
exit (-1);

}

/* Window mapping */
XMapRaised (display,sim window);
¥MapRaised (display,data_window);

XFlush (display) :
sleep(2);

142

143

Program: dynamics.c

#include <stdio.h>
#include <math.h>
#include <X11/X1lib.h>
#include <X11i/Xutil.h>
#include <X11/X.h>
#include <Xl1ll/keysym.h>

#define MAX NODES 35 /* Maximum number of nodes */
#define NUMBC 3 /* Max. number of BC's */
#define N 2 /* Max. number of BC's */

#define NUMBER OF_NODES 35
#define SHAPES 20
#define PI 3.141592654

#define NUM_EQN 5 /* No. of egqns integrated */
#define TINY 1.0e-20 /* For inverse routine */

/* Properties of yen */

#define L 0.14
#define B 0.076
#define t 1.0e-4
#define w 1.1e-3/0.14
#define cof 0.15
#define E 15000000
#define I 6.33e-12

/* Variables */

double x2_desired [NUMBC]; /* Desired BC at x2 */

double V[NUMBC]; /* Free BC at x1 */

double delv[NUMBC]; /* Change in V for Jacobian */
double fx guess; /* Guessed force_x at x1 */
double fy guess; /* Guessed force_y at x1 */
double m_guess; /* Guessed moment at x1 */

double old_£fx guessl; /* Prev. guessed fx at x1 (lp) */
double old_fy guessl; /* Prev. guessed fy at x1 (lp)*/
double old _m guessl; /* Prev. guessed m at x1 (lp)*/
double old fx_guess2=0.0; /* Prev. guessed £x at x1 (rp) */
double old fy guess2=0.0; /* Prev. guessed fy at x1 (rp)*/
double old m guess2=0.0; /* Prev. guessed m at x1 (rp)*/
double ratio,ratio_display,old_ratioc; /* Ratio Ft/Fn at contact */
double clip; /* Changes in V[] */

double toll = 0,0001; /* Tolerance for left part */
double tol2 = 0.000002; /* Tolerance for right part */
double dt =0.003; /* Time step for dynamics */

/* Variables for new position */

double dy_roll = 0.002; /* y-momvt of roller */
double del th = 0.2; /* Angular increment for calcs */

144

double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double

11,12,121,122,1 set;
1 _rem;
th_seg,th_£in,th_cont;
dl = 0.005;

xc0;

1c0;

r_radius = 0.01;
theta,thetal,th_roll;
th_trial,th_old;
x_cont;

y_cont;

left_mom;

right_mom;

avg_mom;

wt;

1s;

/* Variables at each node */
double

double
double

fx[MAX NODES]:;
vx [MAX_NODES] [2] ;
ax[MAX NODES]:

double
double
double

fy [MAX_NODES];
vy [MAX _NODES] [2];
ay [MAX NODES]:

double
double
double

m{MAX NODES];
omega [MAX NODES] [2];
ath [MAX NODES];

double
double
double
double
double

x_pos [MAX NODES] [2]:
y_pos[MAX NODES] [2];
th[MAX NODES] [2];
dthds [MAX_NODES];
add _mom[MAX NODES];

n=35;

nn;

cntl;
flag,th_calc;

int
int
int
int
int
*/

int

len_flag:;

eq_mom=1;

double 1;

/* Declare pointers for output
double xx1,yyl;
double dummy;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*

/*
/*
/*

/*
/*
/*

/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*

/t

/*

files */

145

/*
/*

in radians */

Contact length with roller */
Length Remaining in tail */
Segemented roller arc length */
Step size for bill length */
Initiai x-coord. of contact */
Initial contact length */
Roller radius */

Current roller angle */

To find the equal moments */

x trial contact point */

y trial contact point */
moment from left */

moment from rignt */

Average of left & right */
Total weight */

Length of segment 1l/n) */

static force in x direction */
velocity in x direction */
acceleration in x direction */

static force in y direction */
velocity in y direction */
acceleration in y direction*/

moment */
angular velocity */
angular acceleration */

X~pos (two time-steps) */
y_pos (two time-steps) */
angle with the horizontal */
'curvature' of element */
additional internal */
moment caused by folding */

Number of nodes */

Iteration counter */

General counterl */

Left part : flag=0 */

Right part: flag=1l */

Flag for change in bill length

Equal moments flag */

Length of yen (metres) */

For output to file */
scanf var. */

/* XWindows variables */

Display *

display;

Window sim window, data_window;
Window graph_window;
int screen;

GC gc:
Font £;

XSizeHints hint;
unsigned long foreground,background;
XColor DarkSlateGrey,Magenta;
XColor White;

Colormap

cmap, cmapl;

XFontStruct *font_info;

int fail;

double factor=257;

FILE *fpo, *fopen();

main(argc,argv)

int

argc;

char **argv;

double
double
double

double

testval;
Fx left;
Fy left;

outflag=999;

float dd3,dd4,dd5,dd6,dd7;
int floor_node;

int rept=1;

int i,Jj,kk;

int n_iter;

int in;

int ang_count=0;

*/

int clear_flag=0;

double
double

double
double
double
double
double
double
double
double
double

double

bc0,bel,bec2;
ic0,icl,ic2;

x_roll,y roll,r_roll;
x_draw([2] [MAX NODES];
y_draw[2] [MAX NODES];
x_left [MAX NODES] [2]:
y_left [MAX NODES] [2];
th_left {MAX_ NODES] [2);
x_right [MAX NODES] [2]:
y_right [MAX NODES) [2];
th_right [MAX NODES][2];

y_static;

146

/* Pointer to display */
/* Windows */

/* Screen ID */

/* Graphic Content */

/* Font for text display */
/* Window specification */
/* Pixel values */

/* Color Variables */

/* Default colormap */

/* Cclors/Black-White */
/* Color factor */

/* Resultant force in x-dir */
/* Resultant force in y-dir */

/* Flag for cutput file */

/* For keyboard input */

/* Node where bill passes floor */
/* scanf variable */

/* Various counters */

/* Shoot counter */

/* Main iteration counter */

/* for angular increments (graph)

/* 0 to clear window, 1 to keep */

/* boundary conditions */
/* initial conditions */

/* for graphics */

/* the y-value of the last node */
/* under the static solution */

float dd; /* scanf var. */

/* Open file ‘elshape' for the shape fo the elastica */
fpo = fopen("elshapenew","w");

r roll = 0.01;

printf ("\nContact length ");
scanf ("%$£f",&dd7);

lc0 = dd7;

11 = 1c0;

printf("\nInitial x-position ");
scanf ("%$£f", &dd7);

xc0 = dd7;

x_roll = xc0;

printf ("\nFinal roller angle (max. 3.216125 ");
scanf ("%£",&dd7);

th_£fin = dd7;

y_roll = r roll;

graphix_init (argc,argv);

/* Correction terms for fx and fy */

delv([0]=0.0000000005; /* Correction for f£x */
delv[1]=0.0000000005; /* Correction for fy */
delv([2])=0.0000000005; /* Correction for m */
clip = 0.5; /* Clip value */

if (xc0 >=0.07) {
old fx guessl = -0.5;
old fy guessl = 0.06;
old m guessl = -0.007;
old_fx guess2 = 0.0;
old_fy guess2 = 0.0;
old m guess2 = 0.0;

}

if (xc0 < 0.07) {
old fx guessl = -0.8;
old fy guessl = 0.09;
old m _guessl = -0.008;
old_£fx guess2 = 0.0;
old fy guess2 = 0.0;
cld m_guess2 = 0.00;

for (j=0; J<MAX NODES ; j++) {

m[j]=0.0;

147

omega([j] [0]=0.0;
omega[j][1]=0.0;
ath[j1=0.0;

£fx[j§)=0.0;
vx[jl1[0]=0.0;
vx([j][(1]=0.0;
ax[jl=0.0;

£fy[(j)=0.0;
vy[3)[0]1=0.0;
vy[(31[1]=0.0;
ay[j]=0.0;

x_pos[3][0)= 1cO*((1.0*3j)/(1.0%*(MAX NODES-1)));;
x pos{j)[1)=0.0;

y_posijl[0]=0.0;

y pos(3][1]1=0.0;

th[j1[0]}=0.0;

th(jl[1]1=0.0;

dthds[j]=0.0;

ratio_display = 0.0;
theta = 0.0;

thetal = 0.0;
flag=0; /* Set for left part first */

th_roll = 0.52;
/* th_roll = 0.174533;%*/
th_seg = 1.74533; /* 100 deg. */

/********t***********t*******************t**********************t******/

/* Main iteration loop - Different angles of theta on roller */
/**ﬁ*****t***[

/* Rotation FIRST */

while (thetal <= th_seg) {
thetal += th_roll;
11 += r radius*th_roll;
12 = L - 11;

x_cont = xc0;
y_cont = dy roll;

printf("\n %£",11);

/* */
/* Calculate elastica and element properties for left part */
/* *x/

148

ls = 11/(1.0*(n-1.0));

1l =11;

/* Segment length */

/* Length of left part */

/* This is additional moment data representing curved bills */
/* To calculate for straight bills, remove additional moment */

/*
add mom(13] = 0.007313;
add mom[14] = 0.006592;
add mom[15]) = 0.006113;
add_mom[16] = 0.006000;
add_mom[17] = 0.006205;
add mom[18]) = 0.006000;
add mom{19] = 0.006113;
add mom[20] = 0.006592;
add mom([21] = 0.007319;
*x/
/* -—- */
/* Set Boundary Conditions at End for rotation */
[* mmmmm e *x/
/*t**t*****************t********** STATIC SOLUTION START **********/

for(j=0 ; j<MAX NODES ; j++) {

ax[j] = 0.0;
vx[jl[1] = 0.0;

ay[3j] = 0.0;
vy[31(1) = 0.0;

ath([3j] = 9.0;

omegal[jl[1l) = 0.0;

}

fz_guess = cld_fx guessl;
fy_guess = old_fy guessl;
m_guess = old m guessl;

set_initial conditions(0.0,0.0,0.0); /* x,y,th at s=0 */

set_boundary conditions(x_cont,0.0,0.0);

/* z-coord of contact pcint */
/* y-coord of contact point */

/* ending angle */

y_poesin-1][1] = 1.0;

/* Trick to pass into loop */

149

/* */
/* Shoot loop for left part */
/* -- - */
n_iter=0;
while((fabs(fabs(y_pos[n-1][1]) - x2_desired[1]) > toll) && (n_iter
< 30)) {
n_iter++;
£x[0])=V[0];
fy[0]=V[1];
m[0]=V[2];
Runge_kutta (fx, fy,m, th,x_pos,y_pos,1s,n);
shoot (V,x2_desired,delv,clip, flag);
}
y_static = y pos[14]{1];
old f£x guessl = V[C];
old _fy_guessl = V[1];
old m guessl = V{2];
/% */
/* Determine shape of elastica (coordinates of nodes) */
/* - */

check_shape (x_draw,y_draw, flag);
simulation(x_roll,y_roll,;_roll,x_draw,y_draw,ang_pount,clea;_flag);
for (i=0 ; i<35

;i
xx1 = x pos{i][1]
Yyl = -y_pos[i]}[1l

++) {

)

[RxEKRKEKKKKI KK RRKX AR KR RAKKKAXXRXX*X STATIC SOLUTION END Ekkkkkkkkk /

[RRAKKKIKKE AKX AR K AKX KRR XXX K XX XX ** DYNAMIC SOLUTION START XRKKEKKK*KK [

for(kk=0 ; kk<1; kk++) { /* Iterations to convergence */
/* of dynamic solution */

for(j=0; j<MAX NODES ; j++) {

m[j}=0.0;
omega([j]) [0)=0.0;

£fx[3]=0.0;

150

fy[j1=0.0;

dthds{j]=0.0;

}

for(j=0 ; j<MAX NGDES ; j++) {
/* Velocities */

vx[jl[1] = (x _pos[jl[1l] - x_pos[3][0])/dt;
/* x-velocity of elements */

vy[31(1] = (y_pos[jl[1] - y pos[3][0])/dt;
/* y_velocity of elements */

omega[j] [1] = (th[j][1] - th[3j]1[0])/dt;
/* ang. velocity of elements */
/* Accelerations */

ax[3j] = (vx[3j)[1] - vx[3j][0])/dt;
/* x-acceleration of elements */

ayl[3j] = (vy[31[1] - vy[3110])/4dt;
/* y-acceleration of elements */

ath[j] = (omega[j][1] - omegal[3j][0])/dt;
/* ang acceleration of elements */

}

for(j=0 ; j<MAX NODES ; 3j++) {
x_pos[jl[0] = x _pos[jl[1];
y_pos[jl[0] = y pos([j]l[1];

th{3jJ{0] = th[3§][1];

vx[3]1{0] = vx[j][1];

vy[31(0] = vy[jl[1];

omega[j] [0] = omegalj][1];

}

set_initial conditions(0.0,0.0,0.0);

set_boundary_conditions(x_cont,0.0,0.0);

n_iter=0;

y_pos[n-1][1] = 1.0; /* Trick to pass into loop */

while((fabs(fabs(y_pos[n-1][1]) - x2 desired[1]) > toll) &&
(n_iter < 30)) {

151

n_iter++;

£x[0])=V{0];

fy(0]=v[1];

m[0)=V([2];
Runge_kutta (fx, fy,m,th,x_pos,y_pos, 1ls,n);

shoot (V,x2_desired,delv,clip,flag);
} /* Closes while(fabs) */

check_shape (x_draw,y_draw);
background = DarkSlateGrey.pixel;
foreground = White.pizel;
XSetBackground (display, gc,background) ;
XSetForeground (display, gc, foreground) ;
clear flag=l;

simulation(x roll,y_roll,r_roll,x draw,y_draw,ang_count,clear_flag);
clear_flag=0;
background = DarkSlateGrey.pixel;
foreground = Magenta.pixel;
XSetBackground (display, gc, background) ;
XSetForeground (display, gc, foreground) ;
sleep(2);

} /* Closes for(kk..) - dynamics */
/* iteration loop */

[RIKIRRERKAKAKAKKKAKAKKKKXKXXRX*AX% DYNAMIC SOLUTION END ***kkkkkxx/

} /* Closes while(thetal<=th_seg) */
for(j=0 ; J<MAX NODES ; j++) {
x_left[j]l[C] = x pos[3j][1

]
y_left[j1[0) = y pos[j]l[1]
th_left[3]1[0] = th[j][1];

-
’
.
L4

x_right[j][0] = xc0 + 12%((1.0%3j)/(1.0*MAX_NODES)):
y_right[j][0] = 0.0;
th_right [j]1[0] = 0.0;

}
scanf ("%£f", &dd) ;

152

/* This loop is for the different y-positions of the roller */

flag=0;

theta = 0.0;

1 xem = 0.0;

122 = 12;

121 = L - 122;

th_old = theta;

while (thetal <= th_fin) {
th_calc=1;
thetal += del_th;
theta += del_th;

x_cont = xc0 - r_radius*sin(theta);

y_cont = r radius*(l + sin(theta-1.5708));

th_trial = th_old; /* First start with the roller */
/* ending angle */

[RERERE IR KR KKK IR KR KKK KK KRR KRR XKk ARk * k% STATIC SOLUTION START ***kxx/

while (eq_mom) {

len flag=1l;
l rem = 0.0;

while(len_flag) {

/* Left Part First */

flag=0;
is = 121/(1.0*(n-1.0)); /* Segment length */
1l =121; /* Lengch of left part */

for(j=0 ; j<MAX NODES ; j++) {

ax{jl] = 0.0;
vx[31[1] = 0.0;

ay[3j] = 0.0;
vy[jll1] = 0.0;

ath[j] = 0.90;
omega[j] (1] = 0.0;

153

fx _guess = old fx guessl;
fy_guess = old_fy guessl;
m _guess = old m guessl;

set_initial conditions(0.0,0.0,0.0); /* x,y,th at s=0 */

set_boundary_conditions(x_cont,y cont,th_trial);
/* x-coord of contact point */

/* y-coord of contact point */

/* ending moment */

y_pos[n-1][1] = 1.0; /* Trick to pass into loop */
/* ——— %/
/* Shoot loop for left part */
/* */
n_iter=0;

while((fabs(fabs(y pos([n-1][1]) - x2_desired[1]) > toll) &&
(n_iter < 30)) ¢

n_iter++;

£x[0]=V[0];

fy[0)=V[1];

m[0]=V[2];
Runge_kutta (fx, fy,m,th,x pos,y _pos,1s,n);

shoot (V,x2_desired,delv,clip, flag);

} /* Closes while(fabs) */

left_mom = m[n-1};

old fx guessl = V[0];

old fy guessl = V[1];
old m guessl = V[2];

check_shape (x_draw,y_draw, flag);
for(j=0 ; j<MAX NODES ; j++) {
x_left{j)[1] = x pos[3j][1];
y_left[j][1]) = y pos[j]l[1]);
th_left[j][1] = th([j][1];

}

Fx left = fx[n-1];
Fy_left = fy[n-1];

154

/* RIGHT Part Next */

flag=1;
lzs = 122/(1.0*(n-1.0)); /* Segment length */
1 =122; /* Length of left part */

fx_guess = 0.0;
fy guess = 0.0;
m_guess = 0.0;

set_initial conditions(x_cont,~y cont,th_trial); /* x,y,m at s=0

*x/
y_pos[n-1][1]) = 1.0; /* Trick to pass into loop */
/* */
/* Shoot loop for right part */
/* - %/
n_iter=0C;

while((fabs(fabs(y_pos[n-1][1]) - x2_desired[0]) > toll) &&
(n_iter < 30)) {

n_iter++;
£x[01=V([0];
fy[0)=V[1];
m[0])=V[2];
Runge_kutta(fx,fy,m,th,x_pos,y;pos,ls,n);
set_boundary_conditions(0.0,cof*fabs (fy[n-1]),0.0);
/* x-coord of contact point */
/* y-coord of contact point */
/* ending angle */
shoot (V,x2_desired,delv, clip,1);
} /* C.. ses while(fabs) */
right_mom = m[0];
old fx guess2 = V[0];
old_fy guess2 = V[1];
old m guess2 = V[2];
below_£floor (floor_node);

if (floor_node>33) len_flag=0;

check_shape (x_draw,y_draw, flag);

155

for(j=0 ; j<MAX NODES ; j++) {
x_right [j]1 [1] = x_pos[j][1];
y_right[j)[1] = y_pos([jl[1];
th_right[j1[1] = th[3j][1];
}
} /* Closes while(len_flag) */

/* End this run by drawing the shape and calculating the ratio */

calculate_ratio(Fx_left,Fy_left);

XClearWindow (display,data_window) ;
draw_text (data_window,gc, font_info,hint .width, hint. height) ;

XFlush (display) ;

printf("\n*** Moments: L: %f
R:%f",left_mom, right_mom) ;

if (left_mom<0.0) th_trial += 10. 0* (fabs (fabs (right_mom) -
fabs (left mom))),

if((right_mom<0.0) &s& (fabs (right_mom) > fabs(left _mom)))
th_trial -= 20* (fabs(fabs(right_mom)-fabs (left _mom))) ;

122=12;
if (fabs(fabs(right_mom)-fabs (left_mom))<0.001) eq mom = 0;

/* Closes eq_mom */

ratio_display = ratio;

th_old = th _trial;

eq_mom=1;

check_shape (x_draw,y_ draw, flag);

ang_count++;

simnlat;on(x _roll,y_roll,r roll,x draw,y _draw, ang_count,clear_flag);

old_ratio = ratio;

prxntf('\n\n kkkkkxkxkx MOVE TO NEW ANGLE *****xkkx%x\pn\p");
/*********************t*********t***** STATIC SQLUTION END *****/

[RRKEERKKERRXKKKKAK KRR KR ARKKKRAARK® DYNAMIC SOLUTION START ***kkk%/
/* First for the left Part */

len_flag=1;

156

for(kk=0 ; kk<l ; kk++) {
while(len flag) {

ls = 11/(1.0*(n-1.0));
1l =11;

flag=0;

for (j=0 ; j<MAX NODES ; j++) {

/* Calculate velocities */
vx[jl[1] = (x_left([j)[1] - x left[3]1([0])/dt;

vy[3l[1] = (y_left(3]{l] - y_left[j]1[0])/dt;
omega[j] [1] = (th_left[j][1] - th_left{j]([0])/dt;

/* Calculate accelerations */
ax[j] = (vx[3J[1] - wvx[j1[0])/dt;

ay([3j] = (vy[3jl[1] - vy[3]1[0])/dt;
ath[j] = (omega(j]l[1] - omega([j)[0])/dt;

for (j=0 ; j<MAX NODES ; j++){

Printf("\n [%d.] x=%f vx=%f ax=%if y=%f vy=%f ay=%f th=%f
vth=%f ath=%£",j,x pos([j][1]

ovx[31[1],ax[j]l,y_pos(3j)[1],vy[jl[1],ay[j]l,th[3j][1],omega[F] [1],ath[]]);
x left[j1[0] = x left([j][1];
y_left[j][0] = y left[jl(1]);
th_left[31[0] = th_left{j][1]);
}
scanf (“"%£", &dd) ;
£x_guess = old_fx guessil; /* Prepare for left part shooting
*x/
fy_guess = oid fy guessl;
m _guess = old m guessl;
set_initial conditions{0.0,0.0,0.0); /* x,y,th at s=0 */

printf("\n 3%f $f %f $f £
%f",;_pont,y_pont,th_prial,fx_guess,fy;guess,q_guess);

set_boundary_ conditions(x_cont,y_cont,th_trial);

/* x-coord of contact point */

157

/* y-coord of contact point */
/* ending moment */

y_pos(n-1][1] = 1.0; /* Trick to pass into loop */
/% */
/* Shoot loop for left part */
/* */
n_iter=0;

while((fabs(fabs(y_pos[n-1][1]) - x2 desired[1]) > toll) &&
(n_iter < 30)) {

n_iter++;

£x[0]1=V{0];

fy[0]=v([1];

m[0]=V[2];

Runge_kutta (fx,fy,m,th,x_pos,y pos,ls,n);

shoot (V,x2_desired,delv,clip, flag);

} /* Closes while(fabs) */
for (j=0 ; j<MAX NODES ; j++) {

printf("\n %f %f $£",x_pos([jl(1],y_pos[3jlI[1],th[3][1]);
}

left_mom = m[n-1];

old fx guessl = V[0];

old fy guessl = V[1];

old_m gquessl = V[2];

check_shape (x_draw,y_draw,flag);

for(j=0 ; j<MAX NODES ; j++) {
x_left[jl[1] = x _pos[3]1[1);
y_left[j][1]) = y pos[j}[1];
th_left[jl1[1] = th[j][1]);

}

Fx left = £x[n~-1);

Fy_left = fy[n-1];
/* Right Part Next */

flag=1;
len_flag=1;

ls = 122/(1.0*(n-1.0));

158

1=122;
for (j=0 ; j<MAX NODES ; j++) {

/* Calculate velocities */
vx[j][1] = (x_right[3j]1[1]) - x_right[3j][0])/dt;

vy[3]1([1] = (y_right[j][1] - y_right[3j][0])/dt;
omega[j] [1] = (th_right[j][1] - th_right{31[0])/dt;

/* Calculate accelerations */
ax[j] = (vx[3jI(1] - vx[3][0])/dt;

ay[3] = (vy[3jl[1] - vy[3j1[0])/dt;
ath[j] = (omega[j]l[1] - omega[3j][0])/dt;

}

for (j=0 ; j<MAX NODES ; j++){
x_right [j] [0] = x right[3][1];
y_right{j][0] = y_right[j]l[1];
th_right(3j]l[0] = th_right[3j][1];

}

fx_guess=0.0;

fy guess=0.0;
m_guess=0.0;

se;_initial_ponditions(x_pont,-y_cont,th_txial); /* x,y,m at s=0

*x/
y_pos[n-1][1) = 1.0; /* Trick to pass into loop */
/* */
/* Shoot loop for right part */
/* */
n_iter=0;

while((fabs(fabs(y_pos{n-1][1]) =- x2_desired[0]) > toll) &&
(n_iter < 30)) {

n_iter++;
£x[0]=V[0];
fy[0]1=V[1];
m[0]=V[2];
Runge_kutta(fx, fy,m,th,x pos,y_pos,1s,n);

set_boundary_ conditions(0.0,cof*fabs (fy{n-1]),0.0);
/* x-coord of contact point */

159

/* y-coord of contact point */
/* ending angle */

shoot (V,x2_desired,delv,clip,1);
} /* Closes while(fabs) */
right_mom = m[0];
oid fx guess2 = V{0];
oléd fy guess2 = V[1];
old m guess2 = V{[2];
below_floor(floor_node) ;
if (floor_node>33) len_flag=0;
for(j=0 ; j<MAX NODES ; j++) {
x_right [j1([1] = x_pos[j])[1]:
y_right{j] (1] = y_pos[j][1];
th_right[j]1[1] = th[j1[1];
}
} /* closes while(len_flag) */
for(j=0 ; j<MAX NODES ; j++) |{
printf("\n [%d.] xl= $£f yl= $%f thl= %f xr= %f yr=%f

thr=%£",3,x_left[j]l[1],y left[j][1],
th_left[j][1],x right[j][1],y_right[j](1],th_right[3j][1]);

}
scanf ("$£",&dd) ;
check_shape (x_draw,y draw, flag);
background = DarkSlateGrey.pixel;
foreground = White.pixel;
XSetBackground (display, gc,background) ;
XSetForeground(display, gc, foreground) ;
clear_ flag=1;
simulation(x_roll,y_roll,:_roll,x_draw,x_draw,angﬂcount,clea;_flag);
clear_flag=0;
background = DarkSlateGrey.pixel;
foreground = Magenta.pixel;

XSetBackground(display,gc,background);
XSetForeground (display, gc, foreground) ;

160

} /* closes for(kk...) - the dynamic loop
*x/

[RARERIRR KKK KKK IRKXRRRR KRR AR XXX XX% DYNAMIC SOLUTION END *hkkkk [
} /* Closes while(y_roll...) */

ettt TS */
/* Clear window */
sleep (5);
XClearWindow (display, sim_window) ;
XFlush(display) :

/* Termination #*/

XFreeGC (display,gc):
XDestroyWindow (display,sim window);
XCloseDisplay (display);

exit (0);

} /* Closes MAIN */

set_initial conditions(ic0,icl, ic2)
double ic0,icl,ic2;
{

/* Known boundary conditions at s=0 for left part*/
if(!'flag){
x_pos (0] [1]=ic0;
y_pos[0] [1)=icl;
th[0] [1)=ic2;
}

/* Known boundary conditions at s=0 for left part*/
if(flaqg) {
x_pos[0] [1])=ic0;
y pos[0])[1]=icl;
th(0])[1]=ic2;
}

/* Unknown Boundary Conditions at s=0 (guessed) */
V{0] = £x guess;

V[1] = fy guess;
V[2] = m _guess;

set_boundary conditions(bc0,bcl,bc2)

double bcl,bcl,bec2;

161

{

/* Generic case */

x2_desired[0]=bcO0; /* first bound. condition */
x2 desired[l]-bcl. /* second bound. condition */
x2 _desired[2)=bc2; /* third bound. condition */

shoot (V,x2_desired,delv,clip, flag)

/% Variables */

double V[NUMBC]; /* Free BC at xl1 */

double x2_ desired[NUMBC]; /* Desired BC at x2 */
double delv[NUMBC]; /* Change in V for Jacobian */
double clip; /* Changes in V[] */

int flag; /* Distinguish between left and */

/* right part */

double F[NUMBC]: /* Discrepancy vector at x2 */

double s[NUMBC]; /* Discr. vector */

double dv[NUMBC]:; /* Temp. discrepancy vector */

double dxc,dyc:; /* Discrepancy terms for x,y_pos */

double dxcl,dycl:; /* Discr. terms for x,y_pos */

double dfdv[NUMBC] [NUMEC]; /* Jacobian matrix */

double a[NUMBC] [NUMBC]; /* Jacobian matrix backup */

double inv_dfdv[NUMBC] [NUMBC] ; /* Inverse Jacobian matrix */

double det_dfdv; /* Determinant of Jacobian matrix
*/

double sav; /* Storage variable */

double mom cal;

int i,3,k,q; /* Various counters */
/* *x/
/* Trial Integration of Equations */
/* */
if(!flag) {

F[0] = x_pos[n-1][1]) - x2_desired[0];
F[1] = fabs(y_pos[n-1][1]) - x2 _desired(1]:;
F[2] = th[n-1][1] - x2_desired[2];

}

if(flagq) {
F[0] = fabs(y_pos[n-1][1]) - x2_desired[0];
F[1] = £x[n-1] ~ x2_desired{1];
F[2] = m[n-1] - x2 desired[2];

}

/% */

162

/* Vary £x[0] */

/* */
sav = £x[01;
£x[0] += delv[0];
V0] = £x[0];
V(1] = £y[0];
V(2] = m[0];
Runge kutta(fx,fy,m,th,x pos,y pos,1s,n);
if(!flag){
dv[0] = x_pos[n-1][1] - x2_desired[0]:;
dvil] = fabs(y pos[n-1][1]) - x2 _desired[1];
dv([2] = th(n-1][1] - x2_desired[2];
}
if (flag) {
adv([0] = fabs(y_pos([n-1][1]) - x2_desired[0];
dv([l] = f£x[n-1) - x2_desired(1l];
dv[2] = m[n-1] - x2_desired{2];
}
dfdv([0] [0]) = (dv[0] - F[0])/delv[0];
dfdv([1][0] = (dv[1] - F[1])/delv[0]);
dfdv[2] [0] = (dv{2] - F[2))/delv[0];
£fx[0] = sav; /* Return f£x to original */
/* value before increment */
/* */
/* Vary fy[0] =*/
/* */

sav = fy[0];
fy[0] += delv[1l];

VI0] = £x[0];
VI1] = £y[0];
Vi2] = m[0];

Rnng@;kutta(fx,fy,m,th,x_pos,y_pos,ls,n);

if(!flag){
dv[0] = x pos[n-1][1] ~ x2_desired[0];
dv[l] = fabs(y_posin-1][1]) - x2 _desired([1];
dvi2] = th[n-1]{i] - x2_desired[2)];

}

if(flag) {
dv([0] = fabs(y_pos[n-1][1]) - x2_desired[0];
dv[l] = fx[n-1] - x2_desired[l]:
dv[2] = m[n-1]) - x2 desired[2];

163

dfdv(0j[1] = (dv[0] - F[0])/delv(1];
dfdv (1] [1] = (dv[1] - F[1])/delv[1]);
dfdv([2] [1] = (dv[2] - F[2])/delv(l];

fy[0] = sav; /* Return fy to original */
/* value before increment */
/* */
/* Vary m[0] */
/* */
sav = m[0];
m[0] += delv[2];
VI0] = £x[0];
V[1] = £y[0];
VI2] = m[0];
Runge kutta(fx,fy,m,th,x pos,y pos,ls,n);
if(!flag) {
dv[0] = x pos[n-1][1] - x2_desired[0];
dv[l] = fabs(y_pos[n-1]{1]) - x2_desired[1);
dv{2] = th[n-1][1] - x2_desired[2];
}
if(flag) {
dv[0] = fabs{y_pes[n-1]([1]) - x2_desired[0];
dv(l] = fx[n-1] - x2 desired[1]:;
Adv[2] = m[n-1] - x2_desired(2);
}
dfdv (0] [2] = (av[0] - F[0])/delv(2];
dfdv([1][2] = (dv[1] - FI1])/delv[2];
dfdv[2][2] = (dv[2] - F[2])/delv[2);
m[0] = sav; /* Return m to original */

/* value before increment */
for (i=0 ; i<3 ; i++) {

for(j=0 ; 3j<3 ; j++)
ali}[jl=dfdv[i] [3];

calculate_inverse(a,inv_dfdv);

s[0]=F[0];
s[l)=F[1];
s[2]=F[2];

164

multiply(inv_dfdv, s,dv);

dvi0] = -dv{[0]:
dv[l] = -dv[1]:
dvi2] = -dv[2];

if (fabs(dv[0]) > (clip*fabs(dv[0])) || fabs(dv[1]) >
(clip*fabs(dv([1])) || fabs(dv([2]) > {clip*fabs(dv{2]))) {
dv[0] *= clip;
dv[l] *= clip;
dv[2]) =*= clip;
}

£x[0] += dv{0};
fy[0] += dv[1l];
m[0] += dv[2];

VIO] = £x[0];

V[{1] = £y[0];

VI[2] = m[0];
Runge_kutta(fx,fy,m,th,x_pos,y;pos,ls,n);
mom cal=0.0;

for (j=1 ; j<n ; j++) {

mom_cal += (w*ls) * ((x_pos[j~-1][1]+x_pos[j][1])/2.0);
}

} /* Closes shoot */

calculate_ratio(Fx_left,Fy left)
double Fx_left,Fy left;
double Fx res,Fy_res;
double F_tangent,F_normal;
int r_node;

Fx_res = £fx[0] + Fx_left;
Fy _res = fy[0] + Fy_left;

F_tangent = fabs(Fx_res*cos(th[0][1]) + Fy res*sin(th[0][1]));
F_normal = fabs(Fx_res*sin(th[0]([1]) + Fx_res*cos(th[0][1]));

165

ratio = F_tangent / F_normal ;

below_floor(floor_node)

int floor_node;

int i;
len_flag = 0;
for (i=0 ; i<34 ; i++) {
if(y_pos[i]l [1]>0.0002) len_flag=1;
floor_node = i;
}
if (len_flag) {
122 -= dl1;
1_rem += di;

printf ("\n BELOW $f %f %d",122,1_rem, floor_node) ;
y_pos[n-1][1] = 1.0;

check_shape (x_draw,y_draw, flag)
double x_draw[2] [MAX_NODES] ;

double y_draw([2] [MAX NODES];
int flag;

int entl,i;
cntl=0;
if(m{0])<0.0){

for (i=1 ; i<34 ; i++) {
if ((m[i}*m[i-1])<0.0) cntl++;

/* if (cntl>1)
printf ("\nWrong shape !!; %d changes in curvature\n",cntl);
*/
}
/* if (m[0]>=0.0) printf("\nWrong shape !! : Initial moment

m{0]>=0\n") ; %/

166

for (i=0; i<MAX NODES ; i++) {
x_draw[flag] [i]=x_pos[i][1);
y_draw[flag] [i]=-y pos[i][1];
}
}

/* */
/* Runge-Kutta integrator */
/* */

Runge_kutta(fx,fy,m,th,x_pos,y_pos,ls,n)

double
fx[],fy[].m[],th[MAx;Nonnsl[2],x_posluax_NODESJ[2],y_pos[MAX_NODESJ[2];

double 1ls:

int n;

double ybeg[NUM_EQN]; /* Begining of t-step */

double yend[NUM_EQN]; /* End of t-step */

int i,k;

double 11 = 0.0; /* Distance from origin */
double Total_weight; /* Total weight (correction) */

k=0;

ybeg[0]=£x[0];
ybeg[ll=£fy[0];
ybeg[2]=m[0];
ybeg[3]=th[0] [1];
ybeg[4]=0.0;

while (1) {
11l += 1s;
if {11>1+1s8/10.0) break;
integrate_pne_;tep(ybeg,ll,ls,yend,k);
for (i=0; i<NUM_EQN; i++) {
ybeg[i]=yend[i];

£x[k+1] = yend[0];
fy(k+1] = yend[1];
m[k+1l] = yend[2];
th[k+1][1] = vend[3]:
Total weight = yend[4];

x_pos[k+1] [1] = x pos[k][1l] + ls*cos(th[k][1]):;
y_pos[k+1][1] = y pos[k] (1] + ls*sin(th[k][1]);

167

k++;

}

/*
/* Integrate one step using Runge-Kutta method... */
/*

integrate_one_step (ybeg, x, h, yend, k)

double ybegf{]:
double x;
double h;
double yend[]:
int k;

double fcnl[NJM_EQN];
double fcn2 [NUM_EQN];
double fcn3 [NUM_EQN];
double fecn4 [NUM_EQN];
double xtmp;

double ytmp [NUM_EQN];

int i;

xtmp = x~-h;

for (i=0 ; i<NUM EQON ; i++) {
ytmp[i] = ybeg[i];
derivs (xtmp, ytmp, fcnl, k) ;

}

xtmp = x-h/2.0;

for (i=0 ; i<NUM_EQN ; i++) {
ytmp[i] = ybeg[i) + h * fcnl[i]/2.0;
derivs (xtmp, ytmp, fcn2, k) ;

}

xtmp = x-h/2.0;

for (i=0 ; i<NUM_EQN ; i++) {
ytmp[i] = ybeg[i] + h * fcn2[i]/2.0;
derivs (xtmp, ytmp, fcn3, k) ;

}

xtmp = x;

for (i=0 ; i<NUM_EQN ; i++) {
ytmp[i] = ybeg[i] + h * fcn3[i];
derivs (xtmp, ytmp, fond, k) ;

}

for (i=0 ; i<NUM_EQN ; i++) {
yend[i] = ybeg[i] + h*(fcnl[i] + 2.0*fcn2{i] + 2.0*fcn3([i] +
fen4[i))/6.0;
}

/*

168

*/
*/

*/

/* Evaluate the functions to be integrated... */
/* *x/

derivs(x,y, fcn, k)

double x;
double yl[1;
double fenl(];
int k;

/* Four coupled first-order equations from initial ODE */
/* eg. fcn[0] = dy[0]/ds */

{
double B1(),B2():

fcn[0)=w*ax [k]~-B1 () *vx[k] [1];
/* d(£x)/ds=0.0 */
fen[l]= -1.0*w+wray[k]-B1 () *vy[k][1];
/* d(fy)/ds=-w */

fen[2)=(y[0])*sin(y[3]) -~ y[ll*cos(y[3]) + I*ath[k]-B2()*omega(k][1];
/* d{m)ds=... */

fen([3])=(y[2]+add mom([k])/(E*I);
/* d(th)/ds=m/EI */

fen[4]l=w*x;

/* */
calculate_ inverse(a,r)

double a[N+1] [N+1];
double r{N+1] [N+1];

double 1[N+1] [N+1],u[N+1][N+1];
int i,3;

int indx[N+1}]:;

double b[N+1];

double 4d;

double y[N+1) [N+1];

double col[N+1]:

double x[N+1];

/*float r[N+1] {N+1];*/

ludemp (a, N, indx, &d) ;

/* Decompose LU matrix */

for (i=0 ; i<=N ; i++) {
for (j=0 ; j<=N ; 3j++) {
ufi) [jI=a(i] [3];
, 1[i] [j)=a[i) [3];

169

}

for (i=0 ; i<=N ; i++) {

1[i][4i]=1.0;

for (j=i+l ; j<=N ; j++) 1[i][j]=0.0;
}

for (j=0 ; j<=N-1 ; J++) {
for (i=j+l ; i<=N ; i++) u[i][j]1=0.0;
}

for(j=0 ; j<=N ; j++) {

for (i=0 ; i<=N ; i++) col{il}=0.0;
col[jl=1.0;

lubksb(1,u,N, indx, col, x) ;

for(i=0 ; i<=N ; i++) r[3j][il=x[i]:

ludemp (a, n, indx, d)

int n,indx[N+13};
double a[N+1] [N+1],*d;

int i, imax, j,k;
float big,dum, sum, temp;
double vviN+1]:;

*d=1.0;
for (i=0:;i<=n;i++) |
big=0.0;
for (3j=0;3j<=n;j++)
if ((temp=fabs(a[i]{j])) > big) big=temp;
if (big == 0.0) printf ("SINGULAR\n");
vv([i]=1.0/big;

for (j=0;j<=n;j++) {
for (i=0;i<j;i++) {
sum=a[i] [j];
for (k=0;k<i;k++) sum -= a[i][k]l*a[k][j]:
afi) [j)=sum;

big=0.0;

for (i=j;i<=n;i++) {
sum=a[i] [j];
for (k=0;k<j;k++)

170

sum -= a{i][k])*a[k][3];
afi] [j)=sum;
if ((dum=vv[i)*fabs(sum)) >= big) {
big=dum;
imax=j;
}
}
if (J '= imax) {
for (k=i;k<=n;k++) {
dum=a [imax] [k] ;
a[imax] [k]=a[j] [k];
af3jl (kl=dum;
}
*d = ~(*d);
vvimax]=vv([j];
}
indx([j]=imax;
if (a[3)(3) == 0.0) a[3j][j)=TINY:
if (j !'= n) {
dum=1.0/(al[31[351):
for (i=j+l;i<=n;i++) a[i)[j] *= dum;
}
}
}

/* Back-substitute LU matrix */

lubksb(l,u,n,indx,b, x)
double 1[N+1] [N+1],u[N+1][N+1],b[],x[N+1];
int n;

int i,ii=0,33=0,3;
double sum;
double y[N+1];

for (i=0 ; i<=n ; i++) {
sum=0.0;
if (i=m=Q) ii=0;
if (iit=0) {
for (=0 ; j<=i-1 ; j++) sum += yI31*1{i) (3]
yli}=b[i]-sum;

else {
y[0l=b[0];
ii=1, }
}

for (ien ; idm0Q ; i--) {
sum=y[i];
if (im=n) j4=0;
if (jj'1=0) {
for (j=i+l ; j<=n ; j++) sum -= uli} [§)1*x[3);
x[i)e=sum/ufi) [i];

else { x[n]=sum/u{nj[n];
Ji=1;)

171

/* Multiply vector to matrix */
multiply(inv_a,s,dv)

double inv_a[N+1] [N+1],s[N+1],dv[N+1];

int i,3;
float tempo;
for (i=0 ; i<=N ;i++) dv([i]=0.0;
for(i=0 ; i<=N ; i++) {
for(j=0 ; j<=N ; j++)
dv([i] += (inv_al[jl[il*s[3]);

simulation(x_roll,y;;oll,:_roll,x_draw,y;draw,ang_count,clea;_flag)

double x_roll,y roll,r_roll; /* roller coords. and radius */
double x_draw([2] [MAX NODES],y_draw([2] [MAX ._NODES] ;
int ang_count; /* Counter for angle (graph) */
int clear_flag; /* 0 to clear window, 1 to keep */
{
int xx1,yyl,xx2,yy2; /* x,y coords for graphics */
int xc,yc:
int rr; : /* radius of roller */
int th_deg; /* angle in degrees */
int gx1,9x2,9yl,gy2; /* graphics coordinates for graph
*/
int max ang_increments; /* angluar increments for graph */
int length of increment; /* length (in pixels) of angluar
increment */
float xf,yf,rf; /* Data from input */

/* Other variables */

int j;

int i,q,q92;

int con_node; /* Contact node number */
float choice:; /* Input values */

int remlength; /* Remaining length for rot'm */

max_ang_increments = (3.4 - th seg)/del th;
length_of_ increment = 450/max_ang_increments;

if(!clear_ flag) {

172

XClearWindow (display, sim window) ;
XFlush(display) ;
}

XClearWindow (display,data_window) ;
load_font (&font_info);
draw_text (data_window, gc, font_info,hint.width,hint .height);

/* Draw Floor Bill */
XPrawline (display, sim window,gc,50,257,500,257) ;
XFlush (display)

/* Draw buckled Bill - left part firsc (5°TH ROTATION AND STAGE 2) =/
for (j=0 ; 3<2 ; 3j++) {

for (i=0 ; i<NUMBER_OF _NODES-1 ; i++) {
xx1=3214*x_draw(j][i];
xx2-3214*x_drawtj][i+1];
yyl=3214*y draw[jl([i];
Yy2=3214*y draw([j] [i+1];
XDrawLine (display, sim_window,gc, 50+xx1,255-yyl, 50+xx2,
255~yy2) ;

/* ONLY FOR STAGE 2 */

if (flag) {
g2 = 3214*1 rem;
XDrawLine(display,sim“window,gc,50+xx2,255-yy2,50+xx2+q2,255—yy2):

/* Now draw graph of Ratio vs. theta in graph window */

XDrawLine(display,graph_window,gc,50,110,500,110): /* x-axis (theta)

x/

XDrawline (display,graph_window,gc, 50,30,50,190) ; /* y-axis (Ratio)
*/

XDrawLine (display, graph_window,gc, 45, 70,500, 70) ; /* R=1 line */

gxl = 50 + length_of_increment* (ang_count-1);

gx2 = 50 + length_of_increment*ang count;

if (ang_count == 1) gyl = 110; /* If this is the first data of
ratio */

/* use origin for first point */

if (ang_count != 1) gyl = 110 - old ratio*40;

gy2 = 110 - ratio*40; /* Note: I assume that +y axis
goes up */

/* to a ratio of 2 (maximum) */
XDrawLine(display,graph_yindow,gc,gxl,gyl,gxz,gyz):

XFlush(display) ;

173

}

/* ONLY FOR ROTATION */
if (!flag) {
/* Draw Flat Part (tail) =*/
remlength = 3214*(12 + xc0) + 50;
q = xc0*3214;
xnrawLine(display,simLyindov,gc,50+q,255,remlength,255);

/* Draw Roller */
xx]l = 3214*x_rell; /* Coordinates of centre */

yyl = 3214*y roll;
/* WNOTE !! : NOT the coordinates of the centre to be given
*/
xx2 = 3214*r_ roll;

xc = xx1 - xx2*sin{theta);
yc = yyl - xx2*cositheta);

XDrawLine(display,simLyindow,gc,50+xx1,255—yy1,50+xc,255-yc);

/* thetal is theta plus the angle of the segment of the roller */
xCc = xx1 - xx2*sin(thetal);
yc = yyl - xx2*cos(thetal);

th_deg = 1*(theta*180/PI);
XDrawLine(display,sim;window,gc,50+xx1,255-yy1,50+xc,255-yc):

/* XDrawArc draws the arc between the straight segements of the roller.

The arguments are: */

/* , angle from vertical of first clock-wise segment, -({angular

distance of 2nd straight side) */
XDrawarc(display,sim;yindow,gc,50+xx1-xx2,255-yy1-

xx2,2%xx2,2*xx2, (270-th_deg) *64, - (100) *64) ;

XFlush(display) ;

}
/*closes simulation */

load_font (font_info)
XFontStruct **font_info;

{
char *fontname = "9x15%;

if ((*font_info = XLoadQueryFont (display, fontname)) == NULL)
{
(void) fprintf(stderr,"Basic: Cannot open 9x15 font \n");

exit (-1);
}

174

draw_text (data_window, gc, font_info,win_width,win_height)

Window data_window;

GC gc;

XFontStruct *font_info;

unsigned int win_width, win_height;

int y = 50;

char *stringl = "Ratio of tangential to normal forces at contact"™;
char *string2 = "This is another test for the ratio™:

int lenl, len2, len3;

int widthl, width2;

char cd_ratio[50), cd_1m[50], cd | rm{50] ;

int font_height;

int initial_y offset, x_offset;

lenl = strlen(stringl);
len2 = strlen(string2);

widthl = XTextWidth (font _info, stringl,lenl):
width2 = XTextWidth(font_infec, string2,len2);

/* XDrawString(display,data _window,gc, (win_width -
widthl)/2,y,s8tringl, lenl); */

/* ¥DrawString{display,data _window,gc, (win_width -
width2)/2, (int) (win_height ~ 35),string2,len2);*/

(void) sprintf(cd_ratio, “RATIO (Ft/Fn): &f ", ratio_display);
(void) sprintf(cd_1m, “Left-part moment: $f",left_mom) ;
(void) sprintf(cd_rm, "Right-part moment: %f", right_mom) ;

font_height = font_info->max _bounds.ascent + font_info-
>max bounds.descent;

initial y offset = win_height/2 - font_height - font_info-
>max_bounds.descent;

x_offset = (int) win_width/4;
lenl = strlen(cd_ratio);

len2 = strlen(cd_1m);
len3 = strlen(cd_rm);

XDrawString (display, data _window,gc,x_offset, (int) initial_y offset,
cd_ratio, lenl);

XDrawString(display, data _window,gc,x_offset, (int) initial_y offset +
S*font_height, cd | 1lm, len2);

XDraHStrxng(display, data_window,gc,x _offset, (int) initial_y offset +
6*font_height, cd | _rm, len3);

}

175

/* Damping coefficient function - for x and y directions */
/* Rercdynamic model should be input here */

double B1l()

{

/* For now, just return a constant */
return (0.001);

}

/* Damping coefficient function - for rotation */
/* Rerodynamic model should be input here */

double B2()
{

/* For now, just return a constant */
return (0.001);

graphix init (argc,argv)

int argc;
char **argv;

{
/* INITIALIZE GRAPHICS */

display = XOpenDisplay(""); /* Screen Initialization */
screen = DefaultScreen(display);
cmap = XDefaultColormap(display, screen);

Magenta.red=255%*factor;
Magenta.green=0*factor;
Magenta.blue=255*factor;

if (XAllocColor (display, cmap, &Magenta) ==0) fail=1;
DarkSlateGrey.red=47*factor;
DarkSlateGrey.green=79*factor;
DarkSlateGrey.blue=79*factor;
if(XAllocColor(display,cmap,&DarkSlateGrey)-O) fail=1;
White.red=255*factor;

White.green=255*factor;
White.blue=255*factor;

176

if (XAllocColor (display, cmap, &White)==0) failw=l;
/* Determine if color or black/white to be used */
fail=0;
if (fail) {
background = WhitePixel {display, screen);
foreground = BlackPixel (display, screen):;

}

else({
background = DarkSlateGrey.pixel;
/* background = White.pixel;*/

foreground = Magenta.pixel;
}

/* Specify window position and size for first window (simulation) */

hint.x = 10;

hint.y = 30:

hint .width = XDisplayWidth(display, screen)/2;
hint .height = XDisplayHeight (display, screen)/2;
hint.flags = USPosition | USSize;

/* Window creation */
sim window = XCreateSimpleWindow (display, DefaultRootWindow (display),
hint.x,
hint.y, hint.width, hint.height, 0,
foreground,
background) ;

XSetStandardProperties(display,sim_yindow,”simulation“,“simulation",None

14

argv, argc, &hint) ;

/* Specify window position and size for second window (data) */

hint.x = 600;

hint.y = 30;

hint.width = XDisplayWidth(display, screen)/4;
hint .height = XDisplayHeight (display, screen)/4;
hint.flags = USPosition | USSize;

data_window = XCreateSimpleWindow (display,
DefaultRootWindow(display), hint.x,
hint.y, hint.width, hint.height, 0,
foreground,
background) ;

XSetStandardProperties (display,data_window, "data", "zata", None,
argv,argc, &hint) ;

177

/* Specify window position and size for third windcw (graphics) */

hint.x = 10;

hint.y = 550;

hint .width = XDisplayWidth(display, screen)/2;
hint.height = XDisplayHeight (display, screen)/4;
hint.flags = USPosition | USSize;

/* Window creation */
graph_window = XCreateSimpleWindow (display,

DefaultRootWindow(display), hint.x,

hint.y, hint.width, hint.height, O,

foreground,

background) ;

XSetStandardProperties (display,graph_window,®R / th

Graph"™, "graph", None,

argv,argc, &hint) ;

/* Restore these so that data_window doesn't get screwed-up */
hint .width = XDisplayWidth(display, screen)/4;
hint.height = XDisplayHeight (display, screen)/4;

/* GC creation and initialization */
gc = XCreateGC(display, sim_window,0,0);
gc = XCreateGC(display,data_window,0,0);
gc = XCreateGC(display,graph_window,0,0);

XSetBackground (display, gc, background) ;
XSetForeground (display, gc, foreground) ;

/* Load and set font */

f = XLoadFont {(display, *9x15") ;

if (!'£) {
fprintf("Couldn't load font %s. \n", f):;
exit (-1);

}

/* Window mapping */

XMapRaised (display,sim window);
XMapRaised (display,data_window);
XMapRaised (display,graph_window);

XFlush (display) ;
sleep(2);

/* INITIALIZE GRAPHICS END */

178

